
U4351-J-Z125-8-76 1

1 Preface
The C runtime system V2.5C is part of the Common Runtime Environment CRTE V2.4A.
When CRTE is used in BS2000/OSD operating systems without POSIX, the C runtime
system offers more than 300 predefined functions, including all the functions defined in the
ANSI/ISO standard (as well as ISO-C Amendment 1 to ISO/IEC 9899:1990), and around
50 BS2000/OSD-specific extensions. These functions serve as a convenient aid in
programming many tasks for which no higher-level language facilities are provided in C
itself. Some examples of such programming tasks include:

– processing of files (open, close, position, read, write, etc.)

– processing of individual characters or strings (search, change, copy, delete etc.)

– processing of multibyte and wide characters

– processing of type long long integer

– dynamic memory management (allocation and deallocation of storage areas, etc.)

– access to operating system functions (system commands, utility routines, etc.)

– mathematical functions (trigonometric, logarithmic etc.)

The functions are available either as source program sections (macros) or in the form of
precompiled program segments (modules). In this manual the term “function” is used to
include both types, unless it is necessary to make a distinction between the two.

The required function declarations, definitions of constants, data types and macros, as well
as the function macros themselves are incorporated in “include files” (often referred to in
C literature as “standard include files”, “include headers” etc.). These include files are
source program sections which can be addressed in the C program via #include directives
and are temporarily copied to the program during each compilation.

All the functions and header files are stored in CRTE libraries as library elements.

A detailed description of how to access the CRTE libraries during the compilation, linkage
and execution of a C or C++ program is provided in the C and C++ User Guides.

2 U4351-J-Z125-8-76

Summary of contents and target group Preface

1.1 Summary of contents and target group

This manual describes all the C functions and macros of the C runtime system that can be
used in the BS2000/OSD operating system without POSIX. It addresses users of C who
employ CRTE V2.4A in BS2000/OSD operating systems in which no POSIX subsystem is
available, and also developers of C applications that are designed to run without POSIX.

Familiarity with the C programming language and the BS2000 operating system is a
prerequisite to using this manual effectively.

Chapter 2 contains notes and points to be generally observed when using the library
functions, e.g. differences between functions and macros, insertion of include files, error
handling etc.

Chapter 3 provides an overview of the library functions from the viewpoint of their content.

Chapters 4 to 6 contain basic information, programming notes and examples concerning
file processing, STXIT/Contingency routines and locales.

Chapter 7 is a reference section that contains the descriptions of the individual library
functions, arranged in alphabetical order.

The Appendix contains tables that show which of the library functions described here are
defined in the ANSI standard.
In addition, it also includes a section on selecting the KR functionality supported by
C/C++ compiler versions prior to V3.0.

In the body of the text, references to other publications are made using abbreviated titles;
the full titles are listed in the “Related publications” section at the back of the manual. Notes
on how to order manuals are given at the end of the same section.

The POSIX library functions of the C runtime system (approx. 300 functions that are defined
in the XPG4 standard plus some UNIX/SINIX-specific extensions) can only be used with
BS2000/OSD operating systems as of V2.0 in which a POSIX subsystem is also available.
All the C library functions which can be used when a POSIX subsystem is available are
described in the manual “C Library Functions for POSIX Applications”.

U4351-J-Z125-8-76 3

Preface Changes since the last version of the manual

1.2 Changes since the last version of the manual

The differences between this manual and the manual describing the C library functions in
V2.5C are associated with the following major innovations in V2.6A of the C runtime system
in CRTE V2.4A:

● support for IEEE floating-point arithmetic

● support for ASCII encoding

● transparent processing of “large” files (> 2 GB)

● the new preprocessor define _MAP_NAME

● a 64-bit variant of the tmpfile function: tmpfile64

● function variants of fseek/fseek64 and ftell/ftell64:
fseeko/fseeko64 and ftello/ftello64

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U4351-J-Z125-8-76 5

2 Use of the library functions
This chapter contains general information on what should be taken into account when using
the library functions.

2.1 Functions and macros

Most of the library functions are implemented as C functions, a few as macros. Some library
functions are implemented both as functions and as macros (see list below).

If a library function exists in both variants, the macro variant is generated for the call by
default. A function call is generated if the name is enclosed in parentheses () or canceled
with the #undef directive.
Which version you select depends on whether and which aspects (performance, program
size, restrictions) are relevant to the particular program.

A function is a compiled program section (module) that is available only once and is treated
as an external subroutine at execution time. An organizational overhead is required for each
function call during program execution; for example, management of the local, dynamic
data of a function in the runtime stack, saving of register contents, return addresses, etc.

Some library functions can be generated inline, controlled via the OPTIMIZATION compiler
option. In this case the function code is included directly in the call and the above-
mentioned administrative activities are not needed.
At present, the following functions can be generated inline: strcpy, strcmp, strlen,
strcat, memcpy, memcmp, memset, abs, fabs, labs.

The C, C++ and C/C++ User Guides provide more detailed information on this topic.

A macro is a source program segment defined by the #define directive. During compi-
lation, the macro name in the program is replaced by the contents of the called macro each
time the macro is called.

6 U4351-J-Z125-8-76

Functions and macros Use of the library functions

The use of a macro may result in better performance during program execution, since the
runtime system is not required to perform administrative functions (see function). However,
the compiled program increases in size due to macro expansions.

When using a macro, the following should also be taken into account:

– The names of macros cannot be passed to other functions as arguments if they require
a pointer to a function as an argument.

– Using increment/decrement or compound assignment operators for macro arguments
may produce unwanted side effects.

– The include file which contains the macro definition must always be incorporated in the
program.

List of library functions implemented as macros or as both macros and functions:

Macro: Function:

clearerr (clearerr)

clock (clock)

feof (feof)

ferror (ferror)

getc (getc)

getchar (getchar)

getwc (getwc)

isalnum (isalnum)

isalpha (isalpha)

iscntrl (iscntrl)

isdigit (isdigit)

isebcdic (isebcdic)

isgraph (isgraph)

islower (islower)

ispunct (ispunct)

isspace (isspace)

isupper (isupper)

isxdigit (isxdigit)

iswalnum (iswalnum)

iswalpha (iswalpha)

iswcntrl (iswcntrl)

U4351-J-Z125-8-76 7

Use of the library functions Functions and macros

iswdigit (iswdigit)

iswgraph (iswgraph)

iswlower (iswlower)

iswprint (iswprint)

iswpunct (iswpunct)

iswspace (iswspace)

iswupper (iswupper)

iswxdigit (iswxdigit)

putc (putc)

putchar (putchar)

toebcdic (toebcdic)

tolower (tolower)

toupper (toupper)

towlower (towlower)

towupper (towupper)

assert

offsetof

va_arg

va_end

va_start

Macro: Function:

8 U4351-J-Z125-8-76

Include files Use of the library functions

2.2 Include files

Every library function is declared in an include file. Many library functions use symbolic
constants and data types, which are defined in include files. The library functions that are
implemented as macros are also located in include files.

The include files required for the use of library functions are components of the CRTE
library SYSLIB.CRTE. They are stored there as source program elements (type S) and are
copied to the program during compilation on the basis of the preprocessor #include
directive. The C and C++ User Guides provide a detailed description of how this has to be
done.

The following include files are available:

The following items, among others, may be contained in include files:

– Definitions of symbolic constants with the values required for proper execution of the
functions, e.g.:

<ascii_ebcdic.h> <float.h> <math.h> <stdlib.h> <timeb.h>

<assert.h> <ieee_390.h> <regexp.h> <string.h> <wchar.h>

<cglobals.h> <ilcs.h> <setjmp.h> <strings.h> <wctype.h>

<cont.h> <inttypes.h> <signal.h> <stxit.h>

<crduc.h> <iso646.h> <stdarg.h> <sys.timeb.h>

<ctype.h> <limits.h> <stddef.h> <sys.types.h>

<errno.h> <locale.h> <stdio.h> <time.h>

BUFSIZ standard size of the I/O buffer (8192 bytes), as defined by the operating system

EOF end-of-file criterion (-1)

WEOF end-of-file criterion for wide character files (L“-1“)

_NFILE maximum permissible number of concurrently opened files, including the
standard files stdin, stdout and stderr (2048).

NULL null pointer (0)

U4351-J-Z125-8-76 9

Use of the library functions Include files

– Definitions of data types and structures that are used by the functions, e.g.:

– The prototype declaration of all functions

Before a function is called, the data type must be made known, i.e. declared. This is
ensured by incorporating the appropriate include file. In the “ANSI” and “STRICT-ANSI”
compilation modes, a warning is issued if the declaration is missing. In the
“CPLUSPLUS” compilation mode, an error occurs if the declaration is missing, and no
module is created.

See also section “Preprocessor define _STRICT_STDC” on page 30.

– The definition of all macros

Some library functions are implemented as macros. In order to be able to use a macro,
the appropriate include file must be incorporated into the program.

The include files contain extern “C” declarations for all functions and data so that C library
functions can be called from within C++ sources.

FILE Most I/O functions use a pointer to a structure of type FILE (see also section
“FILE structure” on page 52”)

mbstate_t This data type is used by many of the multibyte functions and corresponds to
the type char in this implementation.

size_t This data type is used by many of the string functions and corresponds to the
type unsigned in this implementation.

ptrdiff_t This data type is used for the result of a subtraction of pointers and
corresponds to the type int in this implementation.

wint_t This data type includes values corresponding to elements of the extended
character set and the value WEOF (end of input) and corresponds to the
type integer in this implementation.

wchar_t This data type is used by the multibyte functions and corresponds to the type
long in this implementation.

wctrans_t A scalar data type representing locale-specific character translations.

wctype_t A scalar data type representing locale-specific character classes;
corresponds to the type long in this implementation.

clock_t This data type is used by the clock function and corresponds to the type int
in this implementation.

time_t This data type is used by many of the time functions and corresponds to the
type long in this implementation.

va_list This data type is used by functions that process variable argument lists (e.g.
vprintf).

10 U4351-J-Z125-8-76

Include files Use of the library functions

Include file iso646.h

The include file iso646.h contains the following 11 macros, which expand to the adjacent
notations and thus serve as alternative notations for the corresponding operators:

and && compl ~ or_eq |=

and_eq &= not ! xor ^

bitand & not_eq != xor_eq ^=

bitor | or | |

U4351-J-Z125-8-76 11

Use of the library functions Error handling

2.3 Error handling

In order to program effectively, it is advantageous in the case of most function calls to check
whether the function performed successfully. This may be done as follows:

if(fct(...) == error result) /* Query error return value */
 {
 perror("fct:"); /* Output error information */
 exit(error code); /* Response to the error, e.g. */
 } /* program termination in this case */
else...

Most functions return an error return value when an error occurs.
Furthermore, in many cases, the internal C variable errno (type integer) is set to an
appropriate error code. Information specifying the error in more detail is then edited inter-
nally (in a structure) on the basis of this error code. The information output by the perror
function contains:

– a brief error text explaining the error,
– the name of the function at which the error occurred,
– the DMS error code (hexadecimal), if any, for incorrect file access.

All error codes as well as the associated error information are defined in the include file
<errno.h>.

If various types of errors and thus different error codes are possible for a function, it may be
useful to query the errno variable for the error code so as to vary the response (if appro-
priate) to the errors that occur. Each error code is represented by a symbolic constant
defined in <errno.h>: ERANGE, for example, indicates an overflow error (value 2).
A query could appear as shown in the following example, which uses the signal function:

#include <errno.h>
 .
 .
if(signal(sig, fct) == 1) /* Query error result */
{
 if(errno == EFAULT)
 . /* Responses to EFAULT (invalid address) */
 .
 else if(errno == EINVAL)
 . /* Responses to EINVAL (invalid argument) */
 .
}
else...

12 U4351-J-Z125-8-76

Error handling Use of the library functions

In addition to the errno variable there are two other variables defined in the include file
<errno.h>:

The name of the errored function can be accessed with _ _errcmd, and the hexadecimal
DMS code with _ _errhex. Both variables are of char[8] type.

Notes

– The variables errno, _ _errcmd and _ _errhex must not be explicitly defined by the
user. The include file <errno.h> must be incorporated in the program in order for these
variables to be queried.

– The contents of the area in which the errno error code is internally stored are preserved
until they are overwritten with current information when an error occurs again. perror
calls and queries of the errno, _ _errcmd and _ _errhex variables are therefore only
useful immediately after a function has provided an error return value.

In the examples given for the individual function descriptions, error queries have often been
omitted so as to keep the examples from swelling unnecessarily.

U4351-J-Z125-8-76 13

Use of the library functions Pointer as a return value and result parameter

2.4 Pointer as a return value and result parameter

Return value pointer

<type> *funct(...)

Some functions that return a pointer write their result to an internal C data area that is
overwritten each time this function is called. Because this is a common source of errors, it
is explicitly mentioned for all functions of the data type pointer.

Return value void *

void * funct(...)

If the value of a void * function is assigned to a pointer variable, the type should be
converted explicitly using the cast operator. When calling from within C++ sources, explicit
type conversion is mandatory.

Example

long *long_ptr;

.

.

long_ptr = (long *)calloc(20, sizeof(long));

Result parameter pointer

<type1> funct(<type2> *variable)

Result parameters are variables whose contents are changed by the function, i.e. the
function stores a result in such variables. Result parameters are defined without const.

The address, i.e. a pointer, must always be passed as the argument. In addition, you must
explicitly provide memory space for the result before calling the function.
Since this is often overlooked, reminders are provided in the pertinent function descriptions.

Examples

struct timeb tp; /* structure */
ftime(&tp);

char erg; /* char variable */
scanf("%c", &erg);

char array[10]; /* string variable */
scanf("%s", array);

14 U4351-J-Z125-8-76

IEEE floating-point arithmetic Use of the library functions

2.5 IEEE floating-point arithmetic

CRTE V2.4A supports IEEE floating-point arithmetic:

– The C/C++ compiler offers a compiler option with which floating-point numbers can be
generated in IEEE format (see page 15).

– For every library function in the C runtime system that works with or returns floating-
point numbers, there is a variant for processing IEEE floating-point numbers and a
macro define that maps the standard variant (/390 variant) of the function to the
associated IEEE variant (see page 16).

For each compiler option you can activate all the IEEE functionality: the C/C++ compiler
then generates floating-point numbers in IEEE format in all modules and automatically
provides the appropriate IEEE functions for processing the IEEE floating-point numbers.

In addition, you can use the IEEE functionality provided in a modified form:

– You can use the _IEEE_SOURCE preprocessor define to specify whether the library
functions for /390 floating-point arithmetic are mapped to the associated IEEE variants
(see page 17).

– You can use conversion functions to convert floating-point numbers explicitly from /390
format to IEEE format (see page 18).

U4351-J-Z125-8-76 15

Use of the library functions IEEE floating-point arithmetic

2.5.1 Generating IEEE floating-point numbers by means of a compiler option

For floating-point numbers the C/C++ compiler generates code in /390 format or IEEE
format, as required. You specify the format you want by means of the FP-ARITHMETICS
clause of the MODIFY-MODULE-PROPERTIES compiler option.

MODIFY-MODULE-PROPERTIES -

...

FP-ARITHMETICS= , -

LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -

...

FP-ARITHMETICS=*390-FORMAT
The compiler generates code for constants and arithmetic operations in /390 format.
*390-FORMAT is the default.

FP-ARITHMETICS=*IEEE-FORMAT
The compiler generates code for constants and arithmetic operations in IEEE format. In
addition, the _IEEE preprocessor define is set to 1. Unless the _IEEE_SOURCE prepro-
cessor define is set to 0 (see page 17), the original /390 library functions are automati-
cally mapped to the associated IEEE functions.

LOWER-CASE-NAMES=*YES
SPECIAL-CHARACTERS=*KEEP

By specifying these, you prevent:

– the names of the IEEE functions (see page 16) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced by “$” in the function names

In POSIX you specify the IEEE format by means of the following option:

-K ieee_floats

To ensure the IEEE function names are processed correctly, you specify:

-K llm_keep
-K llm_case_lower

*390-FORMAT
*IEEE-

16 U4351-J-Z125-8-76

IEEE floating-point arithmetic Use of the library functions

2.5.2 C library functions that support IEEE floating-point numbers

For every function that works with floating-point numbers or returns a floating-point number,
the C runtime system offers:

– an implementation of the function with /390 arithmetic

– an implementation of the function with IEEE arithmetic

– a macro define that maps the original function (/390 function) to the associated IEEE
function

The prototype of an IEEE function and the associated define are stored in the include file
in which the corresponding original function is declared. This has the advantage that no
additional include files are required in order to use the IEEE floating-point arithmetic, with
the possible exception of <ieee_390.h> (see page 18).

Names of the IEEE functions

The syntax of the names of the IEEE functions is as follows:

__originalfunction_ieee()

The name of the original function should be specified for originalfunction.

The IEEE variant of sin(), for example, is __sin_ieee().

C library functions for which there is an IEEE function

There is an IEEE variant for each of the following C library functions:

acos asin atan atan2 atof ceil cos cosh

difftime ecvt erf erfc exp fabs fcvt floor

fprintf frexp fscanf gamma gcvt hypot j0 j1

jn ldexp llrint llrintf llrintl llround llroundf llroundl

log log10 lrint lrintf lrintl lround lroundf lroundl

modf pow printf rint rintf rintl round roundf

roundl scanf sin sinh sprintf sqrt sscanf strtod

tan tanh vfprintf vprintf vsprintf y0 y1 yn

U4351-J-Z125-8-76 17

Use of the library functions IEEE floating-point arithmetic

2.5.3 Controlling the mapping of original functions to the associated IEEE
variants

You can use the _IEEE_SOURCE preprocessor define to specify whether the original library
functions (/390 functions) for floating-point arithmetic are mapped to the associated IEEE
variants. The prototypes of the IEEE functions are always generated.

_IEEE_SOURCE can take on the following values:

_IEEE_SOURCE == 0
 The /390 functions are not mapped to the corresponding IEEE variants. /390 and

IEEE functions can thus be used in parallel. This setting applies regardless of the
settings of the compiler (see the _IEEE define on page 15).

_IEEE_SOURCE == 1
 The /390 functions are mapped to the corresponding IEEE variants. It is thus not

possible to use /390 and IEEE functions in parallel. This setting applies regardless
of the settings of the compiler (see the _IEEE define on page 15).

The _MAP_NAME preprocessor define allows you to specify whether the /390
functions are to be mapped to the IEEE functions by means of the name define
method or the macro define method (see page 31).

 If you want to control the mapping of the original functions to the associated
IEEE functions by means of the preprocessor define, you have to use the
function declarations of the standard include files (i.e. you have to include
the standard include files).

_IEEE_SOURCE is not defined
 In this case, the following takes place, depending on the compiler option (see the

_IEEE define on page 15):

_IEEE == 0 or _IEEE not defined
The /390 functions are not mapped to the corresponding IEEE variants.

_IEEE == 1
The /390 functions are mapped to the corresponding IEEE variants.

i

18 U4351-J-Z125-8-76

IEEE floating-point arithmetic Use of the library functions

 To control the mapping of the original functions to the associated IEEE
variants, you have to specify the MODIFY-MODULE-PROPERTIES compiler
option as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the IEEE functions (see page 16) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced with “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

2.5.4 Explicit conversion of floating-point numbers

In addition to the compiler and runtime system extensions for IEEE support described in the
above sections, there are also functions for explicitly converting floating-point numbers
between the /390 and IEEE formats.

The following conversion functions are declared in the include file <ieee_390.h>:

extern float float2ieee(float num);
extern float ieee2float(float num);

extern double double2ieee(double num);
extern double ieee2double(double num);

Conversion functions are described in detail in the alphabetical reference section (see
page 103).

i

U4351-J-Z125-8-76 19

Use of the library functions ASCII encoding

2.6 ASCII encoding

In addition to the standard EBCDIC encoding of characters and strings, CRTE V2.4A also
supports ASCII encoding of characters and strings:

– The C/C++ compiler offers an option by means of which characters and strings can be
generated in ASCII format (see page 20).

– For every library function in the C runtime system that works with characters or strings
or that returns a character or a string, there is a variant for processing ASCII characters
and strings and a macro define that maps the EBCDIC variant of the function to the
associated ASCII variant (see page 23).

For each compiler option you can activate all the ASCII functionality: the C/C++ compiler
then generates characters and strings in ASCII format in all modules and automatically
provides the appropriate ASCII functions for processing the ASCII characters and strings.

In addition, you can use the ASCII functionality provided in a modified form:

– You can use the _ASCII_SOURCE preprocessor define to specify whether the library
functions for EBCDIC representation are mapped to the associated ASCII variants (see
page 23).

– You can use conversion functions to convert ASCII characters and strings explicitly from
EBCDIC format to ASCII format (see page 25).

20 U4351-J-Z125-8-76

ASCII encoding Use of the library functions

2.6.1 Generating ASCII characters and strings by means of a compiler
option

The C/C++ compiler generates code for characters and strings in EBCDIC format (default)
or ASCII format, as required. You specify the format you want by means of the
LITERAL-ENCODING clause of the MODIFY-SOURCE-PROPERTIES ... compiler option.

MODIFY-SOURCE-PROPERTIES ..., LITERAL-ENCODING=

LITERAL-ENCODING=*NATIVE
The compiler generates code for characters and strings in EBCDIC format.
*NATIVE is the default.

LITERAL-ENCODING=*ASCII-FULL
The compiler generates code for characters and strings in ASCII format. In addition, the
_LITERAL_ENCODING_ASCII preprocessor define is set to 1. Unless the
_ASCII_SOURCE preprocessor define is set to 0 (see page 23), the EBCDIC library
functions are automatically mapped to the associated ASCII functions.

In POSIX you specify ASCII encoding by means of the following option:

-K literal_encoding_ascii_full

 If you want to use ASCII support, you have to specify the MODIFY-MODULE-
PROPERTIES compiler option as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the ASCII functions (see page 21) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced by “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

*NATIVE
*ASCII-FULL

i

U4351-J-Z125-8-76 21

Use of the library functions ASCII encoding

2.6.2 C library functions that support ASCII encoding

For every library function in the C runtime system that works with characters and/or strings
or returns a character or string (e.g. printf), there is:

– an implementation of the function for processing characters and/or strings in EBCDIC
format

– an implementation of the function for processing characters and/or strings in ASCII
format

– a macro define that maps the original function (EBCDIC format) to the associated ASCII
function

The prototype of an ASCII function and the associated define are stored in the include file
in which the corresponding original file is declared. This has the advantage that no
additional include files are required to use ASCII-encoded characters and strings, with the
possible exception of <ascii_ebcdic.h> (see page 25).

Names of the ASCII functions

The syntax of the names of the ASCII functions is as follows:

__originalfunction_ascii()

The name of the original function should be specified for originalfunction.

The ASCII variant of printf(), for example, is __printf_ascii().

22 U4351-J-Z125-8-76

ASCII encoding Use of the library functions

C library functions for which there is an ASCII function

There is an ASCII variant for each of the following C library functions:

asctime assert atof atoi atol

atoll basename bs2exit bs2fstat creat

creat64 ctime ecvt fdopen fgetc

fgets fopen fopen64 fprintf fputc

fputs fread freopen freopen64 fscanf

fwrite gcvt getc_unlocked getenv getpgmname

gets gettsn isalnum isalpha isascii

iscntrl isdigit isgraph islower isprint

ispunct isspace isupper localeconv mknod

mktemp open open64 perror printf

remove rename scanf setlocale sprintf

sscanf strerror strlower strptime strtod

strtol strtoll strtoul strtoull strupper

tmpnam tolower toupper ungetc vfprint

vsprint

U4351-J-Z125-8-76 23

Use of the library functions ASCII encoding

2.6.3 Controlling the mapping of original functions to the associated
ASCII variants

You can use the _ASCII_SOURCE preprocessor define to specify whether the original library
functions (EBCDIC functions) for character/string processing are mapped to the associated
ASCII variants. The prototypes of the ASCII functions are always generated.

_ASCII_SOURCE can take on the following values:

_ASCII_SOURCE == 0
 The EBCDIC functions are not mapped to the corresponding ASCII variants.

EBCDIC and ASCII functions can thus be used in parallel. This setting applies
regardless of the settings of the compiler (see the _ASCII define on page 20).

_ASCII_SOURCE == 1
 The EBCDIC functions are mapped to the corresponding ASCII variants. EBCDIC

and ASCII functions thus cannot be used in parallel. This setting applies regardless
of the settings of the compiler (see the _LITERAL_ENCODING_ASCII define on
page 20).

You can use the _MAP_NAME preprocessor define to specify whether the EBCDIC
functions are to be mapped to the ASCII functions by means of the name define
method or the macro define method (see page 31).

 If you want to use the ASCII functions by means of the preprocessor define,
you have to use the function declarations of the standard include files (i.e.
you have to include the standard include files).

_ASCII_SOURCE is not defined
 In this case, the following takes place, depending on the settings of the compiler

(see the _LITERAL_ENCODING_ASCII define on page 20):

LITERAL_ENCODING_ASCII == 0 or
LITERAL_ENCODING_ASCII not defined

The original functions are not mapped to the corresponding ASCII variants.

LITERAL_ENCODING_ASCII == 1
The original functions are mapped to the corresponding ASCII variants.

i

24 U4351-J-Z125-8-76

ASCII encoding Use of the library functions

 To control the mapping of the EBCDIC functions to the associated ASCII
functions, you have to specify the MODIFY-MODULE-PROPERTIES compiler
option as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the ASCII functions (see page 21) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced with “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

i

U4351-J-Z125-8-76 25

Use of the library functions ASCII encoding

2.6.4 Explicitly switching between EBCDIC and ASCII encoding

In addition to the compiler and runtime system extensions for ASCII support described in
the above sections, there are also functions for explicitly converting characters and strings
between EBCDIC and ASCII representation. This permits EBCDIC and ASCII represen-
tation to be mixed within a single module. The conversion functions are declared in the
include file <ascii_ebcdic.h>.

The following conversion functions and data are available:

char *_a2e(char *str);
char *_e2a(char *str);

char *_a2e_n(char *str, size_t n);
char *_e2a_n(char *str, size_t n);

char *_a2e_max(char *str, size_t n);
char *_e2a_max(char *str, size_t n);

char *_a2e_dup(const char *str);
char *_e2a_dup(const char *str);

char *_a2e_dup_n(const char *str, size_t n);
char *_e2a_dup_n(const char *str, size_t n);

Conversion functions are described in detail in the alphabetical reference section (see
page 103).

26 U4351-J-Z125-8-76

Functions that support IEEE and ASCII encoding Use of the library functions

2.7 Functions that support IEEE and ASCII encoding

The include files <stdio.h> and <stdlib.h> of the C runtime system contain some functions
that support both IEEE floating-point arithmetic and ASCII encoding.

The original functions (/390, EBCDIC) are mapped to the corresponding ASCII/IEEE
functions when the preprocessor defines _IEEE_SOURCE (see page 17) and
_ASCII_SOURCE (see page 23) are both set to 1.

Names of the ASCII/IEEE functions

The syntax of the names of these ASCII/IEEE functions is as follows:

__originalfunction_ascii_ieee()

The name of the original function should be used for originalfunction.

The ASCII/IEEE variant of printf(), for example, is __printf_ascii_ieee().

C library functions for which there is an ASCII/IEEE function

There is an ASCII/IEEE variant for each of the following C library functions:

atof ecvt fcvt fprintf fscanf gcvt fprintf fscanf

gcvt printf scanf sprintf sscanf srtod vfprintf vsprintf

U4351-J-Z125-8-76 27

Use of the library functions Multibyte and wide characters

2.8 Multibyte and wide characters

Wide characters and multibyte characters were defined to expand on the original
“character” concept of computer languages, which was based on assigning each character
one byte of memory. This assignment proved insufficient for languages such as Japanese,
for example, since the representation of a character in such languages requires more than
one byte of storage. For this reason, the character concept has now been expanded to
include multibyte characters and wide characters.

Multibyte characters represent characters of the extended character set in one, two, three
or more bytes.
Multibyte strings may include “shift sequences“, which change the meaning of the following
multibyte codes. Shift sequences can thus be typically used to switch between different
interpretation modes. For example, the one-byte shift sequence 0200 may define that the
following byte pairs are to be interpreted as Japanese characters, whereas the shift
sequence 0201 may define that the following byte pairs are to be interpreted as characters
of the ISO Latin 1 character set.

Programming model

Due to the new functions added in Amendment 1, programs that work with multibyte
characters can now be implemented just as easily as programs which use the traditional
character concept.

When multibyte characters or strings are read from an external file, they are internally
converted to a wchar_t object or an array of type wchar_t. During the read operation, the
multibyte characters are converted to the corresponding wide character codes.
These wchar_t objects can then be processed with iswxxx functions, wcstod, wmemcmp,
etc., and the resulting wchar_t objects can subsequently be output with the wide character
output functions such as putwchar, fputws, and so on.
During the write operation, the wide character codes are converted to the corresponding
multibyte characters.

Notes on wide characters

A wide character is defined as a code value (a binary encoded integer) of an object of type
wchar_t that corresponds to a member of the extended character set.
A null wide character is a wide character with code value zero.

The end of file criterion in wide character files is WEOF.

Wide character constants are written in the form L“widecharstring“.

28 U4351-J-Z125-8-76

Time functions Use of the library functions

Notes on this implementation

This version of the C runtime system supports only 1-byte characters as wide character
codes. These characters are of type wchar_t, which is internally mapped to the type
long.
Consequently, multibyte characters always have a length of 1 byte in this implementation.

2.9 Time functions

There are three main differences between the time functions used when implementing the
C library functions without POSIX, i.e. if the POSIX link switch is not included, and the time
functions used in the POSIX/UNIX area:

– The fixed date for conversion to seconds (epoch) is the 1.1.1950 00:00:00
(in POSIX it is 1.1.1970).

– Time specifications are based strictly on local time; when converting to summer or
winter time, the time specifications “jump” accordingly. Negative numbers and time
differences, which lead to unexpected results in further processing, may occur in
particular when turning the clock back for winter time conversion.

– The gmtime function is implemented in the same way as localtime.

The consequence of using the fixed date 1.1.1950 is that the corresponding time functions
no longer function as of the year 2018. This year therefore represents a bigger problem for
C applications in BS2000 than the switchover to the new millennium.
When using POSIX time functions, the problem does not occur until twenty years later; in
addition, the difficulties are known in the relevant technical circles and a solution is being
sought.

For these reasons, users are advised to convert their programs to POSIX time
functions.

The POSIX time functions are used automatically when the POSIX link switch is included;
a POSIX subsystem is not required to use these time functions.
However, if the POSIX subsystem is preloaded, using the POSIX link switch causes the
program to connect to the POSIX subsystem.
If you use the POSIX link switch, the POSIX functions are implemented as described in the
manual “C Library Functions for POSIX Applications”, i.e. for I/O functions as well. In
particular, file names that are not explicitly identified as BS2000 file names are interpreted
as POSIX ufs file names.

If you only want your program to use the POSIX time functions, you must use the TIME link
switch.

U4351-J-Z125-8-76 29

Use of the library functions Time functions

The libraries

– SYSLNK.CRTE.TIME (/390) and

– SRULNK.CRTE.TIME (RISC)

are available for this purpose.

If you are not using the TIME link switch, all existing programs and procedures behave as
before.

2.9.1 Setting the time zone for POSIX time functions

The POSIX time functions evaluate the variable TZ to determine the time zone.

You can use the SYSPOSIX variable to set the time zone before the program start.
If the variable is not set when the program starts, the C runtime library initializes the variable
with the time zone valid for Germany, whereby it sets TZ to the value
MET-1DST,M3.5.0/02:00:00,M10.5.0/03:00:00.

If you want to set a different time zone for the general installation, you can use the ICXTZ
procedure provided by CRTE in the SINPRC.CRTE.022 library:

ICXTZ,(TZ=’timezone-specification’)

30 U4351-J-Z125-8-76

Preprocessor define _STRICT_STDC Use of the library functions

2.10 Preprocessor define _STRICT_STDC

The standard includes in the library SYSLNK.CRTE contain the prototype declarations for
all C library functions which the C runtime system provides. Approx. 50 of these library
functions are not defined in the ANSI standard, but are BS2000-specific (e.g. bs2fstat,
_edt) or UNIX-specific extensions (e.g. open, gamma).

The define _STRICT_STDC is provided to permit applications that conform to the ANSI
standard to be programmed.
This define can be set with the following option at compilation time:

– For version V2.2 of the C and C++ compilers:

SOURCE-PROPERTIES = PAR(LANGUAGE-STANDARD = STRICT-ANSI)

– For the C/C++ compiler as of V3.0:

MODIFY-SOURCE-PROPERTIES LANGUAGE=*C(MODE=*STRICT-ANSI)

If the define _STRICT_STDC is set, the prototype declarations for all functions in the
standard includes that are not defined in the ANSI standard are deactivated or bypassed.
The names of these functions are then freely available as user-defined names.

The define _STRICT_STDC relates only to prototype declarations within ANSI-defined
standard includes. The BS2000-specific include headers do not contain a query for this
define.

All the functions provided by the C runtime system are listed in the appendix (page 499 ff).
Information on whether a function is defined in the ANSI standard or is an extension is
provided for each function.

2.11 Preprocessor defines for function prototypes according
to XPG4

The following functions are defined differently in the XPG4 Standard and in Amendment 1:

fputwc, putwc, putwchar, wcschr, wcsrchr, wcstok

The preprocessor defines _XOPEN_SOURCE_EXTENDED and _XOPEN_SOURCE can be used
to control whether the prototype of the function compliant with XPG4 or Amendment 1 is to
be made available.

If you do not set _XOPEN_SOURCE_EXTENDED and _XOPEN_SOURCE, the prototype that
complies with Amendment 1 is offered.

If you set _XOPEN_SOURCE_EXTENDED or _XOPEN_SOURCE, the prototype that complies with
XPG4 is offered.

U4351-J-Z125-8-76 31

Use of the library functions Preprocessor define _MAP_NAME

2.12 Preprocessor define _MAP_NAME

When IEEE floating-point arithmetic, ASCII encoding and 64-bit interfaces for large files
(> 2 GB), some C library functions can be replaced with the corresponding IEEE, ASCII or
64-bit variants of these functions.

You can use the _MAP_NAME preprocessor define to specify whether they are to be replaced
by means of the name define method or the macro define method:

– If you define _MAP_NAME, the name define method is used.
– If you do not define _MAP_NAME, the macro define method is used.

The name define method defines a macro without arguments by means of a #define
statement, whereas the macro define method defines a macro with an argument list by
means of a #define statement.

Which solution is to be preferred depends on the specific application program. Pointers to
functions are not registered in the macro define method, for example, while variables are
also renamed (incorrectly) in name defines.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U4351-J-Z125-8-76 33

3 Overview of the functions
This chapter contains overviews of the functions, grouped according to content. Each
function appears exactly once.

34 U4351-J-Z125-8-76

Overview of the functions

3.1 File processing

The term "elementary", as used below, refers to all I/O functions that work on the basis of
file descriptors, as opposed to the standard I/O functions, which work on the basis of file
pointers. In addition, functions that can also be used on files with record-oriented
input/output (record I/O) are indicated as such.

U4351-J-Z125-8-76 35

 Overview of the functions

File access (open, close, position)

File management

Name Brief description

close
creat
creat64
fclose
fdelrec
fdopen
fflush
fgetpos
fgetpos64
flocate
fopen
fopen64
freopen
freopen64
fseek
fseek64
fsetpos
fsetpos64
ftell
ftell64
lseek
lseek64
fwide
open
open64
rewind
setbuf
setvbuf
tell

Close file and flush buffer (elementary)
Create file or overwrite existing file (elementary)
64-bit variant of creat for processing large files (> 2 GB)
Close file and flush buffer (also record I/O)
Delete record in indexed-sequential file (record I/O only)
Assign a file pointer to a file descriptor
Flush file buffer
Return current position of the read/write pointer (also record I/O)
64-bit variant of fgetpos for processing large files (> 2 GB)
Explicitly position indexed-sequential file (record I/O only)
Open file (also record I/O)
64-bit variant of fopen for processing large files (> 2 GB)
Reassign file pointer (also record I/O)
64-bit variant of freopen for processing large files (> 2 GB)
Position read/write pointer (also record I/O)
64-bit variant of fseek for processing large files (> 2 GB)
Position read/write pointer (also record I/O)
64-bit variant of fsetpos for processing large files (> 2 GB)
Determine current position of the read/write pointer
64-bit variant of ftell for processing large files (> 2 GB)
Position read/write pointer (elementary)
64-bit variant of lseek for processing large files (> 2 GB)
Query/define orientation of a file
Open file (elementary)
64-bit variant of open for processing large files (> 2 GB)
Position read/write pointer to beginning of file (also record I/O)
Set up input/output buffer
Set up input/output buffer
Query current position of the read/write pointer (elementary)

Name Brief description

bs2fstat
mktemp
remove
rename
tmpfile
tmpfile64
tmpnam
unlink

Access file name from catalog
Generate unique temporary file name
Delete file (also record I/O)
Rename file (also record I/O)
Open temporary binary file
64-bit variant of tmpfile for processing large files (>2 GB)
Generate temporary file name
Erase file (also record I/O)

36 U4351-J-Z125-8-76

Overview of the functions

File and error information

Input/output

Name Brief description

clearerr
feof
ferror

Delete end-of-file and error flag (also record I/O)
Test for end of file (also record I/O)
Test for file error (also record I/O)

Name Brief description

fgetc
fgets
fgetwc
fgetws
fprintf
fputc
fputs
fputwc
fputws
fread
fscanf
fwprintf
fwrite
fwscanf
getc
getchar
gets
getw
getwc
getwchar
printf
putc
putchar
puts
putw
putwc
putwchar
read
scanf
sprintf
sscanf
swprintf
swscanf
ungetc
ungetwc

Read a character from a file
Read a string from a file
Read a wide character from input file
Read a wide character string from a file
Formatted output to a file
Write a character to a file
Write a string to a file
Write a wide character to a file
Write a wide character string to a file
Read blockwise from a file (also record I/O)
Formatted input from a file
Write a formatted character to an output file (wide character format)
Write blockwise to a file (also record I/O)
Formatted input from a file (wide character format)
Read a character from a file
Read a character from standard input
Read a string from standard input
Read wordwise from a file
Read a wide character from a file
Read a wide character from standard input
Formatted output to standard output
Write a character to a file
Output a character to standard output
Output a string to standard output
Write wordwise to a file
Write a wide character to a file
Write wide characters to standard output
Read from a file (elementary)
Formatted input from standard input
Formatted output to a string
Formatted input from a string
Formatted output to a wide character string
Formatted input from a wide character string
Put a character back in the buffer
Put a wide character back in the buffer

U4351-J-Z125-8-76 37

 Overview of the functions

3.2 Communication with the system environment

3.3 Program information and execution control

Program information

Name Brief description

vfprintf
vfwprintf
vprintf
vsprintf
vswprintf
vwprintf
wprintf
write
wscanf

Formatted output to a file
Write a formatted character to a file (wide character format)
Formatted output to standard output
Formatted output to character string
Write a formatted character to a wide character string
Formatted output to standard output (wide character format)
Formatted output to standard output (wide character format)
Write to a file (elementary)
Formatted input from standard input (wide character format)

Name Brief description

cputime
getenv
getlogin
gettsn
system
_edt

CPU time used for the current task
Query system information
Return user ID
Return TSN (task sequence number)
Execute system command
Call file editor EDT

Name Brief description

getpgmname
_ _DATE_ _
_ _FILE_ _
_ _LINE_ _
_ _TIME_ _
_ _STDC_ _
_ _STDC_ VERSION_ _

Return name of the program
Output compilation date (macro)
Output source file name (macro)
Output current source program line number (macro)
Output compilation time (macro)
ANSI language standard (macro)
Check compliance with Amendment 1

38 U4351-J-Z125-8-76

Overview of the functions

Program termination

Handling exception conditions, eventing

Non-local jumps

Program diagnostics

Name Brief description

abort Abnormal program termination

atexit Register termination routines

bs2exit Program termination (with MONJV)

exit and _exit Program termination

Name Brief description

alarm
cdisco
cenaco
cstxit
kill
raise
signal
sleep

Set alarm clock
Deactivate a contingency routine
Definition of a contingency routine
Definition of a STXIT routine
Send signal to own program
Send signal to own program
Control signal processing
Suspend program for fixed period of time

Name Brief description

setjmp
longjmp

Set marker for non-local jumps
Non-local jump

Name Brief description

assert Macro for error diagnosis

U4351-J-Z125-8-76 39

 Overview of the functions

3.4 Memory management

3.5 Character processing

Character test

Name Brief description

calloc
free
garbcoll
malloc
memalloc
memfree
realloc

Reserve memory space for an array
Release memory space
Release memory space to system (garbage collection)
Reserve memory space
Reserve memory space (more than 2 Kbytes)
Release memory space (more than 2 Kbytes)
Reallocate memory space

Name Brief description

isalnum
isalpha
isascii
iscntrl
isdigit
isebcdic
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit

Test for alphanumeric character
Test for letter
Test for EBCDIC character
Test for control character
Test for digit
Test for EBCDIC character
Test for printable character except space
Test for lowercase letter
Test for printable character including space
Test for special character
Test for white-space character
Test for uppercase letter
Test for hexadecimal digit

40 U4351-J-Z125-8-76

Overview of the functions

Wide character test

Character conversion

Wide character conversion

Name Brief description

iswalnum
iswcntrl
iswctype
iswdigit
iswgraph
islower
iswprint
iswpunct
iswspace
iswupper
iswxdigit

Test for alphanumeric wide character
Test for wide control character
Test for wide character in character class chartype
Test for decimal-digit wide character
Test for visible wide character (excluding space)
Test for lowercase wide character
Test for printing wide character (including space)
Test for punctuation wide character
Test for white-space wide character
Test for uppercase wide character
Test for hexadecimal wide-character digit

Name Brief description

toascii
toebcdic
tolower
toupper

Conversion to EBCDIC
Conversion to EBCDIC
Conversion to lowercase
Conversion to uppercase

Name Brief description

wcrtomb
wctob
towlower
towupper

Convert wide character to multibyte character
Convert wide character to (one-byte) multibyte character
Convert wide character to lowercase
Convert wide character to uppercase

U4351-J-Z125-8-76 41

 Overview of the functions

3.6 Processing strings and character arrays (memory areas)

Strings

Character arrays (memory areas)

Name Brief description

index
rindex
strcat
strchr
strcmp
strcoll
strcpy
strcspn

strfill
strlen
strlower
strncat
strncmp
strncpy
strpbrk

strrchr
strspn

strstr
strtok
strtok_r
strupper
strxfrm

First occurrence of a character in a string
Last occurrence of a character in a string
Concatenate two strings
First occurrence of a character in a string
Compare two strings
Compare two strings
Copy one string to another
Calculate the length of a string segment that does not contain any character from a
second string
Copy one string to another up to length n and fill with blanks if required
Calculate the current length of a string
Copy one string to another with conversion of uppercase to lowercase
Concatenate two strings up to length n
Compare two strings up to length n
Copy one string to another up to length n
First occurrence in a string of a character that matches a character in a second
string
Last occurrence of a character in a string
Calculate the length of a string segment containing only characters from a second
string
First occurrence of a string in another string
Split string into several partial strings
Thread-safe variant of strtok
Copy one string to another with conversion of lowercase to uppercase
Transform a string

Name Brief description

memchr
memcmp
memcpy
memmove
memset

First occurrence of a character in a memory area
Compare two memory areas
Copy one memory area to another
Copy one memory area to another
Initialize a memory area with a character

42 U4351-J-Z125-8-76

Overview of the functions

Wide character strings

Wide characters arrays (memory areas)

Name Brief description

towctrans
wcsrtombs
wcsstr
wctrans
wcscat
wcschr
wcscmp
wcscoll
wcscpy
wcscspn
wcsftime
wcslen
wcsncat
wcsncmp
wcsncpy
wcspbrk
wcsrchr
wcsspn
wcstod
wcstok
wcstol
wcstoul
wcsxfrm
wctype

Map wide character
Convert wide character string to multibyte character
Find first occurrence of wide character string
Define mapping between wide characters
Concatenate two wide character strings
Scan wide character string for wide characters
Compare two wide character strings
Compare two wide character strings according to LC_COLLATE
Copy wide character string
Get length of complementary wide character substring
Convert date and time to wide character string
Get length of wide character string
Concatenate two wide character substrings
Compare two wide character substrings
Copy wide character substring
Get first occurrence of wide character in wide character string
Get last occurrence of wide character in wide character string
Get length of wide character substring
Convert wide character string to floating-point number (double)
Split wide character string into tokens
Convert wide character string to long integer
Convert wide character string to unsigned long
Wide character sting transformation
Define wide character class

Name Brief description

wmemchr
wmemcmp
wmemcpy
wmemmove
wmemset

First occurrence of wide character in wide character string
Compare two wide character strings (memory areas)
Copy wide character string (without overlapping of memory areas)
Copy wide character string to memory with overlapping areas
Set n wide characters in wide character string

U4351-J-Z125-8-76 43

 Overview of the functions

Multibyte functions

Name Brief description

btowc
mblen
mbrlen
mbsinit
mbrtowcs
mbstowcs
mbtowc
wcstombs
wctomb

Convert (one-byte) multibyte character to wide character
Return number of bytes of a multibyte character
Determine remaining length of a multibyte character
Test for initial conversion state
Complete multibyte character and convert to wide character
Convert a multibyte string to wide character string
Convert a multibyte character to a wide character
Convert wide character string to a multibyte string
Convert a wide character to a multibyte character

44 U4351-J-Z125-8-76

Overview of the functions

3.7 Error messages

3.8 Time functions

Name Brief description

perror
strerror

Output standard error message
Return error message text

Name Brief description

asctime
asctime_r
clock
ctime
ctime_r
difftime
ftime
gmtime
gmtime_r
localtime
localtime_r
mktime
strftime
time

Date and time
Thread-safe variant of asctime
CPU time used since program call
Date and time (CET)
Thread-safe variant of ctime
Calculate time difference
Current time (GMT) as a structure
Date and current local time (CET) as a structure
Thread-safe variant of gmtime
Date and current local time (CET) as a structure
Thread-safe variant of localtime
Convert date and time (calendar function)
Locale-specific formatting of date and time
Current time (GMT) in seconds

U4351-J-Z125-8-76 45

 Overview of the functions

3.9 Mathematical functions

Integer arithmetic

Floating-point numbers

Name Brief description

abs
div
labs
llabs
ldiv
lldiv

Absolute value (integer)
Division (integer)
Absolute value (long integer)
Absolute value (long long integer)
Division (long integer)
Division (long long integer)

Name Brief description

acos
asin
atan
atan2
cabs
ceil
cos
cosh
erf
erfc
exp
fabs
floor
fmod
frexp
gamma
hypot
j0, j1, jn
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh
y0, y1, yn

Arc cosine
Arc sine
Arc tangent x
Arc tangent x/y
Absolute value of a complex number
Round up to integer
Cosine
Hyperbolic cosine
Error function
Complement of the error function
Exponential function
Absolute value of a floating-point number
Round down to an integer
Remainder of a division
Normalized representation in base 2
Logarithmic gamma function
Euclidean distance
Bessel functions of the first kind
Calculate binary value
Natural log
Base 10 log
Split into integer part and fractional part
General exponential function
Sine
Hyperbolic sine
Square root
Tangent
Hyperbolic tangent
Bessel functions of the second kind

46 U4351-J-Z125-8-76

Overview of the functions

Functions for rounding (independent of rounding mode)

Functions for rounding (dependent on rounding mode)

Name Brief description

llrint
llrintf
llrintl
lrint
lrintf
lrintl
rint
rintf
rintl

Rounds type double to nearest integer of type long long int
Rounds type float to nearest integer of type long long int
Rounds type long double to nearest integer of long long int
Rounds type double to nearest integer of type long int
Rounds type float to nearest integer of type long int
Rounds type long double to nearest integer of long int
Rounds type double to nearest integer of type double
Rounds type float to nearest integer of type float
Rounds type long double to nearest integer of type long double

Name Brief description

llround
llroundf
llroundl
lround
lroundf
lroundl
round
roundf
roundl

Rounds type double to nearest integer of type long long int
Rounds type float to nearest integer of type long long int
Rounds type long double to nearest integer of long long int
Rounds type double to nearest integer of type long int
Rounds type float to nearest integer of type long int
Rounds type long double to nearest integer of long int
Rounds type double to nearest integer of type double
Rounds type float to nearest integer of type float
Rounds type long double to nearest integer of type long double

U4351-J-Z125-8-76 47

 Overview of the functions

3.10 Conversion of objects

Name Brief description

atof
atoi
atol
atoll
ecvt
fcvt
gcvt
mbstowcs
strtod
strtol
strtoll
strtoul
strtoull
strptime
wcsrtombs
wcsftime
wcstod
wcstol
wcstoll
wcstoul
wcstoull

String to floating-point number
String to integer
String to long integer
String to long long integer
Floating-point value to string
Floating-point value to string
Floating-point value to string
Multibyte string to long string
String to double (floating-point number)
String to long integer
String to long long integer
String to unsigned long integer
String to unsigned long long integer
String to date and time (as structure)
Long string to multibyte string
Date and time to long string
Long string to floating-point value (double)
Long string to integer (long)
Long string to integer (long long)
Long string to integer (unsigned long)
Long string to integer (unsigned long long)

48 U4351-J-Z125-8-76

Overview of the functions

3.11 Other functions

Search and sort

Random number generator

Locales

Variable argument lists

Offset of a structure component

Name Brief description

bsearch
qsort

Binary search algorithm
Quick sort

Name Brief description

rand
rand_r
srand

Random number generator
Thread-safe variant of rand
Initialize random number generator

Name Brief description

localeconv
setlocale

Query locale-specific data
Select locale

Name Brief description

va_arg
va_end
va_start

Process variable argument list (macro)
Close variable argument list (macro)
Initialize variable argument list (macro)

Name Brief description

offsetof Offset of a structure component from the start of the structure in bytes (macro)

U4351-J-Z125-8-76 49

4 File processing
The following types of files can be processed with the input/output functions of the C
runtime system:

– BS2000 system files SYSDTA, SYSOUT and SYSLST

– cataloged disk files with access methods SAM, ISAM and PAM

– temporary PAM files (INCORE).

In C-BS2000 a distinction is made between binary files and text files on the one hand and
between stream and record-oriented input/output on the other (see also section “Basic
terms” on page 50).

The following table shows the possible combinations in which the various file types can be
processed:

Up to 2048 files (including stdin, stdout and stderr) can be open at the same time.

Text file
Stream I/O

Binary file
Stream I/O

Binary file
Record I/O

System files X

INCORE X

SAM X X X

ISAM X X

PAM X X

50 U4351-J-Z125-8-76

Basic terms File processing

4.1 Basic terms

This section explains file processing terms that are often used in the description of the
C input/output functions (in chapter 7).

Binary file

A binary file is an ordered sequence of bytes. Data written with the aid of C output functions
is transferred to the file on a 1:1 basis. In contrast to text files, control characters for line feed
and tabs are not rendered effective (see section “Text file” on page 54) but are mapped as
corresponding EBCDIC values.
Data that is read from a binary file thus corresponds precisely to the data that was originally
written to the file.

The following are binary files with stream I/O:

– cataloged PAM files
– temporary PAM files (INCORE)
– cataloged SAM files opened with fopen/fopen64 or freopen/freopen64 in binary

mode.

The following are binary files with record I/O:

– cataloged ISAM files
– cataloged SAM files
– cataloged PAM files

opened with the fopen/fopen64 or freopen/freopen64 functions in binary mode and with
the suffix "type=record".

Binary mode may be specified only with the fopen/fopen64 or freopen/freopen64
functions.
If the elementary functions open/open64 and creat/creat64 are used, SAM and ISAM
files are always opened as text files.

 When you work with the ASCII variants of the input/output functions and binary
files, you have to take the following into account:

Since the data is written to a binary file by means of C input functions and read out
again in the same format by means of C output functions, changes may have to be
made in the case of programs that work with binary files. This is true, for example,
when it comes to the processing of text components. In the case of an ISAM file, for
example, if the key was stored as an EBCDIC string, you have to ensure that
EBCDIC code is not compared with ASCII code in a string comparison.

i

U4351-J-Z125-8-76 51

File processing Basic terms

File descriptor

A file descriptor is a positive integer that is used to identify a file when elementary access
operations are performed on it. It is assigned to a file when the file is opened (with
open/open64, creat/creat64). Once assigned, the file descriptor is used as the file
argument for all further access operations (read, write, close, tell, etc.).

When a program is started, the standard I/O files are automatically opened with the
following file descriptors:

0 Standard input

1 Standard output

2 Standard error output

File pointer

A file pointer is a pointer to a structure of type FILE. It is used when processing a file by
means of standard access functions (see <stdio.h>). A file pointer is provided for a file when
it is opened (with fopen/fopen64, fdopen, freopen/freopen64). This pointer serves as
the file argument for all further access operations (fprintf, fwprintf, fscanf, fclose,
etc.) on the file.

When a program is started, the standard I/O files are automatically opened with the
following file pointers:

stdin (standard input)

stdout (standard output)

stderr (standard error output)

Elementary

Functions that process a file on the basis of file descriptors are referred to as "elementary".
This is in contrast to the standard I/O functions, all of which operate on the basis of file
pointers. In addition, the elementary functions allow SAM files to be processed only as text
files, whereas with the standard functions they can also be processed as binary files.

A number of other implementations (e.g. UNIX, SINIX) provide elementary functions in the
form of system calls, which differ from standard functions by virtue of improved performance
and greater operating system support. No such distinction is made between a system call
and a function in BS2000.

52 U4351-J-Z125-8-76

Basic terms File processing

FILE structure

As soon as a file is opened with fopen/fopen64, fdopen or freopen/freopen64, it is
automatically assigned a specific structure of type FILE. This structure is defined in
<stdio.h> and includes, among other things, the following information on the file:

– pointer to the I/O buffer
– buffer size
– position of the read/write pointer
– size of the file.

The file pointer returned by fopen/fopen64, fdopen or freopen/freopen64 points to this
FILE structure.

Read/write pointer

The read/write pointer contains information on the current file position. Data is respectively
read or written from this current position onwards.
The structure of information in the read/write pointer varies in accordance with the type of
file:

– For binary files with stream I/O it corresponds to the number of bytes, calculated from
the beginning of the file.

– For text files it contains information on the current record and the position within this
record. The structure differs for SAM and ISAM files. The information is used internally
by the runtime system.

– For binary files with record I/O it corresponds to the position after the last record to be
read, written or deleted, or to the position reached by an immediately preceding
positioning operation.
For ISAM files with duplicate keys, the read/write pointer is positioned after the last
record of a group having identical keys if one of these records has previously been read,
written or deleted.

U4351-J-Z125-8-76 53

File processing Basic terms

Buffering

For all output functions which write data to text files and binary files with stream I/O
(printf, putc, fwrite etc.) the data is stored in an internal C buffer and only written to the
external file when a specific event occurs. This event is different for text and binary files.

Text file:

a) A newline character (\n) is detected.

b) The maximum record length for a disk file is reached.

c) For data display terminals: output to the terminal is followed by input from the terminal.

d) The positioning functions fseek/fseek64, fsetpos/fsetpos64, rewind or
lseek/lseek64 are called.

e) The fflush function is called; fflush is automatically executed internally when a file
is closed (fclose, close) or when a program is terminated normally or with exit.

f) The file is closed.

g) Also, for ANSI functionality: If reading from any text file makes a data transfer necessary
from the external file to the internal C buffer, the data of all the ISAM files still stored in
buffers is automatically written out to the files.

Even if the data in the buffer does not terminate with a newline character, writing to the
external file causes a change of line. Subsequent data is written to a new line (or to a new
record).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not terminate in a newline character, writing to
the external file does not produce a change of line (or change of record).

Subsequent data lengthens the record in the file. When an ISAM file is read, therefore, only
newline characters explicitly written by the program are read in.

Binary file:

a) The buffer is full

b) The positioning functions fseek/fseek64, fsetpos/fsetpos64, rewind or
lseek/lseek64 are called

c) The fflush function is called (see text file above)

d) The file is closed.

No buffering is performed for INCORE files and or for files with record I/O.

54 U4351-J-Z125-8-76

Basic terms File processing

Record-oriented input/output

Record-oriented input/output means that the read/write pointer of the file can only be
positioned at the start of a record (or block). Using record-oriented input/output makes
efficient file processing adapted to the structure of the BS2000 system possible. The unit
for an input/output function call is a record (or block). Additional functions are available
which can be used, e.g., to delete or insert records or to access the key in an ISAM file.

Record-oriented processing can be used for cataloged SAM, ISAM and PAM files. The files
must be opened with the functions fopen/fopen64 or freopen/freopen64, qualified with
"type=record" in the type parameter and always in binary mode.
Among other things, input/output functions which read in and output characters or character
strings (up to \n) cannot be used on files with record I/O.

The following functions are used for processing files with record I/O:

The following functions for file management and error handling can be used unchanged:

feof, ferror, clearerr, unlink, remove, rename

In contrast to stream I/O, no data is buffered in the case of record I/O (see section
“Buffering” on page 53).

Stream-oriented input/output

Stream-oriented input/output means that the read/write pointer can be positioned on each
individual byte in the file. Stream I/O is the conventional processing mode and is set by
default, i.e. without any special qualifiers specified for the open functions. Text files can be
processed exclusively in this I/O mode.
In contrast to record I/O, the data for output to files with stream I/O is first stored in an
internal C buffer and only later written to the external file (see section “Buffering” on
page 53).

Text file

Text files are only possible for stream I/O.

The following file types are treated as text files:

– cataloged SAM files (no binary mode on open)
– cataloged ISAM files

fopen/fopen64, freopen/freopen64, fclose Open, close

fread, fwrite Read, write

fsetpos/fsetpo64, fgetpos/fgetpos64, flocate,
fseek/fseek64, rewind

Position

fdelrec Delete record

U4351-J-Z125-8-76 55

File processing Basic terms

– system files (SYSDTA, SYSOUT, SYSLST, SYSTERM).

A text file is an ordered sequence of bytes that are combined to form lines (or records). In
contrast to binary files, the control characters for space are converted to their appropriate
effect depending on the type of text file (see section “White space” on page 55). This means
that data read from a text file does not correspond precisely to the data that was originally
written to it. For a written tab (\t) an appropriate number of blanks is read.

The following points also apply to text files:

– Newline characters not originally written to the file may be read in (see ffflush,
fseek/fseek64, fsetpos/fsetpos64, lseek/lseek64, rewind).

– Output to SYSOUT and SYSTERM (for writing)
Each line is started with a blank as a print control character. This causes a line feed.

– Output to SYSLST
The line starts with a blank as the print control character only if none of the control
characters \f, \v, \r or \b is specified in a line.

– The contents of a text file are always interpreted as a sequence of EBCDIC characters.
When text files are processed using the ASCII variant of an I/O function (see page 21),
the data is therefore converted internally as follows:

– When data is written to the file, it is converted from ASCII to EBCDIC.
– When data is read from the file, it is converted from EBCDIC to ASCII.

White space

The control characters for space and the backspace control character ’\b’ (cf. table below)
are evaluated by all output functions which write to text files and receive as the argument
the control character either as a character constant (starting with \) or as a numerical
EBCDIC value.
The decimal or hexadecimal values of the control characters are given in the C and C++
User Guides (EBCDIC table).

Key to table:

X The control character is converted to its appropriate effect

blank The control character is written to the file as a text character (EBCDIC value)

\ n \ t \ f \ v \ r \ b

SAM/ISAM
SYSOUT/SYSTERM
SYSLST

X
X
X

X
X
X

X
X X X X

56 U4351-J-Z125-8-76

Basic terms File processing

Tab (\t)
The tab character is converted to the corresponding number of spaces. Tab positions
are spaced 8 columns apart (1, 9, 17, ...). Spaces are substituted for the tab character
when read in.

With SAM and ISAM files, the tab character is converted to spaces by default only when
KR functionality has been selected, not for ANSI functionality (see additional specifi-
cation option "tabexp" for the fopen/fopen64, freopen/freopen64 functions).
KR functionality applies to C/C++ versions prior to V3.0 only.

Line feed (\n)
The newline character is converted to a change of line (change of record). Subsequent
read functions then supply a newline character for a change of record.

Page feed (\f)
SYSLST: A page feed is executed and subsequent data is output on a new page.
SYSOUT, SYSTERM for writing: The message "please acknowledge" is output at the
data display terminal.

Vertical tab (\v)
An appropriate number of blank lines is output to reach the next line tab position. These
tab positions are 8 lines apart (1, 9, 17, ...).

Carriage return (\r)
There is no line feed and the cursor is returned to the start of the current line, i.e. subse-
quent data is written to the same line. This enables characters to be underlined, for
example.

Backspace (\b)
The next character is written to the position of the previous character. This allows a
letter to be provided with an accent, for example. Strictly speaking, \b is not a white
space character (cf. isspace) but a control character (cf. iscntrl).

\r and \b are effective only in conjunction with printers equipped with the overwrite function.

U4351-J-Z125-8-76 57

File processing Files > 2 GB

4.2 Support for DMS and UFS files > 2 GB

For processing file systems that contain files > 2 gigabytes (GB) a 64-bit variant exists for
each of the following 32-bit C Library functions. The 64-bit functions differ from the corre-
sponding 32-bit functions in that they have the suffix “64” in their names.

32-bit and 64-bit C/C++ library functions

There is no difference in terms of functionality between the 32-bit variant of a function and
the associated 64-bit variant. The only differences concern the data types for parameters
and return values if these specify an offset or a file position, since offset and return values
> 2 GB must possible in order to process files > 2 GB. Thus, in addition to the 32-bit data
type off_t, for example, there is also a 64-bit data type called off64_t.

The compilation environment makes available all the explicit 64-bit functions and types in
addition to the 32-bit functions and types. A program can thus use either interface, as
required.

 ● The 64-bit functions are only available with ANSI functionality.

● Since most of the names of the 64-bit functions are no longer unique CRTE-
wide when truncated to 8 characters, sources that want to use 64-bit functions
have to be generated as LLMs.

creat: creat64

fgetpos: fgetpos64

fopen: fopen64

freopen: freopen64

fseek: fseek64

fseeko: fseeko64

fsetpos: fsetpos64

ftell: ftell64

ftello: ftello64

lseek: lseek64

open: open64

tmpfile: tmpfile64

i

58 U4351-J-Z125-8-76

Files > 2 GB File processing

Using the 64-bit interface

The _FILE_OFFSET_BITS define allows you to choose between two alternatives for using
the 64-bit interface:

– using 64-bit functions transparently (_FILE_OFFSET_BITS 64)
– calling 64-bit functions explicitly (_FILE_OFFSET_BITS 32)

 ● The _FILE_OFFSET_BITS define must be set on an include file before the first
include.

● You can replace 32-bit functions with 64-bit functions automatically by means of
name defines or macro defines (see section “Preprocessor define
_MAP_NAME” on page 31).

Using 64-bit functions transparently (_FILE_OFFSET_BITS 64)

The _FILE_OFFSET_BITS 64 define allows the 64-bit interface to be used transparently,
since the 32-bit functions contained in the source code are automatically replaced with the
associated 64-bit variants during compilation (with the exception of fseek and ftell, see
below). In addition, the compilation environment makes data types available in the appro-
priate size. The data type off_t, for example, is declared as long long.

You can use the _MAP_NAME preprocessor define to specify whether the 32-bit functions are
to be mapped to 64-bit functions by means of the name define method or the macro define
method (see page 31).

A program can process both files > 2 GB and files Î 2 GB. Transparent use of the 64-bit
functions permits programs that were previously designed only for files Î 2 GB to process
files > 2GB without the need for any changes to the source code.

 The functions fseek and ftell cannot be automatically replaced with fseek64
and ftell64. Please use the functions fseeko and ftello if you want automatic
replacement to be carried out.

i

i

U4351-J-Z125-8-76 59

File processing Files > 2 GB

Calling 64-bit functions explicitly

If the _FILE_OFFSET_BITS 32 define is set or if _FILE_OFFSET_BITS is not defined, you
have to use the 64-bit variants of the file processing functions described above in order to
process files > 2 GB:

– If you try to process a file > 2 GB using a 32-bit variant, this leads to abortion.

– If you use the 64-bit variants, however, you can also process files Î 2 GB.

 You can only use the 64-bit functions explicitly if the _LARGEFILE64_SOURCE 1
define is set beforehand (prototype generation and further defines).i

60 U4351-J-Z125-8-76

System files File processing

4.3 System files (SYSDTA, SYSOUT, SYSLST)

SYSDTA

A C program can use SYSDTA as follows:

– An open function (fopen/fopen64, freopen/freopen64, open/open64) is used to
open a file with the name "(SYSDTA)" or "(SYSTERM)" for reading. The file pointer
returned by the open function then serves as an argument for a subsequent input
function.

Example

 FILE *fp;
 fp = fopen("(SYSDTA)", "r");
 fgetc(fp);

– For input functions, the file pointer stdin or the file descriptor 0 is specified as the file
argument.

Examples

fgetc(stdin);
read(0, buf, n);

– Input functions that read from stdin by default (e.g. scanf, getchar, gets) are used.

If input is to be from a cataloged file instead of the data terminal, there are two ways of doing
this:

1. If a parameter line was requested with PARAMETER-PROMPTING=YES (in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard input (file pointer stdin or file descriptor 0) to a cataloged file. Please refer to
your C and C++ User Guides.

This reassignment does not have an effect on files that were opened with the names
"(SYSDTA)" or "(SYSTERM)". Input from files with this name is still expected from the
data terminal.

2. By using the command ASSIGN-SYSDTA filename before program start.

For all input functions, input data is then expected from the assigned file.

The following must be observed when an assignment is made with the
ASSIGN-SYSDTA command:

– After the program is executed, the internal record pointer is positioned after the last
record that was read or at the end of the file. If the file is to be read again from the
beginning in a subsequent program run, a new ASSIGN-SYSDTA command must
be issued before the program is started.

U4351-J-Z125-8-76 61

File processing System files

– If PARAMETER-PROMPTING=YES was selected (in the RUNTIME-OPTIONS
option), the first record of the assigned file is interpreted as a parameter line for the
main function.

Note

If no other end criterion for reading has been declared in the C program, the EOF or
WEOF condition for inputs at the data terminal can be provoked by pressing the K2 key
and entering the EOF and RESUME-PROGRAM commands.

SYSOUT

A C program can use SYSOUT as follows:

– An open function (fopen/fopen64, freopen/freopen64, open/open64) is used to
open a file with the name "(SYSOUT)" or "(SYSTERM)" for writing. The file pointer
returned by the open function then serves as an argument for a subsequent input
function.

Example

 FILE *fp;
 fp = fopen("(SYSTERM)", "w");
 fputc(fp);

– For output functions, the file pointer stdout or the file descriptor 1 is specified as the
file argument.

Examples

fputc(stdout);
write(1, buf, n);

– In this case, the file pointer stderr or the file descriptor 2 is specified as the file
argument for output functions.

– Output functions that write to stdout/stderr by default (e.g. printf, puts, putchar
or perror) are used.

If a parameter line was requested with PARAMETER-PROMPTING=YES (in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard output (file pointer stdout or file descriptor 1) and the standard error output (file
pointer stderr or file descriptor 2) to a cataloged file. Please refer to your C and C++ User
Guides.

This reassignment has no effect on files that were opened with the name "(SYSOUT)" or
"(SYSTERM)".

62 U4351-J-Z125-8-76

System files File processing

SYSLST

A C program can use SYSLST as follows:

– An open function (fopen/fopen64, freopen/freopen64, open/open64) is used to
open a file with the name "(SYSLST) for writing. The file pointer returned by the open
function serves as an argument for a subsequent output function.

Example

 FILE *fp;
 fp = fopen("(SYSLST)", "w");
 fprintf(fp, "\t TEXT \n");

– If a parameter line was requested with PARAMETER-PROMPTING=YES (in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard output or standard error output to SYSLST (please refer to your C and C++
User Guides).

This reassignment has no effect on files that were opened with the name "(SYSOUT)".

By default, SYSLST files are printed out automatically at the end of a task (LOGOFF).

If the data is not to be automatically output to a printer but sent to a cataloged file instead,
SYSLST must be reassigned before the program is executed. This is effected with the
command:
ASSIGN-SYSLST filename.

U4351-J-Z125-8-76 63

File processing Cataloged disk files

4.4 Cataloged disk files (SAM, ISAM, PAM)

C programs process cataloged disk files by means of the SAM, ISAM and PAM access
methods.

When an existing file is opened, the access method and other file attributes are taken from
the catalog entry.

When a new file is created, default values of the C runtime system are assigned according
to the type of C file (binary file, text file, stream-oriented or record-oriented input/output).
These values can be changed with an ADD-FILE-LINK command before the program is
called. To do this, a link name ("link=linkname") must be specified for the open functions
(open/open64, creat/creat64, fopen/fopen64, freopen/freopen64) and this link name
must be linked with the name of the cataloged file in the ADD-FILE-LINK command.

Not all possible file attributes can be combined. Combinations which are not necessary
either for functional or performance reasons are not supported by the input/output functions
of the C runtime system.

The following sections provide information on

– the default values and possible modifications of the file attributes

– the K and NK block formats

– stream-oriented and record-oriented processing of disk files.

64 U4351-J-Z125-8-76

Cataloged disk files File processing

4.4.1 Default values and permissible modifications of the file attributes

The input/output functions of the C runtime system can process disk files with the file
attributes listed in the following tables. The default attributes which the runtime system
inserts if the user does not specify any options in the ADD-FILE-LINK command or in the
open functions are underlined.

Notes on Tables 1 to 3

– The maximum number of data bytes in the following tables indicates the number of
characters that can be stored by the C program in a record or block (fixed record length)
or the maximum number of characters that can be stored (variable record length).

– The size of the logical block (BLKSIZE) varies according to the type and format of the
data volume (see also page 68).
K and NK2 disks: A standard block (2048 bytes) or the integral multiple of a standard
block (max. of 16 standard blocks).
NK4 disks: A minimum of two standard blocks (4096 bytes) or an integral multiple
thereof (2, 4, 6, 8 standard blocks).

– Please also refer to section “K and NK block formats” on page 68 for information on the
block format (BLKCTRL) and the maximum number of data bytes.
In particular, you will learn how to avoid overflow blocks with NK-ISAM files which occur
if the full length of a transfer unit is utilized when writing the records
(RECSIZE = BLKSIZE).

– In C, the 4-byte record length field in files with variable record length (RECFORM=V) is
not counted as part of the record data. The maximum number of data bytes is therefore
reduced by 4 bytes.

– For files with RECFORM=U, RECSIZE (RECORD-SIZE parameter in the
ADD-FILE-LINK command) determines the register in which the length of a record is
passed. This register is predefined (R4) and must not be changed.

U4351-J-Z125-8-76 65

File processing Cataloged disk files

Table 1: File attributes of text files for stream-oriented input/output

1) In KR mode SAM files are created by default (KR mode applies to C/C++ versions prior
to V3.0 only).
In ANSI mode, ISAM files are created by default.

2) The default value for the key position is 5, and the default key length is 8. These values
cannot be modified.
The user cannot access the keys; they are generated and managed by the C runtime
system: when a new ISAM file is created the first record is assigned the key "00010000"
and the key is incremented in steps of 100 for each further record.

FCB-
TYPE

REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE
(r byte)

Max. number
of data bytes

SAM 1) V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

ISAM 2) V PAMKEY 1Î n Î16 12Î r În*2048 RECSIZE - 12

DATA(2K) 1Î n Î16 12Î r În*2048 RECSIZE - 12

DATA(4K) 2Î n Î16

66 U4351-J-Z125-8-76

Cataloged disk files File processing

Table 2: File attributes of binary files for stream-oriented input/output

FCB-
TYPE

REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE
(r byte)

Max. number
of data bytes

SAM F PAMKEY 1Î n Î16 1Î r În*2048 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-16 RECSIZE

DATA(4K) 2Î n Î16

V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

PAM PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 12

DATA(4K) 2Î n Î16

NO(2K) 1Î n Î16 BLKSIZE

NO(4K) 2Î n Î16

U4351-J-Z125-8-76 67

File processing Cataloged disk files

Table 3: File attributes of binary files for record-oriented input/output

1) The default attributes for key position (for record format V = 5, F = 1) and key length (8)
can be modified up to 32767 and 255 respectively.

Multiple keys can also be defined (DUP-KEY=Y). The default value is DUP-KEY=N.

In contrast to stream-oriented input/output, the ISAM keys belong to the record data
which is written from the C program or read into the C program.

FCB-
TYPE

REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE
(r byte)

Max. number
of data bytes

SAM V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

F PAMKEY 1Î n Î16 1Î r În*2048 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-16 RECSIZE

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

PAM PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 12

DATA(4K) 2Î n Î16

NO(2K) 1Î n Î16 BLKSIZE

NO(4K) 2Î n Î16

ISAM 1) V PAMKEY 1Î n Î16 5Î r În*2048 RECSIZE - 4

DATA(2K) 1Î n Î16 5Î r În*2048 RECSIZE - 4

DATA(4K) 2Î n Î16

F PAMKEY 1Î n Î16 1Î r În*2048-4 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-4 RECSIZE

DATA(4K) 2Î n Î16

68 U4351-J-Z125-8-76

Cataloged disk files File processing

4.4.2 K and NK block formats

BS2000 supports data volumes with different formats:

– Key data volumes for storing files with the block control information in a separate field
("PAMKEY") per 2Kbyte data block. These files have the block format PAMKEY.

– Non-Key data volumes for files without separate PAMKEY fields. The block control infor-
mation is either omitted (block format NO) or stored in the respective data blocks (block
format DATA).

With BS2000 V11.0, NK volumes are distinguished by the minimum size of the transfer unit.
NK2 volumes have the old transfer unit (2Kbyte). NK4 volumes have a transfer unit of
4Kbyte.

The block format is controlled by the BLOCK-CONTROL-INFO operand in the
ADD-FILE-LINK command:

BLOCK-CONTROL-INFO = BY-PROGRAM / BY-CATALOG / WITHIN-DATA-BLOCK / NO / PAMKEY

With BS2000 V11.0, there are two more operand values for NK-ISAM files:

WITHIN-DATA-2K-BLOCK / WITHIN-DATA-4K-BLOCK

Please refer to the "DMS Introductory Guide and Command Interface" manual for a detailed
description of the BLOCK-CONTROL-INFO operand, various file and data volume struc-
tures and the conversion from K file format to NK file format.

If the ADD-FILE-LINK command is not used when a new file is created or BLOCK-
CONTROL-INFO=BY-PROGRAM is specified, the default values of the C runtime system
are used. These values depend on the disk type, on the CLASS2-OPTION that can be
specified by the system administrator, and on the access method:

CLASS2-OPTION BLKCTRL = NONKEY

File
organi-
zation

not specified specified

K disk NK disk K disk NK disk

SAM PAMKEY DATA DATA DATA

ISAM PAMKEY DATA DATA DATA

PAM PAMKEY NO NO NO

U4351-J-Z125-8-76 69

File processing Cataloged disk files

K and NK-ISAM files

ISAM files in K format which make use of the maximum record length become longer in NK
format than the usable area of the data block. They can be processed in NK format since
the DMS forms extensions of data blocks, known as overflow blocks.

The creation of overflow blocks presents the following problems:

– the overflow blocks increase space requirements on the disk and consequently the
number of input/output operations during file processing

– under no circumstances may the ISAM key be in an overflow block.

Overflow blocks can be avoided by ensuring that the longest record in the file is no longer
than the area of a logical block that can be used for NK-ISAM files.

Usable area for records (NK-ISAM files)

For ISAM files the following table can be used to calculate the space available for records
per logical block.

Explanation of the formulas:

For NK-ISAM files, each PAM page of a logical block contains 16 bytes of administrative
information. The logical block also contains a further 12 bytes of administrative information
and a 2-byte long record pointer for each record.
For RECORD-FORMAT=FIXED there is a 4-byte record length field for each record but this
is not included in calculating the record length. Consequently 4 bytes must be deducted per
record in such cases.

File format RECORD-FORMAT max. usable area

K-ISAM VARIABLE BUF-LEN

FIXED BUF-LEN - (s*4)
where s = number of records per logical block

NK-ISAM VARIABLE BUF-LEN - (n*16) - 12 - (s*2)
(rounded down to the next lower number
 divisible by 4)

where n = blocking factor
 s = number of records per logical block

FIXED BUF-LEN - (n*16) - 12 - (s*2) - (s*4)
(rounded down to the next lower number
 divisible by 4)

where n = blocking factor
 s = number of records per logical block

70 U4351-J-Z125-8-76

Cataloged disk files File processing

Example: Maximum record length of an NK-ISAM file (fixed record length)

File definition:

/ADD-FILE-LINK ...,RECORD-FORMAT=FIXED,BUFFER-LENGTH=STD(SIZE=2),
BLOCK-CONTROL-INFO=WITHIN-DATA-BLOCK

maximum record length (according to the formula):

4096 - (2*16) - 12 - 1*2 - 1*4 = 4046, rounded to the next lower number
divisible by 4: 4044 (bytes).

4.4.3 Support of the DIV access method

As of BS2000/OSD V1.0, DMS offers the new access method DIV (DATA IN VIRTUAL). This
access method is particularly suitable for processing the unstructured streams which often
occur in C programs (e.g. those ported from UNIX).

DIV enables NK-PAM files to be processed which contain no data management information
(BLOCK-CONTROL-INFO=NO) and are located on public volume.

If data which has already been read into a “window” as the result of a previous access is
accessed frequently, the performance can be considerably enhanced.

Further background information on DIV is provided in the “DMS Assembler Interface”
manual.

In BS2000 versions > V10, the C runtime system always uses the DIV access method for
stream-oriented input/output to NK-PAM files without data management information. DIV
cannot be used for NK-PAM files opened for record-oriented input/output.

U4351-J-Z125-8-76 71

File processing Cataloged disk files

Notes on stream-oriented input/output

Binary files (SAM)

Fixed record length (F) is the default. When a file is closed, the last record is padded with
binary zeros (if necessary). If this file is opened again and data is written at the end of the
file a new record is started. New data is therefore written after the binary zeros.

If variable record length is used (V or U), new data can be written on a byte-specific basis.
Variable record lengths do, however, tend certain loss of performance with positioning
operations (e.g. fseek/fseek64, ftell/ftell64).

Binary files (PAM)

In order to permit byte-specific updating of PAM files (after closing and reopening), the
C runtime system writes administrative data at the end of the file. This data is maintained
in a consistent state at the time the file is opened and closed. For this reason, concurrent
processing of a PAM file by different tasks is not possible if the file is extended by one of the
participating tasks.
The C runtime system does not set any locks. If data is modified by several users, incon-
sistent states might result.

Text files (SAM, ISAM)

When SAM or ISAM files are processed in update mode, the original record length must not
be changed when modifying existing records. This means that a newline character (\n) must
not be changed to another character or vice versa.

72 U4351-J-Z125-8-76

Cataloged disk files File processing

Notes on record-oriented input/output

Record-oriented input/output, which is possible for SAM, ISAM and PAM files, is always
binary input/output. In the case of record-oriented input/output using the ASCII variants of
the input/output functions (see page 21), data is therefore not converted either when it is
written or when it is read.

With the fopen/fopen64 or freopen/freopen64 functions, the file must always be opened
in binary mode and with the parameter option "type=record".

Input/output functions which read or write characters or strings (up to \n) cannot be used for
record-oriented input/output.

Available input/output functions

The following functions are available for processing files with stream input/output:

In addition, the following functions for file processing and error handling can be used
unchanged:

feof, ferror, clearerr, unlink, remove, rename

Any input/output functions not listed here are not available for record-oriented input/output
and are rejected with an error return value.
For performance reasons, however, no checks are carried out for the two macros getc and
putc. The behavior is undefined if these macros are used on files with record-oriented
input/output.

fopen/fopen64, freopen/freopen64 Open

fclose Close

fread Read

fwrite Write

fsetpos/fsetpos64 Positioning in the data stream

fgetpos/fgetpos64 Position in the data stream

fseek/fseek64 Position at start/end of file

rewind Position at start of file

flocate Explicitly position in an ISAM file

fdelrec Delete a record in an ISAM file

U4351-J-Z125-8-76 73

File processing Cataloged disk files

Processing a file for record-oriented and stream-oriented input/output

Files which have been created for record-oriented input/output can be opened for stream-
oriented input/output and vice versa. However, stream-oriented input/output does not
support all the file attributes which are possible for record-oriented input/output.

FCB type of a new file to be created

The FCB type (FCBTYPE) of a new file to be created can be defined as follows:

– Specification in a ADD-FILE-LINK command and use of the LINK name in the
fopen/fopen64 and freopen/freopen64 function

– Specification of the forg parameter in the fopen/fopen64 and
freopen/freopen64 functions:

"forg=seq": a SAM file is created
"forg=key": an ISAM file is created.

The following restrictions apply to the FCBTYP of a file and the entries for fopen/fopen64
and freopen/freopen64:

– For "type=record" the file must have FCBTYP SAM, PAM or ISAM.

– For "forg=seq" the file must have FCBTYP SAM or PAM.

– For "forg=key" the file must have FCBTYP ISAM.

– Specifying the append mode "a" is not allowed for ISAM files. The position is deter-
mined by the key in the record.

Multiple keys for ISAM files

By default, multiple keys are not permitted for ISAM files. They may, however, be used if
DUP-KEY=Y is specified in a ADD-FILE-LINK command.

74 U4351-J-Z125-8-76

Cataloged disk files File processing

Example of record-oriented processing of an ISAM file

The following program creates and processes an ISAM file using record-oriented
input/output.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

main()
{
 FILE * isamfp;
 size_t ret=0;
 int i,intret;
 char buffer[200];
 char buffer2[200];
 static char * texts[3] = {"1 Ritchie***, 9999, ZZ",
 "2 Kernighan*, 8765",
 "3 Stroustrup, 1234, C++"};

 static char isamlink[] = "ADD-FILE-LINK LINK=ISAMFILE,F-NAME=FILE.ISAM,"
 "ACCESS-METHOD=ISAM(KEY-LEN=10,KEY-POS=4),"
 "REC-FORM=FIXED(REC-SIZE=50)";

 static int maxtext = 3;
 fpos_t isampos;

 ret = system(isamlink);
 if (ret != 0)
 {
 printf("system(isamlink) error\n");
 exit(1);
 }

 isamfp = fopen("link=isamfile", "wb+,type=record,forg=key");
 if (isamfp == 0)
 {
 printf("Attempt to open isamfp has failed\n");
 exit(2);
 }

 /* Write 3 records to ISAM file */

 for (i=0; i<maxtext; i++)
 {
 ret = fwrite(texts[i], 1, strlen(texts[i]), isamfp);
 if (ret == 0)
 {

U4351-J-Z125-8-76 75

File processing Cataloged disk files

 printf("Error on writing to ISAM file\n");
 exit(3);
 }
 }

 /* Read records from beginning of file and write on standard output */

 rewind(isamfp);
 for (i=0; i<maxtext; i++)
 {
 ret = fread(buffer, 1, 100, isamfp);
 fwrite(buffer, 1, ret, stdout);
 }

 /* Position explicitly on basis of key value and start processing */

 flocate(isamfp, "Ritch", strlen("Ritch"), _KEY_GE);

 ret = fread(buffer, 1, 100, isamfp); /*"Ritchie" has been read */
 (buffer+ret) = '\0'; / EOS at end of record */
 printf("\nRecord read: %s\n", buffer);
 fgetpos(isamfp, &isampos); /* Record position after */
 /* record just read */

 ret = fread(buffer, 1, 100, isamfp); /*"Stroustrup" has been read */
 (buffer+ret) = '\0'; / EOS at end of record */
 printf("Record read: %s\n", buffer);

 fsetpos(isamfp, &isampos); /* Reset file position indicator */
 ret = fread(buffer2, 1, 100, isamfp); /*"Stroustrup" is read again */
 (buffer2+ret) = '\0'; / EOS at end of record */
 printf("Record read: %s\n", buffer2);

 intret = fdelrec(isamfp, "Kernighan*"); /* Delete a record */
 if (intret == 0)
 printf("Kernighan deleted\n");

 intret = fdelrec(isamfp, "Kernighan*"); /* Attempt to delete a record */
 if (intret > 0) /* that has already been deleted */
 printf("OK, this record no longer exists\n");
 else
 printf("Error, \"Kernighan*\" could be deleted twice\n");

 printf("******* END OF PROGRAM *******\n");
}

76 U4351-J-Z125-8-76

INCORE files, standard input/output files File processing

4.5 Temporary PAM files in virtual memory (INCORE files)

If the file name "(INCORE)" is specified with the functions fopen/fopen64,
freopen/freopen64 or open/open64, a temporary PAM file is created in virtual memory.
This file "lives" only for the duration of a program run.

INCORE files must be opened for writing before they can be accessed for reading (cf.
fopen/fopen64, freopen/freopen64, open/open64).

INCORE files are processed as binary files.

4.6 Standard input/output files stdin, stdout and stderr

In contrast to other implementations, the stdin, stdout and stderr macros are not
constant expressions and therefore cannot be used in static initializations.

Example

The following construction is not permitted:

FILE *fp = stdin;
int main(void)
{
 .
 .
}

U4351-J-Z125-8-76 77

5 Contingency and STXIT routines
This chapter provides information on how contingency or STXIT routines can be imple-
mented in C.

Familiarity with the concept of contingency and STXIT routines is important to the under-
standing of this chapter. These concepts as well as the corresponding BS2000 system
macros are described in detail in the "Executive Macros" manual.

The library functions mentioned in this section (signal, raise, alarm, cenaco, cdisco,
cstxit, longjmp, setjmp) are explained at length in the reference section in this manual.

Caution

Using some of the C library functions from within STXIT routines may result in
undefined behavior. Consistency in the library functions cannot always be guaranteed
in the event of asynchronous interrupts.
Undefined behavior results if the same library function or a library function belonging to
the same group (see list) which has been asynchronously interrupted by the STXIT
event is to be executed within the STXIT routine.

The "critical" C library functions in connection with asynchronous interrupts are as
follows:

– memory management routines: malloc, calloc, realloc, free
– file access functions for opening and closing files:
– fopen/fopen64, freopen/freopen64, open/open64, creat/creat64, fclose,

close
– all file access, file management and input/output functions used on the same file
– random number generator functions: rand, srand
– time functions: localtime/localtime_r, gmtime/gmtime_r
– functions for enabling and disabling contingency routines: cenaco, cdisco
– atexit
– strtok
– setlocale

The "critical" functions also include the input/output functions in the C++ standard
library.

78 U4351-J-Z125-8-76

Contingency and STXIT routines

5.1 C library functions (alarm, raise, signal)

The concept of contingency routines or STXIT contingency routines is primarily handled by
the following C library functions:

alarm sends the SIGALRM signal (STXIT event RTIMER)

raise sends signals (simulated STXIT events and user-defined events)

signal assigns signal handling routines

STXIT contingency routines

The following STXIT event classes can be processed by means of the alarm, raise and
signal functions:

– PROCHK (program check)

– TIMER (CPU time interval timer)

– RUNOUT (end of program runtime)

– ERROR (unrecoverable program errors)

– INTR (information for the program)

– BREAK/ESCAPE (ESCPBRK) only in the dialog

– ABEND

– TERM (normal termination of program)

– RTIMER (real time interval timer)

The SVC interrupt event class is not supported at present.

Event-driven routines

The signal and raise functions can be used to implement two event-driven routines via
two user-defined signals (SIGUSR1, SIGUSR2).

Eventing via C library functions only operates within a task, i.e. intercommunication
between different tasks is not possible.
These event-driven routines are therefore not implemented internally as contingency
routines but via a CALL interface.

U4351-J-Z125-8-76 79

Contingency and STXIT routines

5.2 Free use of contingency routines

For special requirements that are not covered by the signal and raise functions (see
section “C library functions (alarm, raise, signal)” on page 78), appropriate BS2000
functions for eventing can be freely programmed. Such requirements include, for example,
a greater number of events (only two events can be defined with raise and signal) or
inter-task communication (raise and signal permit eventing only within a single task).

Functions for actual eventing, such as opening event-driven processing and sending and
receiving signals, must be implemented in Assembler program sections with the appro-
priate BS2000 macro calls (POSSIG, SOLSIG, ENAEI).

The macros for enabling, disabling and terminating contingency processes (ENACO,
DISCO, RETCO) must not be used in the Assembler program section! Instead of these
macros, the C library functions cenaco or cdisco must be invoked. In addition to enabling
and disabling contingency routines, cenaco and cdisco perform specific actions that are
required to ensure that the consistency of the C runtime stack is maintained.

The contingency routine itself can be written in C or in Assembler. Termination of this
routine must be effected by means of a "normal" return (with return or longjmp in C, and
with @EXIT in Assembler).

Contingency routine in C

When the routine is started, a structure parameter is passed to it. This parameter is
declared in the include file <cont.h> as follows:

struct contp
{
 int comess; /* contingency message */
 evcode indicat; /* information indicator */
 char filler[2]; /* reserved for int. use */
 evcode switchc; /* event switch */
 int pcode; /* post code */
 int __reg4; /* register 4 */
 int __reg5; /* register 5 */
 int __reg6; /* register 6 */
 int __reg7; /* register 7 */
 int __reg8; /* register 8 */
};

80 U4351-J-Z125-8-76

Contingency and STXIT routines

#define evcode char
#define _normal 0 /* evceventnormal */
#define _abnorm1 4 /* evceventabnormal */
#define _nmnpc 0 /* evcnocomessnopostcode */
#define _mnpc 4 /* evccomessnopostcode */
#define _nmpc 8 /* evcnocomesspostcode */
#define _mpc 12 /* evccomesspostcode */
#define _etnm 0 /* evcelapsedtimenocomess */
#define _etm 4 /* evcelapsedtimecomess */
#define _disnm 16 /* evceventdisablednocomess */
#define _dism 20 /* evceventdisabledcomess */

Structure of the contingency routine:

If the structure parameter described above is to be evaluated, the C routine must provide a
formal parameter for a structure of type contp and could be built something like this:

#include <cont.h>

void controut (struct contp contpar)
{
 .
 .
 .
 return;
}

The C routine can be terminated in one of the following two ways:

– with the return statement; the program is continued at the point of interruption or

– by calling the lonjmp function; the program is resumed at the position defined with a
setjmp call.

U4351-J-Z125-8-76 81

Contingency and STXIT routines

Contingency routine in Assembler

The contingency routine must be written in Assembler if, for example, further BS2000 macro
calls are to be made in it (such as SOLSIG for renewal of the contingency routine).

A structured ILCS Assembler program for a contingency routine is structured something like
this:

PARLIST DSECT
COMESS DS F
IND DS C
FILLER DS CL2
EC DS C
 .
 .
 .
CONTROUT @ENTR TYP=E,ILCS=YES
 USING PARLIST,R1
 .
 .
 .
 SOLSIG
 .
 .
 .
 @EXIT

The RETCO macro must not be invoked in the contingency routine!

The return must be effected with the @EXIT macro.

5.3 Free use of STXIT contingency routines

For special requirements that are not covered by the signal function (see section “C library
functions (alarm, raise, signal)” on page 78), STXIT contingency routines can be freely
programmed in C. Such requirements may include, for example, the transfer of large
amounts of data or additional continuation and control options after the execution of the
STXIT contingency routine.

The definition of a freely programmed STXIT contingency routine must be effected by
calling the C library function cstxit.

The SVC interrupt event class cannot be implemented even if using the cstxit interface.

82 U4351-J-Z125-8-76

Contingency and STXIT routines

When the STXIT contingency routine is started, it is supplied with a structure which is
declared in the include file <stxit.h> as follows:

struct stxcontp
{
 int *intwghtp; /* pointer to interrupt weight */
 jmp_buf *termlabp; /* pointer to termination label */
 int *regsp; /* pointer to register save area */
};

Structure of the STXIT contingency routine:

In order to use the structure parameter described above, the routine must provide a formal
parameter for a structure of type stxcontp and could be set up something like this:

#include <stxit.h>

void stxrout(stxcontpar)
struct stxcontp stxcontpar;
{
 .
 .
 .
}

This routine can be terminated in three different ways:

– with the return statement; the program is continued at the point of interruption or

– by calling the lonjmp function with a jmp_buf variable supplied by a setjmp call; the
program is resumed at the position defined with a setjmp call or

– by calling the longjmp function with the termination label passed in the stxcontp
structure (see above).

In the case of event class TERM, it is not possible to return from the STXIT contingency
routine with a longjmp call, since at the time this event (TERM-SVC) occurs, the entries for
C functions (including the main function) have already been cleared from the runtime stack!

U4351-J-Z125-8-76 83

6 Locale

6.1 The locale concept

The principle underlying the concept of “locale” is to enable the behavior of C programs to
be modified to take account of national conventions, standards and languages.

The locale directly affects the execution of certain C library functions. The localeconv
function makes locale-specific information available in a structure which can be used for
formatted output (printf, fprintf etc.).

The locale comprises the following categories:

LC_COLLATE The sort sequence of the character set affects the behavior of the
strcoll, strxfrm, wcscoll and wcsxfrm functions.

LC_CTYPE Classification of the characters affects the behavior of the character
handling macros is... (not isdigit, iswdigit, isxdigit or
iswdigit), tolower, toupper, towctrans, towlower, towupper,
strlower, strupper and wctrans.

LC_MONETARY The conventions for representing monetary values (e.g. currency)
affect the values supplied by localeconv.

LC_NUMERIC The conventions for representing non-monetary numerical values
(e.g. decimal point, sign) affect the type of decimal point for
formatted input/output and for the conversion of strings (atof,
strtod, wcstod) and also the values supplied by localeconv.

LC_TIME The conventions for representing the date and time affect the
behavior of strftime and wcsftime.

The C runtime system provides some predefined locales (see section “Predefined locale C”
on page 84). Users can also define their own locales (see section “Compatible locales
V1CTYPE and V2CTYPE” on page 87).

CRTE provides the predefined locales De.EDF04F and De.EDF04F@euro to support the
euro. The only difference between these two locales lies in the category LC_MONETARY,
which represents the German Mark (DM) for the locale De.EDF04F, and the euro for the
locale De.EDF04F@euro.

84 U4351-J-Z125-8-76

Locale

The locale under which the C program is to run is selected with the setlocale function.
Detailed descriptions of the C library functions mentioned in this section can be found in the
reference section of this manual.
The locale C is preset by default, provided the main routine is not a C V1.0 object; in this
case, the locale “V1CTYPE” or LC_C_V1CTYPE is set automatically when the program
starts.

6.2 Predefined locale C

The C runtime system provides a number of predefined locales. When the program starts,
the “C” locale is set.

Default locale

This locale is designated as "" or LC_C_DEFAULT. In this version it corresponds to the C
locale.

C locale

This locale is designated as “C” or LC_C_C. It is the default locale when the program starts
(with one exception: if the main routine is a C V1.0 object, then “V1CTYPE” applies, see
page 87).

The C locale has the following effects in the various categories:

LC_CTYPE
The classification corresponds to the EBCDIC definition of the individual characters
(EBCDIC.DF.03, international version).

LC_NUMERIC
The information defined in localeconv has the following values:

decimal_point ’.’

thousands_sep ""

grouping ""

U4351-J-Z125-8-76 85

Locale

LC_MONETARY
The information defined in localeconv has the following values:

LC_TIME
English is used for the days of the week and the months of the year. The formats for
date and time comply with the standard conventions for English-speaking countries.

LC_COLLATE
The sort sequence for the characters complies with the definition in the XPG4 standard,
in which the sequence depends on the ASCII value of the characters (see table on next
page). In all other predefined categories the sort sequence is determined by the
EBCDIC value of each character as shown by the table on page 89).

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping ""

positive_sign ""

negative_sign ""

int_frac_digits CHAR_MAX (= 255)

frac_digits CHAR_MAX

p_cs_precedes CHAR_MAX

n_cs_precedes CHAR_MAX

p_sep_by_space CHAR_MAX

n_sep_by_space CHAR_MAX

p_sign_pos CHAR_MAX

n_sign_pos CHAR_MAX

86 U4351-J-Z125-8-76

Locale

Sort sequence in accordance with the XPG4 standard (ASCII)

\0 / D Y n

\t 0 E Z o

\n 1 F [p

\v 2 G \ q

\f 3 H] r

\r 4 I ^ s

Ë 5 J _ t

! 6 K ` u

" 7 L a v

8 M b w

$ 9 N c x

% : O d y

& ; P e z

' < Q f {

(= R g |

) > S h }

* ? T i ~

+ @ U j

, A V k

- B W l

. C X m

U4351-J-Z125-8-76 87

Locale

6.3 Compatible locales V1CTYPE and V2CTYPE

V1CTYPE

This locale is designated as “V1CTYPE” or LC_C_V1CTYPE. It is set automatically when
the program starts if the main routine is a C V1.0 object.

Differences from the C locale:

LC_CTYPE
The characters X’8B’, X’8C’and X’8D’ are lowercase characters, X’AB’, X’AC’ and X’AD’
are uppercase characters, and X’C0’ and X’D0’ are special characters. In the “C” locale
all these characters are control characters.

LC-COLLATE
The sort sequence corresponds to the EBCDIC value of each character (see table on
page 89).

V2CTYPE

This locale is designated as “V2CTYPE” or LC_C_V2CTYPE. It is compatible with locale
“C” in versions 2.0 and 2.1 of the C runtime system.

Differences from the C locale:

LC-COLLATE
The sort sequence corresponds to the EBCDIC value of each character (see table on
page 89).

88 U4351-J-Z125-8-76

Locale

6.4 Country-specific locale GERMANY

A country-specific locale is available for the German-speaking area. This locale is desig-
nated as follows:

“GERMANY” LC_C_GERMANY

This locale differs from the C locale in the following ways:

LC_CTYPE
Characters X’FB’, X’4F’, X’FD’ and X’FF’ are classified as lowercase characters (ä, ö,
ü, ß).
Characters X’BB’, X’BC’ and X’BD’ are classified as uppercase characters (Ä, Ö, Ü).

When lowercase characters are converted to uppercase characters (toupper,
strupper) the X’FF’ character (ß) remains unchanged.

LC_MONETARY
International currency symbol (int_curr_symbol): “DEM”

Local currency symbol (currency_symbol): “DM”

Decimal point (mon_decimal_point): “,”

LC_TIME
German is used for the days of the week and the months of the year.

The format for the date complies with the standard conventions for German-speaking
countries:

<weekday name>, <day of month>.<name of month> <year>

e.g. Donnerstag, 25.Juli 1991

LC_COLLATE
The sort sequence of the character set affects the behavior of the strcoll,strxfrm,
wcscoll and wcsxfrm functions. For the “GERMANY” locale the sort sequence corre-
sponds to the EBCDIC value of each characters shown in the following table.

U4351-J-Z125-8-76 89

Locale

Sort sequence in accordance with the EBCDIC value

\0 ^ j B W

\t , k C X

\v % l D Y

\f _ m E Z

\r > n F 0

\n ? o G 1

Ë : p H 2

` # q I 3

. @ r J 4

< ' s K 5

(= t L 6

+ " u M 7

| a v N 8

& b w O 9

! c x P {

$ d y Q }

* e z R ~

) f [S

; g \ T

- h] U

/ i A V

90 U4351-J-Z125-8-76

Locale

6.5 The locales De.EDF04F and De.EDF04F@euro

Both of these locales support the processing of files and texts that contain the euro sign.

For compatibility reasons, the underlying conversion tables have been expanded in both
locales to 8-bit code, which also contains the euro sign. The conversion tables are based
on the ASCII code ISO 8859-15 or the EBCDIC code EDF04F.

The only difference between the two locales lies in the category LC_MONETARY.

LC_CTYPE
The following table indicates the base class to which each character belongs:

Symbolic name Glyphe class (n) ASCII EBCDIC

<NUL> control 00 00

<SOH> control 01 01

<STX> control 02 02

<ETX> control 03 03

<EOT> control 04 37

<ENQ> control 05 2D

<ACK> control 06 2E

<alert> control 07 2F

<backspace> control 08 16

<tab> control space blank 09 05

<newline> control space 0A 15

<vertical-tab> control space 0B 0B

<form-feed> control space 0C 0C

<carriage-return> control space 0D 0D

<SO> control 0E 0E

<SI> control 0F 0F

<DLE> control 10 10

<DC1> control 11 11

<DC2> control 12 12

<DC3> control 13 13

<DC4> control 14 3C

<NAK> control 15 3D

<SYN> control 16 32

<ETB> control 17 26

U4351-J-Z125-8-76 91

Locale

<CAN> control 18 18

 control 19 19

<SUB> control 1A 3F

<ESC> control 1B 27

<IS4> control 1C 1C

<IS3> control 1D 1D

<IS2> control 1E 1E

<IS1> control 1F 1F

<space> space blank 20 40

<exclamation-mark> ! punct 21 5A

<quotation-mark> “ punct 22 7F

<number-sign> # punct 23 7B

<dollar-sign> $ punct 24 5B

<percent-sign> % punct 25 6C

<ampersand> & punct 26 50

<apostrophe> ’ punct 27 7D

<left-parenthesis> (punct 28 4D

<right-parenthesis>) punct 29 5D

<asterisk> * punct 2A 5C

<plus-sign> + punct 2B 4E

<comma> , punct 2C 6B

<hyphen> - punct 2D 60

<period> . punct 2E 4B

<slash> / punct 2F 61

<zero> 0 digit xdigit 30 F0

<one> 1 digit xdigit 31 F1

<two> 2 digit xdigit 32 F2

<three> 3 digit xdigit 33 F3

<four> 4 digit xdigit 34 F4

<five> 5 digit xdigit 35 F5

<six> 6 digit xdigit 36 F6

<seven> 7 digit xdigit 37 F7

<eight> 8 digit xdigit 38 F8

Symbolic name Glyphe class (n) ASCII EBCDIC

92 U4351-J-Z125-8-76

Locale

<nine> 9 digit xdigit 39 F9

<colon> : punct 3A 7A

<semicolon> ; punct 3B 5E

<less-than-sign> < punct 3C 4C

<equals-sign> = punct 3D 7E

<greater-than-sign> > punct 3E 6E

<question-mark> ? punct 3F 6F

<commercial-at> @ punct 40 7C

<A> A upper xdigit 41 C1

 B upper xdigit 42 C2

<C> C upper xdigit 43 C3

<D> D upper xdigit 44 C4

<E> E upper xdigit 45 C5

<F> F upper xdigit 46 C6

<G> G upper 47 C7

<H> H upper 48 C8

<I> I upper 49 C9

<J> J upper 4A D1

<K> K upper 4B D2

<L> L upper 4C D3

<M> M upper 4D D4

<N> N upper 4E D5

<O> O upper 4F D6

<P> P upper 50 D7

<Q> Q upper 51 D8

<R> R upper 52 D9

<S> S upper 53 E2

<T> T upper 54 E3

<U> U upper 55 E4

<V> V upper 56 E5

<W> W upper 57 E6

<X> X upper 58 E7

<Y> Y upper 59 E8

Symbolic name Glyphe class (n) ASCII EBCDIC

U4351-J-Z125-8-76 93

Locale

<Z> Z upper 5A E9

<left-sqare-bracket> [punct 5B BB

<backslash> \ punct 5C BC

<right-sqare-bracket>] punct 5D BD

<circumflex> ^ punct 5E 6A

<underscore> _ punct 5F 6D

<grave-accent> ` punct 60 4A

<a> a lower xdigit 61 81

 b lower xdigit 62 82

<c> c lower xdigit 63 83

<d> d lower xdigit 64 84

<e> e lower xdigit 65 85

<f> f lower xdigit 66 86

<g> g lower 67 87

<h> h lower 68 88

<i> i lower 69 89

<j> j lower 6A 91

<k> k lower 6B 92

<l> l lower 6C 93

<m> m lower 6D 94

<n> n lower 6E 95

<o> o lower 6F 96

<p> p lower 70 97

<q> q lower 71 98

<r> r lower 72 99

<s> s lower 73 A2

<t> t lower 74 A3

<u> u lower 75 A4

<v> v lower 76 A5

<w> w lower 77 A6

<x> x lower 78 A7

<y> y lower 79 A8

<z> z lower 7A A9

Symbolic name Glyphe class (n) ASCII EBCDIC

94 U4351-J-Z125-8-76

Locale

<left-curly-bracket> { punct 7B FB

<vertical-line> | punct 7C 4F

<right-curly-bracket> } punct 7D FD

<tilde> ~ punct 7E FF

 DEL control 7F 07

<sc00> 80 20

<sc01> 81 21

<sc02> 82 22

<sc03> 83 23

<sc04> 84 24

<sc05> control 85 25

<sc06> 86 06

<sc07> 87 17

<sc08> 88 28

<sc09> 89 29

<sc0a> 8A 2A

<sc0b> 8B 2B

<sc0c> 8C 2C

<sc0d> 8D 09

<sc0e> 8E 0A

<sc0f> 8F 1B

<sc10> 90 30

<sc11> 91 31

<sc12> 92 1A

<sc13> 93 33

<sc14> 94 34

<sc15> 95 35

<sc16> 96 36

<sc17> 97 08

<sc18> 98 38

<sc19> 99 39

<sc1a> 9A 3A

<sc1b> 9B 3B

Symbolic name Glyphe class (n) ASCII EBCDIC

U4351-J-Z125-8-76 95

Locale

<sc1c> 9C 04

<sc1d> 9D 14

<sc1e> 9E 3E

<sc1f> 9F 5F

<nbsp> NBSP A0 41

<revexcl> ¡ punct A1 AA

<cent> ¢ punct A2 B0

<pound> £ punct A3 B1

<euro> _ punct A4 9F

<yen> ¥ punct A5 B2

<CARON-S> Š upper A6 D0

<section> § punct A7 B5

<caron-s> š lower A8 79

<copyright> © punct A9 B4

<fem-ord> ª punct AA 9A

<ang_q_l> « punct AB 8A

<not> ¬ punct AC BA

<shy> SHY punct AD CA

<register> ® punct AE AF

<macron> ¯ punct AF A1

<degree> ° punct B0 90

<plu-min> ± punct B1 8F

<sup-two> ² punct B2 EA

<sup-three> ³ punct B3 FA

<CARON-Z> upper B4 BE

<micro> µ punct B5 A0

<pilcrow> ¶ punct B6 B6

<mid-dot> · punct B7 B3

<caron-z> lower B8 9D

<sup-one> ¹ punct B9 DA

<mas-ord> º punct BA 9B

<ang-q-r> » punct BB 8B

<OE> Œ upper BC B7

Symbolic name Glyphe class (n) ASCII EBCDIC

Z

z

96 U4351-J-Z125-8-76

Locale

<oe> œ lower BD B8

<DIA-Y> Ÿ upper BE B9

<revquest> ¿ punct BF AB

<GRAVE-A> À upper C0 64

<ACUTE-A> Á upper C1 65

<CIRC-A> Â upper C2 62

<TILDE-A> Ã upper C3 66

<DIA-A> Ä upper C4 63

<RING-A> Å upper C5 67

<AE> Æ upper C6 9E

<CEDIL-C> Ç upper C7 68

<GRAVE-E> È upper C8 74

<ACUTE-E> É upper C9 71

<CIRC-E> Ê upper CA 72

<DIA-E> Ë upper CB 73

<GRAVE-I> Ì upper CC 78

<ACUTE-I> Í upper CD 75

<CIRC-I> Î upper CE 76

<DIA-I> Ï upper CF 77

<ETH> Ð upper D0 AC

<TILDE_N> Ñ upper D1 69

<GRAVE-O> Ò upper D2 ED

<ACUTE-O> Ó upper D3 EE

<CIRC-O> Ô upper D4 EB

<TILDE_O> Õ upper D5 EF

<DIA-O> Ö upper D6 EC

<multiply> × punct D7 BF

<SLASH-O> Ø upper D8 80

<GRAVE-U> Ù upper D9 E0

<ACUTE-U> Ú upper DA FE

<CIRC-U> Û upper DB DD

<DIA-U> Ü upper DC FC

<ACUTE-Y> Ý upper DD AD

Symbolic name Glyphe class (n) ASCII EBCDIC

U4351-J-Z125-8-76 97

Locale

<THORN> Þ upper DE 8E

<sharp-s> ß lower DF 59

<grave-a> à lower E0 44

<acute-a> á lower E1 45

<circ-a> â lower E2 42

<tilde-a> ã lower E3 46

<dia-a> ä lower E4 43

<ring-a> å lower E5 47

<ae> æ lower E6 9C

<cedil-c> ç lower E7 48

<grave-e> è lower E8 54

<acute-e> é lower E9 51

<circ-e> ê lower EA 52

<dia-e> ë lower EB 53

<grave-i> ì lower EC 58

<acute-i> í lower ED 55

<circ-i> î lower EE 56

<dia-i> ï lower EF 57

<eth> ð lower F0 8C

<tilde-n> ñ lower F1 49

<grave-o> ò lower F2 CD

<acute-o> ó lower F3 CE

<circ-o> ô lower F4 CB

<tilde-o> õ lower F5 CF

<dia-o> ö lower F6 CC

<divide> ÷ punct F7 E1

<slash-o> ø lower F8 70

<grave-u> ù lower F9 C0

<acute-u> ú lower FA DE

<circ-u> û lower FB DB

<dia-u> ü lower FC DC

<acute-y> ý lower FD 8D

<thorn> þ lower FE AE

Symbolic name Glyphe class (n) ASCII EBCDIC

98 U4351-J-Z125-8-76

Locale

The remaining classes are defined as follows:

alpha The character belongs to the class upper or lower.

alnum The character belongs to the class alpha or digit.

print The character belongs to the class alnum or punct or is the
character <space>.

graph The character belongs to the class alnum or punct.

The diagrams toupper and tolower illustrate the usual behavior:
<XYZ> becomes <xyz> and <xyz> becomes <XYZ>.

LC_COLLATE
As under UNIX, only the characters of the 7-bit code and the umlauts used in German
are taken into account for the sort sequence. The umlauts are treated as equal to their
base vowel; the umlauts follow their respective base vowel in their secondary weighting.
The character ‘ß’ has the ASCII value X’DF’ (EBCDIC: X’59’).
Apart from this, the sequence corresponds to that of the ASCII character set.

LC_NUMERIC
decimal_point: ","
thousands_sep: "."
grouping: 0;0

LC_TIME
The German language is used for the names of days and months.
The abbreviated weekday names are: So, Mo, Di, Mi, Do, Fr, Sa.
The abbreviated month names are: Jan, Feb, Mär, Apr, Mai, Jun, Jul, Aug, Sep, Okt,
Nov, Dez.

am_pm: “AM”, “PM”

Date and time representation (%c) d_t_fmt: "%a %d.%h.%Y, %T, %Z"

Date representation (%x) d_fmt: "%d.%m.%y"

Time representation (%X) t_fmt: "%T %Z"

12-hour clock (%r) t_fmt_ampm: "%T:%M:%S:%p"

time_fmt: "%H.%M:%S"

day_fmt: "&d.%m"

<dia-y> ÿ lower FF DF

Symbolic name Glyphe class (n) ASCII EBCDIC

U4351-J-Z125-8-76 99

Locale

full_day: "%a %e.%b"

ar_date: "%b %d %H:%M %Y"

last_date: "%a %e.%b %H:%M"

ls_date: "%h %e %H:%M"

ls_date2: "%h %e %Y"

ps_date: "%d.%b"

su_date: "%d.%m %H:%M"

tar_date: "%e.%b %H:%M %Y"

diff_date: "%a %e.%b.%Y, %T"

LC_MESSAGES
yesstring "yes"
nostr "no"
quitstr "quit"
noexpr "^[nN]"
yesexpr "^[yY]"
quitexprr "^[qQ]"

LC_MONETARY

Element De.EDF04F De.EDF04F@euro

int_curr_symbol "DEM" "EUR"

currency_symbol "DM" "?"

mon_decimal_point "," ","

mon_thousands_sep "." "."

mon_grouping 3;3 3;3

positive_sign "" ""

negativ_sign "-" "-"

int_frac_digits 2 2

frac_digits 2 2

p_cs_precedes 0 0

p_sep_by_space 1 1

n_cs_precedes 0 0

n_sep_by_space 1 1

p_sign_posn 1 1

n_sign_posn 1 1

100 U4351-J-Z125-8-76

Locale

6.6 User-specific locales

Users can define their own locales.

The CRTE library SYSLNK.CRTE provides two source program elements (type S) with the
names USLOCC and USLOCA for this purpose.
USLOCC is a C source program, USLOCA is an Assembler source program. The two
source programs are equally effective at generating user-specific locales.

The source programs define the data for the individual locale categories and are preset with
the data of the C locale. The structure of this data is described below. The data can be
changed to the desired values.

The following modification must also be made in the source programs:

An address table with the name USERLOC is defined in the source programs. This name
must be changed to one selected by the user. It must be a valid entry name.

In the C source program, only the name USERLOC need be modified with a #define
statement. In the Assembler source program, the name USERLOC must be modified in the
definition line of the table and in the ENTRY statement.

The name modified by the user is used when the setlocale library function is called to
identify the user-specific locale (as a string in the second parameter).

The modified source programs can be compiled or assembled with the C/C++ compiler or
with the Assembler (also ASSGEN).
If the module is not stored in the library SYSLNK.CRTE but in another PLAM library, this
library must be assigned with the following SET-FILE-LINK command before the C program
is started:

/ADD-FILE-LINK LINK-NAME=IC@LOCAL,FILE-NAME=library

U4351-J-Z125-8-76 101

Locale

Structure of the data for the various locale categories

LC_COLLATE
The sort sequence is determined by a table (COLL/uscol) which defines the sort rating
of each character by means of a weighting. The initial values are the characters’ own
hexadecimal values, i.e. the sort sequence corresponds to the EBCDIC sequence.

LC_CTYPE
There are three tables which define the classification and the conversion from
uppercase to lowercase and vice versa for all EBCDIC characters.

The classification table (TYPE/ustyp) assigns each EBCDIC character to a particular
character class. The classes are represented by the following values:

 Assembler program C program

Uppercase letter X'01' _U
Lowercase letter X'02' _L
Decimal digit X'04' _N
Space X'08' _S
Special character X'10' _P
Control character X'20' _C
Hexadecimal character X'40' _X

The C values are defined in the include file <ctype.h>.

The tables for converting from uppercase to lowercase letters (LOWER/uslow) and from
lowercase to uppercase letters (UPPER/usupp) indicate the character resulting from
conversion for each character from X’00’ to X’FF’. These tables are used by the
toupper and tolower macros for converting to uppercase and lowercase letters. The
table needs to be filled only for characters which are classified as uppercase or
lowercase letters in the classification table.

LC_NUMERIC, LC_MONETARY
A string with a maximum of 8 characters is provided for all information of type char *.
These strings must always be terminated with a null byte.

LC_TIME
Strings with a maximum of 12 characters are provided for the days of the week and the
months of the year.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U4351-J-Z125-8-76 103

7 Alphabetical reference
Here you will find, in alphabetical order, descriptions of all C functions and macros that are
made available to you by the C runtime system.

Explanation of the function descriptions

All the function descriptions are based on a uniform principle, which is explained below.

The description of a function is divided into the following information categories:

● Function name and brief description

● Definition and general description

● Parameters

● Return value

● Notes

● Record I/O

● Example

● See also

Some of the above-mentioned sections may be omitted if they are not relevant to the
function concerned or if the pertinent information (e.g. the data type of a parameter)
is already evident from the syntax of the function call.

Definition and general description

The function definition includes the following information:

– the name of the include file required for the function

– the function header (data type and name of the function, list of formal parameters).

Below this syntax you will find a general description of how the function works.

104 U4351-J-Z125-8-76

Alphabetical reference

Parameters

In the case of complex functions, the function definition is followed by a detailed description
of the parameters. This includes their meanings, possible values, associated effects, etc.

Parameters are differentiated into input parameters and result parameters. In the case of
result parameters, as opposed to input parameters, the contents of variables transferred
during the call are modified by the function. One also speaks of “implicit” function results in
this context. Result parameters are defined as pointers to an object without the qualifier
“const”. For result parameters you must always specify the variable address, i.e. a pointer
argument, when you call the function. In addition, sufficient memory space must be
allocated for arrays, string variables, and structures.

Return value

The possible function return values are listed here. If the return value indicates an error, you
will find an additional note stating which error code, if any, is stored in the errno variable.

Notes

In this section, you will find information on the following:

– possible sources of error (always the first item)
– programming and application tips
– interrelationship with other functions
– technical details regarding how the function works
– special points pertaining to BS2000.

Record I/O

This section is included for all input/output functions which can also be used on files with
record-oriented input/output. It supplements the general “Notes” (principally formulated for
stream-oriented input/output) with special notes applicable to record I/O (cf. section “Binary
file” on page 50, “Stream-oriented input/output” on page 54, “Record-oriented input/output”
on page 54).

Example

Short example illustrating the application of the described function.

See also

References to the names of related functions.

U4351-J-Z125-8-76 105

_a2e, _e2a

_a2e, _e2a -
Convert from ASCII to EBCDIC and EBCDIC to ASCII

Definition #include <ascii_ebcdic.h>

char*_a2e (char* z);

char*_e2a (char* z);

The functions _a2e and _e2a convert the (null-terminated) string z passed as a parameter
from ASCII to EBCDIC and vice versa. The conversion takes place on the spot with the help
of conversion tables. The corresponding data areas therefore have to be writable.

The conversion tables are declared as follows:

unsigned char _a2e_tab[256];
unsigned char _e2a_tab[256];

Parameter char* z
String in ASCII or EBCDIC encoding to be converted

Return val. The string z passed as a parameter, after its conversion to EBCDIC or ASCII code

See also _a2e_n, _e2a_n, _a2e_max, _e2a_max, _a2e_dup, _e2a_dup, _a2e_dup_n, _e2a_dup_n

106 U4351-J-Z125-8-76

_a2e_dup, _e2a_dup

_a2e_dup, _e2a_dup -
Convert from ASCII to EBCDIC and EBCDIC to ASCII

Definition #include <ascii_ebcdic.h>

char*_a2e_dup (const char* z);

char*_e2a_dup (const char* z);

The functions _a2e_dup and _e2a_dup create a new string by taking the string z passed
as a parameter and converting it from ASCII to EBCDIC or vice versa. The memory for the
new string is allocated by means of malloc(), and it is up to the user to release it. If the
available memory is insufficient, NULL is returned as the result. Otherwise, the new string
is returned.

The conversion tables are declared as follows:

unsigned char _a2e_tab[256];
unsigned char _e2a_tab[256];

Parameter char* z
String in ASCII or EBCDIC encoding to be converted

Return val. New EBCDIC or ASCII string (if successful)

NULL, if there is insufficient memory

See also _a2e, _e2a, _a2e_n, _e2a_n, _a2e_max, _e2a_max, _a2e_dup_n, _e2a_dup_n

U4351-J-Z125-8-76 107

_a2e_dup_n, _e2a_dup_n

_a2e_dup_n, _e2a_dup_n -
Convert from ASCII to EBCDIC and EBCDIC to ASCII

Definition #include <ascii_ebcdic.h>

char*_a2e_dup_n (const char* z, size_t n);

char*_e2a_dup_n (const char* z, size_t n);

The functions _a2e_dup_n and _e2a_dup_n create a new string by taking z and converting
precisely n characters from ASCII to EBCDIC and vice versa. The memory for the new
string is allocated by means of malloc(), and it is up to the user to release it. If the
available memory is insufficient, NULL is returned as the result. Otherwise, the new, null-
terminated string is returned.

The conversion tables are declared as follows:

unsigned char _a2e_tab[256];
unsigned char _e2a_tab[256];

Parameter const char* z
String in ASCII or EBCDIC encoding to be converted

size_t n
Number of characters to be converted in the string z

Return val. New EBCDIC or ASCII string (if successful)

NULL, if there is insufficient memory

See also _a2e, _e2a, _a2e_max, _e2a_max, _a2e_n, _e2a_n, _a2e_dup; _e2a_dup

108 U4351-J-Z125-8-76

_a2e_max, _e2a_max

_a2e_max, _e2a_max, -
Convert from ASCII to EBCDIC and EBCDIC to ASCII

Definition #include <ascii_ebcdic.h>

char*_a2e_max (char* z, size_t n);

char*_e2a_max (char* z, size_t n);

The functions _a2e_max and _e2a_max convert the string z passed as a parameter with a
maximum length of n from ASCII to EBCDIC or vice versa. If z contains a NULL character
at a position < n, the conversion is terminated. The conversion takes place on the spot with
the help of conversion tables. The corresponding data areas thus have to be writable.

The conversion tables are declared as follows:

unsigned char _a2e_tab[256];
unsigned char _e2a_tab[256];

Parameter char* z
String in ASCII or EBCDIC encoding to be converted

size_t n
Maximum number of characters (left-aligned) to be converted in z

Return val. The string z passed as a parameter, after its conversion to EBCDIC or ASCII code

See also _a2e, _e2a, _a2e_n, _e2a_n, _a2e_dup, _e2a_dup, _a2e_dup_n, _e2a_dup_n

U4351-J-Z125-8-76 109

_a2e_n, _e2a_n

_a2e_n, _e2a_n -
Convert from ASCII to EBCDIC and EBCDIC to ASCII

Definition #include <ascii_ebcdic.h>

char*_a2e_n (char* z, size_t n);

char*_e2a_n (char* z, size_t n);

The functions _a2e_ and _e2a_n convert the (null-terminated) string z passed as a
parameter with a length of n from ASCII to EBCDIC or vice versa. Conversion takes place
on the spot. The corresponding data areas thus have to be writable.

The conversion tables are declared as follows:

unsigned char _a2e_tab[256];
unsigned char _e2a_tab[256];

Parameter char* z
String in ASCII or EBCDIC encoding to be converted

size_t n
Number of characters to be converted in the string z

Return val. The string z passed as a parameter, after its conversion to EBCDIC or ASCII

See also _a2e, _e2a, _a2e_max, _e2a_max, _a2e_dup, _e2a_dup, _a2e_dup_n, _e2a_dup_n

110 U4351-J-Z125-8-76

abort

abort - Abnormal program termination

Definition #include <stdlib.h>

void abort(void);

abort triggers the SIGABRT signal. If the program does not provide a routine for signal
handling or if such a routine returns to the point of the interrupt, the program is aborted with
_exit(-1).
Any termination routines registered with atexit are not called and open files are not
closed.

See also atexit, exit, _exit, raise, signal

U4351-J-Z125-8-76 111

abs

abs - Absolute value of a whole number

Definition #include <stdlib.h>

int abs(int i);

abs calculates the absolute value of the integer i.

Return val. |i| for any given integer value i.

Note The absolute value of the highest presentable negative number cannot be presented. If the
highest negative number (-231) is specified as argument i, the program is terminated with
an error.

Example The following program outputs the absolute value corresponding to an input value.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i;
 printf("Please enter int value: \n");
 if (scanf("%d", &i) == 1) /* Checks number of entries */
 printf("i = %d; •i• = %d\n", i, abs(i));
 else
 printf("Input error! \n");
 return 0;
}

See also cabs, fabs, labs, llabs

112 U4351-J-Z125-8-76

acos

acos - Arc cosine

Definition #include <math.h>

double acos(double x);

acos is the inverse function of cos and calculates the corresponding angle in radians for a
number in the interval [-1.0, +1.0].

Return val. arc cosine(x) a floating-point number of type double from [0, pi] for values x in the interval
[-1.0, +1.0].

0 for values outside the interval [-1.0, +1.0].
In addition, errno is set to EDOM (domain error, i.e. argument too large).

Example The following program prints the corresponding arc cosine values for input values in the
interval [0.0, 1.0]:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 for(x = 0.0; x < 1.0; x = x + 0.1)
 printf("x = %g : acos(%g) = %g\n", x, x, acos(x));
 return 0;
}

See also cos, sin, tan, asin, atan, atan2

U4351-J-Z125-8-76 113

alarm

alarm - Set alarm clock

Definition #include <signal.h>

unsigned int alarm(unsigned int sec);

alarm triggers the signal SIGALRM for the calling program when the specified time span
sec (passed as an argument) has elapsed. SIGALRM corresponds to the STXIT event class
RTIMER (real-time interval timer). The program is terminated with exit(-1) if the signal is
not intercepted (see also signal).
alarm calls with the value 0 - alarm(0) - do not trigger an alarm but set the alarm clock to
0 and cancel any pending alarms.

Return val. Time remaining in the alarm clock before execution of the alarm call.

Notes A number of alarm calls in succession resets the alarm clock with each call.

Since the alarm clock has a 1-second pulse, there may be time shifts of up to a second
when the signal is triggered.

If the signal is intercepted (see signal), the restart of the interrupted program (i.e. the base
process) may be delayed on priority grounds.

With the assignment: i = alarm(0) you can turn off the alarm clock and additionally
ascertain how much time would have remained since the last alarm request.

Example The following program sends an asterisk to the standard output approx. every two seconds:

#include <stdio.h>
#include <signal.h>
void f(int sig) /* Signal handling for SIGALRM */
{
 printf("*\n");
 alarm(2); /* Resetting of alarm clock; all further asterisks */
}
int main(void)
{
 signal(SIGALRM + SIG_PS, f);
 alarm(2); /* First asterisk */
 for(;;)
 ;
 return 0;
}

See also signal, sleep

114 U4351-J-Z125-8-76

asctime

asctime - Date and time

Definition #include <time.h>

char *asctime(const struct tm *tm_p);

asctime converts a time specification coded in accordance with the structure tm (see
below) into a string.

Parameter const struct tm *tm_p Structure as in the include file <time.h>:

struct tm
{
 int tm_sec; /* seconds (0-59) */
 int tm_min; /* minutes (0-59) */
 int tm_hour; /* hours (0-23) */
 int tm_mday; /* day of the month (1-31) */
 int tm_mon; /* month from start of year (0-11) */
 int tm_year; /* years since 1900 */
 int tm_wday; /* weekday (0-6, Sunday=0) */
 int tm_yday; /* day since January 1 (0-365) */
 int tm_isdst; /* daylight saving time flag */
};

Return val. Pointer to the string generated.

The resulting string has a length of 26 (including the null byte) and is formatted as a date
and time specification:
Weekday Month Day Hrs:Min:Sec Year, e.g. Wed Dec 14 15:20:54 1988\n\0

Notes asctime writes its result into an internal C data area, which is overwritten with each call!

A structure of type tm is returned as the result by the gmtime and localtime functions.

The calls asctime(localtime(sec_p)) and ctime(sec_p) are equivalent.

U4351-J-Z125-8-76 115

asctime

Example #include <time.h>
#include <stdio.h>

struct tm *t;
char *s;
time_t clk;

int main(void)
{
 clk = time((time_t *) 0);
 t = gmtime(&clk);
 printf("Year: %d\n", t->tm_year + 1900);
 printf("Time in hours: %d\n", t->tm_hour);
 printf("Day of the year: %d\n", t->tm_yday);

 s = asctime(t);
 printf("%s", s);
 return 0;
}

See also ctime, gmtime, localtime, mktime, time

116 U4351-J-Z125-8-76

asin

asin - Arc sine

Definition #include <math.h>

double asin(double x);

asin is the inverse function of sin and calculates the corresponding angle in radians for a
number in the interval [-1.0, +1.0].

Return val. arc sine(x) a floating-point number of type double within [-pi/2, +pi/2] for values x in the
interval [-1.0, +1.0].

0 for values outside of [-1.0, +1.0].
In addition, errno is set to EDOM (domain error, i.e. argument too large).

Example The following program calculates and prints the corresponding arc sine values
for 0.0, 0.1,..., 1.0:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 for(x = 0.0; x < 1.0; x = x + 0.1)
 printf("x = %g : asin(%g) = %g\n", x, x, asin(x));
 return 0;
}

See also sin, cos, acos, tan, atan, atan2

U4351-J-Z125-8-76 117

assert

assert - Macro for diagnostics

Definition #include <assert.h>

void assert(int expression);

The assert macro determines whether a given expression is false (zero) at a particular point
in the program. If this is the case, the program is terminated with abort, and the following
comment is printed on the standard error output (stderr):

"CCM0009 Assertion failed: file xyz, line nnn"

xyz is the name of the source file; nnn is the line number of the line with the assert call.

Note assert calls are ignored in the program (i.e. not executed) if you compile the program with
the following compiler option:

SOURCE-PROPERTIES = PARAMETERS(DEFINE = NDEBUG)

See also abort

118 U4351-J-Z125-8-76

atan

atan - Arc tangent

Definition #include <math.h>

double atan(double x);

atan is the inverse function of tan and calculates the corresponding angle in radians for
the floating-point number x.

Return val. arc tangent(x) a floating-point number of type double from the interval [-pi/2, +pi/2].

Example The following program calculates and prints the arc tangent of an input value:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("For which number do you want ATAN computed?: \n");
 if(scanf("%lf", &x) == 1) /* Verifies the input of a number */
 printf("x = %g : atan(%g) = %g\n", x, x, atan(x));
 return 0;
}

See also atan2, tan, sin, asin, cos, acos

U4351-J-Z125-8-76 119

atan2

atan2 - Arc tangent of x/y

Definition #include <math.h>

double atan2(double x, double y);

atan2 calculates the arc tangent of x/y. The signs of the two arguments determine the
resulting quadrants.

Return val. arc tangent(x/y)
a floating-point number of type double in the interval [-pi/2, +pi/2].
If the divisor y is equal to 0, atan2 returns either -pi/2 or +pi/2, depending
on the sign of the dividend.

0 if the dividend x is equal to 0.

pi/2 if both arguments are equal to 0. errno is set to EDOM (domain error).

Example The following program reads in the arguments x and y and prints the computed arc tangent
of x/y.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;
 printf("Example of ATAN2(x/y)\n");
 printf("Enter x and y please:\n");
 if (scanf("%lf %lf", &x, &y) == 2)
 printf("ATAN2 (%g / %g) = %g\n", x, y, atan2(x, y));
 return 0;
}

See also atan, tan, sin, asin, cos, acos

120 U4351-J-Z125-8-76

atexit

atexit - Register termination routines

Definition #include <stdlib.h>

int atexit(void (*funct) (void));

atexit is used to register a function funct that is to be executed when the program termi-
nates normally.

Return val. 0 on successful registration of the function.

≠ 0 on error.

Notes Up to 40 functions can be registered. The functions are called in the reverse order of their
registration. If a function is registered more than once it is also called more than once.

The functions registered with atexit are only called if the program is terminated “normally”
in one of the following ways:

– by explicitly calling the exit function

– on termination of the main function without an explicit exit call

– on termination of the program by the C runtime system with exit(-1), in other words:
on the occurrence of a raise signal (not SIGABRT) which is either not processed or is
processed by the signal default function SIG_DFL (see signal).

Only when all the termination routines have been processed are any files still open automat-
ically closed.

U4351-J-Z125-8-76 121

atexit

Example The termination routines end1 and end2 are registered with atexit and executed in the
order end2, end1 when the main function terminates.

#include <stdlib.h>
#include <stdio.h>

void end1(void);
void end2(void);

int main(void)
{
 atexit(end1);
 atexit(end2);
 printf("main function\n");
 return 0;
}

void end1(void)
{
 printf("end1 routine\n");
}

void end2(void)
{
 printf("end2 routine\n");
}

See also exit, raise, signal

122 U4351-J-Z125-8-76

atof

atof - Convert a string into a floating-point number (double)

Definition #include <stdlib.h>

double atof(const char *s);

atof converts a string to which s points into a floating-point number of type double. The
string to be converted may be formatted as follows:

 tab + E +
 [...][][digit...][.][digit...][[]digit...]
 Ë - e -

All control characters for white space are legal for tab (see definition of white space under
isspace).

Return val. Floating-point number of type double
for strings formatted as described above and representing a numeric value
that is within the permissible floating-point range.

0 for strings which do not correspond to the syntax described above.

HUGE_VAL for strings whose numeric value lies outside the permissible floating-point
range. In addition, errno is set to ERANGE (result too large).

Notes The decimal point (or comma) in the string to be converted is affected by the locale
(category LC_NUMERIC). The decimal point is the default.

atof also recognizes strings that begin with digits but then end with any character: it cuts
off the numeric part, converts it according to the above description, and ignores the rest.

Example The following program converts a string passed in the call (Enter Options) into the corre-
sponding floating-point number.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

 /* Numbers are passed as strings!! A conversion is */
 /* required if the numeric value is needed */
{
 printf("floating : %f\n", atof(argv[1]));
 return 0;
}

See also atoi, atol, strtod, strtol, strtoul

U4351-J-Z125-8-76 123

atoi

atoi - Convert a string into a whole number (int)

Definition #include <stdlib.h>

int atoi(const char *s);

atoi converts a string to which s points into an integer. The string to be converted may be
formatted as follows:

 tab +
 [...][]digit...
 Ë -

All control characters for white space are legal for tab (see definition of white space under
isspace).

Return val. Integer value of type int
for strings formatted as described above and representing a numeric value
that lies in the permissible range of integers.

0 for strings that do not conform to the syntax described above.

INT_MAX or INT_MIN
In the case of an overflow, depending on the sign.

Note atoi also recognizes strings that begin with digits but then end with any character. atoi
cuts off the numeric part, converts it according to the above description, and ignores the
rest.

Example The following program converts a string passed in the call (Enter Options) into the corre-
sponding integer value.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

 /* Numbers are passed as a string!! A conversion is */
 required if the numeric value is needed. */
 {
 printf("integer : %d\n", atoi(argv[1]));
 return 0;
}

See also atof, atol, strtod, strtol, strtoul

124 U4351-J-Z125-8-76

atol

atol - Convert a string into a whole number (long)

Definition #include <stdlib.h>

long int atol(const char *s);

atol converts a string to which s points into an integer of type long. The string to be
converted may be formatted as follows:

 tab +
 [...][]digit...
 Ë -

All control characters for white space are legal for tab (see definition of white space under
isspace).

Return val. Integer value of type long int
for strings formatted as described above and representing a numeric value.

0 for strings that do not conform to the syntax described above.

LONG_MAX or LONG_MIN
In the case of an overflow, depending on the sign.

Note atol also recognizes strings that begin with digits but then end with any character. atol
cuts off the numeric part, converts it according to the above description, and ignores the
rest.

Example The following program converts a string passed in the call (Enter Options) into the corre-
sponding integer value.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

 /* Numbers are passed as a string!!
 A conversion is required if the
 numeric value is needed. */
{
 printf("long integer : %ld\n", atol(argv[1]));
 return 0;
}

See also atof, atoi, atoll, strtod, strtol, strtoll, strtoul, strtoull

U4351-J-Z125-8-76 125

atoll

atoll - Convert a string into a whole number (long long int)

Definition #include <stdlib.h>

long long int atoll(const char *s);

atoll converts a string, to which s points, into a whole number of type
long long int. The string to be converted may be formatted as follows:

 tab +
 [...][]digit...
 Ë -

All control characters for white space are permitted for tab (see definition of white space
under isspace).

Return val. Integer value of type long long int
for strings formatted as described above and representing a numeric value.

0 for strings that do not correspond to the syntax described above.

LLONG_MAX or LLONG_MIN
In the case of an overflow, depending on the sign.

Notes atoll also recognizes strings that begin with digits but then end with any character. atoll
cuts off the numeric part, converts it according to the above description, and ignores the
rest.

If p is a NULL pointer and base is equal to 10, the only difference between atoll and the
strtoll function lies in the error handling.
atoll(s) corresponds to strtoll(s, (char **)NULL, 10).

The C compiler that supports the data type long long only creates objects in LLM format.
For this reason, the long long library functions are also only available as LLMs and are not
contained in the prelinked modules. Like data modules, they must either be integrated or
reloaded from the library.

See also atof, atoi, atol, strtod, strtol, stroll, strtoul, stroull

126 U4351-J-Z125-8-76

bs2cmd

bs2cmd - Execute BS2000/OSD commands by means of the
CMD macro

Definition #include <bs2cmd.h>

int bs2cmd(const char *cmd, bs2cmd_rc *rc, int maxoutput, int flags);

bs2cmd can be used to execute a BS2000/OSD command by means of the BS2000/OSD
CMD macro. Only commands for which the CMD macro is permissible can be used. In
particular, it makes no sense to execute commands that lead to the unloading of the calling
program, since the interface does not include any precautionary features that prevent this.

The command outputs can be buffered. The interface can thus also be used by an rlogin
task without a SYSFILE environment.

Parameter const char *cmd
This parameter contains the command to be executed. Except for strings enclosed in
apostrophes, all characters are converted to uppercase letters in cmd before the call.

bs2cmd_rc *rc
rc is a pointer to the structure bs2cmd_rc, which contains return information.

bs2cmd_rc is structured as follows:

unsigned short maincode
unsigned char subcode1
unsigned char subcode2
unsigned short progrc
unsigned char cmdmsg[8]

If the NULL pointer is passed when bs2cmd is called with rc, no return information is
made available.

int maxoutput
This parameter specifies the size of the buffer to be created for command output in
bytes:

– If the constant BS2CMD_DEFAULT is specified, a standard buffer of 256 K is used.

– If the constant BS2CMD_NOBUFFER is specified, the outputs are not buffered.
With this setting, no commands that generate outputs can be executed under rlogin
tasks.

– If the buffer selected is too small for the pending outputs, command execution is
aborted.

U4351-J-Z125-8-76 127

bs2cmd

int flags
This parameter specifies the configuration flags for the interface. Currently, the following
flags or combinations of flags can be specified:

BS2CMD_FLAG_STRIP
The printer control characters in the command output are removed before output.

BS2CMD_FLAG_SPLIT
The command outputs are split between stdout and stderr. Messages are output to
stderr.

BS2CMD_FLAG_TRACE
Internal debug flag for outputting the internal buffers

Return val. maincode If the command is executed successfully, errno is not set.

-1 In the event of an error, errno is set to one of the following values:

EINVAL
One of the arguments has an impermissible value (e.g. an empty
command or a negative buffer size).

ENOMEM
There is not enough memory available for the buffers to be created.

EFAULT
After the command is executed, the contents of the output buffer cannot
be interpreted.

EFBIG
The output buffer is not large enough for the outputs.

128 U4351-J-Z125-8-76

bs2exit

bs2exit - Program termination with MONJV

Definition #include <stdlib.h>

void bs2exit(int status, const char *monjv_rcode);

bs2exit terminates the program.
Before this is done, all files opened by the program are closed, and the following messages
are output to stderr:

– “CCM0998 used CPU-time t seconds”, if CPU-TIME=YES is set in the RUNTIME option

– “CCM0999 exit status”, if status ≠ EXIT_SUCCESS (value 0)

– "CCM0999 exit FAILURE", if status = EXIT_FAILURE (value 9990888).

The status indicator of the monitoring job variable (1st to 3rd byte) is set to the value "$T "
or "$A " in accordance with the first status parameter.

The return code of the MONJV (4th - 7th byte) can additionally be supplied with the
monjv_rcode parameter.

Parameter int status
see exit function.

const char *monjv_rcode
This parameter can be used to specify a pointer to 4 bytes of data (the return code),
which is loaded in the MONJV when the program terminates.

Notes When a program is terminated with bs2exit the termination routines registered with
atexit are not called (cf. exit).

In order to set and query monitor job variables, you must start the C program with the
following command:

/START-PROG program,MONJV=monjvname

The content of the job variable can then be queried, e.g. with the following command:

/SHOW-JV JV-NAME(monjvname)

Further information on job monitoring using MONJV can be found in the "Job Variables"
manual.

U4351-J-Z125-8-76 129

bs2exit

Example The program is terminated and the return code is set

#include <stdio.h>

int main(void)
{
 .
 .
 .
 if(error)
 bs2exit(-1, "ABCD");
}

See also exit, _exit

130 U4351-J-Z125-8-76

bs2fstat

bs2fstat - Access file name from catalog

Definition #include <stdlib.h>

int bs2fstat(const char *pattern, void (*fct)(const char *f_name, int len));

bs2fstat returns

– the fully qualified file names (:catid:$userid.filename) of one or more files that satisfy the
selection criterion given by pattern, and

– the length of the particular file name including the terminating null byte (\0).

For each file found, bs2fstat calls a function fct (which must be supplied by the user) and
passes to it the particular file name f_name (string char *) and the name length len (integer)
as current arguments.

If no file matches the selection criterion pattern or if pattern is errored the function fct is not
called and bs2fstat returns a DMS error message.

Parameter const char *pattern
String specifying the selection criterion for one or more files.
pattern is a fully or partially qualified file name with wildcard syntax.

For compatibility reasons, further parameters can also be specified to determine which
files are selected, e.g.:

– file and catalog attributes (FCBTYPE, SHARE etc.)

– creation and access date (CREATE, EXDATE etc.)

These parameters must be specified in the syntax of the ISP command FSTAT.

The pattern "*,crdate=today", for example, returns the names of all files that were
created or updated on today’s date.

void (*fct)(const char *f_name, int len)
A user-supplied function with the parameters f_name (file name) and len (name length).
These parameters are supplied with current values by bf2stat on each function call.
The function calls are made automatically by bs2fstat (in a while loop).

Return val. 0 if the call was successful.

DMS error message code
if the call was not successful.

Note The DMS error message code can be only queried from outside the user-own function fct,
since the function is not called if the search was unsuccessful (see also example).

U4351-J-Z125-8-76 131

bs2fstat

Example In the following program, all files matching the name pattern entered by the user are made
shareable with the MODIFY-FILE-ATTRIBUTES command.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void share(const char *, int);

int main(void)
{
 char name[54];
 int result;
 printf("Which files are to be made shareable?\n");
 gets(name);
 result = bs2fstat(name, share);
 if(result != 0)
 printf("Error code: DMS%x\n", result);
 return 0;
}

void share(const char *nam, int len)
 /* The formal parameters nam and len are */
 /* supplied as current parameters by bs2fstat */

{
 char cmd[200];
 strcpy(cmd, "/MODIFY-FILE-ATTRIBUTES ");
 strcat(cmd, nam);
 strcat(cmd, ",PROTECTION=PAR(USER-ACCESS=ALL-USERS)");
 system("/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=NO-CONTROL");
 printf("%s\n", cmd);
 system(cmd);
}

See also system

132 U4351-J-Z125-8-76

bsearch

bsearch - Binary search algorithm

Definition #include <stdlib.h>

void *bsearch(const void *search, const void *field, size_t n,
 size_t elsize, int (*comp) (const void *, const void *));

The bsearch function is a binary search function. bsearch searches the number n of
elements of an array field for the value in the data item search. Each array element is elsize
bytes long. The array elements must already be sorted in ascending order as expected by
the comparison function cmp.

cmp is a user-supplied comparison function which is called by bsearch with two arguments,
a pointer to search (argument 1) and a pointer to an array element (argument 2).
cmp supplies an integer as the result. The result is interpreted as follows:

Return val. Pointer to the array element found.
If more than one instance of the element is found there is no indication as
to which element the pointer refers to.

NULL pointer if no element has been found.

Note If, for example, the qsort function is used for sorting the array, it makes sense to use the
same comparison function cmp that is used by bsearch. The current arguments of qsort
are then pointers to two array elements to be compared.

See also qsort

< 0 argument1 is less than argument2

= 0 argument1 and argument2 are equal

> 0 argument1 is greater than argument2

U4351-J-Z125-8-76 133

btowc

btowc - Convert (one-byte) multibyte character to wide character

Definition #include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

btowc converts a multibyte character c, which must consist of one byte and be in the initial
shift state, to a wide character.

Return val. Wide character, if successful.

WEOF if c has the value EOF or if (unsigned char)c does not represent a valid
(one-byte) multibyte character in the initial shift state.

Note This version of the C runtime system only supports one-byte characters as wide character
codes or multibyte characters.
The shift state of the multibyte character is ignored.

See also mblen, mbtowc, wcstombs, wctomb

134 U4351-J-Z125-8-76

cabs

cabs - Absolute value of a complex number

Definition #include <math.h>

double cabs(_ _complex z);

cabs calculates the absolute value of the complex number z with real part x and imaginary
part y.

__complex is a type predefined in the header <math.h>:

#typdef struct{double x, y;} __complex

Return val. sqrt(z.x * z.x + z.y * z.y)
i.e. the absolute value of the complex number z.

In the case of an overflow, the program aborts (signal SIGFPE)!

Example The following program calculates the absolute value of a complex number.

#include <stdio.h>
#include <math.h>

int main(void)
{
 __complex z;
 if (scanf("%f %f", &z.x, &z.y) == 2)
 printf("%f : Absolute value\n", cabs(z));
 return 0;
}

See also abs, fabs, labs, llabs, sqrt

U4351-J-Z125-8-76 135

calloc

calloc - Reserve memory space

Definition #include <stdlib.h>

void *calloc(size_t n, size_t elsize);

calloc provides contiguous memory space at execution time for an array with n elements,
where each element requires elsize bytes. calloc initializes each element of the new array
with binary zeros.

calloc is part of a C-specific memory management package which internally manages
requested and released memory areas. Wherever possible, new requests are met first from
areas already being managed and only then by the operating system (cf. garbcoll
function).

Return val. Pointer to the new memory space
if sufficient memory space is present.

NULL pointer if memory space does not suffice for the request.

Notes The new data area begins on a doubleword boundary.

To ensure that you are requesting the correct size for an array element, you should use the
sizeof operator for the calculation of elsize.

A serious disruption in working memory may be expected if the length of the memory area
provided is exceeded when writing.

Example The following program fragment requests memory space for 20 array elements of type long
integer.

#include <stdlib.h>

long *long_array;
 .
 .
long_array = (long *)calloc(20, sizeof(long));

See also malloc, realloc, free, garbcoll

136 U4351-J-Z125-8-76

cdisco

cdisco - Deactivate a contingency routine

Definition #include <cont.h>

void cdisco(struct enacop *enacopar);

cdisco deactivates a contingency routine (TU or P1) defined with cenaco.

For detailed information on contingency routines, refer to chapter “Contingency and STXIT
routines” on page 77ff and the "Executive Macros" manual.

Parameter struct enacop *enacopar
Pointer to a structure which is defined in <cont.h> as follows:

 struct enacop
 {
 char resrv1 [7]; /* reserved for int. use */
 char coname [54]; /* name of cont. routine */
 char resrv2 [15]; /* reserved for int. use */
 char level; /* priority of cont.rout. */
 int (*econt)(struct contp); /* start adr of cont.rout. */
 int comess; /* contingency message */
 int coidret; /* contingency identifier */
 errcod secind; /* secondary indicator */
 char resrv3 [2]; /* reserved for int. use */
 errcod rcode1; /* return code */
 };

 #define errcod char
 #define _norm 0 /* normterm */
 #define _abnorm 4 /* abnormend */
 #define _enabled 4 /* codefenabled */
 #define _preven 12 /* coprevenabled */
 #define _parerr 16 /* coparerror */
 #define _maxexc 24 /* comaxexceed */

cdisco evaluates only the coidret entry (identifier of the contingency process) in the
structure.

Entries supplied by cdisco:

secind "Secondary Indicator", as stored in the most significant byte of register 15
(values X’10’ or X’16’) after execution of the DISCO macro.

rcode1 "Return Code", as stored in the least significant byte of register 15 (values
0 or 4) after execution of the DISCO macro.

U4351-J-Z125-8-76 137

ceil

Note The Assembler macro DISCO locks the contingency routine only for future event requests.
However, if an event that was requested earlier occurs after DISCO, the contingency routine
will be called even after DISCO.
Note that calls to the contingency routine econt are suppressed even for events that were
requested earlier.

See also cenaco

ceil - Round up

Definition #include <math.h>

double ceil(double x);

ceil rounds up a floating-point number to the lowest integer of type double that is greater
than or equal to x.

Return val. Lowest integer of the type double which is greater than or equal to x
if successful.

HUGE_VAL in the event of an overflow, errno is also set to ERANGE (result too high).

Example #include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter the floating-point number to be rounded up:\n");
 if (scanf("%lf", &x) == 1)
 printf("The number %g is being rounded up to %f\n", x, ceil(x));
 return 0;
}

See also abs, fabs, floor

138 U4351-J-Z125-8-76

cenaco

cenaco - Definition of a contingency routine

Definition #include <cont.h>

void cenaco(struct enacop *enacopar);

cenaco defines a contingency routine (TU or P1). This means that a routine written by the
user can be assigned as a contingency routine by means of cenaco.

For detailed information on contingency routines, refer to chapter “Contingency and STXIT
routines” on page 77ff and the "Executive Macros" manual.

Parameter struct enacop *enacopar
Pointer to a structure that is defined in <cont.h> as follows:

 struct enacop
 {
 char resrv1 [7]; /* reserved for int. use */
 char coname [54]; /* name of cont. routine */
 char resrv2 [15]; /* reserved for int. use */
 char level; /* priority of cont.rout. */
 int (*econt)(struct contp); /* start adr of cont.rout. */
 int comess; /* contingency message */
 int coidret; /* contingency identifier */
 errcod secind; /* secondary indicator */
 char resrv3 [2]; /* reserved for int. use */
 errcod rcode1; /* return code */
 };

 #define errcod char
 #define _norm 0 /* normterm */
 #define _abnorm 4 /* abnormend */
 #define _enabled 4 /* codefenabled */
 #define _preven 12 /* coprevenabled */
 #define _parerr 16 /* coparerror */
 #define _maxexc 24 /* comaxexceed */

Some of the entries in the parameter structure can or must be supplied by you prior to
the cenaco call; other entries are used by cenaco to store information during the run.

U4351-J-Z125-8-76 139

cenaco

Entries supplied by the user:

Entries supplied by cenaco:

Note A maximum of 255 contingency routines can be defined.

coname Name of the contingency process. The name is a maximum of 54 bytes
long (without null byte), must be in uppercase and must terminate with at
least one blank (a null byte immediately after the actual name is not
recognized as an end criterion by the system). The strfill function, for
example, is suitable for supplying coname (see also example).
This input is mandatory.

level Priority level of the contingency process. This input is mandatory. Values
from 1 - 126 are legal.

econt Start address of the contingency routine. This input is mandatory.

comess Contingency message. This input is optional. The value is passed to the
contingency routine as a parameter.

coidret Short ID of the contingency process. This short ID must be used in further
macros (e.g. SOLSIG) for the identification of the contingency process.

secind "Secondary indicator", as stored in the most significant byte of register 15
(values 4, 12, 16 or 24) after execution of the ENACO macro.

rcode1 "Return code", as stored in the least significant byte of register 15 (value
0 or 4) after execution of the ENACO macro.

140 U4351-J-Z125-8-76

cenaco

Example Program fragment for the definition of a contingency routine:

#include <cont.h>

/* Contingency routine: controut */

int controut(struct contp contpar)
{
 .
 .
 .
 printf("Contingency message: %d\n", contpar.comess);
 .
 .
 .
}

/* Main routine in which the controut routine is defined as a
 contingency routine. */

int main(void)
{
 .
 .
 .
 struct enacop enacopar;
 .
 .
 .
 enacopar.econt = controut;
 enacopar.level = 1;
 enacopar.comess = 100;
 strfill(enacopar.coname, "CONTPROC1 ", sizeof(enacopar.coname));
 cenaco(&enacopar);
 .
 .
 .
}

See also cdisco, cstxt, signal, alarm, raise, sleep

U4351-J-Z125-8-76 141

clearerr

clearerr - Clear end-of-file and error flag

Definition #include <stdio.h>

void clearerr(FILE *fp);

clearerr clears the end-of-file and error information of the file with the file pointer fp.

Note clearerr is implemented as a macro and as a function (see section “Functions and
macros” on page 5).

Record I/O clearerr can also be used on files with record I/O.

See also feof, ferror

142 U4351-J-Z125-8-76

clock

clock - CPU time used since the program call

Definition #include <time.h>

clock_t clock(void);

clock supplies the CPU time which has elapsed since the program was called.

Return val. The CPU time in ten thousandths of a second since the program was called
if successful.

(clock_t) -1 if the time cannot be calculated or represented.

Notes clock is implemented as a macro and as a function (see section “Functions and macros”
on page 5).

To obtain the time in seconds, the result of clock must be divided by the value of the
CLOCKS_PER_SEC macro.

Example #include <time.h>
#include <stdio.h>

int main(void)
{
 clock_t result;
 result = clock();
 printf("used cputime %f seconds\n", ((float)result / CLOCKS_PER_SEC));
 return 0;
}

See also cputime

U4351-J-Z125-8-76 143

close

close - Close file and flush buffer (elementary)

Definition #include <stdio.h>

int close(int fd);

close closes a file that was opened by open/open64 or creat/creat64. Before closing
the file, close calls the fflush function, which flushes the buffer.

Return val. 0 close has closed the file with the file descriptor fd.

-1 The file descriptor is unknown or no file is open for this file descriptor. In
addition, errno is set to EBADF (invalid file descriptor).

Notes Upon termination of a program (normal or with exit), all open files are automatically
closed.

A maximum of _NFILE files may be open simultaneously per program. _NFILE is defined
as 2048 in <stdio.h>. Programs that process more files must therefore temporarily close
unused ones.

If the file was opened with the standard I/O function fopen or fopen64, it must be closed
with fclose instead of close.

Example see example under lseek/lseek64

See also creat, creat64, fclose, fflush, open, open64, exit

144 U4351-J-Z125-8-76

cos

cos - Cosine

Definition #include <math.h>

double cos(double x);

cos calculates the trigonometric function cosine for the floating-point number x.

Return val. cos(x) a floating-point number in the interval [-1.0, +1.0].

Example The following program lists the cosine values corresponding to input values in the interval
[-pi, +pi].

#include <math.h>
#include <stdio.h>
#define pi 3.14159265358979

int main(void)
{
 double x;
 for (x = -pi; x <= pi; x = x + pi/4.)
 printf("cos(%f) = %f\n", x, cos(x));
 return 0;
}

See also acos, cosh, sin, asin, sinh, tan, atan, atan2, tanh

U4351-J-Z125-8-76 145

cosh

cosh - Hyperbolic cosine

Definition #include <math.h>

double cosh(double x);

cosh calculates the hyperbolic cosine for the floating-point number x.

Return val. cosh(x) for a floating-point number x.

+HUGE_VAL if the result overflows. In addition, errno is set to ERANGE (result too
large).

Example The following program lists the hyperbolic cosine values corresponding to input values in
the interval [-1.0, +1.0].

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 for (x = -1.0; x < 1.0; x = x + 0.1)
 printf("cosh(%f) = %f\n", x, cosh(x));
 return 0;
}

See also acos, cos, sin, asin, sinh, tan, atan, atan2, tanh

146 U4351-J-Z125-8-76

cputime

cputime - CPU time used by the current task

Definition #include <stdlib.h>

int cputime(void);

cputime returns the CPU time used by the current task (since LOGON).

Return val. Integer indicating the CPU time consumed in ten thousandths of a second.

Example #include<stdio.h>
#include <stdlib.h>

int main(void)
{
float time_f;
time_f = (float)cputime() / 10000;
printf("cputime since logon: %f seconds\n", time_f);
return 0;
}

U4351-J-Z125-8-76 147

creat, creat64

creat, creat64 - Create a new file (elementary)

Definition #include <stdio.h>

int creat(const char *f_name, int mode);
int creat64(const char *f_name, int mode);

creat and creat64 open a file for writing.

– If the file does not yet exist, it is created.

– Files that already exist are truncated to a length of 0.

creat and creat64 return a file descriptor for subsequent elementary access operations
(write, read).

There is no functional difference between creat and creat64, except that a large file
identifier is stored with the file description that is linked to the file descriptor, i.e. the
O_LARGEFILE bit is set. A file descriptor is returned that can be used to extend the file over
2 GB.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call creat. creat64 is then
used implicitly with the appropriate parameters.

– Otherwise, you have to call creat64.

Parameter const char *f_name
A string specifying the name of the file to be opened. f_name can be:

– any valid BS2000 file name

– “link=linkname”
linkname denotes a BS2000 link name

int mode
This parameter is ignored. However, it is required for the creation of portable programs
since it controls the protection bit (rwx rwx rwx) assignment in the UNIX operating
system.

Return val. File descriptor i.e.positive number used later to identify the file in elementary access opera-
tions (read, write).

-1 if the file could not be opened, e.g. because too many files are open or
because f_name is not a valid file or link name.

148 U4351-J-Z125-8-76

creat, creat64

Notes The BS2000 file name or link name may be written in lowercase and uppercase letters. It is
automatically converted to uppercase letters.

If a non-existent file is created, the following applies by default:
With KR functionality (applies to C/C++ versions prior to V3.0 only), a SAM file with variable
record length and standard block length is created.
With ANSI functionality, an ISAM file with variable record length and standard block length
is created.

By using a link name the following file attributes can be changed with the ADD-FILE-LINK
command: access method, record length, record format, block length and block format.
See also section “System files (SYSDTA, SYSOUT, SYSLST)” on page 60.

If an existing file is truncated to length 0, the catalog attributes of this file are preserved.

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
<stdio.h>.

U4351-J-Z125-8-76 149

creat, creat64

Example The program given below writes the contents of an input file to an output file. The output file
is created as a new file with creat. The name of this file as well as the file attributes are
defined by means of a ADD-FILE-LINK command (link name=LINK).
The following command, for example, could be used to create an ISAM file named
OUT.ISAM:

/ADD-FILE-LINK LINK-NAME=LINK,FILE-NAME=OUT.ISAM,ACCESS-METHOD=ISAM

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char name[50];
 char buf;
 int fin, fout;

 printf("Name of the input file?\n");
 gets(name);
 printf("File %s is being copied.\n", name);
 if ((fin = open(name,0)) == -1)
 {
 perror(name);
 exit(-1);
 }
 if ((fout = creat("link=link", 1)) == -1)
 {
 perror("link");
 exit(-1);
 }
 while(read(fin, &buf, 1) > 0)
 {
 putchar(buf); /* Log to stdout */
 write(fout, &buf, 1);
 }
 close(fin); close(fout);
 return 0;
}

See also close, fdopen, open, open64, read, write, perror

150 U4351-J-Z125-8-76

cstxit

cstxit - Definition of an STXIT routine

Definition #include <stxit.h>

void cstxit(struct stxitp stxitpar);

cstxit defines an STXIT routine. This means that a routine written by the user can thus
be assigned as an STXIT routine.
Detailed information on the programming of STXIT routines is provided in chapter “Contin-
gency and STXIT routines” on page 77ff and the "Executive Macros" manual.

Parameter struct stxitp stxitpar
Structure in which the information required for the definition of an STXIT routine is to be
specified. The structure is defined in <stxit.h> for ANSI-C as follows
(struct cont depends on the compilation mode):

struct stxitp
{
 addr bufadr; /* Address of the message for the program */
 /* (OPINT) */
 err_set retcode; /* Return code */
 struct cont contp; /* Address of the STXIT routines */
 struct nest nestp; /* Max. nesting level */
 struct stx stxp; /* Control of the cstxit call */
 struct diag diagp; /* Diagnostic control */
 struct type typep; /* Parameter transfer mode */
};

struct cont /* Address of the STXIT routine for */
{ /* the particular event class */
 void (*prchk) (struct stxcontp stxcontpar);
 void (*timer) (struct stxcontp stxcontpar);
 void (*opint) (struct stxcontp stxcontpar);
 void (*error) (struct stxcontp stxcontpar);
 void (*runout) (struct stxcontp stxcontpar);
 void (*brkpt) (struct stxcontp stxcontpar);
 void (*abend) (struct stxcontp stxcontpar);
 void (*pterm) (struct stxcontp stxcontpar);
 void (*rtimer) (struct stxcontp stxcontpar);

};

struct nest /* Max. nesting level for the */
{ /* particular event class */
 char prchk;
 char timer;
 char opint;

U4351-J-Z125-8-76 151

cstxit

 char error;
 char runout;
 char brkpt;
 char abend;
 char pterm;
 char rtimer;
 char filler;
};

struct stx /* Control of the cstxit call for */
{ /* the particular event class */
 stx_set prchk;
 stx_set timer;
 stx_set opint;
 stx_set error;
 stx_set runout;
 stx_set brkpt;
 stx_set abend;
 stx_set pterm;
 stx_set rtimer;
 stx_set filler;
};

struct diag /* Diagnostic control for */
{ /* the particular event class */
 diag_set prchk;
 diag_set timer;
 diag_set opint;
 diag_set error;
 diag_set runout;
 diag_set brkpt;
 diag_set abend;
 diag_set pterm;
 diag_set rtimer;
 diag_set filler;
};

struct type /* Parameter transfer mode for */
{ /* the particular event class */
 type_set prchk;
 type_set timer;
 type_set opint;
 type_set error;
 type_set runout;
 type_set brkpt;
 type_set abend;
 type_set pterm;

152 U4351-J-Z125-8-76

cstxit

 type_set rtimer;
 type_set filler;
};

#define stx_set char
#define old_stx 0
#define new_stx 4
#define del_stx 8

#define diag_set char
#define ful_diag 0
#define min_diag 4
#define no_diag 8

#define err_set char
#define no_err 0
#define par_err 4
#define stx_err 8
#define mem_err 12

#define type_set char
#define par_opt 0
#define par_std 4

Control of the cstxit call:

This data is used to control the execution of the cstxit call. It defines which actions
are to be performed for the particular event class.

old_stx No change is required for the corresponding event class. A previously
assigned STXIT routine is retained. The remaining data for this event
class is not evaluated.

new_stx A new STXIT routine is assigned for the corresponding event class. The
remaining data for this event class is evaluated in this case. The address
of the routine, in particular, must be present in the corresponding entry of
contp.

del_stx The STXIT routine that was assigned to this point is deleted for the corre-
sponding event class. The remaining data for this event class is not
evaluated.

U4351-J-Z125-8-76 153

cstxit

Diagnostic control:

Parameter transfer mode:

Return code:

Notes You must supply the parameter structure stxitpar yourself.

To standardize initialization, a prototype (stxit_pr) has been defined and provided for you
in the include file <stxit.h>. If you copy this prototype to one of your own defined structures
of type stxitp; you will only need to set the fields for those event classes for which the
assignment of an STXIT routine is to be changed.

For event class INTR, you must supply the address (stxitpar.bufadr) at which the infor-
mation for the program is to be provided. The STXIT contingency routine can then fetch the
message from this address and evaluate it.

See also alarm, cenaco, raise, signal, sleep

ful_diag For compatibility reasons the diagnostic control parameters

min_diag are accepted syntactically but since conversion to ILCS are

no_diag no longer evaluated. The routine is activated without a preceding
diagnostic message.

par_opt The parameters are passed in registers 1-4.

par_std The parameters are passed in a parameter list.
This is the only value permitted in C!

no_err The STXIT routine was defined correctly.

par_err The parameter structure stxitpar was incorrectly supplied.

stx_err Error in activating the STXIT routine.

mem_err Error in the memory space request (when activating the STXIT routine).

154 U4351-J-Z125-8-76

ctime

ctime - Date and time (CET)

Definition #include <time.h>

char *ctime(const time_t *sec_ptr);

ctime interprets the time information of type time_t (see return values of mktime and
time) as the number of seconds that have elapsed since January 1, 1950 00:00:00. From
this number, ctime calculates the local time (CET) and converts the result into a string.

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, ctime interprets the value as the number of
seconds that have elapsed since 1.1.1970 00:00:00.

Return val. Pointer to the 26-character string generated.

The resulting string has a length of 26 (incl. the terminating null byte \0) and is formatted as
a date and time of the form:
Weekday Month Day Hrs:Min:Sec Year,
 e.g. Mon Jan 25 12:34:00 1988\n\0

Notes ctime writes its result into an internal C data area that is overwritten with each call!

Time specifications are based on the 24-hour clock.

Example The following program converts an input value to local time and outputs the result in the
form of a date and time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{
 time_t sec;
 sec = time((time_t *)0);
 printf("%s",ctime(&sec));
 return 0;
}

See also asctime, gmtime, localtime, mktime, time

U4351-J-Z125-8-76 155

_ _DATE_ _

_ _DATE_ _ - Output date of compilation (macro)

Definition _ _DATE_ _

This macro generates the compilation date of a source file as a string in the form:

“dd Mmm yyyy\0”, where

dd is the day (without leading zero for days < 10)

Mmm is the name of the month (abbreviated as with asctime)

yyyy is the year

Note This macro need not be defined in an include file. Its name is recognized and replaced by
the compiler.

Example #include <stdio.h>

int main(int argc, char *argv[])

{
printf("Program %s was compiled on %s at %s hours\n", argv[0], __DATE__,
__TIME__);
return 0;
}

See also asctime, _ _TIME_ _

156 U4351-J-Z125-8-76

difftime, div

difftime - Calculate time difference

Definition #include <time.h>

double difftime(time_t time2, time_t time1);

difftime calculates the difference between time2 and time1. The time values must be of
type time_t. Such time values are supplied for instance by the mktime and time functions.

Return val. Time difference in seconds.

See also time, mktime, ftime, localtime, asctime, gmtime

div - Division with integers (int)

Definition #include <stdlib.h>

div_t div(int dividend, int divisor);

div calculates the quotient and the remainder of the division of dividend by divisor.
The sign of the quotient is the same as the sign of the algebraic quotient. The value of the
quotient is the highest integer less than or equal to the absolute value of the algebraic
quotient.

The remainder is expressed by the equation: Quotient * Divisor + Remainder = Dividend

Return val. Structure of type div_t
containing both the quotient quot and the remainder rem as integer values.

Example div_t d;

d = div(7, 3); /* d.quot = 2, d.rem = 1 */
d = div(-7, 3); /* d.quot = -2, d.rem = -1 */
d = div(7,-3); /* d.quot = -2, d.rem = 1 */
d = div(-7,-3); /* d.quot = 2, d.rem = -1 */

See also ldiv, lldiv

U4351-J-Z125-8-76 157

double2ieee

double2ieee
Convert floating-point number from /390 format to IEEE format

Definition #include <ieee_390.h>

extern double double2ieee (double num);

double2ieee converts an 8-byte floating-point number num in /390 format to IEEE format
and returns it as the result. Neither overflow nor underflow can occur, but up to three bit
positions can be lost.

Parameter double num
8-byte floating-point number in /390 format

Return val. 8-byte floating-point number in IEEE format (in the event of success)

The global variable float_exceptions_flag contains information for the event of unsuccessful
conversion and is defined as follows:

extern int float_exception_flags;
enum {

float_flag_inexact = 1,
float_flag_divbyzero = 2,
float_flag_underflow = 4,
float_flag_overflow = 8,
float_flag_invalid = 16

};

If bit positions are lost during conversion and the result is thus inaccurate, float_flag_inexact
is set.

See also ieee2double, float2ieee, ieee2float

158 U4351-J-Z125-8-76

ecvt

ecvt - Convert a floating-point number to a string

Definition #include <stdlib.h>

char *ecvt(double value, int n, int *dec_pt, int *sign);

ecvt converts a floating-point number value to a string of n digits and returns a pointer to
this string as its result.

The string begins with the first non-zero digit of the floating-point number, i.e. leading zeros
are not included.

The decimal point and a negative sign, if any, do not form a part of the string. However, ecvt
returns the position of the decimal point and the sign in result parameters.

Parameter double value
Floating-point value that is to be edited for output.

int n
Number of digits in the result string (calculated from the first non-zero digit of the
floating-point number to be converted).

If n is less than the number of digits in value, the least significant digit is rounded.
If n is greater, zero padding is used for right justification.

int *dec_pt
Pointer to an integer specifying the position of the decimal point in the result string.

Positive number: position relative to the beginning of the result string.
Negative number or 0: the decimal point is to the left of the first digit.

int *sign
Pointer to an integer specifying the sign of the result string.

0: the sign is positive
Not equal to 0: the sign is negative

Return val. Pointer to the converted string.
ecvt terminates the string with the null byte (\0).

Notes An invalid parameter, such as an integer value instead of a double value, causes the
program to abort!

Note that the arguments dec_pt and sign must be pointers!

ecvt writes its result into an internal C data area that is overwritten with each call! The fcvt
function also uses the same data area.

U4351-J-Z125-8-76 159

ecvt

Example The following program reads a floating-point value x, converts it as specified in n, and
outputs it as a string. In addition, the calculated sign and the position of the decimal point
dec_pt are output.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 double x;
 int n, dec_pt, sign;
 char *s;
 printf("Please enter floating-point number: \n");
 if (scanf("%lf", &x) == 1)
 {
 printf("How many significant digits?: \n");
 if (scanf("%d", &n) == 1)
 {

 s = ecvt(x, n, &dec_pt, &sign);
 printf("The string is: %s\n", s);

 printf("The sign is %s \n",
 (sign == 0 ? "positive" : "negative"));

 printf("The position of the decimal point is %d \n", dec_pt);
 }
 }
 return 0;
}

See also fcvt, gcvt

160 U4351-J-Z125-8-76

_edt

_edt - EDT call

Definition #include <stdlib.h>

void _edt(void);

_edt calls the BS2000 file editor EDT. Subsequently, when the file editor is terminated
normally, the program continues at the next C statement that follows the _edt function call.

Note Programs that call the _edt function require modules from the EDTLIB module library
(under the $TSOS ID by default) during execution. A RESOLVE statement for this library
must be issued when the modules are linked.

Example #include<stdio.h>
#include <stdlib.h>

int main(void)
{
 _edt();
 printf("Return to the C program\n");
 return 0;
}

U4351-J-Z125-8-76 161

erf, erfc

erf - Error function (mathematical)

Definition #include <math.h>

double erf(double x);

erf calculates the error function for a floating-point number x as defined below:

Return val. erf(x)

See also erfc

erfc - Complement of error function (mathematical)

Definition #include <math.h>

double erfc(double x);

erfc calculates the complement of the error function for a floating-point number x and
returns the value 1.0 - erf(x).

Return val. 1.0 - erf(x)

Note The erfc function is provided because calculations of the error function with erf produce
extremely inaccurate results for large values of x.

See also erf

2

Π
-------- e t2–

0

x

∫ dt

162 U4351-J-Z125-8-76

exit, _exit

exit, _exit - Program termination

Definition #include <stdlib.h>

void exit(int status);

void _exit(int status);

exit terminates the program.

First, the termination routines registered with the atexit function are called in the
reverse order of their registration. If a routine has been registered more than once
it is also called more than once.
All files opened by the program are then closed and the following messages are
output to stderr:

– “CCM0998 used CPU-time t seconds”, if CPU-TIME=YES is set in the
RUNTIME option

– “CCM0999 exit status”, if status ≠ EXIT_SUCCESS (value 0)

– "CCM0999 exit FAILURE", if status = EXIT_FAILURE (value 9990888).

_exit also terminates the program.

However, in contrast to exit, the termination routines registered with atexit are
not called and open files are not closed. Only the message
"CCM0999 exit status" is output (if status ≠ EXIT_SUCCESS).

Depending on the value of the status parameter, the status indicator of the monitoring job
variable (1st to 3rd byte) is set to the value "$T " or "$A ".

Parameter int status
This parameter may contain the following values:

– the symbolic constants EXIT_SUCCESS and EXIT_FAILURE defined in the include
file <stdlib.h>, or

– any integer value.

EXIT_SUCCESS (value 0)
causes a program to terminate normally. The status indicator of the MONJV is set to the
value "$T ".

U4351-J-Z125-8-76 163

exit, _exit

EXIT_FAILURE (value 9990888)
results in a so-called job step termination, i.e.

– the program is terminated

– in a DO or CALL procedure, the system branches to the next ABEND,
END-PROCEDURE, SET-JOB-STEP or LOGOFF command

– the system message "ABNORMAL PROGRAM TERMINATION" is issued.

The status indicator of the MONJV is set to the value "$A ".

Integer value
If this value is not equal to the predefined values EXIT_SUCCESS and EXIT_FAILURE
(≠ 0 or ≠9990888), a job step termination is performed, and the status indicator of the
MONJV is set to the value "$T ".

When this value corresponds to the predefined values EXIT_SUCCESS or
EXIT_FAILURE, the actions stated above are performed.

Notes In order to be able to set and query monitoring job variables, you must start the C program
with the following command:

/START-PROG program,MONJV=monjvname

The content of the job variable can then be queried, e.g. with the following command:

/SHOW-JV JV-NAME(monjvname)

Further information on job monitoring using monitoring job variables can be found in the
"Job Variables" manual.

See also abort, atexit, bs2exit, signal

164 U4351-J-Z125-8-76

exp

exp - Exponential function

Definition #include <math.h>

double exp(double x);

exp calculates the exponential function for permissible floating-point numbers x.

Return val. ex if successful.

HUGE_VAL if the result overflows. In addition, errno is set to ERANGE (result too
large).

Example The following program calculates ex for an input value x.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter a floating-point number:\n");
 if (scanf("%lf", &x) == 1)
 printf("exp(%g) = %g\n", x, exp(x));
 return 0;
}

See also log, log10, pow

U4351-J-Z125-8-76 165

fabs

fabs - Absolute value of a floating-point number

Definition #include <math.h>

double fabs(double x);

fabs calculates the absolute value of a floating-point number x.

Return val. Absolute value of the argument: |x|

Example The following program calculates the absolute value of a floating-point number entered:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter a floating-point number:\n");
 if (scanf("%lf", &x) == 1)
 printf("•%g• = %g\n", x, fabs(x));
 return 0;
}

See also abs, cabs, ceil, floor, labs, llabs

166 U4351-J-Z125-8-76

fclose

fclose - Close a file and flush buffer

Definition #include <stdio.h>

int fclose(FILE *fp);

fclose closes the file to whose FILE structure the file pointer fp points and releases fp.
Memory space that was dynamically allocated for this FILE structure (with fopen or
fopen64) is also freed. fclose calls the fflush function before the file is closed.

Return val. 0 The file has been closed.

EOF fclose was not successful, because

– fp is not assigned to a file (file already closed) or
– an error occurred when flushing the buffer.

Notes If the file pointer fp does not point to a FILE structure, the program aborts!

Whenever a program is terminated normally or by means of exit, an fclose is automati-
cally executed for each open file. Therefore, you need not call fclose explicitly unless you
want to close a file prior to program termination, e.g. to ensure that the limit for open files
(=2048) is not exceeded.

Record I/O Since data is not buffered in the case of record I/O, there is no internal call to the fflush
function.

Example The following program fragment closes the file pointed to by file pointer fp when the end of
the file is reached.

FILE *fp;

if(feof(fp))
 fclose(fp);

See also fflush, close, fdopen, fopen, fopen64, exit

U4351-J-Z125-8-76 167

fcvt

fcvt - Convert a floating-point number to a string

Definition #include <stdlib.h>

char *fcvt(double value, int n, int *dec_pt, int *sign);

fcvt converts a floating-point value to a string of digits and returns a pointer to this string
as the result. The output format corresponds to the FORTRAN F format.

The string begins with the first non-zero digit of the floating-point number to be converted
and includes n decimal places.

The decimal point and a negative sign, if any, do not form a part of the string. However, fcvt
returns the position of the decimal point and the sign in result parameters.

Parameter double value
Floating-point value that is to be edited for output.

int n
Number of digits after the decimal point.

If n is less than the number of digits after the decimal point in value, the least significant
digit is rounded (as in the FORTRAN F format).
If n is greater, zero padding is used for right justification.

int *dec_pt
Pointer to an integer that specifies the position of the decimal point in the result string.

Positive number: position relative to the beginning of the result string.
Negative number or 0: the decimal point is to the left of the first digit.

int *sign
Pointer to an integer that specifies the sign of the result string.

0: the sign is positive
Not equal to 0: the sign is negative

Return val. Pointer to the converted string. fcvt terminates the string with the null byte (\0).

Notes Invalid parameters, e.g. an integer value instead of a double value, cause the program
to abort!

Note that the arguments dec_pt and sign must be pointers!

fcvt writes its result into an internal C data area that is overwritten with each call! The ecvt
function also uses the same data area.

168 U4351-J-Z125-8-76

fcvt

Example The following program reads a floating-point value x, converts it as specified in n according
to the FORTRAN F format, and outputs it as a string. In addition, the calculated sign and the
position of the decimal point dec_pt are output.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 double x;
 int n, dec_pt, sign;
 printf("Please enter floating-point number: \n");
 if (scanf("%lf", &x) == 1)
 {
 printf("How many significant digits?: \n");
 if (scanf("%d", &n) == 1)
 {
 printf("The converted number is : %s \n",
 fcvt(x, n, &dec_pt, &sign));
 printf("The sign is %s \n",
 (sign == 0 ? "positive" : "negative"));
 printf("The position of the decimal point is: %d \n", dec_pt);
 }
 }
 return 0;
}

See also ecvt, gcvt

U4351-J-Z125-8-76 169

fdelrec

fdelrec - Delete record in ISAM file (record I/O)

Definition #include <stdio.h>

int fdelrec(FILE *fp, void *key);

fdelrec deletes the record with the key value key from an ISAM file with record I/O.

Parameter FILE *fp
File pointer of an ISAM file which was opened in the mode “type=record,forg=key” (cf.
fopen/fopen64, freopen/freopen64).

void *key
Pointer to an area which contains the key value of the record to be deleted in its
complete length or NULL.
If key is equal to NULL, the last record read is deleted. The record must have been read
immediately prior to the fdelrec call.

Return val. 0 If the record with the specified key was deleted.

> 0 If the record to be deleted does not exist.

EOF If an error has occurred.

Notes If the call was error-free (return values 0 or > 0) the EOF flag of the file is reset.

If the specified key value is not present in the file (return value > 0) the current position of
the read/write pointer remains unchanged. Sole exception: if, at the time of the fdelrec
call, the file is positioned on the second or higher key of a group of records with identical
keys, then fdelrec positions the file on the first record after this group.

In ISAM files with key duplication fdelrec deletes the first record with the specified key.
The file is then positioned on the next record (with the same key or the next higher key).

See also flocate, fopen, fopen64, freopen, freopen64

170 U4351-J-Z125-8-76

fdopen

fdopen - Assign a file pointer to a file descriptor

Definition #include <stdio.h>

FILE *fdopen(int fd, const char *mode);

fdopen assigns a file pointer to a file (with file descriptor fd) that has already been opened
with open/open64 or creat/creat64.
Following an fdopen call, the file may also be processed with functions from the standard
I/O library (fread, fputc, fprintf etc.).

Parameter int fd
File descriptor that was assigned by a creat/creat64 or open/open64 call.

const char *mode
String which specifies the access mode (see description under fopen/fopen64). This
parameter is not evaluated, i.e. the file retains the original access mode that was
specified for open/open64 or creat/creat64. In other words, the access mode cannot
be changed with fdopen.

Return val. File pointer to the assigned FILE structure
if successful.

Note If errors occur, e.g. due to an invalid file descriptor, fdopen returns neither a defined result
nor an error message. The program does not abort either!

U4351-J-Z125-8-76 171

fdopen

Example The following program opens the file fname for elementary as well as standard input/output
operations.

#include <stdio.h>
#include <stdlib.h>

FILE *fp;
int fd;
char buf[10];
int c;

int main(void)
{
 int n;

 /* deal with the file descriptor first */
 if((fd = open("fname",2)) < 0)
 {
 perror("open");
 exit(1);
 }

 if((n = read(fd,buf,10)) > 0)
 write(1,buf,n);

 /* link file pointer with file descriptor */
 fp = fdopen(fd,"w");
 while((c = getchar()) != EOF)
 putc(c,fp);
 fclose(fp);
 return 0;
 }

See also creat, creat64, fclose, fseek, fseek64, fopen, fopen64, freopen, freopen64, open, open64

172 U4351-J-Z125-8-76

feof

feof - Test for end of file

Definition #include <stdio.h>

int feof(FILE *fp);

feof detects the end of the file pointed to by file pointer fp.

Return val. ≠ 0 End of file has been reached.

0 Otherwise.

Notes feof is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

feof is normally used following access functions that do not report end of file (fread).

If the file has been repositioned (e.g. with fseek/fseek64, fsetpos/fsetpos64, rewind)
after EOF has been reached, or if the clearerr function has been called, feof returns a
value of 0.

Record I/O feof can also be used unchanged on files with record I/O.

See also clearerr, ferror, fopen, fopen64, fseek, fseek64, fsetpos, fsetpos64

U4351-J-Z125-8-76 173

ferror

ferror - Test for file error

Definition #include <stdio.h>

int ferror(FILE *fp);

ferror checks whether the error flag is set in the FILE structure to which fp points.

Return val. ≠ 0 An error flag is set.

0 No error flag is set.

Notes ferror is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

The error flag remains set until the associated file pointer is released (e.g. by fclose or
program termination) or until the clearerr function is called.

You should always use ferror when you want to read from a file or write to it.

Record I/O ferror can also be used unchanged on files with record I/O.

Example The following program fragment checks before each fread call whether an error has been
indicated for the FILE structure pointed to by fp.

FILE *fp;
char buf[10];
char x[5];

while(!ferror(fp))
 fread(buf,sizeof(x),10,fp);

See also clearerr, feof, fopen, fopen64

174 U4351-J-Z125-8-76

fflush

fflush - Flush file buffers

Definition #include <stdio.h>

int fflush(FILE *fp);

fflush clears the buffer for the file pointed to by file pointer fp and writes the data that was
temporarily stored in the buffer to this file. If fp is a NULL pointer, fflush performs these
activities for all open files.

Return val. 0 fflush has flushed the buffer, or no buffer needs to be flushed because:
– the buffer does not yet exist (a write function has not yet been executed

for the file) or
– the file is an input or INCORE file.

EOF fflush has not flushed the buffer because:
– the pointer fp is not assigned to a file (e.g. because the file is already

closed) or
– the buffered data could not be transferred.

Notes All standard I/O functions that write data to a file (printf, putc, fwrite etc.) store this data
temporarily in an internal C buffer and only write it to the file when one of the following
events occurs (See also section “Buffering” on page 53. Buffering does not take place in the
case of outputs to strings (sprintf) and to INCORE files.):

– a newline character (\n) is detected (only for text files)

– the maximum record length of a disk file is reached

– for data display terminals: output to the terminal is followed by input from the terminal

– the fseek/fseek64, fsetpos/fsetpos64, rewind or fflush functions are called

– the file is closed.

– In addition, for ANSI functionality only:
If reading from any text file makes data transfer necessary from the external file to the
internal C buffer, the data of all ISAM files still stored in buffers is automatically written
out to the files.

fflush causes a line change in a text file even if the data in the buffer does not end with a
newline character. Data that follows is written to a new line (or a new record).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fflush does
not cause a change of line (or change of record). Subsequent data lengthens the record in
the file. When an ISAM file is read, therefore, only those newline characters explicitly written
by the program are read in.

U4351-J-Z125-8-76 175

fflush

Internally, fflush is executed automatically when a file is closed (fclose, close) or when
a program ends normally or is terminated by means of exit.

fflush can be used to control the output of data during program execution, e.g. to concat-
enate various inputs into a single output and print them together at a user-defined point in
time (cf. example).

Record I/O A call to the fflush function is not rejected with an error, but it has no effect. No data is
buffered in the case of files with record I/O.

Example The following program reads alphabetically sorted names from stdin and outputs them to
a file. Names that begin with the same letter are to be written in the same record of the file,
separated from each other by a space. For “ANSI” functionality, the desired result is
achieved only if output is to a SAM file. When output is to ISAM files, all names are written
to one record, since fflush does not cause a change of record.

#include<stdio.h>

int main(void)
{
 FILE *fp;
 char name[20];
 char prevname;
 prevname = '%';
 fp = fopen ("link=link", "w");
 while (gets(name))
 {
 if(prevname != name[0])
 fflush(fp);
 else
 fputc(' ', fp);
 fputs(name, fp);
 prevname = name[0];
 };
 fclose(fp);
 return 0;
}

See also exit, close, fclose

176 U4351-J-Z125-8-76

fgetc

fgetc - Read a character from a file

Definition #include <stdio.h>

int fgetc(FILE *fp);

fgetc reads a character from the file indicated by file pointer fp from the current read/write
position.

Return val. integer If successful, the character as a positive integer value.

EOF for end of file or error.

Notes fgetc behaves like getc (as a function). If you use a comparison such as

while((c = fgetc(fp)) != EOF)

in your program, the variable c must always be declared as an integer. If you define c as a
char, the EOF condition is never satisfied for the following reason: -1 is converted to
char ‘0xFF’ (i.e. +255); EOF, however, is defined as -1.

If fgetc is reading from the standard input stdin, and EOF is the end criterion for reading,
you can satisfy the EOF condition by means of the following actions at the terminal:
pressing the K2 key and entering the system commands EOF and RESUME-PROGRAM.

Example The following program successively reads one character at a time from a maximum of 10
files passed in the call and outputs the character on the standard output.

#include <stdio.h>

FILE *fp[10], **app;

int main(int argc, char *argv[])
{
 int c, i;
 for (i = 1; i < argc && i <= 10; i++)
 fp[i-1] = fopen(argv[i], "r");
 app = fp;
 while(*app != NULL)
 {
 c = fgetc(*app++);
 putchar(c);
 }
 putchar('\n');
 return 0;
}

See also getc, getchar, ungetc, fopen, fopen64

U4351-J-Z125-8-76 177

fgetpos, fgetpos64

fgetpos, fgetpos64 -
Determine current position of the read/write pointer

Definition #include <stdio.h>

int fgetpos(FILE *fp, fpos_t *pos);
int fgetpos64 (FILE *fp, fpos64_t *pos);

fgetpos and fgetpos64 return the current position of the read/write pointer for the file
with the file pointer fp in the area to which pos points. The information stored in pos can be
used to position the file with the fsetpos or fsetpos64 function, insofar as *pos is passed
to it as an argument.

There is no functional difference between fgetpos and fgetpos64, except that
fgetpos64 uses the fpos64_t data type.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call fgetpos. fgetpos64
is then used implicitly with the appropriate parameters.

– Otherwise, you have to call fgetpos64.

Return val. 0 On successful execution of fgetpos or fgetpos64.

≠ 0 In the event of an error. In addition, errno is set to EBADF.

Notes fgetpos/fgetpos64 can be used on binary files (SAM in binary mode, PAM, INCORE) and
text files (SAM in text mode, ISAM).
fgetpos/fgetpos64 cannot be used on system files (SYSDTA, SYSLST, SYSOUT).

For ISAM files the function pair fgetpos/fsetpos or fgetpos64/fsetpos64 is consid-
erably more efficient than the comparable function pair ftell/fseek or ftell64/fseek64.

Record I/O fgetpos and fgetpos64 return the position after the last record to be read, written or
deleted or the position reached by an immediately preceding positioning operation.

For ISAM files with key duplication, fgetpos and fgetpos64 always return the position
after the last record of a group with identical keys if one of these records has previously
been read, written or deleted.

See also fsetpos, fsetpos64, fseek, fseek64, ftell, ftell64

178 U4351-J-Z125-8-76

fgets

fgets - Read in a string from a file

Definition #include <stdio.h>

char *fgets(char *s, int n, FILE *fp);

fgets reads at most n-1 characters from the file with file pointer fp, stopping at the next
newline (and including it) or at the end of the file. The read characters are entered by fgets
into the area to which s points.

Return val. Pointer to the result string
if successful. fgets terminates the string with the null byte (\0).

NULL pointer if fgets has read nothing, e.g. because end of file was reached immedi-
ately or an error occurred when reading.

Notes You must explicitly provide the area in which fgets is to store the string read!

In contrast to gets, fgets also enters a newline character (if read) into the result string.

Example See the example of fputs

See also gets, fopen, fopen64, puts, fputs

U4351-J-Z125-8-76 179

fgetwc

fgetwc - Read a wide character from input stream

Definition #include <wchar.h>
#include <stdio.h>

wint_t fgetwc(FILE *fp);

fgetwc reads the next character from the file with the file pointer fp, converts it to the
corresponding wide character code, and advances the associated file position indicator for
the file (if defined).

If an error occurs, the resulting value of the file position indicator is undefined.

If fgetwc is reading from the standard input stdin, and WEOF is the end criterion for
reading, you can satisfy the WEOF condition by means of the following actions at the
terminal: pressing the K2 key and entering the system commands EOF and RESUME-
PROGRAM.

Return val. Value of the read wide character as a wint_t value
if successful.

WEOF if end-of-file is reached. The end-of-file indicator for the file is set;
or
if a read error occurs. The error indicator for the file is set, and errno is set
to EBADF if fp is an invalid file pointer.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

The ferror or feof functions must be used to distinguish between an error condition and
an end-of-file condition.

See also feof, ferror, fgetc, fopen, fopen64

180 U4351-J-Z125-8-76

fgetws

fgetws - Read a wide character string from a file

Definition #include <wchar.h>
#include <stdio.h>

wchar_t * fgetws(wchar_t *ws, int n, FILE *fp);

fgetws reads characters from the file pointed to by fp, converts them to the
corresponding wide character codes, and places them in the wchar_t array pointed to by
ws, until n-1 characters are read, or a newline character is read, or an end-of-file condition
is encountered. The wide character string ws is then terminated with a null wide-character
code.

If an error occurs, the resulting value of the file position indicator for the file is
indeterminate

Return val. Pointer to the resulting wide character string ws
if successful.

NULL pointer if end-of-file is reached. The end-of-file indicator for the file is set;
or
if a read error occurs. The error indicator for the file is set, and errno is set
to EBADF if fp is an invalid file pointer.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also fgetwc, fopen, fopen64, fread

U4351-J-Z125-8-76 181

_ _FILE_ _

_ _FILE_ _ - Output a source file name

Definition _ _FILE_ _

This macro generates the file name of the source program as a string in the form:

"name\0"

Note This macro does not need to be defined in an include file. Its name is recognized and
replaced by the compiler.

182 U4351-J-Z125-8-76

float2ieee

float2ieee -
Convert floating-point number from /390 format to IEEE format

Definition #include <ieee_390.h>

extern float float2ieee (float num);

float2ieee converts a 4-byte floating-point number in /390 format to IEEE format and
returns it as the result. There is no loss of precision.

Parameter float num
4-byte floating-point number in /390 format

Return val. 4-byte floating-point number in IEEE format (in the event of success)

+/- Infinity, if the /390 floating-point number is greater than the largest IEEE
floating-point number that can be represented.

0.0, if the /390 floating-point number is smaller than the smallest IEEE floating-point
number that can be represented.

The global variable float_exceptions_flag contains information for the event of unsuccessful
conversion and is defined as follows:

extern int float_exception_flags;
enum {

float_flag_inexact = 1,
float_flag_divbyzero = 2,
float_flag_underflow = 4,
float_flag_overflow = 8,
float_flag_invalid = 16

};

If the /390 floating-point number is greater than the largest IEEE floating-point number that
can be represented, float_flag_overflow is set.

If the /390 floating-point number is smaller than the smallest IEEE floating-point number that
can be represented, float_flag_underflow is set.

See also ieee2float, double2ieee, ieee2double

U4351-J-Z125-8-76 183

flocate

flocate - Explicitly position an ISAM file (record I/O)

Definition #include <stdio.h>

int flocate(FILE *fp, void *key, size_t keylen, int option);

flocate explicitly positions an ISAM file with record I/O. flocate changes the current
position of the read/write pointer of the file with file pointer fp according to the following:
key value key,
key length keylen and
option option (_KEY_FIRST, _KEY_LAST, _KEY_EQ, _KEY_GE).

Parameter FILE *fp
File pointer of an ISAM file opened in the mode "type=record,forg=key" (cf.
fopen/open64, freopen/freopen64).

void *key
Pointer to an area containing the key value.

size_t keylen
Length of the key value. The value must not be zero.

If keylen is less than the key length of the file, then flocate internally pads out the key
value with binary zeros to the key length of the file and uses this generated key as the
basis for positioning.
If keylen is greater than the key length of the file, flocate internally truncates the key
value from the right to the key length of the file and uses this shortened key as the basis
for positioning.

int option
This parameter may contain the following values defined in <stdio.h>:

_KEY_FIRST Positions the read/write pointer to beginning of file.
The key and keylen parameters are ignored.
Positioning works even if the file is empty.

_KEY_LAST Positions the read/write pointer to end of file.
The key and keylen parameters are ignored.
Positioning works even if the file is empty.

_KEY_EQ Positions the read/write pointer on the first record with the specified key
key.

_KEY_GE Positions the read/write pointer on the first record with a key value
greater than or equal to the specified key key.

184 U4351-J-Z125-8-76

flocate

Return val. 0 If the record with the specified key exists.

> 0 If the record does not exist.

EOF If an error has occurred.

Notes If the call was error-free (return values 0 or > 0), the EOF flag of the file is reset.

If the specified key value is not present in the file (return value > 0) the current position of
the read/write pointer remains unchanged. Sole exception: if at the time of the flocate call
the file is positioned on the second or higher key of a group of records with identical keys,
then flocate positions the file on the first record after this group.

In ISAM files with key duplication, flocate cannot be used to position on the second or
higher record of a group with identical keys. This can only be done by sequential reading or
deleting.
With flocate it is only possible to position on the first record or after the last record of such
a group.

See also fdelrec, fgetpos, fgetpos64, fsetpos, fsetpos64, fopen, open64, freopen, freopen64

U4351-J-Z125-8-76 185

floor

floor - Round down

Definition #include <math.h>

double floor(double x);

floor rounds down the floating-point number x to an integer.

Return val. Highest integer of the type double which is greater than or equal to x
if successful.

HUGE_VAL in the event of an overflow, errno is also set to ERANGE (result too high).

Example #include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter the floating-point number to be rounded\n");
 if (scanf("%lf", &x) == 1)
 printf("The number %g is rounded down to %f\n", x, floor(x));
 return 0;
}

See also ceil

186 U4351-J-Z125-8-76

fmod

fmod - Remainder of a division

Definition #include <math.h>

double fmod(double x, double y);

fmod calculates the remainder of the division x/y.

The remainder has the same sign as the dividend x and its absolute value is always less
than the divisor y.

Return val. Remainder of the division x/y as a floating-point number of type double
if successful.

0 if y = 0.

U4351-J-Z125-8-76 187

fopen, fopen64

fopen, fopen64 - Open a file

Definition #include <stdio.h>

FILE *fopen(const char *f_name, const char *mode);
FILE *fopen64(const char *f_name, const char *mode);

fopen and fopen64 open the file f_name and assign it a FILE structure and a file pointer.
The file pointer points to the FILE structure assigned.
The FILE structure is defined in the file <stdio.h>. It contains the required data for most of
the functions in the standard I/O library.

There is no functional difference between fopen and fopen64, except that a large file
identifier is stored in the file description that is linked to the file descriptor, i.e. the
O_LARGEFILE bit is set. A file descriptor is returned that can be used to extend the file over
2 GB.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call fopen. fopen64 is then
used implicitly with the appropriate parameters.

– Otherwise, you have to call fopen64.

Parameter const char *f_name
String specifying the file to be opened. f_name can be:

– any valid BS2000 file name.

– "link=linkname"
linkname denotes a BS2000 link name.

– "(SYSDTA)", "(SYSOUT)", "(SYSLST)"
the corresponding system file.

– "(SYSTERM)"
terminal I/O.

– "(INCORE)"
temporary binary file that is created in virtual memory only.

const char *mode
String specifying the desired access mode and optionally with an additional specifi-
cation (tabexp=yes/no) to control how the tab character (\t) is handled.

188 U4351-J-Z125-8-76

fopen, fopen64

Access modes:

"r" Open text file for reading. The file must already exist.

"w" Open text file for writing. If the file exists, the old contents are deleted. If the
file does not exist, it is created.

"a" Open text file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new data
is appended to the end of the file. If the file does not exist, it is created.

"rb" Open binary file for reading. The file must already exist.

"wb" Open binary file for writing. If the file exists, the old contents are deleted. If
the file does not exist, it is created.

"ab" Open binary file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new data
is appended to the end of the file. If the file does not exist, it is created.

"r+w", "r+" Open text file for reading and writing. The file must already exist. The old
contents are preserved.

"w+r", "w+" Open text file for writing and reading. If the file exists, the old contents are
deleted. If the file does not exist, it is created.

"a+r", "a+" Open text file for appending to the end of the file and for reading. If the file
exists, the old contents are preserved and the new data is appended to the
end of the file. An existing file is positioned differently depending on whether
KR or ANSI functionality is being used:
with KR functionality (applies to C/C++ versions prior to V3.0 only) to the end
of the file,
with ANSI functionality to the start of the file.
If the file does not exist, it is created.

"r+b", "rb+" Open binary file for reading and writing. The file must already exist. The old
contents are preserved.

"w+b", "wb+" Open binary file for writing and reading. If the file exists, the old contents are
deleted. If the file does not exist, it is created.

"a+b", "ab+" Open binary file for appending to the end of the file and for reading. If the file
exists, the old contents are preserved and the new data is appended to the
end of the file. An existing file is positioned differently depending on whether
KR or ANSI functionality is being used:
with KR functionality (applies to C/C++ versions prior to V3.0 only) to the end
of the file,
with ANSI functionality to the start of the file.
If the file does not exist, it is created.

U4351-J-Z125-8-76 189

fopen, fopen64

Tab character (\t)

In the mode parameter an optional entry controlling how the tab character (\t) is to be
handled can be specified in addition to the access mode. This is relevant only for text
files with the SAM and ISAM access methods.

"...,tabexp=yes"

The tab character is expanded into the appropriate number of blanks.
This is the default setting with KR functionality (applies to C/C++ versions prior to
V3.0 only).

"...,tabexp=no"

The tab character is not expanded.
This is the default setting for ANSI functionality.

Return val. Pointer to the assigned FILE structure
if successful.

NULL pointer if the file could not be opened, e.g. due to the absence of access
permission, entry of an incorrect file name or link name etc.

Notes The BS2000 file name or link name may be written in lowercase and uppercase letters. It is
automatically converted to uppercase letters.

The inclusion of a "b" as the second or third character in the mode parameter causes the file
to be opened as a binary file. This is relevant only for SAM files since only SAM files can be
processed in both binary and text modes.
System files and ISAM files are always processed as text files. Specifying binary mode for
these files leads to an error on opening.
(INCORE) and PAM files are always processed as binary files. For compatibility reasons
files can be opened as binary files without explicit specification of the binary mode.

When a non-existent file is created it is assigned the following file attributes by default:

If a link name is used the following file attributes can be changed with the ADD-FILE-LINK
command: access method, record length, record format, block length and block format. See
also section “Cataloged disk files (SAM, ISAM, PAM)” on page 63.

Binary file Text file

Access method

Record format

SAM

F

SAM (KR functionality, applies to C/C++ versions prior
to V3.0 only)

ISAM (ANSI functionality)

V

190 U4351-J-Z125-8-76

fopen, fopen64

Whenever the old contents of an already existing file are deleted (opened for writing or for
writing and reading) the catalog attributes of this file are preserved.

When a file is opened for an update, reading and writing can be performed via the same file
pointer. All the same, an output should not be immediately followed by an input without a
preceding positioning operation (with fseek/fseek64, fsetpos/fsetpos64, rewind) or a
fflush call. This also applies to an output that follows an input.

Position of the read/write pointer in append mode:
If you explicitly position the read/write pointer away from the end of a file that was opened
in append mode (rewind, fsetpos/fsetpos64, fseek/fseek64), the way it is handled
depends on whether you are using KR or ANSI functionality.
KR functionality (applies to C/C++ versions prior to V3.0 only): The current read/write
pointer is ignored only when writing with the elementary function write and automatically
positioned to the end of the file.
ANSI functionality: The current read/write pointer is ignored for all write functions and
automatically positioned to the end of the file.

An attempt to open a non-existent file for reading ends with an error.

(INCORE) files can only be opened for writing ("w"), for writing and reading ("w+r") or for
reading ("r"). Data must first be written. To be able to read in the written data, the following
options are among those available:
If the file was opened only for writing, it can be opened for reading with the function freopen
or freopen64. If it was opened for writing and reading, the read/write pointer can be set to
the beginning of the file with rewind.

You may open a file for different access modes simultaneously, provided these modes are
compatible with one another within the BS2000 data management system.

When a program begins, three file pointers - for standard input, standard output, and
standard error output - are assigned to it automatically. The pointers are named as follows:

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
<stdio.h>.

stdin file pointer for standard input (terminal)

stdout file pointer for standard output (terminal)

stderr file pointer for standard error output (terminal)

U4351-J-Z125-8-76 191

fopen, fopen64

Record I/O For opening files with record I/O the mode parameter has two additional options. These
follow the access mode in the string (see above), each separated by a comma.

"...,type=record [,forg={seq/key}]"

If forg is omitted, the file organization depends on the FCB type (FCBTYP) of the file:
The FCB type is defined by the catalog entry of an existing file or by a ADD-FILE-LINK
command. Sequential organization is assumed for SAM and PAM files, and indexed-
sequential organization for ISAM files.

If forg is omitted and the FCB type is not defined (file does not exist, no ADD-FILE-LINK
command), sequential file organization is assumed and a SAM file is created.

The following restrictions apply to record I/O. If these restrictions are ignored the file is not
opened and an error return value is supplied:

a) The file must be opened in binary mode ("b" specified in the access mode).

b) "type=record" is permissible for SAM, PAM and ISAM files.

c) "forg=seq" is permissible for SAM and PAM files, "forg=key" for ISAM files.

d) The append mode (’a’) is not allowed with ISAM files. The position is determined by the
key.

type=record The file is opened for record I/O.
If this option is omitted the file is opened for stream I/O.

forg=seq The file is organized sequentially.
Sequential files may be SAM or PAM files.

forg=key The file is organized indexed-sequentially.
Indexed-sequential files are ISAM files.

192 U4351-J-Z125-8-76

fopen, fopen64

Example /* program for copying from
 file1 and file2 to file3 */

#include <stdio.h>
#include <stdlib.h>

FILE *fp_1, *fp_2;
void copy(void);

int main(void) /* file1 and file2 must exist */
{
 if((fp_1 = fopen("file1","r")) == NULL ||•• (fp_2 = fopen("file3","w"))
 ==NULL)

 {
 /* program aborts, with return value 1 */
 perror("fopen");
 exit(1);
 }

 copy();
 /* reassign file pointer from file1 to file2 */

 if((freopen("file2","r",fp_1)) == NULL)

 /* program aborts, with return value 2 */
 exit(2);

 copy();
 fclose(fp_1);
 fclose(fp_2);
 return 0;
}

void copy(void)
{
 int c;
 while((c = getc(fp_1)) != EOF)
 putc((char)c,fp_2);
}

See also creat, creat64, fdopen, freopen, freopen64, ferror, open, open64, fclose, fseek, fseek64

U4351-J-Z125-8-76 193

fprintf

fprintf - Formatted output to a file

Definition #include <stdio.h>

int fprintf(FILE *fp, const char *format, argumentlist);

fprintf edits data (characters, strings, numeric values) according to the specifications in
the format string and writes this data to the file with file pointer fp.

fprintf works like printf, except that the edited data is written to a file and not to the
standard output.

Parameter FILE *fp
File pointer to the output file.

const char *format
Format string as described under printf with KR or ANSI functionality (see printf).

argumentlist
Variables or constants whose values are to be converted and formatted for output
according to the information in the format statements.
If the number of format statements does not match the number of arguments the
following applies:
If there are more arguments, the surplus arguments are ignored.
If there are fewer arguments, the results are undefined.

Return val. number of characters output
if successful.

Negative value if an error occurs.

Notes fprintf rounds to the specified precision when converting floating-point numbers.

fprintf does not convert one data type to another. A value must be explicitly converted
(e.g. with the cast operator) if it is not to be output to conformity with its type.

The characters are not written immediately to the external file but are stored in an internal
C buffer (see section “Buffering” on page 53).

Maximum number of characters to be output

With KR functionality (applies to C/C++ versions prior to V3.0 only) a maximum of 1400
characters can be output per fprintf call,
with ANSI functionality a maximum of 1400 characters per conversion element (e.g. %s).

Attempts to output non-initialized variables or to output variables in a manner inconsistent
with their data type can lead to undefined results.

194 U4351-J-Z125-8-76

fprintf

The behavior is undefined if the percent sign (%) in a format statement is followed by an
undefined formatting or conversion character.

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 char c, name[40];
 int i;
 char *string;
 double d;

 printf("Name of the output file: \n");
 gets(name);
 if((fp = fopen(name,"w")) == NULL)
 {
 printf("Can't open %s\n", name);
 exit(1);
 }
 c = 'A';
 i = 999;
 string = "This is a string.";
 d = 123.456;
 fprintf(fp, "%c %d %s %f\n", c, i, string, d);
 fclose(fp);
 puts("Correct output to file:A 999 This is a string. 123.456000");
 return 0;
}

See also printf, sprintf, putc, putchar, puts, scanf, fscanf

U4351-J-Z125-8-76 195

fputc

fputc - Write a character to a file

Definition #include <stdio.h>

int fputc(int c, FILE *fp);

fputc writes the character c to a file (with file pointer fp) at the current read/write position.

Return val. Written character c as a positive integer value
if successful.

EOF otherwise.

Notes The characters are not written immediately to the external file but are stored in an internal
C buffer (see section “Buffering” on page 53).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Example The following program reads characters from SYSDTA and outputs them to SYSOUT.

#include <stdio.h>
#include <stdlib.h>

void copy(void);
FILE *fp_in, *fp_out;
int main(void)
{
 fp_in = fopen("(SYSDTA)","r");
 fp_out = fopen ("(SYSOUT)","w");

 copy();
 fclose(fp_in);
 fclose(fp_out);
 return 0;
}
void copy(void)
{
 int c;
 while((c = fgetc(fp_in)) != EOF)
 fputc((char)c,fp_out);
}

See also fopen, fopen64, fputwc, putc, putchar

196 U4351-J-Z125-8-76

fputs

fputs - Write a string to a file

Definition #include <stdio.h>

int fputs(const char *s, FILE *fp);

fputs writes the string s to the file with file pointer fp. s must be terminated with a null
byte (\0).

Return val. 0 if successful.

EOF otherwise.

Notes In contrast to puts, fputs does not end its output with the addition of a newline character.

The terminating null byte of s is not output.

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Example The following program reads strings from file and then outputs them at the display terminal
(SYSOUT).

#include <stdio.h>

int main(void)
{
 FILE *fp_in, *fp_out;
 char s[BUFSIZ];
 int max = 120;

 fp_in = fopen("file","r");
 fp_out = fopen("(SYSOUT)","w");

 while(fgets(s, max, fp_in) != NULL)
 fputs(s, fp_out);
 return 0;
}

See also fopen, fopen64, puts, fgets

U4351-J-Z125-8-76 197

fputwc

fputwc - Write a wide character to a file

Definition #include <wchar.h>
#include <stdio.h>

wint_t fputwc(wchar_t wc, FILE *fp);

fputwc writes the wide character specified by wc to the output file pointed to by the file
pointer fp at the position indicated by the associated file position indicator for the file (if
defined), and advances the file position indicator appropriately.
If the file cannot support positioning requests or was opened in append mode, the character
is appended to the file.
If an error occurs during the write operation, the “insert” mode of the output file is indeter-
minate.

Return val. The written wide character wc as a wint_t value
if successful.

WEOF if an error occurs. The error indicator for the file is set. If fp is not a valid file
pointer, errno is set to EBADF.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

See also ferror, fopen, fopen64, setbuf

198 U4351-J-Z125-8-76

fputws

fputws - Write a wide character string to a file

Definition #include <wchar.h>
#include <stdio.h>

int fputws(const wchar_t *ws, FILE *fp);

fputws writes a character string corresponding to the (null-terminated) wide character
string pointed to by ws to the file pointed to by the file pointer fp. No character corresponding
to the terminating null wide-character code is written.

Return val. Non-negative number
upon successful completion.

-1 otherwise.

Notes fputws does not end the output with a newline character.

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

This version of the C runtime system only supports one-byte characters as wide character
codes.

See also fopen, fopen64, fputs, fputwc

U4351-J-Z125-8-76 199

fread

fread - Read blockwise from a file

Definition #include <stdio.h>

size_t fread(void *p, size_t elsize, size_t n, FILE *fp);

fread reads n elements, each requiring elsize bytes, from the file with file pointer fp and
stores the data elements read in the area to whose beginning p points. Following a
successful read, the read/write pointer is located after the last byte read.

Return val. Number of elements actually read, if successful.
This number may be less than n if an error occurs or end of file is reached.

Notes You must see to it that the area to which p points is sufficient for storing the data elements
read.

To ensure that elsize specifies the correct number of bytes for a data element, you should
use the sizeof function for the size of the data unit to which p points.

fread does not distinguish between end of file and error. Therefore, the feof and ferror
functions should be used before or after each fread call to check whether a correct read
access is possible.

fread reads beyond the newline (\n) character and is therefore specially suitable for
reading in binary files.

Record I/O fread reads a record (or block) from the current file position.

Number of characters to be read in: n is taken to be the total number of characters to be
read in, i.e.

n = element length * number of elements

If n is greater than the current record length, then only this record is read nevertheless.

If n is less than the current record length, only the first n characters of the record are
read. On the next read access the data of the next record is read.

fread supplies the same return value as for stream I/O, namely the number of elements
read in their entirety. For record I/O it is best to use only element length 1 since in this case
the return value corresponds to the length of the record read (without any record length
field).

200 U4351-J-Z125-8-76

fread

Example The following program transfers two personal data items to a file (fwrite) and then reads
in this data again (fread).

#include <stdio.h>

int main(void)
{
 FILE *fp;
 size_t result;
 static struct p
 {
 char name[20];
 int a;
 } person[2] =
 {
 Ï"ANNE", 30¸,
 Ã"JOHN", 60Õ,
 };

 fp = fopen("link=link", "w+r");

 result = fwrite(person, sizeof(struct p), 2, fp);
 printf("%d Personal data written\n", result);

 rewind(fp);
 result = fread(person, sizeof(struct p), 2, fp);
 printf("%d Personal data read\n", result);
 printf("Name1: %s, Age1: %d\n", person[0].name, person[0].a);
 printf("Name2: %s, Age2: %d\n", person[1].name, person[1].a);
 return 0;
}

See also fwrite, feof, ferror, read, fopen, fopen64, fgetc, fgets, fscanf

U4351-J-Z125-8-76 201

free

free - Free memory space

Definition #include <stdlib.h>

void free(void *p);

free releases the memory space pointed to by p. p must be the the result of a previous
malloc, calloc, or realloc call. Otherwise, the result is undefined!

free is part of a C-specific memory management package with its own free memory
management facility. Memory released with free is not returned to the operating system
but is taken by the free memory management facility (cf. garbcoll function).

Example The following program fragment deallocates memory space that was previously reserved
with malloc.

#include <stdlib.h>

char *buf;
buf = (char *)malloc(100);
 .
 .
free(buf);

See also malloc, calloc, realloc, garbcoll

202 U4351-J-Z125-8-76

freopen, freopen64

freopen, freopen64 - Reassign file pointer

Definition #include <stdio.h>

FILE *freopen(const char *f_name, const char *mode, FILE *fp);
FILE *freopen64(const char *f_name, const char *mode, FILE *fp);

freopen and freopen64 are used to reassign an already defined file pointer to a new file.
freopen and freopen64 close the file with file pointer fp, open the file f_name, and assign
to it the FILE structure with file pointer fp.

There is no functional difference between freopen and freopen64, except that a large file
identifier is stored in the file description that is linked to the file descriptor, i.e. the
O_LARGEFILE bit is set. A file descriptor is returned that can be used to extend the file over
2 GB.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call freopen. freopen64
is then used implicitly with the appropriate parameters.

– Otherwise, you have to call freopen64.

Parameter const char *f_name
String specifying the new file to be opened. f_name can be:

– any valid BS2000 file name

– "link=linkname".
linkname identifies a BS2000 link name

– "(SYSDTA)", "(SYSOUT)", "(SYSLST)"
the appropriate system file

– "(SYSTERM)"
terminal I/O

– "(INCORE)"
temporary binary file that is only created in virtual memory.

const char *mode String specifying the desired access mode and optionally with an
additional specification (tabexp=yes/no) to control how the tab character (\t) is handled.

U4351-J-Z125-8-76 203

freopen, freopen64

Access modes:

"r" Open text file for reading. The file must already exist.

"w" Open text file for writing. If the file exists, the old contents are deleted. If
the file does not exist, it is created.

"a" Open text file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new
data is appended to the end of the file. If the file does not exist, it is
created.

"rb" Open binary file for reading. The file must already exist.

"wb" Open binary file for writing. If the file exists, the old contents are deleted.
If the file does not exist, it is created.

"ab" Open binary file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new
data is appended to the end of the file. If the file does not exist, it is
created.

"r+w", "r+" Open text file for reading and writing. The file must already exist. The old
contents are preserved.

"w+r", "w+" Open text file for writing and reading. If the file exists, the old contents are
deleted. If the file does not exist, it is created.

"a+r", "a+" Open text file for appending to the end of the file and for reading. If the file
exists, the old contents are preserved and the new data is appended to
the end of the file. An existing file is positioned differently depending on
whether KR or ANSI functionality is being used:
with KR functionality (applies to C/C++ versions prior to V3.0 only) to the
end of the file,
with ANSI functionality to the start of the file.
If the file does not exist, it is created.

"r+b", "rb+" Open binary file for reading and writing. The file must already exist. The
old contents are preserved.

"w+b", "wb+" Open binary file for writing and reading. If the file exists, the old contents
are deleted. If the file does not exist, it is created.

"a+b", "ab+" Open binary file for appending to the end of the file and for reading. If the
file exists, the old contents are preserved and the new data is appended
to the end of the file. An existing file is positioned differently depending on
whether KR or ANSI functionality is being used: with KR functionality
(applies to C/C++ versions prior to V3.0 only) to the end of the file, with
ANSI functionality to the start of the file.
If the file does not exist, it is created.

204 U4351-J-Z125-8-76

freopen, freopen64

Tab character (\t)

In the mode parameter an optional entry controlling how the tab character (\t) is to be
handled can be specified in addition to the access mode. This is relevant only for text
files with the SAM and ISAM access methods.

"...,tabexp=yes"

The tab character is expanded into the appropriate number of blanks.
This is the default setting with KR functionality (applies to C/C++ versions prior to
V3.0 only).

"...,tabexp=no"

The tab character is not expanded.
This is the default setting with ANSI functionality.

FILE *fp
File pointer to be reassigned.

Return val. Pointer to the original file pointer fp
If successful.

NULL pointer if the file could not be opened, e.g. due to the absence of access
permission, entry of an incorrect file name or link name etc.

Notes The BS2000 file name or link name may be written in lowercase and uppercase letters. It is
automatically converted to uppercase letters.

The file to which the file pointer fp was originally assigned is closed even if the new file could
not be opened.

Specifying a "b" as the second or third character in the mode parameter causes the file to
be opened as a binary file. This is relevant only for SAM files since only SAM files can be
processed in both binary and text modes.
System files and ISAM files are always processed as text files. Specifying binary mode for
these files leads to an error on opening.
(INCORE) and PAM files are always processed as binary files. For compatibility reasons
files can be opened as binary files without explicitly specifying the binary mode.

U4351-J-Z125-8-76 205

freopen, freopen64

If a new file is created it is given the following attributes by default:

By using a link name the following file attributes can be changed with the ADD-FILE-LINK
command: access method, record length, record format, block length and block format.
See also section “System files (SYSDTA, SYSOUT, SYSLST)” on page 60.

Whenever the old contents of an already existing file are deleted (opened for writing or for
writing and reading) the catalog attributes of this file are preserved.

When a file is opened for an update, reading and writing can be performed via the same file
pointer. All the same, an output should not be immediately followed by an input without a
preceding positioning operation (with fseek/fseek64, fsetpos/fsetpos64,rewind) or a
fflush call. This also applies to an output that follows an input.

Position of the read/write pointer in append mode:
If you explicitly position the read/write pointer away from the end of a file that was opened
in append mode (rewind, fsetpos/fsetpos64, fseek/fseek64), the way it is handled
depends on whether you are using KR or ANSI functionality.
KR functionality (applies to C/C++ versions prior to V3.0 only): The current read/write
pointer is ignored only when writing with the elementary function write and automatically
positioned to the end of the file.
ANSI functionality: The current read/write pointer is ignored for all write functions and
automatically positioned to the end of the file.

An attempt to open a non-existent file for reading ends with an error.

(INCORE) files can only be opened for writing ("w"), for writing and reading ("w+r") or for
reading ("r"). Data must first be written. To be able to read in the written data, the following
options are among those available:
If the file was opened only for writing, it can be opened for reading with the function freopen
or freopen64. If it was opened for writing and reading, the read/write pointer can be set to
the beginning of the file with rewind.

You may open a file for different access modes simultaneously, provided these modes are
compatible with one another within the BS2000 data management system.

Binary file Text file

Access method

Record format

SAM

F

SAM (KR functionality, (applies to C/C++ versions
 prior to V3.0 only)

ISAM (ANSI functionality)

V

206 U4351-J-Z125-8-76

freopen, freopen64

When a program begins, three file pointers - for standard input, standard output, and
standard error output - are assigned to it automatically. The pointers are named as follows:

freopen and freopen64 are often used to change these standard assignments, i.e.
to reassign the pointers to other files. Using it in this way corresponds to the redirection
mechanism of the UNIX shell (PARAMETER-PROMPTING in the RUNTIME option) or
to the appropriate ASSIGN commands in BS2000 (see also example).

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
<stdio.h>.

Record I/O For opening files with record I/O, the mode parameter has two additional options. These
follow the access mode in the string (see above), each separated by a comma.

"...,type=record [,forg={seq/key}]"

If forg is omitted the file organization depends on the FCB type (FCBTYP) of the file:
The FCB type is defined by the catalog entry of an existing file or by a ADD-FILE-LINK
command. Sequential organization is assumed for SAM and PAM files, and indexed-
sequential organization for ISAM files.

If forg is omitted and the FCB type is not defined (file does not exist, no ADD-FILE-
LINK command), sequential file organization is assumed and a SAM file is created.

stdin file pointer for standard input (terminal)

stdout file pointer for standard output (terminal)

stderr file pointer for standard error output (terminal)

type=record The file is opened for record I/O.
If this option is omitted the file is opened for stream I/O.

forg=seq The file is organized sequentially.
Sequential files may be SAM or PAM files.

forg=key The file is organized indexed-sequentially.
Indexed-sequential files are ISAM files.

U4351-J-Z125-8-76 207

freopen, freopen64

The following restrictions apply to record I/O. If these restrictions are ignored the file is not
opened and an error return value is supplied:

a) The file must be opened in binary mode ("b" specified in the access mode).

b) "type=record" is permissible for SAM, PAM and ISAM files.

c) "forg=seq" is permissible for SAM and PAM files, "forg=key" for ISAM files.

d) With "forg=key" the append mode ’a’ is invalid. For ISAM files the position is determined
by the key in the record.

Example The following program fragment makes the file out the standard output file.

FILE *fp;

fp = freopen("out","w",stdout)

Following this assignment, fp and stdout are both file pointers for the file out.

See also fopen, fopen64, fdopen

208 U4351-J-Z125-8-76

frexp

frexp - Split floating-point number into mantissa and exponent

Definition #include <math.h>

double frexp(double value, int *e_p);

frexp splits a floating-point number value into the mantissa x and the exponent n on the
basis of the formula:

value = x * 2n

|x| is in the interval [0.5, 1.0[

n is an integer

The result from frexp is the mantissa x and an integer value for the exponent n. The
exponent is returned indirectly via a result parameter e_p.

frexp is the inverse function of ldexp.

Return val. Mantissa x a floating-point number of type double which satisfies the equation
value = x * 2n and lies in the interval [0.5, 1.0[.

0 if value is equal to 0 (the exponent is also equal to 0 in this case).

Note Note that the argument e_p must be a pointer!

Example Normalized representation of the number 5 to base 2:

#include <stdio.h>
#include <math.h>

int main(void)
{
 double z;
 int exp;

 z = frexp((double)5, &exp);
 printf("5 = %g * 2 ** %d\n", z, exp);
 return 0;
}

See also ldexp, modf

U4351-J-Z125-8-76 209

fscanf

fscanf - Formatted input from a file

Definition #include <stdio.h>

int fscanf(FILE *fp, const char *format, argumentlist);

fscanf reads data (input fields) from a file with file pointer fp, converts this data according
to the specifications in the format string format, and stores the results in the areas that you
specify with the result pointers in the argument list.

fscanf works like scanf, except that the input fields are read from a file rather than the
standard input (stdin).

Parameter FILE *fp
File pointer to the input file.

const char *format
Format string as described under scanf with KR or ANSI functionality (see relevant
section in scanf description)

argumentlist
Pointers to variables in which fscanf is to store the converted result.
No pointer arguments may be specified for %* statements (skip assignment) in format.
There must be one pointer argument each for all other % statements. The data type of
the pointer argument is determined by the type specification of the associated format
statement.

Return val. Number of input fields read and successfully converted.
This does not include input fields for which %* (skip assignment) was
specified.

EOF if an error occurred before the start of the conversions.

Note You will find detailed information, notes, and examples on formatted input under scanf.

See also scanf, sscanf

210 U4351-J-Z125-8-76

fseek, fseeko, fseek64, fseeko64

fseek, fseeko, fseek64, fseeko64 - Position read/write pointer

Definition #include <stdio.h>

int fseek(FILE *fp, long offset, int loc);
int fseeko(FILE *fp, off_t offset; int loc);
int fseek64(FILE *fp, long long offset, int loc);
int fseeko64(FILE *fp, off64_t offset, int loc);

fseek and fseek64 position the read/write pointer for the file with file pointer fp in accor-
dance with the specifications in offset and loc. It thus becomes possible for you to process
a file non-sequentially.

Text files (SAM in text mode, ISAM) can be positioned absolutely to the beginning or end of
the file as well as to any position previously marked with ftell/ftello or
ftell64/ftello64.

Binary files (SAM in binary mode, PAM, INCORE) can be positioned absolutely (see above)
or relatively, i.e. relative to beginning of file, end of file, or current position (by a desired
number of bytes).

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call fseeko. fseeko64 is
then used implicitly with the appropriate parameters. (Automatic conversion is not
supported for fseek.)

– Otherwise, you have to call fseek64 or fseeko64.

There is no functional difference between fseek and fseek64 or fseeko and fseeko64.
The functions differ only in terms of the offset type used.

Parameter FILE *fp
File pointer for the file whose read/write pointer is to be positioned.

long offset / off_t offset / long long offset / off64_t offset
Since the meaning, combination options, and effect of these parameters differ for text
and binary files, they are individually described in the following:

U4351-J-Z125-8-76 211

fseek, fseeko, fseek64, fseeko64

Text files (SAM in text mode, ISAM)

Possible parameter values:

Meaningful combinations and their effects:

Binary files (SAM in binary mode, PAM, INCORE)

Possible parameter values:

offset 0L or value determined by a previous ftell/ftello call.

offset
(64-bit interface)

0LL or value determined by a previous
ftell/ftello/ftell64/ftello64 call.

loc SEEK_SET (beginning of file)
SEEK_END (end of file)

offset loc Effect

ftell/ftello value or
ftell64/ftello64 value

SEEK_SET Position to the location determined by
ftell/ftello or ftell64/ftello64.

0L or 0LL SEEK_SET Position to the beginning of the file.

0L or 0LL SEEK_END Position to the end of the file.

offset Number of bytes by which the current read/write pointer is to be shifted. This
number may be

positive: position forwards toward the end of the file
negative: position backwards toward the beginning of the file
0L: absolute position to the beginning or end of the file.

loc For absolute positioning to the beginning or end of the file, the position to which
the read/write pointer is to be shifted.
For relative positioning, the position from which the read/write pointer is to be
shifted by offset bytes:

SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

212 U4351-J-Z125-8-76

fseek, fseeko, fseek64, fseeko64

Meaningful combinations and their effects:

Return val. 0 if successful.

-1 if an error occurred.
If you position past the end of a binary file opened only for reading, errno
is set to EMDS.

Notes The call fseek(fp,0L,SEEK_SET) or fseek64(fp,0LL,SEEK_SET) is equivalent to the
call rewind(fp).

If new records are written to a text file that was opened in the write or append mode and an
fseek/fseeko or fseek64/fseeko64 call is issued, any data that may still be in the buffer
is first written to the file and terminated with a newline character (\n).
Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fseek/fseeko
or fseek64/fseeko64 does not cause a change of line (or change of record), i.e. the data
is not automatically terminated with a newline character when writing from the buffer.
Subsequent data lengthens the record in the file. When an ISAM file is read, therefore, only
those newline characters explicitly written by the program are read in.

If you position past the end of binary file opened for writing, a “gap” appears between the
last physically stored data and the newly written data. Reading from this “gap” returns
binary zeros.
If you position past the end of binary file opened for reading only, an error occurs (EMDS).

It is not possible to position to system files (SYSDTA, SYSLST, SYSOUT).

A successful fseek/fseeko or fseek64/fseeko64 call deletes the EOF flag of the file and
cancels all the effects of the preceding ungetc calls for this file.

offset loc Effect

0L or for 64 bit: 0LL SEEK_SET Position to the beginning of the file.

0L or for 64 bit: 0LL SEEK_END Position to the end of the file.

positive number SEEK_SET
SEEK_CUR
SEEK_END

Forward positioning from beginning of file, from
current position, from end of file (beyond the end of
file).

negative number SEEK_CUR
SEEK_END

Backward positioning from current position, from end
of file.

ftell/ftello value or
ftell64/ftello64
value

SEEK_SET Position to the location marked by an ftell/ftello
or ftell64/ftello64 call.

U4351-J-Z125-8-76 213

fseek, fseeko, fseek64, fseeko64

Record I/O fseek/fseeko and fseek64/fseeko64 can be used only for positioning to the beginning
or end of the file.

fseek(fp,0L,SEEK_SET) and fseek64(fp,0LL,SEEK_SET) position on the first record
of the file.

fseeko(fp,0L,SEEK_SET) and fseeko64(fp,0LL,SEEK_SET) position on the first
record of the file.

fseek(fp,0L,SEEK_END) and fseek64(fp,0LL,SEEK_SET) position after the last
record of the file.

fseeko(fp,0L,SEEK_END) and fseeko64(fp,0LL,SEEK_SET) position after the last
record of the file.

If called with any other arguments, fseek/fseeko and fseek64/fseeko64 return EOF.

Example 1 The following program reads file from the eleventh character to the end of the file (only func-
tions for binary files).

#include <stdio.h>

int main(void)
{
 FILE *fp;
 int c;

 if((fp = fopen("file","rb")) != NULL)
 {
 /* skip the first 10 characters */
 fseek(fp,10L,SEEK_SET);
 while((c=getc(fp)) != EOF)
 putc((char)c,stdout);
 fclose(fp);
 }
 return 0;
}

214 U4351-J-Z125-8-76

fseek, fseeko, fseek64, fseeko64

Example 2 The following program processes a file in the update mode. Lowercase letters are written
back as uppercase letters; all other characters remain unchanged.

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 FILE *fp;
 int c;
 long n;
 fp = fopen("link=link","r+w");
 do
 {
 n = ftell(fp);
 c = getc(fp);
 if (islower(c) == 0) continue; /* If character is not in lowercase, */
 /* read next character */

 else
 { /* If character is in lowercase, */
 fseek(fp, n, SEEK_SET); /* position to this character and */
 fputc((toupper(c)), fp); /* write it back in uppercase. */
 }
 }
 while(c != EOF);
 fclose(fp);
 return 0;
}

See also ftell, ftello, ftell64, ftello64, fsetpos, fsetpos64, lseek, lseek64, rewind, tell

U4351-J-Z125-8-76 215

fsetpos, fsetpos64

fsetpos, fsetpos64 - Position read/write pointer

Definition #include <stdio.h>

int fsetpos(FILE *fp, const fpos_t *pos);
int fsetpos64(FILE *fp, const fpos64_t *pos);

fsetpos and fsetpos64 set the read/write pointer of the file with file pointer fp to a
position pos previously determined by fgetpos or fgetpos64.
After positioning, the next operation can be a read or a write function.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call freopen. freopen64
is then used implicitly with the appropriate parameters.

– Otherwise, you have to call freopen64.

There is no functional difference between fsetpos and fsetpos64, except that
fsetpos64 uses an fpos64_t type.

Return val. 0 On successful execution of fsetpos.

≠ 0 In the event of an error. In addition, errno is set to EBADF.

Notes fsetpos and fsetpos64 can be used on binary files (SAM in binary mode, PAM,
INCORE) and text files (SAM in text mode, ISAM).
fsetpos and fsetpos64 cannot be used on system files (SYSDTA, SYSLST, SYSOUT).

A successful fsetpos or fsetpos64 call deletes the EOF flag of the file and cancels all
the effects of preceding ungetc calls for this file.

If new records are written to a text file (opened for creation or in append mode) and a
fsetpos or fsetpos64 call is issued any residual data is first written from the buffer to the
file and terminated with a newline character (\n).
Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fsetpos or
fsetpos64 does not cause a change of line (or change of record), i.e. the data is not
automatically terminated with a newline character when writing from the buffer. Subsequent
data lengthens the record in the file. When an ISAM file is read, therefore, only those
newline characters explicitly written by the program are read in.

For ISAM files the function pair fgetpos/fsetpos or fgetpos64/fsetpos64 is consid-
erably more efficient than the comparable function pair ftell/fseek or
ftell64/fseek64.

216 U4351-J-Z125-8-76

fsetpos, fsetpos64

Record I/O In ISAM files with key duplication, fsetpos and fsetpos64 cannot be used to position on
the second or higher record of a group with identical keys. This can only be done by
sequential reading or deleting.
With fsetpos and fsetpos64 it is only possible to position on the first record or after the
last record of such a group.

See also fgetpos, fgetpos64, fseek, fseek64, ftell, ftell64

U4351-J-Z125-8-76 217

ftell, ftello, ftell64, ftello64

ftell, ftello, ftell64, ftello64 -
Determine current position of read/write pointer

Definition #include <stdio.h>

long ftell(FILE *fp);
off_t ftello(FILE *fp);
long long ftell64(FILE *fp);
off64_t ftello64(FILE *fp);

ftell/ftello and ftell64/ftello64 return the current position of the read/write pointer
for the file with file pointer fp.

ftell/ftello and ftell64/ftello64 can be used on binary files (SAM in binary mode,
PAM, INCORE) as well as text files (SAM in text mode, ISAM).

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call ftello. ftello64 is
then used implicitly with the appropriate parameters.

– Otherwise, you have to call ftell64 or ftello64.

There is no functional difference between ftell and ftell64 or ftello and ftello64.
The functions differ only in terms of the offset type used for the return value.

Return val. Position in the file if successful:
for binary files, the number of bytes that offsets the read/write pointer from
the beginning of the file,
for text files, the absolute position of the read/write pointer.

-1 if an error occurs. If the value for the file position does not lie within the value
range of the return type, errno is additionally set to ERANGE.

Notes The functions fseek/fseeko and fseek64/fseeko64 can be used to position on the
position returned by ftell/ftello and ftell64/ftello64.

ftell/ftello and ftell64/ftello64 cannot be used for system files (SYSDTA,
SYSLST, SYSOUT).

218 U4351-J-Z125-8-76

ftell, ftello, ftell64, ftello64

Example In the following program, each character in file is output with the position of the read/write
pointer, starting with the eleventh character (only functions with binary files).

#include <stdio.h>

int main(void)
{
 FILE *fp;
 int c;
 if((fp = fopen("file","rb")) != NULL)
 {
 /* the first 10 characters are skipped */
 fseek(fp,10L,SEEK_SET);
 while((c=getc(fp)) != EOF)
 printf("Position : %ld, character : %c\n",ftell(fp),c);
 fclose(fp);
 }
 return 0;
}

See also fseek, fseek64, fgetpos, fgetpos64, ftell, ftell64, tell

U4351-J-Z125-8-76 219

ftime

ftime - Current time

Definition #include <sys.types.h>

#include <timeb.h>

int ftime(struct timeb *p);

ftime returns the same time as time (current local time as the number of seconds that have
elapsed since January 1, 1950 00:00:00) in a structure and also the milliseconds of the
elapsed time.

For portability reasons additional options of ftime have been included in the structure.
However, they are not supported in the BS2000 environment.

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, ftime returns the number of seconds that have
elapsed since 1.1.1970 00:00:00.

Parameter struct timeb *p
Pointer to a structure that is defined in <timeb.h> as follows:

struct timeb
{
 time_t time;
 unsigned short millitm;
 short timezone; /* not supported */
 short dstflag; /* not supported */
};

Return val. Always 0.

Notes As always in such cases, you must explicitly provide the memory space for the result
structure!

The type time_t is defined in <sys.types.h>.

From the following structure components, only the time and millitim components are
provided with values in the BS2000 environment. The other components have been
included for portability reasons.

time : Time in seconds since January 1, 1950 00:00:00

millitim : Specification in milliseconds (0 to 999) for increasing the precision of time

timezone: Local time zone, measured in minutes west of Greenwich (not supported)

dstflag : Flag for daylight saving time (not supported)

220 U4351-J-Z125-8-76

ftime

Example #include <stdio.h>
#include <sys.types.h>
#include <timeb.h>

struct timeb tp;

int main(void)
{

 ftime(&tp);
 printf("%d\n",tp.time);
 return 0;
}

See also time, ctime

U4351-J-Z125-8-76 221

fwide

fwide - Define orientation of a file

Definition #include <stdio.h>
#include <wchar.h>

int fwide(FILE *fp, int mode);

fwide defines the orientation of the file pointed to by the file pointer fp, provided the file has
no orientation as yet. If the orientation has already been defined, e.g., by an earlier I/O
operation, fwide does not alter the orientation of the file.

Depending on the mode argument, fwide tries to set the orientation as follows:

mode > 0 The file is made wide oriented.

mode < 0 The file is made byte oriented.

mode = 0 The orientation of the file is not altered.

Return val. > 0 if fp is wide oriented after the call to fwide.

< 0 if fp is byte oriented after the call to fwide.

0 if fp has no orientation.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

222 U4351-J-Z125-8-76

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf -
Formatted output of wide characters

Definition #include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *fp, const wchar_t *format [, arglist]);

#include <stdarg.h>
#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

#include <wchar.h>

int wprintf(const wchar_t *format [, arglist]);
int swprintf(wchar_t *s, size_t n, const wchar_t *format [, arglist]);

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *fp, const wchar_t *format, va_list arg);
int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list arg);

These functions are used for formatted output.

fwprintf edits the arguments listed in arglist, under control of the wide string pointed to by
format, and writes output to the file pointed to by fp.
fwprintf returns when the end of format is reached.

vwprintf corresponds to the function fwprintf with fp = stdout, where the argument list
is replaced by an argument of type va_list, which must have been initialized with the
macro va_start (possibly followed by va_arg calls). The function does not call the va_end
macro.

wprintf correspond to the function fwprintf with fp = stdout.

swprintf writes formatted output to the wide character string s. swprintf is otherwise
equivalent to the fwprintf function. A maximum of n wide character codes are written,
including the terminating null byte, which is automatically appended when n > 0.

vfwprintf corresponds to the function fwprintf, where the argument list is replaced by
an argument of type va_list, which must have been initialized with the macro va_start
(possibly followed by va_arg calls). The function does not call the va_end macro.

vswprintf corresponds to the function swprintf, where the argument list is replaced by
an argument of type va_list, which must have been initialized with the macro va_start
(possibly followed by va_arg calls). The function does not call the va_end macro.

U4351-J-Z125-8-76 223

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

Parameter format is a wide character string which contains none, one or more conversion directives
and wide characters:

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.
The arguments associated with a conversion specification are converted accordingly
and written as formatted output to the output data stream.

– characters of type wchar_t (but not %), which are simply copied to the output stream
(1: 1).

– white-space characters (see section “White space” on page 55)

Conversion specifications

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

– Zero or more flags, which modify the meaning of the conversion specification.

– An optional integer (consisting of decimal digits) or an asterisk (*), which specifies a
minimum field width for the output of an argument. If the converted value has fewer
bytes than the field width, it will be padded to the field width with spaces on the left (or
padded on the right if the left-adjustment flag “-” was specified).

– An optional precision that specifies the minimum number of digits to appear for the d,
i, o, u, x and X conversions; the number of digits to appear after the decimal-point
character for the e, E and f conversions; the maximum number of significant digits for
the g and G conversions; or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period (.), followed by an
integer consisting of decimal digits or an asterisk (*).
If only the period is specified, the precision is set to 0.

– An optional h, l or L before a conversion specifier:
l before c: means that the c conversion specifier applies to a wint_t argument;
l before s: means that the s conversion specifier applies to a pointer to a wchar_t
argument (i.e. a pointer to a wide character string);
h before d, i, o, u, x, or X: means that the conversion specifier following h applies to a
short int or unsigned short int argument (the argument is promoted according to
the integral promotions, and its value is converted to short int or unsigned short
int before printing);
h before n: means that the following n conversion specifier applies to a pointer to a
short int argument;

224 U4351-J-Z125-8-76

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

l before d, i, o, u, x or X: means that the following conversion specifier applies to a
long int or unsigned long int argument;
l before n: means that the following n conversion specifier applies to a pointer to a long
int;
ll before d, i, o, u, x or X: means that the following conversion specifier applies to a
long long int or unsigned long long int argument;
ll before n: means that the following conversion specifier applies to an argument of
type pointer to long long int;
L before e, E, f, g or G: means that the following e, E, f, g or G conversion specifier
applies to a long double argument.

If an h , l or L appears with any other conversion specifier, the behavior is undefined.

– A conversion character of type wchar_t that indicates the type of conversion to be
applied, see the listing below.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted.
A negative field width is taken as a “-” flag followed by a positive field width. A negative
precision is taken as if the precision were omitted.

U4351-J-Z125-8-76 225

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

Format statements may be structured as follows:

1. Start of a conversion specification

2. Formatting characters

3. Field width

4. Precision

5. Characters which specify the actual conversion

Formatting characters

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).

 If the first wide character of a signed conversion is not a sign, or if a signed
conversion results in no wide characters, a space is prefixed to the result.
This means that if the space and + flags both appear, the space flag will be
ignored.

This flag specifies that the value is to be converted to an “alternate form”.
For o conversion, it increases the precision to force the first digit of the result
to be zero. For x (or X) conversions, a non-zero result will have the character
string "0x" (or "0X") prefixed to it. For e, E, f, g or G conversions, the result
always contains a decimal-point wide character, even if no digits follow it.
(Normally, a decimal-point wide character appears in the result of these
conversions only if a digit follows it.) For g and G conversions, trailing zeros
will not be removed from the result as they normally are.
For other conversions, the behavior is undefined.

 % [-][+][Ë][#][0] [] [.]

_________ __________________ _______ _______ _____________________________

 1. 2. 3. 4. 5.

n

*

m

*

[{h|l|ll}] {d|i|o|u|x|X}
[{h|l|ll}] n
[L] {e|E|f|g|G}
[l] {c|s|p}
{D|O|U|C|S}
%

226 U4351-J-Z125-8-76

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored.
For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag will
be ignored. For other conversions, the behavior is undefined.

Conversion characters

d, i The int argument is converted to a signed decimal number in the form
[-]dddd. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1.
The result of converting a zero value with an explicit precision of zero is no
wide character.

o, u The unsigned int argument is converted to an unsigned octal number (o)
or unsigned decimal number (u) in the form dddd. The precision specifies
the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it is expanded with leading zeros. The default
precision is 1.
The result of converting a zero value with a precision of zero is no
wide characters.

x, X The unsigned int argument is converted to a unsigned hexadecimal
number in the form dddd; in addition to the numbers, the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with an explicit precision of zero is no wide character.

f The double argument is converted to decimal notation in the form
[-]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification.
If the precision is missing, it is taken as 6; if the precision is explicitly 0 and
no # flag is present, no radix character appears.
If a radix character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

U4351-J-Z125-8-76 227

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

e, E The double argument is converted in the form [-]d.ddde+-dd, where there
is exactly one digit before the radix character (which is non-zero if the
argument is non-zero) and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is 0 and
no # flag is present, no radix character appears. The value is rounded to the
appropriate number of digits.
The E conversion character will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits.
If the value is 0, the exponent is 0.

g, G The double argument is converted in the style f or e (or in the form E in the
case of a G conversion character), with the precision specifying the number
of significant digits. If an precision is 0, it is taken as 1.
The form used depends on the value converted; form e (or E) is be used
only if the exponent resulting from such a conversion is less than -4 or
greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point wide character appears only
if it is followed by a digit.

c If an l character is present, the argument of type wint_t is converted to
type wchar_t and the resulting character is written.
If no l character is present, the argument of type int is converted to a wide
character as if by calling btowc and the resulting wide character is written.

s If no l character is present, the argument must be a pointer to an array of
char type. Characters from the array are converted as if by repeated calls
to the mbrtowc function, with the conversion state described by an object of
type mbstate_t, initialized to zero before the first multibyte character is
converted, and written up to (but not including) the terminating null wide
character.
If an l character is present, the argument should be a pointer to an array of
wchar_t type. Wide characters from the array are written up to (but not
including) a terminating null wide character.

If a precision m is specified, no more than m wide characters are written. If
the precision is not specified or is greater than the size of the converted
array, the converted array shall contain a null wide character (as end
criterion).

S Equivalent to ls.

C Equivalent to lc.

p The argument must be a pointer to void. The output is an 8-digit
hexadecimal number.

228 U4351-J-Z125-8-76

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf

n The argument must be a pointer to int into which is written the number of
bytes written to the output so far by this call to one of the fwprintf
functions. No argument is converted.

% The wide character % is output; no argument is converted. The complete
conversion specification must have the form %%.

If the character that follows % is not a valid conversion character, the result of the conversion
is undefined.

If any argument is a UNION or is a pointer to a UNION, the result of the conversion is
undefined.
The same applies when the argument is an array or a pointer to an array, except in the
following three cases:
the argument is an array of type char and uses %s,
the argument is an array of type wchar_t and uses %ls or
the argument is pointer and uses %p.

In no case does a non-existent or a too small field width cause truncation of a field;
if the result of a conversion is wider than the field width, the field is simply expanded to
accomodate the conversion result.

Return val. Number of wide characters printed
if successful.

Negative value if an error occurs.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also btowc, fprintf, mbrtowc, printf

U4351-J-Z125-8-76 229

fwscanf, swscanf, wscanf

fwscanf, swscanf, wscanf - Read formatted input

Definition #include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *fp, const wchar_t *format [, arglist]);

#include <wchar.h>

int swscanf(const wchar_t *s, const wchar_t *format [, arglist]);
int wscanf(const wchar_t *format [, arglist]);

These functions are used for formatted input.
Each of these functions reads input, interprets them according to the directives given in the
control string format, and stores the results in the areas specified by the arguments in arglist,
if any.

fwscanf reads formatted input from a file with the file pointer fp.

swscanf reads formatted input from the wide character string s. swscanf is otherwise
equivalent to the fwscanf function. The end of the wide character string is equivalent to
EOF.

wscanf reads formatted input from the standard input stdin. wscanf corresponds to the
fwscanf function with fp = stdin.

Parameter format is a character string, beginning and ending in its initial shift state, if defined. It is
composed of zero or more directives and may include the following three types of
characters:

– characters of type wchar_t (but no white-space character or %), which are simply
copied to the output stream (1: 1).

– white-space characters, starting with a backslash (\) (see iswspace).

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.

The wscanf functions read each input character, but do not initially convert it or store it in
a variable. If the input character does not match the character specified in format, input
processing is aborted, and the function returns. If the conversion is aborted due to an invalid
wide character, the character involved remains in the input stream unread.

230 U4351-J-Z125-8-76

fwscanf, swscanf, wscanf

White-space characters

The control string format may include zero or more characters producing white space.
These characters have no control function.

White-space characters in the input are treated as delimiters between input fields and are
not converted (see %c, %n and %[] for exceptions). Leading white space in the input is
ignored.

Conversion specifications

All forms of fwscanf allow for the insertion of a language-dependent radix character in the
input string. The radix character is defined in the program´s locale (category LC_NUMERIC).
In the POSIX locale, or in a locale where the radix character is not defined, the radix
character defaults to a period (.).

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

– An optional assignment-suppressing wide character asterisk (*).

– An optional non-zero decimal integer that specifies the maximum field width.

– An optional size modifier h,l (ell) or L indicating the size of the receiving object:
the conversion characters c, s and [preceded by l (ell): the corresponding argument
is a pointer to wchar_t.
h or l preceded by d, i and n : the corresponding argument is a pointer to short int
(h) or long int (l).
h or l (ell) preceded by o, u and x : the corresponding argument is a pointer to
unsigned short int (h) or unsigned long int (l).
ll before d, i and n : the corresponding argument is a pointer to long long int.
ll before o, u and x : the corresponding argument is a pointer to unsigned long long
int.
l (ell) or L preceded by e, f and g : the corresponding argument is a pointer to double
(l) or long double (L).

If an h,l (ell) or L appears with any other conversion character, the behavior is
undefined.

– A conversion character that specifies the type of conversion to be applied.

fwscanf executes each directive of the format in turn. If a directive fails, as detailed below,
the function returns. Failures are described as input failures (due to the unavailability of
input characters) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading input
up to the first wide character which is not a white-space character (which remains unread),
or until no more wide characters can be read (EOF).

U4351-J-Z125-8-76 231

fwscanf, swscanf, wscanf

A directive that is an ordinary wide character is executed as follows: the next wide character
is read from the input and compared with the wide character that comprises the directive; if
the comparison shows that they are not equivalent, the directive fails, and the differing and
subsequent bytes remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification is executed in
the following steps:

Input white-space characters are skipped, unless the conversion specification includes a [
or one of the conversion characters c or n.

An item is read from the input, unless the conversion specification includes an n conversion
character. An input item is defined as the longest sequence of input characters (up to any
specified maximum field width) that is an initial subsequence of a matching sequence. The
first wide character after the input item, if any, remains unread.
If the length of the input item is 0, the execution of the conversion specification fails; this
condition is a matching failure, unless an input error such as EOF, for example, or the occur-
rence of a read error prevents further input.

Except in the case of a % conversion character, the input item (or, in the case of a %n, the
number of input characters read) is converted to a data type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails. This condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the first argument following the format argument that has not
already received a conversion result. If this object does not have an appropriate type, or if
the result of the conversion cannot be represented in the space provided, the behavior is
undefined.

Conversion specifications can be given as shown below:

Conversion characters

d Matches an optionally signed decimal integer, whose format is the same as
expected for the wcstol function with the value 10 for base (base = 10). The
corresponding argument must be of type pointer to int.

 { % } []
m

*

[{h|l|ll}] {d|i|o|n|u|x|X}
[l] {c|s}
[l|L] {e|E|f|g|G}
{p}
[l] {[...]|[^...]}
%

232 U4351-J-Z125-8-76

fwscanf, swscanf, wscanf

i Matches an optionally signed decimal integer, whose format is the same as
expected for the wcstol function with the value 8 for base (base = 8). The
corresponding argument must be of type pointer to int.

o Matches an optionally signed octal integer, whose format is the same as
expected for wcstoul with the value 8 for base (base = 8). The corresponding
argument must be of type pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the wcstoul function with the value 10 for base (base = 10). The
corresponding argument must be of type pointer to unsigned integer.

x, X Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the wcstoul function with the value 16 for base
(base = 16). The corresponding argument must be of type pointer to
unsigned integer.

e, E, f, g, G These conversion characters match an optionally signed floating-point
number, whose format is the same as expected for wcstod. The corre-
sponding argument must be of type pointer to float.

s Matches a sequence of non-white-space wide characters.
If no l (ell) qualifier is specified, characters from the input field are conver-
ted as if by repeated calls to the wcrtomb function, with the conversion state
described by an mbstate_t object initialized to zero before the first wide
character is converted. The sequence is written up to the terminating null
character. The corresponding argument should be a pointer to a char array
that is large enough to accept the converted sequence and a terminating
null character, which will be added automatically.
If l is specified, the corresponding argument should be a pointer to the
initial element of a wchar_t array that is large enough to accept the
sequence and a terminating null wide character, which will be added
automatically

[Matches a non-empty sequence of wide characters from a set of expected
wide characters (the scanset).
If no l (ell) qualifier is specified, characters from the input field are
converted as if by repeated calls to the wcrtomb function, with the
conversion state described by an mbstate_t object initialized to zero
before the first wide character is converted. The sequence is written up to
the terminating null character. The corresponding argument should be a
pointer to a char array that is large enough to accept the converted
sequence and a terminating null character, which will be added automati-
cally.

U4351-J-Z125-8-76 233

fwscanf, swscanf, wscanf

If l is specified, the corresponding argument should be a pointer to the
initial element of a wchar_t array that is large enough to accept the
sequence and a terminating null wide character, which will be added
automatically.
The conversion specification includes all subsequent wide characters (i.e.
characters after the [) in the format string up to and including the matching
right square bracket (]). The wide characters between the square brackets
(the scanlist) comprise the scanset, unless the wide character after the left
square bracket is a circumflex (^), in which case the scanset contains all
wide characters that do not appear in the scanlist between the circumflex ^
and the right square bracket].
As a special case, if the conversion specification begins with [] or [^], the
right square bracket is included in the scanlist, and the next right square
bracket is the matching right square bracket that ends the conversion speci-
fication. If a - is in the scanlist and is not the first character, nor the second
where the first character is a [or [^, nor the last character, the behavior is
undefined.

c Matches a sequence of wide characters of the number specified by the field
width. if no field width is specified in the conversion specification, 1 wide
character is read.
If no l (ell) qualifier is specified, characters from the input field are
converted as if by repeated calls to the wcrtomb function, with the
conversion state described by an mbstate_t object initialized to zero
before the first wide character is converted. The corresponding argument
should be a pointer to a char array that is large enough to accept the
converted sequence. No null character will be added.
If l is specified, the corresponding argument should be a pointer to the
initial element of a wchar_t array that is large enough to accept the
sequence. No null character will be added.

The normal skip over white-space characters is suppressed in this case;
%1s should be used to read the next wide character that is not a white-space
character.

p Matches a set of sequences, which must be the same as the set of
sequences that is produced by the %p conversion of the fwprintf
functions. The corresponding argument must be a pointer to a pointer to
void. The interpretation of the input item is implementation-dependent; if
the input item is not a value that was converted earlier during the same
program execution, the behavior of the %p conversion is undefined. This is
specially true for pointer outputs generated by other systems.

234 U4351-J-Z125-8-76

fwscanf, swscanf, wscanf

n No input is processed. The corresponding argument must be a pointer to
int into which the number of wide characters read thus far by this call are
to be entered. Execution of a %n conversion specification does not
increment the assignment counter returned on completing the execution of
the function.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior of fwscanf is undefined.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide characters matching the current conversion specification have been read
(other than leading white-space characters, where permitted), execution of the current
conversion specification terminates with an input error. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, an execution other
than %n of the following conversion specification (if any) is terminated with an input error.

Reaching the end of the character string in a swscanf call is equivalent to encountering the
end-of-file indicator during an fwscanf call.

Any trailing white space (including end-of-file characters) is left unread unless matched by
a conversion specification.

The success of literal matches and suppressed assignments cannot be directly determined,
except via the %n conversion specification.

Return val. Number of successfully read and assigned input items
if no input error occurs before the first assignment.
The number is zero if a format error occurs at the first input item.

EOF if an input error occurs before the first assignment

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also scanf, sscanf, fscanf, wcstod, wcstol, wcstoul, wcrtomb

U4351-J-Z125-8-76 235

fwrite

fwrite - Write blockwise to a file

Definition #include <stdio.h>

size_t fwrite(const void *p, size_t elsize, size_t n, FILE *fp);

fwrite writes n elements (elsize bytes in size each) from the area pointed to by p to the file
with file pointer fp.
The position of the read/write pointer is subsequently advanced by the number of bytes
written.

Return val. Number of elements actually written
if successful.

0 for end of file or error.

Notes To ensure that elsize specifies the correct number of bytes for a data element, you should
use the sizeof function for the size of a data unit to which p points.

For output to files with stream I/O the characters are not written immediately to the external
file but are stored in an internal C buffer (see section “Buffering” on page 53).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Record I/O fwrite writes a record to the file.

For sequential files (SAM, PAM), the record is written at the current file position.
For indexed-sequential files (ISAM), the record is written at the position corresponding to
the key value in the record.

Number of characters to be output:

n is taken to be the total number of characters to be output, i.e.
n = element length * number of elements

If n is greater than the maximum record length only one record with the maximum record
length is written. The remaining data is lost.

If n is less than the minimum record length no record is written. The minimum record
length is defined only for ISAM files and means that n must cover at least the area of
the key in the record.

If n is less than the record length when a record is written to a file with fixed record length
the record is padded with binary zeros at the end.

236 U4351-J-Z125-8-76

fwrite

When an existing record is updated in a sequential file (SAM, PAM), n must be equal to
the length of the record to be updated. Otherwise an error occurs. In PAM files, the
record length is the length of a logical block.

When an existing record is updated in an indexed-sequential file (ISAM), n does not
need to be equal to the length of the record to be updated. A record can therefore be
shortened or lengthened.

In ISAM files for which key duplication is permitted it is not possible to perform a direct
update on a record. Whenever a record with an existing key is written, a new record is
written. The old record must be explicitly deleted.

fwrite produces the same return value as for stream I/O, namely the number of elements
written in their entirety. For record I/O it is best to use only element length 1 since in this
case the return value corresponds to the length of the record written (without any record
length field).
In the case of a fixed record length, however, any required padding with binary zeros is not
taken into account in the return value.

Example The following program transfers two personal data items to the file with file pointer p_list.

#include <stdio.h>

int main(void)
{
 FILE *p_list;
 size_t result;
 static struct p
 {
 char name[20];
 int a;
 } person[2] =
 {
 Ï"ANNE", 30¸,
 Ã"JOHN", 60Õ,
 };

 p_list = fopen("link=link", "w");

 result = fwrite(person, sizeof(struct p), 2, p_list);
 printf("%d Personal data written\n", result);
 return 0;
}

See also fread, feof, ferror

U4351-J-Z125-8-76 237

gamma

gamma - Logarithmic gamma function

Definition #include <math.h>

double gamma(double x);

gamma calculates the mathematical gamma function for a given floating-point number x:

The sign of this value is stored as +1 or -1 in the internal C variable signgam. The signgam
variable may not be defined by the user.

Return val. gamma(x) if successful.

HUGE_VAL if the correct value results in an overflow. In addition, errno is set to
ERANGE (result too large).

HUGE_VAL if x is a non-positive integer. In addition, errno is set to EDOM (illegal
argument).

e t–

0

∞

∫ tx 1– dt

238 U4351-J-Z125-8-76

garbcoll

garbcoll - Release memory space to the system

Definition #include <stdlib.h>

void garbcoll(void);

The calloc, malloc, realloc and free functions form the C-specific memory
management package. This package essentially consists of an internal free memory
management facility.
The memory released with free is not returned to the system (RELM-SVC) but is taken by
the free memory management facility.
The memory request functions (calloc, malloc, realloc) attempt to supply the memory
firstly via the free memory management and only as a second option by the operating
system (REQM-SVC).

If memory is no longer available even from the system, the memory administered by the free
memory management facility is returned (pagewise if possible) to the system (garbage
collection).

This garbage collection mechanism is effective in the address space ≤ 2 GB and can also
be called explicitly with the garbcoll function.

Note The garbcoll function returns to the system all the memory areas which were previously
released with free and which can be combined to form free pages.

See also calloc, malloc, realloc, free

U4351-J-Z125-8-76 239

gcvt

gcvt - Convert a floating-point number to a string

Definition #include <stdlib.h>

char *gcvt(double value, int n, char *buf);

gcvt converts a floating-point number value to a string of digits and stores the string in the
area pointed to by buf. A pointer to this area is returned as a result.

Depending on the structure of the floating-point value to be converted, the output format
corresponds to

– the FORTRAN F format: n significant digits, no leading or trailing zeros from value, a
negative sign if required, and a decimal point (if there are any non-zero digits after the
decimal point)

– or the FORTRAN E format (exponential notation).

Parameter double value
Floating-point value to be edited for output.

int n
Number of digits in the resulting string (calculated as of the first non-zero digit in the
floating-point value to be converted).

If n is less than the number of digits in value, the least significant digit is rounded.
If n is greater, the string ends with the last non-zero digit.

char *buf
Pointer to the converted string.
The memory area to which buf points should be at least (n + 4) bytes in size!

Return val. Pointer to the converted string.
gcvt closes the string with the null byte (\0).

Notes Invalid parameters, such as an integer instead of a double value, cause the program to
abort!

It is your responsibility to ensure that the result pointer buf points to a memory area of at
least (n + 4) bytes (see example).

240 U4351-J-Z125-8-76

gcvt

Example The program reads a floating-point value x, converts it as specified in n, and outputs it as a
string to the char array buf. The malloc function is used to reserve (n + 4) bytes.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 double x;
 int n;
 char *buf;
 printf("Please enter floating-point number: \n");
 if (scanf("%lf",&x) == 1)
 {
 printf("How many significant digits : \n");
 if (scanf("%d",&n) == 1)
 {
 buf = (char *)malloc(n + 4);
 printf("After conversion, the number is : %s \n", gcvt(x, n, buf));

 }
 }
 return 0;
}

See also ecvt, gcvt

U4351-J-Z125-8-76 241

getc

getc - Read a character from a file

Definition #include <stdio.h>

int getc(FILE *fp);

getc reads a character from the file with file pointer fp from the current read/write position.

Return val. Character read as a positive integer value
if successful.

EOF in case of an error or end of file.

Notes getc is implemented both as a macro and as a function (see section “Functions and macros”
on page 5).

The call getc(stdin) is identical to getchar().

If you use a comparison such as while((c = getc(fp)) != EOF)
in your program, the variable c must always be declared as an integer. If you define c as
a char, the EOF condition is never satisfied for the following reason: -1 is converted to
char ’0xFF’ (i.e. +255); EOF, however, is defined as -1.

If getc is reading from the standard input stdin, and EOF is the end criterion for reading,
you can satisfy the EOF condition by means of the following actions at the terminal:
pressing the K2 key and entering the system commands EOF and RESUME-PROGRAM.

242 U4351-J-Z125-8-76

getc

Example The following program reads a file with file pointer fp one character at a time until end of file
is reached. The read characters are stored in the area buf.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int c, i = 0;
 char buf[BUFSIZ];
 FILE *fp;
 char name[40];
 printf("Please enter file to be read\n");
 scanf("%s", name);
 if((fp = fopen(name, "r")) == NULL)
 {
 perror("fopen"); /* Abort with error message 'fopen' if */
 exit(1); /* file does not exist */
 }
 while ((c = getc(fp)) != EOF)
 buf[i++] = c;
 puts(buf);
 fclose(fp);
 return 0;
}

See also fgetc, getchar, getwc, ungetc, fopen, fopen64

U4351-J-Z125-8-76 243

getchar, getenv

getchar - Read a character from standard input

Definition #include <stdio.h>

int getchar(void);

getchar reads a character from the standard input (file pointer stdin).

Return val. Character read as a positive integer value
if successful.

EOF for end of file or error.

Notes getchar is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

If you use a comparison such as while((c = getchar()) != EOF) in your program, the
variable c must always be declared as an integer. If you define c as a char, the EOF
condition is never satisfied for the following reason: -1 is converted to char ’0xFF’ (i.e.
+255); EOF, however, is defined as -1.

You can satisfy the EOF condition when reading from the terminal by means of the following
actions:
pressing the K2 key and entering the system commands EOF and RESUME-PROGRAM.

See also getc, fgetc, getwchar

getenv - Query system information

Definition #include <stdlib.h>

char *getenv(const char *name);

In this implementation, getenv is merely a dummy function. The return value is always a
NULL pointer. The specified parameter is not evaluated.

Return val. NULL pointer.

244 U4351-J-Z125-8-76

getlogin

getlogin - Query user ID

Definition #include <stdlib.h>

char *getlogin(void);

getlogin returns the login name (i.e. userid) under which the calling program is being
executed.

Return val. Pointer to the name of the user id.

Note getlogin writes its result into an internal C data area that is overwritten with each call!

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("Example showing the use of getlogin():\n");
 printf("Userid = %s\n", getlogin());
 return 0;
}

U4351-J-Z125-8-76 245

getpgmname

getpgmname - Query program name

Definition #include <stdlib.h>

char *getpgmname(void);

getpgmname returns the name of the calling program. The result corresponds to argv[0]
of the main function.

Return val. Pointer to the program name.

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("Example showing the use of getpgmname():");
 printf("Program name = %s\n", getpgmname());
 return 0;
}

246 U4351-J-Z125-8-76

gets

gets - Read a string from standard input

Definition #include <stdio.h>

char *gets(char *s);

gets reads characters from the standard input stdin until the next newline and stores the
string in the area pointed to by s, replacing the newline with the null byte (\0).

Return val. Pointer to the result string
if successful. gets terminates the string with the null byte (\0).

NULL pointer if end of file is reached or a read error occurs.

Notes You must explicitly provide the area in which gets is to store the string read!

In contrast to fgets, gets deletes a read newline character, i.e. overwrites it with the null
byte.

You can satisfy the EOF condition when reading from the terminal by means of the following
actions:
pressing the K2 key and entering the system commands EOF and RESUME-PROGRAM.

Example The following program reads strings from the standard input and writes them to the
standard output. The reading can be terminated with the K2 key and the EOF and
RESUME-PROGRAM commands.

#include <stdio.h>
int main(void)
{
 char s[BUFSIZ];
 while(gets(s) != NULL)
 puts(s);
 return 0;
}

See also fgets, puts, fputs, getws

U4351-J-Z125-8-76 247

gettsn

gettsn - Query TSN (task sequence number)

Definition #include <stdlib.h>

char *gettsn(void);

gettsn returns the task sequence number (TSN) of the calling program.

Return val. Pointer to the task sequence number (TSN).

Note gettsn writes its result into an internal C data area that is overwritten with each call!

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("Example showing the use of gettsn():\n");
 printf("The TSN number of the program %s : %s\n", getpgmname(), gettsn());
 return 0;
}

248 U4351-J-Z125-8-76

getw

getw - Read wordwise from a file

Definition #include <stdio.h>

int getw(FILE *fp);

getw reads a machine word from the file with the file pointer fp and positions the read/write
pointer after the word read.

A machine word may be conceived of as a binary integer value.

Return val. word read as an integer value
if successful.

EOF or end of file or error.

Notes Since word length and byte arrangement are system-dependent, it is possible that files
written with putw on a non-BS2000 operating system may not be readable with getw in
BS2000.

Since EOF represents a valid integer value, you should use the functions feof and
ferror to check for end of file or error conditions.

Example The following program fragment reads wordwise from the file with file pointer fp until end of
file is reached.

int buf[MAX];
int i = 0;
FILE *fp;

while(!feof(fp) && !ferror(fp))
 buf[i++] = getw(fp);

See also putw

U4351-J-Z125-8-76 249

getwc

getwc - Read a wide character from a file

Definition #include <wchar.h>
#include <stdio.h>

wint_t getwc(FILE *fp);

getwc is equivalent to fgetwc, except for the fact that it is implemented as a macro and can
evaluate fp more than once, so the argument should never be an expression with side
effects.

Return val. Wide character code of type wint_t
if successful.

WEOF if the end-of-file is reached. The end-of-file indicator for the file is set;
or
if a read error occurs. The error indicator for the file is set, and errno is set
to EBADF if fp is an invalid file pointer.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

getwc is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

This interface was provided to support some current implementations and possible future
ISO standards.

If getwc is used as a macro, an fp expression with side effects may be handled incorrectly.
In particular, getwc(*f++) may not work as expected. For this reason, it is better to use
fgetwc in such situations instead of getwc.

You can satisfy the WEOF condition when reading from the terminal by means of the
following actions: pressing the K2 key and entering the system commands EOF and
RESUME-PROGRAM.

See also fgetwc, getc

250 U4351-J-Z125-8-76

getwchar

getwchar - Read a wide character from standard input

Definition #include <wchar.h>

wint_t getwchar(void);

The function call getwchar(void) is equivalent to getwc(stdin), i.e. reads a wide
character from standard input.

You can satisfy the WEOF condition when reading from the terminal (stdin) by means of
the following actions: pressing the K2 key and entering the system commands EOF and
RESUME-PROGRAM.

Return val. Wide character code of type wint_t
if successful.

WEOF if the end-of-file is reached. The end-of-file indicator for the file is set;
or
if a read error occurs. The error indicator for the file is set, and errno is set
to EBADF if fp is an invalid file pointer.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also fgetwc, getwc

U4351-J-Z125-8-76 251

gmtime

gmtime - Convert date and time to UTC

Definition #include <time.h>

struct tm *gmtime(const time_t *sec_p);

gmtime interprets the time information of type time_t as the number of seconds that have
elapsed since January 1, 1950 00:00:00 (local time). Using this information, gmtime then
calculates the date and the time and stores the result in UTC format (Universal Time
Coordinated) in a structure of type tm.
In this case, gmtime corresponds to the function localtime. Both return the local time.

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, gmtime interprets the value as the number of
seconds that have elapsed since 1.1.1970 00:00:00 (Greenwich Mean Time).

Return val. Pointer to the calculated structure. gmtime stores the result in a structure declared in
<time.h> as follows:

struct tm
{
 int tm_sec; /* seconds (0-59) */
 int tm_min; /* minutes (0-59) */
 int tm_hour; /* hours (0-23) */
 int tm_mday; /* day of the month (1-31) */
 int tm_mon; /* month from the start of the year (0-11) */
 int tm_year; /* years since 1900 */
 int tm_wday; /* weekday (0-6, 0=Sunday) */
 int tm_yday; /* days since January 1 (0-365) */
 int tm_isdst; /* daylight saving time flag */
};

Note gmtime writes its result into an internal C data area that is overwritten with each call!
In addition, gmtime and localtime use the same data area, i.e. if they are called succes-
sively, the result of the first call is overwritten!

252 U4351-J-Z125-8-76

gmtime

Example #include <time.h>
#include <stdio.h>

struct tm *t;
char *s;
time_t clk;

int main(void)
{
 clk = time((time_t *)0);
 t = gmtime(&clk);
 printf("Year: %d\n", t->tm_year + 1900);
 printf("Time in hours: %d\n", t->tm_hour);
 printf("Day of the year: %d\n", t->tm_yday);
 s = asctime(t);
 printf("%s", s);
 return 0;
}

See also asctime, ctime, gmtime, localtime

U4351-J-Z125-8-76 253

hypot

hypot - Euclidean distance

Definition #include <math.h>

double hypot(double x, double y);

hypot calculates the euclidean distance of the point with the coordinates (x,y).

Return val. sqrt(x*x + y*y) square root of the sum of the squared coordinates.

HUGE_VAL in the event of an overflow. In addition, errno is set to ERANGE (result too
large).

Example #include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{
 double x, y, alpha, r, pi;

 printf("Enter x and y coordinates:\n");
 scanf("%lf %lf", &x, &y);

 pi = 2.0 * asin(1.0);

 if(x > 0.0)
 alpha = atan(y/x);
 else if (x < 0.0)
 if (y >= 0.0)
 alpha = atan(y/x) + pi;
 else alpha = atan(y/x) - pi;
 else if (y > 0)
 alpha = pi/2.0;
 else if (y < 0)
 alpha = -pi/2.0;
 else
 {
 printf("Angle not defined!\n");
 exit(1);
 }
r = hypot(x, y);
 alpha = alpha * (180.0/pi);

254 U4351-J-Z125-8-76

hypot

 printf("The polar coordinates are:\n");
 printf("Distance from zero: %g\n",r);
 printf("Angle to the x axis:\n");
 printf("%g degrees\n",((y < 0.0)? alpha + 360 : alpha));
 return 0;
}

See also cabs, sqrt

U4351-J-Z125-8-76 255

ieee2double

ieee2double -
Convert floating-point number from IEEE format to /390 format

Definition #include <ieee_390.h>

extern double ieee2double (double num);

ieee2double converts an 8-byte floating-point number num from IEEE format to /390
format and returns it as the result. There is no loss of precision.

Parameter double num
8-byte floating-point number in IEEE format

Return val. 8-byte floating-point number in /390 format (in the event of success)

0.0 if the IEEE floating-point number is smaller than the smallest number that can be
represented in /390 format or if NaN or inf is passed as a parameter.

If the IEEE floating-point number is greater than the largest number that can be represented
in /390 format, this largest representable number is returned with the corresponding sign.

The global variable float_exceptions_flag contains information for the event of unsuccessful
conversion and is defined as follows:

extern int float_exception_flags;
enum {

float_flag_inexact = 1,
float_flag_divbyzero = 2,
float_flag_underflow = 4,
float_flag_overflow = 8,
float_flag_invalid = 16

};

If the IEEE floating-point number is greater than the largest number that can be represented
in /390 format, float_flag_overflow is set.

If the IEEE floating-point number is smaller than the smallest number that can be repre-
sented in /390 format, float_flag_underflow is set.

If NaN or inf is passed as a parameter, float_flag_invalid is set.

See also float2ieee, float2ieee, double2ieee

256 U4351-J-Z125-8-76

ieee2float

ieee2float -
Convert floating-point number from IEEE format to /390 format

Definition #include <ieee_390.h>

extern float ieee2float (float num);

ieee2float converts a 4-byte floating-point number num in IEEE format to /390 format and
returns it as the result. Neither overflow nor underflow can occur, but up to three bit positions
can be lost.

Parameter float num
4-byte floating-point number in IEEE format

Return val. 4-byte floating-point number in /390 format.

The global variable float_exceptions_flag contains information for the event of unsuccessful
conversion and is defined as follows:

extern int float_exception_flags;
enum {

float_flag_inexact = 1,
float_flag_divbyzero = 2,
float_flag_underflow = 4,
float_flag_overflow = 8,
float_flag_invalid = 16

};

If bit positions are lost during conversion and the result thus becomes inaccurate,
float_flag_invalid is set.

See also float2ieee, double2ieee, ieee2double

U4351-J-Z125-8-76 257

index

index - First occurrence of a character in a string

Definition #include <string.h>

char *index(const char *s, int c);

index searches for the first occurrence of character c in string s and returns a pointer to the
located position in s if successful.

The terminating null byte (\0) is also treated as a character.

Return val. Pointer to the position of c in string s
if successful.

NULL pointer if c is not contained in string s.

Note The index and strchr functions are equivalent.

Example Find the first ’f’:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *s = "What ffun in the sun!";
 printf("%s\n", s);
 printf("Where is the error? %s\n", index(s, 'f'));
 return 0;
}

See also rindex, strchr

258 U4351-J-Z125-8-76

isalnum

isalnum - Test for letter or digit

Definition #include <ctype.h>

int isalnum(int c);

isalnum checks whether the character c from the EBCDIC character set is alphanumeric,
i.e. a letter (A-Z, a-z) or a digit (0-9).

Return val. ≠ 0 c is alphanumeric.

0 c is not alphanumeric.

Note isalnum is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((isalnum(c)) ? "Alphanumeric" : "Other"), c);
 return 0;
}

See also isalpha, isascii, iscntrl, isdigit, isgraph, islower, ispunct, isprint, isspace, isupper, isxdigit,
isebcdic, iswalnum

U4351-J-Z125-8-76 259

isalpha

isalpha - Test for letter

Definition #include <ctype.h>

int isalpha(int c);

isalpha checks whether the character c is a letter (A-Z, a-z).

Return val. ≠ 0 c is a letter.

0 c is not a letter.

Note isalpha is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((isalpha(c)) ? "Letter" : "Other"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, isgraph, islower, ispunct, isprint, isspace, isupper, isxdigit,
isebcdic, iswalpha

260 U4351-J-Z125-8-76

isascii

isascii - Test for ASCII character

Definition #include <ctype.h>

int isascii(int c);

isascii is a synonym for isebcdic. On EBCDIC computers, isascii checks whether
the value of the character c represents an EBCDIC character (values 0 - 255). If portability
to ASCII computers is required, isascii should be used.

Return val. ≠ 0 the value of c represents an EBCDIC character (values 0 - 255),

0 c doesn’t represent an EBCDIC character (values ≠ 0 - 255).

See also isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
isebcdic

U4351-J-Z125-8-76 261

iscntrl

iscntrl - Test for control character

Definition #include <ctype.h>

int iscntrl(int c);

iscntrl checks whether the character c from is a control character. Control characters are
non-printable characters (e.g. for printer control). The non-printable characters for white
space are not included (see isspace).

Return val. ≠ 0 c is a control character.

0 c is not a control character.

Note iscntrl is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((iscntrl(c)) ? "Control character":"Other"), c);
 return 0;
}

See also isalnum, isascii, isalpha, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
isebcdic, iswcntrl

262 U4351-J-Z125-8-76

isdigit

isdigit - Test for digit

Definition #include <ctype.h>

int isdigit(int c);

isdigit checks whether the character c is a digit (0-9).

Return val. ≠ 0 c is a digit.

0 c is not a digit.

Note isdigit is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((isdigit(c)) ? "Digit" : "Other"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isalpha, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
isebcdic, iswdigit

U4351-J-Z125-8-76 263

isebcdic

isebcdic - Test for EBCDIC character

Definition #include <ctype.h>

int isebcdic(int c);

isebcdic checks whether the value of the character c represents an EBCDIC character
(values 0 - 255).

Return val. ≠ 0 the value of c represents an EBCDIC character (values 0 - 255),

0 c doesn’t represent an EBCDIC character (values ≠ 0 - 255).

Notes isebcdic is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

isebcdic is a synonym for isascii. If portability to ASCII computers is required, isascii
should be used instead of isebcdic.

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((isebcdic(c)) ? "EBCDIC character" : "Other"), c);
 return 0;
}

See also isalpha, isalnum, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit

264 U4351-J-Z125-8-76

isgraph

isgraph - Test for printable character except space

Definition #include <ctype.h>

int isgraph(int c);

isgraph checks whether the character c is a printable character, i.e. an alphanumeric or a
special character. Spaces are considered to be non-printable.
c is the value of the character to be checked.

Return val. ≠ 0 c is printable and not a space.

0 c is non-printable or space.

Note isgraph is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((isgraph(c))? "Character" : "Cannot print"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, islower, isalpha, ispunct, isprint, isspace, isupper, isxdigit,
isebcdic, iswgraph

U4351-J-Z125-8-76 265

islower

islower - Test for lowercase letter

Definition #include <ctype.h>

int islower(c);

islower checks whether the character c is a lowercase letter (a-z).
c is the value of the character to be checked.

Return val. ≠ 0 c is a lowercase letter.

0 c is not a lowercase letter.

Note islower is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n", ((islower(c)) ? "Lowercase letter" : "Other"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, isgraph, isalpha, isprint, ispunct, isspace, isupper, isxdigit,
isebcdic, iswlower

266 U4351-J-Z125-8-76

isprint

isprint - Test for printable character including space

Definition #include <ctype.h>

int isprint(int c);

isprint checks whether the character c is a printable character, i.e. an alphanumeric
character, a special character, or a space.

Return val. ≠ 0 c is printable (including space).

0 c is non-printable.

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((isprint(c))? "Character" : "Cannot print"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, isgraph, islower, isalpha, ispunct, isspace, isupper, isxdigit,
isebcdic, iswprint

U4351-J-Z125-8-76 267

ispunct

ispunct - Test for special character

Definition #include <ctype.h>

int ispunct(c);

ispunct checks whether the character c is a special character, i.e. not a control, alphanu-
meric, or white space character (see isspace).

Return val. ≠ 0 c is a special character.

0 c is not a special character.

Note ispunct is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((ispunct(c))? "Special character" : "Other"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, isgraph, islower, isalpha, isprint, isspace, isupper, isxdigit,
iswpunct

268 U4351-J-Z125-8-76

isspace

isspace - Test for white space character

Definition #include <ctype.h>

int isspace(int c);

isspace checks whether the character c from the EBCDIC character set is a white space
character, i.e. a blank, horizontal tab (\t), carriage return (\r), newline (\n), form feed (\f), or
vertical tab (\v).

Return val. ≠ 0 c is a white space character.

0 c is not a white space character.

Notes isspace is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

For evaluating control characters for white space (see section “White space” on page 55).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((isspace(c))? "White space " : "Other"),c);
 return 0;
}

See also isalnum, isalpha, isascii, iscntrl, isdigit, islower, isprint, isgraph, ispunct, isupper, isxdigit,
isebcdic, iswspace

U4351-J-Z125-8-76 269

isupper

isupper - Test for uppercase letter

Definition #include <ctype.h>

int isupper(int c);

isupper checks whether the character c is an uppercase letter (A-Z).

Return val. ≠ 0 c is an uppercase letter.

0 c is not an uppercase letter.

Note isupper is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((isupper(c))? "Uppercase letter " : "Other"),c);
 return 0;
}

See also isalnum, isascii, iscntrl, isdigit, islower, isprint, ispunct, isgraph, isspace, isalpha, isxdigit,
isebcdic, iswupper

270 U4351-J-Z125-8-76

iswalnum

iswalnum - Test for alphanumeric wide character

Definition #include <wctype.h>

int iswalnum(wint_t wc);

iswalnum tests whether the wide character wc is alphanumeric.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is alphanumeric.

0 wc is not alphanumeric.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswalnum is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswalnum is determined by the classes alpha and digit of the current
locale. The current locale is the C locale, unless it was explicitly changed using setlocale.

See also isalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

U4351-J-Z125-8-76 271

iswalpha

iswalpha - Test for alphabetic wide character

Definition #include <wctype.h>

int iswalpha(wint_t wc);

iswalpha tests whether the wide character wc is alphabetic, i.e. a letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a letter.

0 wc is not a letter.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswalpha is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswalpha is determined by the class alpha of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isalpha, iswalnum, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

272 U4351-J-Z125-8-76

iswcntrl

iswcntrl - Test for control wide character

Definition #include <wctype.h>

int iswcntrl(wint_t wc);

iswcntrl tests whether the wide character wc is a control character. Control characters are
non-printing characters, typically used for printer control.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a control character.

0 wc is not a control character.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswcntrl is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswcntrl is determined by the class cntrl of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also iscntrl, iswalnum, iswalpha, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

U4351-J-Z125-8-76 273

iswctype

iswctype - Test wide character for class

Definition #include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);

iswctype tests whether the wide character wc has the character class charclass.
In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 The wide character is in character class charclass.

0 The wide character not in the character class charclass.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper" and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column:.

The call iswctype(wc, wctype("blank")) does not have an equivalent isw* function.

See also wctype, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, isws-
pace, iswupper, iswxdigit

iswalnum(wc) iswctype(wc, wctype("alnum"))

iswalpha(wc) iswctype(wc, wctype("alpha"))

iswcntrl(wc) iswctype(wc, wctype("cntrl"))

iswdigit(wc) iswctype(wc, wctype("digit"))

iswgraph(wc) iswctype(wc, wctype("graph"))

iswlower(wc) iswctype(wc, wctype("lower"))

iswprint(wc) iswctype(wc, wctype("print"))

iswpunct(wc) iswctype(wc, wctype("punct"))

iswspace(wc) iswctype(wc, wctype("space"))

iswupper(wc) iswctype(wc, wctype("upper"))

iswxdigit(wc) iswctype(wc, wctype("xdigit"))

274 U4351-J-Z125-8-76

iswdigit

iswdigit - Test for decimal-digit wide character

Definition #include <wctype.h>

int iswdigit(wint_t wc);

iswdigit tests whether the wide character wc is a decimal digit.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a decimal digit.

0 wc is not a decimal digit.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswdigit is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswdigit is determined by the class digit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isdigit, iswalnum, iswalpha, iswcntrl, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit

U4351-J-Z125-8-76 275

iswgraph

iswgraph - Test for visible wide character

Definition #include <wctype.h>

int iswgraph(wint_t wc);

iswgraph tests whether the wide character specified by wc is a character with a visible
representation, i.e. an alphanumeric or special character. Spaces are not considered to be
visible.
In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a character with a visible representation.

0 wc is not a character with a visible representation.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswgraph is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswgraph is determined by the class graph of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isgraph, iswalnum, iswalpha, iswcntrl, iswdigit, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

276 U4351-J-Z125-8-76

iswlower

iswlower - Test for lowercase wide character

Definition #include <wctype.h>

int iswlower(wint_t wc);

iswlower tests whether the wide character wc is a lowercase letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a lowercase letter.

0 wc is not a lowercase letter.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswlower is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswlower is determined by the class lower of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also islower, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

U4351-J-Z125-8-76 277

iswprint

iswprint - Test for printing wide character

Definition #include <wctype.h>

int iswprint(wint_t wc);

iswprint tests whether wc is a printing wide character. Printing wide characters include
alphanumeric characters, special characters, and blanks.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a printing wide character (alphanumeric characters, special
characters, and blanks) .

0 wc is not a printing wide character.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswprint is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswprint is determined by the class print of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isprint, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswpunct, iswspace,
iswupper, iswxdigit, setlocale

278 U4351-J-Z125-8-76

iswpunct

iswpunct - Test for punctuation wide character

Definition #include <wctype.h>

int iswpunct(wint_t wc);

iswpunct tests whether wc is a punctuation wide character, i.e. not a control, alphanumeric
or white-space wide character (see iswspace).
In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a punctuation wide character.

0 wc is not a punctuation wide character

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswpunct is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswpunct is determined by the class punct of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also ispunct, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswspace,
iswupper, iswxdigit, setlocale

U4351-J-Z125-8-76 279

iswspace

iswspace - Test for white-space wide character

Definition #include <wctype.h>

int iswspace(wint_t wc);

iswspace tests whether wc is a white-space wide character. White-space wide characters
include: blanks, horizontal tabs, carriage returns, newlines, form-feeds, and vertical tabs.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a white-space wide character.

0 wc is not a white-space wide character.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswspace is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswspace is determined by the class space of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isspace, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
iswupper, iswxdigit, setlocale

280 U4351-J-Z125-8-76

iswupper

iswupper - Test for uppercase wide character

Definition #include <wctype.h>

int iswupper(wint_t wc);

iswupper tests whether the wide character wc is an uppercase letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is an uppercase letter.

0 wc is not an uppercase letter.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswupper is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswupper is determined by the class upper of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also isupper, iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, isws-
pace, iswxdigit, setlocale

U4351-J-Z125-8-76 281

iswxdigit

iswxdigit - Test for hexadecimal wide-character digit

Definition #include <wctype.h>

int iswxdigit(wint_t wc);

iswxdigit tests whether the wide character wc is a hexadecimal digit (0-9, A-F or a-f).

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 wc is a hexadecimal digit.

0 wc is not a hexadecimal digit

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

iswxdigit is implemented both as a function and as a macro (see section “Functions and
macros” on page 5).

The behavior of iswxdigit is determined by the class xdigit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale.

See also iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, isxdigit

282 U4351-J-Z125-8-76

isxdigit

isxdigit - Test for hexadecimal digit

Definition #include <ctype.h>

int isxdigit(int c);

isxdigit checks whether the character c from the EBCDIC character set is a hexadecimal
digit (0-9), (A-F) or (a-f).

Return val. ≠ 0 c is a hexadecimal digit.

0 c is not a hexadecimal digit.

Note isxdigit is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example #include <ctype.h>
#include <stdio.h>

int main(void)
{
 int c;
 while((c = getchar()) != EOF)
 printf("%s : %c\n",((isxdigit(c))? "Hexadecimal digit" : "Other"), c);
 return 0;
}

See also isalnum, isascii, iscntrl, isalpha, islower, isprint, ispunct, isgraph, isspace, isupper, isdigit,
isebcdic

U4351-J-Z125-8-76 283

j0, j1, jn

j0, j1, jn - Bessel functions of the first kind

Definition #include <math.h>

double j0(double x);

double j1(double x);

double jn(int n, double x);

The functions j0, j1 and jn calculate the Bessel functions of the first kind for floating-point
values x and the integer orders 0, 1 or n.

Return val. Bessel function for x.

See also y0, y1, yn

284 U4351-J-Z125-8-76

kill

kill - Send signal to own program

Definition #include <signal.h>

int kill(int pn, int sig);

kill continues to be supported for compatibility reasons; it works like the ANSI function
raise.

The only difference is that the kill function expects the program number pn as the first
argument, which must always be 0 since the signal may only be sent to its own program
(see also return value -1).

Return val. 0 The signal was sent successfully.

-1 The signal could not be sent, because
– sig is not a valid signal number or
– the program number pn is not equal to 0.

In addition, errno is set to the appropriate program error code:
EINVAL (invalid signal number)
ESRCH (program number not 0).

Example A program that aborts itself.

#include <signal.h>

int main(void)
{
 for(;;)
 kill(0, SIGKILL);
 return 0;
}

See also alarm, raise, signal

U4351-J-Z125-8-76 285

labs

labs - Absolute value of an integer (long int)

Definition #include <stdlib.h>

long int labs(long int j);

labs calculates the absolute value of an integer j of type long int.

Return val. |j| for an integer j.

undefined in case of over- or underflow. errno is set to ERANGE to indicate the error.

Note The absolute value of the highest presentable negative number cannot be presented. If the
highest negative number of type long int is specified as argument j, the program is termi-
nated with an error (ERANGE).

See also abs, cabs, fabs, llabs

286 U4351-J-Z125-8-76

ldexp

ldexp - Calculate binary value

Definition #include <math.h>

double ldexp(double x, int exp);

Given its arguments x (mantissa) and exp (exponent), ldexp calculates the number:

x * 2exp

ldexp is the inverse function of frexp.

Return val. x * 2exp if successful.

+/-HUGE_VAL in the event of an overflow (depending on the sign for x). In addition, errno
is set to ERANGE (result too large).

Example ldexp is the inverse function of frexp:
frexp splits its floating-point argument into mantissa and exponent to the base 2, while
ldexp uses these parts to calculate the original value in its internal floating-point represen-
tation. This is shown below for the number 5.342:

#include <stdio.h>
#include <math.h>

int main(void)
{
 double x;
 int ex;

 x = frexp(5.342, &ex);
 printf("Mantissa : %f\nexponent : %d\n", x, ex);
 printf("Initial value : %f\n", ldexp(x, ex));
 return 0;
}

See also frexp, modf

U4351-J-Z125-8-76 287

ldiv, __LINE__

ldiv - Division with integers (long int)

Definition #include <stdlib.h>

ldiv_t ldiv(long int dividend, long int divisor);

ldiv calculates the quotient and the remainder of the division of dividend by divisor.
Both the arguments and the result are of type long int.

The sign of the quotient is the same as the sign of the algebraic quotient. The value of the
quotient is the highest integer less than or equal to the absolute value of the algebraic
quotient.

The remainder is expressed by the following equation:

Quotient * Divisor + Remainder = Dividend

Return val. Structure of type ldiv_t
containing both the quotient quot and the remainder rem as integer values.

Example ldiv_t d;

d = ldiv(7, 3); /* d.quot = 2, d.rem = 1 */
d = ldiv(-7, 3); /* d.quot = -2, d.rem = -1 */
d = ldiv(7,-3); /* d.quot = -2, d.rem = 1 */
d = ldiv(-7,-3); /* d.quot = 2, d.rem = -1 */

See also div, lldiv

_ _LINE_ _ - Output the current source program line number

Definition _ _LINE_ _

This macro generates the current line number of the source program as a decimal number.

Note This macro does not need to be defined in an include file. Its name is recognized and
replaced by the compiler.

288 U4351-J-Z125-8-76

llabs

llabs - Absolute value of an integer (long long int)

Definition #include <stdlib.h>

long long int llabs(long long int j);

llabs calculates the absolute value of an integer j of type long long int.

Return val. |j| for an integer j.

undefined in case of over- or underflow. errno is set to ERANGE to indicate the error.

Note The absolute value of the highest presentable negative number cannot be presented. If the
highest negative number of type long long int is specified as argument j, the program is
terminated with an error (ERANGE).

See also abs, cabs, labs

U4351-J-Z125-8-76 289

lldiv

lldiv - Division with integers (long long int)

Definition #include <stdlib.h>

lldiv_t lldiv(long long int dividend, long long int divisor);

lldiv calculates the quotient and the remainder of the division of dividend by divisor.
Both the arguments and the result are of type long long int.

The sign of the quotient is the same as the sign of the algebraic quotient. The value of the
quotient is the highest integer less than or equal to the absolute value of the algebraic
quotient.

The remainder is expressed by the following equation:

Quotient * Divisor + Remainder = Dividend

Return val. Structure of type lldiv_t
containing both the quotient quot and the remainder rem as integer values.

Example see ldiv.

See also div, ldiv

290 U4351-J-Z125-8-76

llrint, llrintf, llrintl

llrint, llrintf, llrintl - Round off to nearest whole number

Definition #include <math.h>

long long int llrint(double x);

long long int llrintf (float x);

long long int llrintl (long double x);

Each of the functions returns the whole number nearest to x, represented as a number of
type long long int.

The return value is rounded off in accordance with the rounding mode currently set for the
system. If the rounding mode is ‘round-to-nearest’ and if the difference between x and the
rounded result is exactly 0.5, the nearest even number is returned.

If the rounding mode currently set rounds off in the direction of positive infinity, then llrint
is equivalent to ceil. If the defined rounding mode rounds off in the direction of negative
infinity, then llrint is equivalent to floor.
In this version, the rounding mode is preset in the direction of positive infinity.

Return val. integer represented as a number of type long long int
if successful.

undefined in the event of an overflow or underflow, errno is set to ERANGE to indicate
the error.

Note In this version, the rounding mode is preset in the direction of positive infinity.

See also abs, ceil, floor, llround, lrint, lround, rint, round

U4351-J-Z125-8-76 291

llround, llroundf, llroundl

llround, llroundf, llroundl - Round off to nearest whole number

Definition #include <math.h>

long long int llround(double x);

long long int llroundf (float x);

long long int llroundl (long double x);

Each of the functions returns the whole number nearest to x, represented as a number of
type long long int.

The return value is independent of the defined rounding mode. If the difference between x
and the rounded result is exactly 0.5, the larger whole number is returned.

Return val. integer represented as a number of type long long int
if successful.

undefined in the event of an overflow or underflow, errno is set to ERANGE to indicate
the error.

See also abs, ceil, floor, llrint, lrint, lround, rint, round

292 U4351-J-Z125-8-76

localeconv

localeconv - Query/change locale-specific data

Definition #include <locale.h>

struct lconv *localeconv(void);

localeconv sets the components of a structure of type struct lconv to values which
match the current locale. The supplied values can be used in formatted output to represent
monetary and non-monetary numerical values on a locale-specific basis.

At the start of the program the default locale is "C" (LC_C_C). The locale can be changed
by calling the setlocale function with the categories LC_MONETARY, LC_NUMERIC or
LC_ALL. When localeconv is called again, it matches the values in the structure compo-
nents to the new locale.

Return val. Pointer to the structure in which the values have been entered.

1. Components for non-monetary numerical values (LC_NUMERIC):

char *decimal_point
Decimal point.

char *thousands_sep
Separator for grouping the digits in front of the decimal point.

char *grouping
String whose elements specify the length of each group of digits.

2. Components for monetary values (LC_MONETARY):

char *int_curr_symbol

The international currency symbol appropriate to the locale. The first three
characters contain the alphabetic international currency symbol, in accordance with
the convention defined in ISO 4217:1897. The fourth character is the separator
between the international currency symbol and the amount.
In the locale “De.EDF04F@euro”, the value “EUR” is entered as an alphabetical
currency symbol.

char *currency_symbol
The currency symbol corresponding to the locale.

char *mon_decimal_point
Decimal point.

char *mon_thousands_sep
Separator for grouping the digits in front of the decimal point.

U4351-J-Z125-8-76 293

localeconv

char *mon_grouping
String whose elements specify the length of each group of digits.

char *positive_sign
String indicating a non-negative amount.

char *negative_sign
String indicating a negative amount.

char int_frac_digits
Number of decimal places for an internationally structured amount.

char frac_digits
Number of decimal places for a locally structured amount.

char p_cs_precedes
1 if the currency symbol precedes the non-negative amount.
0 if the currency symbol follows the non-negative amount.

char n_cs_precedes
1 if the currency symbol precedes the negative amount.
0 if the currency symbol follows the negative amount.

char p_sep_by_space
1 if the currency symbol is separated from a non-negative amount by a space.
0 if not.

char n_sep_by_space
1 if the currency symbol is separated from a negative amount by a space.
0 if not.

char p_sign_posn
Position of the positive_sign for a non-negative amount.

char n_sign_posn
Position of the negative_sign for a negative amount.

The char elements of grouping and mon_grouping define the number of digits for the groups
to the left of the decimal point, beginning with the first group to the left of the decimal point
(e.g. thousands). The entries are interpreted as follows:

CHAR_MAX Corresponds to the highest EBCDIC value (255) and causes no further
grouping to be carried out.

0 The null byte causes the entry of the preceding char element to apply to the
grouping of all remaining digits.

Others The integer value applies to the number of digits in the current group. The
next char element defines the number of digits in the next group.

294 U4351-J-Z125-8-76

localeconv

The values of p_sign_posn and n_sign_posn are interpreted as follows:

0 Amount and currency_symbol are enclosed in parentheses.

1 The sign precedes the amount and currency_symbol.

2 The sign comes after the amount and currency_symbol.

3 The sign immediately precedes currency_symbol.

4 The sign comes immediately after currency_symbol.

Notes The available locales are described in chapter “Locale” on page 83.

The components of the supplied structure must not be explicitly overwritten by the user.
New values for the structure can be supplied only by calling localeconv.

In the current locale, no values can be defined for various structure components. This is
indicated for components of type char * by a pointer to "", and for components of type char
by the value CHAR_MAX (value 255).

See also setlocale

U4351-J-Z125-8-76 295

localtime

localtime - Date and current time as a structure

Definition #include <time.h>

struct tm *localtime(const time_t *sec_p);

localtime interprets the time value of type time_t as the number of seconds that have
elapsed since January 1, 1950 00:00:00 (local time). Using this value, localtime calcu-
lates the date and the time and stores the result in a structure of type tm.
In this implementation, localtime corresponds to the gmtime function. Both return the
local time.

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, localtime interprets the value in time_t as
the number of seconds that have elapsed since 1.1.1970 00:00:00 (Greenwich MeanTime)
and uses this to calculate the local time, taking account of the settings for the time zone and
summertime/wintertime conversions.

Return val. Pointer to the calculated structure. localtime stores the result in a structure declared in
<time.h> as follows:

struct tm
{
 int tm_sec; /* seconds (0-59) */
 int tm_min; /* minutes (0-59) */
 int tm_hour; /* hours (0-23) */
 int tm_mday; /* day of the month (1-31) */
 int tm_mon; /* month from the start of the year (0-11) */
 int tm_year; /* years since 1900 */
 int tm_wday; /* weekday (0-6, Sunday=0) */
 int tm_yday; /* days since January 1 (0-365) */
 int tm_isdst; /* daylight saving time flag */
};

Note localtime writes its result into an internal C data area that is overwritten with each call!
In addition, localtime and gmtime use the same data area, i.e. if they are called consec-
utively, the result of the first call is overwritten!

296 U4351-J-Z125-8-76

localtime

Example #include <time.h>
#include <stdio.h>

struct tm *t;
time_t clk;
char *s;

int main(void)
{
 clk = time((time_t *)0);
 t = localtime(&clk);
 printf("Year: %d\n", t->tm_year + 1900);
 printf("Time in hours: %d\n", t->tm_hour);
 printf("Day of the year: %d\n", t->tm_yday);
 s = asctime(t);
 printf("%s", s);
 return 0;
}

See also asctime, ctime, gmtime, localtime, time

U4351-J-Z125-8-76 297

log

log - Natural logarithm

Definition #include <math.h>

double log(double x);

log calculates the natural logarithm of the positive floating-point number x to the base e.

Return val. ln(x) for positive x.

-HUGE_VAL if x is less than or equal to 0. In addition, errno is set to EDOM (domain
error).

-HUGE_VAL if x is equal to 0. In addition, errno is set to ERANGE.

Example #include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Example of log(x): Please enter x\n");
 if(scanf("%lf", &x) == 1)
 printf("x = %g log(x) = %g\n", x, log(x));
 return 0;
}

See also log10, exp

298 U4351-J-Z125-8-76

log10

log10 - Logarithm to the base 10

Definition #include <math.h>

double log10(double x);

log10 calculates the logarithm of the positive floating-point number x to the base 10.

Return val. lg(x) for positive x.

-HUGE_VAL if x is less than 0. In addition, errno is set to EDOM (domain error).

-HUGE_VAL if x is equal to 0. In addition, errno is set to ERANGE.

Example #include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Example of log10(x): Please enter x\n");
 if(scanf("%lf", &x) == 1)
 printf("x = %g log10(x)= %g\n", x, log10(x));
 return 0;
}

See also log, exp

U4351-J-Z125-8-76 299

longjmp

longjmp - Non-local jump

Definition #include <setjmp.h>

void longjmp(jmp_buf env, int value);

longjmp can only be used in association with the setjmp function. This is because a
longjmp call causes the program to branch to a position previously “marked” with setjmp.
In contrast to goto jumps, which are only admissible within the same function (i.e. locally),
longjmp and setjmp enable the transfer of control from any given function to some other
active function (non-local jump).

setjmp stores the current program status (address in the C runtime stack, program counter,
register contents) in a variable of type jmp_buf (defined in <setjmp.h>).
longjmp restores the program status stored by setjmp, and the program is then continued
with the statement immediately following the setjmp call.

Parameter jmp_buf env
Field in which setjmp has stored its values. The type jmp_buf is defined in <setjmp.h>.

int value
Integer interpreted as the return value of the setjmp call when program execution is
resumed. If value is equal to 0, setjmp returns a value of 1; 0 would imply that control
was transferred "normally" at the position after the setjmp call, i.e. that no branch was
made with longjmp (see setjmp for further information).

Notes The behavior is undefined if longjmp is called with an env argument that was not previously
given a value by means of a setjmp call.

The function containing the setjmp call with the env variable must still be active when
longjmp is activated with the same variable, i.e. this function should not have been termi-
nated in the meantime (e.g. with exit or return).

Non-local jumps are useful in the handling of interrupts (see signal). For example, if error
handling or interrupt handling is carried out in routines on a low level (i.e. when a number
of previously called functions are still active), longjmp and setjmp can be used to
circumvent normal processing of still active functions and immediately branch to a function
on a higher level. A longjmp call from an interrupt or error handling routine flushes the
entries in the runtime stack up to the position marked by setjmp. In other words, functions
that were active thus far on a lower level are now no longer active, and the program is
continued on a higher level.

300 U4351-J-Z125-8-76

longjmp

When program execution is resumed, the variables have the same values they would have
received following a goto call:
Global variables have the values that they had at the time of the longjmp call.
Register variables and other local variables are undefined, i.e. they should be checked and
re-initialized, if required.

Example Text I/O in an interactive text editor represents a typical use for longjmp and setjmp.
When the program is interrupted during input or output as a result of an externally origi-
nating signal (e.g. when the K2 key is pressed after "please acknowledge" or in response
to an input prompt), text I/O is terminated. Otherwise, the text editor continues with
I/O operations.
The following program shows how this can be implemented with setjmp and longjmp (only
illustrates signal handling - not an editor!):

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>

FILE *fp;
jmp_buf env;

void intr(int sig)
{
 printf("\n ***** You don't want the text? ****** \n");
 longjmp(env,0);
}

int main(void)
{
 int c; char reply;

 setjmp(env);
 signal(SIGINT,intr);
 printf("Text output? (y•n):\n");
 scanf("%1s",&reply); /* Interruption possible with K2 */
 if(reply == 'y')
 {
 fp = fopen("text","r"); /* File text must exist */
 while((c=getc(fp)) != EOF)
 putc((char)c,stdout); /* Interruption of text output possible
 ¸ /* with K2 after "please acknowledge" */
 }
 else printf("No text output\n");
 return 0;
}

See also setjmp, signal

U4351-J-Z125-8-76 301

lrint, lrintf, lrintl

lrint, lrintf, lrintl - Round off to nearest whole number

Definition #include <math.h>

long int lrint(double x);

long int lrintf (float x);

long int lrintl (long double x);

Each of the functions returns the whole number nearest to x, represented as a number of
type long int.

The return value is rounded off in accordance with the rounding mode currently set for the
system. If the rounding mode is ‘round-to-nearest’ and if the difference between x and the
rounded result is exactly 0.5, the nearest even number is returned.

If the rounding mode currently set rounds off in the direction of positive infinity, then lrint
is equivalent to ceil. If the defined rounding mode rounds off in the direction of negative
infinity, then lrint is equivalent to floor.
In this version, the rounding mode is preset in the direction of positive infinity.

Return val. integer represented as a number of type long int
if successful.

undefined in the event of an overflow or underflow, errno is set to ERANGE to indicate
the error.

Note In this version, the rounding mode is preset in the direction of positive infinity.

See also abs, ceil, floor, llrint, llround, lround, rint, round

302 U4351-J-Z125-8-76

lround, lroundf, lroundl

lround, lroundf, lroundl - Round off to nearest whole number

Definition #include <math.h>

long int lround(double x);

long int lroundf (float x);

long int lroundl (long double x);

Each of the functions returns the whole number nearest to x, represented as a number of
type long int.

The return value is independent of the defined rounding mode. If the difference between x
and the rounded result is exactly 0.5, the larger whole number is returned.

Return val. integer represented as a number of type long long int
if successful.

undefined in the event of an overflow or underflow, errno is set to ERANGE to indicate
the error.

See also abs, ceil, floor, llrint, llround, lrint, rint, round

U4351-J-Z125-8-76 303

lseek, lseek64

lseek, lseek64 - Position read/write pointer (elementary)

Definition #include <stdio.h>

off__t lseek(int fd, off_t offset, int loc);
off64_t lseek64(int fd, off64_t offset, int loc);

lseek and lseek64 position the read/write pointer for the file with file descriptor fd
according to the specifications in offset and loc. It is thus possible for you to process a file
non-sequentially. The return value from lseek and lseek64 is the current position in the
file.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call lseek. lseek64 is then
used implicitly with the appropriate parameters.

– Otherwise, you have to call lseek64.

There is no functional difference between lseek and lseek64, except that the offset type
off64_t and the return type off64_t are used for lseek64.

Text files (SAM, ISAM) can be absolutely positioned to the beginning or end of the file as
well as to any position previously marked with tell.

Binary files (PAM, INCORE) can be positioned absolutely (see above) or relatively, i.e.
relative to beginning of file, end of file, or current position (by a desired number of bytes).
SAM files are always processed as text files with elementary text functions.

Parameter int fd
File descriptor of the file whose read/write pointer is to be positioned.

off_t / off64_t offset, int loc
Since the meaning, combination options, and effects of these parameters differ for text
and binary files, they are individually described in the following.

Text files (SAM, ISAM)

Possible parameter values:

offset 0L or value determined by a previous tell/lseek call.
0LL or value determined by a previous seek64 call.

offset
(64-bit interface)

0LL or value determined by a previous ftell/ftell64 call.

loc SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

304 U4351-J-Z125-8-76

lseek, lseek64

Meaningful combinations and their effects:

Binary files (PAM, INCORE)

Possible parameter values:

Meaningful combinations and their effects:

offset loc Effect

tell/lseek value or
lseek64 value

SEEK_SET Position to the location marked by tell or
lseek/lseek64.

0L or 0LL SEEK_SET Position to the beginning of the file.

0L or 0LL SEEK_CUR Query current position without positioning.

0L or 0LL SEEK_END Position to the end of the file.

offset Number of bytes by which the current read/write pointer is to be shifted. This
number may be a positive number:
forward positioning toward end of file negative number:
backward positioning toward beginning of file
OL: absolute positioning to beginning or end of file.

ort For absolute positioning to the beginning or end of the file, the point to which the
read/write pointer is to be shifted.
For relative positioning, the point from which the read/write pointer is to be shifted
by offset bytes:
SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

offset loc Effects

0L or 0LL SEEK_SET Position to the beginning of the file.

0L or 0LL SEEK_CUR Query current position without positioning.

0L or 0LL SEEK_END Position to the end of the file.

positive number SEEK_SET
SEEK_CUR
SEEK_END

Forward positioning from beginning of file,
from current position,
from end of file (beyond the end of file).

negative number SEEK_CUR
SEEK_END

Backward positioning from current position, from end
of file.

tell/lseek value or
lseek64 value

SEEK_SET Position to the location marked by tell or
lseek/lseek64.

U4351-J-Z125-8-76 305

lseek, lseek64

Return val. The position in the file if successful, i.e.
for binary files, the number of bytes that offsets the read/write pointer from
the beginning of the file;
for text files, the absolute position of the read/write pointer.

-1 if an error occurs.
In addition, the corresponding error information is stored in the errno variable:
EBADF: Invalid file descriptor
ESPIPE: Invalid positioning
EINVAL: Invalid argument.
EMDS: For binary file opened for reading only, positioned after the end of the
file.

Notes The lseek(fd, 0L, SEEK_CUR) and tell(fd) calls are equivalent, i.e. they both call the
current position in the file without positioning it.

If new records are written to a text file (opened for creation or in append mode) and an
lseek/lseek64 call is issued, any residual data is first written from the internal C buffer to
the file and terminated with a newline character (\n).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, lseek/lseek64
does not cause a change of line (or change of record), i.e. the data is not automatically
terminated with a newline character when writing from the buffer. Subsequent data
lengthens the record in the file. When an ISAM file is read, therefore, only those newline
characters explicitly written by the program are read in.

If you position past the end of file in the case of a binary file opened for writing, a “gap”
appears between the last physically stored data and the newly written data. Reading from
this gap returns binary zeros.
If you position past the end of a binary file opened for reading only, an error occurs (EMDS).

System files (SYSDTA, SYSLST, SYSOUT) cannot be positioned.

Since information on the file position is stored in a field that is 4 bytes long, the following
restrictions apply to the size of SAM and ISAM files when processing them with
tell/lseek:

1. SAM file

Record length ≤ 2048 byte

Number of records/block ≤ 256

Number of blocks ≤ 2048

306 U4351-J-Z125-8-76

lseek, lseek64

2. ISAM file

Example The following program reads the file passed as the first argument in the call from position
10 onwards and appends its contents to the end of another file if a second argument is
specified. Otherwise, it writes to the standard output (only works with binary files, i.e. with
PAM files in this case):

#include <stdio.h>
#include <stdlib>

int fd1, fd2;
long result;
char c;

int main(int argc, char *argv[])
{
 if((fd1 = open (argv[1],0)) < 0) exit(1);
 if(argc < 3)
 fd2 = 1;
 else
 fd2 = open(argv[2], 1);

 result = lseek(fd1, 10L, SEEK_SET);
 printf("current position in file1 : %ld\n", tell(fd1));

 /* Other possible position queries:
 printf("current position in file1: %ld\n, result);
 printf("current position in file1: %ld\n, lseek(fd1, 0L, SEEK_CUR)); */

 while(read(fd1, &c, 1) > 0)
 write(fd2, &c, 1);
 close(fd1);
 close(fd2);
}

See also tell, fseek, fseek64, ftell, ftell64

Record length ≤ 32 Kbytes

Number of records ≤ 32 K

U4351-J-Z125-8-76 307

malloc

malloc - Reserve memory space

Definition #include <stdlib.h>

void *malloc(size_t n);

malloc allocates contiguous memory space of n bytes at execution time.

malloc is part of a C-specific memory management package which internally administers
memory areas that are requested and subsequently freed. Attempts are made to satisfy
new requests by first using areas that are already being managed and only then by the
operating system (cf. garbcoll function).

Return val. Pointer to the new memory area
provided malloc was able to allocate new memory space. This pointer may
be used for any data type.

NULL pointer if malloc was not able to provide the memory space, e.g. because the
memory space still available does not suffice for the request or because an
error occurred.

Notes The new data area begins on a double word boundary.

The actual length of the data area amounts to:
the requested length n + 8 bytes for internal administrative data. If necessary, this sum is
rounded up to the next power of 2.

If malloc does not find enough memory space in the list of free blocks, the memalloc
function is internally called in order to obtain more memory space from the system.

You should use the sizeof function to ensure that you are requesting sufficient space for
a variable.

A serious disruption in working memory may be expected if the length of the memory area
provided is exceeded when writing.

Example 1 The following program fragment requests memory space for 30 integer elements.

#include <stdlib.h>

int *int_array;
 .
 .
 .
int_array = (int *)malloc(30 * sizeof(int));

308 U4351-J-Z125-8-76

malloc

Example 2 Dynamic reservation of memory space for data on second-hand cars:

#include <stdio.h>
#include <stdlib.h>
#define MAX 20;

struct car {
 char *type;
 int age;
 long kilometers;
 char inspect[6];
 int cond;
 int price;
 struct car *n;
 } *list;

int main(void)
{
 int mark;
 if((list = (struct car *)malloc(sizeof(*list))) == NULL)
 {
 printf("Memory space exhausted\n");
 exit(1);
 }
/* N.B. !! The preceding malloc call only provided space for a pointer */
/* (4 bytes) for the member type. Space for the type identifier must still */
/* be provided. */

 if((list->type = (char *)calloc(1,20)) == NULL)
 exit(1); /* error */

 /* Input used car */
 scanf("%20s %d", list->type, &list->age);
 scanf("%d %6s %d %d", &list->kilometers, list->inspect, &list->cond,
 &list->price);
 list->n = NULL;

 /* print input values */
 printf("%s\n%d\n", list->type, list->age);
 printf("%d\n%.6s\n%d\n%d", list->kilometers, list->inspect,
 list->cond, list->price);

 /* free memory space */
 free(list);
 return 0;
}

See also calloc, realloc, free, garbcoll, memalloc, memfree

U4351-J-Z125-8-76 309

mblen, mbrlen

mblen - Determine number of bytes of a multibyte character

Definition #include <stdlib.h>

int mblen(const char *s, size_t n);

mblen returns the number of bytes of a multibyte character to which s points. A maximum
of n bytes in s are evaluated.

Return val. -1 if n = 0.

0 if s is a NULL pointer or points to a null byte (\0).

1 otherwise.

Note In this implementation, there are no characters that consist of several bytes. Multibyte
characters always have a length of 1.

See also mbstowcs, mbtowc, wcstombs, wctomb

mbrlen - Determine remaining length of a multibyte character

Definition #include <wchar.h>

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

mbrlen determines the number of bytes as of position *s that are needed to complete a
multibyte character. A maximum of n bytes are examined.

mbrlen is equivalent to the call
mbrtowc(NULL, s, n, ps!= NULL ? ps: internal)
where internal is the mbstate_t object for the mbrlen function.

Description: see mbrtowc.

310 U4351-J-Z125-8-76

mbrtowc

mbrtowc - Complete multibyte character and convert to wide character

Definition #include <wchar.h>

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning with the
byte pointed to by *s to determine the number of bytes needed to complete the next
multibyte character (including any shift sequences). If mbrtowc can complete the multibyte
character, it determines the value of the corresponding wide character and then, if pwc is
not a null pointer, stores that value in the object pointed to by *pwc.
If the corresponding wide character is the null wide character, the resulting state described
is the initial conversion state.
If s is a null pointer, mbrtowc is equivalent to the call
mbrtowc(NULL, "", 1, ps)
In this case, the values of the parameters pwc and n are ignored.

Return val. Depending on the value of the current conversion state, mbrtowc returns the first of the
following that applies:

0 if the next n or fewer bytes complete a valid multibyte character that corre-
sponds to the null wide character.

Number of bytes needed to complete the multibyte character
if the next n or fewer bytes complete a valid multibyte character. The value
stored is the wide character corresponding to that multibyte character.

(size_t)-2 if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character. No value is stored.

(size_t)-1 if an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid multibyte character (no value is stored);
the value of the macro EILSEQ is stored in errno, and the conversion state
is undefined.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also mblen, mbtowc, wcstombs, wctomb

U4351-J-Z125-8-76 311

mbsinit

mbsinit - Test for initial conversion state

Definition #include <wchar.h>

int mbsinit(const mbstate_t *ps);

If ps is not a null pointer, mbsinit determines whether whether the mbstate_t object
pointed to by ps describes an initial conversion state.

Return val. ≠ 0 if ps is a null pointer or points to an object the describes an initial conversion
state.

0 otherwise.

312 U4351-J-Z125-8-76

mbsrtowcs

mbsrtowcs - Convert multibyte string to wide character string

Definition #include <wchar.h>

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

mbsrtowcs converts a sequence of multibyte characters, beginning in the conversion state
described by the object pointed to by *ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted
characters are stored into the array pointed to by dst. Each conversion takes place as if by
a call to the mbrtowc function.

Conversion stops on encountering a terminating null character, which is also converted and
stored in the array.

Conversion stops earlier in two cases:

– when a sequence of bytes is encountered that does not form a valid multibyte character
or

– if dst is not a null pointer, when len codes have been stored into the array pointed to by
dst.

If dst is not a null pointer, the pointer object pointed to by src is assigned one of the following
values:

– a null pointer if conversion stopped due to reaching a terminating null character

– the address just past the last multibyte character converted (if any).

If dst is not a null pointer and if the conversion stopped due to reaching a terminating null
character, the resulting state described is the initial conversion state.

Return val. (size_t)-1 if a conversion error occurs, i.e. a sequence of bytes that do not form a valid
multibyte character are encountered. The value of the EILSEQ macro is
stored in errno, and the conversion state is undefined.

Number of successfully converted multibyte chatacters
otherwise. The terminating null character, if any, is not included in the count.

See also mblen, mbtowc, wcstombs, wctomb

U4351-J-Z125-8-76 313

mbstowcs

mbstowcs - Convert multibyte string to wide character string

Definition #include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

mbstowcs converts a sequence of multibyte characters in the string pointed to by s to the
corresponding wide characters (of type wchar_t) and writes a maximum of n wide
characters to the area specified by pwcs.
Conversion continues until either n values have been converted or the null value is encoun-
tered (the null value is converted to the wchar_t value 0).

If pwcs is a null pointer, mbstowcs returns the length needed to convert the entire string
(regardless of the value of n), but does not store any values.

If an invalid character is encountered, mbstowcs returns the value (size_t)-1.

The wide characters stored by mbstowcs in the pwcs area correspond to the values of the
individual bytes in string s.

Return val. Number of wide characters stored in pwcs (excluding the terminating null byte)
if pwcs is not a null pointer.
If the return value corresponds to the value n, the resulting area pwcs is not
terminated with the null byte.

Length required to convert the entire string,
if pwcs is a null pointer. No values are stored.

(size_t)-1 if an error occurs.

Notes The behavior is undefined if memory areas overlap.

No characters consisting of multiple bytes are implemented in this version. Multibyte
characters and wide characters always have a length of 1 byte.
The shift state of the multibyte character is ignored.

See also mblen, mbtowc, wcstombs, wctomb

314 U4351-J-Z125-8-76

mbtowc

mbtowc - Convert multibyte character to wide character

Definition #include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

mbtowc converts a multibyte character in s to the corresponding wide character (type
wchar_t) and stores this value in the area pwc. A maximum of n bytes in s are evaluated.

The wide character stored by mbtowc in the area pwc corresponds to the value of the byte
in s.

No assignment takes place if
– pwc or s is a NULL pointer
– n = 0.

Return val. -1 if n = 0.

0 if s is a NULL pointer or points to a null byte.

1 otherwise.

Note This version of the C runtime system only supports one-byte characters as wide character
codes. Multibyte characters and wide characters always have a length of 1 byte.

See also mblen, mbstowcs, wcstombs, wctomb

U4351-J-Z125-8-76 315

memalloc

memalloc - Reserve memory space

Definition #include <stdlib.h>

void *memalloc(size_t n);

memalloc allocates contiguous memory space of n bytes at execution time.

memalloc passes the request for memory space directly to the appropriate operating
system call. This function is particularly suitable for memory areas with a size of more than
2 Kbytes (also see memfree).

Return val. Pointer to the new memory area
provided memalloc was able to allocate new memory space. This pointer
may be used for any data type.

NULL pointer if memalloc was not able to provide the memory space, e.g. because the
memory space still available does not suffice for the request.

Notes The new data area begins on a doubleword boundary.

The requested length n is rounded up to the next multiple of 2 Kbytes.

A serious disruption in working memory may be expected if the length of the memory area
provided is exceeded when writing.

The memory area requested with memalloc can be released again by using memfree.

See also memfree

316 U4351-J-Z125-8-76

memchr

memchr - Search for a character in memory area

Definition #include <string.h>

void *memchr(const void *s, int c, size_t n);

memchr searches for the first occurrence of the character c in the first n bytes of the memory
area to which s points.

Return val. Pointer to the position of c in area s
if successful.

NULL pointer if c is not contained in the specified area.

Notes The function is suitable for processing character arrays containing the null byte (\0), since
memchr does not interpret the null byte as the ’end of text’.

The following two prototypes of the memchr function are applicable to C++:
const void *memchr(const void *s, int c, size_t n);
 void *memchr(void *s, int c, size_t n);

See also memcmp, memcpy, memset

U4351-J-Z125-8-76 317

memcmp

memcmp - Compare memory areas

Definition #include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

memcmp compares the contents of the first n bytes of the memory areas to which s1 and s2
point.

Return val. < 0 In the first n bytes, the contents of s1 are lexically smaller than the contents
of s2.

0 In the first n bytes, the contents of s1 and s2 are of equal lexical size (i.e.
identical).

> 0 In the first n bytes, the contents of s1 are lexically larger than the contents of
s2.

Note This function is suitable for processing character arrays containing the null byte (\0), since
memcmp does not interpret the null byte as the ’end of text’.

See also memchr, memcpy, memset

318 U4351-J-Z125-8-76

memcpy, memfree

memcpy - Copy memory area

Definition #include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

memcpy copies the first n bytes of the memory area to which s2 points into the memory area
pointed to by s1.

Return val. Pointer to the memory area s1.

Notes This function is suitable for processing character arrays containing the null byte (\0), since
memcpy does not interpret the null byte as the ’end of text’.

memcpy does not check whether data in result area s1 is in danger of being overwritten.

The behavior is undefined if memory areas overlap.

See also memchr, memcmp, memset

memfree - Free memory area

Definition #include <stdlib.h>

void memfree(const void *p, size_t n);

memfree releases n bytes of the memory area to which p points. p must be the result of a
preceding memalloc call.

memfree passes on the release request directly to the appropriate operating system call.
memfree can only be used in conjunction with memalloc. Both functions are mainly suitable
for memory areas with a size of more than 2 Kbytes.

Notes memfree can only be used to free a memory area requested by memalloc.

The values passed to memfree must match those of the corresponding memalloc call.
Random values will lead to a serious disruption in working memory!

See also memalloc

U4351-J-Z125-8-76 319

memmove, memset

memmove - Copy memory area

Definition #include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

memmove copies the first n bytes of the memory area to which s2 points to the memory area
to which s1 points.
memmove first copies the n bytes to a temporary array that does not overlap memory areas
s1 and s2 and only then to memory area s1.

Return val. Pointer to memory area s1.

Notes This function is suitable for processing character arrays containing the null byte (\0), since
memmove does not interpret the null byte as the ’end of text’.

In contrast to memcpy, memmove also works with memory areas that overlap.

See also memcpy

memset - Initialize memory area

Definition #include <string.h>

void *memset(void *s, int c, size_t n);

memset copies the value of character c to the first n bytes of the memory area to which s
points.

Return val. Pointer to the memory area s.

Notes This function is suitable for processing character arrays containing the null byte (\0), since
memset does not interpret the null byte as the ’end of text’.

memset does not check whether data in result area s is in danger of being overwritten.

See also memchr, memcmp, memcpy

320 U4351-J-Z125-8-76

mktemp

mktemp - Generate a unique temporary file name

Definition #include <stdio.h>

char *mktemp(char *model);

mktemp generates unique names for temporary SAM files from a string model, which must
contain at least 8 characters. The name is composed from the characters in model as
follows:

– The first three characters are replaced by "#T.".

– The fourth character is replaced by a character which varies for each mktemp call
(letters A-Z, digits 0-9).

– The last four characters are replaced by the TSN of the current task (since LOGON).

– Characters between the first and last four characters remain unchanged.

For example, if the contents of model were "XXXX.ABC.XXXX" and the TSN of the running
task were 6082, the temporary name generated by mktemp at the first call would be:

#T.A.ABC.6082

Return val. Pointer to the result string containing the new name
if successful.

NULL pointer if an error occurred, e.g. because model contains less than 8 characters or
because the maximum permissible number (36) of mktemp calls has been
exceeded (see notes for further information).

Notes Since the letters A-Z and the digits 0-9 are used for the formation of a unique name, the
number of mktemp calls is limited to 36 per program run.

Temporary files are automatically deleted on termination of a task (LOGOFF). However, the
files are retained if the standard prefix (#) for temporary files was changed during system
generation.

U4351-J-Z125-8-76 321

mktemp

Example The following program generates three unique temporary file names and opens the files for
writing and reading.

#include <stdio.h>
FILE *fp1, *fp2, *fp3;
char s[] = "XXXX.temp.XXXX";

int main(void)
{
 mktemp(s);
 fp1 = fopen(s,"w+r");
 printf("%s\n",s); /* generated name: #T.A.TEMP.6082 */

 mktemp(s);
 fp2 = fopen (s,"w+r");
 printf("%s\n",s); /* generated name: #T.B.TEMP.6082 */

 mktemp(s);
 fp3 = fopen (s,"w+r");
 printf("%s\n",s); /* generated name: #T.C.TEMP.6082 */
 return 0;
}

322 U4351-J-Z125-8-76

mktime

mktime - Convert date and time (calendar function)

Definition #include <time.h>

time_t mktime(struct tm *tm_p);

mktime converts the date and time which the user specifies in a structure of type tm to a
time specification of type time_t. This is the number of seconds that have elapsed since
January 1, 1950 00.00.00. Time specifications of type time_t can be passed as arguments
to other time functions (e.g. ctime, difftime).

(The time function supplies an analog return value, but always relative to the current local
time supplied by the computer.)

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, mktime returns the number of seconds that
have elapsed since 1.1.1970 00:00:00.

After time_t has been calculated, mktime completes the tm structure with the values for
weekday (0-6) and day since start of year (0-365) and converts the values of the other
components to the default value ranges (see also parameter description).

Parameter struct tm *tm_p
Pointer to a structure of type tm which is supplied by the user with the date and time
and is then updated by mktime. The default value ranges are given in parentheses.

 int tm_sec; seconds (0-59)
 int tm_min; minutes (0-59)
 int tm_hour; hours (0-23)
 int tm_mday; day of the month (1-31)
 int tm_mon; months since the start of the year (0-11)
 int tm_year; years since 1900
 int tm_wday; weekday (0-6, Sunday=0)
 int tm_yday; days since January 1 (0-365)
 int tm_isdst; daylight saving time flag:
 0 daylight saving time is not in effect
 >0 daylight saving time is in effect
 <0 information is not available

1. User-specified date and time entries

The components tm_wday and tm_yday need not be entered since mktime ignores
these in calculating time_t and then supplies them itself with suitable values.

U4351-J-Z125-8-76 323

mktime

All other components must have a value. These values are not limited to the above-
mentioned default value ranges, i.e. they may be greater or smaller.

Examples:

-1 in tm_hour means 1 hour before midnight,
0 in tm_mday means the last day of the previous month,
-2 in tm_mon means 2 months before January in year tm_year.

2. Structure updating by mktime

The components tm_wday and tm_yday are set to the values that match the user
specifications.
The other components are assigned so that their values correspond to the above-
mentioned default ranges.
The value of tm_mday is not assigned unless tm_mon and tm_year have been
defined.

Return val. Integer>0 for local times from January 1 1950 00.00.00: the number of seconds which
have elapsed since then (positive value).

Integer<0 for local times prior to January 1 1950 00.00.00: the number of seconds
which have elapsed up to that point (negative value)

(time_t) - 1 if the time cannot be represented.

Note mktime returns valid values for times from 1.1.1880 00:00:00 to 1.1.2021 00:00:00.

See also asctime, ctime, difftime, ftime, gmtime, localtime, time

324 U4351-J-Z125-8-76

modf

modf - Split a number into its integer and fractional parts

Definition #include <math.h>

double modf(double n, double *i_p);

modf resolves a floating-point number n into its integral and fractional parts. The result of
modf is the signed fraction and the integral part, the latter being returned indirectly via a
result parameter i_p.

Return val. Fractional part of n with sign.

Note Note that the argument i_p must be a pointer!

Example The following program resolves the number -456.789 into its integral and fractional parts.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, g;
 x = modf(-456.789, &g);
 printf("Fraction : %g\nIntegral part : %g\n", x, g);
 return 0;
}

See also frexp, ldexp

U4351-J-Z125-8-76 325

offsetof

offsetof - Offset of a structure component from the start of the
structure

Definition #include <stddef.h>

size_t offsetof(type,component);

offsetof returns the offset in bytes between the structure component component and the
start of the structure (label) of type type.
offsetof is a macro.

Return val. Offset of the structure component from the start of the structure in bytes.

Note If the specified structure component is a bit field, the behavior is undefined.

Example #include <stdio.h>
#include <stddef.h>

struct S1 {
 char c;
 int i;
 double d;
};

int main(void)
{
 typedef struct S1 t_s1;

 printf("offsetof(struct S1, c) = %d\n", offsetof(struct S1, c));
 printf("offsetof(struct S1, i) = %d\n", offsetof(struct S1, i));
 printf("offsetof(struct S1, d) = %d\n", offsetof(struct S1, d));
 printf("\n");

 printf("offsetof(t_s1, c) = %d\n", offsetof(t_s1, c));
 printf("offsetof(t_s1, i) = %d\n", offsetof(t_s1, i));
 printf("offsetof(t_s1, d) = %d\n", offsetof(t_s1, d));
 printf("\n");
 return 0;
}

326 U4351-J-Z125-8-76

open, open64

open, open64 - Open a file (elementary)

Definition #include <stdio.h>

int open(const char *f_name, int mode);
int open64(const char *f_name, int mode);

open and open64 open the file f_name with an access mode that depends on the (octal)
value of mode. open and open64 return a valid file descriptor that is used later to identify the
file in elementary access operations (read, write).

There is no functional difference between open and open64, except that open64 sets the
bit O_LARGEFILE implicitly in the file status flag. The open64 function corresponds to the
use of the open function where O_LARGEFILE is set to oflag.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call open. open64 is then
used implicitly with the appropriate parameters.

– Otherwise, you have to call open64.

Parameter const char *f_name
String specifying the name of the file to be opened. f_name may be:

– any valid BS2000 file name
– "link=linkname"

linkname identifies a BS2000 link name
– "(SYSDTA)", "(SYSOUT)", "(SYSLST)"

the appropriate system file
– "(SYSTERM)"

terminal Input/Output
– "(INCORE)"

temporary binary file that is only initialized in virtual memory.

int mode
Integer variable whose octal value specifies the desired access mode, namely:

0000 Open for reading. The file must already exist.

0001 Open for writing. The file must already exist. The previous contents are retained.

01001 Open for writing. If the file exists, the previous contents are deleted. If the file
does not exist, it is created.

0002 Open for reading and writing. The file must already exist. The previous contents
are retained.

01002 Open for reading and writing. If the file exists, the previous contents are deleted.
If the file does not exist, it is created.

U4351-J-Z125-8-76 327

open, open64

Return val. File descriptor positive number that is used later to identify the file in elementary access
operations (read, write).

-1 if the file could not be opened, e.g. due to the absence of access authori-
zation, entry of an invalid file name or link name etc.

Notes The BS2000 file name or link name can be written in both uppercase and lowercase. It is
automatically converted to uppercase.

If a non-existent file is created, the following applies by default:
With KR functionality (applies to C/C++ versions prior to V3.0 only), a SAM file with variable
record length and standard block length is created; with ANSI functionality, an ISAM file with
variable record length and standard block length is created.
When opened with open or open64, SAM files are always text files.

By using a link name the following file attributes can be changed with the ADD-FILE-LINK
command: access method, record length, record format, block length and block format. See
also section “System files (SYSDTA, SYSOUT, SYSLST)” on page 60.

Whenever the old contents of an already existing file are deleted (0003, 01001), the catalog
attributes of this file are preserved.

Position of the read/write pointer in append mode
If you explicitly position the read/write pointer away from the end of a file (lseek/lseek64)
that was opened in append mode (0401, 0402), the way it is handled depends on whether
you are using KR or ANSI functionality.
KR functionality (applies to C/C++ versions prior to V3.0 only): The current read/write
pointer is ignored only when writing with the elementary function write and automatically
positioned to the end of the file.
ANSI functionality: The current read/write pointer is ignored for all write functions and
automatically positioned to the end of the file.

An attempt to open a non-existent file in the read (0000, 0002), update (0001), or append
(0401, 0402) mode results in an error.

0003 Open for writing and reading. If the file exists, the previous contents are deleted.
If the file does not exist, it is created.

0401 Open for appending to the end of the file. The file must already exist. The file is
positioned to end of file, i.e. the previous contents are preserved and the new
text is appended to the end of the file.

0402 Open for appending to the end of the file and for reading. The file must already
exist. The old contents are preserved and the new text is appended to the end
of the file. After it is opened, the file is positioned to the end of the file when KR
functionality is being used (applies to C/C++ versions prior to V3.0 only), with
ANSI functionality to the start of the file.

328 U4351-J-Z125-8-76

open, open64

You may open a file for different access modes simultaneously, provided these modes are
compatible with one another within the BS2000 data management system.

(INCORE) files can be only opened for writing (01001) or for writing and reading (0003).
Data must first be written. To read in the written data again, the file must be positioned to
beginning of file with the lseek/lseek64 function.

When a program starts, the standard files for input, output, and error output are automati-
cally opened with the following file descriptors:

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
<stdio.h>.

Example The following program opens the file joke twice (for reading) and processes it with different
file descriptors (fd1, fd2).

#include <stdio.h>

int fd1,fd2;
char c;
int n;

int main(void)
{
 /* open file "joke" for the
 first time for reading */
 if((fd1=open("joke",0)) == -1)
 /* error in the first open */
 printf("Error1\n");

 /* open file "joke" for the
 second time for reading */
 if((fd2=open("joke",0)) == -1)
 /* error in the second open */
 printf("Error2\n");

 /* reading is performed via fd1 until the first 'a' */
 while((n=read(fd1,&c,1)) > 0 && (c != 'a'))
 /* output the read in character on
 standard output */
 write(1,&c,n);

stdin: 0

stdout: 1

stderr: 2

U4351-J-Z125-8-76 329

perror

/* reading is now performed via fd2
 from the beginning of the file!!
 to the end of the file */
while((n=read(fd2,&c,1)) > 0)
 /* output the read in character on
 standard output */
 write(1,&c,n);

 /* reading continues via fd1 following
 the first 'a', until the end of the file */
 while((n=read(fd1,&c,1)) > 0)
 /* output the read in character on
 standard output */
 write(1,&c,n);
 return 0;
}

See also creat, creat64, fdopen, read, write, close

perror - Output error message

Definition #include <stdio.h>

void *perror(const char *s);

perror writes to the standard error output an error message corresponding to the error
code in the internal C variable errno. s, a string passed as an argument, is output first,
followed by a colon and the short error text from <errno.h>; the message is terminated with
a newline character:

s : <short error message>\n

The following error information is provided:

– a text which briefly describes the error,
– the name of the function with the error, and
– the DMS error code (hexadecimal), if any.

330 U4351-J-Z125-8-76

perror

Notes errno error texts may contain the appropriate DMS error codes as supplementary infor-
mation, e.g. in the case of I/O errors or when system commands are executed.
You will find a list of all errno error codes and error texts in the include file <errno.h>.

If a NULL pointer is passed as argument s, only the errno error text is output.

The contents of the area in which the error code and the error text are stored are not
explicitly deleted. This means that the previous contents are retained until they are
overwritten with appropriate information when a fresh error occurs. Consequently, perror
calls are only useful immediately after a function has provided an error return value.

With KR functionality (applies to C/C++ versions prior to V3.0 only) a value of type char *
is returned. It contains a pointer to an internal C buffer with the error message. The contents
are overwritten for each new call to perror.

Example The following program opens the file fnam for reading. If the file does not exist, the following
error message is printed on the standard output:

Program fopen: dataset not found (cmd: OPEN), errorcode=DD33

DD33 is the DMS error code.

#include <stdio.h>

int main(void)
{
 FILE *fp;
 if((fp = fopen("fnam", "r")) == NULL)
 perror("Program fopen");
 return 0;
}

U4351-J-Z125-8-76 331

pow

pow - General exponential function

Definition #include <math.h>

double pow(double x, double y);

pow calculates xy.
If x is 0, y must be positive.
If x is negative, y must be an integer.

Return val. xy if x, y and the result are in the permissible range of floating-point numbers.

+/-HUGE_VAL in the event of an overflow (sign depending on the sign for x) .
In addition, errno is set to ERANGE (result too large).

-HUGE_VAL if x is equal to 0 and y is less than 0. In addition, errno is set to EDOM.

1.0 if x and y are equal to 0.

undefined if x is less than 0 and y is not an integer. In addition, errno is set to EDOM.

Example The following program calculates xy for the input arguments x and y.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;
 scanf("%lf %lf", &x, &y);
 printf("%g**%g : %g\n", x, y, pow(x,y));
 return 0;
}

See also exp, hypot, log, log10, sinh, sqrt

332 U4351-J-Z125-8-76

printf

printf - Formatted output on standard output

Definition #include <stdio.h>

int printf(const char *format, argumentlist);

printf edits data (characters, strings, numerical values) for output according to the speci-
fications in the string format and writes this data to the standard output stdout. Numeric
values are converted from their internal representation into printable characters in the
process.

Parameter The format string may contain the following specifications:

– Ordinary characters (char)

These are output on a 1 : 1 basis.

– Control characters for white space, beginning with a backslash (\).

– Format statements, which begin with the percent sign (%).

Data passed in an argument list is formatted and converted in accordance with the
specifications in the format statements. One format statement is required per argument,
with the first format statement corresponding to the first argument and so forth.

Ordinary characters

All characters which are not elements of format statements and do not represent special
control characters (beginning with a backslash) are output unchanged. If the percent
character (%) is to be written, it must be specified twice in succession (%%).

Control characters for white space

Further information on converting these control characters is given in section “White
space” on page 55.

\n line feed

\t tab

\f form feed

\v vertical tab

\b bachspace

\r carriage return

U4351-J-Z125-8-76 333

printf

argumentlist
Variables or constants whose values are to be converted and formatted for output
according to the information in the format statements.
If the number of format statements does not match the number of arguments the
following applies:
If there are more arguments, the surplus arguments are ignored.
If there are fewer arguments, the results are undefined.

The format statement is described separately below for KR functionality and ANSI
functionality.

Format statement (KR functionality, applies to C/C++ versions prior to V3.0 only)

Format statements may be structured as follows:

 [l] {d�o�u�x}
 � �
 n .m � {D�O�U�X} �
 % [-][+][0][][]
 * .* � {f�e�g} �
 � �
 {c�s�%}

 � � � � �
 � 	

�

� 	

�

�
 � � �
 � � �
 1) 2) 3)

1. Every format statement must begin with a percent character (%).

2. General formatting characters, e.g. to control the output of signs, left or right justifi-
cation, width of the output field, etc.

3. Characters which specify the actual conversion.

334 U4351-J-Z125-8-76

printf

Meaning of the formatting characters:

- Left-justified alignment of the output field.
Default: right-justified alignment.

+ The result of a conversion with a sign is always output with a sign.
Default: only a negative sign (if present) is output.

0 Pad with zeros.
The output field is padded with zeros for all conversions.
Default: output field is padded with blanks.
Padding with zeros is also performed in the case of left-justified alignment
(formatting character –).

n Minimum total field width (including decimal point). If more digits are required for the
conversion of a number, this specification has no meaning. If the output is shorter
than the specified field width it is padded with blanks or zeros to make up the field
width (cf. formatting characters – and 0).

* The total field width (see n) is defined by an argument instead of in the format
statement. The current value (integer) must immediately precede the argument to
be converted or immediately precede the precision value (formatting character .m)
in the argument list (separated by a comma).

.m Precision.
e, f, g conversion: precise number of digits after the decimal point (maximum 20).
Default: 6 digits.
s conversion: maximum number of characters to be output. Default: all characters
up to the terminating null byte (\0).
In all other conversions the precision value is ignored.

.* The precision (see .m) is defined by an argument instead of in the format statement.
The current value (integer) must immediately precede the argument to be converted
in the argument list (separated by a comma).

U4351-J-Z125-8-76 335

printf

Meaning of the conversion characters:

l l before d, o, u, x:
Conversion of an argument of type long int
Identical to uppercase letters (D, O, U, X).

d, o, u, x
Representation of an integer (int) as a
signed decimal number (d),
unsigned octal number (o),
unsigned decimal number (u),
unsigned hexadecimal number (x).

f Floating-point number (float or double) in the format
[-]ddd.ddd
The decimal point character is determined by the locale (category LC_NUMERIC).
The default setting is the period.
The number of digits after the decimal point depends on the precision specification
in .m.
Default (no specification): 6 digits
If the precision is 0, the number is output without a decimal point.

e Floating-point number (float or double) in the format [-]d.ddde{+|-}dd.
The decimal point character is determined by the locale (category LC_NUMERIC).
The default setting is the period.
The number of digits after the decimal point depends on the precision specification
in .m.
Default (no specification): 6 digits
If the precision is 0, a decimal point with no digits after it is output.

g Floating-point number (float or double) in the f or e format.
The number of digits after the decimal point depends on the precision specification
in .m.
In each case, the representation chosen is the one that requires the least space
while maintaining precision.

c Format for the output of a single character (char). The character ’\0’ is ignored.

s Format for the output of strings.
The string should be terminated with ’\0’. printf writes as many characters of the
string as is specified in .m.
Default (no specification): printf writes all characters up to ’\0’.

% Print a %, no conversion.

336 U4351-J-Z125-8-76

printf

Format statement (ANSI functionality)

Format statements may be structured as follows:

 [{h�l�ll}] {d�i�o�u�x�X}
 � �
 � {D�O�U�p} �
 � �
 n .m � [L] {f�e�E�g�G} �
 % [-][+][Ë][#][0][][]
 * .* � [l] {c�s} �
 � �
 � [{h�l�ll}] n �
 � �
 %

 � � � � �
 � 	

�

� 	

�

�
 � � �
 � � �
 1) 2) 3)

1. Every format statement must begin with a percent character (%).

2. General formatting characters, e.g. to control the output of signs, left or right justifi-
cation, width of the output field, etc.

3. Characters which specify the actual conversion.

Meaning of the formatting characters:

- Left-justified alignment of the output field.
Default: right-justified alignment.

+ The result of a conversion with a sign is always output with a sign.
Default: only a negative sign (if present) is output.

Ë (blank)
If the first character of a string to be converted with a sign is not a sign the result is
prefixed by a blank.
The formatting character Ë is ignored if + is specified at the same time.

Conversion of the result to an alternative format.
o conversion: precision is increased so that the first digit of the result is the digit 0.
x or X conversion: the string 0x or 0X is prefixed to a result not equal to 0.
e, E, f, g and G conversion: the result always contains a decimal point, even if there
are no further digits (normally the result only contains a decimal point if it is followed
by at least one digit). In addition, trailing zeros are not omitted for g or G conversion.
The formatting character # has no effect in c, s, d, i or u conversions.

U4351-J-Z125-8-76 337

printf

0 Pad with zeros.
The output field is padded with zeros for the conversion of integers (d, i, o, u, x, X)
and floating-point numbers (e, E, f, g, G).
Default: the output field is padded with blanks.
0 is ignored if the formatting character – is specified or, in the case of the conversion
of integers, a precision of .m is specified.
The formatting character 0 has no effect in c, p and s conversions.

n Minimum total field width (including decimal point). If more digits are required for the
conversion of a number, this specification has no meaning. If the output is shorter
than the specified field width it is padded with blanks or zeros to make up the field
width (cf. formatting characters – and 0).

* The total field width (see n) is defined by an argument instead of in the format
statement. The current value (integer) must immediately precede the argument to
be converted or immediately precede the precision value (formatting character .m)
in the argument list (separated by a comma).

.m Precision.
d, i, o, u, x or X conversion: minimum number of digits to be output. Default: 1.
e, E, f conversion: precise number of digits after the decimal point (maximum 20).
Default: 6 digits.
g or G conversion: maximum number of significant places.
s conversion: maximum number of characters to be output.
Default: all characters up to the terminating null byte (\0).

.* The precision (see .m) is defined by an argument instead of in the format statement.
The current value (integer) must immediately precede the argument to be converted
in the argument list (separated by a comma).

Meaning of the conversion characters:

h h before d, i, o, u, x, X:
Conversion of an argument of type short.

h before n:
The argument is of type pointer to short int (no conversion).

l l before d, i, o, u, x, X:
Conversion of an argument of type long.
l before d, o, u is synonymous with uppercase D, O, U.

l before n:
The argument is of type pointer to long int (no conversion).

338 U4351-J-Z125-8-76

printf

ll ll before d, i, o, u, x, X :
Conversion of an argument of type long long int or unsigned long long int.

ll before n:
The argument is of type pointer to long long int.

L L before e, E, f, g, G:
Conversion of an argument of type long double.

d, i, o, u, x, X
Representation of an integer (int) as a
signed decimal number (d, i),
unsigned octal number (o),
unsigned decimal number (u),
unsigned hexadecimal number (x, X). For x the lowercase letters abcdef are used,
for X the uppercase letters ABCDEF.
The precision value .m indicates the minimum number of digits to be output. If the
value can be represented with fewer digits the result is padded with leading zeros.
The default value is precision 1. If the precision is 0 and the value is 0, there is no
output.

f Floating-point number (float or double) in the format [-]ddd.ddd
The decimal point character is determined by the locale (category LC_NUMERIC).
The default setting is the period.
The number of digits after the decimal point depends on the precision specification
in .m.
Default (no specification): 6 digits
If the precision is 0, the number is output without a decimal point.

e, E Floating-point number (float or double) in the format [-]d.ddde{+|-}dd.
The decimal point character is determined by the locale (category LC_NUMERIC).
The default setting is the period.
For E conversion the exponent is preceded by the uppercase letter E.
The number of digits after the decimal point depends on the precision specification
in .m.
Default (no specification): 6 digits
If the precision is 0, the number is output without a decimal point.

g, G Floating-point number (float or double) in the f or e format (or in the E format for
G conversion).
The number of significant places depends on the precision value .m.
The e or E format is only used if the exponent of the conversion result is less than
-4 or greater than the specified precision.

c Format for the output of a single character (char). The character ’\0’ is ignored.

p Conversion of an argument of type pointer to void.
The output is an 8-digit hexadecimal number (analogous to %08.8x).

U4351-J-Z125-8-76 339

printf

s Format for the output of strings.
The string should be terminated with ’\0’. printf writes as many characters of the
string as is specified in .m.
Default (no specification): printf writes all characters up to ’\0’.

n There is no conversion or output of the argument. The argument is of type pointer
to int. This integer variable is assigned the number of characters that printf has
generated for output up to this time.

% Print a % character, no conversion.

Return val. Number of characters output
if successful.

Integer < 0 if an error occurs.

Notes printf rounds to the specified precision when converting floating-point numbers.

printf does not convert one data type to another. A value must be explicitly converted
(e.g. with the cast operator) if it is not to be output in accordance with its type.

The data is not written immediately to the external file but is stored in an internal C buffer
(see section “Buffering” on page 53).

Maximum number of characters to be output:
With KR functionality (applies to C/C++ versions prior to V3.0 only) a maximum of 1400
characters can be output per printf call,
with ANSI functionality a maximum of 1400 characters per conversion element (e.g. %s).

Attempts to output non-initialized variables or to output variables in a manner inconsistent
with their data type can lead to undefined results.

The behavior is undefined if the percent sign (%) in a format statement is followed by an
undefined formatting or conversion character.

printf works like fprintf, except that the data is written to the standard output and not
to a file.

Example 1 Output of the date and time in the following form:

Thursday, February 14, 12:05 hours

The arguments weekday and month are pointers to strings terminated with ’\0’.

printf("%s, %s %d, %02d:%02d hours\n", weekday, day, month, hrs, min);

Example 2 Output of the number pi to 5 decimal places.

printf("pi = %.5f\n", 4 * atan(1.0));

340 U4351-J-Z125-8-76

printf

Example 3 The most common printf formats are self-explanatory in the way they are used in the oth-
er program examples. In the following table, you will find some additional format specifica-
tions listed along with their effects.
For clarity, the converted result is placed in > <.

See also fprintf, sprintf, putc, putchar, puts, scanf, fscanf

Format specification Argument() Result

%.6s
%10.5s
%-10.5s
%15.15s
%*.*s
%-*.*s

 "Konstanz"
 "Konstanz"
 "Konstanz"
 "Konstanz"
20,7,"Konstanz"
15,10,"Konstanz"

> Konsta<
> Konst<
> Konst <
> Konstanz<
> Konstan<
> Konstanz <

%8d
%-8d
%+d

721932
721932

> 721932<
> 721932 <
> +d<

%-*.*f
%-0*.*f
%04.*f

3,2,27.31928
1,12,19.84
12,10.60

> 27.32<
> 19.840000000000<
> 10.600000000000<

%-0*.*g
%e
%.10e
%10.10e

1,12,19.84
1712.1961
1712.1961
1712.1961

> 19.84<
> 1.712196e+03<
> 1.7121961000e+03<
> 1.7121961000e+03<

U4351-J-Z125-8-76 341

putc

putc - Write a character to a file

Definition #include <stdio.h>

int putc(int c, FILE *fp);

putc writes the character c to the file with file pointer fp at the current read/write position.

Return val. The written character c
if successful.

EOF otherwise.

Notes putc is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

The characters are not written immediately to the external file but are stored in an internal
C buffer (see section “Buffering” on page 53).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Example The following program reads characters from the standard input and writes them to the file
fnam.

#include <stdio.h>

FILE *fp;
int c;

int main(void)
{
 fp = fopen("fnam","w");
 while((c=getchar()) != EOF)
 putc((char)c,fp);
 fclose(fp);
 return 0;
}

See also fputc, printf, putchar, fopen, fopen64, putwc

342 U4351-J-Z125-8-76

putchar

putchar - Write a character to the standard output

Definition #include <stdio.h>

int putchar(int c);

putchar writes the character c to the standard output.

Return val. The written character c
if successful.

EOF otherwise.

Notes putchar is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

The characters are not written immediately to the external file but are stored in an internal
C buffer (see section “Buffering” on page 53).

For further information on output to text files and on converting the control characters for
white space (\n, \t, etc.) see section “White space” on page 55.

See also putc, fputc, putwchar

U4351-J-Z125-8-76 343

puts

puts - Output a string to the standard output

Definition #include <stdio.h>

int puts(const char *s);

puts writes the string s to the standard output stdout and adds to it a terminating newline
character.
s must be terminated with a null byte (\0)

Return val. 0 if successful.

EOF otherwise.

Notes In contrast to fputs, puts automatically terminates output with a newline character. If the
string to be output already contains a terminating newline (e.g. a record in SAM or ISAM
files), an additional blank line will be inserted on output.

The terminating null byte of s is not output.

For further information on output to text files and on converting the control characters for
white space (\n, \t, etc.) see section “White space” on page 55.

Example This example shows how puts and fputs differ in the way in which they terminate the
output.

#include <stdio.h>
int main(void)
{
 FILE *fp;
 char s[BUFSIZ];
 fp=fopen("file","w");
 while(gets(s) != NULL)
 {
 fputs(s,fp);
 puts(s);
 }
 return 0;
}

If you look at file after this program has run, you will see that the strings from the input (gets
deletes any existing newline) of fputs were written one following another and not by lines.
In contrast, the output with puts is effected line by line, since a newline is automatically
appended to every string that is read.

See also fputs, gets, fgets, putws, sprintf

344 U4351-J-Z125-8-76

putw

putw - Write a word at a time into a file

Definition #include <stdio.h>

int putw(int w, FILE *fp)

putw writes a machine word into the file with file pointer fp at the current read/write position.

Return val. The written w if successful.

EOF otherwise.

Notes Since word length and the order of bytes are system-dependent, it is possible that files
written with putw on a non-BS2000 operating system may not be readable with getw in
BS2000.

Since putw does not explicitly indicate errors (-1 is a valid integer value), you should also
use ferror to check whether an error occurred before or after the write operation.

The characters are not written immediately to the external file but are stored in an internal
C buffer (see section “Buffering” on page 53).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Example The following program transfers the contents of the file input to the file output, one word at
a time.

#include <stdio.h>
FILE *fp_in, *fp_out; int w;
int main(void)
{
 fp_in = fopen("input","r");
 fp_out = fopen("output","w");
 while(!feof(fp_in) && !ferror(fp_in) && !ferror(fp_out))
 {
 w = getw(fp_in);
 putw(w,fp_out);
 }
 fclose(fp_in); fclose(fp_out);
 return 0;
}

See also getw

U4351-J-Z125-8-76 345

putwc, putwchar

putwc - Write wide character to a file

Definition #include <wchar.h>
#include <stdio.h>

wint_t putwc(wchar_t wc, FILE *fp);

putwc is equivalent to the fputwc function, except for the following difference: when putwc
is implemented as a macro, it can evaluate fp more than once, so the argument should
never be an expression with side effects.
For this reason, it is better to use the fputwc function instead of putwc, especially in cases
such as putwc(wc, *f++).

Description: see fputwc.

putwchar - Write wide character to standard output

Definition #include <wchar.h>

wint_t putwchar(wchar_t wc);

The function call putwchar(wc) is equivalent to putwc(wc, stdout).
Description: see fputwc.

346 U4351-J-Z125-8-76

qsort

qsort - Sort a data field (quicksort)

Definition #include <stdlib.h>

void qsort(void *field, size_t n, size_t elsize,
 int (*comp)(const void *, const void *);

qsort sorts n elements of an array field using the quicksort algorithm. Each array element
is elsize bytes in length.
In order to be able to sort the field, qsort requires a function comp (to be provided by the
user), which compares two elements with each other.

Parameter void *field
Pointer to the first element of the array to be sorted.

size_t n
Number of elements to be sorted.

size_t elsize
Size of an element, in bytes.

int (*comp)(const void *, const void *)
Pointer to a function that compares two elements and returns a whole number as its
result. This result is interpreted as follows:

The function has two parameters, i.e. two pointers to the type of the array elements.

The function may be defined something like this:

Example 1

 /*compares two char values */
 int comp(const void *a, const void *b)
 {
 if(*((const char *)a) < *((const char *) b))
 return(-1);
 else if(*((const char *)a) > *((const char *) b))
 return(1);
 return(0);
 }

< 0 argument1 is less than argument2

= 0 argument1 and argument2 are equal

> 0 argument1 is greater than argument2

U4351-J-Z125-8-76 347

qsort

Example 2

 /*compares two integer values */
 int compare(const void *a, const void *b)
 {
 return (*((const int *) a) - *((const int *) b));
 }

Note Array elements that are determined to be equal by the comparison function are retained in
the same order.

Example The following program sorts a number field and outputs it on the standard output.

#include <stdio.h>
#include <stdlib.h>

int comp (const void *s, const void *t)
{
 return (*((const int *) s) - *((const int *) t));
}

int main(void)
{
 int j;
 static int array[] = {4,7,2,1,54,9,2,3,1,23};

 qsort (array, 10, sizeof(int), comp);

 for (j=0; j<10; j++)
 printf("%d\n", array[j]);
 return 0;
}

See also bsearch

348 U4351-J-Z125-8-76

raise

raise - Send signal to own program

Definition #include <signal.h>

int raise(int sig);

raise sends the signal sig to its own program.

raise can be used both to simulate STXIT events as well as to send STXIT-independent
signals (self-defined or predefined by the C runtime system).

Parameter int sig
Signal to be sent to its own program. The symbolic constants listed in the following
overview under “SIGNR” may be used for sig. These constants are defined in the
include file <signal.h>.

Signals marked with a “+” are currently not supported.

Return val. 0 the signal was sent successfully.

-1 the signal could not be sent, because sig is not a valid signal number. In
addition, errno is set to EINVAL (invalid signal number).

SIGNR STXIT class Meaning

SIGHUP
SIGINT
SIGILL
SIGABRT
SIGFPE
SIGKILL
SIGSEGV
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGDVZ
SIGXCPU
SIGBPT +
SIGTIM
SIGINTR
SIGSVC +

ABEND
ESCPBRK
PROCHK
 -
PROCHK
 -
ERROR
RTIMER
TERM
 -
 -
PROCHK
RUNOUT
SVC
TIMER
INTR
SVC

Disconnection of link to terminal
Interrupt from the terminal (K2)
Execution of an invalid instruction
raise signal for program abortion with _exit(-1)
Error in a floating-point operation
raise signal for program abortion with exit(-1)
Memory access with invalid segment access
A time interval has elapsed (real time)
Program termination
Defined by the user
Defined by the user
Division by 0
CPU time has run out
Breakpoint (currently not supported)
A time interval has elapsed (CPU time)
SEND-MESSAGE command
SVC call (currently not supported)

U4351-J-Z125-8-76 349

raise

Notes With the exception of SIGKILL, the raise signals can be intercepted with the signal
function. You will find detailed information on this topic under signal.

If the program does not provide for the handling of raise signals, it is terminated with
exit(-1) when a signal arrives, and the following messages are displayed:

 "CCM0101 signal occurred: signal"
 "CCM0999 Exit -1"

Signal SIGABRT
SIGABRT causes the program to terminate with _exit(-1). In contrast to exit(-1), the
termination routines registered with atexit are not called and open files are not closed.

Signal SIGKILL
SIGKILL causes the program to terminate with exit(-1). In contrast to SIGABRT, SIGKILL
cannot be intercepted, i.e. signal calls which specify the name of a self-defined function or
SIG_IGN as the argument are not valid for SIGKILL.

Example A program that aborts itself.

#include <signal.h>

int main(void)
{
 for(;;)
 raise(SIGKILL);
 return 0;
}

See also alarm, atexit, exit, _exit, signal

350 U4351-J-Z125-8-76

rand

rand - Random number generator

Definition #include <stdlib.h>

int rand(void);

rand returns a positive random integer in the range [0, 215-1].

A rand call selects values from a series of pseudo-random numbers by using a multipli-
cative, congruent random number generator. The generator has a period of 232.

Return val. Random number within [0, 215-1].

Note The random number generator can be initialized or reset with srand. If no initialization takes
place, the random number generator starts with its default value, like srand(1) does.

Example 1 Generate the same five random numbers twice:

#include <stdlib.h>
#include <stdio.h>

int i;

int main(void)
{
 for(i=1; i <= 10; ++i)
 {
 printf("%d\n", rand());
 if(i == 5)
 srand(1);
 }
 return 0;
}

U4351-J-Z125-8-76 351

rand

Example 2 Simulation of rolling dice.

#include <stdio.h>
#include <stdlib.h>
#define A 32767 /* 2**15 - 1 */

int cpu_t; /* Query variable for CPU time*/
int i,x;

int main(void)
{
cpu_t = cputime();
srand(cpu_t); /* Seed value for the random generator */
for(i=1; i<= 6; ++i) /* Simulation of six throws of a die */
 {
 x = rand()/(A/6)+1; /* Determine random number in range 1-6 */
 printf("number thrown= %d\n",x);
 }
return 0;
}

See also rand, srand

352 U4351-J-Z125-8-76

read

read - Read from a file (elementary)

Definition #include <stdio.h>

int read(int fd, char *puf, int n);

read is the elementary read function.

read reads from the file with file descriptor fd a maximum of n characters into the area
pointed to by buf.

In text files, read only reads the characters within one line per call. Input is terminated at
the end of the line.
In binary files, newline (\n) characters are ignored by read.
SAM files are always processed as text files with elementary functions.

Parameter int fd
File descriptor for the input file.
A file descriptor (positive integer) is the result of a successful open/open64 or
creat/creat64 call.
The file descriptors for stdin (0), stdout (1), and stderr (2) are automatically
assigned when the program is started.

char *buf
Pointer to the area into which the read data is to be written. The area should be at least
n bytes in size.

int n
Maximum number of bytes to be read. If the end of the line is reached first, fewer than
n bytes will be read.

Return val. The number of bytes actually read
if successful.

0 for end of file.

-1 if nothing was read due to one of the following errors:
– physical I/O error
– fd is not a valid file descriptor
– the file is not present
– no access permission for the file exists
– n is impossible

U4351-J-Z125-8-76 353

read

Notes The number of bytes actually read may be less than the specification in n if the end of the
line is reached first (only applies to text files) or if end of file or an error is encountered.

You should use sizeof to ensure that the number of bytes read does not exceed the
amount that can be accepted by the buffer.

Example The following program copies the standard input (file descriptor 0) to the standard output
(file descriptor 1). If you use the redirection mechanism for stdin and stdout
(PARAMETER-PROMPTING in the RUNTIME option), you can copy from any source to any
destination with this program. BUFSIZ (8192 bytes) is defined in the include file <stdio.h>.

#include <stdio.h>

int main(void)
{
 char buf[BUFSIZ];
 int n;

 while((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 return 0;
}

See also write, open, open64, creat, creat64

354 U4351-J-Z125-8-76

realloc

realloc - Alter memory space

Definition #include <stdlib.h>

void *realloc(void *p, size_t n);

realloc changes the size of the memory area pointed to by p to n bytes. p must have been
returned by a previous malloc or calloc call.

realloc is part of a C-specific memory management package which internally administers
memory areas that are requested and subsequently freed. Attempts are made to satisfy
new requests by first using areas that are already being managed and only then by the
operating system (cf. garbcoll function).

Return val. Pointer to the beginning of the modified memory area
if successful.

NULL pointer if realloc was unable to alter the memory space, e.g. because the
memory space still available is insufficient or because an error occurred.

Notes If realloc alters the size of a memory area, it may happen that the allocated block is
shifted. In such cases, the contents of the pointer passed as an argument are not identical
with the return value. The contents of the block are preserved up to the minimum of the old
(when enlarging) and new (when reducing) sizes.

If realloc returns the NULL pointer, the block to which p points may have been destroyed!

If p is a NULL pointer, realloc functions like a malloc call for the specified size.

Example The following program fragment first requests memory space for 20 characters and then
extends this area to accept 80 additional characters (i.e. to a total of 100 bytes).

#include <stdlib.h>

char *char_array;
char_array = (char *)malloc(20 * sizeof(char));
 .
 .
char_array = (char *)realloc(char_array, 100 * sizeof(char));

See also malloc, calloc, free, garbcoll

U4351-J-Z125-8-76 355

remove

remove - Delete file

Definition #include <stdio.h>

int remove(const char *f_name);

remove deletes the file f_name. f_name may be a fully or partially qualified file name.

Return val. 0 if successful.

-1 if the file cannot be deleted, e.g. if there is no file with the name f_name or
the file has been opened by another task. In addition, errno is set to EDMS.

Notes If a partially qualified file name is specified, then remove will delete all corresponding files
without asking for confirmation (Y/N). The response "Y" is assumed.

remove performs only a logical deletion of the file(s), i.e. the catalog entry is deleted and
the assigned memory is released.

If a file has been opened by any program, it is not deleted.

Record I/O remove can also be used unchanged on files with record I/O.

356 U4351-J-Z125-8-76

rename

rename - Rename file

Definition #include <stdio.h>

int rename(const char *name_old, const char *name_new);

rename gives the file with the name name_old the new name name_new.

Return val. 0 if successful.

-1 if the file could not be renamed. If for example
– there is no file with the name name_old,
– a file is already cataloged under the name name_new or
– the file to be renamed has been opened by a program.
In addition, errno is set to EMACRO.

Record I/O rename can also be used unchanged on files with record I/O.

U4351-J-Z125-8-76 357

rewind

rewind - Position read/write pointer to beginning of file

Definition #include <stdio.h>

void rewind(FILE *fp);

rewind positions the read/write pointer of the file with file pointer fp to the beginning of the
file.

Notes The calls rewind(fp), fseek(fp,0L,SEEK_SET) and fseek64(fp,0LL,SEEK_SET)
are equivalent, except that rewind does not return a value.

System files (SYSDTA, SYSOUT, SYSLST) cannot be positioned.

If new records are written to a text file (opened for creation or in append mode) and a
rewind call is issued, any residual data is first written from the buffer to the file and termi-
nated with an end-of-line character (\n).
Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, rewind does
not cause a change of line (or change of record), i.e. the data is not automatically termi-
nated with a newline character when writing from the buffer. Subsequent data lengthens the
record in the file. When an ISAM file is read, therefore, only those newline characters
explicitly written by the program are read in.

If the rewind function is called successfully, it deletes the EOF flag of the file and cancels
all the effects of the preceding ungetc calls for this file.

Record I/O rewind can also be used unchanged on files with record I/O.

358 U4351-J-Z125-8-76

rewind

Example The following program first processes a file from the 11th character onwards to the end of
the file and then continues at the beginning of the file (only works with binary files, i.e. in
this case only with SAM and PAM files).

#include <stdio.h>

int main(void)
{
 FILE *fp;
 int c,i;

 fp = fopen("input","rb");
 /* skip the first 10 characters */
 fseek(fp,10L,SEEK_SET);
 while((c=getc(fp)) != EOF)
 putc((char)c,stdout);
 /* position to the beginning of the file */
 rewind(fp);
 for(i=0; i<10; i++)
 {
 c=getc(fp);
 putc((char)c,stdout);
 }
 fclose(fp);
 return 0;
}

See also fseek, fseek64, fsetpos, fsetpos64

U4351-J-Z125-8-76 359

rindex

rindex - Last occurrence of a character in a string

Definition #include <string.h>

char *rindex(const char *s, int c);

rindex searches for the last occurrence of the character c in the string s and, if successful,
returns a pointer to the located position in s.

The terminating null byte (\0) is also treated as a character.

Return val. Pointer to the position of c in string s
if successful.

NULL pointer if c is not contained in string s.

Note The rindex and strrchr functions are equivalent.

Example Find the last ’s’:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *s = "What fun in the ssun!";
 printf("%s\n", s);
 printf("Where is the mistake? %s\n", rindex(s, 's'));
 return 0;
}

See also index, strchr, strrchr

360 U4351-J-Z125-8-76

rint, rintf, rintl

rint, rintf, rintl - Round off to nearest whole number

Definition #include <math.h>

double rint(double x);

float rintf (float x);

long double rintl (long double x);

Each of the functions returns the whole number nearest to x, in floating point representation.
rint represents the result as a number of type double, rintf as a number of type float,
and rintl as a number of type long double.

The return value is rounded off in accordance with the rounding mode currently set for the
system. If the rounding mode ‘round-to-nearest’ is set and if the difference between x and
the rounded result is exactly 0.5, the next even whole number is returned.

If the defined rounding mode rounds off in the direction of positive infinity, then rint is
identical to ceil. If the defined rounding mode rounds off in the direction of negative infinity,
then rint is identical to floor.
In this version, the rounding mode is preset in the direction of positive infinity.

Return val. integer represented as a number of type double, float or long double
if successful.

HUGE_VAL in the event of an overflow, errno is set to ERANGE to indicate the error.

Note In this version, the rounding mode is preset in the direction of positive infinity.

See also abs, ceil, floor, llrint, llround, lrint, lround, round

U4351-J-Z125-8-76 361

round, roundf, roundl

round, roundf, roundl - Round off to nearest whole number

Definition #include <math.h>

double round(double x);

float roundf (float x);

long double roundl (long double x);

Each of the functions returns the whole number nearest to x, in floating point representation.
round represents the result as a number of type double, roundf as a number of type
float, and roundl as a number of type long double.

The return value is independent of the defined rounding mode. If the difference between x
and the rounded result is exactly 0.5, the larger whole number is returned.

Return val. integer represented as a number of type double, float or long double
if successful.

undefined in the event of an overflow or underflow, errno is set to ERANGE to indicate
the error.

See also abs, ceil, floor, llrint, llround, lrint, lround, rint

362 U4351-J-Z125-8-76

scanf

scanf - Formatted input from the standard input

Definition #include <stdio.h>

int scanf(const char *format, argumentlist);

scanf reads data (input fields) from the standard input stdin, converts this data according
to specifications in the format string format, and stores the results in the areas which you
specify with the result pointers in the argument list. Each argument must be a pointer to a
variable whose data type corresponds to a type specification in the format string format. The
format string controls how the input field is to be interpreted and converted.

Parameter const char *format
The format string may contain three classes of characters or specifications:

1. White space characters

2. Any characters except white space characters and the percent character (%).

3. Format statements beginning with the percent character (%)

White space (KR functionality, applies to C/C++ versions prior to V3.0 only)

White space (ANSI functionality)

The format string may contain any number of white space characters (or none). These
characters have no control function.

Any white space characters in the input are treated as delimiters between input fields
and are not converted (cf. %c and %[] for exceptions).

Ë blank

\n newline

\t tab

Ë blank

\n newline

\t tab

\f form feed

\v vertical tab

\r carriage return

U4351-J-Z125-8-76 363

scanf

Any character except % and white space character

The character must match the next character of input. scanf reads the input character,
but does not convert it or store it in a variable. If the input character does not match the
character specified here, input processing is aborted.

The format statement is described below separately for KR functionality and ANSI
functionality.

Format statement (KR functionality, applies to C/C++ versions prior to V3.0 only)

Format statements contain specifications on how the input fields are to be interpreted and
converted. They may be structured as follows:

 [{l�h}] {d�o�x}
 � �
 � [l] {e�f} �
 � �
 � {D�O�X�E�F} �
 % [*][n]
 � {c�s} �
 � �
 � {[...]�[^...]} �
 � �
 %

A format statement is associated with one input field. An input field is a string of characters
that is terminated

– by the first white space character
– by a character that does not match the type specification in the format statement
– when the explicitly specified field length n is reached.

Leading white space characters are ignored during input.

Each format statement must begin with a percent character (%). The remaining characters
are interpreted as follows:

* Skip an assignment.
The next input field is read and converted, but not stored in a variable.

n Maximum length of the input field to be converted.
If a white space character or a character that does not match the type specification
in the format statement appears before this, the length is correspondingly
shortened.

364 U4351-J-Z125-8-76

scanf

l l before d, o, x:
Conversion of an argument of type pointer to long int (d) or unsigned long int
(o, x).
The specification is identical to the uppercase letters D, O, X.

l before e, f:
Conversion of an argument of type pointer to double.
The specification is identical to the uppercase letters E, F.

h h before d, o, x:
Conversion of an argument of type pointer to short int (d) or unsigned short int
(o, x).

d A decimal integer value is expected. The corresponding argument must be a pointer
to int.

o An octal integer value is expected. The corresponding argument may be a pointer
to unsigned int or int. Internally the value is represented as unsigned.

x A hexadecimal integer value is expected. The corresponding argument may be a
pointer to unsigned int or int. Internally the value is represented as unsigned.

e, f A floating-point number is expected. The corresponding argument must be a pointer
to float.
The floating-point number can contain a sign as well as an exponent (E or e,
followed by an unsigned integer value).
The decimal point character is determined by the locale (category LC_NUMERIC).
The default is a period.

c A character is expected. The corresponding argument should be a pointer to
character.
In this case scanf also reads blanks. "%1s" should be used to read the next
character that is not a blank. c is suitable for reading strings that also contain blanks.
To do so, a pointer to a char array must be passed as an argument and a field
length of n must be specified (e.g. "%10c"). The scanf function does not automat-
ically terminate the string with the null byte in this case.

s A string is expected. The corresponding argument must be a pointer to a char array
and large enough to be able to accept the string and a terminating null byte (\0).
scanf automatically terminates the string with the null byte. Leading white space
characters in the input are ignored and a trailing white space character is inter-
preted as a delimiter (end of the string).

U4351-J-Z125-8-76 365

scanf

[] A string is expected. The corresponding argument must be a pointer to a char array
and large enough to be able to accept the string (including the null byte that is
automatically appended). In this specification, as opposed to %s, blanks do not
automatically function as delimiters.

% Input of the % character, no conversion.

Format statement (ANSI functionality)

Format statements contain information as to how the input fields are to be interpreted and
converted. They may be structured as follows:

 [{l�ll�h}] {d�i�o�u�x�X }
 � �
 � [{l�L}] {e�E�f�g�G} �
 � �
 � p �
 % [*][n]
 � [l] {[...]�[^...] �c�s } �
 � �
 � [{l�ll�h}] n �
 � �
 %

A format statement is associated with an input field. An input field is a sequence of
characters which is terminated

– by the first white space character,

– by a character which does not match the format statement (type specification),

– when the explicitly specified field length n is reached.

Leading white space characters are ignored.

[...] In this specification, characters are read in until the first character not listed in
the square brackets appears. Thus, the string may only consist of the
characters appearing within []; any characters not specified are treated as
delimiters.

[^...] In this specification, characters are read in until one of the characters listed in
the square brackets after ^ is encountered. Only the characters specified
within the [] are treated as delimiters.

366 U4351-J-Z125-8-76

scanf

Every format statement must begin with a percent character (%). The remaining characters
are interpreted as follows:

* Skip an assignment.
The next input field is read and converted, but not stored in a variable.

n Maximum length of the input field to be converted.
If a white space character or a character that does not match the type specification
in the format statement appears before this, the length is correspondingly
shortened.

l l before d, i, o, u, x, X:
Conversion of an argument of type pointer to long int (d, i) or unsigned long int
(o, u, x, X).

l before e, E, f, g, G:
Conversion of an argument of type pointer to double.

l before n:
The argument is of the type pointer to long int (no conversion).

ll ll before d, i, o, u, x, X:
Conversion of an argument of type pointer to long long int (d, i) or
unsigned long long int (o, u, x, X).

ll before n:
The argument is of the type pointer to long long int.

h h before d, i, o, u, x, X:
Conversion of an argument of type pointer to short int (d, i) or unsigned short
int (o, u, x, X).

h before n:
The argument is of the type pointer to short int (no conversion).

L L before e, E, f, g, G:
Conversion of an argument of the type pointer to long double.

d A decimal integer value is expected. The corresponding argument must be a pointer
to int.

i An integer value is expected. The base (hexadecimal, octal, decimal) is determined
from the structure of the input field.
Leading 0x or 0X: hexadecimal
Leading 0: octal
Otherwise: decimal
The corresponding argument must be a pointer to int.

o An octal integer value is expected. The corresponding argument may be a pointer
to unsigned int or int. Internally the value is represented as unsigned.

U4351-J-Z125-8-76 367

scanf

u A decimal integer value is expected. The corresponding argument must be a pointer
to unsigned int.

x, X A hexadecimal integer value is expected. The corresponding argument may be a
pointer to unsigned int or int. Internally the value is represented as unsigned.

e, E, f, g, G
A floating-point number is expected. The corresponding argument must be a pointer
to float.
The floating-point number can contain a sign as well as an exponent (E or e,
followed by an unsigned integer value).
The decimal point character is determined by the locale (category LC_NUMERIC).
The default is a period.

c A character is expected. The corresponding argument should be a pointer to
character.
In this case, scanf also reads blanks. "%1s" should be used to read the next
character that is not a blank. c is suitable for reading strings that also contain blanks.
To do so, a pointer to a char array must be passed as an argument and a field
length of n must be specified (e.g. "%10c"). The scanf function does not automat-
ically terminate the string with the null byte in this case.

p An 8-digit pointer value is expected, analogous to the format %08.8x. The corre-
sponding argument must be of type pointer to void.

s A string is expected. The corresponding argument must be a pointer to a char array
and large enough to be able to accept the string and a terminating null byte (\0).
scanf automatically terminates the string with the null byte. Leading white space
characters in the input are ignored and a trailing white space character is inter-
preted as a delimiter (end of the string).

[] A string is expected. The corresponding argument must be a pointer to a char array
and large enough to be able to accept the string (including the null byte that is
automatically appended). In this specification, as opposed to %s, blanks do not
automatically function as delimiters.

[...] In this specification, characters are read until the first character not specified
in the square brackets is encountered. In other words, the string may only
consist of characters within the square brackets []. All characters not
specified are treated as delimiters.
The closing bracket] can be included in the list of characters to be read if it is
specified as the first character immediately after the opening bracket: []...].

[^...] In this specification, characters are read in until one of the characters listed in
the square brackets after ^ is encountered. Only the characters specified
within the [] are treated as delimiters.
The closing bracket] can be included in the list of delimiters if it is specified
as the first character immediately after the character ^: [^]...].

368 U4351-J-Z125-8-76

scanf

n No characters are read from the input field. The argument is of type pointer to int.
This integer variable is assigned the number of characters that scanf has
processed up to this time.

% Input of the % character, no conversion.

argumentlist
Pointer to variables in which scanf is to store the converted results.

No pointer arguments may be specified for %* statements (skip assignment) in format.
There must be one pointer argument each for all other % statements. The data type of
the pointer argument is determined by the type specification in the corresponding
format statement.

Return val. Number of input fields read and successfully converted.
This does not include any input fields for which %* (skip assignment) was
specified.

EOF if an error occurs before the start of the conversion.

Notes In converting integer values to unsigned int (o, u, x, X) the twos complement is formed
from a value with a negative sign.
For example, format %u for input -1 gives X’FFFFFFFF’.

You should always check the result of a scanf call to be sure that no error has occurred!

The next scanf call starts reading immediately after the character last processed by the
previous call.

If an input character does not correspond to the format specified, it is written back to the
input buffer. It must be fetched there with getc; otherwise, the next scanf call will receive
the same character again.

If there are more pointer arguments than format statements (excluding the %* specifica-
tions), the excess arguments are ignored. If there are fewer arguments, results are
undefined.

Example 1 int i;
float x;
char name[20];
scanf("%2d %f %*d %6s", &i, &x, name);

Input data: 234567 678 Hubertxy

Content of the variable after scanf:

U4351-J-Z125-8-76 369

scanf

i: 23
x: 4567.0
name: Hubert\0

In the above example, 678 is not assigned due to the %* specification. The next read
operation that is called starts with the character ’x’.

Example 2 int i;
float x;
char name[50];
scanf("%2d %f %*d %6s", &i, &x, name);

Input data: 25 54.32E-1 thomson

Content of the variable after scanf:

i: 25
x: 5.432
name: thomso\0

Example 3 char string1[20];
char string2[20];
scanf("%[1234567890] %[^,!:]", string1, string2);

Input data: 234567ab c,de

Content of the variable after scanf:

string1: 234567
string2: ab c

See also fscanf, sscanf

370 U4351-J-Z125-8-76

setbuf

setbuf - Set input/output buffer

Definition #include <stdio.h>

void setbuf(FILE *fp, char *buffer);

setbuf sets up a memory area for the file with the file pointer fp. This memory area is then
used instead of the area assigned by the system for buffering the input/output data.

The file pointer fp must point to a file which is already open and for which no read or write
functions have yet been performed.

Parameter FILE *fp
Pointer to the file for which an input/output buffer is to be made available.

char *buffer
Pointer to the area to be used as the buffer or NULL.
If the argument is a NULL pointer, the buffer assigned by the system is used.

Note The pointer buffer must point to an area of size BUFSIZ for a file with default attributes.
BUFSIZ is defined in <stdio.h>.
If the blocking factor is explicitly defined with the BUFFER-LENGTH parameter of the
ADD-FILE-LINK command, the size of the area must correspond to this defined blocking
size.

See also setvbuf

U4351-J-Z125-8-76 371

setjmp

setjmp - Set label for non-local jumps

Definition #include <setjmp.h>

int setjmp(jmp_buf env);

setjmp is only meaningful when used in conjunction with the longjmp function. These
functions can be used to implement non-local jumps, i.e. a jump from any given function to
another, still active function.

setjmp stores the current program state (address in the C runtime stack, program counter,
register contents) in a field of type jmp_buf. The type jmp_buf is defined in <setjmp.h>.
A subsequent longjmp call re-establishes the program state stored by setjmp and
continues program execution from this state.

A detailed description and notes on setjmp/longjmp are provided under the longjmp
function.

Return val. 0 normal return, i.e. a longjmp call was not used to branch to the position
after the setjmp call.

≠ 0 if longjmp was used to branch to the position after the setjmp call. This
return value is the argument value of the longjmp call (if value is equal to 0,
setjmp returns 1).

Example See example under longjmp

See also longjmp, signal

372 U4351-J-Z125-8-76

setlocale

setlocale - Set/query locale

Definition #include <locale.h>

char *setlocale(int category, const char *locale);

With setlocale you can query the current locale or select a new locale. The locale may
relate to some or all the locale variables of the program.
The locale variables are defined in <locale.h>.

Parameter int category
Category of locale variables to which the selected locale is to refer. category may contain
the following predefined values:

LC_ALL Locale variables of all categories.

LC_COLLATE The sorting sequence affects the behavior of the strcoll and
strxfrm functions.

LC_CTYPE The character type affects the behavior of the macros for character
processing is... (not isdigit or isxdigit), tolower, toupper,
strlower and strupper.

LC_MONETARY The conventions for representing monetary values affect the values
returned by localeconv.

LC_NUMERIC The conventions for representing non-monetary numerical values affect
the type of decimal point for formatted input/output and for converting
strings (atof, strtod), and the values returned by localeconv.

LC_TIME The conventions for representing date and time affect the behavior of
strftime.

U4351-J-Z125-8-76 373

setlocale

const char *locale
String which selects the locale. The following predefined locales are available (a
detailed description is provided in section “Predefined locale C” on page 84ff):

The strings are predefined in the include file <locale.h> as follows:

If a NULL pointer is passed for locale, the current locale for category is not changed.

Return val. Pointer to a string specifying the current locale for the specified category.
This string can be used as the locale parameter in setlocale calls.
The string can assume the following values:
“C”, “V1CTYPE”, “V2CTYPE”, “GERMANY”, “De.EDF04F”,
“De.EDF04F@euro”.
For the LC_ALL category, the string contains the value “C”, provided this
value has been set for all categories.
As soon as a locale other than “C” is set for a category, the string contains
the locales for all the categories. The values for the individual categories are
prefixed by a slash (/), which indicates the beginning of a new value. The
sequence of locales corresponds to the above-mentioned sequence of

"C" Defines the minimum environment for compiling a C program and is the
default setting when the program starts (exception: see locale
"V1CTYPE").

"" Standard locale. In this version it corresponds to locale “C”.

"V1CTYPE" Locale compatible with the C runtime system C1.0.
"V1CTYPE" is automatically set when the program starts if the main
routine is a C V1.0 object.

"V2CTYPE" Locale compatible with C runtime systems V2.0 and V2.1.

"GERMANY" Country-specific locale that conforms to the national conventions.

"De.EDF04F" Country-specific locale whose conversion tables are based on ASCII
code ISO 8859-15 or EBCDIC code EDF04F, and which supports the
currency “DM” in the category LC_MONETARY.

"De.EDF04F@euro" Country-specific locale whose conversion tables are based on ASCII
code ISO 8859-15 or EBCDIC code EDF04F, and which supports the
currency “euro” in the category LC_MONETARY.

LC_C_C "C"

LC_C_DEFAULT ""

LC_C_V1CTYPE "V1CTYPE"

LC_C_V2CTYPE "V2CTYPE"

LC_C_GERMANY "GERMANY"

LC_C_De.EDF04F "De.EDF04F"

LC_C_De.EDF04F@euro "De.EDF04F@euro"

374 U4351-J-Z125-8-76

setlocale

categories (see parameter description int category).
The last (sixth) locale in the string refers to the LC_MESSAGES category
which is currently not supported in the locales “C”, “GERMANY”,
“VC1TYPE” and “VC2TYPE” and is set to “C” if you enter one of these
locales.
If you enter the locale “De.EDF04F” or “De.EDF04F@euro” here, the corre-
sponding value is entered in the category LC_MESSAGES.

If a string containing the locales for all categories is used as the locale
parameter in a setlocale call and a category other than LC_ALL is specified,
only the locale for the specified category is taken from this string (without
the leading slash).

Example of the return value for LC_ALL:
"/V2CTYPE/C/GERMANY/C/GERMANY/C"
 1 2 3 4 5 6

NULL pointer if the selected category cannot be recognized. The current locale remains
unchanged.

Notes The available locales are described in detail in chapter “Locale” on page 83.

User-specific locales:
In addition to the predefined locales mentioned above, you may implement your own locales
and select them with setlocale (see section “User-specific locales” on page 100).

The string to which the return value of setlocale points must not be explicitly changed by the
program. It may only be overwritten by setlocale calls.

If you are only querying the current locale and not changing it, a NULL pointer must be
passed for locale.

See also localeconv

Position Category Locale

1 LC_COLLATE V2CTYPE

2 LC_CTYPE C

3 LC_MONATARY GERMANY

4 LC_NUMERIC C

5 LC_TIME GERMANY

6 LC_MESSAGES C

U4351-J-Z125-8-76 375

setvbuf

setvbuf - Set input/output buffer

Definition #include <stdio.h>

int setvbuf(FILE *fp, char *buffer, int type, size_t n);

setbuf sets up a memory area for the file with the file pointer fp. This memory area is then
used instead of the area assigned by the system for buffering the input/output data.

The file pointer fp must point to a file which is already open and for which no read or write
functions have yet been performed.

Parameter FILE *fp
Pointer to the file for which an input/output buffer is to be made available.

char *buffer
Pointer to the area to be used as the buffer or NULL.

If the argument is a NULL pointer, the buffer assigned by the system is used.

int type
Type of buffering for the file. This parameter is checked only syntactically and otherwise
ignored. It must contain one of the following predefined values:

_IOFBF (full buffering)
_IOLBF (line buffering)
_IONBF (no buffering, not supported).

The type of buffering is determined by the type of file and cannot be changed by the
user:
Text files are line-buffered, i.e. the data is written to the file whenever a newline
character (\n) occurs.
Binary files are full-buffered, i.e. the data is written to the file when the buffer is full.
Unbuffered input/output is not supported.

size_t n
Size of the buffer in bytes.

Return val. 0 if the setvbuf function has been successfully executed.

≠ 0 if a (syntactically) invalid value has been passed for type or the function
cannot be executed.

376 U4351-J-Z125-8-76

setvbuf

Note The pointer buffer must point to an area of size BUFSIZ for a file with default attributes.
BUFSIZ is defined in <stdio.h>.
If the blocking factor is explicitly defined with the BUFFER-LENGTH parameter of the
ADD-FILE-LINK command, the size of the area must correspond to this defined blocking
size.

See also setbuf

U4351-J-Z125-8-76 377

signal

signal - Signal processing control

Definition #include <signal.h>

void (*signal(int sig, void (*fct) (int))) (int);

The signal function is provided for the handling of signals.

Signals that can be received and processed by a program can be distinguished into two
types, depending on the way in which they are triggered. The internal handling of a signal
varies in implementation on the basis of its type.

1. STXIT events

STXIT events are triggered

– by program errors, e.g. address error, execution of invalid instructions, division by
zero etc.

– by the alarm function

– externally, e.g. by pressing the K2 key, entering specific commands (ABEND,
INFORM-PROGRAM etc.)

The handling of these events is implemented internally via the BS2000-specific STXIT
contingency mechanism. This mechanism as well as the STXIT event classes are
described in detail in the "Executive Macros" manual.

2. raise signals

All events that can be triggered by the raise function are grouped under this type of
signal. raise can be used to simulate STXIT events and to send (user-own and
predefined) signals unrelated to STXIT events.

The handling of this type of signal is C-specific, i.e. not implemented via the mechanism
mentioned above.

If there is no provision for the handling of signals in a program, the program will be aborted
when a signal arrives.

A program can, however, also intercept a signal. This is achieved by calling the signal
function and by passing to it a function fct as its argument.
This makes it possible to respond to a signal in the following ways:

– If fct is the default function SIG_DFL, the program is aborted.

– If fct is the predefined function SIG_IGN, the signal is ignored.

– If fct is a user-defined routine, the signal is handled as defined by this routine.

378 U4351-J-Z125-8-76

signal

These three signal handling options are discussed below in somewhat greater detail in
order to underline the differences in the handling of STXIT events and raise signals.

Program abortion

Program abortion occurs if the program does not provide for signal handling or if signal is
called with the SIG_DFL function.

STXIT event:

The implementation-defined default termination response is executed by the operating
system. The program is aborted, and information on the interruption address and the
severity of the error is output together with a DUMP message:

... PROCESSING INTERRUPTED AT address ..., EC=severity

... DUMP DESIRED? REPLY(Y=YES,N=NO)?

raise signal:

A C-specific program termination is effected via exit(-1), and the following messages are
output:

"CCM0101 signal occurred: signal"
"CCM0999 Exit -1"

Ignore signal

A signal is ignored if the signal function is called with the predefined function SIG_IGN.
Program execution continues as if no signal had occurred. No distinction is made in this
case between the handling of STXIT events and raise signals.

Handling the signal with a user-defined function fct

A signal is handled in accordance with a user-defined function fct if the signal function is
called with the name of this function. When a signal arrives, the calling program is inter-
rupted and the function fct is executed. On termination of signal processing, the program is
continued at the point at which it was interrupted (unless the exit or longjmp functions
were called in fct).

STXIT event:

fct is implemented internally as an independent STXIT contingency process; the rest of the
program as a so called "basic task". Control is effected by the operating system.

U4351-J-Z125-8-76 379

signal

raise signal:

fct is treated internally as a "normal" C function and is not implemented via the contingency
mechanism. Control is under the C runtime system.

Further details pertaining to the different implementation of signal calls and their various
related options are provided in the "Notes".

Parameter int sig
Signal to be processed.

The symbolic constants listed under "SIGNR" in the following table may be used for sig.
These constants are defined in the include file <signal.h>.
In its last column, the table additionally lists the various ways in which the signal can be
triggered. The particular STXIT event class is specified for STXIT events.

The symbolic constant for the signal number can be supplemented with an additional
symbolic name, e.g. signal(SIGDVZ + SIG_PSK, fct). This addition (“+ SIG_PSK”
in the example) controls whether the function fct is to be activated only on the basis of
an STXIT event or also on the basis of a raise signal. In addition, it also determines
whether fct is to be temporarily or permanently assigned to the associated signal.
Technical details on this topic are provided in the “Notes”. The symbolic names are
defined in <signal.h>.

SIGNR Meaning Signal triggered via
STXIT event / raise / alarm

SIGHUP
SIGINT
SIGILL
SIGABRT

SIGFPE
SIGKILL

SIGSEGV
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGDVZ
SIGXCPU
SIGBPT
SIGTIM
SIGINTR
SIGSVC

Disconnection of link to terminal
Interrupt from the terminal (K2)
Execution of an invalid instruction
raise signal for program abortion with
_exit(-1); abort
Error in a floating-point operation
raise signal for program abortion with
exit(-1)
Memory access with invalid segment access
A time interval has elapsed (real time)
Program termination
Defined by the user
Defined by the user
Division by 0
CPU time has run out
Breakpoint (not supported)
A time interval has elapsed (CPU time, SETIC)
SEND-MESSAGE command
SVC call (not supported)

ABEND / raise
ESCPBRK / raise
PROCHK / raise
raise / abort

PROCHK / raise
raise

ERROR / raise
RTIMER / raise / alarm
TERM / raise
raise
raise
PROCHK / raise
RUNOUT / raise
SVC
TIMER / raise
INTR / raise
SVC

380 U4351-J-Z125-8-76

signal

If no addition is specified, the system defaults to SIG_TSK.

void (*fct)(int)
Name of the function to be called if a signal occurs. This function receives the signal
number of type int as its only argument.
The function must be defined before the corresponding signal call!

There are two predefined functions in <signal.h>:

Return val. The signal handling function valid prior to the signal call,
if successful. signal returns the last setting for signal handling, which can
be SIG_DFL, SIG_IGN, or a user-defined function fct.

SIG_ERR (= 1)
in case of error, e.g. if sig is not a valid signal number or
fct points to an invalid address.
In addition, errno is set to the appropriate error code:
EINVAL (invalid argument)
EFAULT (invalid address).

Notes The signal SIGKILL cannot be intercepted, i.e. neither a user-defined function nor SIG_IGN
may be assigned to it.

If a second function for signal handling is registered for a signal that already has a signal
handling function assigned to it, the first function is unassigned before the new function is
registered. Consequently, there will be no signal handling registered for that signal for a brief
period of time.

It is not possible to use a longjmp call to return from a function assigned to the signal
SIGTERM. This is because entries in the C runtime stack have already been cleared for all
functions, including main, at the time the signal is triggered.

Symbolic name Assignment Activation via

SIG_TSK temporary STXIT / raise (default)

SIG_TS temporary STXIT

SIG_PSK permanent STXIT / raise

SIG_PS permanent STXIT

SIG_DFL This function is the default and causes the program to abort. The manner of termi-
nation depends on whether an STXIT event or a raise signal is involved (see
above).

SIG_IGN The signal is ignored.

U4351-J-Z125-8-76 381

signal

Temporary/permanent allocation :
Provisions for the temporary assignment of a signal to a function have been made in many
implementations (e.g. UNIX) as well as in the ANSI standard. This means that the user-
defined assignment of a function to a signal number is only valid temporarily, i.e. for a single
occurrence of the signal. The assignment is cancelled after the signal arrives, and the
system resets to the default SIG_DFL (abort program).
Only the SIG_IGN assignment (ignore signal) is permanently valid for multiple occurrences
of the associated signal.
– In BS2000, signal handling for "STXIT event" type signals is implemented via the STXIT

contingency mechanism. This mechanism is based on a permanent assignment of an
STXIT event to an STXIT contingency routine, i.e. a temporary assignment can only be
achieved by explicitly deactivating the routine.

– In order to provide for the temporary assignment of many implementations on one hand,
and to effectively support the permanent nature of BS2000 implementations on the
other, both options have been made available, i.e. the user may choose whether a
signal routine is assigned temporarily or permanently.

– For performance reasons, the user is additionally offered the option of deciding whether
a signal routine can only be triggered by STXIT events (which is more efficient), or
whether it may also be triggered by raise signals.

– The options noted above are implemented by means of symbolic additions to the actual
signal number: SIG_TSK, SIG_TS, SIG_PSK, SIG_PS (see the parameter description
for sig).

– If you want to intercept a signal with fct without exception, the following signal calls are
among those that can be used:

 signal(SIGDVZ + SIG_PSK, fct); /* fct is activated by the STXIT */
 /* event and the raise signal SIGDVZ */

 signal(SIGDVZ + SIG_PS, fct); /* fct is activated only by the STXIT */
 /* event SIGDVZ. */

The following calls are equivalent, i.e. both provide for temporary assignment and cause
the signal routine to be activated by an STXIT event as well as a raise signal:

 signal(SIGDVZ, fct);
 signal(SIGDVZ + SIG_TSK, fct);

Problems may arise in the case of the three different signal numbers that are mapped by
the same STXIT event class (PROCHK). The following signal calls are handled differently,
depending on the way in which the signal was triggered:

 signal(SIGILL, fct1);
 signal(SIGFPE, fct2);
 signal(SIGDVZ, fct3);

382 U4351-J-Z125-8-76

signal

STXIT event:

fct3 is called in any case if the SIGILL and SIGFPE signals are intercepted via the STXIT
contingency mechanism. In fact, even if a signal call is only provided for one signal, the
assigned routine is activated when any of the three signals arrives.

raise signal:

If the signals are triggered with the raise function, on the other hand, the currently
assigned function is activated. Signals for which no signal call has been provided are
handled as defined by the default setting (SIG_DFL, program abortion).

SIG_DFL is the default for all signals at the start of a program.

U4351-J-Z125-8-76 383

signal

Example The following program intercepts the STXIT events SIGDVZ (division by 0) and SIGINT
(interrupt with the K2 key) with the function fct and outputs a corresponding error message.
After handling both interrupt events (which occur at different positions in the program), the
program continues to execute at the same program location (new input prompt) by using the
setjmp and longjmp functions.

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

jmp_buf env;

void fct(int sig)
{
 if(sig == SIGDVZ + SIG_PS)
 printf("Division error, please repeat input\n");
 if(sig == SIGINT + SIG_PS)
 printf("K2 key pressed, please repeat input\n");
 longjmp(env, 1);
}

int main(void)
{
 float a;
 float b;
 double z;

 signal(SIGDVZ + SIG_PS, fct);
 signal(SIGINT + SIG_PS, fct);
 setjmp(env);
 printf("Please enter a and b\n"); /* Interrupt with K2 possible */
 scanf("%f %f", &a, &b);
 z = a / b; /* Division by 0 possible, */
 /* if b = 0 */
 printf("z = %f\n", z);
 printf ("End of program\n");
 return 0;
}

See also alarm, longjmp, raise, setjmp

384 U4351-J-Z125-8-76

sin

sin - Sine

Definition #include <math.h>

double sin(double x);

sin calculates the trigonometric sine function for the floating-point number x, specifying the
angle in radians.

Return val. sin(x) a floating-point number in the interval [-1.0, +1.0].

Example The following program outputs the sine of values in the range -pi to +pi.

#include <math.h>
#include <stdio.h>

#define pi 3.14159265358979

int main(void)
{
 double x;
 for (x = -pi; x <= pi; x = x + pi/4.)
 printf(" sin(%1.2f) = %.4f \n ", x, sin(x));
 return 0;
}

See also cos, asin, sinh

U4351-J-Z125-8-76 385

sinh

sinh - Hyperbolic sine

Definition #include <math.h>

double sinh(double x);

sinh calculates the hyperbolic sine for the floating-point number x.

Return val. sinh(x) for a floating-point value x, if successful.

+/-HUGE_VAL in the event of an overflow (depending on the sign for x). In addition, errno
is set to ERANGE (result too large).

Example The following program outputs the hyperbolic sine of values in the range -1 to 1
(increment 0.1).

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 for (x = -1.0; x < 1.0; x = x + 0.1)
 printf(" sinh(%.2f) = %.4f \n ", x, sinh(x));
 return 0;
}

See also cosh, asin, sin

386 U4351-J-Z125-8-76

sleep

sleep - Suspend a program for a fixed period of time

Definition #include <signal.h>

int sleep(unsigned int sec);

sleep suspends a program for sec seconds.

Return val. Requested time minus actual time.
If sleep was ended earlier than specified in sec, the time still remaining will
be indicated (cf. note).

Note sleep delays the program for sec seconds by internally calling the VPASS macro with a
value of one second in a loop.

Although the program is suspended for sec seconds when sleep is called, time continues
to run for a previously set alarm clock (with alarm). The implications of this are detailed
below:

1. If the previously set alarm time is less than the sleep time, e.g.

alarm(2);
sleep(30);

the alarm is triggered and the sleep call is ended after two "sleep" seconds have
elapsed.

2. If the previously set alarm time is greater than the sleep time, e.g.

alarm(30);
sleep(5);

time continues to run on the alarm clock for 5 "sleeping" seconds. Following the
sleep call, the alarm clock will be set at 25.

The time for which the program is actually suspended may also deviate from sec for the
following reasons:

– it may be up to one second shorter because "awakening" takes place at fixed 1-
second intervals;

– it may be longer by any amount for priority reasons because the system has more
important things to do.

See also alarm, signal

U4351-J-Z125-8-76 387

sprintf

sprintf - Formatted output to a string

Definition #include <stdio.h>

int sprintf(char *s, const char *format, argumentlist);

sprintf edits data (characters, strings, numerical values) according to specifications in the
string format and writes this data to the area pointed to by s.

sprintf works like printf, except that the edited data is written to a string and not to the
standard output.

Parameter char *s
Pointer to the result string. sprintf terminates the string with the null byte (\0).

const char *format
Format string as described under printf with KR or ANSI functionality (cf. printf).

The only difference is with regard to the way in which the control characters for white
space (\n, \t, etc.) are handled. As opposed to printf, sprintf enters the EBCDIC
value of the control character in the result string. It is only during output to text files that
the control characters are converted to their appropriate effect depending on the type
of text file (see section “White space” on page 55).

argumentlist
Variables or constants whose values are to be converted and formatted for output
according to the information in the format statements.
If the number of format statements does not match the number of arguments, the
following applies:
If there are more arguments, the surplus arguments are ignored.
If there are fewer arguments, the results are undefined.

Return val. Number of characters stored in s.
The terminating null byte (\0) generated by sprintf is not included in this
total.

Notes You must see to it that the area to which s points is large enough for the result!

sprintf rounds to the specified precision when converting floating-point numbers.

sprintf does not convert one data type to another. A value must be explicitly converted
(e.g. with the cast operator) if it is not to be output in conformity with its type.

388 U4351-J-Z125-8-76

sprintf

Maximum number of characters to be output:
With KR functionality (applies to C/C++ versions prior to V3.0 only) a maximum of 1400
characters can be output per sprintf call,
with ANSI functionality a maximum of 1400 characters per conversion element (e.g. %s).

The behavior is undefined if memory areas overlap.

Attempts to output non-initialized variables or to output variables in a manner inconsistent
with their data type can lead to undefined results.

The behavior is undefined if the percent sign (%) in a format statement is followed by an
undefined formatting or conversion character.

Example You can use sprintf to copy a string, for example. It is thus possible to implement the
strncpy function. The example under strncpy would then appear as follows:

#include <stdio.h>

int main(void)
{
 int n;
 char *s2 = "Peter is going swimming !";
 char s1[BUFSIZ];
 printf("The sentence is : %s \nCopy how many characters ?\n", s2);
 scanf("%d",&n);

 /* Alternatively, the following call
 could appear at this point:
 strncpy(s1,s2,n); */

 sprintf(s1,"%.*s",n,s2);
 printf("%s \n",s1);
 return 0;
}

See also printf, fprintf, putc, putchar, puts, sscanf

U4351-J-Z125-8-76 389

sqrt, srand

sqrt - Square root

Definition #include <math.h>

double sqrt(double x);

sqrt calculates the square root of a non-negative floating-point number x.

Return val. sqrt(x) if x is >= 0.

0 if x is negative. In addition, errno is set to EDOM (domain error, i.e. invalid
argument).

Example The following program calculates the square root of an input value x.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 scanf("%lf", &x);
 printf("Square root of %g : %g\n", x, sqrt(x));
 printf("%d\n", errno);
 return 0;
}

See also exp, pow, log, log10, hypot, sinh

srand - Initialize the random number generator

Definition #include <stdlib.h>

void srand(unsigned int i);

srand is used to initialize the random number generator called by rand. i=1 sets the
random number generator to its default starting number.

Example See example under rand

See also rand

390 U4351-J-Z125-8-76

sscanf

sscanf - Formatted input from a string

Definition #include <stdio.h>

int sscanf(const char *s, const char *format, argumentlist);

sscanf reads data (input fields) from a string s, converts the data according to specifica-
tions in the format string format, and stores the results in areas which you specify with the
result pointers in the argument list.

sscanf works like scanf, except that the input fields are read from a string and not from
the standard input (stdin).

Parameter const char *s
String containing the input data. It should be terminated with the null byte (\0).

const char *format
Format string as described under scanf with KR or ANSI functionality (cf. scanf).

argumentlist
Pointers to variables in which sscanf is to store the converted results.
No pointer arguments may be specified for %* statements (skip assignment) in format.
There must be one pointer argument each for all other % statements. The data type of
the pointer argument is determined by the type specification of the corresponding
format statement.

Return val. Number of input fields read and successfully converted.
This does not include any input fields for which %* (skip assignment) was
specified.

EOF if an error occurred before the start of the conversion.

Notes The result is undefined if memory areas overlap.

A detailed description, notes, and examples relating to formatted input can be found under
scanf.

See also scanf, fscanf

U4351-J-Z125-8-76 391

_ _STDC_ _, __STDC_VERSION__

_ _STDC_ _ - Test for compliance with ANSI standard

Definition _ _STDC_ _

This macro generates the value 1 for compilation with
SOURCE-PROPERTIES=PARAMETERS(LANGUAGE-STANDARD=ANSI). In all other
language modes of the compiler the value of this macro is undefined.

Note This macro does not have to be defined in an include file. Its name is recognized and
replaced by the compiler.

_ _STDC_ VERSION_ _ - Test for compliance with Amendment 1

Definition _ _STDC _VERSION_ _

This macro is expanded to the decimal constant 199409L and thus indicates that the imple-
mentation complies with Amendment 1.

Note This macro does not have to be defined in an include file. Its name is recognized and
replaced by the compiler.

392 U4351-J-Z125-8-76

strcat

strcat - Concatenate strings

Definition #include <string.h>

char *strcat(char *s1, const char *s2);

strcat appends a copy of string s2 to the end of string s1 and returns a pointer to s1.

The null byte (\0) at the end of string s1 is overwritten by the first character of string s2.
strcat terminates the string with the null byte (\0).

Return val. Pointer to the result string.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strcat does not check whether memory area s1 is large enough for the result!

The behavior is undefined if memory areas overlap.

Example #include <string.h>
#include <stdio.h>
int main(void)
{
 char text1[BUFSIZ];
 char text2[BUFSIZ];
 printf("Example of strcat - please enter 2 text lines!\n");
 if(scanf("%s %s", text1, text2) == 2)
 printf("%s\n", strcat(text1, text2));
 return 0;
}

See also strncat

U4351-J-Z125-8-76 393

strchr

strchr - First occurrence of a character in a string

Definition #include <string.h>

char *strchr(const char *s, int c);

strchr searches for the first occurrence of character c in string s and returns a pointer to
the located position in s, if successful.

The terminating null byte (\0) is not counted as a character.

Return val. Pointer to the position of c in string s
if successful.

NULL pointer if c is not contained in string s.

Notes The strchr and index functions are equivalent.

The following two prototypes of the strchr function are applicable to C++:
const char *strchr(const char *s, int c);
 char *strchr(char *s, int c);

Example Find the first ’s’:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *s = "What fun in the ssun!";
 printf("%s\n", s);
 printf("Where is the mistake? %s\n", strchr(s, 's'));
 return 0;
}

See also index, rindex, strrchr

394 U4351-J-Z125-8-76

strcmp

strcmp - Compare two strings

Definition #include <string.h>

int strcmp(const char *s1, const char *s2);

strcmp compares strings s1 and s2 lexically, e.g.:

"circle" is lexically less than "circular",
"bustle" is lexically greater than "bus".

Return val. < 0 s1 is lexically less than s2.

= 0 s1 and s2 are lexically equal.

> 0 s1 is lexically greater than s2.

Note Strings terminated with the null byte (\0) are expected as arguments.

Example The following program searches the name list list for an input name:

#include <stdio.h>
#include <string.h>

char *list[] = {"anne", "peter", "walter", "john" };

int main(int argc, char *argv[])
{
 int j, i = 0;
 while((i <= 3) && (j = strcmp(argv[1], list[i++])));
 if (j == 0)
 printf("The candidate is already known!\n");
 else
 printf("This is a new candidate!\n");
 return 0;
}

See also strncmp

U4351-J-Z125-8-76 395

strcoll

strcoll - Compare two strings

Definition #include <string.h>

int strcoll(const char *s1, const char *s2);

strcoll compares strings s1 and s2 lexically. The lexical sequence of the individual
characters is interpreted according to the LC_COLLATE category of the current locale.

Return val. < 0 s1 is lexically less than s2.

= 0 s1 and s2 are lexically equal.

> 0 s1 is lexically greater than s2.

Notes Strings terminated with the null byte (\0) are expected as arguments.

The locale concept is described in detail in chapter “Locale” on page 83.

Example See under strxfrm.

See also setlocale, strxfrm

396 U4351-J-Z125-8-76

strcpy

strcpy - Copy string

Definition #include <string.h>

char *strcpy(char *s1, const char *s2);

strcpy copies string s2 (including the null byte (\0)) to string s1. s1 must be long enough to
accept string s2 (including the null byte (\0)).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strcpy does not check whether s1 is large enough for the result. If s1 is less than s2
(including the null byte), the result is a string that is not terminated with the null byte!

The behavior is undefined if memory areas overlap.

Example The following program outputs the contents of s1 and s2, then calls strcpy and outputs both
contents again.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s1[] = "Anne is pretty !";
 char s2[] = "Mary too !";
 printf("Contents s1: %s\nContents s2: %s\n", s1, s2);

 strcpy(s1, s2); /* copy s2 to s1 */
 printf("After strcpy:\nContents s1: %s\nContents s2: %s\n", s1, s2);
 return 0;
}

See also strncpy

U4351-J-Z125-8-76 397

strcspn

strcspn - Compare strings and calculate segment length

Definition #include <string.h>

size_t strcspn(const char *s1, const char *s2);

Starting at the beginning of string s1, strcspn calculates the length of the segment that
does not contain a single character from string s2. The terminating null byte (\0) is not
treated as part of string s2.

As soon as a character in s1 matches a character in s2, the function is terminated and the
segment length is returned.

If the first character in s1 already matches a character in s2, the segment length is equal to 0.

Return val. Integer specifying the segment length (number of non-matching characters)
starting from the beginning of string s1.

Note Strings terminated with the null byte (\0) are expected as arguments.

Example #include <stdio.h>
#include <string.h>
int main(void)
{
 char text1[40];
 static char text2[] = "/*#$&";
 size_t n;
 printf("Example of strcspn. Please enter a text line:\n");
 scanf("%s",text1);
 n = strcspn(text1, text2);
 printf("Length of initial segment without /, *, #, $, &: %d\n", n);
 return 0;
}

See also strspn

398 U4351-J-Z125-8-76

strerror

strerror - Return error message text

Definition #include <string.h>

char *strerror(int errnum);

strerror returns a string comprising the error message text assigned to the error number
in errnum. The error number corresponds to the contents of the internal C variable errno.

Return val. Pointer to an internal C memory area
containing a string with the error message text.

Note The area to which strerror points may not be modified by the program. It can be
overwritten only by repeated strerror calls.

Example #include <stdio.h>
#include <errno.h>
#include <string.h>

int main(void)

{
 printf("Error message for EDOM: %s\n", strerror(EDOM));
 return 0;
}

See also perror

U4351-J-Z125-8-76 399

strfill

strfill - Copy part of a string

Definition #include <string.h>

char *strfill(char *s1, const char *s2, size_t n);

strfill copies a maximum of n characters from string s2 to string s1.

The manner in which copying takes place is determined by the lengths and contents of
strings s1 and s2 and the value specified for n.

1. Regardless of the length of string s1, n characters are always copied to s1 (in all cases
except case 5). In other words,

– If s1 contains more than n characters, the characters remaining at the right in s1 are
retained.

– If s1 contains fewer than n characters, s1 is lengthened up to a length of n. In this
case, s1 is not automatically terminated with a null byte (cf. notes).

2. s2 contains fewer than n characters:

In addition to the characters copied from s2, the number of blanks required to achieve
a total of n are added.

3. s2 contains more than n characters:

Only the first n characters from s2 are copied.

4. s2 is a null string:

s1 is padded with n blanks.

5. s2 is passed as a NULL pointer:

(n - strlen(s1)) blanks are appended to string s1. If this subtraction yields a negative
result or 0, i.e. if the number of characters in s1 is greater than or equal to n, the contents
of s1 remain unchanged.

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strfill does not check whether s1 is large enough for the result and does not automati-
cally terminate the result string with the null byte (\0)! To avoid an unpredictable result, you
should explicitly terminate string s1 with the null byte after each strfill call (see the
example).

The behavior is undefined if memory areas overlap.

400 U4351-J-Z125-8-76

strfill

Example #include <stdio.h>
#include <string.h>

int main(void)
{
 size_t n;
 char s1[10];
 char s2[10];
 printf("Please input 2 strings!\n");
 scanf("%s %s", s1, s2);
 printf("Copy how many characters?\n");
 scanf("%d", &n);
 strfill(s1, s2, n);
 /* strfill(s1, NULL, n); Example of the transfer of s2 as a
 NULL pointer */
 (s1 + n) = '\0'; / Terminate result string with null byte */
 printf("s1 after strfill: %s\n", s1);
 printf("Current length of s1: %d\n", strlen(s1));
 return 0;
}

See also strncpy

U4351-J-Z125-8-76 401

strftime

strftime - Locale-specific representation of date and time

Definition #include <time.h>

size_t strftime(char *s, size_t max_n, const char *format,

const struct tm *tm_p);

strftime writes a maximum of max_n characters according to the information in the format
string to the area to which s points.
The format string consists of any ordinary characters and conversion characters (beginning
with %). All ordinary characters, including the terminating null byte (\0), are transferred 1:1
to the string. The conversion characters are replaced by appropriate date/time information.
This information is determined by the current locale (category LC_TIME) and the values of
the structure to which tm_p points.

Parameter char *s
Result string. It must be large enough to take max_n characters, including the null byte.

size_t max_n
Maximum number of characters, including the null byte, to be written to the result string.

const char *format
Format string containing the ordinary characters and conversion characters. The
conversion characters are replaced by locale-specific and current data as described
below:

%a Abbreviated locale-specific name of the weekday.

%A Full locale-specific name of the weekday.

%b Abbreviated locale-specific name of the month.

%B Full locale-specific name of the month.

%c Locale-specific representation of the time and date.

%d Day of the month as a decimal number (01 - 31).

%H Hour as a decimal number (00 - 23). 24-hour clock.

%I Hour as a decimal number (00 - 12). 12-hour clock.

%j Day of the year as a decimal number (001 - 366).

%m Month as a decimal number (01 - 12).

%M Minutes as a decimal number (00 - 59).

%p Locale-specific equivalent for AM and PM.

%S Seconds as a decimal number (00 - 59).

%U Week number in the year (00 - 53). The first week starts with the first Sunday in
the year.

402 U4351-J-Z125-8-76

strftime

const struct tm *tm_p
Pointer to a structure of type tm from which strftime can take the time and the date.
A structure of type tm is returned by the gmtime, localtime and mktime functions.

Return val. Number of characters written
excluding the terminating null byte.

0 if an error occurs. If, for example, conversion produces more than max_n
characters (including the null byte).

Notes The behavior is undefined if memory areas overlap.

The available locales are described in chapter “Locale” on page 83.

See also gmtime, localtime, mktime, setlocale

%w Weekday as a decimal number (0 - 6). Sunday is 0.

%W Week number in the year (00 - 53). The first week starts with the first Monday in
the year.

%x Locale-specific date representation.

%X Locale-specific time representation.

%y Year without century as a decimal number (00 - 99).

%Y Year with century.

%z Name of the time zone or no character if the time zone cannot be determined.

%% The character %.

U4351-J-Z125-8-76 403

strlen

strlen - Determine length of a string

Definition #include <string.h>

size_t strlen(const char *s);

strlen determines the length of string s, excluding the terminating null byte (\0).

While the sizeof operator always returns the defined length, strlen calculates the
number of characters currently in a string. A newline (\n) character is also included.

Return val. Length of the string s.
The terminating null byte is not counted.

Note Strings terminated with the null byte (\0) are expected as arguments.

Example 1 This program reads a string and calculates its current memory space requirements, taking
into account the null byte (strlen + 1) as well as the defined length of the string
(sizeof(s) = 8192 bytes).

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s[BUFSIZ];
 printf("Please enter your string.\n");
 scanf("%s", s);
 printf("Memory space required for the string: %d\n", strlen(s)+1);
 printf("Memory space defined for the string: %d\n", sizeof(s));
 return 0;
}

404 U4351-J-Z125-8-76

strlen

Example 2 This program calculates the current record length (including the newline character ’\n’) for
each record in a file.

#include <stdio.h>
#include <string.h>

int main(void)
{
 FILE *fp;
 int n = 200, z = 0;
 char string[BUFSIZ];
 fp = fopen("input", "r");

 while (fgets(string, n, fp) != NULL)
 {
 z++;
 printf("record %d contains %d characters \n", z, strlen(string));
 }
 return 0;
}

U4351-J-Z125-8-76 405

strlower

strlower - Copy a string and convert to lowercase letters

Definition #include <string.h>

char *strlower(char *s1, const char *s2);

strlower copies string s2 (including the null byte (\0)) to string s1, converting uppercase
letters to lowercase letters in the process.

If string s2 is passed as a NULL pointer, the copy operation is not performed and the
uppercase letters in s1 are converted to lowercase.

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strlower does not check whether s1 is large enough for the result. If s1 is shorter than s2
(including the null byte), the memory space after s1 is overwritten!

The behavior is undefined if memory areas overlap.

Example The following program copies the contents of s2 to s1, converting uppercase letters to
lowercase in the process.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s1[] = " ";
 char s2[] = "UPPERCASE!";
 printf("Contents s2: %s\n", s2);

 /* Copy s2 to s1 and convert to lowercase */
 strlower(s1, s2);

 printf("After strlower:\ncontents s1: %s\n", s1);
 return 0;
}

See also strupper, tolower, toupper

406 U4351-J-Z125-8-76

strncat

strncat - Concatenate strings

Definition #include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

strncat appends a maximum of n characters from string s2 to the end of string s1 and
returns a pointer to s1.

The null byte (\0) at the end of string s1 is overwritten by the first character of string s2.

If string s2 contains less than n characters, only the characters from s2 are appended to s1.
If string s2 contains more than n characters, only the first n characters from s2 are appended
to s1.

Return val. Pointer to the result string.
strncat terminates the string with the null byte (\0).

Notes Strings terminated with the null byte (\0) are expected as arguments.

strncat does not check whether s1 is large enough for the result!

The behavior is undefined if memory areas overlap.

Example #include <string.h>
#include <stdio.h>
int main(void)
{
 char text1[BUFSIZ];
 char text2[BUFSIZ];
 int n;
 printf("Example of strncat - please enter 2 text lines and n!\n");
 if(scanf("%s %s %d", text1, text2, &n) == 3)
 printf("%s\n", strncat(text1, text2, n));
 return 0;
}

See also strcat

U4351-J-Z125-8-76 407

strncmp

strncmp - Compare two strings

Definition #include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

strncmp compares strings s1 and s2 lexically up to a maximum length of n, e.g.

strncmp("for","formula",3)

returns 0 (equal), because the first three characters of both arguments match one another.

Return val. < 0 in the first n characters, s1 is lexically less than s2.

0 in the first n characters, s1 and s2 are lexically equal.

> 0 in the first n characters, s1 is lexically greater than s2.

Note Strings terminated with the null byte (\0) are expected as arguments.

408 U4351-J-Z125-8-76

strncmp

Example In the following guessing program, strncmp is used to determine the lexical order of two
strings.

#include <stdio.h>
#include <string.h>

int main(void)
{
 int i, n, result;
 char s[BUFSIZ], w[BUFSIZ];
 printf("Please enter the word to be guessed:\n");
 scanf("%s", w);
 n = strlen(w);
 printf("\nThe word entered has %d letters.\n", n);
 i = 0;
 do
 {
 i++;
 printf("Your attempt: \n");
 scanf("%s", s);
 if (strlen(s) > n)
 {
 printf("Your input is too long!\n");
 continue;
 }
 result = strncmp(s, w, n); /* result is assigned
 the result of strncmp */
 if (result > 0)
 printf("%s is lexically greater.\n", s);
 else
 {
 if (result < 0)
 printf("%s is lexically less.\n", s);
 }
 }
 while (result != 0);
 printf("Correct! The word was : %s\n", w);
 printf("You needed %d attempts.\n", i);
 return 0;
}

See also strcmp

U4351-J-Z125-8-76 409

strncpy

strncpy - Copy string

Definition #include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

strncpy copies a maximum of n characters from string s2 to string s1.

If string s2 contains fewer than n characters, only the length of s2 (strlen + 1) will be
copied.

If string s2 contains n or more characters (excluding the null byte), string s1 is not automat-
ically terminated with the null byte.

If string s1 contains more than n characters and the last character copied from s2 is not the
null byte, any data which may still remain in s1 is retained.

Return val. Pointer to the result string s1.
strncpy does not automatically terminate s1 with the null byte.

Notes strncpy does not check whether s1 is large enough for the result!

Since strncpy does not automatically terminate the result string with the null byte, it may
often be necessary to explicitly terminate s1 with a null byte. This is the case, for example,
when only a segment of s2 is being copied and s2 does not contain a null byte either.

The behavior is undefined if memory areas overlap.

Example 1 The following program fragment copies the entire string s2 to string s1 (like the strcpy func-
tion).

#include <stdio.h>
#include <string.h>
int main(void)
{
 int n;
 char s1[20];
 char s2[20];
 printf("Please enter s2 (max. 19 characters)\n");
 scanf("%s", s2);
 printf("s1: %s\n", strncpy(s1, s2, (strlen(s2) + 1)));
 return 0;
}

410 U4351-J-Z125-8-76

strncpy

Example 2 This program copies only a segment (8 characters) of s2 to s1. The result string is explicitly
terminated with the null byte.

#include <stdio.h>
#include <string.h>
int main(void)
{
 char *s1 = " ";
 char *s2 = "Peter is going swimming !";
 strncpy(s1, s2, 8);
 *(s1 + 8) = '\0';
 printf("s1: %s\n", s1); /* Contents of s1: "Peter is" */
 return 0;
}

Example 3 In this example, only a segment (5 characters) of s2 is copied to s1. The remaining data in
s1 is retained.

#include <stdio.h>
#include <string.h>
int main(void)
{
 char *s1 = "James is going shopping !";
 char *s2 = "Peter is going swimming !";
 strncpy(s1, s2, 5);
 printf("s1: %s\n", s1); /* Contents of s1: "Peter is going
 shopping !" */
 return 0;
}

See also strcpy, strlen

U4351-J-Z125-8-76 411

strpbrk

strpbrk - Search for a character in a string

Definition #include <string.h>

char *strpbrk(const char *s1, const char *s2);

strpbrk searches string s1 for the first character matching any character in string s2. The
terminating null byte (\0) is not considered part of string s2.

Return val. Pointer to the first matching character found in s1
if successful.

NULL pointer if not a single match is present.

Notes Strings terminated with the null byte (\0) are expected as arguments.

The following two prototypes of the strpbrk function are applicable to C++:
const char *strpbrk(const char *s1, const char *s2);
 char *strpbrk(char *s1, const char *s2);

Example #include <string.h>
#include <stdio.h>

int main(void)
{
 char text1[40];
 static char text2[] = "0123456789";
 char *result;
 printf("Example of strpbrk()\n");
 printf("Please enter a string (max. 40 characters) !\n");
 scanf("%s",text1);
 result = strpbrk(text1,text2);
 if(result == NULL)
 printf("The entered string does not contain any digits.\n");
 else printf("%s\n", result);
 return 0;
}

See also index, strchr

412 U4351-J-Z125-8-76

strptime

strptime - Convert a string into date and time

Definition #include <time.h>

char strptime(const char *buf, const char *format, struct tm *tm);

While taking account of format, strptime converts the string indicated by *buf into
individual date and time values which are stored in the structure indicated by *tm.

Parameter const char *buf
Date and time string to be converted.

struct tm *tm
Result structure in which the converted individual date and time values are stored.

const char *format
The format string contains none, one or more conversion directives. Each conversion
directive comprises one of the following elements:
one or more white-space characters (as defined in isspace)
a standard character (neither % nor white-space character)
or a conversion specification.

Each conversion specification consists of a % sign followed by a conversion character
which specifies the desired conversion. A white-space character or a non-alphanumeric
character must appear between two conversion specifications.

The following conversion characters are supported:

%% Replaced by %

%a Day of the week, whereby the name from the locale is used. Either the abbreviated or
full name can be specified.

%A Same meaning as %a

%b Month, whereby the name from the locale is used. Either the abbreviated or full name
can be specified.

%B Same meaning as %b

%c Date and time display according to the definition in the locale.

%C Century (four-digit year number divided by 100 as whole number) (00-99).

%d Day of the month (01-31).

%D Date as %m/%d/%y

%e Same meaning as %d

%h Same meaning as %b

%H Hour (00-23), 24-hour clock.

%I Hour (01-12), 12-hour clock.

U4351-J-Z125-8-76 413

strptime

A conversion directive comprising white-space characters is implemented by reading
the input up to the first character that is not a white-space character (this character
remains unread) or until no further characters exist.

A conversion directive comprising a standard character is implemented by reading the
next character from the buffer. If the character read from the buffer does not match the
character in the conversion directive, the action fails and the buffer character and all
subsequent characters remain unread.

A sequence of conversion directives comprising %n, %t, white-space characters, and
combinations thereof is implemented by reading up to the first character that is not a
white-space character (this character remains unread) or until no further characters
exist.

All other conversion specifications are implemented by reading all characters until a
character matching the next conversion directive is read (this character remains in the
buffer) or until no further characters exist. The characters that have been read are then
compared with the values in the locale that correspond to the conversion specification.
If the appropriate value is found in the locale, the corresponding structure elements of

%j Day of the year (001-366).

%m Number of the month (01-12).

%M Minute (00-59).

%n Replaced by a white-space character.

%p Equivalent identifier of the locale for AM or PM.

%r Time in the format %I:%M:%S%p

%R Time in the format %H:%M

%S Seconds (00-61), permits leap seconds

%t Replaced by a white-space character.

%T Time in the format %H:%M:%S

%U Number of the week in the year (00-53). The first week begins with the first Sunday of
the year. All days before the first Sunday of the year belong to week 0.

%w Day of the week as a number (0-6), Sunday = 0.

%W Number of the week in the year (00-53), Monday is the first day of week 1. All days
before the first Monday of the year belong to week 0.

%x Date as represented in the locale.

%X Time as represented in the locale.

%y Two-digit year number (00-99).
Year numbers between 00 and 68 are interpreted as the years 2000 through 2068,
while year numbers between 69 and 99 are interpreted as the years 1969 through 1999.

%Y Four-digit year number in the form ccyy (e.g. 1966 or 2001).

414 U4351-J-Z125-8-76

strptime

the tm structure are set to the values corresponding to this information.
The search is not case-sensitive if elements such as the names of days or months are
being compared.
If no appropriate value is found in the locale, strptime fails and no further characters
are read.

Return val. Pointer to the character behind the last character read
if successful

NULL pointer in all other cases

Note The special handling of white-space characters and many “identical formats” should make
it easier to implement identical format strings for strftime and strptime.

See also scanf, strftime, time.

U4351-J-Z125-8-76 415

strrchr

strrchr - Last occurrence of a character in a string

Definition #include <string.h>

char *strrchr(const char *s, int c);

strrchr searches for the last occurrence of character c in string s and returns a pointer to
the located position in s if successful.

The terminating null byte (\0) is treated as a character.

Return val. Pointer to the position of c in string s
if successful.

NULL pointer if c is not contained in string s.

Notes The strrchr and rindex functions are equivalent.

The following two prototypes of the strchr function are applicable to C++:
const char *strrchr(const char *s, int c);
 char *strrchr(char *s, int c);

Example Find the last ’s’:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *s = "What fun in the ssun!";
 printf("%s\n", s);
 printf("Where is the mistake? %s\n", strrchr(s, 's'));
 return 0;
}

See also index, rindex, strchr

416 U4351-J-Z125-8-76

strspn

strspn - Compare strings and calculate segment length

Definition #include <string.h>

size_t strspn(const char *s1, const char *s2);

Starting at the beginning of string s1, strspn calculates the length of the segment that
contains only characters from string s2.

As soon as a character in s1 fails to match any character in s2, the function is terminated
and the segment length is returned.

If the first character in s1 already fails to match any character in s2, the segment length is
equal to 0.

Return val. Integer value specifying the segment length (the number of identical characters) starting
from the beginning of string s1.

Note Strings terminated with the null byte (\0) are expected as arguments.

Example #include <stdio.h>
#include <string.h>

int main(void)
{
 char text1[40];
 char *text2 = "0123456789";
 size_t n;
 printf("Example of strspn. Please enter a text line:\n");
 scanf("%s", text1);
 n = strspn(text1, text2);
 printf("Length of initial segment with digits (0 - 9): %d\n", n);
 return 0;
}

See also strcspn

U4351-J-Z125-8-76 417

strstr

strstr - First occurrence of one string in another

Definition #include <string.h>

char *strstr(const char *s1, const char *s2);

strstr searches for the first occurrence of string s2 (without the terminating null byte) in
string s1.

Return val. Pointer to the start of the string found in s1
if s2 is contained in s1.

0 if s2 is not contained in s1.

Pointer to the start of s1
if s2 has a length of 0.

Notes Strings terminated with the null byte are expected as arguments.

The following two prototypes of the strstr function are applicable to C++:
const char *strstr(const char *s1, const char *s2);
 char *strstr(char *s1, const char *s2);

Example #include <string.h>
#include <stdio.h>

int main(void)
{
 char *s1 = "City: Munich, Name: Peter Mueller";
 char *s2 = "Peter";
 printf("Full name? %s\n", strstr(s1, s2)); /* Peter Mueller */
 return 0;
}

See also strchr

418 U4351-J-Z125-8-76

strtod

strtod - Convert a string into a floating-point number

Definition #include <stdlib.h>

double strtod(const char *s, char **p);

strtod converts a string to which s points into a floating-point number of type double. The
string to be converted may be structured as follows:

[...][][digit...][.][digit...][[]digit...]

Any control character for white space may be used for tab (see definition under isspace).

strtod also recognizes strings that start with a digit but end with any character. In such
cases, strtod first truncates the numeric part and converts it to a floating-point value.

strtod additionally provides a pointer (*p) to the first non-convertible character in string s
via the second argument p of type char **. If no conversion is possible at all, *p is set to the
start address of string s.
However, this occurs only if p is not passed as a NULL pointer.

If p is a NULL pointer, strtod is executed like the atof function:

strtod(s, (char **)NULL) and strtod(s, NULL) are both equivalent to atof(s).

Return val. Floating-point number of type double
for strings which are structured as described above and represent a
numeric value within the permissible floating-point range.

0 for strings that do not conform to the syntax described above or do not begin
with convertible characters.

HUGE_VAL for strings whose numeric value lies outside the permissible floating-point
range. In addition, errno is set to ERANGE (result too large).

Note The decimal point character (period or comma) in the string to be converted is determined
by the locale (category LC_NUMERIC). The default setting is a period.

tab

 Ë

+

-

E

e

+

-

U4351-J-Z125-8-76 419

strtod

Example The following program converts a string passed during the call (Enter Options) into its corre-
sponding floating-point number and outputs the first non-convertible character, if any.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

 /* Numbers are passed as strings!!
 A conversion is necessary if the
 numeric value is required */
{
 char *p;

 printf("floating : %f\n", strtod(argv[1], &p));
 putchar(*p);
 return 0;
}

See also atof, atoi, atol, strtol, strtoul

420 U4351-J-Z125-8-76

strtok

strtok - Split a string into tokens

Definition #include <string.h>

char *strtok(char *s1, const char *s2);

strtok can be used to split a complete string s into substrings called “tokens”, e.g. a
sentence into individual words, or a source program statement into its smallest syntactical
units.
The start and end criterion for each token are separator characters (delimiters), which you
specify in a second string s2. Tokens may be delimited by one or more such delimiters or by
the beginning and end of the entire string s1. Blanks, colons, commas, etc. are typical delim-
iters between the words of a sentence. A different delimiter sequence s2 may be specified
for each call or token.

strtok processes exactly one token per call. The first call returns a pointer to the beginning
of the first token found. Each subsequent call returns a pointer to the beginning of the next
token. The strtok function terminates each token with the null byte (\0).

To ensure that strtok processes the entire string s1 in succession, the start address, i.e.
a pointer to s1, must only be passed in the first call. In all subsequent calls, s1 must be
passed as a NULL pointer.

Return val. Pointer to the beginning of a token.
At the first call, a pointer to the first token; at the next call, a pointer to the
following token, etc. strtok terminates each token in s1 with a null byte (\0),
each time overwriting the first delimiter it finds with \0.

NULL pointer if no token, or no further token was found.

Example #include <string.h>
#include <stdio.h>

int main(void)
{
 static char str[] = "?a???b,,,#c";
 char *t;;
t = strtok(str, "?"); /* t points to the token "a" */

 t = strtok(NULL, ","); /* t points to the token "??b" */
 t = strtok(NULL, "#,"); /* t points to the token "c" */
 t = strtok(NULL, "?"); /* t is a NULL pointer */
 return 0;
}

U4351-J-Z125-8-76 421

strtol

strtol - Convert a string into a whole number (long int)

Definition #include <stdlib.h>

long int strtol(const char *s, char **p, int base);

strtol converts a string to which s points into an integer of type long int. The string to
be converted may be structured as follows:

 tab + 0
 [...][][]digit...
 Ë - 0X

All control characters for white space may be used for tab (see definition under isspace).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtol also recognizes strings that start with convertible digits (including octal and
hexadecimal digits) but then end with any character. In such cases, strtol first truncates
the numeric part and converts it.

strtol additionally provides a pointer (*p) to the first non-convertible character in string s
via the second argument p of type char **. However, this occurs only if p is not passed as a
NULL pointer.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

Parameter const char *s
Pointer to the string to be converted.

char **p
A pointer (*p) to the first character in s that terminates the conversion is returned if p is
not a NULL pointer.
If no conversion is possible at all, *p is set to the start address of string s.

int base
Integer from 0 to 36, which is to be used as the base for the computation.

From base 11 to base 36, letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits with the corresponding values 10 (a/A) to 35 (z/Z).

422 U4351-J-Z125-8-76

strtol

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X and 0x are ignored
after any sign in string s.

Return val. Integer value of type long int
for strings that have a structure as described above and represent a
numeric value.

0 for strings that do not conform to the syntax described above. No conversion
is performed. If the value of base is not supported, errno is set to EINVAL.

LONG_MAX or LONG_MIN
depending on the sign.

ULONG_MAX
if the result overflows
errno is set to ERANGE to indicate the error.

Note If p is a NULL pointer and base is equal to 10, strtol is executed like the function atol:
atol(s) is equivalent to strtol(s, NULL, 10).

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

U4351-J-Z125-8-76 423

strtol

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *str1 = " 0x1ff";
 char *str2 = "h0***";
 char *end;
 long l;

 l = strtol(str1, &end, 0); /* Base 16 is derived */
 /* from the string str1. */
 printf("First value: %ld\n", l); /* 511 is output. */

 l = strtol(str2, &end, 20); /* Base = 20 */
 printf("Second value: %ld\n", l); /* 340 (17*20) is output. */
 printf("Rest of str2: %s\n", end); /* "***" is output. */
 return 0;
}

See also atol, atoi, strtod, strtoll, strtoul, strtoull, wcstol, wcstoll, wcstoul, wcstoull

424 U4351-J-Z125-8-76

strtoll

strtoll - Convert a string into a whole number (long long int)

Definition #include <stdlib.h>

long long int strtoll(const char restrict *s, char ** restrict p, int base);

strtoll converts a string to which s points into an integer of type long long int. The
string to be converted may be structured as follows:

 tab + 0
 [...][][]digit...
 Ë - 0X

All control characters for white space may be used for tab (see definition under isspace).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoll also recognizes strings that begin with convertible digits (including octal or
hexadecimal digits) but then end with any character. In this case, strtoll first truncates
the numeric part and converts it.

strtoll additionally provides a pointer to the first non-convertible character in string s via
the second argument p of type char **. However, this occurs only if p is not transferred as a
NULL pointer.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

Parameter const char *s
Pointer to the string to be converted.

char **p
A pointer (*p) to the first character in s that terminates the conversion is returned if p is
not a NULL pointer.
If no conversion is possible at all, *p is set to the start address of string s.

int base
Integer from 0 to 36, which is to be used as the base for the computation.

From base 11 to base 36, letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits with the corresponding values 10 (a/A) to 35 (z/Z).

U4351-J-Z125-8-76 425

strtoll

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X and 0x are ignored
after any sign in string s.

Return val. Integer value of type long long int
for strings that have a structure as described above and represent a
numeric value.

0 for strings that do not conform to the syntax described above. No conversion
is performed. If the value of base is not supported, errno is set to EINVAL.

LLONG_MAX or LLONG_MIN
depending on the sign.

ULLONG_MAX
in the event of an overflow errno is set to ERANGE.

Notes If p is a NULL pointer and base is equal to 10, the only difference between strtoll and the
function atoll lies in the error handling.

atoll(s) corresponds to strtoll(s, (char **)NULL, 10).

See also atol, atoll, atoi, strtol, stroul, stroull, wcstol, wcstoll, wcstoul, wcstoull

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

426 U4351-J-Z125-8-76

strtoul

strtoul - Convert a string into a whole number (unsigned long int)

Definition #include <stdlib.h>

unsigned long int strtoul(const char *s, char **p, int base);

strtoul converts a string to which s points into an integer of type unsigned long int.
The string to be converted may be structured as follows:

[...][]digit...

All control characters for white space may be used for tab (see definition under isspace).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoul also recognizes strings that start with convertible digits (including octal and
hexadecimal digits) but then end with any character. In such cases, strtoul first truncates
the numeric part and converts it.

strtoul additionally provides a pointer (*p) to the first non-convertible character in string s
via the second argument p of type char **. However, this occurs only if p is not passed as
a NULL pointer.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

Parameter const char *s
Pointer to the string to be converted.

char **p
A pointer (*p) to the first character in s that terminates the conversion is returned if p is
not a NULL pointer.
If no conversion is possible at all, *p is set to the start address of string s.

int base
Integer from 0 to 36, which is to be used as the base for the computation.

From base 11 to base 36, letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits with the corresponding values 10 (a/A) to 35 (z/Z).

tab

 Ë

0

0X

U4351-J-Z125-8-76 427

strtoul

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X and 0x are ignored
after any sign in string s.

Return val. Integer value of type unsigned long
for strings that have a structure as described above and represent a
numeric value.

0 for strings that do not conform to the syntax described above. No conversion
is performed. If the value of base is not supported, errno is set to EINVAL

LONG_MAX, LONG_MIN
depending on the sign.

ULONG_MAX)

if the result overflows, errno is set to ERANGE (result too large).

See also atol, atoll, atoi, strtol, strtoll, stroull, wcstol, wcstoll, wcstoul, wcstoull

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

428 U4351-J-Z125-8-76

strtoull

strtoull - Convert a string into a whole number (unsigned long long)

Definition #include <stdlib.h>

unsigned long long int strtoull(const char restrict *s, char **restrict p, int base);

strtoull converts a string to which s points into an integer of type
unsigned long long int. The string to be converted may be structured as follows:

[...][]digit...

All control characters for white space may be used for tab (see definition under isspace).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoull also recognizes strings that start with convertible digits (including octal and
hexadecimal digits) but then end with any character. In such cases, strtoull first
truncates the numeric part and converts it.

strtoull additionally provides a pointer to the first non-convertible character in string s via
the second argument p of type char **. However, this occurs only if p is not transferred as
a NULL pointer.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

Parameter const char *s
Pointer to the string to be converted.

char **p
A pointer (*p) to the first character in s that terminates the conversion is returned if p is
not a NULL pointer.
If no conversion is possible at all, *p is set to the start address of string s.

int base
Integer from 0 to 36, which is to be used as the base for the computation.

From base 11 to base 36, letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits with the corresponding values 10 (a/A) to 35 (z/Z).

tab

 Ë

0

0X

U4351-J-Z125-8-76 429

strtoull

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X and 0x are ignored
after any sign in string s.

Return val. Integer value of type unsigned long long int
for strings that have a structure as described above and represent a
numeric value.

0 for strings that do not conform to the syntax described above. No conversion
is performed. If the value of base is not supported, errno is set to EINVAL.

LLONG_MAX or LLONG_MIN
depending on the sign.

ULLONG_MAX
in the event of an overflow, errno is set to ERANGE.

See also atol, atoll, atoi, strtol, strtoll, stroul, wcstol, wcstoll, wcstoul, wcstoull

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

430 U4351-J-Z125-8-76

strupper

strupper - Copy a string and convert to uppercase letters

Definition #include <string.h>

char *strupper(char *s1, const char *s2);

strupper copies string s2 (including the null byte (\0)) to string s1, converting lowercase
letters to uppercase in the process.

If string s2 is passed as a NULL pointer, the copy operation is not performed and the
lowercase letters in s1 are converted to uppercase.
If s2 is not passed as a NULL pointer, s1 must be long enough to accept s2 including the null
byte (\0).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strupper does not check whether s1 is large enough for the result. If s1 is shorter than s2
(including the null byte), the memory space after s1 is overwritten!

The behavior is undefined if memory areas overlap.

Example The following program copies the contents of s2 to s1, converting lowercase letters to
uppercase in the process.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *s1 = " ";
 char *s2 = "lowercase!";
 printf("Contents s2: %s\n", s2);

 /* Copy s2 to s1 and convert to uppercase*/
 strupper(s1, s2);
 printf("After strupper:\ncontents s1: %s\n", s1);
 return 0;
}

See also strlower, tolower, toupper

U4351-J-Z125-8-76 431

strxfrm

strxfrm - Transform a string

Definition #include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

strxfrm transforms the characters in string s2 so that the lexical sequence of each
character is interpreted according to the LC_COLLATE category of the current locale.
A maximum of n transformed characters (including the terminating null byte) are then
copied to string s1.
If n has the value 0 then result string s1 can be a NULL pointer.

A comparison of two strings transformed with strxfrm using the strcmp function will then
return the same result as a comparison with the strcoll function applied to the same
original strings.

Return val. Length of the transformed string (excluding the terminating null byte).

Notes A string terminated with the null byte (\0) is expected as argument s2.

String s2 is not modified by strxfrm. The transformation is performed in a work area.

If the return value is greater than or equal to n, the contents of string s1 are indeterminate
because no null byte was written.

If the hexadecimal value 0 has been assigned to one of the characters in string s2 in the
current locale, then this character terminates the transformed string as the null byte (see
also section “User-specific locales” on page 100).

The behavior is undefined if memory areas overlap.

The locale concept is described in detail in chapter “Locale” on page 83.

432 U4351-J-Z125-8-76

strxfrm

Example #include <stdio.h>
#include <string.h>
#include <locale.h>

int main(void)
{
 char alpha2[11];
 char num2[11];
 int comp1;
 int comp2;
 int comp3;
 size_t i = 11;
 char *alpha1 = "ABCDEFGHIJ";
 char *num1 = "0123456789";

 setlocale(LC_COLLATE, "ANNE"); /* Activate the user-specific
 locale, in which digits have
 a lower sorting value than
 letters */

 comp1 = strcoll(alpha1, num1); /* Compare the original strings */
 if(comp1 > 0) /* using strcoll */
 printf ("alpha1 greater than num1\n");
 else printf("Fehler\n");

 comp2 = strcmp(alpha1, num1); /* Compare the original strings */
 if(comp2 < 0) /* using strcmp */
 printf ("alpha1 less than num1\n");
 else printf("Error\n");

 strxfrm(num2, num1, i); /* Transform with strxfrm */
 strxfrm(alpha2, alpha1, i);

 comp3 = strcmp(alpha2, num2); /* Compare the transformed */
 if(comp3 > 0) /* result strings using strcmp */
 printf ("alpha2 greater than num2\n");
 else printf("Error\n");
 return 0;
 }

See also setlocale, strcoll, strcmp

U4351-J-Z125-8-76 433

swprintf, swscanf

swprintf - Formatted output to a wide character string

Definition #include <wchar.h>

int swprintf(wchar_t *s, size_t n, const wchar_t *format [, arglist]);

Description: see fwprintf.

swscanf - Formatted input from a wide character string

Definition #include <wchar.h>

int swscanf(const wchar_t *s, const wchar_t *format [, arglist]);

Description: see fwscanf.

434 U4351-J-Z125-8-76

system

system - Execute system command

Definition #include <stdlib.h>

int system(const char *cmd);

system executes the BS2000 system command in the string cmd.

Return val. 0 The system command was executed successfully (return value of the corre-
sponding system command: 0).

-1 The system command was not executed successfully (return value of the
system command: error code ≠ 0).

The return value remains undefined (see "Notes") if control is not returned to the program
following the system command.

Notes The system command must not exceed a maximum length of 2048 characters and need not
be specified with the system slash (/).

After certain commands (START-PROG, LOAD-PROG, CALL-PROCEDURE, DO, HELP-
SDF), control is not returned to the calling program. If a program permits such premature
program terminations, it should flush buffers (fflush) or close the files before the system
call.

The system function passes on the cmd string as input to the BS2000 command processor
MCLP without changing it (see also the "Executive Macros" manual). No conversion to
uppercase is performed.

Example #include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char cmd[225];
 int result;
 printf("Please enter system command\n");
 gets(cmd);
 result = system(cmd);
 printf("Return value: %d\n", result);
 return 0;
}

U4351-J-Z125-8-76 435

tan

tan - Tangent

Definition #include <math.h>

double tan(double x);

tan calculates the trigonometric function tangent within the permissible range of floating-
point numbers. x specifies the angle in radians.

Return val. tan(x) for any valid floating-point number x.

{+/-}HUGE_VAL
in the event of an overflow. In addition, errno is set to ERANGE (result too
large).

Example The following program outputs the tangent of an input number.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter a number :\n");
 scanf("%lf", &x);
 printf("The tangent of %g is %g \n", x, tan(x));
 return 0;
}

See also sin, cos, tanh, atan

436 U4351-J-Z125-8-76

tanh

tanh - Hyperbolic tangent

Definition #include <math.h>

double tanh(double x);

tanh calculates the hyperbolic tangent function of x. x must be in the permissible range of
floating-point numbers.

Return val. tanh(x) for a permissible floating-point number x.

Example The following program outputs the hyperbolic tangent of an input number.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x;
 printf("Please enter a number :\n");
 scanf("%lf", &x);
 printf("The hyperbolic tangent of %g is %g \n", x, tanh(x));
 return 0;
}

See also sin, cos, tan, atan

U4351-J-Z125-8-76 437

tell

tell - Return current position of read/write pointer (elementary)

Definition #include <stdio.h>

long tell(int fd);

tell returns the current position of the read/write pointer for the file with file descriptor fd.

The tell function may be used for binary files (PAM, INCORE) as well as text files (SAM,
ISAM).
SAM files are always processed as text files with elementary functions.

Return val. Position in the file if successful, i.e.
for binary files, the number of bytes that offsets the read/write pointer from
the beginning of the file;
for text files, the absolute position of the read/write pointer.

-1 if an error occurs. In addition, corresponding error information is stored in
errno (e.g. tell not permitted, number of blocks or records too large).

Notes The calls tell(fd) and lseek(fd, 0L, SEEK_CUR) are equivalent.

tell cannot be used for system files (SYSDTA, SYSLST, SYSOUT).

Since information on the file position is stored in a field that is 4 bytes long, the following
restrictions apply to the size of SAM and ISAM files when processing them with
tell/lseek:

1. SAM file

2. ISAM file

Example See example under lseek.

See also lseek, lseek64, fseek, fseek64, ftell, ftell64

Record length ≤ 2048 bytes

Number of records/block ≤ 256

Number of blocks ≤ 2048

Record length ≤ 32 Kbytes

Number of records ≤ 32 K

438 U4351-J-Z125-8-76

time

time - Get current time

Definition #include <time.h>

time_t time(time_t *sec_p);

time returns the current time (local time) as the number of seconds that have elapsed since
January 1, 1950 00:00:00. When converting to summertime/wintertime, the value jumps by
3600 or -3600 seconds.

If the program has been linked with the POSIX or TIME link switch, 1.1.1970 is used as the
fixed date instead of 1.1.1950. In this case, time returns the number of seconds that have
elapsed since 1.1.1970 00:00:00 (Greenwich Mean Time). Summertime and wintertime
conversions have no effect on the continuation of GMT.

Parameter time_t *sec_p
Pointer to the result returned by time.

If a NULL pointer is passed as an argument, this parameter has no significance.

If no NULL pointer is passed, the result of time is additionally entered into the area to
which sec_p points.

Return val. Number of seconds that have elapsed since the fixed date.

See also ctime, difftime, ftime, mktime

U4351-J-Z125-8-76 439

_ _TIME_ _

_ _TIME_ _ - Output compilation time (macro)

Definition _ _TIME_ _

This macro generates the time of compilation of a source file as a string in the form:

"hh:mm:ss\0"

where

hh hours

mm minutes

ss seconds

Notes The format of the time information corresponds to the asctime function.

This macro does not have to be defined in an include file. Its name is recognized and
replaced by the compiler.

Example #include <stdio.h>

int main(int argc, char *argv[])

{
printf("Program %s was compiled on %s at %s hours\n", argv[0],
__DATE__, __TIME__);
return 0;
}

See also asctime, _ _DATE_ _

440 U4351-J-Z125-8-76

tmpfile, tmpfile64

tmpfile, tmpfile64 - Open temporary binary file

Definition #include <stdio.h>

FILE *tmpfile(void);
FILE *tmpfile64(void);

tmpfile and tmpfile64 generate a unique file name (in an analogous manner to the
tmpnam function) and open a binary SAM file with default attributes under this name. The
file is opened in the wb+ mode (write and read).

The file is automatically removed when the program terminates normally or when the file is
closed.

There is no functional difference between tmpfile and tmpfile64, except that
tmpfile64 returns a file pointer to a temporary file that can be > 2 GB.

To process files > 2 GB, proceed as follows:

– If the _FILE_OFFSET_BITS 64 define (see page 58) is set, call tmpfile. tmpfile64
is then used implicitly with the appropriate parameters.

– Otherwise, you have to call tmpfile64.

Return val. Pointer to the assigned FILE structure
if successful.

NULL pointer if the file could not be opened.

Note If the program is terminated abnormally with abort or _exit(-1), the temporary files are
not deleted.

See also tmpnam, mktemp, abort

U4351-J-Z125-8-76 441

tmpnam

tmpnam - Generate unique temporary file name

Definition #include <stdio.h>

char *tmpnam(char *s);

tmpnam generates a unique file name from the TSN number of the current task, an internal
identifier, the time, the date, and a number of up to four digits. Each time tmpnam is called
this number changes; so, too, does the time each time a second elapses. This ensures that
the name is always different from the names of existing files.
tmpnam can be called at most TMP_MAX times.

The file name can then be used for creating any new file.

Return val. Pointer to the generated name
If s is a NULL pointer, tmpnam writes the result to an internal C memory area
which is overwritten with each call.
If s is not a NULL pointer tmpnam writes the result to the result string s. Suffi-
cient memory to take at least L_tmpnam characters must be made available
for s. L_tmpnam is defined in <stdio.h>.

0 if tmpnam has been called more than TMP_MAX times.

Notes tmpnam generates a maximum of TMP_MAX names. TMP_MAX is defined in the include
file <stdio.h>.

Files opened with names generated by tmpnam are not automatically deleted at the end of
the program or task. The files must be explicitly deleted (e.g. with remove).

442 U4351-J-Z125-8-76

tmpnam

Example #include <stdio.h>

int main(void)
{
 FILE *fp1;
 FILE *fp2;
 char nam1[L_tmpnam];
 char nam2[L_tmpnam];

 tmpnam(nam1);
 printf("Name1: %s\n", nam1); /* Name1: S.C.UNQ.1RCP.00.13211.2709199.0000 */
 fp1 = fopen(nam1, "w+r");

 tmpnam(nam2);
 printf("Name2: %s\n", nam2); /* Name2: S.C.UNQ.1RCP.00.13211.2709199.0001 */
 fp2 = fopen(nam2, "w+r");

 fclose(fp1);
 fclose(fp2);

 remove(nam1);
 remove(nam2);
}

See also tmpfile, tmpfile64, mktemp, remove

U4351-J-Z125-8-76 443

toascii

toascii - Convert an integer value to a valid EBCDIC value

Definition #include <ctype.h>

int toascii(int i);

toascii uses the bitwise AND operator (i & 0XFF) to set the first 3 bytes of an integer
variable i to 0 and returns the value of the least significant byte.

toascii is a synonym for toebcdic. On EBCDIC computers, toascii returns a legal
value from the EBCDIC character set. If portability to ASCII computers is essential,
toascii should be used.

Return val. Value of the least significant byte of the variable i.

Notes toascii does not convert values from other character sets (e.g. ASCII on EBCDIC
computers).

See also toebcdic

444 U4351-J-Z125-8-76

toebcdic, tolower

toebcdic - Convert an integer value to a valid EBCDIC value

Definition #include <ctype.h>

int toebcdic(int i);

toebcdic returns a legal value from the EBCDIC character set.

toebcdic uses the bitwise AND operator (i & 0XFF) to set the first 3 bytes of an integer
variable i to 0 and returns the value of the least significant byte.

Return val. The least significant byte of the variable i.

Notes toebcdic is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

toebcdic does not convert values from other character sets (e.g. ASCII)

toebcdic is a synonym for toascii. If portability to ASCII computers is essential,
toascii should be used instead of toebcdic.

See also toascii

tolower - Convert uppercase letters to lowercase

Definition #include <ctype.h>

int tolower(int c);

tolower converts the uppercase letter c (from the EBCDIC character set) to the corre-
sponding lowercase letter.

Return val. The lowercase letter corresponding to c
if c is an uppercase letter.

c unchanged if c is not an uppercase letter.

Note tolower is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

U4351-J-Z125-8-76 445

tolower

Example The following program reads a string and converts the characters first to lowercase letters
and then to uppercase letters. Characters that are neither uppercase nor lowercase letters
(digits, special characters, etc.) remain unchanged.

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 int i;
 char s[81];

 printf("Please enter a string (max. 80 characters)\n");
 scanf("%s", s);

 printf("And now everything in lowercase letters \n");
 for (i=0; s[i] != '\0'; ++i)
 if (isupper(s[i]))
 printf("%c", tolower(s[i]));
 else printf("%c", s[i]);

 printf("\n And in uppercase letters \n");
 for (i=0; s[i] != '\0'; ++i)
 if (islower(s[i]))
 printf("%c", toupper(s[i]));
 else printf("%c", s[i]);

 printf("\n");
 return 0;
}

See also strlower, strupper, toupper, toascii, toebcdic, towlower

446 U4351-J-Z125-8-76

toupper

toupper - Convert lowercase letters to uppercase

Definition #include <ctype.h>

int toupper(int c);

toupper converts the lowercase letter c to the corresponding uppercase letter.

Return val. The uppercase letter corresponding to c
if c is a lowercase letter.

c unchanged if c is not a lowercase letter.

Note toupper is implemented both as a macro and as a function (see section “Functions and
macros” on page 5).

Example See example under tolower

See also strupper, strlower, tolower, toascii, toebcdic, towupper

U4351-J-Z125-8-76 447

towctrans

towctrans - Map wide characters

Definition #include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

towctrans maps the wide character wc using the mapping described by desc. The current
setting of the LC_CTYPE category must be the same as during the towctrans call that
returned the value desc.

The following two calls to towctrans behave the same as the calls for conversion to
lowercase and uppercase indicated in the comments that follow:

towctrans(wc, wctrans("tolower")) /* towlower(wc) */
towctrans(wc, wctrans("toupper")) /* towupper(wc) */

Return val. Mapped wide character
if successful.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also tolower, toupper, towlower, towupper, wctrans

448 U4351-J-Z125-8-76

towlower, towupper

towlower - Convert wide character to lowercase

Definition #include <wctype.h>

wint_t towlower(wint_t wc);

towlower converts the wide character wc to the corresponding lowercase letter if wc is an
uppercase wide-character code.

Return val. Lowercase of wc
if wc is an uppercase letter.

wc unchanged if wc is not an uppercase letter.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also setlocale, tolower, towupper

towupper - Convert wide character to uppercase

Definition #include <wctype.h>

wint_t towupper(wint_t wc);

towupper converts the wide character wc, to the corresponding uppercase letter if wc is a
lowercase wide-character code.

Return val. Uppercase of wc
if wc is a lowercase letter.

wc unchanged if wc is not a lowercase letter.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also setlocale, toupper, towlower

U4351-J-Z125-8-76 449

ungetc

ungetc - Push back a character to the buffer

Definition #include <stdio.h>

int ungetc(int c, FILE *fp);

ungetc pushes the character c back to the buffer assigned to the file described by file
pointer fp. The next read operation that reads one character at a time from this file (getc)
will then return c once again.
If c is equal to EOF, ungetc has no effect, and EOF is returned.

Return val. The pushed back character c
if successful.

EOF if ungetc cannot push back the character (due to an error or if c is EOF).

Notes At least one character must always have been read from the file before the first ungetc call.

EOF cannot be pushed back.

After a successful ungetc call, the read/write pointer is moved back one character.

A call to one of the following functions cancels the effects of the ungetc call (e.g. backward
positioning): fseek/fseek64, fsetpos/fsetpos64, lseek/lseek64, rewind, fflush.

If a character other than the one read previously is returned to the buffer, the result differs
depending on whether KR or ANSI functionality is being used.
With KR functionality (applies to C/C++ versions prior to V3.0 only) the original data is
changed when the buffer contents are written to the external file.
With ANSI functionality the original data is not changed when the buffer contents are written
to the external file, i.e. the original data prior to the ungetc call is always written into the
external file.

See also getc, ungetwc

450 U4351-J-Z125-8-76

ungetwc

ungetwc - Push wide character back onto input stream

Definition #include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t c, FILE *fp);

ungetwc pushes the wide character c back to the buffer assigned to the file described by
file pointer fp. The next read operation that reads one character at a time from this file
(getwc) will then return c once again.

One byte of pushback is guaranteed. This applies even if ungetwc directly follows a call for
the formatted input of wide characters (fwscanf or wscanf). If ungetwc is called too many
times on the same file without an intervening read or file-positioning operation on that file,
the pushback operation may fail.

If the value of c is equal to the macro WEOF, the operation will fail, and WEOF is returned.

Return val. Pushed back wide character
if successful.

WEOF if the function fails.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

WEOF cannot be pushed back.

After a successful ungetwc call, the read/write pointer is moved back one character.

A call to one of the following functions cancels the effects of the ungetwc call (e.g. backward
positioning): fseek/fseek64, fsetpos/fsetpos64, lseek/lseek64, rewind, fflush.

If a character other than the one read previously is returned to the buffer, the original data
is not changed when the buffer contents are written to the external file, i.e. the original data
prior to the ungetc call is always written into the external file.

See also getc, getwc, ungetc, ungetwc

U4351-J-Z125-8-76 451

unlink

unlink - Delete a file

Definition #include <stdio.h>

int unlink(const char *f_name);

unlink continues to be supported for compatibility reasons; it works in the same way as
the ANSI function remove (q.v.).

See also remove

452 U4351-J-Z125-8-76

va_arg

va_arg - Process variable argument list

Definition #include <stdarg.h>

<type> va_arg(va_list arg_p, <type>);

Together with the va_start and va_end macros, the va_arg macro is used to process a
list of arguments which may vary in number and type from function call to function call. A
variable argument list is indicated in the formal parameter list of the function definition by
", ...".

The va_arg macro returns the data type and value of the next argument in a variable
argument list, beginning with the first argument. Technically speaking, the macro expands
into an expression of the data type and value of the argument.

Before va_arg is called for the first time, the variable argument list to which arg_p points
must be initialized with va_start. Each time va_arg is called, arg_p changes so that the
value of the next argument is made available.

Parameter va_list arg_p
Pointer to the argument list initialized with va_start before va_arg is called for the first
time.

<type>
Type name matching the type of the current argument. All C data types are valid for
which a pointer to an object of type type is defined by simply appending * to type. Array
and function types, for example, are invalid.

Return val. Value of the argument
The first call after va_start is called returns the value of the first argument.
This argument comes after the last “named” argument parmN in the formal
parameter list (cf. va_start).
Subsequent calls return the remaining argument values in succession.

Undefined The behavior is undefined if there is no next argument or <type> does not
match the current argument.

Notes Compatibility of argument types is supported by the C runtime system to the extent that
similar types are stored in the same way in the parameter list:
All unsigned types (including char) are represented as unsigned int (right-justified in a
word).
All other integer types are represented as int (right-justified in a word).
float is represented as double (right-justified in a doubleword).

The macro va_end must be called before the return from a function whose argument list
has been processed with va_arg.

U4351-J-Z125-8-76 453

va_arg

Example The f1 function fills an array with a list of arguments which are of the type pointer to string.
No more than MAXARGS arguments are to be processed. The number of pointer
arguments is defined as the first argument for f1. The filled array is than passed to
function f2.

#include <stdarg.h>
#include <stdio.h>
#define MAXARGS 20

extern int f2(int i, char *a[]);

void f1(int n_ptrs, ...)
{
 va_list ap;
 char *array[MAXARGS];
 int ptr_no = 0;

 if (n_ptrs > MAXARGS)
 n_ptrs = MAXARGS;
 va_start(ap, n_ptrs);
 while (ptr_no < n_ptrs)
 array[ptr_no++] = va_arg(ap, char *);
 va_end(ap);
 f2(n_ptrs, array);
 return 0;
}

See also va_start, va_end

454 U4351-J-Z125-8-76

va_end

va_end - Terminate variable argument list

Definition #include <stdarg.h>

void va_end(va_list arg_p);

Together with the va_start and va_arg macros, the va_end macro is used to process a
list of arguments which may vary in number and type from function call to function call. A
variable argument list is indicated in the formal parameter list of the function definition by
", ...".

va_end performs termination activities on variable argument list arg_p. The macro must be
called before the return from a function whose argument list has been processed with
va_start and va_arg.

va_end may change argument list arg_p so that it can no longer be used. If it is to be used
again, therefore, the argument list must be re-initialized with va_start.

Example See under va_arg

See also va_arg, va_start

U4351-J-Z125-8-76 455

va_start

va_start - Initialize variable argument list

Definition #include <stdarg.h>

void va_start(va_list arg_p, parmN);

Together with the va_arg and va_end macros, the va_start macro is used to process a
list of arguments which may vary in number and type from function call to function call. A
variable argument list is indicated in the formal parameter list of the function definition by
", ...".

va_start must be called before an unnamed argument is accessed for the first time. The
macro initializes variable argument list arg_p for subsequent va_arg and va_end calls.

Parameter va_list arg_p
Pointer to the argument list.

parmN
Name of the last "named" parameter in the formal parameter list of the function
definition. This is the parameter which is followed by ", ...". Functions which process
variable argument lists must define at least one named parameter.

parmN must not be of type register, function or array.

Notes The behavior is undefined if parmN has an invalid data type or if the data type does not
match the current argument.

Compatibility of argument types is supported by the C runtime system to the extent that
similar types are stored in the same way in the parameter list:
All unsigned types (including char) are represented in the same way as unsigned int
(right-justified in a word).
All other integer types are represented in the same way as int (right-justified in a word).
float is represented in the same way as double (right-justified in a doubleword).

Example See under va_arg

See also va_arg, va_end

456 U4351-J-Z125-8-76

vfprintf

vfprintf - Formatted output to a file

Definition #include <stdio.h>

int vfprintf(FILE *fp, const char *format, va_list arg);

vfprintf is similar to the fprintf function. In contrast to fprintf, vfprintf enables
arguments to be output whose number and data types are not known at compilation time.
vfprintf is used within functions to which the caller can pass a different format string and
different arguments for output. The formal parameter list of the function definition provides
for a format string format and a variable argument list ", ..." for this purpose.
format is a format string as described under printf with ANSI functionality (see printf).

vfprintf steps through an argument list arg with internal va_arg calls and writes the
arguments according to format string format to the file with file pointer fp. Variable argument
list arg must be initialized with the va_start macro before vfprintf is called.

Return val. Number of characters output
if successful.

Integer< 0 if an error occurs.

Notes vfprintf always starts with the first argument in the variable argument list. It is possible
to start output from any particular argument by issuing the appropriate number of va_arg
calls before calling the vfprintf function. Each va_arg call advances the position in the
argument list by one argument.

vfprintf does not call the va_end macro. Since vfprintf uses the va_arg macro, the
value of arg is undefined on return.

U4351-J-Z125-8-76 457

vfwprintf

Example In the following program extract the vfprintf function outputs different types of information
each time the error routine error is called.

#include <stdarg.h>
#include <stdio.h>

void error(char *f, ...);
int main(void)
{
 .
 .
 char *weight = "WARNING";
 int num = 20;
 error("Error class: %s, Number: %d\n", weight, num);
 .
 .
 error("No error\n");
 .
 .
}

void error(char *format, ...)
{
 va_list arg;
 va_start(arg, format);
 vfprintf(stderr, format, arg);
 va_end (arg);
}

See also vprintf, vsprintf

vfwprintf - Formatted output of wide characters

Definition #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *fp, const wchar_t *format, va_list arg);

Description: see fwprintf.

458 U4351-J-Z125-8-76

vprintf

vprintf - Formatted output to the standard output

Definition #include <stdio.h>

int vprintf(const char *format, va_list arg);

vprintf is similar to the printf function except that, unlike printf, vprintf permits the
output of arguments whose number and data types are not known at compilation time.
vprintf is used within functions to which the caller can pass a different format string and
different arguments for output each time. The formal parameter list of the function definition
provides for a format string format and a variable argument list ", ..." for this purpose.
format is a format string as described under printf with ANSI functionality (see printf).

vprintf successively steps through an argument list arg using internal va_arg calls and
writes the arguments according to format string format on the standard output stdout. The
variable argument list arg must be initialized with the va_start macro before vprintf is
called.

Return val. Number of characters output
if successful.

Integer< 0 if an error occurs.

Notes vprintf always starts with the first argument in the variable argument list. It is possible to
start output from any particular argument by issuing the appropriate number of va_arg calls
before calling the vprintf function. Each va_arg call advances the position in the
argument list by one argument.

vprintf does not call the va_end macro. Since vprintf uses the va_arg macro, the
value of arg is undefined on return.

Example See under vfprintf

See also vfprintf, vsprintf

U4351-J-Z125-8-76 459

vsprintf

vsprintf - Formatted output to a string

Definition #include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

vsprintf is similar to the sprintf function. In contrast to sprintf, vsprintf enables
arguments to be output whose number and data types are not known at compilation time.
vsprintf is used within functions to which the caller can pass a different format string and
different arguments for output each time. The formal parameter list of the function definition
provides for a format string format and a variable argument list ", ..." for this purpose.
vsprintf successively steps through an argument list arg using internal va_arg calls and
writes the arguments according to format string format to string s. The variable argument list
arg must be initialized with the va_start macro before vsprintf is called.

Parameter char *s
Pointer to the result string. vsprintf terminates the string with the null byte (\0).

const char *format
Format string as described under printf with ANSI functionality (cf. printf).

The only difference is the way in which the control characters for white space (\n, \t, etc.)
are handled: vsprintf enters the value of the control character into the result string. It
is only during output to text files that the control characters are converted to their appro-
priate effect depending on the type of text file (see section “White space” on page 55).

va_list arg
Pointer to the variable argument list initialized with va_start.

Return val. Number of characters stored in s. The terminating null byte (\0) generated by vsprintf is
not included in this total.

Notes vsprintf always starts with the first argument in the variable argument list. It is possible
to start output from any particular argument by issuing the appropriate number of va_arg
calls before calling the vsprintf function. Each va_arg call advances the position in the
argument list by one argument.

vsprintf does not call the va_end macro. Since vsprintf uses the va_arg macro, the
value of arg is undefined on return.

The behavior is undefined if memory areas overlap.

Example See under vfprintf

See also vfprintf, vprintf

460 U4351-J-Z125-8-76

vswprintf, vwprintf

vswprintf - Formatted output of wide characters

Definition #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list arg);

Description: see fwprintf.

vwprintf - Formatted output of wide characters

Definition #include <stdarg.h>
#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

Description: see fwprintf.

U4351-J-Z125-8-76 461

wcrtomb

wcrtomb - Convert wide character to multibyte character

Definition #include <wchar.h>

size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);

If s is a null pointer, wcrtomb is equivalent to the call
wcrtomb(buf, L'\0', ps)
where buf designates an internal buffer.

If s is not a null pointer, the wcrtomb function determines the number of bytes needed to
represent the multibyte character that corresponds to the wide character given by wc
(including any shift sequences), and stores the resulting bytes in the array whose first
element is pointed to by s. At most {MB_CUR_MAX} bytes are stored.
If wc is a null wide character, a null byte is stored, preceded by any shift sequence needed
to restore the initial shift state.

The resulting state described is the initial conversion state.

Return val. (size_t)-1 if wc is not a valid wide character. The value of the EILSEQ macro is stored
in errno, and the conversion state is undefined.

Number of bytes written to the array pointed to by *s
otherwise.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also mblen, mbtowc, wcstombs, wctomb

462 U4351-J-Z125-8-76

wcscat, wcschr

wcscat - Concatenate two wide character strings

Definition #include <wchar.h>

wchar_t *wcscat(wchar_t *ws1, const wchar_t *ws2);

wcscat appends a copy of the wide character string ws2 to the end of the wide character
string ws1 and returns a pointer to ws1.

The null wide character (\0) at the end of the wide character string ws1 is overwritten by the
the first character of the wide character string ws2.
wcscat terminates the wide character string with a null byte (\0).

Return val. Pointer to the resulting wide character string ws1.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.
wcscat does not verify whether ws1 has enough space to accommodate the result!

The behavior is undefined if memory areas overlap.

See also strcat, wcsncat

wcschr - Scan wide character string for wide characters

Definition #include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

wcschr searches for the first occurrence of the wide character wc in the wide character
string ws and returns a pointer to the located position in ws if successful. The value of wc
must be a character representable as a wchar_t type and must be a wide-character code
corresponding to a valid character in the current locale.

The terminating null wide-character code (\0) is considered part of the wide character
string.

Return val. Pointer to the position of wc in the wide character string ws
if successful.

NULL pointer if wc is not contained in the wide character string ws.

U4351-J-Z125-8-76 463

wcscmp, wcscoll

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

The following two prototypes of the wcschr function are applicable to C++:
const wchar_t* wcschr(const wchar_t *ws, wchar_t wc);
 wchar_t* wcschr(wchar_t *ws, wchar_t wc);

See also strchr, wcsrchr

wcscmp - Compare two wide character strings

Definition #include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

wcscmp compares wide character strings ws1 and ws2 lexically.

Return val. < 0 ws1 is lexically less than ws2.
= 0 ws1 and ws2 are lexically equal.
> 0 ws1 is lexically greater than ws2.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.

See also strncmp, wcsncmp

464 U4351-J-Z125-8-76

wcscoll, wcscpy

wcscoll - Compare two wide character strings according to
LC_COLLATE

Definition #include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);

wcscoll lexically compares two wide character strings ws1 and ws2 in accordance with the
collation sequence defined for the locale in LC_COLLATE.

Return val. < 0 ws1 is less than ws2 according to the defined collation sequence.

= 0 ws1 and ws2 are equal according to the defined collation sequence.

> 0 ws1 is greater than ws2 according to the defined collation sequence

If one of the two wide character strings cannot be converted into a multibyte string,
wcscoll will fail, and errno is set to EINVAL.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Because there is no default value defined for if an error occurs, it is advisable to set errno
to 0, then call wcscoll and after the call check errno. If errno is not 0, assume that an
error has occurred.
For sorting long lists, the wcsxfrm and wcscmp functions should be used.

See also strcoll, wcsncmp, wcsxfrm

wcscpy - Copy wide character string

Definition #include <wchar.h>

wchar_t *wcscpy(wchar_t *ws1, const wchar_t *ws2);

wcscpy copies the wide character string ws2, including the terminating null wide character
code (\0), into the memory area pointed to by ws1. The space pointed to by ws1 must be
large enough to accommodate the wide character string ws2 as well as the null wide
character (\0).

Return val. Pointer to the resulting wide character string ws1.

U4351-J-Z125-8-76 465

 wcscspn

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.
wcscpy does not verify whether ws1 has enough space to accommodate the result!
The behavior is undefined if memory areas overlap.

See also strcpy, wcsncpy

wcscspn - Get length of complementary wide character substring

Definition #include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

Starting at the beginning of the wide character string ws1, wcscspn calculates the length of
the segment that does not contain a single character from the wide character string ws2.
The terminating null byte (\0) is not treated as part of the wide character string ws2.
The function is terminated and the segment length is returned on encountering a character
in ws1 that matches a character in ws2.
If the first character in ws1 already matches a character in ws2, the segment length is equal
to 0.

Return val. Integer that indicates the segment length (number of non-matching characters),
starting at the beginning of the wide character string ws1.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also strcspn, wcsspn

466 U4351-J-Z125-8-76

wcsftime, wcslen

wcsftime - Convert date and time to wide character string

Definition #include <wchar.h>

size_t wcsftime(wchar_t *wcs, size_t maxsize, const wchar_t *format,
 const struct tm *timptr);

wcsftime writes wide character codes to the array pointed to by wss in accordance with the
string specified in format.

The function behaves as if a string generated by strftime had been passed to mbtowcs
as an argument, and mbtowcs in turn passes the result to wcsftime as a wide character
string with a maximum of maxsize wide character codes.

If copying is between overlapping objects, the result is undefined.

Return val. Integer>0 which indicates the number of wide character codes written to the field
(without a terminating null) if the number of wide character codes including
the terminating null is less than or equal to maxsize.

0 otherwise. In this case, the contents of the array are undefined.

See also strftime, mbtowcs

wcslen - Get length of wide character string

Definition #include <wchar.h>

size_t wcslen(const wchar_t *ws);

wcslen determines the length of the wide character string ws, excluding the terminating null
wide character code (\0).

Return val. Length of the wide character string ws.
The terminating null wide character code (\0) is not included in the count.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

A wide character string terminated with the null wide character code (\0) is expected as the
argument.

See also strlen

U4351-J-Z125-8-76 467

wcsncat

wcsncat - Concatenate two wide character substrings

Definition #include <wchar.h>

wchar_t *wcsncat(wchar_t *ws1, const wchar_t *ws2, size_t n);

wcsncat appends a maximum of n characters of the wide character string ws2 to the end
of the wide character string ws1 and returns a pointer to ws1.

The null wide character (\0) at the end of the wide character string ws1 is overwritten by the
first character of the wide character string ws2.

If the wide character string ws2 contains less than n characters, only the characters in ws2
will be appended to ws1, and if ws2 contains more than n characters, then only the leading
n characters of ws2 will be appended to ws1.

wcsncat terminates the wide character string with a null byte (\0).

Return val. Pointer to the resulting wide character string ws1.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.

wcsncat does not verify whether ws1 has enough space to accommodate the result!
The behavior is undefined if memory areas overlap.

See also strncat, wcscat

468 U4351-J-Z125-8-76

wcsncmp

wcsncmp - Compare two wide character substrings

Definition #include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wcsncmp compares the wide character strings ws1 and ws2 lexically up to a maximum length
of n. For example:

Characters that follow the null wide character code are not included in the comparison.

Return val. < 0 In the first n characters, ws1 is lexically less than ws2.

= 0 In the first n characters, ws1 and ws2 are lexically equal.

> 0 In the first n characters, ws1 is lexically greater than ws2.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.

See also strncmp, wcscmp

U4351-J-Z125-8-76 469

wcsncpy

wcsncpy - Copy wide character substring

Definition #include <wchar.h>

wchar_t *wcsncpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

wcsncpy copies a maximum of n characters from the wide character string ws2 to the
memory area pointed to by ws1. Characters that follow the null wide character code are not
copied.

If the wide character string ws2 contains less than n characters, only the length of ws2
(wcslen + 1) is copied, and ws1 is then padded to the length of n with null wide character
codes.

If the wide character string ws2 contains n or more characters (excluding the null wide
character code), the wide character string ws1 is not automatically terminated with a null
wide character code.

If the wide character string ws1 contains more than n characters and the last character
copied from ws2 is not a null wide character code, any data which may still remain in ws1
will be retained.

wcsncpy does not automatically terminate ws1 with a null wide character code.

Return val. Pointer to the resulting wide character string ws1.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

wcsncpy does not verify whether ws1 has enough space to accommodate the result!

Since wcsncpy does not automatically terminate the resulting wide character string with a
null wide character code, it may often be necessary to explicitly terminate ws1 with a null
wide character code. This is typically the case when only a part of ws2 is being copied, and
ws2 does not contain a null wide character code either.

The behavior is undefined if memory areas overlap.

See also strncpy, wcscpy

470 U4351-J-Z125-8-76

wcspbrk

wcspbrk - Get first occurrence of wide character in wide character
string

Definition #include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

wcspbrk searches the wide character string ws1 for the first character that matches any
character in the wide character string ws2. The terminating null wide character code (\0) is
not considered part of the wide character string ws2.

Return val. Pointer to the first matching character found in ws1
if successful.

NULL pointer if not a single match is present.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.

The following two prototypes of the wcspbrk function are applicable to C++:
const wchar_t* wcspbrk(const wchar_t *ws1, const wchar_t *ws2);
 wchar_t* wcspbrk(wchar_t *ws1, const wchar_t *ws2);

See also strpbrk, wcschr, wcsrchr

U4351-J-Z125-8-76 471

wcsrchr

wcsrchr - Get last occurrence of wide character in wide character
string

Definition #include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

wcsrchr searches for the last occurrence of character wc in the wide character string ws
and returns a pointer to the located position in ws if successful.

The terminating null wide-character code (\0) is considered part of the wide character
string.

Return val. Pointer to the position of wc in the wide character string ws if successful.

NULL pointer if wc is not contained in the wide character string ws.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

The following two prototypes of the wcsrchr function are applicable to C++:
const wchar_t* wcsrchr(const wchar_t *ws, wchar_t wc);
 wchar_t* wcsrchr(wchar_t *ws, wchar_t wc);

See also strrchr, wcsch

472 U4351-J-Z125-8-76

wcsrtombs

wcsrtombs - Convert wide character string to multibyte character
string

Definition #include <wchar.h>

size_t wcsrtombs(char *dst, const wchar_t **src, size_t len, mbstate_t *ps);

wcrtombs converts a sequence of wide characters, beginning in the conversion state
described by the object pointed to by *ps, from the array indirectly pointed to by src into a
sequence of corresponding multibyte characters. If dst is not a null pointer, the converted
characters are stored into the array pointed to by dst. Each conversion takes place as if by
a call to the wcrtomb function.

Conversion stops on encountering a terminating null character, which is also converted and
stored in the array.

Conversion stops earlier in two cases:

– when a sequence of bytes that does not correspond o a valid multibyte character is
encountered or

– if dst is not a null pointer, when the next multibyte character would exceed the maximum
length len of the bytes to be stored in the array

If dst is not a null pointer, the pointer object pointed to by src is assigned one of the following
values:

– a null pointer if conversion stopped due to reaching a terminating null character

– the address just past the last converted wide character (if any).

If dst is not a null pointer and if the conversion stopped due to reaching a terminating null
character, the resulting state described is the initial conversion state.

Return val. (size_t)-1 if a conversion error occurs, i.e. a sequence of bytes that do not correspond
to a valid multibyte character are encountered. The value of the EILSEQ
macro is stored in errno, and the conversion state is undefined.

Number of bytes in the converted multibyte string
otherwise. The terminating null character, if any, is not included in the count.

See also mblen, mbtowc, wcstombs, wctomb

U4351-J-Z125-8-76 473

wcsspn

wcsspn - Get length of wide character substring

Definition #include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

Starting at the beginning of the wide character string ws1, wcsspn computes the length of
the segment that contains only characters from the wide character string ws2.

The function is terminated, and the segment length is returned on encountering the first
character in ws1 that does not match any character in ws2.

If the first character in ws1 matches none of the characters in ws2, the segment length is
equal to 0.

Return val. Integer value
that indicates the segment length (number of matching characters) at the
beginning of the wide character string ws1.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Wide character strings terminated with the null wide character (\0) are expected as
arguments.

See also strspn, wcscspn

474 U4351-J-Z125-8-76

wcsstr

wcsstr - Find first occurrence of wide character string

Definition #include <wchar.h>

wchar_t *wcsstr(const wchar_t *ws1, const wchar_t *ws2);

wcsstr searches for the first occurrence of a wide character string ws2 (without the termi-
nating null byte) in the wide character string ws1.

Return val. Pointer to the start of the wide character string found
if ws2 is found in ws1.

NULL pointer if ws2 is not found in ws1.

ws1 if ws2 is a null pointer.

Note The following two prototypes of the wcsstr function are applicable to C++:
const wchar_t* wcsstr(const wchar_t *ws1, const wchar_t *ws2);
 wchar_t* wcsstr(wchar_t *ws1, const wchar_t *ws2);

See also strstr, wmemcmp, wmemcpy, wmemchr

U4351-J-Z125-8-76 475

wcstod

wcstod - Convert wide character string to floating-point number
(double)

Definition #include <wchar.h>

double wcstod(const wchar_t *nptr, wchar_t **endptr);

wcstod converts the initial portion of the wide character string pointed to by nptr to a double-
precision representation. The input wide character string is first split into three parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace)

– a subject sequence interpreted as a floating-point constant

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null wide character code of the input wide character string.

wcstod then attempts to convert the subject sequence to a floating-point number, and
returns the result.

The expected form of the subject sequence is:
an optional + or - sign, then a non-empty sequence of digits optionally containing a radix,
and then an optional exponent part. An exponent part consists of the character e or E,
followed by an optional sign, followed by one or more decimal digits. The subject sequence
is defined as the longest initial subsequence of the input wide character string, starting with
the first non-white-space wide character code that is of the expected form. The subject
sequence contains no wide character codes if the input wide character string is empty or
consists entirely of white-space wide character codes, or if the first wide character code that
is not white space is other than a sign, a digit or a radix.

If the subject sequence has the expected form, the sequence of wide character codes
starting with the first digit or the radix (whichever occurs first) is interpreted as a floating
constant as defined in the C language, except that the radix is used in place of a period,
and that if neither an exponent part nor a radix appears, a radix is assumed to follow the
last digit in the wide character string. If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final wide character string
is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

The radix is defined in the program´s locale (category LS_NUMERIC).

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

476 U4351-J-Z125-8-76

wcstod

Return val. Converted value if successful.

0 if no conversion could be performed.

HUGE_VAL If the correct value is outside the range of representable values (according
to the sign of the value).
errno is set to ERANGE to indicate the error.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstod, then check errno, and if it is non-zero, assume that an error has occurred.

See also iswspace, localeconv, scanf, setlocale, strtod, wcstol

U4351-J-Z125-8-76 477

wcstok

wcstok - Split wide character string into tokens

Definition #include <wchar.h>

wchar_t *wcstok(wchar_t *ws1, const wchar_t *ws2, wchar_t **ptr);

wcstok can be used to split a wide character string ws1 into wide character substrings
called “tokens”, e.g. a sentence into individual words, or a source program statement into
its smallest syntactical units. The pointer to ws1 may only be passed in the first call to
wcstok. The wcstok function stores the information necessary for it to continue scanning
the same wide string in ptr.
In the second and all subsequent calls, a null pointer must be specified for ws1, and the
value in ptr should match that stored by the previous call for the same wide string.

The start and end criterion for each token are separator characters (delimiters), which must
be specified in a second wide character string ws2. Tokens may be delimited by one or more
such separators or by the beginning and end of the entire wide character string ws1. Blanks,
colons, commas, etc., are typical separators between the words of a sentence.

wcstok processes exactly one token per call. The first call returns a pointer to the beginning
of the first wide character token found, and each subsequent call returns a pointer to the
beginning of the next such token. wcstok terminates each wide character token with a null
wide character code (\0).

A different delimiter string ws2 may be specified in each call.

Return val. Pointer to the start of a wide character token.
A pointer to the first wide character token is returned at the first call; a
pointer to the next wide character token at the next call, and so on.
wcstok terminates each wide character token in ws1 with a null wide
character code (\0) by overwriting the first found delimiter in each case with
the null wide character code (\0).

NULL pointer if no wide character token, or no further wide character token was found.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also strtok

478 U4351-J-Z125-8-76

wcstol

wcstol - Convert wide character string to long integer

Definition #include <wchar.h>

long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

wcstol converts the initial portion of the wide character string pointed to by nptr to long
int representation. The input wide character string is first split into three parts:

– an initial, possibly empty, sequence of white-space wide-character codes (as specified
by iswspace),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null byte wide character code of the input wide character
string.

wcstol then attempts to convert the subject sequence to an integer, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a + or
- sign. A decimal constant begins with a non-zero digit, and consists of a sequence of
decimal digits. An octal constant consists of the prefix 0, optionally followed by a sequence
of digits only. A hexadecimal constant consists of the prefix 0x or 0X, followed by a
sequence of the decimal digits and letters a (or A) to f (or F) with values 10 through 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
code representations of 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first non-white-space wide character code that is of the
expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first non-white-space wide character code is other than a sign or a permissible letter or digit.

U4351-J-Z125-8-76 479

wcstol

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a NULL pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LONG_MAX, LONG_MIN
depending on the sign of the value.

ULONG_MAX if the correct value is outside the range of representable values. errno is
set to ERANGE to indicate the error.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstol, then check errno, and if it is non-zero, assume that an error has occurred.

See also iswalpha, iswspace, scanf, strtol, strtoll, strtoul, strtoull, wcstod, wcstoull

480 U4351-J-Z125-8-76

wcstoll

wcstoll - Convert a wide character string to a whole number (long long)

Definition #include <wchar.h>

long long int wcstoll(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

The first part of the wide character string, to which nptr points, is converted by wcstoll into
the representation long long int. The input string of wide character codes is first split into
three parts:

– an initial, possibly empty, sequence of white-space wide-character codes (as specified
by iswspace),

– a sequence interpreted as an integer represented in some radix determined by the
value of base,

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null byte wide character code of the input wide character
string.

wcstoll then attempts to convert the subject sequence to an integer, and returns the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a + or
- sign. A decimal constant begins with a non-zero digit, and consists of a sequence of
decimal digits. An octal constant consists of the prefix 0, optionally followed by a sequence
of digits only. A hexadecimal constant consists of the prefix 0x or 0X, followed by a
sequence of the decimal digits and letters a (or A) to f (or F) with values 10 through 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
code representations of 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first non-white-space wide character code that is of the
expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first non-white-space wide character code is other than a sign or a permissible letter or digit.

U4351-J-Z125-8-76 481

wcstoll

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a NULL pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LLONG_MAX, LLONG_MIN
depending on the sign of the value.

ULLONG_MAX
if the correct value is outside the range of representable values. errno is
set to ERANGE to indicate the error.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstoll, then check errno, and if it is non-zero, assume that an error has occurred.

The C compiler that supports the data type long long only creates objects in LLM format.
For this reason, the long long library functions are also only available as LLMs and are not
contained in the prelinked modules. Like data modules, they must either be integrated or
reloaded from the library.

See also iswalpha, iswspace, scanf, strtol, strtoll, strtoul, strtoull, wcstod, wcstol, wcstoul

482 U4351-J-Z125-8-76

wcstombs

wcstombs - Convert wide characters to multibyte strings

Definition #include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

wcstombs converts a sequence of wide characters (type wchar_t) in pwcs to the corre-
sponding multibyte characters and stores these in string s. n indicates the maximum number
of bytes to be stored in s.
n specifies the maximum number of bytes to be stored in s.

The assignment is terminated if

– the wide character 0 occurs in pwcs,
– n bytes have already been assigned or
– a wide character cannot be represented in one byte.

Return val. (size_t)-1 if a wide character cannot be converted to a multibyte character.

Number of assigned bytes
otherwise.

Notes If a wide character in pwcs cannot be converted to a multibyte character, the wide characters
already converted are stored in s.

The behavior is undefined if memory areas overlap.

No characters consisting of multiple bytes are implemented in this version. Multibyte and
wide characters always have a length of 1 byte. wcstombs converts each wide character in
pwcs to a one-byte multibyte character and saves it in string s.

See also mblen, mbtowc, mbstowcs, wctomb

U4351-J-Z125-8-76 483

wcstoul

wcstoul - Convert wide character string to unsigned long

Definition #include <wchar.h>

unsigned long int wcstoul(const wchar_t *nptr, wchar_t **endptr, int base);

wcstoul converts the initial portion of the wide character string pointed to by nptr to
unsigned long int representation. The input wide character string is first split into three
parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide-character string of one or more unrecognized wide character codes,
including the terminating null wide-character code of the input wide character string.

wcstoul then attempts to convert the subject sequence to an unsigned long int, and
returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a + or
- sign. A decimal constant begins with a non-zero digit, and consists of a sequence of
decimal digits. An octal constant consists of the prefix 0 optionally followed by a sequence
of the digits only. A hexadecimal constant consists of the prefix 0x or 0X followed by a
sequence of the decimal digits and letters a (or A) to f (or F) with values 10 through 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
codes 0x or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first wide character code that is not white space and is of
the expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first wide character code that is not white space is other than a sign or a permissible letter
or digit.

484 U4351-J-Z125-8-76

wcstoul

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a NULL pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LONG_MAX, LONG_MIN
depending on the sign.

ULONG_MAX if the correct value is outside the range of representable values
errno is set to ERANGE to indicate the error.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstol, then check errno, and if it is non-zero, assume that an error has occurred.

See also iswalpha, iswspace, scanf, strtol, strtoll, strtoul, stroull, wcstod, wcstol, wcstoll

U4351-J-Z125-8-76 485

wcstoull

wcstoull - Convert wide character string to whole number (unsigned
long long)

Definition #include <wchar.h>

unsigned long long int wcstoull(const wchar_t *restrict nptr, wchar_t **restrict endptr,
 int base);

wcstoull converts the initial portion of the wide character string pointed to by nptr to
unsigned long int representation. The input wide character string is first split into three
parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide-character string of one or more unrecognized wide character codes,
including the terminating null wide-character code of the input wide character string.

wcstoull then attempts to convert the subject sequence to an unsigned long int, and
returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a + or
- sign. A decimal constant begins with a non-zero digit, and consists of a sequence of
decimal digits. An octal constant consists of the prefix 0 optionally followed by a sequence
of the digits only. A hexadecimal constant consists of the prefix 0x or 0X followed by a
sequence of the decimal digits and letters a (or A) to f (or F) with values 10 through 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
codes 0x or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first wide character code that is not white space and is of
the expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first wide character code that is not white space is other than a sign or a permissible letter
or digit.

486 U4351-J-Z125-8-76

wcstoull

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value (see above). If the subject
sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final wide character string is stored in the object pointed to by endptr, provided
that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a NULL pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LLONG_MAX, LLONG_MIN
depending on the sign.

ULLONG_MAX
if the correct value is outside the range of representable values
errno is set to ERANGE to indicate the error.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstoull, then check errno, and if it is non-zero, assume that an error has occurred.

The C compiler that supports the data type long long only creates objects in LLM format.
For this reason, the long long library functions are also only available as LLMs and are not
contained in the prelinked modules. Like data modules, they must either be integrated or
reloaded from the library.

See also iswalpha, iswspace, scanf, strtoul, wcstod, wcstol

U4351-J-Z125-8-76 487

wcsxfrm

wcsxfrm - Transform wide character string

Definition #include <wchar.h>

size_t wcsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

wcsxfrm transforms the wide character string pointed to by ws2, and writes the result of the
transformation to the field pointed to by ws1. The transformation is performed such that the
wcscmp function returns the same return value (greater than, equal to or less than zero) for
two transformed wide character strings as the wcscoll function does for the two original
non-transformed wide character strings.
A maximum of n wide character codes are written to the field (including the terminating null
character).
If n is 0, wc1 can be a NULL pointer.

If copying is between overlapping objects, the result is undefined.

Return val. Integer < n indicating the number of wide character codes written to the field (without
terminating null).

Integer ≥ n In this case the content of the ws1 field is undefined.

(size_t) - 1 if an error occurs. errno is set to indicate the error:

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

Transformation is such that two transformed wide character strings are arranged by wcscmp
in accordance with the collation sequence defined in LC_COLLATE.

The fact that ws1 can be a NULL pointer if n is 0, is useful if the size of the field is to be
deter-mined before the transformation.

Because there is no default value defined for if an error occurs, it is advisable to set errno
to 0, then call wcscoll and after the call check errno. If errno is not 0, assume that an
error has occurred.

See also strxfrm, wcscmp, wcscoll

EINVAL The wide character string pointed to by ws2 contains wide character
codes from outside the value range of the selected collation
sequence.

ENOMEM There is not enough memory available for the internal management
data.

488 U4351-J-Z125-8-76

wctob

wctob - Convert wide character to (one-byte) multibyte character

Definition #include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

The wctob function determines whether the character c corresponds to a member of the
extended character set whose multibyte character representation is a single byte when in
the initial shift state.

Return val. EOF if no corresponding multibyte character with length one in the initial shift
state exists for c.

Multibyte character, with a length of 1 byte, that corresponds to c
otherwise.

See also mblen, mbtowc, wcstombs, wctomb

U4351-J-Z125-8-76 489

wctomb

wctomb - Convert wide character to multibyte character

Definition #include <stdlib.h>

int wctomb(char *s, wchar_t wc);

wctomb converts the wide character wc to the corresponding multibyte character and stores
this in string s.

No assignment is made if s is a NULL pointer or if the wide character cannot be represented
in one byte.

Return val. 0 if s is a NULL pointer.

-1 if the wide character cannot be converted to a multibyte character.

1 otherwise.

Note This version of the C runtime system only supports one-byte characters as wide character
codes. Multibyte characters and wide character codes always have a length of 1 byte.

See also mblen, mbtowc, mbstowcs, wcstombs

490 U4351-J-Z125-8-76

wctrans

wctrans - Define mapping between wide characters

Definition #include <wctype.h>

wctrans_t wctrans(const char *property);

The wctrans function constructs a value with type wctrans_t that describes a mapping
between wide characters identified by the string argument property.

The two strings listed in the description of the "tolower" and "toupper" functions shall be
valid in all locales as property arguments to the wctrans function.

If property identifies a valid mapping of wide characters according to the LC_CTYPE
category of the current locale, the wctrans function returns a non-zero value that is valid
as the second argument to the towctrans function.

Return val. Value ≠ 0 if property identifies a valid mapping.

0 otherwise.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also towctrans

U4351-J-Z125-8-76 491

wctype

wctype - Define wide character class

Definition #include <wctype.h>

wctype_t wctype(const char *charclass);

wctype is defined for valid character class names as defined in the current locale. The
charclass is a string identifying a generic character class for which codeset-specific type
information is required. The following character class names are defined in all locales:
"alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print",
"punct", "space", "upper" and "xdigit".

Additional character class names defined in the locale definition file (category LC_CTYPE)
can also be specified.

The function returns a value of type wctype_t, which can be used as the second argument
to subsequent calls of iswctype. The wctype function determines values of wctype_t
according to the rules of the coded character set defined by character type information in
the program´s locale (category LC_CTYPE). The values returned by wctype are valid until
a call to setlocale that modifies the category LC_CTYPE.

Return val. 0 if the character class name is not valid for the current locale (category
LC_CTYPE).

≠ 0 An object of type wctype_t that can be used in calls to iswctype is
returned.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also iswctype

492 U4351-J-Z125-8-76

wmemchr

wmemchr - First occurrence of wide character in wide character string

Definition #include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t *wc, size_t n);

The wmemchr function searches for the the first occurrence of the wide character wc in the
first n bytes of the wide character string ws and returns a pointer to the found position in ws.

Return val. Pointer to the position of wc in ws
if successful,

NULL pointer otherwise.

Notes This version of the C runtime system only supports one-byte characters as wide character
codes.

The following two prototypes of the wmemchr function are applicable to C++:
const wchar_t* wmemchr(const wchar_t *ws, wchar_t *wc, size_t n);
 wchar_t* wmemchr(wchar_t *ws, wchar_t *wc, size_t n);

See also memchr, wcsstr, wmemcmp, wmemcpy

U4351-J-Z125-8-76 493

wmemcmp

wmemcmp - Compare two wide character strings

Definition #include <wchar.h>

int wmemchr(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wmemcmp lexically compares the first n bytes of the two wide character strings ws1 and ws2.

Return val. < 0 ws1 is lexically less than ws2.

= 0 ws1 and ws2 sare lexically equal.

> 0 ws1 is lexically greater than ws2.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also memcmp, wcsstr, wmemchr, wmemcpy

494 U4351-J-Z125-8-76

wmemcpy

wmemcpy - Copy wide character string

Definition #include <wchar.h>

wchar_t *wmemcpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

wmemcpy copies the first n bytes of the wide character string ws2 to the first n bytes of the
wide character string ws1.

Return val. Pointer to the wide character string ws1.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also memcmp, wmemmove, wmemset

U4351-J-Z125-8-76 495

wmemmove, wmemset, wprintf

wmemmove - Copy wide character string to memory with overlapping
areas

Definition #include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

wmemmove copies the first n bytes of the wide character string ws2 to the first n bytes of the
wide character string ws1. Copying takes place as if the n wide characters are first copied
to a temporary array that does not overlap the objects pointed to by ws1 and ws2 and then
copied from this array to ws1.

Return val. Pointer to the wide character string ws1.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also memmove, wmemcpy, wmemset

wmemset - Set n wide characters in wide character string

Definition #include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t *c, size_t n);

wmemset sets the first n wide characters in the wide character string ws to a value c.

Return val. Pointer to ws.

Note This version of the C runtime system only supports one-byte characters as wide character
codes.

See also memset, wmemcpy, wmemmove

wprintf - Formatted output to standard output (wide character format)

#include <wchar.h>

int wprintf(const wchar_t *format [, arglist]);

Description: see fwprintf.

496 U4351-J-Z125-8-76

write

write - Write to a file (elementary)

Definition #include <stdio.h>

int write(int fp, const char *buf, int n);

write is the elementary write operation.

write writes up to n contiguous bytes from the area to which buf points into the file with file
descriptor fd.

SAM files are always processed as text files with elementary functions.

Parameter int fd
File descriptor of the output file.

A file descriptor (positive integer) is the result of a successful open/open64 or
creat/creat64 call.
File descriptors for stdin (0), stdout (1), and stderr (2) are assigned automatically
when the program is started.

const char *buf
Pointer to the area containing the data to be written to the output file.

int n
Number of bytes to be written to the file. There is no guarantee that write will actually
write n bytes!

Return val. Number of bytes actually written
if successful.

-1 Nothing was written due to one of the following errors:
– physical I/O error
– fd is not a valid file descriptor
– the file is not present
– there is no access authorization or write permission for the file
– the area in which the data is located was not correctly specified.

U4351-J-Z125-8-76 497

wscanf

Notes After each write call, you should check the number of bytes actually written.
If the result is smaller than the specification in n, there usually has been an error.
If the result is greater than the specification in n, tab characters (\t) were written to a text file.
In such cases, tab characters are converted to the corresponding blanks and counted in the
number of bytes returned.

You should use the sizeof function to be sure that your specification in n does not exceed
the size of the buffer.

The data is not written immediately to the external file but is stored in an internal C buffer
(see section “Buffering” on page 53).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect when
output to text files, depending on the type of text file (see section “White space” on page 55).

Example The following program copies the standard input (file descriptor 0) to the standard output
(file descriptor 1). If you utilize the redirection mechanism, you can use this program to copy
from any source to any destination. BUFSIZ (8192 bytes) is defined in the include file
<stdio.h>.

#include <stdio.h>

int main(void)
{
 char buf[BUFSIZ];
 int n;

 while((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 return 0;
}

See also read, open, open64, creat, creat64

wscanf - Read formatted input

#include <wchar.h>

int wscanf(const wchar_t *format [, arglist]);

Description: see fwscanf.

498 U4351-J-Z125-8-76

y0, y1, yn

y0, y1, yn - Bessel functions of the second kind

Definition #include <math.h>

double y0(double x);

double y1(double x);

double yn(int n, double x);

The functions y0, y1 and yn calculate the Bessel functions of the second kind for real
arguments x and the integer orders 0, 1 or n.

Return val. Bessel function for the real argument x > 0.

-HUGE_VAL for arguments ≤ 0. In addition, errno is set to EDOM (domain error, i.e
invalid argument).

See also j0, j1, jn

U4351-J-Z125-8-76 499

8 Appendix

Overview of functions in BS2000/OSD and in the ANSI
standard

The following pages list all the functions provided by the C runtime system. Whether or not
a function is defined in the ANSI standard or is an extension is indicated in the lists as
follows:

X ANSI standard

- Extension, declared in an ANSI-defined include header

A AMENDMENT 1 to the ISO/IEC 9899:1990 Standard

o Extension, declared in a BS2000-specific include header (no query of the define
_STRICT_STDC, see page 30).

500 U4351-J-Z125-8-76

Appendix

Function ANSI Function ANSI

_a2e, _e2a - cosh X

_a2e_dup, _e2a_dup - cputime -

_a2e_dup_n, _e2a_dup_n - creat -

_a2e_max, _e2a_max - creat64 -

_a2e_n, _ e2a_n - cstxit o

abort X ctime X

abs X _ _DATE_ _ X

acos X difftime X

alarm - div X

asctime X double2ieee

asin X ecvt -

assert X _edt -

atan X erf, erfc -

atan2 X exit X

atexit X _exit -

atof X exp X

atoi X fabs X

atol X fclose X

atoll - fcvt -

bs2cmd - fdelrec -

bs2exit - fdopen -

bs2fstat - feof X

bsearch X ferror X

btowc A fflush X

cabs - fgetc X

calloc X fgetpos X

cdisco o fgetpos64 X

ceil X fgets X

cenaco o fgetwc A

clearerr X fgetws A

clock X _ _FILE_ _ X

close - float2ieee -

cos X flocate -

U4351-J-Z125-8-76 501

Appendix

floor X gets X

fmod X gettsn -

fopen X getw -

fprintf X getwc A

fputc X getwchar A

fputwc A gmtime X

fputws A hypot -

fputs X ieee2double -

fread X ieee2float -

free X index -

freopen X isalnum X

freopen64 - isalpha X

frexp X isascii -

fscanf X iscntrl X

fseek X isdigit X

fseek64 - isebcdic -

fsetpos X isgraph X

fsetpos64 - islower X

ftell X isprint X

ftell64 - ispunct X

ftime o isspace X

fwide A isupper X

fwprintf A iswalnum A

fwrite X iswalpha A

fwscanf A iswcntrl A

gamma - iswctype A

garbcoll - iswdigit A

gcvt - iswgraph A

getc X iswlower A

getchar X iswprint A

getenv X iswpunct A

getlogin - iswspace A

getpgmname - iswupper A

Function ANSI Function ANSI

502 U4351-J-Z125-8-76

Appendix

iswxdigit A mbsinit A

isxdigit X mbsrtowcs A

j0, j1, jn - mbstowcs A

kill - mbtowc X

labs X memalloc -

ldexp X memchr X

ldiv X memcmp X

_ _LINE_ _ X memcpy X

llabs - memfree -

lldiv - memmove X

llrint - memset X

llrintf - mktemp -

llrintl - mktime X

llround - modf X

llroundf - offsetof X

llroundl - open -

localeconv X open64 -

localtime X perror X

log X pow X

log10 X printf X

longjmp X putc X

lrint - putchar X

lrintf - puts X

lrintl - putw -

lround - putwc A

lroundf - putwchar A

lroundl - qsort X

lseek - raise X

lseek64 - rand X

malloc X read -

mblen X realloc X

mbrlen A remove X

mbrtowc A rename X

Function ANSI Function ANSI

U4351-J-Z125-8-76 503

Appendix

rewind X strlower -

rindex - strncat X

rint - strncmp X

rintf - strncpy X

rintl - strpbrk X

round - strrchr X

roundf - strspn X

roundl - strstr X

scanf X strtod X

setbuf X strtok X

setjmp X strtol X

setlocale X strtoll -

setvbuf X strtoul X

signal X strtoull -

sin X strupper -

sinh X strxfrm X

sleep - swprintf A

sprintf X swscanf A

sqrt X system X

srand X tan X

sscanf X tanh X

_ _STDC_ _ X tell -

_ _STDC_ _VERSION A time X

strcat X _ _TIME_ _ X

strchr X tmpfile X

strcmp X tmpfile64

strcoll X tmpnam X

strcpy X toascii -

strcspn X toebcdic -

strerror X tolower X

strfill - toupper X

strftime X towctrans A

strlen X towlower A

Function ANSI Function ANSI

504 U4351-J-Z125-8-76

Appendix

towupper A wcsncat A

ungetc X wcsncmp A

ungetwc A wcsncpy A

unlink - wcspbrk A

va_arg X wcsrchr A

va_end X wcsrtombs A

va_start X wcsspn A

vfprintf X wcsstr A

vfwprint A wcstombs X

vprintf X wctob A

vsprintf X wcstod A

vswprintf A wcstok A

vwprintf A wcstol A

wcrtomb A wcstoll A

wcscat A wcstoul A

wcschr A wcstoull A

wcscmp A wcsxfrm A

wcscoll A wctomb A

wcscpy A wctrans A

wcscspn A wctype A

wcsftime A wmemcmp A

wcslen A wmemcpy A

Function ANSI Function ANSI

U4351-J-Z125-8-76 505

Appendix

KR or ANSI functionality for C/C++ versions prior to V3.0

The C library functions were provided for the first time with C V1.0. At the time there was
no ANSI-defined C library set. The implementation was based on the “preliminary”
definition by Kernighan/Ritchie or on the common UNIX/SINIX implementations.
Adapting C library functions to the ANSI standard (C V2.0) has led to a number of differ-
ences in the execution of some input/output functions compared with the predecessor
version. In order to meet the requirements of the ANSI standard in full and at the same time
to preserve the runtime behavior of "old-style" programs, the input/output functions affected
by the differences are offered in two variants: with the new ANSI functionality or with the
KR functionality compatible with C V1.0.

The desired functionality is selected at compilation time with the following compiler options:

SOURCE-PROPERTIES = PAR(LIBRARY-SEMANTICS = STD / V1-COMPATIBLE)

KR functionality (V1-COMPATIBLE) can only be selected in the KR and ANSI compilation
modes. In STRICT-ANSI and CPLUSPLUS compilation modes the specification
V1-COMPATIBLE is ignored and STD assumed automatically.

With the CPLUSPLUS language mode, the C library functions are usually executed with
ANSI functionality.

The differences between KR and ANSI functionality are listed on the following pages.

KR or ANSI functionality applies to the calls of all the library functions of a compilation unit.

Important

If the same file is processed in a number of separately compiled source programs, these
source programs must be compiled with the same LIBRARY-SEMANTICS parameter.

506 U4351-J-Z125-8-76

Appendix

KR functionality

1. Default attributes of text files

When a new text file is created, it is generated as a SAM file with variable record length.

2. Position of the read/write pointer in append mode

If the read/write pointer in a file opened in append mode has been explicitly positioned
away from end of file (with rewind, fsetpos, fseek or lseek), it is only ignored when
writing with the elementary function write and automatically positioned to the end of
the file.

If a file has been opened in append mode and for reading, it is positioned at the end of
the file after being opened. The old contents of existing files are preserved.

3. ISAM files (buffer flushing)

If the data of an ISAM file in the buffer does not end with a newline character, writing to
the external file causes a change of record. Subsequent data is written to a new record.

4. ungetc

When the contents of the buffer are written to the external file, the original data is
changed if a different character has been returned to the buffer instead of the character
previously read in.

5. Interpretation of the tab character (\t)

For output to text files of FCB type SAM or ISAM, the tab character is converted by
default into the appropriate number of blanks.

6. fprintf, printf, sprintf, fscanf, scanf, sscanf

The ANSI extensions of the formatting and conversion characters are not available. The
syntax and semantics of C V1.0 are used.

U4351-J-Z125-8-76 507

Appendix

ANSI functionality

1. Default attributes of text files

When a new text file is created, it is generated as an ISAM file with variable record
length.

2. Position of the read/write pointer in append mode

If the read/write pointer in a file opened in append mode has been explicitly positioned
away from end of file (with rewind, fsetpos, fseek or lseek), it is ignored in all write
functions and automatically positioned at end of file.

If a file has been opened in append mode and for reading, it is positioned at the start of
the file after being opened. The old contents of existing files are preserved.

3. ISAM files (buffer emptying)

If the data of an ISAM file in the buffer does not end with a newline character, writing to
the external file does not cause a change of record. Subsequent data lengthens the
record in the file. When an ISAM file is read, therefore, only newline characters explicitly
written by the program are read in.

If reading from any text file makes data transfer necessary from the external file to the
internal C buffer, the data of all the ISAM files still stored in buffers is automatically
written out to the files.

4. ungetc

When the contents of the buffer are written to the external file, the original data is not
changed if a different character has been returned to the buffer instead of the character
previously read in. The original data existing prior to the ungetc call is always written
to the external file.

5. Interpretation of the tab character (\t)

For output to text files of FCB type SAM or ISAM, the tab character is not converted by
default into the appropriate number of blanks, but is written to the file as a text character
(EBCDIC value).

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U4351-J-Z125-8-76 509

Related publications
Please apply to your local office for ordering the manuals.

[1] BS2000/OSD
Softbooks English

Target group
BS2000/OSD users
Contents
The CD-ROM "BS2000/OSD SoftBooks English" contains almost all of the English manuals
and README files for the BS2000 system software of the latest BS2000/OSD version and
also of the previous versions, including the manuals listed here.
These Softbooks can also be found in the Internet on our manual server. You can browse
in any of these manuals or download the entire manual.
Order number
U26175-J8-Z125-1-76
Internet address
http://manuals.mchp.siemens.de

[2] CRTE (BS2000/OSD)
Common RunTime Environment
User Guide

Target group
This manual addresses all programmers and system administrators in a BS2000
environment.
Contents
It describes the common runtime environment for COBOL85, COBOL2000, C and C++
objects and for "language mixes":
– CRTE components
– ILCS program communication interface
– linkage examples

510 U4351-J-Z125-8-76

Related publications

[3] C Library Functions (BS2000/OSD)
for POSIX Applications
Reference Manual

Target group
This manual addresses C and C++ programmers.
Contents
The manual documents the XPG4-conformant C programming interface which is supported
by the POSIX subsystem in BS2000. This programming interface permits access to both
the POSIX file system and BS2000 files. The programming interface also incorporates
extensions which ensure compatibility with the existing C library described in a separate
chapter.

[4] C (BS2000/OSD)
C Compiler
User Guide

Target group
C users in a BS2000 environment.
Contents
– Description of all activities concerned with the creation of an executable C program:

compilation, linking, loading, debugging
– Programming notes and additional information on: program flow control, linking

functions and languages, language scope of the C compiler

[5] C/C++ V3.1A (BS2000/OSD)
C/C++ Compiler
User Guide

Target group
C and C++ users in a BS2000 environment.
Contents
– Description of all activities in the creation of executable C and C++ programs: compi-

lation, linking, loading, debugging
– Programming notes and detailed information on: optimization, program flow control,

linking of functions and languages, C and C++ language scope of the compiler.

U4351-J-Z125-8-76 511

Related publications

[6] BS2000/OSD-BC
Executive Macros
User Guide

Target group
The manual addresses all BS2000/OSD assembly language programmers.
Contents
The manual contains a summary of all Executive macros, detailed descriptions of each
macro with notes and examples, including job variable macros, and a comprehensive
general training section.

[7] JV (BS2000/OSD)
Job Variables
Reference Manual

Target group
Non-privileged BS2000/OSD users
Contents
The manual describes the use of the JV (Job Variables) software product to control and
monitor jobs and programs in BS2000 systems. The job variables functions are not included
in the basic BS2000 configuration.

512 U4351-J-Z125-8-76

Related publications

Other publications

X/Open CAE Specification
System Interfaces and Headers, Issue 4

ISBN: 1-872630-47-2
X/Open Document Number: C202

X/Open CAE Specification
System Interface Definitions, Issue 4

ISBN: 1-872630-46-4
X/Open Document Number: C204

X/Open CAE Specification
Commands and Utilities, Issue 4

ISBN: 1-872630-48-0
X/Open Document Number: C203

International Standard ISO/IEC 9899 : 1990,
Programming languages - C

International Standard ISO/IEC 9899 : 1990,
Programming languages - C / Amendment 1

U4351-J-Z125-8-76 513

Index

#define directive 5
#include directive 8
__errcmd, error variable 12
__errhex, error variable 12
_ASCII_SOURCE (preprocessor define) 23
_FILE _OFFSET_BITS 58
_IEEE 15, 17
_IEEE_SOURCE (preprocessor define) 17
_LARGEFILE64_SOURCE 59
_LITERAL_ENCODING_ASCII 20, 23
_MAP_NAME (preprocessor define) 31
_STRICT_STDC, preprocessor define 30
_XOPEN_SOURCE preprocessor define 30
_XOPEN_SOURCE_EXTENDED preprocessor

define 30

64-bit function 57

A
absolute value, summary of functions 45
ADD-FILE-LINK command 63
alarm, library function 78
ANSI functionality 505
ANSI functions, overview 499
ANSI-defined library functions 30
ASCII functions

names 21
overview 22, 26

ASCII support 19
ASSIGN-SYSDTA command

reassignment of SYSDTA 60
ASSIGN-SYSLST command

reassignment of SYSLST 62

B
Bessel functions, summary of functions 45
binary file 50, 66, 67
BLOCK-CONTROL-INFO 68
bs2cmd 126
buffering 53

C
C library functions

for ASCII support 21
IEEE floating-point numbers 16
mapping to ASCII variant 23
mapping to IEEE variant 17

C locale (LC_C_C) 84
C++ source program

extern "C" declarations 9
cataloged disk file (see disk file) 63
character array operations, summary of

functions 41
character class testing, summary of functions 39
character conversion, summary of functions 40
character processing, summary of functions 39
characters reading/writing, summary of

functions 36
clock_t, data type 9
close files, summary of functions 35
comparison of strings, summary of functions 41
compatible locale

LC_C_V1CTYPE, LC_C_V2CTYPE 87
LC_C_V2CTYPE 87

compiler option
MODIFY-MODULE-PROPERTIES 15, 20, 24
MODIFY-SOURCE-PROPERTIES 20

concatenation of strings, summary of
functions 41

514 U4351-J-Z125-8-76

Index

contingency routine 77
free programming 79
implementation by library functions 78
in Assembler 81
in C 79

conversion functions
/390/IEEE 18
EBCDIC/ASCII 25

conversion, explicit
/390/IEEE 18
EBCDIC/ASCII 25

conversions
characters, summary of functions 40
date and time to a character string 154, 295
summary of functions 47

convert string, date and time 412
converting

date and time to a character string 154, 295
date and time to UTC 251

copy strings, summary of functions 41
creat 147
creat64 147
ctime 154

D
date 295
date and time, converting to UTC 251
date functions, summary of functions 44
De.EDF04F, De.EDF04F@euro 90
declaration of a function 9
default locale (LC_C_DEFAULT) 84
define, see preprocessor define
disk file 63

file attributes 64
record-oriented input/output 72
stream-oriented input/output 71

DIV (DATA IN VIRTUAL) 70
dynamic memory management, summary of

functions 39

E
elementary functions 51
EOF condition for input at the terminal 61
epoch 28

errno, error variable 11
errno.h 11
error handling 11
error messages 44
eventing 78

summary of functions 38
exception conditions, summary of functions 38
explanation of the function descriptions 103
explicit conversion

/390/IEEE 18
EBCDIC/ASCII 25

exponential functions, summary of functions 45
extern "C" declarations 9

F
FCBTYPE, record-oriented I/O 73
fgetpos 177
fgetpos64 177
file

large 35, 57
UFS 57

file descriptor 51
file pointer 51
file processing

basic terms 50
disk files 63
general 49
INCORE files 76
summary of functions 34

FILE structure 52
fixed date for time functions 28
floating-point conversions

summary of functions 47
fopen 187

library function 73
fopen64 187
formatted I/O, summary of functions 36
formatted input 433

read 229, 497
FP-ARITHMETICS clause 15
freopen 202

library function 73
freopen64 202
fseek 210

U4351-J-Z125-8-76 515

Index

fseek64 210
fsetpos 215
fsetpos64 215
ftell 217
ftell64 217
function

64-bit 57
declaration 9
explanation of the descriptions 103
general 5

function and macro, differences 5
functions 33

character processing 39
conversions 47
error messages 44
file processing 34
I/O 36
locale 48
mathematical 45
memory management 39
multibyte characters/character strings 43
overview of 33
program information/execution control 37
random number generator 48
rounding 46
search and sort 48
string operations 41
time/date 44
variable argument lists 48

G
garbage collection 238
generating pseudo-random numbers 350
GERMANY 88
gmtime 251

H
header files (see include files) 8

I
I/O, summary of functions 36
IC@LOCAL, link name 100
IEEE floating-point arithmetic 14

IEEE floating-point numbers 15
C library functions 16

IEEE functions
names 16
overview 16

include files 8
INCORE file 76
inline generation 5
input parameters 104
input, formatted 433

from file 222
integer arithmetic 45
ISAM file 63

K/NK format 69
usable area 69

K
K block format 68
K-ISAM file 69
KR functionality 505

L
large file 35, 57

support 57
LC_C_C, C locale 84
LC_C_De.EDF04F, 8-bit compatible 90
LC_C_De.EDF04F@euro, 8-bit compatible 90
LC_C_DEFAULT, default locale 84
LC_C_GERMANY, country-specific locale 88
LC_C_V1CTYPE, compatible locale 87
LC_C_V2CTYPE, compatible locale 87
libraries for time functions 28
library functions, usage 5
link names, IC@LOCAL 100
link switch for time functions 28
LITERAL-ENCODING clause 20
locale

concept 83
predefined locales 84
summary of functions 48
user-specific locales 100

localtime 295
logarithmic functions, summary of functions 45
lseek 303

516 U4351-J-Z125-8-76

Index

lseek64 303

M
macro and function, differences 5
macro define method 31
macro, general 5
macros for character processing, summary of

functions 39
mathematical functions, summary of

functions 45
memory area operations, summary of

functions 41
memory management, summary of functions 39
memory space reserving/releasing, summary of

functions 39
MODIFY- MODULE-PROPERTIES 15
MODIFY-MODULE-PROPERTIES 20, 24
MODIFY-SOURCE-PROPERTIES 20
multibyte character 27
multibyte functions, overview of functions 43

N
name define method 31
names

ASCII functions 21
IEEE functions 16

NK block format 68
NK-ISAM file 69
non-local jumps, summary of functions 38

O
open 326
open files, summary of functions 35
open64 326
opening files, summary of functions 35
overflow block, NK-ISAM file 69

P
PAM file 63

cataloged 63
temporary 76

parameters 104
input 104
result 104

perror, output error information 11
pointer 13

as a result parameter 13
as a return value 13

position read/write pointer, summary of
functions 35

positioning in files, summary of functions 35
positioning read/write pointer, function

overview 35
POSIX link switch (for time fct.) 28
preprocessor define

_ASCII_SOURCE 23
_FILE_OFFSET_BITS 58
_IEEE 15, 17
_IEEE_SOURCE 17
_LARGEFILE64_SOURCE 59
_MAP_NAME 31
_STRICT_STDC 30
_XOPEN_SOURCE 30
_XOPEN_SOURCE_EXTENDED 30
LITERAL_ENCODING_ASCII 20, 23

program diagnostics, summary of functions 38
program information, summary of functions 37
program termination, summary of functions 38
pseudo-random number 350
pseudo-random numbers

generating 350
ptrdiff_t, data type 9

R
raise, library function 78
rand 350
random generator, summary of functions 48
random number 350
read formatted input 229, 497

from file 229
from standard input 229

read, summary of functions 36
read/write pointer 52

positioning, summary of functions 35
record I/O 104
record-oriented input/output 54, 67, 72
release memory space, summary of functions 39
reserve memory space, summary of functions 39

U4351-J-Z125-8-76 517

Index

result parameter 104
pointer 13

return value 104
error 11
pointer 13
void * 13

rounding functions 46
rounding, summary of functions 45

S
SAM file 63
search and sort

summary of functions 48
searching strings, summary of functions 41
signal handling 78

summary of functions 38
signal, library function 78
size_t, data type 9
SOURCE-PROPERTIES option, STRICT-ANSI

parameter 30
standard I/O files 51

file descriptor 51
file pointer 51

standard include files 8
standard input/output files

file pointer 51
implementation of stdin, stdout, stderr 76

stderr, stdin, stdout
implementation of the macros 76

stream-oriented input/output 54, 65, 66, 71
STRICT-ANSI mode 30
string conversions

summary of functions 47
string operations, summary of functions 41
string reading/writing, summary of functions 36
string, convert to date and time 412
STXIT event classes 78
STXIT routine 77

free programming 81
implementation by library functions 78
structure 82

support for files > 2 GB 57
SYSDTA 60
SYSLST 62

SYSOUT 61
system communication, summary of functions 37
SYSTERM file 60, 61

T
temporary PAM file 76
text file 54, 65
time functions 28

summary of functions 44
TIME link switch 28
time, current 295
time_t, data type 9
trigonometric functions, summary of functions 45

U
UFS file 57
use of the library functions 5
USLOCA

Assembler source program (locale) 100
USLOCC

C source program (locale) 100

V
V1CTYPE 87
V2CTYPE 87
va_list, data type 9
variable argument lists

summary of functions 48
void *, as a return value 13

W
wchar_t, data type 9
wctrans_t, data type 9
wctype_t, data type 9
WEOF 27
WEOF criterion, reading from stdin 179
white space 55
wide character 27

conversion 40
strings 42
test 40

wint_t, data type 9
write, summary of functions 36

U4351-J-Z125-8-76

Contents
1 Preface . 1
1.1 Summary of contents and target group . 2
1.2 Changes since the last version of the manual . 3

2 Use of the library functions . 5
2.1 Functions and macros . 5
2.2 Include files . 8
2.3 Error handling . 11
2.4 Pointer as a return value and result parameter . 13
2.5 IEEE floating-point arithmetic . 14
2.5.1 Generating IEEE floating-point numbers by means of a compiler option 15
2.5.2 C library functions that support IEEE floating-point numbers . 16
2.5.3 Controlling the mapping of original functions to the associated IEEE variants 17
2.5.4 Explicit conversion of floating-point numbers . 18
2.6 ASCII encoding . 19
2.6.1 Generating ASCII characters and strings by means of a compiler option 20
2.6.2 C library functions that support ASCII encoding . 21
2.6.3 Controlling the mapping of original functions to the associated ASCII variants 23
2.6.4 Explicitly switching between EBCDIC and ASCII encoding . 25
2.7 Functions that support IEEE and ASCII encoding . 26
2.8 Multibyte and wide characters . 27
2.9 Time functions . 28
2.9.1 Setting the time zone for POSIX time functions . 29
2.10 Preprocessor define _STRICT_STDC . 30
2.11 Preprocessor defines for function prototypes according to XPG4 30
2.12 Preprocessor define _MAP_NAME . 31

3 Overview of the functions . 33
3.1 File processing . 34
3.2 Communication with the system environment . 37
3.3 Program information and execution control . 37
3.4 Memory management . 39
3.5 Character processing . 39
3.6 Processing strings and character arrays (memory areas) . 41
3.7 Error messages . 44
3.8 Time functions . 44

 U4351-J-Z125-8-76

Contents

3.9 Mathematical functions . 45
3.10 Conversion of objects . 47
3.11 Other functions . 48

4 File processing . 49
4.1 Basic terms . 50
4.2 Support for DMS and UFS files > 2 GB . 57
4.3 System files (SYSDTA, SYSOUT, SYSLST) . 60

SYSDTA . 60
SYSOUT . 61
SYSLST . 62

4.4 Cataloged disk files (SAM, ISAM, PAM) . 63
4.4.1 Default values and permissible modifications of the file attributes 64
4.4.2 K and NK block formats . 68
4.4.3 Support of the DIV access method . 70

Notes on stream-oriented input/output . 71
Notes on record-oriented input/output . 72

4.5 Temporary PAM files in virtual memory (INCORE files) . 76
4.6 Standard input/output files stdin, stdout and stderr . 76

5 Contingency and STXIT routines . 77
5.1 C library functions (alarm, raise, signal) . 78
5.2 Free use of contingency routines . 79
5.3 Free use of STXIT contingency routines . 81

6 Locale . 83
6.1 The locale concept . 83
6.2 Predefined locale C . 84

Default locale . 84
C locale . 84

6.3 Compatible locales V1CTYPE and V2CTYPE . 87
6.4 Country-specific locale GERMANY . 88
6.5 The locales De.EDF04F and De.EDF04F@euro . 90
6.6 User-specific locales . 100

7 Alphabetical reference . 103
Explanation of the function descriptions . 103
_a2e, _e2a - Convert from ASCII to EBCDIC and EBCDIC to ASCII 105
_a2e_dup, _e2a_dup - Convert from ASCII to EBCDIC and EBCDIC to ASCII 106
_a2e_dup_n, _e2a_dup_n - Convert from ASCII to EBCDIC and EBCDIC to ASCII . 107
_a2e_max, _e2a_max, - Convert from ASCII to EBCDIC and EBCDIC to ASCII 108
_a2e_n, _e2a_n - Convert from ASCII to EBCDIC and EBCDIC to ASCII 109
abort - Abnormal program termination . 110
abs - Absolute value of a whole number . 111

U4351-J-Z125-8-76

Contents

acos - Arc cosine . 112
alarm - Set alarm clock . 113
asctime - Date and time . 114
asin - Arc sine . 116
assert - Macro for diagnostics . 117
atan - Arc tangent . 118
atan2 - Arc tangent of x/y . 119
atexit - Register termination routines . 120
atof - Convert a string into a floating-point number (double) . 122
atoi - Convert a string into a whole number (int) . 123
atol - Convert a string into a whole number (long) . 124
atoll - Convert a string into a whole number (long long int) . 125
bs2cmd - Execute BS2000/OSD commands by means of the CMD macro 126
bs2exit - Program termination with MONJV . 128
bs2fstat - Access file name from catalog . 130
bsearch - Binary search algorithm . 132
btowc - Convert (one-byte) multibyte character to wide character 133
cabs - Absolute value of a complex number . 134
calloc - Reserve memory space . 135
cdisco - Deactivate a contingency routine . 136
ceil - Round up . 137
cenaco - Definition of a contingency routine . 138
clearerr - Clear end-of-file and error flag . 141
clock - CPU time used since the program call . 142
close - Close file and flush buffer (elementary) . 143
cos - Cosine . 144
cosh - Hyperbolic cosine . 145
cputime - CPU time used by the current task . 146
creat, creat64 - Create a new file (elementary) . 147
cstxit - Definition of an STXIT routine . 150
ctime - Date and time (CET) . 154
_ _DATE_ _ - Output date of compilation (macro) . 155
difftime - Calculate time difference . 156
div - Division with integers (int) . 156
double2ieee - Convert floating-point number from /390 format to IEEE format 157
ecvt - Convert a floating-point number to a string . 158
_edt - EDT call . 160
erf - Error function (mathematical) . 161
erfc - Complement of error function (mathematical) . 161
exit, _exit - Program termination . 162
exp - Exponential function . 164
fabs - Absolute value of a floating-point number . 165
fclose - Close a file and flush buffer . 166
fcvt - Convert a floating-point number to a string . 167

 U4351-J-Z125-8-76

Contents

fdelrec - Delete record in ISAM file (record I/O) . 169
fdopen - Assign a file pointer to a file descriptor . 170
feof - Test for end of file . 172
ferror - Test for file error . 173
fflush - Flush file buffers . 174
fgetc - Read a character from a file . 176
fgetpos, fgetpos64 -
Determine current position of the read/write pointer . 177
fgets - Read in a string from a file . 178
fgetwc - Read a wide character from input stream . 179
fgetws - Read a wide character string from a file . 180
_ _FILE_ _ - Output a source file name . 181
float2ieee - Convert floating-point number from /390 format to IEEE format 182
flocate - Explicitly position an ISAM file (record I/O) . 183
floor - Round down . 185
fmod - Remainder of a division . 186
fopen, fopen64 - Open a file . 187
fprintf - Formatted output to a file . 193
fputc - Write a character to a file . 195
fputs - Write a string to a file . 196
fputwc - Write a wide character to a file . 197
fputws - Write a wide character string to a file . 198
fread - Read blockwise from a file . 199
free - Free memory space . 201
freopen, freopen64 - Reassign file pointer . 202
frexp - Split floating-point number into mantissa and exponent 208
fscanf - Formatted input from a file . 209
fseek, fseeko, fseek64, fseeko64 - Position read/write pointer 210
fsetpos, fsetpos64 - Position read/write pointer . 215
ftell, ftello, ftell64, ftello64 - Determine current position of read/write pointer 217
ftime - Current time . 219
fwide - Define orientation of a file . 221
fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf -
Formatted output of wide characters . 222
fwscanf, swscanf, wscanf - Read formatted input . 229
fwrite - Write blockwise to a file . 235
gamma - Logarithmic gamma function . 237
garbcoll - Release memory space to the system . 238
gcvt - Convert a floating-point number to a string . 239
getc - Read a character from a file . 241
getchar - Read a character from standard input . 243
getenv - Query system information . 243
getlogin - Query user ID . 244
getpgmname - Query program name . 245

U4351-J-Z125-8-76

Contents

gets - Read a string from standard input . 246
gettsn - Query TSN (task sequence number) . 247
getw - Read wordwise from a file . 248
getwc - Read a wide character from a file . 249
getwchar - Read a wide character from standard input . 250
gmtime - Convert date and time to UTC . 251
hypot - Euclidean distance . 253
ieee2double - Convert floating-point number from IEEE format to /390 format 255
ieee2float - Convert floating-point number from IEEE format to /390 format 256
index - First occurrence of a character in a string . 257
isalnum - Test for letter or digit . 258
isalpha - Test for letter . 259
isascii - Test for ASCII character . 260
iscntrl - Test for control character . 261
isdigit - Test for digit . 262
isebcdic - Test for EBCDIC character . 263
isgraph - Test for printable character except space . 264
islower - Test for lowercase letter . 265
isprint - Test for printable character including space . 266
ispunct - Test for special character . 267
isspace - Test for white space character . 268
isupper - Test for uppercase letter . 269
iswalnum - Test for alphanumeric wide character . 270
iswalpha - Test for alphabetic wide character . 271
iswcntrl - Test for control wide character . 272
iswctype - Test wide character for class . 273
iswdigit - Test for decimal-digit wide character . 274
iswgraph - Test for visible wide character . 275
iswlower - Test for lowercase wide character . 276
iswprint - Test for printing wide character . 277
iswpunct - Test for punctuation wide character . 278
iswspace - Test for white-space wide character . 279
iswupper - Test for uppercase wide character . 280
iswxdigit - Test for hexadecimal wide-character digit . 281
isxdigit - Test for hexadecimal digit . 282
j0, j1, jn - Bessel functions of the first kind . 283
kill - Send signal to own program . 284
labs - Absolute value of an integer (long int) . 285
ldexp - Calculate binary value . 286
ldiv - Division with integers (long int) . 287
_ _LINE_ _ - Output the current source program line number 287
llabs - Absolute value of an integer (long long int) . 288
lldiv - Division with integers (long long int) . 289
llrint, llrintf, llrintl - Round off to nearest whole number . 290

 U4351-J-Z125-8-76

Contents

llround, llroundf, llroundl - Round off to nearest whole number 291
localeconv - Query/change locale-specific data . 292
localtime - Date and current time as a structure . 295
log - Natural logarithm . 297
log10 - Logarithm to the base 10 . 298
longjmp - Non-local jump . 299
lrint, lrintf, lrintl - Round off to nearest whole number . 301
lround, lroundf, lroundl - Round off to nearest whole number 302
lseek, lseek64 - Position read/write pointer (elementary) . 303
malloc - Reserve memory space . 307
mblen - Determine number of bytes of a multibyte character 309
mbrlen - Determine remaining length of a multibyte character 309
mbrtowc - Complete multibyte character and convert to wide character 310
mbsinit - Test for initial conversion state . 311
mbsrtowcs - Convert multibyte string to wide character string 312
mbstowcs - Convert multibyte string to wide character string 313
mbtowc - Convert multibyte character to wide character . 314
memalloc - Reserve memory space . 315
memchr - Search for a character in memory area . 316
memcmp - Compare memory areas . 317
memcpy - Copy memory area . 318
memfree - Free memory area . 318
memmove - Copy memory area . 319
memset - Initialize memory area . 319
mktemp - Generate a unique temporary file name . 320
mktime - Convert date and time (calendar function) . 322
modf - Split a number into its integer and fractional parts . 324
offsetof - Offset of a structure component from the start of the structure 325
open, open64 - Open a file (elementary) . 326
perror - Output error message . 329
pow - General exponential function . 331
printf - Formatted output on standard output . 332
putc - Write a character to a file . 341
putchar - Write a character to the standard output . 342
puts - Output a string to the standard output . 343
putw - Write a word at a time into a file . 344
putwc - Write wide character to a file . 345
putwchar - Write wide character to standard output . 345
qsort - Sort a data field (quicksort) . 346
raise - Send signal to own program . 348
rand - Random number generator . 350
read - Read from a file (elementary) . 352
realloc - Alter memory space . 354
remove - Delete file . 355

U4351-J-Z125-8-76

Contents

rename - Rename file . 356
rewind - Position read/write pointer to beginning of file . 357
rindex - Last occurrence of a character in a string . 359
rint, rintf, rintl - Round off to nearest whole number . 360
round, roundf, roundl - Round off to nearest whole number . 361
scanf - Formatted input from the standard input . 362
setbuf - Set input/output buffer . 370
setjmp - Set label for non-local jumps . 371
setlocale - Set/query locale . 372
setvbuf - Set input/output buffer . 375
signal - Signal processing control . 377
sin - Sine . 384
sinh - Hyperbolic sine . 385
sleep - Suspend a program for a fixed period of time . 386
sprintf - Formatted output to a string . 387
sqrt - Square root . 389
srand - Initialize the random number generator . 389
sscanf - Formatted input from a string . 390
_ _STDC_ _ - Test for compliance with ANSI standard . 391
_ _STDC_ VERSION_ _ - Test for compliance with Amendment 1 391
strcat - Concatenate strings . 392
strchr - First occurrence of a character in a string . 393
strcmp - Compare two strings . 394
strcoll - Compare two strings . 395
strcpy - Copy string . 396
strcspn - Compare strings and calculate segment length . 397
strerror - Return error message text . 398
strfill - Copy part of a string . 399
strftime - Locale-specific representation of date and time . 401
strlen - Determine length of a string . 403
strlower - Copy a string and convert to lowercase letters . 405
strncat - Concatenate strings . 406
strncmp - Compare two strings . 407
strncpy - Copy string . 409
strpbrk - Search for a character in a string . 411
strptime - Convert a string into date and time . 412
strrchr - Last occurrence of a character in a string . 415
strspn - Compare strings and calculate segment length . 416
strstr - First occurrence of one string in another . 417
strtod - Convert a string into a floating-point number . 418
strtok - Split a string into tokens . 420
strtol - Convert a string into a whole number (long int) . 421
strtoll - Convert a string into a whole number (long long int) . 424
strtoul - Convert a string into a whole number (unsigned long int) 426

 U4351-J-Z125-8-76

Contents

strtoull - Convert a string into a whole number (unsigned long long) 428
strupper - Copy a string and convert to uppercase letters . 430
strxfrm - Transform a string . 431
swprintf - Formatted output to a wide character string . 433
swscanf - Formatted input from a wide character string . 433
system - Execute system command . 434
tan - Tangent . 435
tanh - Hyperbolic tangent . 436
tell - Return current position of read/write pointer (elementary) 437
time - Get current time . 438
_ _TIME_ _ - Output compilation time (macro) . 439
tmpfile, tmpfile64 - Open temporary binary file . 440
tmpnam - Generate unique temporary file name . 441
toascii - Convert an integer value to a valid EBCDIC value . 443
toebcdic - Convert an integer value to a valid EBCDIC value 444
tolower - Convert uppercase letters to lowercase . 444
toupper - Convert lowercase letters to uppercase . 446
towctrans - Map wide characters . 447
towlower - Convert wide character to lowercase . 448
towupper - Convert wide character to uppercase . 448
ungetc - Push back a character to the buffer . 449
ungetwc - Push wide character back onto input stream . 450
unlink - Delete a file . 451
va_arg - Process variable argument list . 452
va_end - Terminate variable argument list . 454
va_start - Initialize variable argument list . 455
vfprintf - Formatted output to a file . 456
vfwprintf - Formatted output of wide characters . 457
vprintf - Formatted output to the standard output . 458
vsprintf - Formatted output to a string . 459
vswprintf - Formatted output of wide characters . 460
vwprintf - Formatted output of wide characters . 460
wcrtomb - Convert wide character to multibyte character . 461
wcscat - Concatenate two wide character strings . 462
wcschr - Scan wide character string for wide characters . 462
wcscmp - Compare two wide character strings . 463
wcscoll - Compare two wide character strings according to LC_COLLATE 464
wcscpy - Copy wide character string . 464
wcscspn - Get length of complementary wide character substring 465
wcsftime - Convert date and time to wide character string . 466
wcslen - Get length of wide character string . 466
wcsncat - Concatenate two wide character substrings . 467
wcsncmp - Compare two wide character substrings . 468
wcsncpy - Copy wide character substring . 469

U4351-J-Z125-8-76

Contents

wcspbrk - Get first occurrence of wide character in wide character string 470
wcsrchr - Get last occurrence of wide character in wide character string 471
wcsrtombs - Convert wide character string to multibyte character string 472
wcsspn - Get length of wide character substring . 473
wcsstr - Find first occurrence of wide character string . 474
wcstod - Convert wide character string to floating-point number (double) 475
wcstok - Split wide character string into tokens . 477
wcstol - Convert wide character string to long integer . 478
wcstoll - Convert a wide character string to a whole number (long long) 480
wcstombs - Convert wide characters to multibyte strings . 482
wcstoul - Convert wide character string to unsigned long . 483
wcstoull - Convert wide character string to whole number (unsigned long long) 485
wcsxfrm - Transform wide character string . 487
wctob - Convert wide character to (one-byte) multibyte character 488
wctomb - Convert wide character to multibyte character . 489
wctrans - Define mapping between wide characters . 490
wctype - Define wide character class . 491
wmemchr - First occurrence of wide character in wide character string 492
wmemcmp - Compare two wide character strings . 493
wmemcpy - Copy wide character string . 494
wmemmove - Copy wide character string to memory with overlapping areas 495
wmemset - Set n wide characters in wide character string . 495
wprintf - Formatted output to standard output (wide character format) 495
write - Write to a file (elementary) . 496
wscanf - Read formatted input . 497
y0, y1, yn - Bessel functions of the second kind . 498

8 Appendix . 499
Overview of functions in BS2000/OSD and in the ANSI standard 499
KR or ANSI functionality for C/C++ versions prior to V3.0 . 505

Related publications . 509

Index . 513

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U4351-J-Z125-8-76

C Library Functions V2.6A (BS2000/OSD)
Target group
The manual is intended for C and C++ users in a BS2000/OSD environment.
Contents
– Descriptions of all C functions and macros which can be used in the BS2000 system

without POSIX.
– Basic information, programming notes and examples on: BS2000 file processing,

STXIT and contingency routines, locality.

Edition: January 2003

File: c_bib.pdf

Copyright © Fujitsu Siemens Computers GmbH, 2003.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

Comments on C Library Functions V2.6A
C Library Functions

U4351-J-Z125-8-76

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: 0 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Summary of contents and target group
	Changes since the last version of the manual

	Use of the library functions
	Functions and macros
	Include files
	Error handling
	Pointer as a return value and result parameter
	IEEE floating-point arithmetic
	Generating IEEE floating-point numbers by means of a compiler option
	C library functions that support IEEE floating-point numbers
	Controlling the mapping of original functions to the associated IEEE variants
	Explicit conversion of floating-point numbers

	ASCII encoding
	Generating ASCII characters and strings by means of a compiler option
	C library functions that support ASCII encoding
	Controlling the mapping of original functions to the associated ASCII variants
	Explicitly switching between EBCDIC and ASCII encoding

	Functions that support IEEE and ASCII encoding
	Multibyte and wide characters
	Time functions
	Setting the time zone for POSIX time functions

	Preprocessor define _STRICT_STDC
	Preprocessor defines for function prototypes according to XPG4
	Preprocessor define _MAP_NAME

	Overview of the functions
	File processing
	Communication with the system environment
	Program information and execution control
	Memory management
	Character processing
	Processing strings and character arrays (memory areas)
	Error messages
	Time functions
	Mathematical functions
	Conversion of objects
	Other functions

	File processing
	Basic terms
	Support for DMS and UFS files > 2 GB
	System files (SYSDTA, SYSOUT, SYSLST)
	SYSDTA
	SYSOUT
	SYSLST

	Cataloged disk files (SAM, ISAM, PAM)
	Default values and permissible modifications of the file attributes
	K and NK block formats
	Support of the DIV access method
	Notes on stream-oriented input/output
	Notes on record-oriented input/output

	Temporary PAM files in virtual memory (INCORE files)
	Standard input/output files stdin, stdout and stderr

	Contingency and STXIT routines
	C library functions (alarm, raise, signal)
	Free use of contingency routines
	Free use of STXIT contingency routines

	Locale
	The locale concept
	Predefined locale C
	Default locale
	C locale

	Compatible locales V1CTYPE and V2CTYPE
	Country-specific locale GERMANY
	The locales De.EDF04F and De.EDF04F@euro
	User-specific locales

	Alphabetical reference
	Explanation of the function descriptions
	_a2e, _e2a - Convert from ASCII to EBCDIC and EBCDIC to ASCII
	_a2e_dup, _e2a_dup - Convert from ASCII to EBCDIC and EBCDIC to ASCII
	_a2e_dup_n, _e2a_dup_n - Convert from ASCII to EBCDIC and EBCDIC to ASCII
	_a2e_max, _e2a_max, - Convert from ASCII to EBCDIC and EBCDIC to ASCII
	_a2e_n, _e2a_n - Convert from ASCII to EBCDIC and EBCDIC to ASCII
	abort - Abnormal program termination
	abs - Absolute value of a whole number
	acos - Arc cosine
	alarm - Set alarm clock
	asctime - Date and time
	asin - Arc sine
	assert - Macro for diagnostics
	atan - Arc tangent
	atan2 - Arc tangent of x/y
	atexit - Register termination routines
	atof - Convert a string into a floating-point number (double)
	atoi - Convert a string into a whole number (int)
	atol - Convert a string into a whole number (long)
	atoll - Convert a string into a whole number (long long int)
	bs2cmd - Execute BS2000/OSD commands by means of the CMD macro
	bs2exit - Program termination with MONJV
	bs2fstst - Access file name from catalog
	bsearch - Binary search algorithm
	btowc - Convert (one-byte) multibyte character to wide character
	cabs - Absolute value of a complex number
	calloc - Reserve memory space
	cdisco - Deactivate a contingency routine
	ceil - Round up
	cenaco - Definition of a contingency routine
	clearerr - Clear end-of-file and error flag
	clock - CPU time used since the program call
	close - Close file and flush buffer (elementary)
	cos - Cosine
	cosh - Hyperbolic cosine
	cputime - CPU time used by the current task
	creat, creat64 - Create a new file (elementary)
	cstxit - Definition of an STXIT routine
	ctime - Date and time (CET)
	_ _DATE_ _ - Output date of compilation (macro)
	difftime - Calculate time difference
	div - Division with integers (int)
	double2ieee Convert floating-point number from /390 format to IEEE format
	ecvt - Convert a floating-point number to a string
	_edt - EDT call
	erf - Error function (mathematical)
	erfc - Complement of error function (mathematical)
	exit, _exit - Program termination
	exp - Exponential function
	fabs - Absolute value of a floating-point number
	fclose - Close a file and flush buffer
	fcvt - Convert a floating-point number to a string
	fdelrec - Delete record in ISAM file (record I/O)
	fdopen - Assign a file pointer to a file descriptor
	feof - Test for end of file
	ferror - Test for file error
	fflush - Flush file buffers
	fgetc - Read a character from a file
	fgetpos, fgetpos64 - Determine current position of the read/write pointer
	fgets - Read in a string from a file
	fgetwc - Read a wide character from input stream
	fgetws - Read a wide character string from a file
	_ _FILE_ _ - Output a source file name
	float2ieee - Convert floating-point number from /390 format to IEEE format
	flocate - Explicitly position an ISAM file (record I/O)
	floor - Round down
	fmod - Remainder of a division
	fopen, fopen64 - Open a file
	fprintf - Formatted output to a file
	fputc - Write a character to a file
	fputs - Write a string to a file
	fputwc - Write a wide character to a file
	fputws - Write a wide character string to a file
	fread - Read blockwise from a file
	free - Free memory space
	freopen, freopen64 - Reassign file pointer
	frexp - Split floating-point number into mantissa and exponent
	fscanf - Formatted input from a file
	fseek, fseeko, fseek64, fseeko64 - Position read/write pointer
	fsetpos, fsetpos64 - Position read/write pointer
	ftell, ftello, ftell64, ftello64 - Determine current position of read/write pointer
	ftime - Current time
	fwide - Define orientation of a file
	fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf - Formatted output of wide characters
	fwscanf, swscanf, wscanf - Read formatted input
	fwrite - Write blockwise to a file
	gamma - Logarithmic gamma function
	garbcoll - Release memory space to the system
	gcvt - Convert a floating-point number to a string
	getc - Read a character from a file
	getchar - Read a character from standard input
	getenv - Query system information
	getlogin - Query user ID
	getpgmname - Query program name
	gets - Read a string from standard input
	gettsn - Query TSN (task sequence number)
	getw - Read wordwise from a file
	getwc - Read a wide character from a file
	getwchar - Read a wide character from standard input
	gmtime - Convert date and time to UTC
	hypot - Euclidean distance
	ieee2double - Convert floating-point number from IEEE format to /390 format
	ieee2float - Convert floating-point number from IEEE format to /390 format
	index - First occurrence of a character in a string
	isalnum - Test for letter or digit
	isalpha - Test for letter
	isascii - Test for ASCII character
	iscntrl - Test for control character
	isdigit - Test for digit
	isebcdic - Test for EBCDIC character
	isgraph - Test for printable character except space
	islower - Test for lowercase letter
	isprint - Test for printable character including space
	ispunct - Test for special character
	isspace - Test for white space character
	isupper - Test for uppercase letter
	iswalnum - Test for alphanumeric wide character
	iswalpha - Test for alphabetic wide character
	iswcntrl - Test for control wide character
	iswctype - Test wide character for class
	iswdigit - Test for decimal-digit wide character
	iswgraph - Test for visible wide character
	iswlower - Test for lowercase wide character
	iswprint - Test for printing wide character
	iswpunct - Test for punctuation wide character
	iswspace - Test for white-space wide character
	iswupper - Test for uppercase wide character
	iswxdigit - Test for hexadecimal wide-character digit
	isxdigit - Test for hexadecimal digit
	j0, j1, jn - Bessel functions of the first kind
	kill - Send signal to own program
	labs - Absolute value of an integer (long int)
	ldexp - Calculate binary value
	ldiv - Division with integers (long int)
	_ _LINE_ _ - Output the current source program line number
	llabs - Absolute value of an integer (long long int)
	lldiv - Division with integers (long long int)
	llrint, llrintf, llrintl - Round off to nearest whole number
	llround, llroundf, llroundl - Round off to nearest whole number
	localeconv - Query/change locale-specific data
	localtime - Date and current time as a structure
	log - Natural logarithm
	log10 - Logarithm to the base 10
	longjmp - Non-local jump
	lrint, lrintf, lrintl - Round off to nearest whole number
	lround, lroundf, lroundl - Round off to nearest whole number
	lseek, lseek64 - Position read/write pointer (elementary)
	malloc - Reserve memory space
	mblen - Determine number of bytes of a multibyte character
	mbrlen - Determine remaining length of a multibyte character
	mbrtowc - Complete multibyte character and convert to wide character
	mbsinit - Test for initial conversion state
	mbsrtowcs - Convert multibyte string to wide character string
	mbstowcs - Convert multibyte string to wide character string
	mbtowc - Convert multibyte character to wide character
	memalloc - Reserve memory space
	memchr - Search for a character in memory area
	memcmp - Compare memory areas
	memcpy - Copy memory area
	memfree - Free memory area
	memmove - Copy memory area
	memset - Initialize memory area
	mktemp - Generate a unique temporary file name
	mktime - Convert date and time (calendar function)
	modf - Split a number into its integer and fractional parts
	offsetof - Offset of a structure component from the start of the structure
	open, open64 - Open a file (elementary)
	perror - Output error message
	pow - General exponential function
	printf - Formatted output on standard output
	putc - Write a character to a file
	putchar - Write a character to the standard output
	puts - Output a string to the standard output
	putw - Write a word at a time into a file
	putwc - Write wide character to a file
	putwchar - Write wide character to standard output
	qsort - Sort a data field (quicksort)
	raise - Send signal to own program
	rand - Random number generator
	read - Read from a file (elementary)
	realloc - Alter memory space
	remove - Delete file
	rename - Rename file
	rewind - Position read/write pointer to beginning of file
	rindex - Last occurrence of a character in a string
	rint, rintf, rintl - Round off to nearest whole number
	round, roundf, roundl - Round off to nearest whole number
	scanf - Formatted input from the standard input
	setbuf - Set input/output buffer
	setjmp - Set label for non-local jumps
	setlocale - Set/query locale
	setvbuf - Set input/output buffer
	signal - Signal processing control
	sin - Sine
	sinh - Hyperbolic sine
	sleep - Suspend a program for a fixed period of time
	sprintf - Formatted output to a string
	sqrt - Square root
	srand - Initialize the random number generator
	sscanf - Formatted input from a string
	_ _STDC_ _ - Test for compliance with ANSI standard
	_ _STDC_ VERSION_ _ - Test for compliance with Amendment 1
	strcat - Concatenate strings
	strchr - First occurrence of a character in a string
	strcmp - Compare two strings
	strcoll - Compare two strings
	strcpy - Copy string
	strcspn - Compare strings and calculate segment length
	strerror - Return error message text
	strfill - Copy part of a string
	strftime - Locale-specific representation of date and time
	strlen - Determine length of a string
	strlower - Copy a string and convert to lowercase letters
	strncat - Concatenate strings
	strncmp - Compare two strings
	strncpy - Copy string
	strpbrk - Search for a character in a string
	strptime - Convert a string into date and time
	strrchr - Last occurrence of a character in a string
	strspn - Compare strings and calculate segment length
	strstr - First occurrence of one string in another
	strtod - Convert a string into a floating-point number
	strtok - Split a string into tokens
	strtol - Convert a string into a whole number (long int)
	strtoll - Convert a string into a whole number (long long int)
	strtoul - Convert a string into a whole number (unsigned long int)
	strtoull - Convert a string into a whole number (unsigned long long)
	strupper - Copy a string and convert to uppercase letters
	strxfrm - Transform a string
	swprintf - Formatted output to a wide character string
	swscanf - Formatted input from a wide character string
	system - Execute system command
	tan - Tangent
	tanh - Hyperbolic tangent
	tell - Return current position of read/write pointer (elementary)
	time - Get current time
	_ _TIME_ _ - Output compilation time (macro)
	tmpfile, tmpfile64 - Open temporary binary file
	tmpnam - Generate unique temporary file name
	toascii - Convert an integer value to a valid EBCDIC value
	toebcdic - Convert an integer value to a valid EBCDIC value
	tolower - Convert uppercase letters to lowercase
	toupper - Convert lowercase letters to uppercase
	towctrans - Map wide characters
	towlower - Convert wide character to lowercase
	towupper - Convert wide character to uppercase
	ungetc - Push back a character to the buffer
	ungetwc - Push wide character back onto input stream
	unlink - Delete a file
	va_arg - Process variable argument list
	va_end - Terminate variable argument list
	va_start - Initialize variable argument list
	vfprintf - Formatted output to a file
	vfwprintf - Formatted output of wide characters
	vprintf - Formatted output to the standard output
	vsprintf - Formatted output to a string
	vswprintf - Formatted output of wide characters
	vwprintf - Formatted output of wide characters
	wcrtomb - Convert wide character to multibyte character
	wcscat - Concatenate two wide character strings
	wcschr - Scan wide character string for wide characters
	wcscmp - Compare two wide character strings
	wcscoll - Compare two wide character strings according to LC_COLLATE
	wcscpy - Copy wide character string
	wcscspn - Get length of complementary wide character substring
	wcsftime - Convert date and time to wide character string
	wcslen - Get length of wide character string
	wcsncat - Concatenate two wide character substrings
	wcsncmp - Compare two wide character substrings
	wcsncpy - Copy wide character substring
	wcspbrk - Get first occurrence of wide character in wide character string
	wcsrchr - Get last occurrence of wide character in wide character string
	wcsrtombs - Convert wide character string to multibyte character string
	wcsspn - Get length of wide character substring
	wcsstr - Find first occurrence of wide character string
	wcstod - Convert wide character string to floating-point number (double)
	wcstok - Split wide character string into tokens
	wcstol - Convert wide character string to long integer
	wcstoll - Convert a wide character string to a whole number (long long)
	wcstombs - Convert wide characters to multibyte strings
	wcstoul - Convert wide character string to unsigned long
	wcstoull - Convert wide character string to whole number (unsigned long long)
	wcsxfrm - Transform wide character string
	wctob - Convert wide character to (one-byte) multibyte character
	wctomb - Convert wide character to multibyte character
	wctrans - Define mapping between wide characters
	wctype - Define wide character class
	wmemchr - First occurrence of wide character in wide character string
	wmemcmp - Compare two wide character strings
	wmemcpy - Copy wide character string
	wmemmove - Copy wide character string to memory with overlapping areas
	wmemset - Set n wide characters in wide character string
	wprintf - Formatted output to standard output (wide character format)
	write - Write to a file (elementary)
	wscanf - Read formatted input
	y0, y1, yn - Bessel functions of the second kind

	Appendix
	Overview of functions in BS2000/OSD and in the ANSI standard
	KR or ANSI functionality for C/C++ versions prior to V3.0

	Related publications
	Comments, Suggestions, Corrections
	Index
	A-C
	D-F
	G-L
	M-R
	S-W

