
Edition September 2012

©
 S

ie
m

e
ns

 N
ix

do
rf

 I
nf

or
m

at
io

ns
sy

st
em

e
 A

G
 1

99
5

 
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nF

T
\o

pe
n

F
T-

V
12

_1
2

00
30

0
\1

20
03

0
5_

U
W

_C
pr

og
\e

n
\p

ro
g_

e.
vo

r

English

openFT V12.0 for Unix Systems and Windows Systems
C Program Interface   

Programmer’s Guide



Comments… Suggestions… Corrections…
The User Documentation Department would like to know your 
opinion on this manual. Your feedback helps us to optimize our 
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: 
manuals@ts.fujitsu.com

Certified documentation 
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which 
complies with the requirements of the standard
DIN EN ISO 9001:2008. 

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed 
on paper treated with 
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2012.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de


openFT V12.0 - C Program Interface  3

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r 
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 S

e
pt

em
b

er
 2

01
2

  S
ta

nd
 1

2:
58

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nF

T
\o

p
en

F
T-

V
12

_
12

00
3

00
\1

20
03

0
5_

U
W

_C
pr

o
g\

en
\p

ro
g_

e.
iv

z

Contents

1 Introduction to the C program interface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

1.1 Changes compared to the predecessor version  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

1.2 Overview .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

1.3 Programming rules  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
1.3.1 File transfer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
1.3.2 File management .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14
1.3.3 Remote command execution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14
1.3.4 Specifications concerning the remote system  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  15
1.3.5 Error handling   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  17
1.3.6 Version of the program interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

2 Creating and using programs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19

2.1 Translating and linking under Windows systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19

2.2 Translating and linking under Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

2.3 Notes for program use  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

3 Description of the C functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  21

3.1 ft_cancel - Cancel asynchronous request .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  22

3.2 ft_close - Close session   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  23

3.3 ft_credir - Create directory in remote system .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24

3.4 ft_delete - Delete file or directory in the remote system  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26

3.5 ft_open - Open session .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

3.6 ft_properties - Determine properties of the program interface   .  .  .  .  .  .  .  .  .  .  31

3.7 ft_reqlist - Determine request not yet terminated .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  34



Contents

4   openFT V12.0 - C Program Interface

3.8 ft_reqstat - Determine the status of a request .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36

3.9 ft_reqterm - Terminate request  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38

3.10 ft_sdopen - Start identification of attributes of all files in a directory  .  .  .  .  .  .  . 39

3.11 ft_sdinfo - Read out file attributes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

3.12 ft_sdclose - End identification of file attributes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46

3.13 ft_show - Determine attributes of a file or directory .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47

3.14 ft_showdir - Determine the attributes of all files in a directory .  .  .  .  .  .  .  .  .  .  . 53

3.15 ft_transfer - Transfer file .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59

3.16 ft_xcopen - Execute command in the remote system .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

3.17 ft_xcinfo - Read the data generated by the command   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74

3.18 ft_xcclose - Terminate command execution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76

4 Error codes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77

4.1 Internal errors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78

4.2 Parameter errors .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79

4.3 Sequence errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87

5 Sample programs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89

Sample 1: Asynchronous file transfer of a file .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
Sample 2: Several file transfer requests with follow-up processing .  .  .  .  .  .  .  .  .  .  . 91
Sample 3: Display contents of a directory in a remote system  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Sample 4: Remote command execution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Sample 5: Memory-efficient listing of a remote directory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95



openFT V12.0 - C Program Interface  5

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

1 Introduction to the C program interface
You can use the C program interface to incorporate the functionality of openFT in your own 
C programs:

– synchronous file transmission

– asynchronous file transfer

– managing and deleting asynchronous file transfer requests

– determining file attributes in the remote system

– deleting files or directories in the remote system

– creating directories in the remote system

– executing commands in the remote system

These functions which are available to the openFT user can be used in C programs to 
automate sequences. The program interface naturally also provides monitoring and error 
handling mechanisms.
In addition, the program interface has a function call which you can use determine the 
properties of the program interface. You can use this call to check the properties and thus 
render your programs insensitive to changes in later versions.

Under Windows, the program interface supports multithreading, i.e. all program interface 
calls are threadsafe. 



Changes compared to the predecessor version Introduction to the C program interface

6   openFT V12.0 - C Program Interface

1.1 Changes compared to the predecessor version

The C program interface to openFT V12 provides the following new functions:

● Function group ft_sd*() to determine the attributes of all the files in a directory in the re-
mote system. 
ft_sd*() comprises the individual functions ft_sdopen(), ft_sdinfo() and ft_sdclose().

● Function group  ft_xc*() to execute commands in the remote system. 
ft_xc*() comprises the individual functions ft_xcopen(), ft_xcinfo() and ft_xcclose().

 The ft_prop structure in the function ft_properties() has been extended:

● new field: maxcmdlen

● additional value: FT_PROPV2 for the field ftpropvers

New sample programs

● Remote command execution

● Memory-efficient listing of remote directory



Introduction to the C program interface Overview

openFT V12.0 - C Program Interface  7

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

1.2 Overview

The following overview is useful for quick orientation with respect to which C program calls 
are available for which tasks. The corresponding FT commands which the user can work 
with on the shell level are indicated in brackets (see openFT User Manual).

File transfer function 

Functions for managing asynchronous file transfer requests 

File management functions 

ft_transfer Transfer file (ft or ncopy)

ft_open Open session

ft_close Close session

ft_reqlist Determine requests that have not been completed

ft_reqstat Determine request status

ft_reqterm Terminate request

ft_cancel Abort request (ftcanr)

ft_show Determine the attributes of a file or directory in the remote system (ftshw)

ft_showdir Determine all file attributes of a directory in the remote system (ftshw -d)

ft_delete Delete a file or directory in the remote system
(delete file: ftdel; delete directory: ftdeldir)

ft_credir Create a directory in the remote system (ftcredir)

ft_sd* Function group used to determine the attributes of all the files in a directory 
in the remote system. 
Comprises the following individual functions:

ft_sdopen Start identification of attributes of all the files in a directory in the 
remote system

ft_sdinfo Read out file attributes

ft_sdclose End identification of file attributes



Overview Introduction to the C program interface

8   openFT V12.0 - C Program Interface

Function for querying properties of the program interface 

Functions for remote command execution

ft_properties Determine properties of the program interface

ft_xc* Function group for the synchronous execution of a command in the remote 
system. 
Comprises the following individual functions:

ft_xcopen Execute command in the remote system

ft_xcinfo Read the data generated by the command

ft_xcclose Terminate command execution



Introduction to the C program interface Programming rules

openFT V12.0 - C Program Interface  9

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

1.3 Programming rules

This section describes the points which you must observe when creating programs for the 
program interface of openFT.

1.3.1 File transfer

Synchronous transfer

For synchronous file transfer, use the function ft_transfer(). In the parameter list, the 
parameter synchron must contain the value FT_SYNC. The control is not returned to the 
program until file transfer is completed. You can use the return values to determine whether 
file transfer has been successful.

Asynchronous file transfer 

Several functions are necessary in order to perform synchronous file transfer. They result 
from the fact that, with asynchronous file transfer requests are issued, stored in the request 
queue and possibly not executed until later. The requests must be administered, and 
monitored for successful completion. It is therefore only possible to transfer files asynchro-
nously within „sessions“.

A program for asynchronous file transfer is made of two parts:

– In the first part, you open a session. Further, you issue one or more file transfer 
requests. If necessary, you can delete file transfer requests.

openFT executes the request itself at the next possible opportunity. 

– In the second part, you query the status of the request later and terminate the request 
on successful completion. If necessary, you can determine which requests have not 
been completed and terminate these as appropriate. Then you can close the session.



Programming rules Introduction to the C program interface

10   openFT V12.0 - C Program Interface

Schematic of the program structure: 

The following function calls are absolutely necessary for asynchronous file transfer:

1. ft_open() 

The function ft_open() opens a session. The result of ft_open() is a session number 
(session identification) which uniquely identifies the session. This session number must 
be specified as parameter for function calls within the same session.

When you open a session, you must assign an existing directory as working directory. 
In this working directory, the files are stored with management information about the 
existing file transfer requests.
You may assign the same working directory to several different consecutive sessions 
sessions. This brings the advantage that you can administer requests from various 
sessions together.

You can conduct several sessions in parallel in one program. With ft_open(), however, 
you can only open more than one session simultaneously if each of the parallel 
sessions is assigned a different working directory. 

ft_open

[ft_transfer]
...

[ft_cancel]

ft_reqstat

ft_reqterm

[ft_reqstat

...

ft_reqterm
...]

[ft_reqlist

ft_reqterm]

ft_close

delayed:

Open session

Issue any further 
requests

Delete requests if necessary

Query

Terminate request

Query states of other
requests as necessary
and terminate requests

Determine any uncompleted
requests and terminate

Close session

state of request

ft_transfer Issue request

1st part

2nd part



Introduction to the C program interface Programming rules

openFT V12.0 - C Program Interface  11

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

2. ft_transfer() 

The ft_transfer() is used to issued an asynchronous file transfer request. The parameter  
synchron in the parameter list must contain the value FT_ASYNC. You may issue several 
asynchronous requests in succession in one session.

When the request has been successfully entered in the request queue, you are returned 
a request ID as the result of ft_transfer(). The request ID uniquely identifies the request. 
This request ID is valid, even beyond the session, until the request is terminated with 
the function ft_reqterm().

When the request is present in the request queue, you do not have to take care of the 
request execution. openFT executes the asynchronous request at the earliest possible 
time. If, for example, a partner is not available at the moment, openFT keeps trying to 
execute the request. The request is thus held in the request queue until it has been 
completed or any deletion date that has been specified is reached.

3. ft_reqstat() 

You can use the function ft_reqstat() to determine whether or not the file transfer has 
been successfully completed. As asynchronous file transfer is not carried out immedi-
ately, you should delay the use of the function ft_reqstat() and repeat the status query. 
When the request is completed, the parameter status is assigned the value FT_STATT, 
if terminated, it is assigned the value FT_STATA.

4. ft_reqterm() 

You must terminate the request using the function ft_reqterm(). This function deletes the 
request ID of the request and also the file in which the relevant information about the 
file transfer request is stored. Resources which are no longer required are released.

The management file has the name mf.Request-ID and is located in the directory 
indicated as workdir parameter with the function call ft_open().

The request IDs of requests which have not been completed are retained, even after 
the session in which the requests were issued has been closed These requests can be 
completed at a later time by referencing the associated request ID, if the current session 
is assigned to the same working directory as the session in which the request was origi-
nally issued.

5. ft_close() 

You can use the function ft_close() to close the session.



Programming rules Introduction to the C program interface

12   openFT V12.0 - C Program Interface

HOME directory

If absolute file or directory names were not specified in the remote Unix or Windows 
systems then the user’s HOME directory in the remote system is of importance. Relative 
path names always refer to the HOME directory of the corresponding user unless a 
definition to the contrary has been made by an FTAC profile. 

The following applies to the HOME directory:

● In Unix systems, the HOME directory is the directory which is opened for the user after 
login.

● In Windows systems, a user’s HOME directory for openFT requests is the directory 
entered in user administration for this user.

If no directory is entered for the user in user administration then the user’s profile path 
is used as the HOME directory. The profile path is \Users\User where User does not have 
to be identical to the name of the user. 

If it is also not possible to determine the user’s profile path, then the openFT home 
directory is created in the \Users directory and access rights are granted in full to 
SYSTEM, administrators and the corresponding user.
In this case, the name of the home directory created by openFT is determined as 
follows:
– Local user ID: UserID.Computer-name
– Global user ID (domain\user ID): UserID.Domain



Introduction to the C program interface Programming rules

openFT V12.0 - C Program Interface  13

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

Managing asynchronous requests

Further functions are available for managing asynchronous requests:

– ft_cancel() 

You can use the function ft_cancel() to cancel asynchronous requests which are in the 
course of being processed or which are waiting to be processed in the request queue 
request queue. 

This function is expedient only when the program to be created has a user interface and 
the user has options for intervening. For example, you could imaging a program which 
displays waiting file transfer requests to the user (ft_reqstat (status=FT_STATW)) and 
allow him or her to abort these requests.

Another application is when file transfer request have issued by mistake and should now 
be deleted.

With the function ft_cancel(), you can only cancel requests which are present in the 
request queue and which have a request ID. If the request was issued in another 
session, the current session must be assigned the same working directory as for the 
session in which the request was issued. If the ft_transfer() function returns the value 0, 
the request could not be entered into the request queue. These unsuccessful attempts 
to enter requests terminate with an error message.

Requests which you cancel with ft_cancel(), must be terminated with ft_reqterm() in 
order for the associated request ID to be deleted.

– ft_reqlist() 

All transfer requests must be completed so that associated request IDs and 
management files can be deleted and resources that are not required released. 

With the function ft_reqlist(), you determine uncompleted requests from all sessions 
which have been assigned the same working directory as the current session. Please 
note that not all request which have not be completed are determined, but only those 
from sessions with the same working directory.



Programming rules Introduction to the C program interface

14   openFT V12.0 - C Program Interface

1.3.2 File management

The following functions are available for determining the file attributes in the remote system:

– With the function ft_show(), you can list the attributes of one file. 

– With the function ft_showdir(), you can list the attributes of multiple files in a directory.

– The function group ft_sd*() determines the attributes of all the files in a directory in the 
remote system. Unlike in the case of ft_showdir(), it is not necessary to know the number 
of files before calling the command. The function group comprises the following individ-
ual functions:

– The function ft_sdopen() initiates the identification of the attributes of all the files in a 
directory in the remote system.

– The function ft_sdinfo() reads the file attributes.

– The function ft_sdclose() terminates identification of the file attributes.

– You can use the function ft_delete() to delete a file or a directory in the remote system.

1.3.3 Remote command execution

A command is executed synchronously in the remote system. The data output by the com-
mand at stdout and stderr can be called up separately. 

You can do this using the function group ft_xc*(). This comprises the following individual 
functions:

ft_xcopen()   
The function ft_xcopen() is used for the synchronous execution of the command in 
the remote system.

ft_xcinfo()   
The function ft_xcinfo() reads the data generated  by the command.

ft_xcclose()   
The function ft_xcclose() terminates command execution.



Introduction to the C program interface Programming rules

openFT V12.0 - C Program Interface  15

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

1.3.4 Specifications concerning the remote system 

All functions that access a remote system must identify the remote system and make the 
transfer admission known. The file structure ft_admission is used.

In Windows, the ft_admission structure is defined in the header file ...\openFT\include\ftapi.h.

In Unix systems, the ft_admission structure is defined in the header file /usr/include/ftapi.h.

ft_admission

The structure ft_admission is set up as follows:

struct ft_admission
{
   char  *remsys;         /* input */
   char  *remadmis;       /* input */
   char  *remaccount;     /* input */
   char  *rempasswd;      /* input */
};

The fields of the structure ft_admission have the following meaning. 

remsys  

Name of the partner system in the partner list or address of the partner system.

The address of the partner system is specified in the following form:

[protocol://]host[:[port].[tsel].[ssel].[psel]]

protocol   
Protocol stack via which the partner is addressed.
Possible values: 

openft (openFT protocol), default value

ftam (FTAM protocol)

ftp (ftp protocol)

host  Internet host name, IP address or GLOBAL NAME from the TNS, 
mandatory parameter. Format of the IP addresses (example):
%ip111.222.123.234 (IPv4) or
%ip6[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210] (IPv6)
The square brackets [..] must be specified with IPv6.

port  Port number for TCP/IP connection, optional.

tsel  Transport selector (only openFT and FTAM protocol), optional.



Programming rules Introduction to the C program interface

16   openFT V12.0 - C Program Interface

ssel  Session selector for FTAM connection, optional.

psel  Presentation selector for FTAM connection, optional.

For further details on addressing partner systems see the online help system or the 
openFT User Manual.

remadmis  
Either a login name or an FTAC transfer admission in the remote system.

remaccount  
Account number in the remote system

rempasswd  
Password in the remote system

Depending on the particular type of openFT partner system, the following entries are 
necessary:

With BS2000:  
remadmis, if the remote system uses the FTAC transfer admission; otherwise: 
remadmis, remaccount and, if a password is assigned, rempasswd 

With Unix systems:  
remadmis, if the remote system uses the FTAC transfer admission; otherwise: 
remadmis and, if a password is assigned, rempasswd 

With Windows systems:  
remadmis, if the remote system uses the FTAC transfer admission; otherwise: 
remadmis, if a login name is assigned, and rempasswd, if a password is assigned 

With OS/390 and z/OS:  
remadmis, remaccount and, if a password is assigned, rempasswd 

With FTAM partner systems, for which no product of the openFT product range is in use:  
remadmis, if an account number is assigned, remaccount and, if a password is 
assigned, rempasswd

For other partner systems:  
corresponding to the conventions of the particular partner system

All fields not specified must contain the value NULL.



Introduction to the C program interface Programming rules

openFT V12.0 - C Program Interface  17

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

1

1.3.5 Error handling

All function calls end with a return message. The return value indicates successful 
completion or informs the user globally that an error has occurred. You can obtain detailed 
information by calling the a function with optional parameter errorinfo. Immediately after an 
error has occurred, the structure ft_err contains error messages with which you can 
program corresponding error handling procedures.

In Windows, the ft_err structure is defined in the header file ...\openFT\include\ftapi.h.

In Unix systems, the ft_err structure is defined in the header file /usr/include/ftapi.h.

ft_err

The structure ft_err is set up as follows:

struct ft_err
{
   long  main;           /* output */
   long  detail;         /* output */
   long  additional;     /* output */
};

The fields of the structure ft_err have the following meanings:

main   
contains the error class, e.g. parameter error, internal error

detail   
describes the error, e.g. invalid parameter value

additional   
contains additional error information, e.g. which parameter is invalid

The error codes are described in the chapter “Error codes” on page 77.



Programming rules Introduction to the C program interface

18   openFT V12.0 - C Program Interface

1.3.6 Version of the program interface

You can use the function call ft_properties() to determine the version of the openFT program 
interface, as well as important version-specific system values. With this function, you 
ensure the executability of future versions of openFT - even without recompilation. This 
function call is above all important when you use programs that are to run with different 
versions of the program interface.

ft_options

The ft_credir() function introduced in version 2 of the openFT program interface and the 
extended file structures can only be used if the options parameter is specified for the corre-
sponding functions.

The functions ft_sdopen() and ft_xcopen() introduced in version 3 of the openFT program in-
terface can only be used if the options parameter is specified in the associated functions.

The ft_options structure is constructed as follows:

struct ft_options
{

int ftoptsvers;   /* input */
int ftapivers;    /* input */

};

The fields in the structure have the following meaning:

ftoptsvers  
Version of the data structure.
The value FT_OPTSV1 must be entered for ftoptsvers.

ftapivers  
Specifies the version of the program interface: 

FT_APIV2   
The openFT message number (ft_err.detail=FTED_FTMSG) specified in the 
additional parameter adheres to the new message number schema which 
was introduced in openFT V10.

FT_APIV3  
This is required in order to use the functions ft_sdopen() and ft_xcopen(). The 
openFT message number (ft_err.detail=FTED_FTMSG) specified in the 
additional parameter has the new message number scheme that was intro-
duced in openFT V10.



openFT V12.0 - C Program Interface  19

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

2

2 Creating and using programs

Include file

All C programs which use the program interface of openFT must contain the following line:

– in Windows: #include <ftapi.h> 
– in Unix systems: #include "ftapi.h"

The data types and function prototypes are defined in this include file. 

In Windows, this include file is located in in the openFT\include sub-directory of the openFT 
installation directory.

2.1 Translating and linking under Windows systems

A program that wants to use the openFT program interface must be linked with the import 
library ftapi.lib. This library is located in the openFT\lib directory of the openFT installation 
directory. 

  During runtime, the library ftapi.dll is also dynamically loaded from the directory 
..\openFT\bin. 

ftapi.lib and ftapi.dll were created using Microsoft Visual Studio 2010. 

64-bit support in Windows systems

A 64-bit DLL with the name ftapi64.dll for the Windows x64 systems as well as for the 
Windows Itanium systems is also provided.

During openFT installation, the ftapi64.dll variant corresponding to the employed operating 
system is automatically installed in the directory ..\openFT\bin. 

The associated import library ftapi64.lib is located in the directory ..\openFT\lib\x64 in the 
case of Windows x64 systems and the directory ..\openFT\lib\ia64 in the case of Windows 
Itanium systems.

i



Translating and linking under Unix systems Creating and using programs

20   openFT V12.0 - C Program Interface

2.2 Translating and linking under Unix systems

In a program that wants to use the openFT program interface, the openFT functions must 
be linked from the openFT library. Call the C compiler with the -lftapi option. 

The following options must also be specified on some systems:

Note that under HP-UX, the C compiler must always be called in ANSI mode.

2.3 Notes for program use

Information relating to asynchronous file transfer requests are stored in files with the name 
mf.Request-ID in the directory indicated in the workdir parameter of the ft_open() function 
call. These data are deleted when you terminate requests with the function call ft_reqterm(). 

AIX -WI,-brtl

HP (Itanium 64bit) +DD64

Solaris (SPARC)1

1 A 64-bit library is also supplied on the Solaris (SPARC) 
platform. 

-xarch=v9



openFT V12.0 - C Program Interface  21

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3 Description of the C functions

Representation

The following conventions are used to represent the functions:

stenographic   
for shell commands, function calls, programs and subprograms, as well as for 
constant values in plain text.

italics   
for function names and parameters

In the syntactic representation, the comment “Input“ stands for  input parameter and the 
comment “Output“ for output parameter. These comments are no present at the structures, 
but on the lowest level at the parameters.



ft_cancel C functions

22   openFT V12.0 - C Program Interface

3.1 ft_cancel - Cancel asynchronous request

ft_cancel() cancels asynchronous requests which are in the course of being processed or 
which are waiting to be processed in the queue.

Syntax

#include <ftapi.h>

int ft_cancel(const void *session,          /* input */
                long rid,                     /* input */
                struct ft_err *errorinfo,
                void *options);              /* input */

Parameters

session  
Session number in which the request is to be canceled.

rid  ID of the request to be canceled.

If the request to be canceled was issued in a different session, the current session 
must be assigned the same working directory as the one in which the request was 
issued.
Furthermore, the program in which the asynchronous request is cancelled must be 
running under the same login name as the one in which the request was issued.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the  
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error

-1  Error. The error type is stored in errorinfo.



C functions ft_close

openFT V12.0 - C Program Interface  23

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.2 ft_close - Close session

You can use ft_close() to close a session opened with ft_open(). This function must be the 
last one called in a session. ft_close() releases resources that are no longer required. The 
session number is deleted and no subsequent reference to this session is possible.

Syntax

#include <ftapi.h>

int ft_close(const void *session,          /* input */
               struct ft_err *errorinfo,
               void *options);              /* input */

Parameter

session  
Number of the session which is to be closed.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error

-1  Error. The error type is stored in errorinfo.



ft_credir C functions

24   openFT V12.0 - C Program Interface

3.3 ft_credir - Create directory in remote system

ft_credir() creates a directory in the remote system. 

Directory names must not exceed the length specified in the maxrfnsize field of the ft_prop 
structure, see section “ft_properties - Determine properties of the program interface” on 
page 31.

Syntax

#include <ftapi.h>

int ft_credir(const struct ft_admission *admis,  /* input */
                const struct ft_crepar *par,       /* input */
                struct ft_err *errorinfo,
                void *options);                   /* input */

Parameters

admis  Specifications for the remote system (see section “ft_admission” on page 15).

par  Specifications for the request which you declare with the structure ft_crepar:

struct ft_crepar
{
   int   creparvers;             /* input */
   char  *dn;                    /* input */
   char  *mgmtpasswd;            /* input */
   char  *fud;                   /* input */
   int   fudlen;                 /* input */
};

The fields of the ft_crepar structure have the following meanings:

creparvers  
Version of the data structure.
The value FT_CPARV1 must be entered for creparvers.

dn   Name of the directory that is to be created in the remote system.

Absolute and relative path specifications are permitted. Relative path speci-
fications refer to the user ID defined in the admission profile if the FTAC 
function is used, otherwise to the HOME directory.

mgmtpasswd  
Password for the directory if it is password-protected.



C functions ft_credir

openFT V12.0 - C Program Interface  25

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

fud  Address of a data area for the so-called “Further Details“ which can indicate 
a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud 
parameter is only available if creparvers is set to the value FT_CPARV1 and 
the options parameter is specified when ft_credir is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if creparvers is set to the value 
FT_CPARV1 and the options parameter is specified when ft_credir is called.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is mandatory. The construction of the 
ft_options structure is described in section “Version of the program interface” on 
page 18.

Return value

0  No error. The directory was created.

-1  Error. The directory was not created. 
The error type is stored in errorinfo.



ft_delete C functions

26   openFT V12.0 - C Program Interface

3.4 ft_delete - Delete file or directory in the remote system

You can use ft_delete() to delete a file or a directory in the remote system. File directories 
that are to be deleted must be empty.

In order to delete a file, the filetype parameter in the par structure must contain the value 
FT_FILE.

To delete a directory, the filetype parameter in the par structure must contain the value 
FT_DIRECTORY.

File names and directory names must not exceed the length specified in the maxrfnsize field 
of the ft_prop structure (see section “ft_properties - Determine properties of the program 
interface” on page 31).

Syntax

#include <ftapi.h>

int ft_delete(const struct ft_admission *admis,  /* input */
                const struct ft_delpar *par,       /* input */
                struct ft_err *errorinfo,
                void *options);                   /* input */

Parameter

admis  Transfer admission for the remote system (see section “ft_admission” on page 15).

par  Entries for delete request which you specify with the structure ft_delpar:

struct ft_delpar
{
   int   delparvers;             /* input */
   char  *fn;                    /* input */
   char  *mgmtpasswd;            /* input */
   enum  ft_filedir filetype;    /* input */
   char  *fud;                   /* input */
   int   fudlen;                 /* input */
};



C functions ft_delete

openFT V12.0 - C Program Interface  27

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

The fields of the structure ft_delpar have the following meanings:

delparvers  
Version of the data structure.
delparvers must be supplied the value FT_DPARV1 or FT_DPARV2. 

fn   Name of the file or directory to be deleted in the remote system.

Absolute and relative path names are permissible. Relative path names 
refer to the login name specified in the FT profile, when the FTAC function 
is used, otherwise to the HOME directory, see page 12.

mgmtpasswd  
Password of the file/directory, if protected by a password.

filetype  
specifies what is to be deleted: 

fud  Address of a data area for the so-called “Further Details“ which can indicate 
a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud 
parameter is only available if delparvers is set to the value FT_DPARV2 and 
the options parameter is specified when ft_delete is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if delparvers is set to the value 
FT_DPARV2 and the options parameter is specified when ft_delete is called.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

FT_FILE File (Default value after initialization of the 
parameter list ft_delpar with binary 0)

FT_DIRECTORY Directory (not for FTAM partners)



ft_delete C functions

28   openFT V12.0 - C Program Interface

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error. The file or directory has been deleted.

-1  Error. The file or directory has not been deleted. 
The error type is stored in errorinfo.



C functions ft_open

openFT V12.0 - C Program Interface  29

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.5 ft_open - Open session

You can use ft_open() to open a session. You can only transfer files asynchronously 
(function ft_transfer()) and manage asynchronous file transfer requests (functions 
ft_reqlist(), ft_reqstat(), ft_cancel() and ft_reqterm()) within a session.

ft_open() returns a session number which uniquely identifies the session. This session 
number must be specified for function calls issued in the same session.

You can open several session simultaneously in one program, provided that different 
working directories are assigned.

Syntax

#include <ftapi.h>

void *ft_open(const char *workdir,          /* input */
                struct ft_err *errorinfo,
                void *options);              /* input */

Parameter

workdir  
Name of the working directory assigned to the session.

Files containing management information are stored in this directory. 

Please note that the password used to call the program interface must have autho-
rization to store files in this directory.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.



ft_open C functions

30   openFT V12.0 - C Program Interface

Return value

n   Session ID (n î 0).
This value must be specified for function calls issued in the same session. 

NULL  Error. The error type is stored in errorinfo.



C functions ft_properties

openFT V12.0 - C Program Interface  31

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.6 ft_properties - Determine properties of the program interface

You can use ft_properties() to determine the version of the program interface of openFT, and 
version-specific system values. The values returned by the ft_properties() function allow to 
check whether your program has been created with the same or with a different version of 
the program interface. 

Syntax

#include <ftapi.h>

int ft_properties(struct ft_prop *prop,
                    struct ft_err *errorinfo);

Parameter

prop  
Area in which the version of the openFT program interface used is stored, along with 
the valid system values. For this purpose, the structure ft_prop is used:

struct ft_prop
{
   int   ftpropvers;        /* input */
   int   ftvers;            /* output */
   long  optfunct;          /* output */
   int   maxlfnsize;        /* output */
   int   maxrfnsize;        /* output */
   int   maxsyssize;        /* output */
   int   maxadmissize;      /* output */
   int   maxaccsize;        /* output */
   int   maxpwdsize;        /* output */
   int   maxfpwdsize;       /* output */
   int   maxrecord;         /* output */
   int   maxacntsize;       /* output */
   int   maxlegalqsize;     /* output */
   int   maxcpwdsize;       /* output */
   int   maxlprocsize;      /* output */
   int   maxrprocsize;      /* output */

int maxcmdlen; /* output */
};



ft_properties C functions

32   openFT V12.0 - C Program Interface

The fields of the structure ft_prop have the following meanings:

ftpropvers  
Version of the data structure. 
ftpropvers must be supplied the value FT_PROPV1 or FT_PROPV2. 

ftvers  version of openFT
(e.g. for Version 8.1: 810, for Version 10.0: 1000, for Version 12.0: 1200)

optfunct  
(reserved for later use.)

maxlfnsize  
maximum length for the local file name 

maxrfnsize  
maximum length for the file name in the remote system

maxsyssize  
maximum length for the name of the remote system

maxadmissize  
maximum length for the login name or transfer admission in the remote 
system

maxaccsize  
maximum length for the account number in the remote system

maxpwdsize  
maximum length for the password in the remote system

maxfpwdsize  
maximum length for the file password in the remote system

maxrecord  
maximum record length

maxacntsize  
maximum length for the account at the FTAM partner

maxlegalqsize  
maximum length for the copyright

maxcpwdsize  
maximum length for the password for creating a file in the remote  system

maxlprocsize  
maximum overall length for local follow-up processing

maxrprocsize  
maximum overall length for remote follow-up processing



C functions ft_properties

openFT V12.0 - C Program Interface  33

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

maxcmdlen  
Maximum length of the command that is to be executed in the remote sys-
tem with ft_xcopen().
The maxcmdlen parameter is only available if ftpropvers is set to the value 
FT_PROPV2.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

Return value

0  No error

-1  Error. The error type is stored in errorinfo.



ft_reqlist C functions

34   openFT V12.0 - C Program Interface

3.7 ft_reqlist - Determine request not yet terminated

ft_reqlist() determines the request IDs of requests for asynchronous file transfer which have 
not yet been terminated with the function ft_reqterm().
IF the list parameter has the value NULL or if the listlen parameter has the value 0, you only 
receive the number of requests that have not yet been completed when you use ft_reqterm().

The request from all sessions assigned with the function ft_open to the same working 
directory that applies as the current session are listed.

Syntax

#include <ftapi.h>

int ft_reqlist(const void *session,          /* input */
                 long *list, 
                 int listlen,                  /* input */
                 struct ft_err *errorinfo,
                 void *options);              /* input */

Parameter

session  
Session ID of the session for which non-terminated asynchronous file transfer 
request is to be determined.

list  Area in which the request IDs of non-terminated requests for asynchronous file 
transfer are stored. The length of this area (number of entries) must be stored in 
listlen.

If list is NULL, only the number (not the request IDs) of non-terminated requests is 
determined.

listlen  
Number of entries in list. 

If listlen is 0, only the number (not the request IDs) of non-terminated requests is 
determined.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.



C functions ft_reqlist

openFT V12.0 - C Program Interface  35

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the  
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

n   Number of entries found (n Ï 0).
If n is greater than listlen, the first listlen entries are stored in list. 

-1  Error. The error type is stored in errorinfo.



ft_reqstat C functions

36   openFT V12.0 - C Program Interface

3.8 ft_reqstat - Determine the status of a request

You can use ft_reqstat() to determine the status of an asynchronous file transfer request.

Syntax

#include <ftapi.h>

int ft_reqstat(const void *session,          /* input */
                 long rid,                     /* input */
                 struct ft_status *stat,
                 struct ft_err *errorinfo,
                 void *options);              /* input */

Parameter

session  
Session ID of the session in which the status of the transfer request is to be deter-
mined.

rid  ID of the request for which the status is to be determined.

If the request was issued in a different session, the current session must be 
assigned the same working directory as the one in which the request was issued.

stat  Area in which the status information is written. The structure ft_status is used:

#define STAT_FUD_LEN    65
#define STAT_FN_LEN    128

struct ft_status
{
   int   ftstatvers;         /* input */
   enum  ft_stat status;     /* output */
   char  fn[STAT_FN_         /* output */
   long  tid;                /* output */
   int   msg;                /* output */
   char  fud[STAT_FUD_LEN];  /* output */
};

ftstatvers  
Version of the data structure. 
ftstatvers must be supplied the value FT_STATV1 or FT_STATV2.



C functions ft_reqstat

openFT V12.0 - C Program Interface  37

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

status  
Status of the request:

FT_STATW  
The request is waiting for execution.

FT_STATR  
The request is being run.

FT_STATA  
The request was aborted.

FT_STATT  
The request is terminated.

fn  local file name terminating with ’\0’. If the file name is longer than 128 
characters, it is truncated.

tid  Transfer ID

msg  Message number of aborted or terminated requests (see the online help). 

The ft_apivers field in the ft_options structure can be used to define the 
message number scheme that is to be used.

fud  “Further Details“ terminated with '\0' which can indicate a more detailed 
cause of error if errors occur. 
The fud parameter is only available if ftstatvers is set to the value FT_STATV2 
and the options parameter is specified when ft_reqstat is called.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error

-1  Error. The error type is stored in errorinfo.



ft_reqterm C functions

38   openFT V12.0 - C Program Interface

3.9 ft_reqterm - Terminate request

You can use tft_reqterm() to terminate an asynchronous file transfer request. This is possible 
only if the request has the status  „aborted“ or „completed“ . ft_reqterm() deletes the 
associated file containing the management information. Then the request ID is deleted and 
can no longer be addressed.

Syntax

#include <ftapi.h>

int ft_reqterm(const void *session,          /* input */
                 long rid,                     /* input */
                 struct ft_err *errorinfo,
                 void *options);              /* input */

Parameter

session  
Session ID of the session in which the transfer request is to be terminated.

rid  ID of the request to be terminated.

If the request was issued in a different session, the current session must be 
assigned the same working directory as the one in which the request was issued.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error

-1  Error. The error type is stored in errorinfo.



C functions ft_sdopen

openFT V12.0 - C Program Interface  39

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.10 ft_sdopen - Start identification of attributes of all files in a 
directory

ft_sdopen()  starts the identification of the attributes of all the files in a directory in the remote 
system.

Directory names must not exceed the length specified in the field maxrfnsize of the ft_prop 
structure (see section “ft_properties - Determine properties of the program interface” on 
page 31).

Syntax

#include <ftapi.h>

void *ft_sdopen(const struct ft_admission *admis, /* input */
                struct ft_shwpar *par, 
                struct ft_err *errorinfo
                void *options); /* input */

Parameters

admis   Specifications for the remote system (see section “ft_admission” on page 15).

par   Specifications for the request which you declare in the structure ft_shwpar:

struct ft_shwpar
{
   int  shwparvers;      /* input */
   char *fn;             /* input */
   char *mgmtpasswd;     /* input */
   char *fud;            /* input */
   int  fudlen;          /* input */
};

The fields of the ft_shwpar structure have the following meaning:

shwparvers  
Version of the data structure.
The value FT_SPARV1 or FT_SPARV2 must be entered for shwparvers.

fn   Name of the directory containing the files whose attributes are to be deter-
mined.

Absolute and relative path specifications are permitted. Relative path spec-
ifications refer to the user ID defined in the admission profile if the FTAC 
function is used, otherwise to the HOME directory, see page 12.



ft_sdopen C functions

40   openFT V12.0 - C Program Interface

mgmtpasswd  
Password for the directory if it is password-protected.

fud  Address of a data area for the so-called "Further Details" which can indicate 
a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud pa-
rameter is only available if shwparvers is set to the value FT_SPARV2 and the 
options parameter is specified when ft_showdir is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if shwparvers is set to the value 
FT_SPARV2 and the options parameter is specified when ft_showdir is called.

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17). The specification of this parameter is optional.

If you do not require any more precise error information then you can specify the 
value NULL for errorinfo.

options   
The specification of the options parameter is mandatory. The construction of the 
ft_options structure is described in section “Version of the program interface” on 
page 18.

Return value

id   ID of the request. This must be specified for both ft_sdinfo() and ft_sdclose().

NULL   Error. The error type is stored in errorinfo. 
If an error occurs then it is not necessary to call ft_sdclose().



C functions ft_sdinfo

openFT V12.0 - C Program Interface  41

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.11 ft_sdinfo - Read out file attributes

ft_sdinfo() reads the file attributes of a directory in the remote system that were determined 
using ft_sdopen(). You can call ft_sdinfo more than once. On each call, the next data that has 
not yet been read is written to the buffer buf. If all the data has been read, the return value 
is 0.

Syntax

#include <ftapi.h>

int ft_sdinfo(void *id, /* input */
              struct ft_fileinfo *buf,
              int bufsize, /* input */
              struct ft_err *errorinfo);

Parameters

id   ID of the request (return value from ft_sdopen)

buf   Area in which the file attributes are written. This area comprises elements with the 
structure ft_fileinfo:

#define ACC_LEN       65
#define INFO_FN_LEN  257
#define LQ_LEN        81
#define USER_LEN      68

struct ft_fileinfo
{
   int   ftshowivers;                  /* input */
   char  fn[INFO_FN_LEN];              /* output */
   enum  ft_ftype filetype;            /* output */
   enum  ft_charset charset;           /* output */
   enum  ft_rform recordform;          /* output */
   long  recsize;                      /* output */
   enum  ft_available availability;    /* output */
   int   access;                      /* output */
   char  accout[ACC_LEN];              /* output */
   long  size;                         /* output */
   long  maxsize;                      /* output */
   char  legalqual[LQ_LEN];            /* output */
   char  cre_user[USER_LEN];           /* output */
   long  cre_date;                     /* output */
   char  mod_user[USER_LEN];           /* output */
   long  mod_date;                     /* output */
   char  rea_user[USER_LEN];           /* output */
   long  rea_date;                     /* output */



ft_sdinfo C functions

42   openFT V12.0 - C Program Interface

   char  atm_user[USER_LEN];           /* output */
   long  atm_date;                     /* output */
   long  long fsize;                   /* output */
   long  long fmaxsize;                /* output */
};

The fields of the ft_fileinfo structure have the following meaning:

ftshowivers  
Version of the data structure.
ftshowivers must have the value FT_SHOWIV2. ftshowivers need only be set in 
the first passed data structure.

fn   File name or directory name

filetype   
File type: 

FT_TYPEUNKN  
Unknown file type

FT_BIN  
Binary file

FT_DIR  
Directory

FT_TXT  
Text file

charset   
Character set (only for text files): 

FT_NOSET   
Unknown character set

FT_VISIBLE   
The file can contain characters from the ISO646 G0 set.

FT_IA5   
The file can contain characters from the ISO646 C0 set and G0 set.

FT_GRAPHIC   
The file can contain characters from the ISO646 G0 set or from the 
ISO8859-1 G0 set and the ISO8859-1 G1 set.

FT_GENERAL   
The file can contain characters from the ISO646 C0 set, the ISO646 
or ISO8859-1 G0 set and the ISO8859-1 G1 set.



C functions ft_sdinfo

openFT V12.0 - C Program Interface  43

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

recordform   
Record format: 

FT_NOFORM   
Unknown record format

FT_VARIABLE   
Variable length records

FT_FIXED   
Fixed length records

FT_UNDEF   
Undefined record length

recsize   
Maximum record length or 0 if the maximum record length is unknown.

availability   
Availability of the file: 

FT_NOAVAIL   
The availability is not defined.

FT_AVAILIMM   
The file is available immediately.

FT_AVAILNIMM   
The file is not available immediately.

access   
Access rights. The right is present if the bit is set.
The following bits are defined: 

FT_ACCR   
The file may be read.

FT_ACCI   
File units may be added to the file.

FT_ACCP   
The file may be overwritten.

FT_ACCX   
The file may be extended, i.e. data can be added to the file.

FT_ACCE   
File units may be deleted from the file.

FT_ACCA   
File attributes may be read.

FT_ACCC   
File attributes may be modified.

FT_ACCD   
The file may be deleted.



ft_sdinfo C functions

44   openFT V12.0 - C Program Interface

account   
Account number used to charge costs in the remote system

size   Current file size in bytes, or -1 if file size unknown. In systems in which vari-
ables of type long have a size of 32 bits, the value for the file size is trun-
cated if it no longer fits in the field. The complete value for the file size can 
be found in the fsize field.

maxsize   
Permissible file size in bytes, or -1 if file size unknown. In systems in which 
variables of type long have a size of 32 bits, the value for the file size is trun-
cated if it no longer fits in the field. The complete value for the file size can 
be found in the fmaxsize field.

legalqual   
Legal qualification

cre_user   
User who created the file

cre_date   
Time at which file was created, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

mod_user   
User who last modified the file content

mod_date   
Time at which the file contents were last modified, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

rea_user   
User who read the file last

rea_date   
Time at which file was last read, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

atm_user   
User who last modified the file attributes

atm_date   
Time at which file attributes were last modified or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

fsize   Current file size in bytes, or -1 if file size unknown. The fsize parameter is 
only available if ftshowivers is set to the value FT_SHOWIV2 and the options 
parameter is specified when ft_showdir is called.



C functions ft_sdinfo

openFT V12.0 - C Program Interface  45

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

fmaxsize   
Permissible file size in bytes, or -1 if file size unknown. The fmaxsize param-
eter is only available if ftshowivers is set to the value FT_SHOWIV2 and the 
options parameter is specified when ft_showdir is called.

bufsize   
Size of buf, i.e. maximum number of elements with the structure ft_fileinfo, that can 
fit in buf. 

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17). The specification of this parameter is optional.
If you do not require any more precise error information then you can specify the 
value NULL for errorinfo.

Return value

n   Number of elements written to the buffer buf.

0   No further data is available.

-1   Error. The error type is stored in errorinfo.



ft_sdclose C functions

46   openFT V12.0 - C Program Interface

3.12 ft_sdclose - End identification of file attributes

ft_sdclose() terminates the read-out of the file attributes whose identification was initiated 
with ft_sdopen(). This function must be called as the final operation following a successful 
call of ft_sdopen(). ft_sdclose() releases resources that are no longer required. You cannot 
subsequently reference this ID again.

Syntax

#include <ftapi.h>

int ft_sdclose(void *id, /* input/
struct ft_err *errorinfo);

Parameters

id   ID of the request (return value from ft_sdopen)

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).  The specification of this parameter is optional.
If you do not require any more precise error information then you can specify the 
value NULL for errorinfo.

Return value

0   No error

-1   Error. The error type is stored in errorinfo.



C functions ft_show

openFT V12.0 - C Program Interface  47

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.13 ft_show - Determine attributes of a file or directory

You can use ft_show() to determine the attributes of an individual file or directory in the 
remote system. Use the function ft_showdir() to determine the attributes of several files.

File names and directory names must not exceed the length specified in the maxrfnsize field 
of the ft_prop structure (see section “ft_properties - Determine properties of the program 
interface” on page 31).

Syntax

#include <ftapi.h>

int ft_show(const struct ft_admission *admis,    /* input */
              const struct ft_shwpar *par,         /* input */
              struct ft_fileinfo *info,
              struct ft_err *errorinfo,
              void *options);                     /* input */

Parameter

admis  Transfer admission for the remote system (see section “ft_admission” on page 15).

par  Entries for the request which you specify with the structure ft_shwpar:

struct ft_shwpar
{
   int  shwparvers;      /* input */
   char *fn;             /* input */
   char *mgmtpasswd;     /* input */
   char *fud;            /* input */
   int  fudlen;          /* input */
};

The fields of the structure ft_shwpar have the following meanings:

shwparvers  
Version of the data structure.
shwparvers must be supplied the value FT_SPARV1 or FT_SPARV2. 

fn   Name of the file or directory for which the attributes are to be determined.

Absolute and relative path names are permissible. Relative path names 
refer to the login name specified in the FT profile, when the FTAC function 
is used, otherwise to the HOME directory, see page 12.

mgmtpasswd  
Password of the file or directory if protected by a password.



ft_show C functions

48   openFT V12.0 - C Program Interface

fud  Address of a data area for the so-called “Further Details“ which can indicate 
a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud 
parameter is only available if shwparvers is set to the value FT_SPARV2 and 
the options parameter is specified when ft_show is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if shwparvers is set to the value 
FT_SPARV2 and the options parameter is specified when ft_show is called.

info  Area in which the file attributes are written. The structure ft_fileinfo is used:

#define ACC_LEN       65
#define INFO_FN_LEN  257
#define LQ_LEN        81
#define USER_LEN      68

struct ft_fileinfo
{
   int   ftshowivers;                  /* input */
   char  fn[INFO_FN_LEN];              /* output */
   enum  ft_ftype filetype;            /* output */
   enum  ft_charset charset;           /* output */
   enum  ft_rform recordform;          /* output */
   long  recsize;                      /* output */
   enum  ft_available availability;    /* output */
   int   access;                      /* output */
   char  accout[ACC_LEN];              /* output */
   long  size;                         /* output */
   long  maxsize;                      /* output */
   char  legalqual[LQ_LEN];            /* output */
   char  cre_user[USER_LEN];           /* output */
   long  cre_date;                     /* output */
   char  mod_user[USER_LEN];           /* output */
   long  mod_date;                     /* output */
   char  rea_user[USER_LEN];           /* output */
   long  rea_date;                     /* output */
   char  atm_user[USER_LEN];           /* output */
   long  atm_date;                     /* output */
   long  long fsize;                   /* output */
   long  long fmaxsize;                /* output */
};



C functions ft_show

openFT V12.0 - C Program Interface  49

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

The fields of the structure ft_fileinfo have the following meanings:

ftshowivers  
Version of the data structure.
ftshowivers must be supplied the value FT_SHOWIV1 or FT_SHOWIV2. 

fn   file name or directory name

filetype   
file type:

FT_TYPEUNKN  
File type unknown

FT_BIN  
Binary file

FT_DIR  
Directory

FT_TXT  
Text file

charset   
Character set (only for text files):

FT_NOSET   
Character set unknown

FT_VISIBLE   
The file may contain characters from the G0 set of ISO646.

FT_IA5   
The file may contain characters from the C0 set and the G0 set of 
ISO646.

FT_GRAPHIC   
The file may contain characters from the ISO646 or from the G0 set 
of ISO8859-1 and the G1-Set of ISO8859-1.

FT_GENERAL   
The file may contain characters from the C0 set of ISO646, from the 
G0 set of ISO646 or ISO8859-1 and from the G1 set of ISO8859-1.

recordform   
Record format:

FT_NOFORM  
Record format unknown 

FT_VARIABLE  
variable-length records

FT_FIXED  
fixed-length records

FT_UNDEF  
undefined record length



ft_show C functions

50   openFT V12.0 - C Program Interface

recsize   
maximum record length or 0, if record length unknown

availability   
Availability of file:

FT_NOAVAIL  
The availability is not specified.

FT_AVAILIMM  
The file is immediately available.

FT_AVAILNIMM  
The file is not immediately available.

access   
Access rights. The right is available if the bit is set.
The following bits are defined:

FT_ACCR   
The file may be read.

FT_ACCI  
ile units may be added to the file.

FT_ACCP   
The file may be overwritten.

FT_ACCX   
The file may be extended, i.e. data can be added to the file.

FT_ACCE   
File units may be deleted from the file.

FT_ACCA   
File attributes may be read.

FT_ACCC   
File attributes may be modified.

FT_ACCD   
The file may be deleted.

account   
account number used to charge costs in the remote system

size   
current file size in bytes, or -1 if file size unknown. In systems in which 
variables of type long have a size of 32 bits, the value for the file size is 
truncated if it no longer fits in the field. The complete value for the file size 
can be found in the fsize field.



C functions ft_show

openFT V12.0 - C Program Interface  51

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

maxsize   
permissible file size, or -1 if file size unknown. In systems in which variables 
of type long have a size of 32 bits, the value for the file size is truncated if 
it no longer fits in the field. The complete value for the file size can be found 
in the fmaxsize field.

legalqual   
legal qualification

cre_user   
user who created the file

cre_date   
time at which file was created, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

mod_user   
user who last modified the file contents

mod_date   
time at which the file contents were last modified, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

rea_user   
user who read the file last

rea_date   
time at which the file was last read, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

atm_user   
User who last modified the file attributes

atm_date   
time at which the file attributes were last modified, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

fsize   
Current file size in bytes or -1 if the file size is unknown. The fsize parameter 
is only available if ftshowivers is set to the value FT_SHOWIV2 and the options 
parameter is specified when ft_show is called.

fmaxsize   
Current file size in bytes or -1 if the permitted file size is unknown. The 
fmaxsize parameter is only available if ftshowivers is set to the value 
FT_SHOWIV2 and the options parameter is specified when ft_show is called.



ft_show C functions

52   openFT V12.0 - C Program Interface

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

0  No error.

-1  Error. No information supplied about the file.
The error type is stored in errorinfo.



C functions ft_showdir

openFT V12.0 - C Program Interface  53

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.14 ft_showdir - Determine the attributes of all files in a directory

You can use ft_showdir() to determine the attributes of the files in a directory in the remote 
system. Each call determines as many attribute records as you have specified in the bufsize 
parameter. If the volume of data in the directory on the remote system is greater then you 
have to call ft_showdir() more than once. Please note that you cannot select files within a 
directory.

Use the function ft_show() to determine the attributes of an individual file/directory.

Directory names must not exceed the length specified in the maxrfnsize field of the ft_prop 
structure (see section “ft_properties - Determine properties of the program interface” on 
page 31).

Syntax

#include <ftapi.h>

long ft_showdir(const struct ft_admission *admis,/* input */
                  const struct ft_shwpar *par,     /* input */
                  struct ft_fileinfo *buf,
                  int bufsize,                     /* input */
                  struct ft_err *errorinfo,
                  void *options);                 /* input */

Parameter

admis  
Transfer admission of the remote system (see section “ft_admission” on page 15).

par  
Parameters for the request, which you specify with the structure ft_shwpar:

struct ft_shwpar
{
   int  shwparvers;      /* input */
   char *fn;             /* input */
   char *mgmtpasswd;     /* input */
   char *fud;            /* input */
   int  fudlen;          /* input */
};



ft_showdir C functions

54   openFT V12.0 - C Program Interface

The fields of the structure ft_shwpar have the following meanings:

shwparvers  
Version of the data structure.
shwparvers must be supplied the value FT_SPARV1 or FT_SPARV2. 

fn   Name of the directory for which the attributes are to be determined.

Absolute and relative path names are permissible. Relative path names 
refer to the login name specified in the FT profile, when the FTAC function 
is used, otherwise to the HOME directory, see page 12.

mgmtpasswd  
Password of the directory if it is password-protected.

fud  Address of a data area for the so-called “Further Details“ which can indicate 
a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud 
parameter is only available if shwparvers is set to the value FT_SPARV2 and 
the options parameter is specified when ft_showdir is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if shwparvers is set to the value 
FT_SPARV2 and the options parameter is specified when ft_showdir is called.

buf  
Area in which the file attributes are written. The area comprises elements with the 
structure ft_fileinfo:

#define ACC_LEN       65
#define INFO_FN_LEN  257
#define LQ_LEN        81
#define USER_LEN      68

struct ft_fileinfo
{
   int   ftshowivers;                  /* input  */
   char  fn[INFO_FN_LEN];              /* output */
   enum  ft_ftype filetype;            /* output */
   enum  ft_charset charset;           /* output */
   enum  ft_rform recordform;          /* output */
   long  recsize;                      /* output */
   enum  ft_available availability;    /* output */
   int   access;                      /* output */
   char  accout[ACC_LEN];              /* output */
   long  size;                         /* output */
   long  maxsize;                      /* output */
   char  legalqual[LQ_LEN];            /* output */
   char  cre_user[USER_LEN];           /* output */



C functions ft_showdir

openFT V12.0 - C Program Interface  55

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

   long  cre_date;                     /* output */
   char  mod_user[USER_LEN];           /* output */
   long  mod_date;                     /* output */
   char  rea_user[USER_LEN];           /* output */
   long  rea_date;                     /* output */
   char  atm_user[USER_LEN];           /* output */
   long  atm_date;                     /* output */
   long  long fsize;                   /* output */
   long  long fmaxsize;                /* output */
};

The fields of the structure ft_fileinfo have the following meanings:

ftshowivers  
Version of the data structure.
ftshowivers must be supplied the value FT_SHOWIV1 or FT_SHOWIV2. ftsho-
wivers need only be set in the first passed data structure.

fn   file name or directory name

filetype   
file type:

FT_TYPEUNKN  
File type unknown

FT_BIN  
Binary file

FT_DIR  
Directory

FT_TXT  
Text file

charset   
Character set (only for text files):

FT_NOSET   
Unknown character set

FT_VISIBLE   
The file can contain characters from the ISO646 G0 set.

FT_IA5   
The file can contain characters from the ISO646 C0 set and G0 set.

FT_GRAPHIC   
The file can contain characters from the ISO646 G0 set or from the 
ISO8859-1 G0 set and the ISO8859-1 G1 set.

FT_GENERAL   
The file can contain characters from the ISO646 C0 set, the ISO646 
or ISO8859-1 G0 set and the ISO8859-1 G1 set.



ft_showdir C functions

56   openFT V12.0 - C Program Interface

recordform   
Record format: 

FT_NOFORM   
Unknown record format

FT_VARIABLE   
Variable length records

FT_FIXED   
Fixed length records

FT_UNDEF   
Undefined record length

recsize   
Maximum record length or 0 if the maximum record length is unknown.

availability   
Availability of the file: 

FT_NOAVAIL   
The availability is not defined.

FT_AVAILIMM   
The file is available immediately.

FT_AVAILNIMM   
The file is not available immediately.

access   
Access rights. The right is present if the bit is set. The following bits are de-
fined: 

FT_ACCR   
The file may be read.

FT_ACCI   
File units may be added to the file.

FT_ACCP   
The file may be overwritten.

FT_ACCX   
The file may be extended, i.e. data can be added to the file.

FT_ACCE   
File units may be deleted from the file.

FT_ACCA   
File attributes may be read.

FT_ACCC   
File attributes may be modified.

FT_ACCD   
The file may be deleted.



C functions ft_showdir

openFT V12.0 - C Program Interface  57

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

account   
account number used to charge costs in the remote system

size   
current file size in bytes, or -1 if file size unknown. In systems in which 
variables of type long have a size of 32 bits, the value for the file size is 
truncated if it no longer fits in the field. The complete value for the file size 
can be found in the fsize field.

maxsize   
permissible file size, or -1 if file size unknown. In systems in which variables 
of type long have a size of 32 bits, the value for the file size is truncated if 
it no longer fits in the field. The complete value for the file size can be found 
in the fmaxsize field.

legalqual   
legal qualification

cre_user   
user who created the file

cre_date   
time at which file was created, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

mod_user   
user who last modified the file contents

mod_date   
time at which the file contents were last modified, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

rea_user   
user who read the file last

rea_date   
time at which the file was last read, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

atm_user   
file user who last modified the file attributes

atm_date   
time at which the file attributes were last modified, or 0 if time unknown. 
The time is specified in internal format (seconds since 1.1.1970 00:00:00).

fsize   
Current file size in bytes or -1 if the file size is unknown. The fsize parameter 
is only available if ftshowivers is set to the value FT_SHOWIV2 and the options 
parameter is specified when ft_showdir is called.



ft_showdir C functions

58   openFT V12.0 - C Program Interface

fmaxsize   
Current file size in bytes or -1 if the permitted file size is unknown. The 
fmaxsize parameter is only available if ftshowivers is set to the value 
FT_SHOWIV2 and the options parameter is specified when ft_showdir is 
called.

bufsize  
Size of buf, i.e. maximum number of elements with the structure  ft_fileinfo that will 
fit in buf. 

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the  
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

n   Number of files found in the remote directory (n Ï 0).
If n is greater than bufsize, the first bufsize entries are stored in buf. 
If buf has the value NULL, the function call behaves as though bufsize had the value 
0.

-1  Error. No information was returned for the directory.
The error type is stored in errorinfo.



C functions ft_transfer

openFT V12.0 - C Program Interface  59

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.15 ft_transfer - Transfer file

ft_transfer() sends a file to the remote system or fetches a file from the remote system. 

In order to transfer files synchronously, the parameter synchron must contain the value 
FT_SYNC.

In order to transfer files asynchronously, the parameter synchron must contain the value 
FT_ASYNC.
For asynchronous file transfer, the function ft_transfer() returns a request ID which you must 
specify when you refer to this request.

File names must not exceed the length specified in the maxlfnsize or maxrfnsize fields of the 
ft_prop structure (see section “ft_properties - Determine properties of the program interface” 
on page 31.

Syntax

#include <ftapi.h>

long ft_transfer(const void *session,            /* input */
                   const struct ft_admission *admis,
                                                   /* input */
                   const struct ft_transpar *par,  /* input */
                   struct ft_err *errorinfo,
                   void *options);                /* input */

Parameter

session  
For asynchronous transfer:
Number of the session in which the transfer request is to be performed.

For synchronous transfer:
session must have the value NULL.

admis  
Transfer admission for the remote system (see section “ft_admission” on page 15).



ft_transfer C functions

60   openFT V12.0 - C Program Interface

par  Entries for the request which you specify with the structure ft_transpar:

struct ft_transpar
{
   int    ftparvers;                  /* input */
   enum   ft_direction direction;     /* input */
   enum   ft_sync synchron;           /* input */
   char   *locfn;                     /* input */
   char   *remfn;                     /* input */
   enum   ft_filetype filetype;       /* input */
   enum   ft_writemode writemode;     /* input */
   enum   ft_compress compress;       /* input */
   char   *filepasswd;                /* input */
   char   *locsuccproc;               /* input */
   char   *locfailproc;               /* input */
   char   *remsuccproc;               /* input */
   char   *remfailproc;               /* input */
   long   maxrecsize;                 /* input */
   long   cantime;                    /* input */
   long   starttime;                  /* input */
   enum   ft_prio priority;           /* input */
   enum   ft_transpar transparent;    /* input */
   enum   ft_encrypt encryption;      /* input */
   struct ft_transftam *ftamext;      /* input */
   char   *locccsn;                   /* input */
   char   *remccsn;                   /* input */
   enum   ft_tabexp tabexp;           /* input */
   char   *fud;                       /* input */
   int    fudlen;                     /* input */
   enum   ft_rform rform;             /* input */
};

Note

Default values apply to certain parameters (see below) if you initialize this 
parameter list with the entries for the file transfer request with binary 0.

To initialize the parameter list with binary 0, use the command:
memset (transpar, '\0', sizeof(struct ft_transpar)); 



C functions ft_transfer

openFT V12.0 - C Program Interface  61

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

The fields of the structure ft_transpar have the following meanings:

ftparvers  
Version of the data structure.
ftparvers must be supplied the value FT_TPARV1 or FT_TPARV2. 

direction   
Direction of file transfer: 

FT_SEND  
Send file to the remote system

FT_RECEIVE  
Fetch file from remote system. You cannot use wildcards when 
fetching a file.

synchron   
specifies how the file is to be transferred:

FT_ASYNC  
asynchronous transfer (default value after initialization with binary 
0)

FT_SYNC  
synchronous transfer

locfn  
File name in local system or preprocessing/postprocessing command.

In the case of local file names, it is now also possible to specify a prepro-
cessing (when sending data) or postprocessing (when receiving data) 
command.

Absolute and relative path names are permissible. Relative path names 
refer to the directory in which the program is started.

remfn  
File name in the remote system or preprocessing/postprocessing 
command.

In the case of remote file names, it is now also possible to specify a prepro-
cessing (when sending data) or postprocessing (when receiving data) 
command.

Absolute and relative path names are permissible. Relative path names 
refer to the login name specified in the FT profile when the FTAC function is 
used, otherwise to the HOME directory, see page 12. As in the command 
ncopy, a preprocessing command may be specified next to it instead of a file 
name by using a preceding pipe (|) character (see also the command 
description of ncopy).



ft_transfer C functions

62   openFT V12.0 - C Program Interface

filetype   
File type in local system:

FT_NOTYPE  
No specification of file type. The default values apply (see openFT 
User Manual, ft command). (default value after installation with 
binary 0)

FT_TEXT  
The file contains text with variable record lengths. Records are 
delimited in Windows by CRLF (X’0D0A’) and in Unix systems by 
the linefeed character \n.

FT_USER  
The file contains binary data with variable record length structured 
by the user. Each record starts with two bytes which indicate the 
length of the record.

FT_BINARY  
The file contains an unstructured sequence of binary data.

writemode   
specifies whether a new destination file is to be created or extended:

FT_NOMODE  
No syntax is specified. The default values apply (see openFT User 
Manual, ft command). (default value after initialization with binary 0)

FT_OVERWR  
An existing destination file is overwritten. If the destination does not 
already exist, a new one is created.

FT_EXTEND  
The file transferred is added at the end of the existing destination 
file.If the destination does not already exist, a new one is created.

FT_NEW  
A new destination file is created and written. IF the destination file 
already exists, the request is rejected.



C functions ft_transfer

openFT V12.0 - C Program Interface  63

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

compress   
specifies whether data compression is to be used in transfer:

FT_NOCOMPR  
No compression (default value after initialization with binary 0)

FT_COMPRESS  
Several identical characters in succession are transferred in 
compressed form (byte compression).

FT_COMPRESSZIP  
Zip compression. In the case of connections to partners which do 
not support this compression, operation automatically switches to 
byte compression or no compression. Zip compression is only 
available if ftparvers is set to the value FT_TPARV2 and the options 
parameter is specified when ft_transfer is called.

filepasswd  
Password of the file in the remote system, if protected by password.

locsuccproc  
Command executed in the local system following successful asynchronous 
file transfer.

locsuccproc must not be specified for synchronous file transfer requests.

Variables can be specified within a command or sequence of commands for 
follow-up processing. Further information is given in section “Commands for 
the follow-up processing” on page 64.

locfailproc  
command executed in the local system when an asynchronous file transfer 
is aborted due an error.

With synchronous file transfer request, locfailproc must not be specified.

Variables can be specified within a command or sequence of commands for 
follow-up processing. Further information is given below in section 
“Commands for the follow-up processing” on page 64.



ft_transfer C functions

64   openFT V12.0 - C Program Interface

remsuccproc  
Command executed in the remote system following successful 
asynchronous file transfer. 

Several partner systems(e.g. openFT for BS2000/OSD) even support 
sequence of commands. Following successful transfer, these commands 
are executed in the remote system under the specified login.

Variables can be specified within a command or sequence of commands for 
follow-up processing. Further information is given below in section 
“Commands for the follow-up processing” on page 64".

remfailproc  
Command executed in the remote system following unsuccessful 
asynchronous file transfer.

Several partner systems(e.g. openFT for BS2000/OSD) even support 
sequence of commands. These commands are executed in the remote 
system under the specified login when file transfer that has been started is 
aborted due to an error.

Variables can be specified within a command or sequence of commands for 
follow-up processing. Further information is given below in section 
“Commands for the follow-up processing” on page 64.

Commands for the follow-up processing 

– The total number of entries for local follow-up processing, i.e. for locsuc-
cproc and locfailproc, may not exceed 1000 characters.

– The total number of entries for remote follow-up processing, i.e. for 
remssuccproc and remfailproc, may not exceed 1000 characters.

– When starting follow-up processing in the local system, the variables 
are substituted with the values supplied by the ft_transfer() function.

The variable %FILENAME is provided for the file name, %PARTNER for 
the partner name, %RESULT for the result of the request and %RID for 
the request ID. 

%RID is only allowed for local follow-up processing.

After follow-up processing is started, the variables in the particular 
system are replaced and the commands in the follow-up processing are 
executed. The following variable substitutions are permitted:

– %FILENAME
by the file name as specified for the corresponding system in the 
request



C functions ft_transfer

openFT V12.0 - C Program Interface  65

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

– %PARTNER
for local follow-up processing the partner name specified in the call 
is used.
For follow-up processing in the remote system,  %PARTNER is 
substituted by the name of the initiator system (with the name as 
known in the partner system).

– %RESULT
by the message number of the request as specified for the relevant 
system. Thus, for example, if a request is executed successfully, 
%RESULT is assigned the value 0 (if the value NULL is specified for 
options then the messages output at the program interface are 
compatible with those of the program interface in openFT < V10).

– %RID
by the request ID of the request in the local system (only local follow-
up processing)

If the partners partner is an openFT for BS2000/OSD system, you may 
also use the variables %ELEMNAME, %ELEMVERS and 
%ELEMTYPE.

– During follow-up processing in the local Windows system, only the 
system environment variables are available.

– Follow-up processing in the local Unix system and follow-up processing 
in a remote Unix does not involve execution of the sequence of 
commands stored in the .profile file. Only the default values of the 
$HOME, $LOGNAME, $PATH, and $USER shell variables are 
available, as well as the values of the $LANG and $TZ variables set by 
root.

– When specifying BS2000 commands, remember to insert a slash (/) at 
the beginning of the command

– With requests for FTAM and FTP partners, only the “local follow-up 
processing” function is available. If FTAC is used in the remote system, 
this restriction can be avoided by creating an FT profile in the remote 
system and defining follow-up processing for it.



ft_transfer C functions

66   openFT V12.0 - C Program Interface

maxrecsize  
maximum permissible record length for files of type „text file“ and „structured 
binary file“. Thus, it is also possible to transfer and store records which are 
larger than the default value. However, you must observe that not all record 
lengths can be preprocessed in every partner system.

The maximum value must not exceed the length specified in the field 
maxrecord of the ft_prop structure (see  section “ft_properties - Determine 
properties of the program interface” on page 31).

If you have selected the file type „binary“, maxrecsize id the value for all 
records in the send file.

With FTAM partners, specification of the maximum record length is only 
effective when the file type FT_TEXT, FT_USER or FT_BINARY is specified for 
filetype.

cantime  
Time at which a file transfer request is to be canceled. This time must be 
specified in internal format (seconds since 1.1.1970 00:00:00).

The value 0 means that no time cancellation is performed.

With synchronous requests, cantime is ignored.

starttime  
specifies the earliest time at which file transfer is to be started. This time 
must be specified in internal format (seconds since 1.1.1970 00:00:00).

The value 0 means that the file transfer is started as soon as possible.

For synchronous requests, starttime is ignored.

priority   
specifies the priority of the request:

FT_PRIONORM  
Normal priority (default value after initialization with binary 0)

FT_PRIOLOW  
Low priority (is ignored for synchronous requests)

transparent   
specifies whether the file transfer is to be transparent:

FT_NOTRANSPAR  
normal transfer (default value after initialization with binary 0)

FT_TRANSPARENT  
Transparent file transfer



C functions ft_transfer

openFT V12.0 - C Program Interface  67

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

encryption   
specifies whether the user data are to be encrypted or whether a data 
integrity check is to be performed:

FT_NOENCRYPT  
User data are not encrypted and no data integrity check is 
performed (default value after initialization with binary 0)

FT_ENCRYPT  
User data are encrypted and data integrity is checked automatically.
openFT-CR must be installed to enable this.

FT_ONLYDICHECK  
A data integrity check is performed for the transferred file contents. 
The data integrity check is only available if ftparvers is set to the 
value FT_TPARV2 and the options parameter is specified when 
ft_transfer is called.

ftamext  
FTAM-specific parameter made known with the structure ft_transftam (see 
also the commands ft and ncopy, options -av, -ac, -am, -lq and -cp):

   struct ft_transftam
   {
      enum ft_available available;     /* input */
      char  *account;                  /* input */
      int   accessmode;                /* input */
      char  *legalq;                   /* input */
      char  *crpasswd;                 /* input */
   };

The fields of the structure ft_transftam have the following meanings:

available  
specifies the availability of the destination file:

FT_NOAVAIL: 
No specification of availability (default value after initialization 

with binary 0)

FT_AVAILIMM: 
The destination file contains the attribute “immediately 
available“.

FT_AVAILNIMM: 
The destination file contains the attribute “not immediately
 available“.

account   
account number for FTAM partners



ft_transfer C functions

68   openFT V12.0 - C Program Interface

accessmode   
specifies the access rights for the destination file. The access rights 
are created by logical ORing of the individual rights:

FT_ACCR: 
The file may be read.

FT_ACCI: 
File units may be inserted into the file.

FT_ACCP: 
The file may be overwritten.

FT_ACCX: 
The file may be extended, i.e. data can be appended to the file.

FT_ACCE: 
File units may be deleted from the file.

FT_ACCA: 
File attributes may be read.

FT_ACCC: 
File attributes may be modified.

FT_ACCD: 
The file may be deleted.

legalq   
stipulates the copyright for the destination file.

crpasswd   
Password required to create a file in the remote system.

locccsn  
Specifies the name of the coding (CCS name) used to read or write the local 
file. CCS-name must be known in the local system.

If no coding is specified then the default coding value set for openFT via the 
operating parameters is used. 

Support for “Coded Character Sets“ (CCS) is only available if ftparvers is set 
to the value FT_TPARV2 and the options parameter is set when ft_transfer is 
called. 



C functions ft_transfer

openFT V12.0 - C Program Interface  69

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

remccsn  
Specifies the name of the coding (CCS name) used to read or write the 
remote file. CCS-name must be known in the remote system. If no coding is 
specified then character set defined via XHCS (BS2000/OSD) or via the 
openFT operating parameters (other platforms) is used for coding. 

Support for “Coded Character Sets“ (CCS) is only supported for the openFT 
protocol and for partners with openFT V10.0 or higher and is only available 
if ftparvers is set to the value FT_TPARV2 and the options parameter is set 
when ft_transfer is called. 

tabexp  
In the case of an outbound send request, specifies whether tabulator 
expansion and the conversion of blank lines into lines with a character for 
non-FTAM partners are to be performed. Tabulator expansion is only 
available if ftparvers has the value FT_TPARV2 and the options parameter is 
specified when ft_transfer is called.

FT_TABAUTO  
Tabulator expansion and the conversion of blank lines are activated 
when a file is sent to a BS2000, OS/390 or z/OS system (default 
value after initialization with binary 0).

FT_TABON  
Tabulator expansion and the conversion of blank lines are activated.

FT_TABOFF  
Tabulator expansion and the conversion of blank lines are deacti-
vated.

fud  Address of a data area for the so-called “Further Details““ which can 
indicate a more detailed cause of error if errors occur. 
If NULL is specified then no more detailed error cause is output. The fud 
parameter is only available if ftparvers is set to the value FT_TPARV2 and the 
options parameter is specified when ft_transfer is called.

fudlen  
Length of the data area for fud. 
The fudlen parameter is only available if ftparvers is set to the value 
FT_TPARV2 and the options parameter is specified when ft_transfer is called.



ft_transfer C functions

70   openFT V12.0 - C Program Interface

rform  
Specifies the record format of the file that is to be transferred. The rform 
parameter is only available if ftparvers is set to the value FT_TPARV2 and if 
the options parameter is specified when ft_transfer is specified.

FT_NOFORM  
The record format of the file that is to be transferred is unknown 
(default value after initialization with binary 0).

FT_VARIABLE  
The file to be transferred contains records with a variable record 
length.

FT_FIXED  
The file to be transferred contains records with a standard, fixed 
record length.

FT_UNDEF  
The file to be transferred contains records with an undefined record 
length.

errorinfo  
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more 
precise error information then you can specify the value NULL for errorinfo.

options  
The specification of the options parameter is optional. If the value NULL is specified 
then message activity at the program interface is compatible with that of the 
program interface of openFT < V10. 
Alternatively, it is possible to specify the ft_options structure (see section “ft_options” 
on page 18) to activate the openFT message number scheme as of openFT V10 
and the extensions to the function.

Return value

n   For successful asynchronous requests: request ID (n î 0)

1   For successful synchronous requests

0  Error. File transfer was not initiated.
The error type is stored in errorinfo.



C functions ft_xcopen

openFT V12.0 - C Program Interface  71

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

3.16 ft_xcopen - Execute command in the remote system

ft_xcopen() executes the command synchronously in the remote system.

Syntax

#include <ftapi.h>

void *ft_xcopen(const struct ft_admission *admis, /* input */
struct ft_xcpar *par, 
struct ft_err *errorinfo, 

                void *options); /* input*/

Parameters

admis   Specifications for the remote system (see section “ft_admission” on page 15).

par   Specifications for the request which you declare in the structure ft_xcpar:

struct ft_xcpar
{

int xcparvers; /* input */
   char *cmd; /* input */
   enum ft_filetype type; /* input */
   enum ft_encrypt encryption; /* input */
   char *locccsn; /* input */
   char *remccsn; /* input */
   int retcode;  /* output */
   long long outlen; /* output */
   long long errlen; /* output */
   char *fud; /* input */
   int fudlen; /* input */
};

The fields of the ft_xcpar structure have the following meaning:

xcparvers   
Version of the data structure. 
xcparvers must have the value FT_XCPARV1.

cmd   The command that is to be executed on the partner system. The maximum 
value must not exceed the length specified in the field maxcmdlen of the 
ft_prop structure (see section “ft_properties - Determine properties of the 
program interface” on page 31).



ft_xcopen C functions

72   openFT V12.0 - C Program Interface

type   Data type of the transferred user data (in stdout). The following values are 
permitted:

FT_TEXT   
Specifies the transfer format as text. Tabulator expansion is deacti-
vated (default value if a CCS name is specified for locccsn and/or 
remccsn). 

FT_BINARY   
Specifies the transfer format as binary without conversion. (Default 
value if no CCS name is specified in locccsn and remccsn. 

encryption   
Specifies whether the user data is to be encrypted. The following values are 
permitted:

FT_NOENCRYPT   
User data is not encrypted (default value following initialization with 
binary 0).

FT_ENCRYPT   
User data is encrypted. For this to be possible, openFT-CR must be 
installed. If the partner system cannot operate with encryption then 
the request is rejected.

locccsn   
Specifies the designation of the coding (CCS name) that is to be used when 
writing the data for the default output. CCS name must be known in the local 
system. 

If no coding is specified then the default value for coding set in the openFT 
operating parameters is used. The locccsn parameter must not be used in 
combination with FT_BINARY.

remccsn   
Specifies the designation of the coding (CCS-NAME) that is to be used 
when writing the data for the default output from the remote command. CCS 
name must be known in the remote system. 

If no coding is specified then the character set specified via XHCS 
(BS2000/OSD) or in the openFT operating parameters (other platforms) is 
used for coding. The remccsn parameter must not be used in combination 
with FT_BINARY.

  Supported only for the openFT protocol and for partners with open-
FT as of V10.0. Please note that not all partner systems support all 
the character sets that are possible in the local system.

i



C functions ft_xcopen

openFT V12.0 - C Program Interface  73

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

retcode   
Return code from remote command execution

outlen   Number of read data bytes for stdout.

errlen   Number of read data bytes for stderr.

fud   Address of a data area for the so-called "Further Details" which can indicate 
a more detailed cause of error if errors occur. If NULL is specified then no 
more detailed error cause is output.

fudlen   
Length of the data area for fud.

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more pre-
cise error information then you can specify the value NULL for errorinfo.

options   
options must have the value FT_APIV3. The specification of this parameter is man-
datory. The construction of the ft_options structure is described in section “Version 
of the program interface” on page 18.

Return value

id   ID of the request. This must be specified for both ft_sdinfo() and ft_sdclose().

NULL   Error. The error type is stored in errorinfo. 
If an error occurs then it is not necessary to call ft_sdclose().



ft_xcinfo C functions

74   openFT V12.0 - C Program Interface

3.17 ft_xcinfo - Read the data generated by the command

ft_xcinfo() reads the data output by the command that was executed in the remote system 
using ft_xcopen(). 

ft_xcinfo can be called more than once for each output channel (stdout, stderr). On each call, 
the next data that has not yet been read is written to the buffer buf. 

Syntax

#include <ftapi.h>

int ft_xcinfo(void *id, /* input */
struct ft_xcipar *par, 
int buflen, /* input */
char *buf, 
struct ft_err *errorinfo);

Parameters

id   ID of the request (return value from ft_xcopen)

par   Specifications for the request which you declare in the structure ft_xcipar:

struct ft_xcipar
{

int xciparvers; /* input */
enum ft_chn channel; /* input */
char *fud; /* input */
int fudlen; /* input */

};

The fields of the ft_xcipar structure have the following meaning:

xciparvers   
Version of the data structure. xciparvers must have the value FT_XCIPARV1.

channel   
Channel selection. The following values are permitted:

FT_STDOUT  
stdout channel

FT_STDERR)  
stderr channel

fud   Address of a data area for the so-called "Further Details" which can indicate 
a more detailed cause of error if errors occur. If NULL is specified then no 
more detailed error cause is output.



C functions ft_xcinfo

openFT V12.0 - C Program Interface  75

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.1
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

3

fudlen   Length of the data area for fud.

buflen   
Size of the data area for the output data

buf   Address of the data area for the output data

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more pre-
cise error information then you can specify the value NULL for errorinfo.

Return value

n   Number of bytes written to the buffer buf.

0   All the data has already been read, the buffer is empty.

-1   Error. The error type is stored in errorinfo.



ft_xcclose C functions

76   openFT V12.0 - C Program Interface

3.18 ft_xcclose - Terminate command execution

ft_xcclose() terminates the read-out of the data output by the command that was executed 
in the remote system using ft_xcopen(). 

This function must be called as the final operation following a successful call of ft_xcopen(). 
ft_xcclose() releases resources that are no longer required. You cannot subsequently refer-
ence this ID again.

Syntax

#include <ftapi.h>

int ft_xcclose(void *id, /* input */
struct ft_err *errorinfo);

Parameters

id   ID of the request (return value from ft_xcopen)

errorinfo   
Area in which detailed information is stored if an error is encountered (see section 
“ft_err” on page 17).
The specification of this parameter is optional. If you do not require any more pre-
cise error information then you can specify the value NULL for errorinfo.

Return value

0   No error

-1   Error. The error type is stored in errorinfo.



openFT V12.0 - C Program Interface  77

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

4 Error codes
Error codes entered in the structure ft_err (see section “ft_err” on page 17), are made up of 
the following fields:

– main (error class)
– detail (error)
– additional (additional error information)

The error messages are sorted according to error classes in the list below. The following 
error classes are used: 

In the list below, error messages classified as parameter errors are assigned to the function 
calls in cases where the errors are not general.

FTEM_INT Internal error

FTEM_PAR Parameter error

FTEM_LOCERR Sequence error in the local system

FTEM_CONNERR Sequence error in the connection to the partner

FTEM_REMERR Sequence error in the remote system

Table 1:



Internal errors Error codes

78   openFT V12.0 - C Program Interface

4.1 Internal errors

Error
class

Error Additional error 
information

Meaning

FTEM_INT FTED_MEM 0 Error on request for memory

FTEM_INT FTED_CRFILE 0 Error on creation of the file

FTEM_INT FTED_INIT 0 The server cannot be  initialized

FTEM_INT FTED_SIGNAL signal Command interrupted by signal . signal desig-
nates the signal that caused the interruption.

FTEM_INT function errno Error on system call.
function designates the errored system call:
FTED_FORK  fork
FTED_OPEN  open
FTED_OPENDIR  opendir
FTED_PIPE  pipe
FTED_READ  read
FTED_RMFILE  rmfile
FTED_STAT  stat
FTED_SYSTEM  system
FTED_WRITE  write
errno is the value of the errno variable set by 
the errored  system call. If not all bytes could 
be written, errno  has the value -1.

FTEM_INT FTED_INTERNAL reason Other internal error.
reason designates the cause of the error, if 
known:
FTEA_FN  function not supported

 by server 
FTEA_VERS  Version of file structure not 

 supported by server



Error codes Parameter errors

openFT V12.0 - C Program Interface  79

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

4.2 Parameter errors

General errors 

Error for ft_cancel 

Error class Error Additional error
information

Meaning

FTEM_PAR FTED_INVSESS 0 The session number is invalid.

FTEM_PAR FTED_LEN parameter parameter designates the parameter which is 
too long:
FTEA_REMACC  remaccount
FTEA_REMADM  remadmis
FTEA_REMPWD  rempasswd
FTEA_REMSYS  remsys

FTEM_PAR FTED_MAND FTEA_REMSYS The remote system was not specified.

FTEM_PAR FTED_VALUE FTEA_APIVERS The API version specified in ft_options is invalid.

FTEM_PAR FTED_MAND parameter parameter designates the missing mandatory 
parameter:
FTEA_REMSYS  remsys or admis was not

 specified
FTEA_OPTIONS options was not specified.

FTEM_PAR FTED_VALUE FTEA_RID The request ID (rid) is invalid.

FTEM_PAR FTED_VERS 0 The version of the file structure (parameter list 
or output range) is invalid.

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_TERM 0 The request is already terminated.



Parameter errors Error codes

80   openFT V12.0 - C Program Interface

Errors for ft_credir 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_LEN parameter parameter designates the parameter, which is 
too long:
FTEA_FPWD  mgmtpasswd
FTEA_REMFN  dn

FTEM_PAR FTED_MAND 0 The parameter list par was not specified. 

FTEM_PAR FTED_REMOTE FTEA_NOACCESS No authorization to create in remote system

FTEM_PAR FTED_REMOTE FTEA_EXIST Directory already exists in remote system.

FTEM_PAR FTED_VALUE parameter parameter designates the parameter which is 
invalid:
0  unknown parameter/parameters

 are incompatible
FTEA_FPWD  mgmtpasswd
FTEA_REMACC  remaccount
FTEA_REMADM  remadmis
FTEA_REMFN  remfn
FTEA_REMPWD  rempasswd
FTEA_REMSYS  remsys



Error codes Parameter errors

openFT V12.0 - C Program Interface  81

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

Error for ft_delete 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_LEN parameter parameter designates the parameter which is 
too long:
FTEA_FPWD  mgmtpasswd
FTEA_REMFN  fn

FTEM_PAR FTED_MAND 0 The parameter list par was not specified.

FTEM_PAR FTED_REMOTE FTEA_NOACCESS No authorization to delete in remote system

FTEM_PAR FTED_REMOTE FTEA_NOTEMPTY The directory in the remote system is not 
empty.

FTEM_PAR FTED_REMOTE FTEA_NOTEXIST File/directory does not exist in remote system.

FTEM_PAR FTED_VALUE parameter parameter designates the parameter which is 
invalid:
0  unknown parameter/parameters

 are incompatible.
FTEA_FPWD  mgmtpasswd
FTEA_FTYPE  filetype
FTEA_REMACC  remaccount
FTEA_REMADM  remadmis
FTEA_REMFN  remfn
FTEA_REMPWD  rempasswd
FTEA_REMSYS  remsys



Parameter errors Error codes

82   openFT V12.0 - C Program Interface

Error for ft_open 

Error for ft_reqstat 

Error on ft_reqterm 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_DIRAC errno errno designates the value of the errno variable 
set by the stat() call. 
The errno variable has the value 0, if no write 
access is assigned to the directory.

FTEM_PAR FTED_LEN 0 The name of the working directory (workdir) is 
too long.

FTEM_PAR FTED_MAND 0 The name of the working directory (workdir) 
was not specified.

FTEM_PAR FTED_NODIR 0 The specified name (workdir) is not a directory.

FTEM_PAR FTED_OPEN 0 A session in a program has already been 
assigned this working directory (workdir).

FTEM_PAR FTED_VALUE 0 The name for the working directory (workdir) is 
invalid.

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_MAND 0 The output range stat was not specified.

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_NOTERM 0 The request is still active.



Error codes Parameter errors

openFT V12.0 - C Program Interface  83

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

Error for ft_show and ft_showdir 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_LEN parameter parameter designates the parameter which is 
too long:
FTEA_FPWD  mgmtpasswd
FTEA_REMFN  fn

FTEM_PAR FTED_MAND 0 The parameter list par was not specified.
The output range info was not specified (only 
for ft_show()).

FTEM_PAR FTED_REMOTE FTEA_NOACCESS No authorization to read attributes in the 
remote system

FTEM_PAR FTED_REMOTE FTEA_NOTEXIST File/directory does not exist in the remote 
system.

FTEM_PAR FTED_VALUE parameter parameter designates the parameter which is 
invalid:
0  unknown parameter/parameters

 are incompatible.
FTEA_FPWD  mgmtpasswd
FTEA_REMACC  remaccount
FTEA_REMADM  remadmis
FTEA_REMFN  remfn
FTEA_REMPWD  rempasswd
FTEA_REMSYS  remsys



Parameter errors Error codes

84   openFT V12.0 - C Program Interface

Error for ft_transfer 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_LEN parameter parameter designates the parameter which is 
too long:
FTEA_ACCOUNT  ftamext -> account
FTEA_CRPWD  ftamext -> 

 crpasswd
FTEA_FPWD  filepasswd
FTEA_LEGALQ  ftamext -> legalq
FTEA_LOCCCSN  locccsn
FTEA_LOCFN  locfn
FTEA_LOCPR  Sum of the lengths

 of locsuccproc
 and locfailproc

FTEA_REMCCSN  remccsn
FTEA_REMFN  remfn
FTEA_REMPR  Sum of the lengths

 of remsuccproc
 and remfailproc

FTEM_PAR FTED_MAND parameter parameter designates the parameter which was 
not specified:
0  The parameter list par was not

 specified.
FTEA_LOCFN  locfn



Error codes Parameter errors

openFT V12.0 - C Program Interface  85

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

Error for ft_sdopen 

FTEM_PAR FTED_VALUE parameter parameter designates the parameter which is 
invalid:
FTEA_ACCESS  ftamext -> 

 accessmode
FTEA_AVAIL  ftamext -> 

 available
FTEA_CANTIME  cantime
FTEA_COMPR  compress
FTEA_DIR  direction
FTEA_ENCRYPT  encryption
FTEA_FTYPE  file type
FTEA_MAXREC  maxrecsize
FTEA_PRIO  priority
FTEA_REMADM  remadm. The user ID/transfer 

 admission in the remote
 system is invalid.

FTEA_REMFN  remfn. The specified file does 
 not exist/ no access permitted.

FTEA_REMSYS  remsys. The specified remote
 system is unknown.

FTEA_SYNC  synchronous
FTEA_RFORM  rform
FTEA_STARTTIME start time
FTEA_TABEXP  tabexp
FTEA_TRANSP  transparent
FTEA_WMODE  write mode

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_LEN parameter parameter designates the parameter which is 
too long:
FTEA_TRANSP  transparent
FTEA_REMFN  fn

FTEM_PAR FTED_MAND 0 0  The parameter list par was
 not specified.

FTEM_PAR FTED_REMOTE FTEA_NOACCESS No authorization to read attributes in the re-
mote system.

FTEM_PAR FTED_REMOTE FTEA_NOTEXIST File/directory does not exist in the remote sys-
tem.

Error class Error Additional error 
information

Meaning



Parameter errors Error codes

86   openFT V12.0 - C Program Interface

Error for ft_sdinfo 

Error for ft_xcopen 

Error for ft_xcinfo 

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_MAND FTEA_ID The parameter id was not specified.

FTEM_PAR FTED_VALUE FTEA_BUFL The buffer was not specified
(buf=NULL or bufsize<=0).

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_MAND 0 The parameter list par was not specified.

FTEM_PAR FTED_MAND FTEA_CMD The command cmd was not specified.

FTEM_PAR FTED_LEN FTEA_CMD The command cmd is too long.

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_MAND FTEA_ID The parameter id was not specified.

FTEM_PAR FTED_MAND FTEA_BUFL The buffer was not specified
(buf=NULL or bufsize<=0).

FTEM_PAR FTED_LEN FTEA_CHAN The output channel was not specified
(FT_STDOUT or FT_STDERR).



Error codes Sequence errors

openFT V12.0 - C Program Interface  87

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

4

4.3 Sequence errors

General errors 

Error in the local system 

Error in connection to the remote system 

Error in remote system

Error class Error Additional error 
information

Meaning

FTEM_PAR FTED_FTMSG code code designates the message number of the 
corresponding command (see the openFT 
User Manual). The associated message text 
can also be determined using the fthelp code 
command.

Error class Error Additional error 
information

Meaning

FTEM_LOCERR FTED_EXIST 0 The local file already exists.

FTEM_LOCERR FTED_FTAC 0 The request was rejected by the local FTAC.

FTEM_LOCERR FTED_INCONS 0 The local file is inconsistent.

FTEM_LOCERR FTED_MEM 0 The local file has no memory.

FTEM_LOCERR FTED_NOACCESS 0 The local file cannot be accessed.

FTEM_LOCERR FTED_NOCREAT 0 The local file cannot be created.

FTEM_LOCERR FTED_NOTEXIST 0 The local file cannot be found.

Error class Error Additional error 
information

Meaning

FTEM_CONNERR FTED_NOCONN 0 No free transport connection

FTEM_CONNERR FTED_NOTAVAIL 0 The remote system is not available.

FTEM_CONNERR FTED_UNKNOWN 0 The remote system is unknown.

Error class Error Additional error 
information

Meaning

FTEM_REMERR FTED_EXIST 0 The remote file does already exists.

FTEM_REMERR FTED_INCONS 0 The remote file is inconsistent.

FTEM_REMERR FTED_MEM 0 The remote file has no memory.



Sequence errors Error codes

88   openFT V12.0 - C Program Interface

FTEM_REMERR FTED_NOACCESS 0 The remote file cannot be accessed.

FTEM_REMERR FTED_NOCREAT 0 The remote file cannot be created.

FTEM_REMERR FTED_NOTEXIST 0 The remote file cannot be found.

FTEM_REMERR FTED_REMADM 0 The remote transfer admission is invalid.

Error class Error Additional error 
information

Meaning



openFT V12.0 - C Program Interface  89

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

5

5 Sample programs
The sample programs that are supplied with openFT show you the various options for using 
the program interface. The source codes of these programs can be found in the following 
subdirectory of the openFT installation directory:

– Windows: openFT\samples\ftapi
– Unix systems: /opt/openFT/samples 

  In the sample programs, the transfer admission to the partner must be an FTAC ad-
mission, i.e. the sample programs do not support the specification of a user ID to-
gether with a password.

Sample 1: Asynchronous file transfer of a file

The program sample1 is called in this way: 

sample1 file1 file2

Name and transfer admission to the remote system are then queried in a dialog. For the 
program to run, the following directory must exist:

– Windows: the working directory %TMP%\ft
– Unix systems: the working directory $HOME/ft

The program transfers the file file1 asynchronously from the local system to remote system 
and stored it there under the name file2 in the HOME directory of the user or under the login 
name specified in the T profile. The precondition for this is that the file to be sent, file1, is 
located in the same directory as the one in which the program is called. If a SIGINT signal 
is created by the user (e.g by entering CTRL+C under Windows), file transfer is aborted, 
provided that it has not yet been completed.

i



Asynchronous file transfer Sample programs

90   openFT V12.0 - C Program Interface

The program is structured as follows:

● Since the file is to be transferred asynchronously, a session is first opened with the 
function ft_open(), where %TMP%\ft (under Windows) resp. $HOME/ft (under Unix 
systems) is permanently assigned as working directory. 

● ft_open() returns a session number, which identifies the session and must be specified 
with further function calls. 

● The asynchronous file transfer is initiated with the ft_transfer() function, which returns 
the request ID for the request. 

● From now on, the program queries whether a SIGINT signal was created by the user. If 
so, the request is aborted with the ft_cancel() function. 

● As long as file transfer has not been terminated or aborted, the ft_reqstat() queries the 
status of the file transfer request. 

● If file transfer is completed or has been aborted, the request is marked as terminated 
with the ft_reqterm() function and the session closed with the ft_close() function.



Sample programs Several file transfer requests

openFT V12.0 - C Program Interface  91

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

5

Sample 2: Several file transfer requests with follow-up processing

The program sample2 is called in this way: 

sample2 file1 [file2] [file3] [file4] 

Name and transfer admission to the remote system are then queried in a dialog. For the 
program to run, the following directory must exist:

– Windows: the working directory %TMP%\ft.
– Unix systems: the working directory $HOME/ft

The program fetches each of the files specified asynchronously from the HOME directory 
of the user of from the login name specified in the FT profile in the remote system. In the 
local system, the file is stored in the directory with the same name as the one from which 
the program was called.  If a file of this name already exists there then it is overwritten.

If file transfer has be completed successfully, the file is printed out in the local system. If the 
file was not transferred, the user is sent a message. If a SIGINT signal is created by the user 
(e.g by entering CTRL+C under Windows), while the file has not yet been transferred, the 
current file transfer request is aborted. No subsequent file transfer requests are initiated.

The program is structured as follows:

● First, a session is first opened with the function ft_open(), where %TMP%\ft (under 
Windows) resp. $HOME/ft (under Unix systems) is permanently assigned as working 
directory. 

● ft_open() returns a session number, which identifies the session and must be specified 
with further function calls. 

● The following procedure is repeated for all file to be transferred: 

– The asynchronous file transfer is initiated with the ft_transfer() function. 

– From now on, the program queries whether a SIGINT signal was created by the 
user. If so, the request is aborted with the ft_cancel() function, if the status is 
„Waiting“ or „Running“. 

– As long a the file transfer has not been completed, the ft_reqstat() function queries 
the status of the file transfer request. 

– If the status of the request is „Terminated“, follow-up processing is started, i.e.the 
file transferred to the local system is printed. 

– If the status of the request is aborted „Aborted“, a message is output. 

– In all cases, the file transfer request is marked as terminated with the ft_reqterm(). 

● The session is closed with the ft_close() function when all the file specified have been 
processed.



Display contents of a remote directory Sample programs

92   openFT V12.0 - C Program Interface

Sample 3: Display contents of a directory in a remote system

The program sample3 is called in this way: 

sample3 dvz1 

Name and transfer admission to the remote system are then queried in a dialog.

The program reads the entries in directory dir1 of the remote system and outputs the list on 
screen. The directory must be specified as an absolute path name, or as relative to the 
HOME directory (see page 12) of the user or login name specified in the FT profile in the 
remote system. Up to 10 information entries are output in thi example, even if the directory 
specified contains more than 10 files/directories.

The program is structured as follows:

● The ft_showdir() function reads the information relating to the specified directory in the 
remote system. 

● A buffer is provided for this purpose, which is capable of holding the information on a 
total of 10 files or directories. 

● The number of entries is also supplied.



Sample programs Remote command execution

openFT V12.0 - C Program Interface  93

D
ok

us
ch

ab
lo

ne
n 

(F
D

S
A

5)
 V

4.
1.

by
 ff

 
In

te
rn

at
io

na
le

s 
D

ok
uz

en
tr

um
 S

N
I B

U
 T

D
 D

O
K

©
 S

ie
m

en
s 

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

em
e 

A
G

 1
99

5
14

. S
e

pt
em

be
r 

20
12

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
F

T
\o

p
en

F
T-

V
12

_
12

0
03

00
\1

20
0

30
5

_U
W

_
C

p
ro

g\
en

\p
ro

g
_e

.k
0

5

Sample 4: Remote command execution

The program sample4 is called in this way:

sample4 <command>

The name and transfer admission to the remote system are then requested in the dialog 
box.

The program executes the command in the remote system and outputs the result (return 
code, stdout, stderr) on screen. The command must be specified in the same way as for fte-
xec. The admission profile in the remote system must permit command execution.

The program is structured as follows:

● The function ft_xcopen() executes the command in the remote system and the results 
are internally buffered. 

● The calling system is informed of the exit code of the executed command and the num-
ber of data bytes present at stdout and stderr.

● The data for stdout and stderr are read sequentially in a loop using  ft_xcinfo() and are 
displayed. 

● Finally, ft_xcclose() is called to terminate command execution and release resources that 
are no longer required.



Memory-efficient listing of remote directory Sample programs

94   openFT V12.0 - C Program Interface

Sample 5: Memory-efficient listing of a remote directory

The program sample5 is called in this way:

sample5 dvz1

The name and transfer admission to the remote system are then requested in the dialog 
box.

The program determines the attributes of all the files in the directorydvz1 in a remote system 
and outputs them on screen. The directory must be specified either as an absolute path, or 
relative to the user's HOME directory (see page 12) or relative to the user ID in the remote 
system as defined in the admission profile. In the example, information is output on all the 
located files.

The program is structured as follows:

● The function ft_sdopen() reads information about the content of the specified directory in 
the remote system and this is buffered internally. 

● The buffer is then read in a loop (20 entries at a time) using ft_sdinfo()  and is displayed. 

● Finally, t_sdclose() is called to terminate the identification of the file attributes and re-
lease resources that are no longer required.



openFT V12.0 - C Program Interface  95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r 
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 S

e
pt

em
b

er
 2

01
2

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nF

T
\o

p
en

F
T-

V
12

_
12

00
3

00
\1

20
03

0
5_

U
W

_C
pr

o
g\

en
\p

ro
g_

e.
si

x

Index

%ELEMNAME 65
%ELEMTYPE 65
%ELEMVERS 65
%FILENAME 64
%PARTNER 65
%RESULT 65
%RID 65

A
additional error message

program interface 17
address

partner system 15
asynchronous file transfer

program interface 9
asynchronous request

manage 13, 22
attributes

of remote file 47
several remote files 53

automate
sequences 5

C
cancel

request 22
CCS name

local 68, 72
remote 69

changes
compared to predecessor version 6

close
session 23

coding
local 68, 72
remote 69

command
synchronous execution in remote system 71
terminating in remote system 76

command execution
remote 8, 14

contents
remote directory 53

create
directory in remote system (prog. int.) 24

D
data

retrieving from remote system 74
delete

directory in remote system 26
file in remote system 26
management information 38
request 22

detail error message 17
determine file attributes

terminating (in remote system) 46
directory

contents of a remote 53
creating in remot e system (program 

interface) 24
delete in remote system 26

E
error class

program interface 77
error handling

program interface 17



Index

96   openFT V12.0 - C Program Interface

error message
program interface 17, 77

execute
command in remote system 

(synchronous) 71

F
fetch file

program interface 59
file

asynchronous transfer 9
attributes in remote system 53
delete in remote system 26
fetch 59
send 59
synchronous transfer 9, 59
transfer 7

file attributes
determining in remote system 14
in the remote system 47
retrieving from remote system 41

file management
program interface 7
remote system 14

file transfer request
manage 7

ft 71, 74
ft_admission 15
ft_cancel 22
ft_close 23
ft_credir 24
ft_open 29
ft_properties 31
ft_reqlist 34
ft_reqstat 36
ft_reqterm 38
ft_sdclose 46
ft_sdinfo 41
ft_sdopen 39
ft_show 47
ft_showdir 53
ft_transfer 59
ft_xcclose 76
ft_xcinfo 74

ft_xcopen 71
FTAM protocol 15
ftapi.h 19
ftp protocol 15
function calls

program interface 7

H
header file 15, 17
HOME directory

Windows 12
host name 15

I
include file 19
initiate

reading of file attributes in remote system 39
input parameters

program interface 21

L
linking

program 20

M
main

error message 17
manage

transfer request 7, 13, 22
management information

delete 38
multithreading 5

O
open

session 29
openFT protocol 15
output parameters

program interface 21

P
parameters

program interface 21
partner list 15
presentation selector 16



Index

openFT V12.0 - C Program Interface  97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r 
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 S

e
pt

em
b

er
 2

01
2

  S
ta

nd
 1

2:
58

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nF

T
\o

p
en

F
T-

V
12

_
12

00
3

00
\1

20
03

0
5_

U
W

_C
pr

o
g\

en
\p

ro
g_

e.
si

x

program
translate 20

program interface
determine version 31
function calls 7
query properties 8

program structure 10
programming rules 8

Q
query properties

program interface 8

R
read file attributes

initiating (in remote system) 39
record format 70
remote command execution 8, 14
remote system

admission 15
determining file attributes 14
file management 14

request
cancel 22
delete 22
determine 36
program interface 9
terminate 38

request ID 11
retrieve

data from remote system 74
file attributes from remote system 41

return value
on error 17

rules
for program interface 8

S
send

file (program interface) 59
sequence

automate 5

session
close 23
open 29
program interface 9

session identification 10
session number 10, 29
session selector 16
shell variable 65
status

of a request 36, 37
synchronous execution

command in remote system 71
synchronous file transfer

program interface 9
system value

version-specific 31

T
tabulator expansion 69
terminate

command in remote system 76
identification of remote file attributes 46
request 38

thread 5
threadsafe 5
transfer file

asynchronous 9, 59
program interface 7
synchronous 9, 59

translate
program 20

transport selector 15

V
version

determine for API 18
program interface 31

version-specific system value
program interface 18, 31

W
working directory 29

program interface 10



Index

98   openFT V12.0 - C Program Interface


	Contents 
	Introduction to the C program interface 
	Changes compared to the predecessor version 
	Overview 
	Programming rules 
	File transfer 
	File management 
	Remote command execution 
	Specifications concerning the remote system 
	Error handling 
	Version of the program interface 


	Creating and using programs 
	Translating and linking under Windows systems 
	Translating and linking under Unix systems 
	Notes for program use 

	Description of the C functions 
	ft_cancel - Cancel asynchronous request 
	ft_close - Close session 
	ft_credir - Create directory in remote system 
	ft_delete - Delete file or directory in the remote system 
	ft_open - Open session 
	ft_properties - Determine properties of the program interface 
	ft_reqlist - Determine request not yet terminated 
	ft_reqstat - Determine the status of a request 
	ft_reqterm - Terminate request 
	ft_sdopen - Start identification of attributes of all files in a directory 
	ft_sdinfo - Read out file attributes 
	ft_sdclose - End identification of file attributes 
	ft_show - Determine attributes of a file or directory 
	ft_showdir - Determine the attributes of all files in a directory 
	ft_transfer - Transfer file 
	ft_xcopen - Execute command in the remote system 
	ft_xcinfo - Read the data generated by the command 
	ft_xcclose - Terminate command execution 

	Error codes 
	Internal errors 
	Parameter errors 
	Sequence errors 

	Sample programs 
	Sample 1: Asynchronous file transfer of a file 
	Sample 2: Several file transfer requests with follow-up processing 
	Sample 3: Display contents of a directory in a remote system 
	Sample 4: Remote command execution 
	Sample 5: Memory-efficient listing of a remote directory 

	Index 
	A 
	C 
	D 
	E 
	F 
	H 
	I 
	L 
	M 
	O 
	P 
	Q 
	R 
	S 
	T 
	V 
	W 


