Directive relative aux produits consommant de l’énergie (Eup) Version 6 - Avril 2009 - PDF - Farnell Element 14 - Revenir à l'accueil
Farnell Element 14 :
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-china_rohs_o..> 21-Mar-2014 08:13 3.9M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-Tektronix-AC..> 10-Mar-2014 15:52 1.5MUne filiale de Premier Farnell Développez avec le meilleur Directive relative aux produits consommant de l’énergie (Eup) Version 6 - Avril 2009 Mise à jour des études menées (phase 1) et détail des 17 études (phase 2) Web: www.global-legislation.com Q&R: glegislation@premierfarnell.com 1 L’éco-conception de la directive (2005/32/CE) relative aux produits consommant de l’énergie (EuP) a été adoptée au sein de l’Union européenne (UE) le 11 août 2005 et transposée en loi nationale par les Etats membres le 11 août 2007. Des mesures de mise en oeuvre spécifiques entreront en application courant 2009 et les années suivantes. Celles-ci impliqueront des obligations pour les fabricants. La première mesure de mise en oeuvre de la directive EuP concerne une réglementation qui est entrée en vigueur en janvier 2009. Cette réglementation EuP devrait avoir un impact significatif sur la phase conception d’une grande diversité de produits électriques. L’objectif principal de la directive EuP est d’apporter des améliorations dans l’efficacité énergétique des produits consommant de l’énergie, sur l’ensemble du cycle de vie, depuis l’extraction de la matière première jusqu’au recyclage en fin de vie. L’accent est mis sur la phase conception, qui est considérée comme l’étape déterminante affectant les ressources utilisées dans un produit. La directive ne s’applique pas aux moyens de transport (avions, automobiles, etc.) mais, à part cette exception, son champ d’application est délibérément étendu, couvrant, en principe, tout produit qui, lors de son utilisation, dépend de, génère, transfère ou mesure l’énergie (électricité, combustible fossile ou renouvelable). EuP est une directive « cadre » qui définit le contexte juridique au sein duquel des mesures d’exécution seront élaborées, visant des groupes de produits spécifiques. Lorsque ces mesures d’exécution seront présentées, elles exposeront clairement les exigences à respecter pour certains types de produits avant leur mise sur le marché au sein de l’UE. Une mesure d’exécution détaillera les exigences en matière de « éco-conception » , telles que les objectifs de consommation énergétique, et la réglementation devra être essentiellement la même dans tous les pays de l’UE, comme pour la directive RoHS (une directive de marché unique). Avant l’application d’une mesure d’exécution pour un secteur de produits particulier (ex., chaudières), il est primordial de se conformer à certains critères afin de s’assurer que celle-ci est réellement nécessaire et profitable. Ces critères sont les suivants : Un produit doit zz se vendre à plus de 200.000 unités par an dans l’UE zz avoir un impact environnemental significatif zz présenter un important potentiel d’évolution Les mesures d’exécution ne doivent pas avoir un « impact négatif significatif » sur zz le prix ou la performance d’un produit, ou zz sur la compétitivité de l’industrie de l’UE Après avoir tenu compte de tout ceci, il est possible que la Commission européenne (CE) décide de ne pas présenter de mesure d’exécution. Cela pourrait se produire dans le cas où elle considère que la croissance de l’industrie est satisfaisante (ex., par des accords volontaires ou des objectifs pour réduire la consommation d’énergie). La directive EuP définit une procédure d’application pour les mesures de mise en oeuvre, mais la Commission européenne a déjà identifié une liste de produits candidats offrant « …un potentiel élevé pour réduire de manière économiquement rentable les gaz à effet de serre », et pour lesquels un accord de mesures d’exécution pourrait intervenir plus tôt. Résumé 2 Des études sont en cours dont une vingtaine déjà finalisées. Il devient évident que la consommation d’énergie en fonctionnement sera l’objectif prioritaire de nombreuses mesures de mise en oeuvre. Plusieurs études ont déjà identifié des points importants en matière d’amélioration, comparé aux produits commercialisés les plus performants. Quand des avantages significatifs sont identifiés et réalisables, cela peut entraîner des mesures de mise en oeuvre. Des réglementations couvrant cinq catégories de produits ont été proposées jusqu’à présent et celle concernant les pertes d’énergie en mode veille et arrêt est déjà appliquée. Autres produits en vue d’une éventuelle inclusion : L’article 16(1) de la directive sur la démarche d’éco-conception impose à la Communauté européenne d’établir un plan d’action définissant pour les trois années à venir une liste indicative d’autres groupes de produits à considérer en priorité en vue de l’adoption de mesures d’exécution. Dans le cadre de ce plan, une évaluation a été réalisée par un groupe d’étude du réseau parlementaire européen d’évaluation technologique (EPTA, Grèce). Celle-ci visait à couvrir et classifier tous les produits consommant de l’énergie (EuP) potentiels. Plus de 1300 EuP ont été répertoriés et classés en 57 catégories. Parmi cellesci, 34 catégories de produits ont été considérées comme prioritaires, selon la directive. Un degré de priorité a donc été défini, avec répartition par groupes : Priorité A (25 catégories – la CE a indiqué qu’elle voulait une liste détaillée) et Priorité B (les 9 catégories restantes). Pour connaitre les dernières mises à jour des études EuP, rendez vous sur le Programme de Transformation du Marché (Market Transformation Programme): www.mtprog.com/cms/eup/ Les produits concernés sont : Statut Chaudières et chaudières mixtes (gaz/mazout/électrique) Radiateurs (gaz/mazout/électrique) Ordinateurs personnels (de bureau & portables) et moniteurs d’ordinateur Equipement d’imagerie : copieurs, fax, imprimantes, scanneurs, appareils multifonctions, etc. Electronique grand public : téléviseurs Pertes en mode veille et éteint des EuP Chargeurs de batterie et sources d’alimentation externes Eclairage des bureaux Eclairage domestique Eclairage public Appareils de climatisation grand public (climatiseurs et ventilateurs) Moteurs électriques 1-150 kW, pompes à eau (dans les bâtiments commerciaux, pompage eau potable, industrie alimentaire, agriculture), systèmes d’aération dans les bâtiments, machines soufflantes pour la ventilation (bâtiments non résidentiels) Réfrigérateurs et congélateurs professionnels, comprenant les compresseurs frigorifiques, meubles présentoir et distributeurs automatiques Réfrigérateurs et congélateurs à usage domestique Lave-vaisselle et lave-linge à usage domestique Petites installations à combustible solide (chauffage, en particulier) Séche-linge Aspirateurs Boîtiers multimédias (Set Top Boxe) Boîtiers de conversion simples pour la télévision numérique C C V V P R P P P P S C P C P P S S S C Symbole Statut / Février 2009 S Etude en cours C Etude achevée P Cadre législatif proposé V Accord volontaire possible R Réglementation UE en place Un « plan d’action » s’appuyant sur les travaux entrepris par Epta, basé à Athènes et qui regroupe des ingénieurs et consultants en environnement, a été adopté et la Commission européenne a annoncé que 17 autres études seraient réalisées selon le même modèle que les 20 études existantes, suivi d’une évaluation de l’impact, d’un débat sur la plate-forme dédiée à l’éco-conception et d’un projet de mesures de mise en oeuvre. Liste des 17 études prévues et contrats attribués concernant 11 d’entre elles : 3 Veuillez noter : Les informations contenues dans ce guide sont de nature générale et non destinées à répondre au cas particulier de toute personne ou entité. Malgré le soin apporté à fournir des informations précises et actuelles, nous ne pouvons pas garantir l’exactitude de ces informations, liée à la date de réception de celles-ci, ou qu’elles continueront à être exactes à l’avenir. Il n’est pas conseillé d’agir sur la base de ces informations sans avoir pris conseil auprès d’un professionnel compétent après un examen approfondi de la situation spécifique. Produits: Statut Equipement de réfrigération et de congélation : armoires frigorifiques, chambres froides, compresseurs frigorifiques, machines à glace, machines à crème glacée et milk-shake, minibars Transformateurs : transformateurs de distribution, transformateurs de puissance Equipement son & image : lecteurs enregistreurs de DVD, vidéoprojecteurs, consoles de jeux vidéo Produits de chauffage individuel Systèmes de chauffage central par air chaud pour la distribution de la chaleur (autre que les systèmes à chaleur et puissance combinées - CHP) Fours à usage domestique et commercial (électriques, gaz, micro-ondes), y compris ceux intégrés aux cuisinières Plaques chauffantes et grills à usage domestique et commercial, y compris ceux intégrés aux cuisinières Lave-linge, sèche-linge et lave-vaisselle à usage professionnel Machines à café hors secteur tertiaire Pertes en mode veille des EuP connectés en réseau Onduleurs et sources d’alimentation ininterrompue (UPS) à usage domestique Systèmes de ventilation et de climatisation Equipement de chauffage électrique et par combustibles fossiles Chaudières et fours industriels et de laboratoire Machines-outils Equipement de stockage de données, traitement de données et de réseau Equipement utilisant de l’eau S S S A A A A A A A A N N N N N N Point sur la situation : février 2009 Contrats attribués à des bureaux d’étude et de consultation : démarrage des projets prévu courant 2009 Appels d’offre pas encore émis si bien que les études ne devraient pas démarrer avant fin 2009, début 2010 S A Version 6. Rédigé en collaboration avec ERA Technology - www.era.co.uk/rfa © 2009 Premier Farnell plc. Toute reproduction intégrale ou partielle de ce document est soumise à l’accord préalable de Premier Farnell plc SMSC EMC1182 Revision 1.0 (07-11-13) DATASHEET PRODUCT FEATURES Datasheet EMC1182 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications General Description The EMC1182 is a high accuracy, low cost, 1.8V System Management Bus (SMBus) compatible temperature sensor. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model including 65nm and lower geometry processors) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications. The ability to communicate at 1.8V SMBus levels provides compatible I/O for the advanced processors found in today’s tablet and smartphone applications. The EMC1182 monitors two temperature channels (one external and one internal), providing ±1°C accuracy for both external and internal diode temperatures. REC automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Frequency hopping* and analog filters ensure remote diode traces can be as far as eight (8) inches without degrading the signal. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors the external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features plus ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications. Applications Notebook Computers Desktop Computers Industrial Embedded applications Features Support for diodes requiring the BJT/transistor model — Supports 65nm and lower geometry CPU thermal diodes Pin and register compatible with EMC1412 Automatically determines external diode type and optimal settings Resistance Error Correction Frequency hops the remote sample frequency to reject DC converter and other coherent noise sources* Consecutive Alert queue to further reduce false Alerts Up to 1 External Temperature Monitor — 25°C typ, ±1°C max accuracy (20°C < TDIODE < 110°C) — 0.125°C resolution — Supports up to 2.2nF diode filter capacitor Internal Temperature Monitor — ±1°C accuracy — 0.125°C resolution 3.3V Supply Voltage 1.8V SMBus operation Programmable temperature limits for ALERT/THERM2 (85°C default high limit and 0°C default low limit) and THERM (85°C default) Available in small 8-pin 2mm x 3mm TDFN RoHS compliant package Available in small 8-pin 3mm x 3mm DFN RoHS compliant package * Technology covered under the US patent 7,193,543. CPU / GPU EMC1182 Host DP DN SMDATA Thermal Junction SMCLK SMBus Interface THERM / ADDR ALERT / THERM2 Power Control VDD GND VDD = 3.3V 1.8V 1.8V – 3.3V THERM / ADDR ALERT / THERM2 Internal Temp Diode Switching Current Analog Mux Internal Temperature Register Digital Mux Digital Mux Limit Comparator Low Limit Registers High Limit Registers Conversion Rate Register Interupt Masking Status Registers Configuration Register SMBus Interface SMCLK SMDATA DP 1D N1 VDD GND External Temperature ΔΣADC Register(s) THERM Limit Register THERM Hysteresis Register SMBus Address Decode EMC1182 Ordering Information: This product meets the halogen maximum concentration values per IEC61249-2-21 For RoHS compliance and environmental information, please visit www.smsc.com/rohs Please contact your SMSC sales representative for additional documentation related to this product such as application notes, anomaly sheets, and design guidelines. ORDERING NUMBER PACKAGE FEATURES SMBUS ADDRESS EMC1182-A-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address Selectable via THERM pull-up EMC1182-1-AIA-TR 8-pin DFN 3mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_100(r/w) EMC1182-1-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_100(r/w) EMC1182-2-AIA-TR 8-pin DFN 3mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_101(r/w) EMC1182-2-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_101(r/w) Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 2 SMSC EMC1182 DATASHEET Copyright © 2013 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 3 Revision 1.0 (07-11-13) DATASHEET Table of Contents Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 SMBus Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Communications Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.3 THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.5 SMBus Data Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.6 SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.7 SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.8 SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.9 SMBus and I2C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.2 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.3 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.4 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 THERM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.1 THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 ALERT / THERM2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5.1 ALERT / THERM2 Pin InterruptALERT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5.2 ALERT / THERM2 Pin ComparatorTHERM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.6 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.1 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.2 Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.3 Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.7 Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.8 Consecutive Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.9 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.10 Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Data Read Interlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3 Status Register 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 4 SMSC EMC1182 DATASHEET 6.4 Configuration Register 03h / 09h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.5 Conversion Rate Register 04h / 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.6 Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.7 Scratchpad Registers 11h and 12h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.8 One Shot Register 0Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.10 Channel Mask Register 1Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.11 Consecutive ALERT Register 22h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.12 Beta Configuration Register 25h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.13 External Diode Ideality Factor Register 27h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.14 Filter Control Register 40h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.15 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.16 SMSC ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.17 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 7 Typical Operating Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 5 Revision 1.0 (07-11-13) DATASHEET List of Figures Figure 1.1 EMC1182 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 2.1 EMC1182 Pin Diagram, TDFN-8 2mm x 3mm / DFN-8 3mm x 3mm . . . . . . . . . . . . . . . . . . . 8 Figure 4.1 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4.4 Isolating the THERM pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5.1 System Diagram for EMC1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 5.2 Isolating THERM Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 5.3 Isolating ALERT and SYS_SHDN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 5.4 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 5.5 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 8.1 2mm x 3mm TDFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 8.3 2mm x 3mm TDFN Package PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 8.2 2mm x 3mm TDFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 8.4 3mm x 3mm DFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 8.5 3mm x 3mm DFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 8.6 8 Pin DFN PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 8.7 EMC1182-1 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 8.8 EMC1182-2 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 8.9 EMC1182-A 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8.10 EMC1182-1 8-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8.11 EMC1182-2 8-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 6 SMSC EMC1182 DATASHEET List of Tables Table 2.1 EMC1182 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4.1 SMBus Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5.1 Supply Current vs. Conversion Rate for EMC1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5.2 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.10 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.11 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6.12 Consecutive Alert / Therm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.13 Beta Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.14 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.15 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 6.17 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.18 FILTER Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.19 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.20 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.21 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Internal Temp DiodeSwitchingCurrentAnalog MuxInternal Temperature RegisterDigital MuxDigital MuxLimit ComparatorLow Limit RegistersHigh Limit RegistersConversion Rate RegisterInterupt MaskingStatus RegistersConfiguration RegisterSMBus InterfaceSMCLKSMDATADPDNVDDGNDExternal Temperature Register(s)ΔΣADCTHERM Limit RegisterTHERM Hysteresis RegisterSMBus Address DecodeALERTEMC1182THERM / ADDR Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 7 Revision 1.0 (07-11-13) DATASHEET Chapter 1 Block Diagram Figure 1.1 EMC1182 Block Diagram SMDATASMCLK1234ALERT / THERM2DNTHERM / ADDRGNDExposed padDPVDD8765EMC1182 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 8 SMSC EMC1182 DATASHEET Chapter 2 Pin Description Figure 2.1 EMC1182 Pin Diagram, TDFN-8 2mm x 3mm / DFN-8 3mm x 3mm Table 2.1 EMC1182 Pin Description PIN NUMBER NAME FUNCTION TYPE 1 VDD Power supply Power 2 DP External diode positive (anode) connection AIO 3 DN External diode negative (cathode) connection AIO 4 THERM / ADDR THERM - Active low Critical THERM output signal - requires pull-up resistor OD (5V) ADDR - Selects SMBus address based on pullup resistor OD (5V) 5 GND Ground Power 6 ALERT / THERM2 Active low digital ALERT / THERM2 output signal - requires pull-up resistor OD (5V) 7 SMDATA SMBus Data input/output - requires pull-up resistor DIOD (5V) 8 SMCLK SMBus Clock input - requires pull-up resistor DI (5V) Bottom Pad Exposed Pad Not internally connected, but recommend grounding. - Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 9 Revision 1.0 (07-11-13) DATASHEET The pin types are described Table 2.2. Table 2.2 Pin Types PIN TYPE DESCRIPTION Power This pin is used to supply power or ground to the device. AIO Analog Input / Output -This pin is used as an I/O for analog signals. DI Digital Input - This pin is used as a digital input. This pin is 5V tolerant. DIOD Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant. OD Open Drain Digital Output - This pin is used as a digital output. It is open drain and requires a pull-up resistor. This pin is 5V tolerant. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 10 SMSC EMC1182 DATASHEET Chapter 3 Electrical Specifications 3.1 Absolute Maximum Ratings Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. Note 3.1 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT / THERM2), the pull-up voltage must not exceed 3.6V when the device is unpowered. 3.2 Electrical Specifications Table 3.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage (VDD) -0.3 to 4.0 V Voltage on 5V tolerant pins (V5VT_pin) -0.3 to 5.5 V Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1) 0 to 3.6 V Voltage on any other pin to Ground -0.3 to VDD +0.3 V Operating Temperature Range -40 to +125 °C Storage Temperature Range -55 to +150 °C Lead Temperature Range Refer to JEDEC Spec. J-STD-020 Package Thermal Characteristics for TDFN-8 Thermal Resistance (θj-a) 89 °C/W ESD Rating, All pins HBM 2000 V Table 3.2 Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS DC Power Supply Voltage VDD 3.0 3.3 3.6 V Supply Current IDD 200 410 μA 0.0625 conversion / sec, dynamic averaging disabled 215 425 μA 1 conversion / sec, dynamic averaging disabled Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 11 Revision 1.0 (07-11-13) DATASHEET 325 465 μA 4 conversions / sec, dynamic averaging disabled 890 1050 μA 4 conversions / sec, dynamic averaging enabled 1120 μA > 16 conversions / sec, dynamic averaging enabled Standby Supply Current IDD 170 230 μA Device in Standby mode, no SMBus communications, ALERT and THERM pins not asserted. Internal Temperature Monitor Temperature Accuracy ±0.25 ±1 °C -5°C < TA < 100°C ±2 °C -40°C < TA < 125°C Temperature Resolution 0.125 °C External Temperature Monitor Temperature Accuracy ±0.25 ±1 °C +20°C < TDIODE < +110°C 0°C < TA < 100°C ±0.5 ±2 °C -40°C < TDIODE < 127°C Temperature Resolution 0.125 °C Conversion Time all Channels tCONV 190 ms default settings Capacitive Filter CFILTER 2.2 2.7 nF Connected across external diode ALERT / THERM2 and THERM pins Output Low Voltage VOL 0.4 V ISINK = 8mA Leakage Current ILEAK ±5 μA ALERT / THERM2 and SYS_SHDN pins Device powered or unpowered TA < 85°C pull-up voltage < 3.6V Table 3.2 Electrical Specifications (continued) VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 12 SMSC EMC1182 DATASHEET 3.3 SMBus Electrical Characteristics Table 3.3 SMBus Electrical Specifications VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS SMBus Interface Input High Voltage VIH 1.4 VDD V 5V Tolerant. Voltage threshold based on 1.8V operation Input Low Voltage VIL -0.3 0.8 V 5V Tolerant. Voltage threshold based on 1.8V operation Leakage Current ILEAK ±5 μA Powered or unpowered TA < 85°C Hysteresis 50 mV Input Capacitance CIN 5 pF Output Low Sink Current IOL 8.2 15 mA SMDATA = 0.4V SMBus Timing Clock Frequency fSMB 10 400 kHz Spike Suppression tSP 50 ns Bus Free Time Stop to Start tBUF 1.3 μs Hold Time: Start tHD:STA 0.6 μs Setup Time: Start tSU:STA 0.6 μs Setup Time: Stop tSU:STO 0.6 μs Data Hold Time tHD:DAT 0 μs When transmitting to the master Data Hold Time tHD:DAT 0.3 μs When receiving from the master Data Setup Time tSU:DAT 100 ns Clock Low Period tLOW 1.3 μs Clock High Period tHIGH 0.6 μs Clock/Data Fall time tFALL 300 ns Min = 20+0.1CLOAD ns Clock/Data Rise time tRISE 300 ns Min = 20+0.1CLOAD ns Capacitive Load CLOAD 400 pF per bus line Timeout tTIMEOUT 25 35 ms Disabled by default Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 13 Revision 1.0 (07-11-13) DATASHEET Chapter 4 System Management Bus Interface Protocol 4.1 Communications Protocol The EMC1182 communicates with a host controller, such as an SMSC SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4.1. For the first 15ms after power-up the device may not respond to SMBus communications. . 4.1.1 SMBus Start Bit The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic ‘0’ state while the SMBus Clock line is in a logic ‘1’ state. 4.1.2 SMBus Address and RD / WR Bit The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If this RD / WR bit is a logic ‘0’, the SMBus Host is writing data to the client device. If this RD / WR bit is a logic ‘1’, the SMBus Host is reading data from the client device. The EMC1182-A SMBus slave address is determined by the pull-up resistor on the THERM pin as shown in Table 4.1, "SMBus Address Decode". The Address decode is performed by pulling known currents from VDD through the external resistor causing the pin voltage to drop based on the respective current / resistor relationship. This pin voltage is compared against a threshold that determines the value of the pull-up resistor. Figure 4.1 SMBus Timing Diagram Table 4.1 SMBus Address Decode PULL UP RESISTOR ON THERM PIN (±5%) SMBUS ADDRESS 4.7k 1111_100(r/w)b 6.8k 1011_100(r/w)b SMDATA SMCLK TBUF P S S - Start Condition S P - Stop Condition P T LOW T HIGH T HD:STA T SU:STO T HD:STA T HD:DAT T SU:DAT T SU:STA T FALL T RISE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 14 SMSC EMC1182 DATASHEET The EMC1182-1 SMBus address is hard coded to 1001_100(r/w). The EMC1182-2 SMBus address is hard coded to 1001_101(r/w). 4.1.3 THERM Pin Considerations Because of the decode method used to determine the SMBus Address, it is important that the pull-up resistance on the THERM pin be within the tolerances shown in Table 4.1. Additionally, the pull-up resistor on the THERM pin must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the THERM pin must not be pulled low or the SMBus address will not be decoded properly. If the system requirements do not permit these conditions, the THERM pin must be isolated from its hard-wired OR’d bus during this time. One method of isolating this pin is shown in Figure 4.4, "Isolating the THERM pin". 4.1.5 SMBus Data Bytes All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information. 4.1.6 SMBus ACK and NACK Bits The SMBus client will acknowledge all data bytes that it receives. This is done by the client device pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the Write Byte protocol. The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent. 10k 1001_100(r/w)b 15k 1101_100(r/w)b 22k 0011_100(r/w)b 33k 0111_100(r/w)b Figure 4.4 Isolating the THERM pin Table 4.1 SMBus Address Decode (continued) PULL UP RESISTOR ON THERM PIN (±5%) SMBUS ADDRESS +3.3V Shared THERM 22K 4.7K - 33K +2.5 - 5V EMC1182 8 7 6 5 SMDATA 1 SMCLK 2 3 4 ALERT / ADDR VDD DP DN THERM GND Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 15 Revision 1.0 (07-11-13) DATASHEET 4.1.7 SMBus Stop Bit The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic ‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the device detects an SMBus Stop bit and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications. 4.1.8 SMBus Timeout The EMC1182 supports SMBus Timeout. If the clock line is held low for longer than tTIMEOUT, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit (see Section 6.11, "Consecutive ALERT Register 22h"). 4.1.9 SMBus and I2C Compatibility The EMC1182 is compatible with SMBus and I2C. The major differences between SMBus and I2C devices are highlighted here. For more information, refer to the SMBus 2.0 and I2C specifications. For information on using the EMC1182 in an I2C system, refer to SMSC AN 14.0 SMSC Dedicated Slave Devices in I2C Systems. 1.EMC1182 supports I2C fast mode at 400kHz. This covers the SMBus max time of 100kHz. 2.Minimum frequency for SMBus communications is 10kHz. 3.The SMBus client protocol will reset if the clock is held at a logic ‘0’ for longer than 30ms. This timeout functionality is disabled by default in the EMC1182 and can be enabled by writing to the TIMEOUT bit. I2C does not have a timeout. 4.I2C devices do not support the Alert Response Address functionality (which is optional for SMBus). Attempting to communicate with the EMC1182 SMBus interface with an invalid slave address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing. 4.2 SMBus Protocols The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below. All of the below protocols use the convention in Table 4.1. Table 4.1 Protocol Format DATA SENT TO DEVICE DATA SENT TO THE HOST # of bits sent # of bits sent Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 16 SMSC EMC1182 DATASHEET 4.2.1 Write Byte The Write Byte is used to write one byte of data to the registers, as shown in Table 4.2. 4.2.2 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3. 4.2.3 Send Byte The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 4.4. 4.2.4 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 4.5. Table 4.2 Write Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK REGISTER DATA ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 XXh 0 0 -> 1 Table 4.3 Read Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_ YYY 0 0 XXh 0 1 -> 0 YYYY_ YYY 1 0 XX 1 0 -> 1 Table 4.4 Send Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 0 -> 1 Table 4.5 Receive Byte Protocol START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_YYY 1 0 XXh 1 0 -> 1 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 17 Revision 1.0 (07-11-13) DATASHEET 4.3 Alert Response Address The ALERT output can be used as a processor interrupt or as an SMBus Alert. When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address as shown in Table 4.6. The EMC1182 will respond to the ARA in the following way: 1.Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event). 2.Set the MASK_ALL bit to clear the ALERT pin. APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK_ALL bit is cleared prior to the Status Register being cleared, the ALERT pin will be reasserted. Table 4.6 Alert Response Address Protocol START ALERT RESPONSE ADDRESS RD ACK DEVICE ADDRESS NACK STOP 1 -> 0 0001_100 1 0 YYYY_YYY 1 0 -> 1 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 18 SMSC EMC1182 DATASHEET Chapter 5 Product Description The is an SMBus temperature sensor. The EMC1182 monitors one internal diode and one externally connected temperature diode. Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1182 and using that data to control the speed of one or more fans. The EMC1182 has two levels of monitoring. The first provides a maskable ALERT / THERM2 signal to the host when the measured temperatures exceeds user programmable limits. This allows theEMC1182 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring provides a non-maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second programmable limit. Figure 5.1 shows a system level block diagram of the EMC1182. 5.1 Modes of Operation The EMC1182 has two modes of operation. Active (Run) - In this mode of operation, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In Active mode, writing to the one-shot register will do nothing. Standby (Stop) - In this mode of operation, the majority of circuitry is powered down to reduce supply current. The temperature data is not updated and the limits are not checked. In this mode of operation, the SMBus is fully active and the part will return requested data. Writing to the oneshot register will enable the device to update all temperature channels. Once all the channels are updated, the device will return to the Standby mode. Figure 5.1 System Diagram for EMC1182 CPU / GPU EMC1182 Host DP DN SMDATA Thermal Junction SMCLK SMBus Interface THERM / ADDR ALERT / THERM2 Power Control VDD GND VDD = 3.3V 1.8V 1.8V – 3.3V Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 19 Revision 1.0 (07-11-13) DATASHEET 5.2 Conversion Rates The EMC1182 may be configured for different conversion rates based on the system requirements.The conversion rate is configured as described in Section 6.5. The default conversion rate is 4 conversions per second. Other available conversion rates are shown in Table 6.6, "Conversion Rate". 5.3 Dynamic Averaging Dynamic averaging causes the EMC1182 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.4, "Configuration Register 03h / 09h"). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement. When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.1. 5.4 THERM Output The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceed the user programmed Therm Limit values for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will remain asserted until all measured temperatures drop below the Therm Limit minus the Therm Hysteresis (also programmable). Table 5.1 Supply Current vs. Conversion Rate for EMC1182 CONVERSION RATE AVERAGE SUPPLY CURRENT (TYPICAL) AVERAGING FACTOR (BASED ON 11-BIT OPERATION) ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 210uA 200uA 16x 1x 1 / 8 sec 265uA 200uA 16x 1x 1 / 4 sec 330uA 200uA 16x 1x 1 / 2 sec 395uA 200uA 16x 1x 1 / sec 460uA 215uA 16x 1x 4 / sec (default) 890uA 325uA 8x 1x 8 / sec 1010uA 630uA 4x 1x 16 / sec 1120uA 775uA 2x 1x 32 / sec 1200uA 1050uA 1x 1x 64 / sec 1400uA 1100uA 0.5x 0.5x Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 20 SMSC EMC1182 DATASHEET When the THERM pin is asserted, the THERM status bits will likewise be set. Reading these bits will not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM status bits will be automatically cleared. 5.4.1 THERM Pin Considerations Because of the decode method used to determine the SMBus Address, it is important that the pull-up resistance on THERM pin be within ±10% tolerance. Additionally, the pull-up resistor on the THERMpin must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the THERM pin must not be pulled low or the SMBus Address will not be decoded properly. If the system requirements do not permit these conditions, the THERM pin must be isolated from the bus during this time. One method of isolating this pin is shown in Figure 5.2. . 5.5 ALERT / THERM2 Output The ALERT / THERM2 pin is an open drain output and requires a pull-up resistor to VDD and has two modes of operation: interrupt mode and comparator mode. The mode of the ALERT / THERM2 output is selected via the ALERT / COMPALERT/THERM bit in the Configuration Register (see Section 6.4). 5.5.1 ALERT / THERM2 Pin InterruptALERT Mode When configured to operate in interrupt mode, the ALERT / THERM2 pin asserts low when an out of limit measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected, functioning as any standard ALERT in on the SMBus. The ALERT / THERM2 pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT / THERM2 pin will remain asserted until the appropriate status bits are cleared. The ALERT/ THERM2 pin can be masked by setting the MASK_ALL bit. Once the ALERT / THERM2pin has been masked, it will be de-asserted and remain de-asserted until the MASK_ALL bit is cleared by the user. Any interrupt conditions that occur while the ALERT / THERM2 pin is masked will update the Status Register normally. There are also individual channel masks (see Section 6.10). The ALERT / THERM2 pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus slave to communicate an error condition to the master. One or more ALERT / THERM2 outputs can be hard-wired together. 5.5.2 ALERT / THERM2 Pin ComparatorTHERM Mode When the ALERT / THERM2 pin is configured to operate in comparator mode, it will be asserted if any of the measured temperatures exceeds the respective high limit, acting as a second THERM function Figure 5.2 Isolating THERM Pin EMC1182 SMDATA SMCLK ALERT VDD DP DN THERM / ADDR GND 1 2 3 4 8 7 6 5 +3.3V Shared THERM 22 K 4.73K3 - K +2.5 - 5V Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 21 Revision 1.0 (07-11-13) DATASHEET in. The ALERT / THERM2 pin will remain asserted until all temperatures drop below the corresponding high limit minus the Therm Hysteresis value. When the ALERT / THERM2 pin is asserted in comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT / THERM2 pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared. The MASK_ALL bit will not block the ALERT / THERM2 pin in this mode; however, the individual channel masks (see Section 6.10) will prevent the respective channel from asserting the ALERT/ THERM2 pin. 5.6 Temperature Measurement The EMC1182 can monitor the temperature of one externally connected diode. The device contains programmable High, Low, and Therm limits for all measured temperature channels. If the measured temperature goes below the Low limit or above the High limit, the ALERTpin can be asserted (based on user settings). If the measured temperature meets or exceeds the Therm Limit, the THERM pin is asserted unconditionally, providing two tiers of temperature detection. 5.6.1 Beta Compensation The EMC1182 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal diodes. For External Diode 1, it automatically detects the type of external diode (CPU diode or diode connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement. For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high such that the percent change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause large error. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C. 5.6.2 Resistance Error Correction (REC) Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents cause the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per ohm. The EMC1182 automatically corrects up to 100 ohms of series resistance. 5.6.3 Programmable External Diode Ideality Factor The EMC1182 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1182 provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 22 SMSC EMC1182 DATASHEET APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors. 5.7 Diode Faults The EMC1182 detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT / THERM2 pin asserts (unless masked, see Section 5.8) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from VDD to DP, or a short from VDD to DN. If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT / THERM2 pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers. If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts. 5.8 Consecutive Alerts The EMC1182 contains multiple consecutive alert counters. One set of counters applies to the ALERT / THERM2 pin and the second set of counters applies to the THERM pin. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT / THERM2 and THERM pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted. See Section 6.11, "Consecutive ALERT Register 22h" for more details on the consecutive alert function. 5.9 Digital Filter To reduce the effect of noise and temperature spikes on the reported temperature, the External Diodechannel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled (default) (see Section 6.14). The typical filter performance is shown in Figure 5.4 and Figure 5.5. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 23 Revision 1.0 (07-11-13) DATASHEET Figure 5.4 Temperature Filter Step Response Figure 5.5 Temperature Filter Impulse Response Filter Step Response 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 14 Samples Temperature (C) Disabled Level1 Level2 Filter Impulse Response 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 14 Samples Temperature (C) Disabled Level1 Level2 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 24 SMSC EMC1182 DATASHEET 5.10 Temperature Measurement Results and Data The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero. The EMC1182 has two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps. The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C. Table 5.2 shows the default and extended range formats. Table 5.2 Temperature Data Format TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE -64°C TO 191°C Diode Fault 000 0000 0000 000 0000 0000 -64 000 0000 0000 000 0000 0000 -1 000 0000 0000 001 1111 1000 0 000 0000 0000 010 0000 0000 0.125 000 0000 0001 010 0000 0001 1 000 0000 1000 010 0000 1000 64 010 0000 0000 100 0000 0000 65 010 0000 1000 100 0000 1000 127 011 1111 1000 101 1111 1000 127.875 011 1111 1111 101 1111 1111 128 011 1111 1111 110 0000 0000 190 011 1111 1111 111 1111 0000 191 011 1111 1111 111 1111 1000 >= 191.875 011 1111 1111 111 1111 1111 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 25 Revision 1.0 (07-11-13) DATASHEET Chapter 6 Register Description The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’. Table 6.1 Register Set in Hexadecimal Order REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE 00h R Internal Diode Data High Byte Stores the integer data for the Internal Diode 00h Page 27 01h R External Diode Data High Byte Stores the integer data for the External Diode 00h 02h R-C Status Stores status bits for the Internal Diode and External Diode 00h Page 28 03h R/W Configuration Controls the general operation of the device (mirrored at address 09h) 00h Page 28 04h R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 0Ah) 06h (4/sec) Page 29 05h R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 0Bh) 55h (85°C) Page 30 06h R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 0Ch) 00h (0°C) 07h R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 0Dh) 55h (85°C) 08h R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 0Eh) 00h (0°C) 09h R/W Configuration Controls the general operation of the device (mirrored at address 03h) 00h Page 28 0Ah R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 04h) 06h (4/sec) Page 29 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 26 SMSC EMC1182 DATASHEET 0Bh R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 05h) 55h (85°C) Page 30 0Ch R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 06h) 00h (0°C) 0Dh R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 07h) 55h (85°C) 0Eh R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 08h) 00h (0°C) 0Fh W One Shot A write to this register initiates a one shot update. 00h Page 31 10h R External Diode Data Low Byte Stores the fractional data for the External Diode 00h Page 27 11h R/W Scratchpad Scratchpad register for software compatibility 00h Page 31 12h R/W Scratchpad Scratchpad register for software compatibility 00h Page 31 13h R/W External Diode High Limit Low Byte Stores the fractional portion of the high limit for the External Diode 00h Page 30 14h R/W External Diode Low Limit Low Byte Stores the fractional portion of the low limit for the External Diode 00h 19h R/W External Diode Therm Limit Stores the 8-bit critical temperature limit for the External Diode 55h (85°C) Page 32 1Fh R/W Channel Mask Register Controls the masking of individual channels 00h Page 32 20h R/W Internal Diode Therm Limit Stores the 8-bit critical temperature limit for the Internal Diode 55h (85°C Page 32 21h R/W Therm Hysteresis Stores the 8-bit hysteresis value that applies to all Therm limits 0Ah (10°C) 22h R/W Consecutive ALERT Controls the number of out-of-limit conditions that must occur before an interrupt is asserted 70h Page 33 25h R/W External Diode1 Beta Configuration Stores the Beta Compensation circuitry settings for External Diode1 08h Page 35 27h R/W External Diode Ideality Factor Stores the ideality factor for the External Diode 12h (1.008) Page 35 Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 27 Revision 1.0 (07-11-13) DATASHEET 6.1 Data Read Interlock When any temperature channel high byte register is read, the corresponding low byte is copied into an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data. 6.2 Temperature Data Registers As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits. 29h R Internal Diode Data Low Byte Stores the fractional data for the Internal Diode 00h Page 27 40h R/W Filter Control Controls the digital filter setting for the External Diode channel 00h Page 37 FDh R Product ID Stores a fixed value that identifies the device 20h Page 37 FEh R Manufacturer ID Stores a fixed value that represents SMSC 5Dh Page 37 FFh R Revision Stores a fixed value that represents the revision number 07h Page 38 Table 6.2 Temperature Data Registers ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 00h R Internal Diode High Byte 128 64 32 16 8 4 2 1 00h 29h R Internal Diode Low Byte 0.5 0.25 0.125 - - - - - 00h 01h R External Diode High Byte 128 64 32 16 8 4 2 1 00h 10h R External Diode Low Byte 0.5 0.25 0.125 - - - - - 00h Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 28 SMSC EMC1182 DATASHEET 6.3 Status Register 02h The Status Register reports the operating status of the Internal Diode and External Diode channels. When any of the bits are set (excluding the BUSY bit) either the ALERT / THERM2 or THERM pin is being asserted. The ALERT / THERM2 and THERM pins are controlled by the respective consecutive alert counters (see Section 6.11) and will not be asserted until the programmed consecutive alert count has been reached. The status bits (except ETHERM and ITHERM) will remain set until read unless the ALERTpin is configured as a second THERM output (see Section 5.4). Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either the ALERT / THERM2 or THERM pin to be asserted. Bit 6 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 5 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 4 - EHIGH - This bit is set when the External Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 3 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 2 - FAULT - This bit is asserted when a diode fault is detected. When set, this bit will assert the ALERT / THERM2 pin. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds the programmed Therm Limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. Bit 0 - ITHERM - This bit is set when the Internal Diode channel exceeds the programmed Therm Limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. 6.4 Configuration Register 03h / 09h The Configuration Register controls the basic operation of the device. This register is fully accessible at either address. Table 6.3 Status Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 02h R-C Status BUSY IHIGH ILOW EHIGH ELOW FAULT ETHERM ITHERM 00h Table 6.4 Configuration Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 03h R/W Configuration MASK_ ALL RUN/ STOP ALERT/ THERM2 RECD - RANGE DAVG_ DIS - 00h 09h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 29 Revision 1.0 (07-11-13) DATASHEET Bit 7 - MASK_ALL - Masks the ALERT / THERM2 pin from asserting. ‘0’ - (default) - The ALERT / THERM2 pin is not masked. If any of the appropriate status bits are set the ALERT / THERM2 pin will be asserted. ‘1’ - The ALERT/ THERM2 pin is masked. It will not be asserted for any interrupt condition unless it is configured in comparator mode. The Status Registers will be updated normally. Bit 6 - RUN / STOP - Controls Active/Standby modes. ‘0’ (default) - The device is in Active mode and converting on all channels. ‘1’ - The device is in Standby mode and not converting. Bit 5 - ALERT/THERM2 - Controls the operation of the ALERT / THERM2 pin. ‘0’ (default) - The ALERT / THERM2 acts as an Alert pin and has interrupt behavior as described in Section 5.5.1. ‘1’ - The ALERT / THERM2 acts as a THERM pin and has comparator behavior as described in Section 5.5.2. In this mode the MASK_ALL bit is ignored. Bit 4 - RECD - Disables the Resistance Error Correction (REC) for the External Diode. ‘0’ (default) - REC is enabled for the External Diode. ‘1’ - REC is disabled for the External Diode. Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels. ‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is binary. ‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset binary (see Table 5.2). Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels. ‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 6.6. ‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 6.6. 6.5 Conversion Rate Register 04h / 0Ah The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6. Table 6.5 Conversion Rate Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 04h R/W Conversion Rate - - - - CONV[3:0] 06h 0Ah (4/sec) Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 30 SMSC EMC1182 DATASHEET 6.6 Limit Registers Table 6.6 Conversion Rate CONV[3:0] HEX 3 2 1 0 CONVERSIONS / SECOND 0h 0 0 0 0 / 16 1h 0 0 0 1 1 / 8 2h 0 0 1 0 1 / 4 3h 0 0 1 1 1 / 21 4h 0 1 0 0 1 5h 0 1 0 1 2 6h 0 1 1 0 4 (default) 7h 0 1 1 1 8 8h 1 0 0 0 16 9h 1 0 0 1 32 Ah 1 0 1 0 64 Bh - Fh All others 1 Table 6.7 Temperature Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 05h R/W Internal Diode High Limit 128 64 32 16 8 4 2 1 55h 0Bh (85°C) 06h R/W Internal Diode Low Limit 128 64 32 16 8 4 2 1 00h 0Ch (0°C) 07h R/W External Diode High Limit High Byte 128 64 32 16 8 4 2 1 55h 0Dh (85°C) 13h R/W External Diode High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 31 Revision 1.0 (07-11-13) DATASHEET The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT / THERM2 pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT / THERM2 pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format. The limit registers with multiple addresses are fully accessible at either address. When the device is in Standby mode, updating the limit registers will have no effect until the next conversion cycle occurs. This can be initiated via a write to the One Shot Register (see Section 6.8, "One Shot Register 0Fh") or by clearing the RUN / STOP bit (see Section 6.4, "Configuration Register 03h / 09h"). 6.7 Scratchpad Registers 11h and 12h The Scratchpad Registers are Read / Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them. 6.8 One Shot Register 0Fh The One Shot Register is used to initiate a one shot command. Writing to the one shot register when the device is in Standby mode and BUSY bit (in Status Register) is ‘0’, will immediately cause the ADC to update all temperature measurements. Writing to the One Shot Register while the device is in Active mode will have no effect. 08h R/W External Diode Low Limit High Byte 128 64 32 16 8 4 2 1 00h 0Eh (0°C) 14h R/W External Diode Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h Table 6.8 Scratchpad Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 11h R/W Scratchpad 7 6 5 4 3 2 1 0 00h 12h R/W Scratchpad 7 6 5 4 3 2 1 0 00h Table 6.7 Temperature Limit Registers (continued) ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 32 SMSC EMC1182 DATASHEET 6.9 Therm Limit Registers The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the Therm Limit, the THERM pin is asserted. The limit setting must match the chosen data format of the temperature reading registers. Unlike the ALERT / THERM2 pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released once the temperature drops below the corresponding threshold minus the Therm Hysteresis. 6.10 Channel Mask Register 1Fh The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT / THERM2 pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the THERM pin. Bit 1 - EXTMASK - Masks the ALERT / THERM2 pin from asserting when the External Diode channel is out of limit or reports a diode fault. ‘0’ (default) - The External Diode channel will cause the ALERT / THERM2 pin to be asserted if it is out of limit or reports a diode fault. ‘1’ - The External Diode channel will not cause the ALERT / THERM2 pin to be asserted if it is out of limit or reports a diode fault. Bit 0 - INTMASK - Masks the ALERT / THERM2 pin from asserting when the Internal Diode temperature is out of limit. ‘0’ (default) - The Internal Diode channel will cause the ALERT / THERM2 pin to be asserted if it is out of limit. ‘1’ - The Internal Diode channel will not cause the ALERT / THERM2 pin to be asserted if it is out of limit. Table 6.9 Therm Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 19h R/W External Diode Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 20h R/W Internal Diode Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 21h R/W Therm Hysteresis 128 64 32 16 8 4 2 1 0Ah (10°C) Table 6.10 Channel Mask Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Fh R/W Channel Mask - - - - - - EXT MASK INT MASK 00h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 33 Revision 1.0 (07-11-13) DATASHEET 6.11 Consecutive ALERT Register 22h The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT / THERM2 or THERM pin is asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality. An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading. When the ALERT / THERM2 pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STATUS bit(s) for that channel and the last error condition(s) (i.e. EHIGH) will be set to ‘1’, the ALERT / THERM2 pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue. When the ALERT / THERM2 pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT/ THERM2 pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the Therm Hysteresis value. For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1182 device, the high limits are set at 70°C, and none of the channels are masked, the ALERT / THERM2 pin will be asserted after the following four measurements: 1.Internal Diode reads 71°C and the external diode reads 69°C. Consecutive alert counter for INT is incremented to 1. 2.Both the Internal Diode and the External Diode read 71°C. Consecutive alert counter for INT is incremented to 2 and for EXT is set to 1. 3.The External Diode reads 71°C and the Internal Diode reads 69°C. Consecutive alert counter for INT is cleared and EXT is incremented to 2. 4.The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is set to 1 and EXT is incremented to 3. 5.The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is incremented to 2 and EXT is incremented to 4. The appropriate status bits are set for EXTand the ALERT / THERM2 pin is asserted. EXT counter is reset to 0 and all other counters hold the last value until the next temperature measurement. Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled. ‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely without the device resetting its SMBus protocol. ‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than tTIMEOUT, the device will reset the SMBus protocol. Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding Therm Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is asserted. All temperature channels use this value to set the respective counters. The consecutive THERM counter is incremented whenever any of the measurements exceed the corresponding Therm Limit or if the External Diode measurement exceeds the Hardware Thermal Shutdown Limit. Table 6.11 Consecutive ALERT Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 22h R/W Consecutive ALERT TIME OUT CTHRM[2:0] CALRT[2:0] - 70h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 34 SMSC EMC1182 DATASHEET If the temperature drops below the Therm Limit or Hardware Thermal Shutdown Limit, the counter is reset. If the programmed number of consecutive measurements exceed the Therm Limit or Hardware Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin, the SYS_SHDNpin will be asserted low. Once the SYS_SHDN pin is asserted, the consecutive Therm counter will not reset until the corresponding temperature drops below the appropriate limit minus the corresponding hysteresis. Bits 6-4 - CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding Therm Limit before the THERM pin is asserted. All temperature channels use this value to set the respective counters. The consecutive Therm counter is incremented whenever any measurement exceed the corresponding Therm Limit. If the temperature drops below the Therm Limit, the counter is reset. If a number of consecutive measurements above the Therm Limit occurs, the THERM pin is asserted low. Once the THERM pin has been asserted, the consecutive therm counter will not reset until the corresponding temperature drops below the Therm Limit minus the Therm Hysteresis value. The bits are decoded as shown in Table 6.12. The default setting is 4 consecutive out of limit conversions. Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of limit condition or diode fault before the ALERT / THERM2 pin is asserted. Both temperature channels use this value to set the respective counters. The bits are decoded as shown in Table 6.12. The default setting is 1 consecutive out of limit conversion. 6.12 Beta Configuration Register 25h This register is used to set the Beta Compensation factor that is used for the external diode channel. ‘0’ - The Beta Compensation Factor auto-detection circuitry is disabled. ‘1’ (default) - The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. Table 6.12 Consecutive Alert / Therm Settings 2 1 0 NUMBER OF CONSECUTIVE OUT OF LIMIT MEASUREMENTS 0 0 0 1 (default for CALRT[2:0]) 0 0 1 2 0 1 1 3 1 1 1 4 (default for CTHRM[2:0]) Table 6.13 Beta Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 25h R/W External Diode Beta Configuration - - - - ENABLE BETA[2:0] 08h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 35 Revision 1.0 (07-11-13) DATASHEET 6.13 External Diode Ideality Factor Register 27h This register stores the ideality factors that are applied to the external diode. Table 6.15 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors; therefore, it is not recommended that these settings be updated without consulting SMSC. For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 6.16 when using a CPU substrate transistor. Table 6.14 Ideality Configuration Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 27h R/W External Diode Ideality Factor - - IDEALITY[5:0] 12h Table 6.15 Ideality Factor Look-Up Table (Diode Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9949 18h 1.0159 28h 1.0371 09h 0.9962 19h 1.0172 29h 1.0384 0Ah 0.9975 1Ah 1.0185 2Ah 1.0397 0Bh 0.9988 1Bh 1.0200 2Bh 1.0410 0Ch 1.0001 1Ch 1.0212 2Ch 1.0423 0Dh 1.0014 1Dh 1.0226 2Dh 1.0436 0Eh 1.0027 1Eh 1.0239 2Eh 1.0449 0Fh 1.0040 1Fh 1.0253 2Fh 1.0462 10h 1.0053 20h 1.0267 30h 1.0475 11h 1.0066 21h 1.0280 31h 1.0488 12h 1.0080 22h 1.0293 32h 1.0501 13h 1.0093 23h 1.0306 33h 1.0514 14h 1.0106 24h 1.0319 34h 1.0527 15h 1.0119 25h 1.0332 35h 1.0540 16h 1.0133 26h 1.0345 36h 1.0553 17h 1.0146 27h 1.0358 37h 1.0566 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 36 SMSC EMC1182 DATASHEET APPLICATION NOTE: When measuring a 65nm Intel CPU, the Ideality Setting should be the default 12h. When measuring a 45nm Intel CPU, the Ideality Setting should be 15h. Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit. Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. Bit 1 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9869 18h 1.0079 28h 1.0291 09h 0.9882 19h 1.0092 29h 1.0304 0Ah 0.9895 1Ah 1.0105 2Ah 1.0317 0Bh 0.9908 1Bh 1.0120 2Bh 1.0330 0Ch 0.9921 1Ch 1.0132 2Ch 1.0343 0Dh 0.9934 1Dh 1.0146 2Dh 1.0356 0Eh 0.9947 1Eh 1.0159 2Eh 1.0369 0Fh 0.9960 1Fh 1.0173 2Fh 1.0382 10h 0.9973 20h 1.0187 30h 1.0395 11h 0.9986 21h 1.0200 31h 1.0408 12h 1.0000 22h 1.0213 32h 1.0421 13h 1.0013 23h 1.0226 33h 1.0434 14h 1.0026 24h 1.0239 34h 1.0447 15h 1.0039 25h 1.0252 35h 1.0460 16h 1.0053 26h 1.0265 36h 1.0473 17h 1.0066 27h 1.0278 37h 1.0486 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 37 Revision 1.0 (07-11-13) DATASHEET 6.14 Filter Control Register 40h The Filter Configuration Register controls the digital filter on the External Diode channel. Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diodetemperature measurement as shown in Table 6.18. See Figure 5.4 and Figure 5.5 for examples on the filter behavior. 6.15 Product ID Register The Product ID Register holds a unique value that identifies the device. 6.16 SMSC ID Register The Manufacturer ID register contains an 8-bit word that identifies the SMSC as the manufacturer of the EMC1182. Table 6.17 Filter Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 40h R/W Filter Control - - - - - - FILTER[1:0] 00h Table 6.18 FILTER Decode FILTER[1:0] 1 0 AVERAGING 0 0 Disabled (default) 0 1 Level 1 1 0 Level 1 1 1 Level 2 Table 6.19 Product ID Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FDh R Product ID 0 0 1 0 0 0 0 0 20h Table 6.20 Manufacturer ID Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FEh R SMSC ID 0 1 0 1 1 1 0 1 5Dh Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 38 SMSC EMC1182 DATASHEET 6.17 Revision Register The Revision register contains an 8-bit word that identifies the die revision. Table 6.21 Revision Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FFh R Revision 0 0 0 0 0 1 1 1 07h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 39 Revision 1.0 (07-11-13) DATASHEET Chapter 7 Typical Operating Curves Temperature Error vs. Filter Capacitor (2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V) -1.0 -0.8 -0.5 -0.3 0.0 0.3 0.5 0.8 1.0 0 1000 2000 3000 4000 Filter Capacitor (pF) Temperature Error (°C) Temperature Error vs. Ambient Temperature (2N3904, TDIODE = 42.5°C, VDD = 3.3V) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) Temperature Error (°C) Temperature Error vs. External Diode Temperature (2N3904, TA = 42.5°C, VDD = 3.3V) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 External Diode Temperature (°C) Temperature Error (°C) Temperature Error vs. CPU Temperature Typical 65nm CPU from major vendor (TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 470pF) -1 0 1 2 3 4 5 20 40 60 80 100 120 CPU Temperature (°C) Temperature Error (°C) Beta Compensation Disabled Beta Compensation Enabled Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 40 SMSC EMC1182 DATASHEET Chapter 8 Package Information Figure 8.1 2mm x 3mm TDFN Package Drawing Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 41 Revision 1.0 (07-11-13) DATASHEET Figure 8.2 2mm x 3mm TDFN Package Dimensions Figure 8.3 2mm x 3mm TDFN Package PCB Land Pattern Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 42 SMSC EMC1182 DATASHEET Figure 8.4 3mm x 3mm DFN Package Drawing Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 43 Revision 1.0 (07-11-13) DATASHEET Figure 8.5 3mm x 3mm DFN Package Dimensions Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 44 SMSC EMC1182 DATASHEET Figure 8.6 8 Pin DFN PCB Footprint Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 45 Revision 1.0 (07-11-13) DATASHEET 8.1 Package Markings The EMC1182 devices will be marked as shown in Figure 8.7, Figure 8.8., Figure 8.9, Figure 8.10 and Figure 8.11. Figure 8.7 EMC1182-1 8-Pin TDFN Package Markings Figure 8.8 EMC1182-2 8-Pin TDFN Package Markings BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED C R BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED D R Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 46 SMSC EMC1182 DATASHEET Figure 8.9 EMC1182-A 8-Pin TDFN Package Markings Figure 8.10 EMC1182-1 8-Pin DFN Package Markings BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED A R BOTTOM LINE 1: Device Code, First two digits of 6 digits of lot number LINE 2: Last 4 digits of lot number TOP PIN 1 4 4 BOTTOM MARKING IS NOT ALLOWED L L L L L L Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 47 Revision 1.0 (07-11-13) DATASHEET Figure 8.11 EMC1182-2 8-Pin DFN Package Markings BOTTOM LINE 1: Device Code, First two digits of 6 digits of lot number LINE 2: Last 4 digits of lot number TOP PIN 1 4 4 BOTTOM MARKING IS NOT ALLOWED L L L L L L Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 48 SMSC EMC1182 DATASHEET Chapter 9 Datasheet Revision History Table 9.1 Customer Revision History REVISION LEVEL & DATE SECTION/FIGURE/ENTRY CORRECTION Rev. 1.0 (07-11-13) Formal document release 8235E–AVR–03/2013 Features High performance, low power 8-bit AVR® microcontroller Advanced RISC architecture 112 powerful instructions – most single clock cycle execution 16 x 8 general purpose working registers Fully static operation Up to 12 MIPS throughput at 12MHz Non-volatile program and data memories 2K bytes of in-system programmable flash program memory 128 bytes internal SRAM Flash write/erase cycles: 10,000 Data retention: 20 years at 85oC / 100 years at 25oC Peripheral features One 8-bit timer/counter with two PWM channels One 16-bit timer/counter with two PWM channels 10-bit analog to digital converter 8 single-ended channels Programmable watchdog timer with separate on-chip oscillator On-chip analog comparator Master/slave SPI serial interface Slave TWI serial interface Special microcontroller features In-system programmable External and internal interrupt sources Low power idle, ADC noise reduction, stand-by and power-down modes Enhanced power-on reset circuit Internal calibrated oscillator I/O and packages 14-pin SOIC/TSSOP: 12 programmable I/O lines 12-ball WLCSP: 10 programmable I/O lines 15-ball UFBGA: 12 programmable I/O lines 20-pad VQFN: 12 programmable I/O lines Operating voltage: 1.8 – 5.5V Programming voltage: 5V Speed grade 0 – 4MHz @ 1.8 – 5.5V 0 – 8MHz @ 2.7 – 5.5V 0 – 12MHz @ 4.5 – 5.5V Industrial temperature range Low power consumption Active mode: 200 μA at 1MHz and 1.8V Idle mode: 25μA at 1MHz and 1.8V Power-down mode: < 0.1μA at 1.8V ATtiny20 8-bit AVR Microcontroller with 2K Bytes In-System Programmable Flash DATASHEET ATtiny20 [DATASHEET] 2 8235E–AVR–03/2013 1. Pin Configurations 1.1 SOIC & TSSOP Figure 1-1. SOIC/TSSOP 1.2 VQFN Figure 1-2. VQFN 1 2 3 4 5 6 7 14 13 12 11 10 9 8 VCC (PCINT8/TPICLK/T0/CLKI) PB0 (PCINT9/TPIDATA/MOSI/SDA/OC1A) PB1 (PCINT11/RESET) PB3 (PCINT10/INT0/MISO/OC1B/OC0A/CKOUT) PB2 (PCINT7/SCL/SCK/T1/ICP1/OC0B/ADC7) PA7 (PCINT6/SS/ADC6) PA6 GND PA0 (ADC0/PCINT0) PA1 (ADC1/AIN0/PCINT1) PA2 (ADC2/AIN1/PCINT2) PA3 (ADC3/PCINT3) PA4 (ADC4/PCINT4) PA5 (ADC5/PCINT5) 1 2 3 4 5 15 14 13 12 11 20 19 18 17 16 6 7 8 9 10 NOTE Bottom pad should be soldered to ground. DNC: Do Not Connect DNC DNC GND VCC DNC PA7 (ADC7/OC0B/ICP1/T1/SCL/SCK/PCINT7) PB2 (CKOUT/OC0A/OC1B/MISO/INT0/PCINT10) PB3 (RESET/PCINT11) PB1 (OC1A/SDA/MOSI/TPIDATA/PCINT9) PB0 (CLKI/T0/TPICLK/PCINT8) DNC DNC DNC PA5 (ADC5/PCINT5) PA6 (ADC6/PCINT6/SS) (PCINT4/ADC4) PA4 (PCINT3/ADC3) PA3 (PCINT2/AIN1/ADC2) PA2 (PCINT1/AIN0/ADC1) PA1 (PCINT0/ADC0) PA0 ATtiny20 [DATASHEET] 3 8235E–AVR–03/2013 1.3 UFBGA Figure 1-3. UFBGA Table 1-1. UFBGA Pin Configuration 1.4 Wafer Level Chip Scale Package Figure 1-4. WLCSP Table 1-2. WLCSP Ball Configuration 1 2 3 4 A PA5 PA6 PB2 B PA4 PA7 PB1 PB3 C PA3 PA2 PA1 PB0 D PA0 GND GND VCC A B C D 1 2 3 4 A B C D 4 3 2 1 TOP VIEW BOTTOM VIEW 1 2 3 4 5 6 A PA4 PA1 PA2 B PA6 GND VDD C PA5 PA7 PB1 D PB2 PB3 PB0 A B C D 1 2 3 4 A B C D 6 5 4 3 2 1 TOP VIEW BOTTOM VIEW ATtiny20 [DATASHEET] 4 8235E–AVR–03/2013 1.5 Pin Description 1.5.1 VCC Supply voltage. 1.5.2 GND Ground. 1.5.3 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 20-4 on page 170. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 1.5.4 Port A (PA7:PA0) Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A has alternate functions as analog inputs for the ADC, analog comparator and pin change interrupt as described in “Alternate Port Functions” on page 47. 1.5.5 Port B (PB3:PB0) Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. The port also serves the functions of various special features of the ATtiny20, as listed on page 37. ATtiny20 [DATASHEET] 5 8235E–AVR–03/2013 2. Overview ATtiny20 is a low-power CMOS 8-bit microcontroller based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny20 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Figure 2-1. Block Diagram STACK POINTER SRAM PROGRAM COUNTER PROGRAMMING LOGIC ISP INTERFACE INTERNAL OSCILLATOR WATCHDOG TIMER RESET FLAG REGISTER MCU STATUS REGISTER TIMER/ COUNTER0 CALIBRATED OSCILLATOR TIMING AND CONTROL INTERRUPT UNIT ANALOG COMPARATOR ADC GENERAL PURPOSE REGISTERS X Y Z ALU STATUS REGISTER PROGRAM FLASH INSTRUCTION REGISTER INSTRUCTION DECODER CONTROL LINES VCC RESET DATA REGISTER PORT A DIRECTION REG. PORT A DRIVERS PORT A PA[7:0] GND 8-BIT DATA BUS TIMER/ COUNTER1 TWI SPI DATA REGISTER PORT B DIRECTION REG. PORT B DRIVERS PORT B PB[3:0] ATtiny20 [DATASHEET] 6 8235E–AVR–03/2013 The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. ATtiny20 provides the following features: 2K bytes of in-system programmable Flash 128 bytes of SRAM Twelve general purpose I/O lines 16 general purpose working registers An 8-bit Timer/Counter with two PWM channels A 16-bit Timer/Counter with two PWM channels Internal and external interrupts An eight-channel, 10-bit ADC A programmable Watchdog Timer with internal oscillator A slave two-wire interface A master/slave serial peripheral interface An internal calibrated oscillator Four software selectable power saving modes The device includes the following modes for saving power: Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI, TWI, and interrupt system to continue functioning ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC Power-down mode: registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset Standby mode: the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The on-chip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer. The ATtiny20 AVR is supported by a suite of program and system development tools, including macro assemblers and evaluation kits. ATtiny20 [DATASHEET] 7 8235E–AVR–03/2013 3. General Information 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. 3.3 Capacitive Touch Sensing Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisition methods. Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor. The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website. 3.4 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 3.5 Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. ATtiny20 [DATASHEET] 8 8235E–AVR–03/2013 4. CPU Core This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 4.1 Architectural Overview Figure 4-1. Block Diagram of the AVR Architecture In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 16 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Flash Program Memory Instruction Register Instruction Decoder Program Counter Control Lines 16 x 8 General Purpose Registrers ALU Status and Control I/O Lines Data Bus 8-bit Data SRAM Direct Addressing Indirect Addressing Interrupt Unit Watchdog Timer Analog Comparator Timer/Counter 0 ADC TWI Slave SPI Timer/Counter 1 ATtiny20 [DATASHEET] 9 8235E–AVR–03/2013 Six of the 16 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, capable of directly addressing the whole address space. Most AVR instructions have a single 16-bit word format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices only implement a part of the instruction set. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the four different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O memory can be accessed as the data space locations, 0x0000 - 0x003F. 4.2 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 16 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for a detailed description. 4.3 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in document “AVR Instruction Set” and section “Instruction Set Summary” on page 205. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 4.4 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: One 8-bit output operand and one 8-bit result input Two 8-bit output operands and one 8-bit result input One 16-bit output operand and one 16-bit result input Figure 4-2 below shows the structure of the 16 general purpose working registers in the CPU. ATtiny20 [DATASHEET] 10 8235E–AVR–03/2013 Figure 4-2. AVR CPU General Purpose Working Registers Note: A typical implementation of the AVR register file includes 32 general prupose registers but ATtiny20 implements only 16 registers. For reasons of compatibility the registers are numbered R16:R31 and not R0:R15. Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. 4.4.1 The X-register, Y-register, and Z-register Registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 4-3. Figure 4-3. The X-, Y-, and Z-registers In different addressing modes these address registers function as automatic increment and automatic decrement (see document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for details). 4.5 Stack Pointer The stack is mainly used for storing temporary data, local variables and return addresses after interrupts and subroutine calls. The Stack Pointer registers (SPH and SPL) always point to the top of the stack. Note that the stack grows from higher memory locations to lower memory locations. This means that the PUSH instructions decreases and the POP instruction increases the stack pointer value. 7 0 R16 R16 R17 R17 General R18 R18 Purpose … ... Working R26 R26 X-register Low Byte Registers R27 R27 X-register High Byte R28 R28 Y-register Low Byte R29 R29 Y-register High Byte R30 R30 Z-register Low Byte R31 R31 Z-register High Byte 15 XH XL 0 X-register 7 07 0 R27 R26 15 YH YL 0 Y-register 7 07 0 R29 R28 15 ZH ZL 0 Z-register 7 07 0 R31 R30 ATtiny20 [DATASHEET] 11 8235E–AVR–03/2013 The stack pointer points to the area of data memory where subroutine and interrupt stacks are located. This stack space must be defined by the program before any subroutine calls are executed or interrupts are enabled. The pointer is decremented by one when data is put on the stack with the PUSH instruction, and incremented by one when data is fetched with the POP instruction. It is decremented by two when the return address is put on the stack by a subroutine call or a jump to an interrupt service routine, and incremented by two when data is fetched by a return from subroutine (the RET instruction) or a return from interrupt service routine (the RETI instruction). The AVR stack pointer is typically implemented as two 8-bit registers in the I/O register file. The width of the stack pointer and the number of bits implemented is device dependent. In some AVR devices all data memory can be addressed using SPL, only. In this case, the SPH register is not implemented. The stack pointer must be set to point above the I/O register areas, the minimum value being the lowest address of SRAM. See Figure 5-1 on page 15. 4.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 4-4. The Parallel Instruction Fetches and Instruction Executions Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 4-5. Single Cycle ALU Operation clk 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch T1 T2 T3 T4 CPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back T1 T2 T3 T4 clkCPU ATtiny20 [DATASHEET] 12 8235E–AVR–03/2013 4.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate Program Vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 36. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts, as shown in the following example. Note: See “Code Examples” on page 7. 4.7.1 Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode. A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is set. Assembly Code Example sei ; set Global Interrupt Enable sleep ; enter sleep, waiting for interrupt ; note: will enter sleep before any pending interrupt(s) ATtiny20 [DATASHEET] 13 8235E–AVR–03/2013 4.8 Register Description 4.8.1 CCP – Configuration Change Protection Register Bits 7:0 – CCP[7:0]: Configuration Change Protection In order to change the contents of a protected I/O register the CCP register must first be written with the correct signature. After CCP is written the protected I/O registers may be written to during the next four CPU instruction cycles. All interrupts are ignored during these cycles. After these cycles interrupts are automatically handled again by the CPU, and any pending interrupts will be executed according to their priority. When the protected I/O register signature is written, CCP0 will read as one as long as the protected feature is enabled, while CCP[7:1] will always read as zero. Table 4-1 shows the signatures that are recognised. Table 4-1. Signatures Recognised by the Configuration Change Protection Register Notes: 1. Only WDE and WDP[3:0] bits are protected in WDTCSR. 2. Only BODS bit is protected in MCUCR. 4.8.2 SPH and SPL — Stack Pointer Registers Bits 7:0 – SP[7:0]: Stack Pointer The Stack Pointer register points to the top of the stack, which is implemented growing from higher memory locations to lower memory locations. Hence, a stack PUSH command decreases the stack pointer. The stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. In ATtiny20, the SPH register has not been implemented. Bit 7 6 5 4 3 2 1 0 0x3C CCP[7:0] CCP Read/Write W W W W W W W R/W Initial Value 0 0 0 0 0 0 0 0 Signature Group Description 0xD8 IOREG: CLKMSR, CLKPSR, WDTCSR(1), MCUCR(2) Protected I/O register Initial Value 0 0 0 0 0 0 0 0 Read/Write R R R R R R R R Bit 15 14 13 12 11 10 9 8 0x3E – – – – – – – – SPH 0x3D SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL Bit 7 6 5 4 3 2 1 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND ATtiny20 [DATASHEET] 14 8235E–AVR–03/2013 4.8.3 SREG – Status Register Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the document “AVR Instruction Set” and “Instruction Set Summary” on page 205. Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 4 – S: Sign Bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 7 6 5 4 3 2 1 0 0x3F I T H S V N Z C SREG Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 15 8235E–AVR–03/2013 5. Memories This section describes the different memories in the ATtiny20. The device has two main memory areas, the program memory space and the data memory space. 5.1 In-System Re-programmable Flash Program Memory The ATtiny20 contains 2K byte on-chip, in-system reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 1024 x 16. The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATtiny20 Program Counter (PC) is 10 bits wide, thus capable of addressing the 1024 program memory locations, starting at 0x000. “Memory Programming” on page 159 contains a detailed description on Flash data serial downloading. Constant tables can be allocated within the entire address space of program memory. Since program memory can not be accessed directly, it has been mapped to the data memory. The mapped program memory begins at byte address 0x4000 in data memory (see Figure 5-1 on page 15). Although programs are executed starting from address 0x000 in program memory it must be addressed starting from 0x4000 when accessed via the data memory. Internal write operations to Flash program memory have been disabled and program memory therefore appears to firmware as read-only. Flash memory can still be written to externally but internal write operations to the program memory area will not be succesful. Timing diagrams of instruction fetch and execution are presented in “Instruction Execution Timing” on page 11. 5.2 Data Memory Data memory locations include the I/O memory, the internal SRAM memory, the non-volatile memory lock bits, and the Flash memory. See Figure 5-1 for an illustration on how the ATtiny20 memory space is organized. Figure 5-1. Data Memory Map (Byte Addressing) The first 64 locations are reserved for I/O memory, while the following 128 data memory locations (from 0x0040 to 0x00BF) address the internal data SRAM. 0x0000 ... 0x003F 0x0040 ... 0x00BF 0x00C0 ... 0x3EFF 0x3F00 ... 0x3F01 0x3F02 ... 0x3F3F 0x3F40 ... 0x3F41 0x3F42 ... 0x3F7F 0x3F80 ... 0x3F81 0x3F82 ... 0x3FBF 0x3FC0 ... 0x3FC3 0x3FC4 ... 0x3FFF 0x4000 ... 0x47FF 0x4800 ... 0xFFFF I/O SPACE SRAM DATA MEMORY (reserved) NVM LOCK BITS (reserved) CONFIGURATION BITS (reserved) CALIBRATION BITS (reserved) DEVICE ID BITS (reserved) FLASH PROGRAM MEMORY (reserved) ATtiny20 [DATASHEET] 16 8235E–AVR–03/2013 The non-volatile memory lock bits and all the Flash memory sections are mapped to the data memory space. These locations appear as read-only for device firmware. The four different addressing modes for data memory are direct, indirect, indirect with pre-decrement, and indirect with post-increment. In the register file, registers R26 to R31 function as pointer registers for indirect addressing. The IN and OUT instructions can access all 64 locations of I/O memory. Direct addressing using the LDS and STS instructions reaches the 128 locations between 0x0040 and 0x00BF. The indirect addressing reaches the entire data memory space. When using indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y, and Z are decremented or incremented. 5.2.1 Data Memory Access Times This section describes the general access timing concepts for internal memory access. The internal data SRAM access is performed in two clkCPU cycles as described in Figure 5-2. Figure 5-2. On-chip Data SRAM Access Cycles 5.3 I/O Memory The I/O space definition of the ATtiny20 is shown in “Register Summary” on page 203. All ATtiny20 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed using the LD and ST instructions, enabling data transfer between the 16 general purpose working registers and the I/O space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. Some of the status flags are cleared by writing a logical one to them. Note that CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work on registers in the address range 0x00 to 0x1F, only. The I/O and Peripherals Control Registers are explained in later sections. clk WR RD Data Data Address Address valid T1 T2 T3 Compute Address Read Write CPU Memory Access Instruction Next Instruction ATtiny20 [DATASHEET] 17 8235E–AVR–03/2013 6. Clock System Figure 6-1 presents the principal clock systems and their distribution in ATtiny20. All of the clocks need not be active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different sleep modes and power reduction register bits, as described in “Power Management and Sleep Modes” on page 23. The clock systems is detailed below. Figure 6-1. Clock Distribution 6.1 Clock Subsystems The clock subsystems are detailed in the sections below. 6.1.1 CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR Core. Examples of such modules are the General Purpose Register File, the System Registers and the SRAM data memory. Halting the CPU clock inhibits the core from performing general operations and calculations. 6.1.2 I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counter. The I/O clock is also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted. 6.1.3 NVM clock - clkNVM The NVM clock controls operation of the Non-Volatile Memory Controller. The NVM clock is usually active simultaneously with the CPU clock. CLOCK CONTROL UNIT GENERAL I/O MODULES ANALOG-TO-DIGITAL CONVERTER CPU CORE WATCHDOG TIMER RESET LOGIC CLOCK PRESCALER RAM CLOCK SWITCH NVM CALIBRATED OSCILLATOR clkADC SOURCE CLOCK clk I/O clkCPU clkNVM WATCHDOG CLOCK WATCHDOG OSCILLATOR EXTERNAL CLOCK ATtiny20 [DATASHEET] 18 8235E–AVR–03/2013 6.1.4 ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion results. 6.2 Clock Sources All synchronous clock signals are derived from the main clock. The device has three alternative sources for the main clock, as follows: Calibrated Internal 8 MHz Oscillator (see page 18) External Clock (see page 18) Internal 128 kHz Oscillator (see page 18) See Table 6-3 on page 21 on how to select and change the active clock source. 6.2.1 Calibrated Internal 8 MHz Oscillator The calibrated internal oscillator provides an approximately 8 MHz clock signal. Though voltage and temperature dependent, this clock can be very accurately calibrated by the user. See Table 20-2 on page 169, and “Internal Oscillator Speed” on page 200 for more details. This clock may be selected as the main clock by setting the Clock Main Select bits CLKMS[1:0] in CLKMSR to 0b00. Once enabled, the oscillator will operate with no external components. During reset, hardware loads the calibration byte into the OSCCAL register and thereby automatically calibrates the oscillator. The accuracy of this calibration is shown as Factory calibration in Table 20-2 on page 169. When this oscillator is used as the main clock, the watchdog oscillator will still be used for the watchdog timer and reset time-out. For more information on the pre-programmed calibration value, see section “Calibration Section” on page 162. 6.2.2 External Clock To use the device with an external clock source, CLKI should be driven as shown in Figure 6-2. The external clock is selected as the main clock by setting CLKMS[1:0] bits in CLKMSR to 0b10. Figure 6-2. External Clock Drive Configuration When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock frequency. 6.2.3 Internal 128 kHz Oscillator The internal 128 kHz oscillator is a low power oscillator providing a clock of 128 kHz. The frequency depends on supply voltage, temperature and batch variations. This clock may be select as the main clock by setting the CLKMS[1:0] bits in CLKMSR to 0b01. EXTERNAL CLOCK SIGNAL CLKI GND ATtiny20 [DATASHEET] 19 8235E–AVR–03/2013 6.2.4 Switching Clock Source The main clock source can be switched at run-time using the “CLKMSR – Clock Main Settings Register” on page 20. When switching between any clock sources, the clock system ensures that no glitch occurs in the main clock. 6.2.5 Default Clock Source The calibrated internal 8 MHz oscillator is always selected as main clock when the device is powered up or has been reset. The synchronous system clock is the main clock divided by 8, controlled by the System Clock Prescaler. The Clock Prescaler Select Bits can be written later to change the system clock frequency. See “System Clock Prescaler”. 6.3 System Clock Prescaler The system clock is derived from the main clock via the System Clock Prescaler. The system clock can be divided by setting the “CLKPSR – Clock Prescale Register” on page 21. The system clock prescaler can be used to decrease power consumption at times when requirements for processing power is low or to bring the system clock within limits of maximum frequency. The prescaler can be used with all main clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. The System Clock Prescaler can be used to implement run-time changes of the internal clock frequency while still ensuring stable operation. 6.3.1 Switching Prescaler Setting When switching between prescaler settings, the system clock prescaler ensures that no glitch occurs in the system clock and that no intermediate frequency is higher than neither the clock frequency corresponding the previous setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at the frequency of the main clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to another cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period corresponding to the new prescaler setting. 6.4 Starting 6.4.1 Starting from Reset The internal reset is immediately asserted when a reset source goes active. The internal reset is kept asserted until the reset source is released and the start-up sequence is completed. The start-up sequence includes three steps, as follows. 1. The first step after the reset source has been released consists of the device counting the reset start-up time. The purpose of this reset start-up time is to ensure that supply voltage has reached sufficient levels. The reset start-up time is counted using the internal 128 kHz oscillator. See Table 6-1 for details of reset start-up time. Note that the actual supply voltage is not monitored by the start-up logic. The device will count until the reset startup time has elapsed even if the device has reached sufficient supply voltage levels earlier. 2. The second step is to count the oscillator start-up time, which ensures that the calibrated internal oscillator has reached a stable state before it is used by the other parts of the system. The calibrated internal oscillator needs to oscillate for a minimum number of cycles before it can be considered stable. See Table 6-1 for details of the oscillator start-up time. 3. The last step before releasing the internal reset is to load the calibration and the configuration values from the Non-Volatile Memory to configure the device properly. The configuration time is listed in Table 6-1. ATtiny20 [DATASHEET] 20 8235E–AVR–03/2013 Table 6-1. Start-up Times when Using the Internal Calibrated Oscillator Notes: 1. After powering up the device or after a reset the system clock is automatically set to calibrated internal 8 MHz oscillator, divided by 8 2. When the Brown-out Detection is enabled, the reset start-up time is 128 ms after powering up the device. 6.4.2 Starting from Power-Down Mode When waking up from Power-Down sleep mode, the supply voltage is assumed to be at a sufficient level and only the oscillator start-up time is counted to ensure the stable operation of the oscillator. The oscillator start-up time is counted on the selected main clock, and the start-up time depends on the clock selected. See Table 6-2 for details. Table 6-2. Start-up Time from Power-Down Sleep Mode Notes: 1. The start-up time is measured in main clock oscillator cycles. 2. When using software BOD disable, the wake-up time from sleep mode will be approximately 60 μs. 6.4.3 Starting from Idle / ADC Noise Reduction / Standby Mode When waking up from Idle, ADC Noise Reduction or Standby Mode, the oscillator is already running and no oscillator start-up time is introduced. 6.5 Register Description 6.5.1 CLKMSR – Clock Main Settings Register Bits 7:2 – Res: Reserved Bits These bits are reserved and will always read as zero. Bits 1:0 – CLKMS[1:0]: Clock Main Select Bits These bits select the main clock source of the system. The bits can be written at run-time to switch the source of the main clock. The clock system ensures glitch free switching of the main clock source. The main clock alternatives are shown in Table 6-3. Reset Oscillator Configuration Total start-up time 64 ms 6 cycles 21 cycles 64 ms + 6 oscillator cycles + 21 system clock cycles (1)(2) Oscillator start-up time Total start-up time 6 cycles 6 oscillator cycles (1)(2) Bit 7 6 5 4 3 2 1 0 0x37 – – – – – – CLKMS1 CLKMS0 CLKMSR Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 21 8235E–AVR–03/2013 Table 6-3. Selection of Main Clock To avoid unintentional switching of main clock source, a protected change sequence must be followed to change the CLKMS bits, as follows: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the CLKMS bits with the desired value 6.5.2 CLKPSR – Clock Prescale Register Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read as zero. Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0 These bits define the division factor between the selected clock source and the internal system clock. These bits can be written at run-time to vary the clock frequency and suit the application requirements. As the prescaler divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced accordingly. The division factors are given in Table 6-4. Table 6-4. Clock Prescaler Select CLKM1 CLKM0 Main Clock Source 0 0 Calibrated Internal 8 MHz Oscillator 0 1 Internal 128 kHz Oscillator (WDT Oscillator) 1 0 External clock 1 1 Reserved Bit 7 6 5 4 3 2 1 0 0x36 – – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPSR Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 1 1 CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor 0 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 0 1 1 8 (default) 0 1 0 0 16 0 1 0 1 32 0 1 1 0 64 0 1 1 1 128 1 0 0 0 256 1 0 0 1 Reserved ATtiny20 [DATASHEET] 22 8235E–AVR–03/2013 To avoid unintentional changes of clock frequency, a protected change sequence must be followed to change the CLKPS bits: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the desired value to CLKPS bits At start-up, the CLKPS bits will be reset to 0b0011 to select the clock division factor of 8. The application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher frequency than the maximum frequency of the device at the present operating conditions. 6.5.3 OSCCAL – Oscillator Calibration Register . Bits 7:0 – CAL[7:0]: Oscillator Calibration Value The oscillator calibration register is used to trim the calibrated internal oscillator and remove process variations from the oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the factory calibrated frequency as specified in Table 20-2, “Calibration Accuracy of Internal RC Oscillator,” on page 169. The application software can write this register to change the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 20-2, “Calibration Accuracy of Internal RC Oscillator,” on page 169. Calibration outside the range given is not guaranteed. The CAL[7:0] bits are used to tune the frequency of the oscillator. A setting of 0x00 gives the lowest frequency, and a setting of 0xFF gives the highest frequency. 1 0 1 0 Reserved 1 0 1 1 Reserved 1 1 0 0 Reserved 1 1 0 1 Reserved 1 1 1 0 Reserved 1 1 1 1 Reserved CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor Bit 7 6 5 4 3 2 1 0 0x39 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 23 8235E–AVR–03/2013 7. Power Management and Sleep Modes The high performance and industry leading code efficiency makes the AVR microcontrollers an ideal choise for low power applications. In addition, sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides various sleep modes allowing the user to tailor the power consumption to the application’s requirements. 7.1 Sleep Modes Figure 6-1 on page 17 presents the different clock systems and their distribution in ATtiny20. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep modes and their wake up sources. Table 7-1. Active Clock Domains and Wake-up Sources in Different Sleep Modes Notes: 1. For INT0, only level interrupt. 2. Only TWI address match interrupt. To enter any of the four sleep modes, the SE bits in MCUCR must be written to logic one and a SLEEP instruction must be executed. The SM[2:0] bits in the MCUCR register select which sleep mode (Idle, ADC Noise Reduction, Standby or Power-down) will be activated by the SLEEP instruction. See Table 7-2 for a summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector. Note that if a level triggered interrupt is used for wake-up the changed level must be held for some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See “External Interrupts” on page 37 for details. 7.1.1 Idle Mode When bits SM[2:0] are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing the analog comparator, ADC, timer/counters, watchdog, TWI, SPI and the interrupt system to continue operating. This sleep mode basically halts clkCPU and clkNVM, while allowing the other clocks to run. Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow. If wake-up from the analog comparator interrupt is not required, the analog comparator can be powered down by setting the ACD bit in “ACSRA – Analog Comparator Control and Status Register” on page 106. This will reduce power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered. Sleep Mode Active Clock Domains Oscillators Wake-up Sources clkCPU clkNVM clkIO clkADC Main Clock Source Enabled INT0 and Pin Change Watchdog Interrupt TWI Slave ADC Other I/O Idle X X X X X X X X ADC Noise Reduction X X X(1) X X(2) X Standby X X(1) X X(2) Power-down X(1) X X(2) ATtiny20 [DATASHEET] 24 8235E–AVR–03/2013 7.1.2 ADC Noise Reduction Mode When bits SM[2:0] are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, TWI and the watchdog to continue operating (if enabled). This sleep mode halts clkI/O, clkCPU, and clkNVM, while allowing the other clocks to run. This mode improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a conversion starts automatically when this mode is entered. 7.1.3 Power-down Mode When bits SM[2:0] are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the oscillator is stopped, while the external interrupts, TWI and the watchdog continue operating (if enabled). Only a watchdog reset, an external level interrupt on INT0, a pin change interrupt, or a TWI slave interrupt can wake up the MCU. This sleep mode halts all generated clocks, allowing operation of asynchronous modules only. 7.1.4 Standby Mode When bits SM[2:0] are written to 100, the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the oscillator is kept running. This reduces wake-up time, because the oscillator is already running and doesn't need to be started up. 7.2 Software BOD Disable When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses (see Table 19-5 on page 161), the BOD is actively monitoring the supply voltage during a sleep period. In some devices it is possible to save power by disabling the BOD by software in Power-Down and Stand-By sleep modes. The sleep mode power consumption will then be at the same level as when BOD is globally disabled by fuses. If BOD is disabled by software, the BOD function is turned off immediately after entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again. This ensures safe operation in case the VCC level has dropped during the sleep period. When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60μs to ensure that the BOD is working correctly before the MCU continues executing code. BOD disable is controlled by the BODS (BOD Sleep) bit of MCU Control Register, see “MCUCR – MCU Control Register” on page 26. Writing this bit to one turns off BOD in Power-Down and Stand-By, while writing a zero keeps the BOD active. The default setting is zero, i.e. BOD active. Writing to the BODS bit is controlled by a timed sequence, see “MCUCR – MCU Control Register” on page 26. 7.3 Power Reduction Register The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 27, provides a method to reduce power consumption by stopping the clock to individual peripherals. When the clock for a peripheral is stopped then: The current state of the peripheral is frozen. The associated registers can not be read or written. Resources used by the peripheral will remain occupied. The peripheral should in most cases be disabled before stopping the clock. Clearing the PRR bit wakes up the peripheral and puts it in the same state as before shutdown. Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. See “Supply Current of I/O Modules” on page 174 for examples. In all other sleep modes, the clock is already stopped. ATtiny20 [DATASHEET] 25 8235E–AVR–03/2013 7.4 Minimizing Power Consumption There are several issues to consider when trying to minimize the power consumption in an AVR Core controlled system. In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following modules may need special consideration when trying to achieve the lowest possible power consumption. 7.4.1 Analog Comparator When entering Idle mode, the analog comparator should be disabled if not used. In the power-down mode, the analog comparator is automatically disabled. See “Analog Comparator” on page 105 for further details. 7.4.2 Analog to Digital Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. See “Analog to Digital Converter” on page 109 for details on ADC operation. 7.4.3 Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 31 for details on how to configure the Watchdog Timer. 7.4.4 Brown-out Detector If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly to the total current consumption. See “Brown-out Detection” on page 30 and “Software BOD Disable” on page 24 for details on how to configure the Brown-out Detector. 7.4.5 Port Pins When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing is then to ensure that no pins drive resistive loads. In sleep modes where the I/O clock (clkI/O) is stopped, the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 46 for details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or has an analog signal level close to VCC/2, the input buffer will use excessive power. For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the Digital Input Disable Register (DIDR0). Refer to “DIDR0 – Digital Input Disable Register 0” on page 108 for details. ATtiny20 [DATASHEET] 26 8235E–AVR–03/2013 7.5 Register Description 7.5.1 MCUCR – MCU Control Register The MCU Control Register contains bits for controlling external interrupt sensing and power management. Bit 5 – Res: Reserved Bit This bit is reserved and will always read as zero. Bit 4 – BODS: BOD Sleep In order to disable BOD during sleep (see Table 7-1 on page 23) the BODS bit must be written to logic one. This is controlled by a protected change sequence, as follows: 1. Write the signature for change enable of protected I/O registers to register CCP. 2. Within four instruction cycles write the BODS bit. A sleep instruction must be executed while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is automatically cleared when the device wakes up. Alternatively the BODS bit can be cleared by writing logic zero to it. This does not require protected sequence. Bits 3:1 – SM[2:0]: Sleep Mode Select Bits 2 - 0 These bits select between available sleep modes, as shown in Table 7-2. Table 7-2. Sleep Mode Select Bit 0 – SE: Sleep Enable The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up. Bit 7 6 5 4 3 2 1 0 0x3A ISC01 ISC00 – BODS SM2 SM1 SM0 SE MCUCR Read/Write R/W R/W R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 SM2 SM1 SM0 Sleep Mode 0 0 0 Idle 0 0 1 ADC noise reduction 0 1 0 Power-down 0 1 1 Reserved 1 0 0 Standby 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved ATtiny20 [DATASHEET] 27 8235E–AVR–03/2013 7.5.2 PRR – Power Reduction Register Bits 7:5 – Res: Reserved Bits These bits are reserved and will always read as zero. Bit 4 – PRTWI: Power Reduction Two-Wire Interface Writing a logic one to this bit shuts down the Two-Wire Interface module. Bit 3 – PRSPI: Power Reduction Serial Peripheral Interface Writing a logic one to this bit shuts down the Serial Peripheral Interface module. Bit 2 – PRTIM1: Power Reduction Timer/Counter1 Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation will continue like before the shutdown. Bit 1 – PRTIM0: Power Reduction Timer/Counter0 Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will continue like before the shutdown. Bit 0 – PRADC: Power Reduction ADC Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog comparator cannot use the ADC input MUX when the ADC is shut down. Bit 7 6 5 4 3 2 1 0 0x35 – – – PRTWI PRSPI PRTIM1 PRTIM0 PRADC PRR Read/Write R R R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 28 8235E–AVR–03/2013 8. System Control and Reset 8.1 Resetting the AVR During reset, all I/O registers are set to their initial values, and the program starts execution from the Reset Vector. The instruction placed at the Reset Vector must be a RJMP – Relative Jump – instruction to the reset handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at these locations. The circuit diagram in Figure 8-1 shows the reset logic. Electrical parameters of the reset circuitry are defined in section “System and Reset Characteristics” on page 170. Figure 8-1. Reset Logic The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not require any clock source to be running. After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to reach a stable level before normal operation starts. The start up sequence is described in “Starting from Reset” on page 19. 8.2 Reset Sources The ATtiny20 has four sources of reset: Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (VPOT) External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse length Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled Brown Out Reset. The MCU is reset when the Brown-Out Detector is enabled and supply voltage is below the brown-out threshold (VBOT) 8.2.1 Power-on Reset A Power-on Reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in section “System and Reset Characteristics” on page 170. The POR is activated whenever VCC is below the detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage. A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset threshold voltage invokes the delay counter, which determines how long the device is kept in reset after VCC rise. The reset signal is activated again, without any delay, when VCC decreases below the detection level. DATA BUS RESET FLAG REGISTER (RSTFLR) POWER-ON RESET CIRCUIT PULL-UP RESISTOR BODLEVEL2...0 VCC SPIKE RESET FILTER EXTERNAL RESET CIRCUIT BROWN OUT RESET CIRCUIT RSTDISBL WATCHDOG TIMER DELAY COUNTERS S R Q WATCHDOG OSCILLATOR CLOCK GENERATOR BORF PORF EXTRF WDRF INTERNAL RESET CK TIMEOUT COUNTER RESET ATtiny20 [DATASHEET] 29 8235E–AVR–03/2013 Figure 8-2. MCU Start-up, RESET Tied to VCC Figure 8-3. MCU Start-up, RESET Extended Externally 8.2.2 External Reset An External Reset is generated by a low level on the RESET pin if enabled. Reset pulses longer than the minimum pulse width (see section “System and Reset Characteristics” on page 170) will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after the time-out period – tTOUT – has expired. External reset is ignored during Power-on start-up count. After Power-on reset the internal reset is extended only if RESET pin is low when the initial Power-on delay count is complete. See Figure 8-2 and Figure 8-3. V TIME-OUT RESET RESET TOUT INTERNAL t VPOT VRST CC V TIME-OUT TOUT TOUT INTERNAL CC t VPOT VRST > t RESET RESET ATtiny20 [DATASHEET] 30 8235E–AVR–03/2013 Figure 8-4. External Reset During Operation 8.2.3 Watchdog Reset When the Watchdog times out, it will generate a short reset pulse. On the falling edge of this pulse, the delay timer starts counting the time-out period tTOUT. See page 30 for details on operation of the Watchdog Timer and Table 20-4 on page 170 for details on reset time-out. Figure 8-5. Watchdog Reset During Operation 8.2.4 Brown-out Detection ATtiny20 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2. When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure 8-6 on page 31), the Brown-out Reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 8-6), the delay counter starts the MCU after the Time-out period tTOUT has expired. CC CK CC ATtiny20 [DATASHEET] 31 8235E–AVR–03/2013 The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for longer than tBOD given in “System and Reset Characteristics” on page 170. Figure 8-6. Brown-out Reset During Operation 8.3 Internal Voltage Reference ATtiny20 features an internal bandgap reference. This reference is used for Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC. The bandgap voltage varies with supply voltage and temperature. 8.3.1 Voltage Reference Enable Signals and Start-up Time The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in “System and Reset Characteristics” on page 170. To save power, the reference is not always turned on. The reference is on during the following situations: 1. When the BOD is enabled (by programming the BODLEVEL[2:0] Fuse). 2. When the internal reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR). 3. When the ADC is enabled. Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering Power-down mode. 8.4 Watchdog Timer The Watchdog Timer is clocked from an on-chip oscillator, which runs at 128 kHz. See Figure 8-7 on page 32. By controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as shown in Table 8-2 on page 34. The WDR – Watchdog Reset – instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled and when a device reset occurs. Ten different clock cycle periods can be selected to determine the reset period. If the reset period expires without another Watchdog Reset, the ATtiny20 resets and executes from the Reset Vector. For timing details on the Watchdog Reset, refer to Table 8-3 on page 34. VCC RESET TIME-OUT INTERNAL RESET VBOTVBOT+ tTOUT ATtiny20 [DATASHEET] 32 8235E–AVR–03/2013 Figure 8-7. Watchdog Timer The Wathdog Timer can also be configured to generate an interrupt instead of a reset. This can be very helpful when using the Watchdog to wake-up from Power-down. To prevent unintentional disabling of the Watchdog or unintentional change of time-out period, two different safety levels are selected by the fuse WDTON as shown in Table 8-1 on page 32. See “Procedure for Changing the Watchdog Timer Configuration” on page 32 for details. Table 8-1. WDT Configuration as a Function of the Fuse Settings of WDTON 8.4.1 Procedure for Changing the Watchdog Timer Configuration The sequence for changing configuration differs between the two safety levels, as follows: 8.4.1.1 Safety Level 1 In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit to one without any restriction. A special sequence is needed when disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, in the same operation, write WDE and WDP bits 8.4.1.2 Safety Level 2 In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A protected change is needed when changing the Watchdog Time-out period. To change the Watchdog Time-out, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, write the WDP bit. The value written to WDE is irrelevant WDTON Safety Level Initial State How to Disable How to Change Time-out Unprogrammed 1 Disabled Protected change sequence No limitations Programmed 2 Enabled Always enabled Protected change sequence OSC/2K OSC/4K OSC/8K OSC/16K OSC/32K OSC/64K OSC/128K OSC/256K OSC/512K OSC/1024K MCU RESET WATCHDOG PRESCALER 128 kHz OSCILLATOR WATCHDOG RESET WDP0 WDP1 WDP2 WDP3 WDE MUX ATtiny20 [DATASHEET] 33 8235E–AVR–03/2013 8.4.2 Code Examples The following code example shows how to turn off the WDT. The example assumes that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these functions. Note: See “Code Examples” on page 7. 8.5 Register Description 8.5.1 WDTCSR – Watchdog Timer Control and Status Register Bit 7 – WDIF: Watchdog Timer Interrupt Flag This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is configured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the WDIE is set, the Watchdog Time-out Interrupt is requested. Bit 6 – WDIE: Watchdog Timer Interrupt Enable When this bit is written to one, the Watchdog interrupt request is enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt Mode, and the corresponding interrupt is requested if time-out in the Watchdog Timer occurs. If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is useful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt. This should however not be done within the interrupt service routine itself, as this might compromise the safety-function of the Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a System Reset will be applied. Assembly Code Example WDT_off: wdr ; Clear WDRF in RSTFLR in r16, RSTFLR andi r16, ~(1<
This Molex product is manufactured from material that has the following ratings, tested by independent agencies:. a) A Glow Wire Ignition Temperature (GWIT) of at least 775 deg C per IEC 60695-2-13.. b) A Glow Wire Flammability Index (GWFI) above 850 deg C per IEC 60695-2-12.and hence complies with the requirements set out in the International Standard IEC 60335-1 5th edition - household and similar electrical appliances - safety, section 30 Resistance to heat and fire.
The customers using this product must determine its suitability for use in their particular application through testing or other acceptable means as described in end-product glow-wire flammability test standard IEC 60695-2-11 and any applicable product end-use standard(s).
If it is determined during
the customer’s evaluation of suitability, that higher
performance is required, please contact Molex for
possible product options."
Overview Sabre™ Power Connector
Product Literature Order No 987650-5662
Product Name Sabre™
UPC 800754378185
Physical
Breakaway No
Circuits (Loaded) 2
Circuits (maximum) 2
Color - Resin Black
Durability (mating cycles max) 25
First Mate / Last Break No
Flammability 94V-0
Glow-Wire Compliant Yes
Guide to Mating Part No
Keying to Mating Part Yes
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Not Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
43160Series
Mates With
44441-2002 Sabre™ Receptacle Housing
Lock to Mating Part Yes
Material - Metal Brass
Material - Plating Mating Tin
Material - Plating Termination Tin
Material - Resin High Temperature Thermoplastic
Net Weight 3.331/g
Number of Rows 1
Orientation Right Angle
PC Tail Length 3.81mm
PCB Locator Yes
PCB Retention Yes
PCB Thickness - Recommended 1.60mm
Packaging Type Tray
Pitch - Mating Interface 7.50mm
Pitch - Termination Interface 7.50mm
Plating min - Mating 0.889μm
Plating min - Termination 0.889μm
Polarized to Mating Part Yes
Polarized to PCB Yes
Shrouded Fully
Stackable No
Surface Mount Compatible (SMC) No
Temperature Range - Operating -40°C to +75°C
Termination Interface: Style Through Hole
Electrical
Current - Maximum per Contact 18A
Voltage - Maximum 600V
Solder Process Data
Duration at Max. Process Temperature (seconds) 5
Lead-free Process Capability Wave Capable (TH only)
Max. Cycles at Max. Process Temperature 1
Process Temperature max. C 235
Material Info
Reference - Drawing Numbers
Product Specification PSX-44441-9999
Sales Drawing SDA-43160-****
This document was generated on 01/08/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 39-00-0038
Status: Active
Overview: Mini-Fit Jr.™ Power Connectors
Description: Mini-Fit® Female Crimp Terminal, Tin (Sn) over Copper (Cu) Plated Brass, 18-24
AWG, Reel
Documents:
Drawing (PDF) Product Specification PS-52034-003 (PDF)
Product Specification PS-51010-005 (PDF) Product Specification PS-52034-004 (PDF)
Product Specification PS-51010-006 (PDF) Product Specification PS-5556-001 (PDF)
Product Specification PS-51045-001 (PDF) Product Specification PS-5556-002 (PDF)
Product Specification PS-51045-002 (PDF) Packaging Specification PK-5556-001 (PDF)
Product Specification PS-51045-004 (PDF) Test Summary TS-5556-002 (PDF)
Product Specification PS-51096-001 (PDF) RoHS Certificate of Compliance (PDF)
General
Product Family Crimp Terminals
Series 5556
Application Power
Crimp Quality Equipment Yes
Overview Mini-Fit Jr.™ Power Connectors
Packaging Alternative 39-00-0039 (Loose)
Product Name Mini-Fit®
UPC 800753585010
Physical
Durability (mating cycles max) 30
Gender Receptacle
Material - Metal Brass
Material - Plating Mating Tin
Material - Plating Termination Tin
Net Weight 0.130/g
Packaging Type Reel
Plating min - Mating 0.889μm
Plating min - Termination 0.889μm
Termination Interface: Style Crimp or Compression
Wire Insulation Diameter 1.30-3.10mm
Wire Size AWG 18, 20, 22, 24
Wire Size mm² N/A
Electrical
Current - Maximum per Contact 9A
Voltage - Maximum 600V
Material Info
Old Part Number 5556T
Reference - Drawing Numbers
Packaging Specification PK-5556-001
Product Specification PS-51010-005, PS-51010-006, PS-51045-001,
PS-51045-002, PS-51045-004, PS-51096-001,
PS-52034-003, PS-52034-004, PS-5556-001,
PS-5556-002, RPS-30067-001, RPS-30067-002,
RPS-42474-001, RPS-51045-001, RPS-5557-008,
RPS-5557-024, RPS-5557-031, RPS-5557-036,
RPS-5557-037, RPS-5557-045, RPS-5557-046,
RPS-5566-002
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
5556Series
Mates With
5558 Mini-Fit® Crimp Male Terminals. Mini-
Fit Jr.™ Header, Dual Row, 5566 , 5569
Use With
5557 Mini-Fit Jr.™ Receptacle Housing,
30067 Mini-Fit® TPA, 42474 Mini-Fit®
BMI Panel Mount, 5559 Mini-Fit Jr.™ Plug
Housing, Dual Row
Application Tooling | FAQ
Tooling specifications and manuals are
found by selecting the products below.
Crimp Height Specifications are then
contained in the Application Tooling
Specification document.
Global
Description Product #
FineAdjust™
Applicator for
Insulation OD
0639023900
Sales Drawing SD-5556****
Test Summary TS-5556-002
1.40-1.70mm - 18-24
AWG
Extraction Tool 0011030044
Hand Crimp Tool for
Male and Female
Crimp Terminals,
16-24 AWG Wire
0638190900
FineAdjust™
Applicator for
Insulation OD
2.50-2.95mm - 18-24
AWG
0639002600
FineAdjust™
Applicator for
Insulation OD
1.65-2.05mm - 18-24
AWG
0639002900
FineAdjust™
Applicator for
Insulation OD
1.90-2.30mm - 18-24
AWG
0639015600
FineAdjust™
Applicator for
Insulation OD
2.50-2.95mm
Optimized for 18
AWG Only
0639024800
FineAdjust™
Applicator for
Insulation OD
2.30-2.60mm - 18-24
AWG
0639024900
T2 Terminator™
for insulation OD
2.50-2.95mm - 18-24
AWG
0639102600
T2 Terminator™ for
insulation OD 1.65
– 2.05mm – 18 – 24
AWG
0639102900
T2 Terminator™
for insulation OD
1.90-2.30mm - 18-24
AWG
0639115600
T2 Terminator™
for insulation OD
1.40-1.70mm - 18-24
AWG
0639123900
T2 Terminator™
for insulation OD
2.50-2.95mm
optimized for 18
AWG only
0639124800
T2 Terminator™
for insulation OD
2.30-2.60mm - 18-24
AWG
0639124900
Japan
Description Product #
Applicator for M211A
Bench Press, 18-24
AWG Wire
0570223000
Side-Feed Applicator
For Full-Auto
Machine
0570223200
Hand Extraction Tool 0570316000
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
For more complete information on any product, please visit our web site: www.aimtti.com
Measurably better value manual & bus programmable - Laboratory Power Supplies
Mixed-mode Regulation
Mixed-mode regulation with linear output stage
4 digit voltage and current meters on each output *
Constant voltage or constant current operation
Variable auxiliary output (1.5-5V@5A) on triple model
Switched remote sensing (not EX355P or EX752M)
Silent fan-free cooling **
DC output switches
Compact bench power supplies
Single, dual or triple outputs
Mixed-mode regulation
Power from 175W to 420W
Switched remote sense terminals
RS-232 interface model available
EX-R series
Model Outputs Voltage / Current Power Interfaces
EX355R One 0 to 35V / 0 to 5A 175W -
EX355P One 0 to 35V / 0 to 5A 175W RS232
EX355P-USB One 0 to 35V / 0 to 5A 175W USB
EX1810R One 0 to 18V / 0 to 10A 180W -
EX2020R One 0 to 20V / 0 to 20A 400W -
EX4210R One 0 to 42V / 0 to 10A 420W -
EX354RD Two 2 x (0 to 35V / 0 to 4A) 280W -
EX354RT Three 2 x (0 to 35V / 0 to 4A)
plus 1.5 to 5.0V @ 5A
305W
EX752M Two 2 x (0 to 75V / 0 to 2A)
or 0 to 75V / 0 to 4A
or 0 to 150V / 0 to 2A
300W
Brief specifications for main outputs:
Line & load regulation: <0.01%. Output noise: < 2mV rms.
Meter accuracies: voltage - 0.3% ± 1digit, current - 0.6% ± 1digit.
Sizes: singles - 140 x 160 x 295mm; dual/triple - 260 x 160 x 295mm (WxHxD)
The EX752M is a dual output 300
watt PSU with Multi-Mode capability.
This enables it to operate as a dual
power supply with two independent and
isolated outputs, or as a single power
supply of double the power.
As a dual, each output provides 0 to
75V at 0 to 2A (mode A). As a single,
the output can be selected as either 0
to 75V at 0 to 4A (mode B) or 0 to 150V
at 0 to 2A (mode C). In single modes,
the unused half of the unit becomes
completely inoperative and its displays
are blanked.
For those requiring a basic bus
controllable power supply, versions with
an RS-232 interface (EL302P) or a USB
interface (EL302P-USB) are available.
The EX series is the value-for-money
PSU for users who require higher power
levels. Mixed-mode regulation gives
excellent performance combined with
compact size and low weight.
Dual output and triple output models
are available in a similar casing style.
The EX354RT triple (illustrated) has a
variable voltage auxiliary output which
can be set using the digital displays.
** Note that the EX2020R and
EX4210R use fan assisted cooling.
All-linear regulation becomes impractical at higher
power levels, so Aim-TTi have developed a technology
that combines HF switch-mode pre-regulation with
linear final regulation.
This technique combines exceptional efficiency with
noise levels that are close to that of pure linears.
Mixed-mode regulation is used in the EX-R and TSX
series.
* Note that 3 digit current meters
are used on the EX355P and
EX752M and that voltmeter resolution
on the EX752M is 0.1V.
* Note that a 3 digit current
meters is used on the EL302P
& EL302P-USB, and that these
models do not have remote
sense terminals.
http://www.farnell.com/datasheets/1796748.pdf
SS-331
LCD Desoldering Station
User’s Manual
1st Edition,
©2014 Copyright by Prokit’s Industries Co., Ltd.
1
Description
SS‐331 designed for lead free desoldering especially. The quick heating and strong power are for convenient and clear soldering / desoldering all types of DIP components.
Reasonable structure, single hand operation and strong absorbing power can be easy removal of the residual solder from the one‐sided or two sided of the PCB.
This tool is used in the fields of electronic research, teaching and production, especially in the repairing and desoldering on the electronic appliances and communication equipments.
1.
Control Unit
The desoldering iron gun is controlled automatically by the micro‐processor. The digital control electronics and high‐quality sensor and heat exchange system guarantee precise temperature control at the soldering tip. The highest degree of temperature precision and optimal dynamic thermal behavior under load conditions is obtained by the quick and accurate recording of the measured values in a closed control circuit, and this design is especially for the lead‐free production techniques.
2.
Desoldering Iron gun
Desoldering iron gun with a power of 60W(Heat up rating 130W)and a wide spectrum of soldering tips can be used anywhere in the electronics field.
The high power and gun type design make this iron gun suitable for fine desoldering work. The heating element is made of ceramic and the sensor on the desoldering tip can control the desoldering temperature quickly and accurately.
2
Technical Specification
Voltage
220~240V AC
Power Consumption
140W
Temperature
160°C ~ 480°C
Vacuum Pressure
600mm Hg
Heating Element
Ceramic Heater
Accessories
Spare tip x 3 ( 0.8(on the gun)1.0/ 1.3mm) Cleaning tool x 3 (0.7/0.9/ 1.2mm) Filter sponge x 4 (φ20.8x1 +φ16.8x3)
Certificate
CE, GS, RoHS
Station Size (mm)
225 x 160 x 130
Weight (kgs)
2.5
Operating Instruction
Caution:Make sure that the four screws which are used to fasten the Diaphragm pump are removed from the control system before use. Otherwise serious damages may be caused to the user and the system.
1.
Place the desoldering iron gun in the holder separately. Then connect the plug to the receptacle on the station and turn clockwise to tighten the plug nut. Check that the power supply is corresponding to the specification on the type plate and the power switch is on the “OFF” position. Connect the control unit to the power supply and switch on the power. Then a self‐test is carried out in which all display elements are switched on briefly. The electronic system then switches on automatically to the set temperature and displays this value.
2.
The display and temperature setting
①.
Shows the actual temperature of the desoldering tip.
②.
Shows the setting temperature: Pressing the “UP” or “DOWN” button can switch the digital display to the set point display. The set‐point can be changed for ±1℃ by tapping the “UP” or “DOWN” button. Pressing the button will change the set‐point quickly. The digital display will return automatically to the actual value and the iron will reach to the setting temperature quickly.
③.
℃/℉ display: Switching the temperature display from ℃ to ℉ by pressing the “℃/℉”button and then the electronic system will display the actual temperature① and setting temperature② in ℉, and vice versa.
④.
When the actual temperature on the soldering tip is less than the set‐point, “HEAT ON” will display and make the desoldering tip heating up.
⑤.
When the absolute offset is more than ±10℃ between the actual temperature and the set‐point on the soldering tip or the nozzle, “WAIT” will display. It means that the temperature electronic control system is not in the stable situation, we should wait a moment to let the “WAIT” disappear.
⑥.
When “ERROR” display, there may be a trouble on the 3
4
Safety Instruction
1.
The manufacturer assumes no liability for uses other than those described in the operating instructions or for unauthorized alterations.
2.
The operating instructions and cautions should be read carefully and kept in an easily visible location in the vicinity of the control system. Non‐observance of the cautions will result in accidents, injury or risks to health.
Caution
1.
The power cord only can be inserted in approved power sockets or adapters.
2.
High Temperature
The temperature of the soldering tip will reach as high as around 400℃(752℉) when the power switch is on. Since mishandling may lead to burns and fire, be sure to comply with the following precautions:
①.
Do not touch metallic parts near the soldering tip/ nozzle.
②.
Do not use this system near the flammable items.
③.
Advise other people in the work area that the unit can reach a very high temperature and should be considered potentially dangerous.
④.
Turn off the power switch while taking breaks and when finishing using.
⑤.
Before replacing parts or storing the system, turn off the power and let it cool down to the room temperature.
⑥.
Warning: this tool must be placed on its stand when not in use.
5
⑦.
A fire may result if the appliance is not used with care, therefore:
1)
Be careful when using the appliance in places where there is combustible material.
2)
Do not apply to the same place for a long time.
3)
Do not use in presence of an explosive atmosphere.
4)
Be aware heat may be conducted to combustible materials that out of sight.
5)
Place the appliance on its stand after use and allow it to cool down before storage.
6)
Do not leave the appliance unattended when it is switched on.
3.
Take care of your tools
Do not use the tools for any applications other than soldering or desoldering.
Do not rap the iron against the work bench or otherwise subject the iron to severe shocks.
Do not file the soldering tip to remove the oxide, please wipe the tip on the cleaning sponge.
Use only accessories or attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury.
Please turn off the power before connecting or disconnecting the soldering iron.
4.
Maintenance
Before further use, safety devices or slightly damaged parts must be carefully checked for error‐free and intended operation. Inspect moving parts for error‐free operation and that they don’t bind, or whether any parts are damaged. Damaged safety devices and parts must be repaired or replaced by a qualified technician, so long as nothing else is indicated in the operation manual. Use only accessories or
6
attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury.
5.
Keep children at a distance
Warning: this appliance is not intended for use by young children and infirm persons unless they have been adequately supervised by a responsible person to ensure that they can use the appliance safely.
Warning: Young children should be supervised to ensure that they do not play with the appliance.
Unused soldering tools should be stored in a dry location which is out of the reach of children. Switch off all unused soldering tools.
6.
Protect yourself against electrical shocks
Avoid touching grounded parts with your body, e.g. pipes, heating radiators and so on. The grip of antistatic designed soldering tool is conductive.
7.
Work environment
Do not use the soldering tool in a moist or wet environment. The soldering iron should be placed on the holder after finished using.
8.
Observe the valid safety regulations at your work place.
SS-331數顯吸焊台
概述
SS-331 特別為無鉛吸焊而設計。快速升溫和大功率的特點使其可以方便快速的焊接/拆焊所有類型的DIP元器件。
合理的結構,單手操作和強大的吸焊功率能夠輕鬆的從PCB一面或兩面除去殘餘錫渣。
目前已廣泛的應用於電子科研,教學以及生產等單位,特別是家電維修和通訊器材維修人員所不可缺少的首選專用工具。
1.
控制單元
吸焊槍由微處理器自動控制。數位控制裝置和高品質的感測器及加熱交換系統保證對烙鐵頭的溫度進行精確的控制。通過快速準確的記錄閉和控制回路測量可以獲得作高的溫度精度和帶負載狀況下最佳熱量轉遞性能,特別適合用於無鉛制程工藝。
2.
吸焊槍 (5SS-331-DG)
吸焊槍的功率為 60W(額定加熱功率 130W),可以配各種尺寸的烙鐵頭(U系列),廣泛應用於電子領域。
大功率和細長外形設計使這個電烙鐵適合做精密的焊接操作,發熱芯採用陶瓷發熱材料製作,頂端溫度感測器設計其特點在於能夠快速並準確的控制焊接溫度。
7
技術規範.
電壓
220~240V AC
消耗功率
140W
溫度
160°C ~ 480°C
真空吸力
600mm Hg
發熱原件
陶磁發熱芯
配件
吸嘴 x 3(0.8(裝在吸槍上)1.0/ 1.3mm) 通針 x 3( 0.7/ 0.9/ 1.2mm) 過濾棉 x 4 ( 20.8mm x1 + 16.8mm x3)
認證
CE, GS, RoHS
尺寸(mm)
225 x 160 x 130
重量(kgs )
2.5
操作說明:
1
將吸焊槍放置在支架上。然後將插頭插入插座順時針方向鎖緊螺母。檢查供電電源符合本產品的規格並確認總電源開關處於OFF的位置。接通控制系統的電源並打開電源開關。系統進行自檢,所有的液晶顯示都暫時被點亮。電子系統自動打開並迅速達到設定的溫度值。
2
顯示幕和溫度設置:
數位顯示說明:
①
. 顯示吸焊烙鐵頭的實際溫度。
8
9
②
. 顯示的是設定溫度,通過按“UP"或“DOWN"鍵來改變設定值。輕壓單下“UP"或“DOWN"鍵設定值將以±1℃變化,持續按下“UP"或“DOWN"鍵設定值將會快速改變。改變設定值後,電子系統自動工作,顯示溫度會迅速到達設定值。
③
. ℃或℉溫度,通過按“℃/℉"按鈕切換攝氏或華氏溫度,切換後電子系統會自動顯示的攝氏或華氏實際溫度①和設定溫度②數值。
④
. 當烙鐵頭實際溫度小於設定溫度時顯示“HEAT ON"表示電子系統對烙鐵正在加熱。
⑤
. 當烙鐵頭實際溫度與設定溫度的絕對偏差大於±10℃時顯示“WAIT",表示電子控溫系統還沒到達穩定狀態,請稍做等待,待“WAIT"不顯示時即可正常使用了。
⑥
. 顯示“---"則表示系統有故障,或者是電烙鐵沒有正確連接到控制系統。
3
安全操作說明
3.1
製造商對於超出操作說明中所到的其他使用或未經授權的更改,不負任何責任。
3.2
應仔細閱讀操作說明及警告並將其放置在控制系統附近,如不遵守這些警告,將有可能發生意外事故,人體傷害或健康傷害。
4
警告及注意事項
4.1
電源線只能插入經認證過的電源插座或適配器中。
4.2
小心高溫:在開機狀態下,烙鐵頭或熱風槍焊嘴的溫度可以達到大約400℃(752℉)左右,由於不正確的操作可能會造成燒傷或引起火災,故應確保遵守以下預防措施:
不要讓金屬部件接觸到焊嘴和烙鐵頭;
不要在易燃物品附近使用該系統;
告知工作區域中的其他人員此設備會達到非常高的溫度應注意識別其潛在的危險性;
在休息及使用完後應關閉總電源
在更換零件或儲存前,應關閉總電源並讓其冷卻到
10
室溫
警告:不用時一定要將此工具放置在特定的支架上。
如使用不當可能會引起火災,因此
在有易燃物品的場所使用該設備一定要小心;
不要長時間在同一位置使用該設備;
不要在有爆炸性氣體的場所使用;
要知道熱量有可能會引燃不在視線範圍內的可燃物質;
使用完畢後要將器具放置在特定的支架上,且要在冷卻後方可收藏起來;
離開時必須要關閉電源開關。
4.3
愛護工具
不要將此設備用於焊接或脫焊以外的其他操作。
不要在工作臺上敲打電烙鐵或熱風筒或其他嚴重的撞擊。
不要銼烙鐵頭上的氧化層,請使用浸水的清潔棉擦除氧化層。
確保使用操作說明上列明的附件或配件,使用其他的工具或其他配件使本系統損壞或會有受傷的危險。
在接通或斷開錫槍前應先關閉電源。
4.4
工具保養 在使用前,應仔細檢查安全裝置或有輕微損害的零件無故障及在指定操作狀態。檢查活動的零件無故障操作,並且沒有繞線及零件損壞。已損壞的安全設備及零件都應由有資格的專業人員進行維修或更換。只使用操作說明中列出的配件。如果使用其他工具或配件有可能對操作人員造成傷害。
4.5
放置在兒童接觸不到的地方 警告:老人和兒童必須在監護人在場確保可安全使用的情況下方可使用該設備。警告:應確保兒童在沒有監護的情況下無法接觸到該設
備。
4.6
不用的焊接工具應存放在乾燥的,兒童接觸不到的地方。而且應該關閉所有未在使用狀態下的焊接工具的電源。
4.7
避免遭受電擊 避免用身體接觸接地零件,如:烙鐵管,散熱器等。抗靜電設計的焊接工具的把手是導電的。
4.8
工作環境 不要在潮濕的環境中使用焊接工具。電烙鐵及熱風槍用完後要放回到支架上。
4.9
遵守工作場所中的安全操作規定。
寶工實業股份有限公司
PROKIT’S INDUSTRIES CO., LTD.
http://www.prokits.com.tw
E-mail:pk@mail.prokits.com.tw
©2014 Prokit’s Industries Co., LTD. All rights reserved 2014001(C)
Connections to a Wider Range of Slaves Ensured by Upgraded Models
Master Conventional
models
New models
C200HW-SRM21
CQM1-SRM21
SRM1-C01
SRM1-C02
SRM1-C01-V1
SRM1-C02-V1
3G8B3-SRM00
3G8B3-SRM01
C200PC-ISA02-SRM
C200PC-ISA12-SRM
C200HW-SRM21-V1
CQM1-SRM21-V1
SRM1-C01-V2
SRM1-C02-V2
NKE-made Uniwire
C B /SS d
Communications mode
Slave
ade U e
CompoBus/S Send
Unit SDD-CS1
High-speed
communications
mode
Long-distance
communications
mode
SRT1 Series
FND-X-SRT
Yes
Yes
Yes
Yes
No
No
Products
from other
companies
SMC Solenoid valve
for SI manifold
use
VQ Series
SX Series
SY Series
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
CKD Solenoid valve
for saving wiring
effort
4TB1 and 4TB2 Series
4TB3 and 4TB4 Series
4G Series
MN4SO Series
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
Koganei Valve for saving
wiring effort
YS1A1, A2
YS2A1, A2
Yes
Yes
Yes
Yes
No
No
New product SRT2-AD02
SRT2-DA02
No
No
Yes
Yes
Yes
Yes
SRT2-VID08S(-1)
SRT2-VOD08S(-1)
SRT2-VID16ML(-1)
SRT2-VOD16ML(-1)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
SRT2-ID16(-1)
SRT2-OD16(-1)
SRT2-ID08(-1)
SRT2-OD08(-1)
SRT2-ROC16
SRT2-ROF16
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
CPM1A-SRT21 Yes Yes Yes
Products to be released soon SRT2-ID04(-1)
SRT2-OD04(-1)
SRT2-ID16T(-1)
SRT2-OD16T(-1)
SRT2-MD16T(-1)
SRT2-ROC08
SRT2-ROF08
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Note: 1. In high-speed communications mode, the maximum transmission distance is 100 m at a baud rate of 750 kbps. In long-distance
communications mode (i.e., a newly available mode), the maximum transmission distance is 500 m at a baud rate of 93.75 kbps.
2. The SRT2-AD04 and SRT2-DA02 are available for 16-bit synchronous communications.
11
Master Control Unit SRM1-C01-V2/C02-V2
Subminiature, Stand-alone Model with
CompoBus/S Master and SYSMAC
Controller Functions
Maximum number of Remote I/O points per Master:
256
Maximum number of Slaves per Master: 32
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Additional instructions (PID, SCL, NEG, ZCP)
ensure analog compatibility.
RS-232C port incorporated (SRM1-C02-V2).
RC
Ordering Information
Specifications Model
Buuilt-in sstaandd-aaloonee ccoontroolleer fuuncctioonss Without RS-232C SRM1-C01-V2
With RS-232C SRM1-C02-V2
Specifications
Master Specifications
Number of I/O points 256 points (128 inputs/128 outputs)
128 points (64 inputs/64 outputs)
Selectable by DM setting. The default setting is 256 points.
Max. number of Slaves per Master 256 points: 32
128 points: 16
I/O words Input words: 000 to 007
Output words: 010 to 017
Programming language Ladder diagram
Types of instruction 14 basic and 72 special instructions (123 instructions in total)
Execution time LD instruction: 0.97 ms
MOV instruction: 9.1 ms
Program capacity 4,096 words
Data memory 2,048 + 512 (read-only) words
Timers/Counters 128 timers/counters
Work bits 640 bits
Memory backup Flash memory (without battery): User programs
Super capacitor: Data memory (backed up for 20 days at an ambient temperature of 25°C)
Peripheral port 1 point
RS-232C port 1 point (SRM1-C02-V1 only)
Host Link, NT Link, 1:1 Link, or no protocol
Programming tool Programming Consoles: CQM1-PRO01-E, C200H-PRO27-E
SYSMAC-CPT: WS01-CPTB1-E (CD-ROM/FD)
SYSMAC Support Software (MS-DOS version): C500-ZL3AT1-E
Note: PID, SCL, NEG, and ZCP instructions are not supported by the SYSMAC-CPT.
SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2
12
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps/93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable:
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched using DM settings (default setting is 750,000 bps).
General Specifications
Supply voltage 24 VDC
Allowable supply voltage 20.4 to 26.4 VDC
Power consumption 3.5 W max.
Inrush current 12.0 A max.
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 57 Hz, 0.075-mm amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z
directions for 80 minutes each
(Time coefficient; 8 minutes × coefficient factor 10 = total time 80 minutes)
Shock resistance 147 m/s2 three times each in X, Y, and Z directions
Ambient temperature Operating: 0°C to 55°C
Storage: –20°C to 75°C
Humidity 10% to 90% (with no condensation)
Atmosphere Must be free from corrosive gas.
Terminal screw size M3
Power interrupt time DC type: 2 ms min.
Weight 150 g max.
SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2
13
Nomenclature
SRM1-C01-V2 SRM1-C02-V2
CPU Unit status indicator
CompoBus/S
communications status indicator
Indicates the status of the Compo-
Bus/S in operation and in communication
with Slaves.
Peripheral port
communications status indicator
Flashes when the peripheral port or
RS-232C port is in communication.
Connector cover
Peripheral port
Connect this port to programming
tools through dedicated cables.
Terminal block
Connector cover
RS-232C port
Connect this port to the
RS-232C interfaces of personal
computers and Programmable
Terminals.
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRM1-C01/C02-V2
The above dimensions apply to the SRM1-C02-V2. The SRM-C01-V2 has no RS-232C port.
14
Master Unit C200HW-SRM21-V1
Master Unit for CS1, C200HX, C200HG,
C200HE, and C200HS
A maximum of 256 I/O points available.
Connects to a maximum of 32 Slaves.
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Connection to Analog Terminals now supported.
RC
Ordering Information
PC Max. number of I/O points Model
C200HX (-Z), C200HG (-Z), C200HE (-Z),
C200HS, CS1
256 points (128 inputs/128 outputs) C200HW-SRM21-V1
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps, 93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable:
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched with the DIP switch.
C200HW-SRM21-V1 C200HW-SRM21-V1
15
Unit Specifications
Current consumption 150 mA max. at 5 VDC
Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs) (switchable)
Number of occupied words 256 points: 20 words (8 input words/8 output words, 4 status data)
128 points: 10 words (4 input words/4 output words, 2 status data)
PC CS1, C200HX (-ZE), C200HG (-ZE), C200HE (-ZE), C200HS
Number of points per node number 8 points
Max. number of Slaves per Master 32
Status data Communications Error Flag and Active Slave Node (see note)
Weight 200 g max.
Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460)
Note: These flags use the AR area.
Ratings
The ratings of the Unit are the same as those of the CS1, C200HX, C200HG, C200HE, and C200HS.
Nomenclature
Indicators
Indicates the operating status of the Master Unit and
the status of communications with the Slaves.
Rotary Switch
This switch sets the Master’s one-digit hexadecimal
unit number.
DIP Switch
These pins have the following functions:
Pin 1: Max. number of Slaves setting
Pin 2: Baud rate setting
Pins 3 to 4: Reserved (Always OFF.)
Communications Terminals
Connect the Slaves’ transmission cable to
these terminals.
C200HW-SRM21-V1 C200HW-SRM21-V1
16
Dimensions
Note: All units are in millimeters unless otherwise indicated.
C200HW-SRM21-V1
Note: Refer to the C200HX, C200HG, C200HE, C200HS, or CS1 Operation Manual for
details on the dimensions when the Master Unit is installed in the PC’s Backplane.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
17
Master Unit CQM1-SRM21-V1
Master Unit for CQM1
A maximum of 128 I/O points available (Possible to
set 32, 64, or 128 I/O points).
Connects to a maximum of 16/32 Slaves.
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Connection to Analog Terminals now supported.
RC
Ordering Information
PC Max. number of I/O points Model
CQM1-series PC 128 points (64 inputs/64 outputs) CQM1-SRM21-V1
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps, 93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable::
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched with the DIP switch.
CQM1-SRM21-V1 CQM1-SRM21-V1
18
Unit Specifications
Current consumption 180 mA max. at 5 VDC
Number of I/O points 128 points (64 inputs/64 outputs), 64 points (32 inputs/32 outputs),
32 points (16 inputs/16 outputs) (switchable)
Number of occupied words 128 points: 4 input words/4 output words
64 points: 2 input words/2 output words
32 points: 1 input word/1 output word
PC 128 points: CQM1-CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
64 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
32 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
Number of points per node number 4/8 points (switchable)
Max. number of Slaves per Master 32 (4 points per node number)
Status data Alarm terminal output
Weight 200 g max.
Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460)
Alarm Output Specifications
Maximum switching capacity 2 A at 24 VDC
Minimum switching capacity 10 mA at 5 VDC
Relay G6D-1A
Minimum ON time 100 ms
Circuit configuration
2 A at 24 VDC max.
Internal
circuit
CQM1-SRM21-V1
Ratings
The ratings of the Unit are the same as those for the CQM1.
Nomenclature
Indicators
Indicates the operating status of the Master Unit and
the status of communications with the Slaves.
DIP Switch
These pins have the following functions:
Pins 1 and 2: PC word allocation setting
Pin 3: Number of points setting
Pin 4: Baud rate setting
Pins 5 to 6: Reserved (Always OFF.)
Alarm Output Terminals
These terminals are shorted when an error occurs.
Connect to a warning device.
Communications Terminals
Connect the Slaves’ transmission cable to these
terminals.
Terminal block screws
These screws attach the terminal
block. The terminal block can be
removed when these screws are
loosened.
CQM1-SRM21-V1 CQM1-SRM21-V1
19
Dimensions
Note: All units are in millimeters unless otherwise indicated.
CQM1-SRM21-V1
Note: Refer to the CQM1 Operation Manual for details on the dimensions when
the Master Unit is installed in the PC’s Backplane.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
20
SYSMAC Board C200PC-ISA2-SRM
SYSMAC C200HX/HG/HE and
CompoBus/S Master Functions
Integrated into a Single PCB
Operates as a Programmable Controller to be built
into personal computers.
Programming is possible through Programming
Devices like the programming on C200HX/HG.
An optional Expansion Board is available for serial
communications.
Dedicated library in C is available for control.
Driver for Windows use is available.
Connects to a maximum of three Expansion I/O
Racks.
CompoBus/S Slave data is automatically read.
Ordering Information
PC Max. number of I/O points Model
C200HG-CPU43 256 points ( 128 inputs/128 outputs) C200PC-ISA02-SRM
C200HX-CPU64
56 o s 8 u s/ 8 ou u s)
C200PC-ISA12-SRM
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note)
Communications baud rate 750,000 bps
Communications cycle time 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications distance VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: A terminator must be connected to the point in the system farthest from the Master.
C200PC-ISA2-SRM C200PC-ISA2-SRM
21
Unit Specifications
Power supply voltage 4.875 to 5.25 VDC
Current consumption 0.5 A max. (see note 1)
Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs), (switchable)
Number of occupied words 256 points: 20 words (8 input words, 8 output words, and 4 status data words) (see note 2)
128 points: 10 words (4 input words, 4 output words, and 2 status data words)
Number of points per node number 8 points
Max. number of Slaves per Master 32
Status data Communications Error Flag and Active Slave Node (see note 2)
Weight 200 g max.
Note: 1. The current consumption will be 0.8 A max. if the Programming Console is connected through the optional Expansion Board.
2. The occupied words are in the IR area.
22
I/O Link Unit CPM1A-SRT21
I/O Link Unit for CPM2A/CPM1A
Operates as a Slave of the CompoBus/S Master
Unit.
Exchanges eight inputs and eight outputs with the
Master.
Approved by UL and CSA standards, and bears the
CE marking.
RC
Ordering Information
CPU Units
I/O configuration Power supply Output method Input Output Model
30-point I/O model AC Relay 18 12
CPM1A-30CDR-A*
DC Relay
CPM1A-30CDR-D*
Transistor (sink) CPM1A-30CDT-D
Transistor (source) CPM1A-30CDT1-D
AC Relay CPM2A-30CDR-A
DC Relay CPM2A-30CDR-D
Transistor (sink) CPM2A-30CDT-D
Transistor (source) CPM2A-30CDT1-D
40-point I/O model AC Relay 24 16
CPM1A-40CDR-A*
DC Relay
CPM1A-40CDR-D*
Transistor (sink) CPM1A-40CDT-D
Transistor (source) CPM1A-40CDT1-D
AC Relay CPM2A-40CDR-A
DC Relay CPM2A-40CDR-D
Transistor (sink) CPM2A-40CDT-D
Transistor (source) CPM2A-40CDT1-D
60-point I/O model AC Relay 36 24
CPM2A-60CDR-A
DC Relay
CPM2A-60CDR-D
Transistor (sink) CPM2A-60CDT-D
Transistor (source) CPM2A-60CDT1-D
Note: Models marked with asterisks do not bear CE markings.
Expansion Units
Product Number of connectable
Units per CPU Unit
Output method Input Output Model
Expansion I/O Units 3 max. (see note) Relay 12 8
CPM1A-20EDR1
Transistor (sink)
CPM1A-20EDT
Transistor (source) CPM1A-20EDT1
--- 8 --- CPM1A-8ED
Relay --- 8 CPM1A-8ER
Transistor (sink) --- 8
CPM1A-8ET
Transistor (source)
CPM1A-8ET1
Analog I/O Unit 3 max. (see note) Analog 2 1 CPM1A-MAD01
CompoBus/S I/O Link Unit 3 max. (see note) --- 8 I/O link points 8 I/O link points CPM1A-SRT21
Note: Only a single Unit will be connectable if the NT-AL001 is connected to the RS-232C port.
CPM1A-SRT21 CPM1A-SRT21
23
Specifications
Slave CompoBus/S Slave
Number of I/O points 8 inputs and 8 outputs
Number of occupied I/O memory
words of CPM2A
1 input word and 1 output word (same as other Expansion Units in allocation)
Node address setting DIP switch
Dimensions
Note: All units are in millimeters unless otherwise indicated.
CPM1A-SRT21
Installation
Connection Examples
CompoBus/S Master Unit or
SRM1 CompoBus/S Master
Control Unit CPM1A or CPM2A CPU Unit
CPM1A-SRT21 CompoBus/S
I/O Link Unit
CS1
C200H
CQM1
SRM1
Dedicated flat cable or VCTF cable Connectable to 16 Units max.
(Eight CQM1-SRM21 Units max.)
Note: A single CompoBus/S I/O Link Unit together with a maximum of two other Expansion I/O Units can be connected to the CPM1A or
CPM2A CPU Unit.
24
Transistor Remote Terminal SRT-ID/OD
Long-distance Communications
Supported by SRT2 Models
(Long-distance/High-speed
Communications Selection)
SRT1 models support high-speed communications
only.
SRT2 models support long-distance communications
and high-speed communications.
Ultra-compact at 80 x 48 x 50 (W x H x D) mm for
4-point and 8-point terminals and 105 x 48 x 50 (W x
H x D) mm for 16-point terminals.
Two independent power supplies can be used
because the I/O terminals are insulated from the
internal circuits.
DIN track mounting and screw mounting are both
supported.
RC
Ordering Information
I/O classification Internal I/O circuit
common
I/O points Rated voltage I/O rated voltage Model
Input NPN (+ common) 4 24 VDC 24 VDC SRT1-ID04
PNP (– common)
C C
SRT1-ID04-1
Output NPN (– common) SRT1-OD04
PNP (+ common) SRT1-OD04-1
Input NPN (+ common) 8
SRT2-ID08
PNP (– common)
SRT2-ID08-1
Output NPN (– common) SRT2-OD08
PNP (+ common) SRT2-OD08-1
Input NPN (+ common) 16 SRT2-ID16
PNP (– common)
6
SRT2-ID16-1
Output NPN (– common) SRT2-OD16
PNP (+ common) SRT2-OD16-1
Note: For more details about connections supported by the Master Unit, refer to page 10.
Specifications
Ratings
Inputs
Input current 6 mA max./point
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. between each input terminal and V
OFF voltage 5 VDC max. between each input terminal and V
OFF current 1 mA max.
Insulation method Photocoupler
Input indicators LED (yellow)
SRT-ID/OD SRT-ID/OD
25
Outputs
Rated output current 0.3 A/point
Residual voltage 0.6 V max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
Output indicators LED (yellow)
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
I/O power supply current 1 A max.
Current consumption (see note) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 4-point and 8-point Terminals: 16 Input Terminals and 16 Output Terminals per Master
16-point Terminals: 8 Input Terminals and 8 Output Terminals per Master
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength No damage when 50 N pull load was applied for 10 s
Screw tightening torque 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 4-point and 8-point Terminals: 80 g max.
16-point Terminals: 110 g max.
Approved standards (4/8 points) UL 508, CSA C22.2 No. 14
Note: The above current consumption is the value with all 4 and 8 and 16 points turned ON excluding the current consumption of the external
sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
SRT-ID/OD SRT-ID/OD
26
Nomenclature
I/O Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 14- to 26.4-VDC power supply.
CompoBus/S Terminal
Connect the CompoBus/S
DIP Switch communications cable.
Used for node number setting and holding or clearing outputs for communications error.
Refer to the Compobus/S Operation Manual (W266) for details on DIP switch settings.
Baud rate setting
0 to 7
ERR
COMM
PWR
Node Number Settings
Output HOLD/CLEAR settings (Output Terminals only)
Screw mounting hole
Indicators
Indicator Display Color Meaning
PWR Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Lit Yellow Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Lit Red A communications error has occurred.
Not lit Normal communications or the Unit is in standby status.
0 to 7 Lit Yellow The corresponding I/O signal is ON.
Not lit The corresponding I/O signal is OFF.
Output HOLD/CLEAR Mode
Mode Pin 1 Setting
HOLD ON Output status is maintained.
CLEAR OFF Output status is cleared when a communications error occurs.
Note: 1. Pin 1 is factory-set to OFF.
2. This function is available to Output Terminals only.
SRT-ID/OD SRT-ID/OD
27
Node Number Settings
Node number Pin 3 Pin 4 Pin 5 Pin 6
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
Note: 1. The node number is factory-set to 0.
2. For node number settings, refer to the CompoBus/S Operation Manual (W266).
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID04 (-1)
SRT1-OD04 (-1)
SRT2-ID08 (-1)
SRT2-OD08 (-1)
(54)
27
80
48
65
Two, 4.2 dia. or M4
Sixteen, M3
Mounting Holes
(20.5)
(11)
SRT-ID/OD SRT-ID/OD
28
SRT2-ID16 (-1)
SRT2-OD16 (-1)
48
Two, 4.2 dia. or M4
(50)
(28)
Mounting Holes
(54)
27
50
(20.5)
(11)
105
22–M3
Installation
Internal Circuit Configuration
SRT1-ID04 SRT1-ID04-1
Photocoupler
Photocoupler
Internal
circuit
Internal
circuit
24 VDC(+)
Photocoupler
Photocoupler
(–)
SRT1-OD04
Internal
circuit
24 VDC
Photocoupler
Photocoupler
Voltage
stepdown
SRT1-OD04-1
Internal
circuit
Photocoupler
Photocoupler
24 VDC (P)
(P)
24 VDC (P)
(P)
Voltage
stepdown
V
V
V
1
G
0
2
G
G
V
V
V
1
V
0
2
G
SRT-ID/OD SRT-ID/OD
29
SRT2-OD08-1
Internal
circuit
Photocoupler
Photocoupler
SRT2-ID08 SRT2-ID08-1
Photocoupler
Photocoupler
Internal
circuit
24 VDC(+)
Internal
circuit
Photocoupler
Photocoupler
(–)
SRT2-OD08
Internal
circuit
24 VDC
Photocoupler
Photocoupler
Voltage
stepdown
SRT2-ID16
Photocoupler
Internal Photocoupler
circuit
SRT2-ID16-1
Internal
circuit
Photocoupler
Photocoupler
Internal
circuit
SRT2-OD16
Photocoupler
Photocoupler
Voltage
stepdown
SRT2-OD16-1
Internal
circuit
Photocoupler
Photocoupler
Voltage
stepdown
24 VDC (P)
24 VDC (P)
(P)
Voltage
stepdown
(P)
24 VDC (P)
(P)
24 VDC (P)
(P)
V
V
1
0
2
G
G
V
V
1
0
2
G
V
V
1
0
2
G
SRT-ID/OD SRT-ID/OD
30
External Connections (NPN Models)
Input
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Three-wired Sensors
SRT1-ID04 with NPN Output SRT2-ID08 and SRT2-ID16 with NPN Output
Two-wired Sensors
SRT1-ID04 SRT2-ID08 and SRT2-ID16
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Output
SRT1-OD04 SRT2-OD08 and SRT2-ID16
L 1 L 2 L 1 L 2
Terminal Arrangement and I/O Device Connection Example (PNP Models)
Note: The connections examples shown are for PNP models.
Input
SRT1-ID04 SRT2-ID08
Output
SRT1-OD04 SRT2-OD08
Blue
Brown
Blue
Brown
Blue
Brown
Brown
Blue
Communications
path
Communications
power
supply
power
supply
power
supply
Communications
path
Communications
power
supply
Communications
path
Communications
power
supply
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
Solenoid, valve Solenoid
I/O Communications
path
Communications
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
Black
Black
SRT2-ID16
SRT2-OD16
Communications
path
Communications
power
supply
I/O
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
I/O
power
supply
Communications
path
Communications
power
supply Solenoid Valve Valve
power
supply
I/O
Blue
Brown
Blue
Brown
Black
I/O I/O
SRT-ID/OD SRT-ID/OD
31
External Connections (PNP Models)
Input
Three-wired Sensors
SRT1-ID04-1 with NPN Output SRT2-ID08-1 and SRT2-ID16-1 with NPN Output
Two-wired Sensors
SRT1-ID04-1 SRT2-ID08-1 and SRT2-ID16-1
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Output
SRT1-OD04-1 SRT2-OD08-1 and SRT2-ID16-1
L 1 L 2 L 1 L 2
Terminal Arrangement and I/O Device Connection Example (PNP Models)
Note: The connections examples shown are for NPN models.
Input
SRT1-ID04-1 SRT2-ID08-1
Output
SRT1-OD04-1 SRT2-OD08-1
Blue
Brown
Blue
Brown
Blue
Brown
Brown
Blue
Communications
path
Communications
power
supply
power
supply
power
supply
Communications
path
Communications
power
supply
Communications
path
Communications
power
supply
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
Solenoid, valve Solenoid
I/O Communications
path
Communications
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
Black
Black
SRT2-ID16-1
SRT2-OD16-1
Communications
path
Communications
power
supply
I/O
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
I/O
power
supply
Communications
path
Communications
power
Valve supply Solenoid Valve
power
supply
I/O
Blue
Brown
Blue
Brown
Black
I/O I/O
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For general precautions refer to page 80.
32
Remote I/O Terminal SRT1-D16T(-1)
Models with 3-tier Terminals (16 Points)
are Added to the Remote I/O Terminal
Series.
Six Models are Available Depending on
the NPN or PNP Configuration, Input
Points, I/O Points, or Output Points.
Incorporates easy-to-wire terminals each connecting
to a single wire.
Reduces designing and wiring effort.
Incorporates a removable circuit block of cassette
construction.
Ordering Information
I/O classification Internal I/O circuit
common
I/O points I/O connection method Model
Digital input NPN (+ common) 16 M3 terminal block SRT1-ID16T
PNP (– common)
6 3 e a boc
SRT1-ID16T-1
Digital I/O NPN (+ common) SRT1-MD16T
PNP (– common) SRT1-MD16T-1
Digital output NPN (– common) SRT1-OD16T
PNP (+ common) SRT1-OD16T-1
Specifications
Ratings
Inputs
Input current 6 mA max./point at 24 V and 3 mA min./point at 17 V
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage NPN: 15 VDC min. between V terminals and each input terminal
PNP: 15 VDC min. between G terminals and each input terminal
OFF voltage NPN: 5 VDC max. between V terminals and each input terminal
PNP: 5 VDC max. between G terminals and each input terminal
OFF current 1 mA max.
Insulation method Photocoupler
Outputs
Rated output current 0.5 A max./point
Residual voltage 1.2 V max.
ON delay time 0.5 ms max.
OFF delay time 1.0 ms max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
SRT1-D16T(-1) SRT1-D16T(-1)
33
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
I/O power supply current 4 A max./common
Current consumption (see note) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC between insulated circuits
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage with 100 N pull load applied in all directions.
Terminal strength No damage with 100 N pull load applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight 300 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
Nomenclature
ERR Indicator: Indicates communications errors.
COMM Indicator: ON while the Unit is in data communication.
Power Indicator
HOLD/CLR DIP Switch
The DIP switch is on the
left-hand side under the cover
on the upper part of the Remote
I/O Terminal.
Holding or clearing output when a
communications error occurs.
Address Setting Switch
Set the rotary switch to the node
address by referring to the
following table.
I/O Indicators
M4 Mounting Screw
Terminal Cover
The Unit stops operating with the
cover opened.
I/O and I/O Device Power Supply Terminals 8 to 15
These terminals will be used as output terminals 0
through 7 if the connected device handles both input
and output signals.
I/O and I/O Device Power Supply Terminals 0 to 7
These terminals will be used as input terminals if the
connected device handles both input and output
signals.
I/O Power Supply Terminals
Connect 24-VDC I/O power supply
Fixture Track
Used for DIN track mounting.
CompoBus/S Internal Power Supply
Terminals (BS+ and BS–)
CompoBus/S Communications Cable
Terminals (BDH and BDL)
Address Setting Switch
Node address Setting (Hex)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
Node address Setting (Hex)
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
SRT1-D16T(-1) SRT1-D16T(-1)
34
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID16T (-1)
SRT1-MD16T (-1)
SRT1-OD16T (-1)
Mounting Holes
Two, 4.2 dia. or M4
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT1-ID16T SRT1-MD16T
SRT1-ID16T-1 SRT1-MD16T-1
SRT1-OD16T
SRT1-OD16T-1
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(0 to 7)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Outputs
(0 to 7)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Outputs
(0 to 7)
Outputs
(8 to 15)
I/O
power
supply
I/O
power
supply
I/O
power
supply
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
SRT1-D16T(-1) SRT1-D16T(-1)
35
External Connections
Input (NPN Models)
SRT1-ID16T
SRT1-MD16T
Output (NPN Models)
SRT1-OD16T
SRT1-MD16T
Input (PNP Models)
SRT1-ID16T-1
SRT1-MD16T-1
Output (PNP Models)
SRT1-OD16T-1
SRT1-MD16T-1
Two-wired sensor Three-wired sensor Three-wired sensor
Solenoid, valve, etc. Solenoid, valve, etc.
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Black (Black)
Blue (Red)
Brown (White)
36
Relay-mounted Remote Terminal SRT-R
Ultra-miniature 8-point and 16-point
Relay-mounted Terminals
Ultra-compact
(8-point models: 101 x 51 x 51 mm (W x H x D);
16-point models: 156 x 51 x 51 mm (W x H x D))
Power MOS FET Relay and Relay models.
DIN track mounting and screw mounting are
available.
RC
Ordering Information
Classification I/O points Rated voltage Relay coil rating Model Applicable relay
Relay output 8 points 24 VDC 24 VDC SRT1-ROC08 G6D-1A
16 points SRT2-ROC16
Power MOS FET
l t t
o e OS 8 points SRT1-ROF08 G3DZ-2R6PL
relay output 16 points SRT2-ROF16
Note: For details about connections to the Master Unit, refer to page 10.
Specifications
Ratings
Relay Output
Item SRT1-ROC08, SRT2-ROC16
Applicable relay G6D-1A (one for each output point)
Rated load 3 A at 250 VAC, 3 A at 30 VDC (resistive load)
Rated carry current 3 A (see note 1)
Max. contact voltage 250 VAC, 30 VDC
Max. contact current 3 A
Max. switching capacity 730 VA (AC), 90 W (DC)
Min. permissible load (see note 2) 10 mA at 5 VDC
Life expectancy Electrical: 100,000 operations min. (rated load, at 1,800 operations/h)
Mechanical: 20,000,000 operations min. (at 18,000 operations/h)
Note: 1. The maximum permissible current of COM0 to COM7 is 3 A.
2. This value fulfills the P reference value of opening/closing at a rate of 120 times per min (ambient operating environment and determination
criteria according to JIS C5442).
Power MOS FET Relay Output
Item SRT1-ROF08, SRT2-ROF16
Applicable relay G3DZ-2R6PL (one for each output point)
Load voltage 3 to 264 VAC, 3 to 125 VDC
Load current 100 mA to 0.3 A
Inrush current 6 A (10 ms)
SRT-R SRT-R
37
Characteristics
Power supply voltage 24 VDC +10%/–15%
Current consumption (see note) 350 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 8-point Units: 16 per Master
16-point Units: 8 per Master
Dielectric strength 2,000 VAC for 1 min (1-mA sensing current) between all output terminals and power supply,
between communication terminals, and between contacts of different polarities
500 VAC for 1 min (1-mA sensing current) between all output terminals and power supply,
between communication terminals, and between all power supply terminals and
communications terminals
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 55 Hz, 0.75-mm double amplitude
Shock resistance Malfunction: 100 m/s2
Destruction: 300 m/s2
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength No damage when 50 N pull load was applied for 10 s
Screw tightening torque 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 8-point models: 145 g max., 16-point models: 240 g max.
Approved standards UL 508, CSA C22.2 No. 14
Note: The above current consumption is a value with all the points turned ON including the current consumption of the G6D coil for the
Remote Output Terminal.
SRT-R SRT-R
38
Nomenclature
SRT2-ROC16
SRT2-ROF16
SRT1-ROC08
SRT1-ROF08
Mounting Holes
Output Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 24-VDC power supply.
CompoBus/S Terminals
Connect the CompoBus/S communications cable.
Mounting Holes
DIP Switch
Used for node number setting and holding or
clearing outputs for communications error.
Note: Always turn off the Unit before changing DIP switch settings.
Mounting Holes
Output Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 24-VDC power supply.
CompoBus/S Terminals
Connect the CompoBus/S communications cable.
Mounting Holes
DIP Switch
Used for node number setting and holding or clearing outputs for communications error.
0 to 15
ERR
COMM
PWR
Output HOLD/CLEAR setting (Output model only)
Baud rate setting
Node address setting
Indicators
Indicator Display Color Meaning
PWR Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Lit Yellow Normal communications
Not lit A communications error has occurred or
the Unit is in standby status.
ERR Lit Red A communications error has occurred.
Not lit Normal communications or the Unit is in
standby status.
0 to 15
(see
note)
Lit Yellow The corresponding I/O signal is ON.
Not lit The corresponding I/O signal is OFF.
Note: The SRT1-RO08 does not have indicators 8 to 15.
SRT-R SRT-R
39
Output HOLD/CLEAR Mode
Mode Pin 1 Setting
HOLD ON Output status is maintained when a communications error occurs.
CLEAR OFF Output status is cleared when a communications error occurs.
Note: 1. Pin 1 is factory-set to OFF.
2. This function is available to the Output Terminal only.
Node Number Settings
Node number Pin 3 Pin 4 Pin 5 Pin 6
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
Note: 1. The node number is factory-set to 0.
2. For node number setting, refer to the CompoBus/S Operation Manual (W266).
SRT-R SRT-R
40
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ROC08
SRT1-ROF08
Mounting Holes
SRT2-ROC16
SRT2-ROF16
Mounting Holes
100
50
Two, 4.2 dia. or M4
Two, 4.2 dia. or M4
50
50
155
Thirty two, M3
Sixteen, M3
50 50
50
80
40
135
40
SRT-R SRT-R
41
Installation
Internal Circuit Configuration
SRT1-ROC08
SRT2-ROC16
Note: The G3DZ-2R6PL Power MOS FET Relay is inserted into
this portion of the SRT1-ROF08 and SRT2-ROF16.
Relay driver
circuit
Internal
circuit
Later
blocks
(See
note)
*
Relay driver
circuit
Relay driver
circuit
Relay driver
circuit
External Connections
Lamp
Lamp
Lamp
Lamp
Load
power
supply
Terminal Arrangement and I/O Device Connection Example
Output
SRT2-ROC16
SRT2-ROF16
Note: 1. Dotted lines indicate internal connections.
SRT1-ROC08 and SRT1-ROF08 have the 0 to 7 and COM0 to COM3 terminals only.
2. The above is a connection example of the SRT2-ROC16 with G6D Relays mounted.
G3DZ Power MOS FET Relays are mounted to the SRT1-ROF08 and SRT2-ROF16.
24-VDC
power supply
Communications
path
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
*(see note 2)
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for details.
42
Connector Terminal SRT2-VID/VOD
Compact Connector Terminals Save
Wiring Effort and Enable Long-distance
Communications
Long-distance or high-speed communications
mode is selectable.
Incorporates I/O connectors making it possible to
minimize the size.
I/O connectors save wiring effort.
Flexible DIN track mounting is possible through a
DIN track attachment.
Eight-point sensor connector models and 16-point
MIL connector models are the same size.
Features
Vertical or horizontal DIN track mounting according to the available space is possible.
Saves space and easily connects to other devices without wiring effort.
Standard mounting
(Sensor connector model)
Mounting with DIN
track attachment
Standard mounting
(MIL connector model)
Communications and
power supply connector DIN track
G7TC
Sensor connector
Indicators
Setting switch
DIN track mounting hook
MIL connector
Ordering Information
I/O classification Internal I/O circuit
common
I/O points I/O connection method Model
Digital input NPN (+ common) 8 Sensor connector SRT2-VID08S
PNP (– common)
Se so co ec o
SRT2-VID08S-1
Digital output NPN (– common) SRT2-VOD08S
PNP (+ common) SRT2-VOD08S-1
Digital input NPN (+ common) 16 MIL connector SRT2-VID16ML
PNP (– common)
6 co ec o
SRT2-VID16ML-1
Digital output NPN (– common) SRT2-VOD16ML
PNP (+ common) SRT2-VOD16ML-1
Mounting hook A SRT2-ATT01
Mounting hook B SRT2-ATT02
Note: For details about connecting the SRT2-VID or SRT2-VOD to the Master Unit, refer to page 10.
SRT2-VID/VOD SRT2-VID/VOD
43
Specifications
Ratings
Inputs
Item SRT2-VID08S
SRT2-VID08S-1
SRT2-VID16ML
SRT2-VID16ML-1
Input current 6 mA max./point at 24 V, 3 mA max./point at 17 V
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. (Between each input terminal and V: NPN. Between each input and G: PNP.)
OFF voltage 5 VDC max. (Between each input terminal and V: NPN. Between each input and G: PNP.)
OFF current 1 mA max.
Insulation method Photocoupler
Maximum number of inputs 8 12
Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit
Outputs
Item SRT2-VID08S
SRT2-VID08S-1
SRT2-VID16ML
SRT2-VID16ML-1
Rated output current 0.3 A/point 0.3 A/point (2-A common) (See note.)
Residual voltage 1.2 V max.
ON delay time 0.5 ms max.
OFF delay time 1.5 ms max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit
Note: When using V/G terminals in an MIL connector, ensure that the current per terminal for the V/G terminals does not exceed 1 A.
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 20.4 to 26.4 VDC (24 VDC +10%/–15%)
I/O power supply current Sensor connector: 2.4 A max., MIL connector: 2.0 A max.
Current consumption (see note) 50 mA max. at 24 VDC
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 (50 m/s2 for SRT2-ATT02)
Shock resistance 200 m/s2
Dielectric strength 500 VAC (between insulated circuits)
Ambient temperature Operating: –10°C to 55°C (with no icing or condensation)
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Storage: 25% to 85%
Mounting strength No damage when 100 N pull load was applied in all directions (40 N load for SRT2-ATT02)
Terminal strength No damage when the following loads were applied:
Communications connector: 100 N
Sensor connector: 40 N
MIL connector: 100 N
Screw tightening torque Communications connector: 0.25 N m
Node address setting Settings made at DIP switch (set before supplying power for Slave communications)
Weight Approx. 75 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
SRT2-VID/VOD SRT2-VID/VOD
44
Nomenclature
SRT2-VID08S/SRT2-VID08S-1
SRT2-VOD08S/SRT2-VOD08S-1
(Sensor Connector Models)
SRT2-VID16ML/SRT2-VID16ML-1
SRT2-VOD16ML/SRT2-VOD16ML-1
(MIL Connector Models)
Communications
Connectors
I/O Connectors Indicators
DIP Switch
Communications
Connectors
I/O Connectors
Output HOLD/CLEAR Mode Setting
Communications Mode Setting
Node Address Setting
Reserved for System Use (Always OFF)
Indicators
Indicator Color Display Meaning
PWR Green Lit The communications power
supply is ON.
Not lit The communications power
supply is OFF.
COMM Yellow Lit Normal communications
Not lit A communications error has
occurred or the Unit is in
standby status.
ERR Red Lit A communications error
has occurred.
Not lit Normal communications or
the Unit is in standby status.
0 to 7
(for
8-point
I/O)
0 to 15
(for
16-point
I/O)
Yellow Lit The corresponding I/O
signal is ON.
Not lit The corresponding I/O
signal is OFF.
Name
Power
Communications
Communications
error
Input
(output)
Output HOLD/CLEAR Mode
SW8 (HOLD) Setting
OFF Output status is cleared.
ON Output status is maintained.
Communications Mode
SW7 (HOLD) Setting
OFF High-speed communications mode
ON Long-distance communications mode
Node Number Settings
Node number Pin 4 Pin 3 Pin 2 Pin 1
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF OFF
14 ON ON ON OFF
15 ON ON ON ON
Note: Be sure to perform settings with the Slave
power supply OFF.
SRT2-VID/VOD SRT2-VID/VOD
45
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-VID08S
SRT2-VID08S-1
SRT2-VOD08S
SRT2-VOD08S-1
SRT2-VID16ML
SRT2-VID16ML-1
SRT2-VOD16ML
SRT2-VOD16ML-1
SRT2-ATT01
SRT2-ATT02
Dimensions when Unit is mounted.
SRT2-VID/VOD SRT2-VID/VOD
46
Installation
Internal Circuit Configuration
SRT2-VOD08S-1
SRT2-VID08S SRT2-VID08S-1
SRT2-VOD08S
SRT2-VID16ML SRT2-VID16ML-1
SRT2-VOD16ML SRT2-VOD16ML-1
Photocoupler
Photocoupler Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
SRT2-VID/VOD SRT2-VID/VOD
47
Terminal Arrangement and I/O Device Connection Examples
SRT2-VID08S SRT2-VID08S-1
SRT2-VID16ML SRT2-VID16ML-1
SRT2-VOD08S
SRT2-VOD16ML
SRT2-VOD08S-1
SRT2-VOD16ML-1
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications
CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
Sensor
Brown (Red)
Black (White)
Blue (Black)
Three-wired sensor
Sensor
Brown (White)
Blue (Black)
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Note: 1. V terminals and G terminals are respectively connected internally.
When supplying power for I/O from communications connectors, power can be supplied to the sensor output devices from V and G
terminals.
2. When using an inductive load (solenoid, valve etc.), either use one with an internal reverse electromotive force absorption diode or
attach a diode externally.
SRT2-VID/VOD SRT2-VID/VOD
48
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for common precautions.
Communications Connector Pin Arrangement
24-VDC
communications
power supply
24-VDC I/O
power supply
CompoBus/S communications
The following solderless terminals are recommended.
• Manufacturer: Weidmuller
Sleeve (Part No. 046290)
Solderless
terminal
Cable
Two-wire insertion (Part No. 901851)
Solderless
terminal
Cable
The following product is a dedicated tool.
• Manufacturer: Weidmuller
PZ1.5 Crimper (Part No. 900599)
Sensor Connector Pin Arrangement
SRT2-VID08S/VID08S-1
SRT2-VOD08S/VOD08S-1
Model Cable conductor size
XS8A-0441 0.3 to 0.5 mm2
XS8A-0442 0.14 to 0.2 mm2
Note: The XS8A-0441 or XS8A-0442 Connector is not provided
with the SRT-VID or SRT2-VOD. Place an order for the connector
separately.
Calculate the cable conductor size as follows.
The following information is given on each sensor cable:
Cable dia. (Number of conductors/Conductor dia.)
Conductor size (mm2) =
(Conductor dia./2)2 x p x Number of conductors
Example: E3S-A
4 dia. (18/0.12)
Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 0.20
The conductor size is 0.2 mm2. Therefore, use the XS8A-0442.
MIL Connector Pin Arrangement
SRT2-VID16ML/VID16ML-1
Function Pin No.
Pin No.
OUT0
IN0
OUT1
IN1
OUT2
IN2
OUT3
IN3
OUT4
IN4
OUT5
IN5
OUT6
IN6
OUT7
IN7
G
G
V
V
20
20
18
18
16
16
14
14
12
12
10
10
8
8
6
6
4
4
2
2
Function
Function
Pin No.
Pin No.
OUT8
IN8
OUT9
IN9
OUT10
IN10
OUT11
IN11
OUT12
IN12
OUT13
IN13
OUT14
IN14
OUT15
IN15
G
G
V
V
19
19
17
17
15
15
13
13
11
11
9
9
7
7
5
5
3
3
1
1
SRT2-VOD16ML/VOD16ML-1
Function
Note: 1. No cable connector is provided. Order the connector
separately.
• Applicable Connector
XG4M-2030-T
• Applicable Connector Cables
G79-O50C
G79-O25C
G79-I50C
G79-I25C
2. Refer to the following table for ordering information on
the applicable Cables.
SRT2-VID/VOD SRT2-VID/VOD
49
Applicable Cables
Connectable product Model Applicable Cable
I/O Block G7TC-OC16
G7TC-OC08
G7TC-ID16-5
G7TC-IA16-5
G79-O50C (L = 500 mm)
G7TC IA16 G7VC Series
G70A Series
G70D Series
e G79-O25C (L = 250 mm)
Connector-Terminal Conversion Unit XW2B Series
Digital Display Unit M7F
I/O Block G7TC-ID16
G7TC-IA16
e
G79-I50C (L = 500 mm)
G7TC-OC16-1
G79-I25C (L = 250 mm)
50
Sensor Terminal SRT1-D08S
Connector Connection Models that
Allows Easy Connection to Sensors and
Output Devices
Sensors with easy-to-wire connectors are easily
attached or detached.
Connects to 2-wired sensors.
Remote teaching of the Sensor Terminal is possible
with the PC by using output signals of the Sensor
Terminal.
DIN track mounting and screw mounting are
available.
Ordering Information
Classification Internal I/O circuit common I/O points Model
For input NPN (– common) 8 input points SRT1-ID08S
For I/O NPN (– common) 4 input/4 output points SRT1-ND08S
For output NPN (– common) 8 output points SRT1-OD08S
Specifications
Ratings
Input
Item SRT1-ID08S/-ND08S
Input current 10 mA max./point
ON delay time 1 ms max.
OFF delay time 1.5 ms max.
ON voltage 12 VDC min. between each input terminal and VCC, the external sensor power supply
OFF voltage 4 VDC max. between each input terminal and VCC, the external sensor power supply
OFF current 1 mA max.
Insulation method Photocoupler
Input indicator LED (yellow)
Output
Item SRT1-ND08S SRT1-OD08S
Rated output current 20 mA/point 30 mA/point
Residual voltage 1 V max. 0.6 V max.
ON delay time 1 ms max. ---
OFF delay time 1.5 ms max. ---
Leakage current 0.1 mA max.
Insulation method Photocoupler
Output indicator LED (yellow)
SRT1-D08S SRT1-D08S
51
Characteristics
Communications power supply
voltage (see note 1)
14 to 26.4 VDC
Current consumption (see note 2) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms
Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screw mounting or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track
directions and a pulling force of 10 N
Terminal strength No damage when 50 N pull load was applied for 10 s in all directions
Tighten each screw to a torque of 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight SRT1-ID08S/OD08S: 100 g max., SRT1-ND08S: 80 g max.
Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Unit is connected to 2-wired proximity sensors.
2. The above current consumption is a value with all the points turned OFF excluding the current consumption of the sensor connected
to the Sensor Terminal.
External Sensor Power Supply
Power supply voltage 13.5 to 26.4 VDC
Current consumption 500 mA max. in total
Nomenclature
SRT1-ID08S
SRT1-ND08S
CompoBus/S Terminals
Connect the CompoBus/S communications
cable.
Sensor Terminal
I/O Connectors
Connect the
cables from the
sensors here.
I/O Indicators
Indicate the status of each point.
(Lit when the input or output is ON.)
The SRT1-ID08S has 8 input indicators
and the SRT1-ND08S has 4
input indicators and 4 output indicators.
DIP Switch
The DIP switch’s pins have the
following functions:
Pins 1 to 4: Node number setting
Pin 5: Reserved (Always OFF.)
Pin 6: Hold/clear outputs for communications
error
DIN Track Mounting Hook
Used when mounting the Unit
to a DIN track.
CompoBus/S Indicators
Indicate the operating status of the Slave and the status
of communications.
Mounting Screw Holes
Used when screwing the Unit to
a control panel.
Indicators
PWR
COMM
ERR
IN0 to 3
IN0 to 7
OUT0 to 3
Communications Power
Supply Terminals
Connect the communications
power supply.
SRT1-D08S SRT1-D08S
52
Indicators
Indicator Name Display Color Meaning
PWR Power supply Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Lit Yellow Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Lit Red A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
0 to 3
(4 inputs/outputs)
Input Lit Yellow The corresponding input is ON.
0 to 7 (8 inputs) Not lit The corresponding input is OFF or the Unit is in standby status.
0 to 3
(4i t / t t )
o Output Lit Yellow The corresponding output is ON.
4 inputs/outputs) Not lit The corresponding output is OFF or the Unit is in standby status.
Switch Setting
All pins are factory-set to OFF.
Hold/Clear outputs for
Node number communications error
settings
Reserved (OFF)
Pin 5 (Reserved)
Always set pin 5 to OFF.
Output HOLD/CLEAR Mode (SRT-ND16S)
HOLD Function
OFF Output status is cleared when a
communications error occurs.
ON Output status is maintained when a
communications error occurs.
Node Number Settings
Node number 1 2 4 8
0 OFF OFF OFF OFF
1 ON OFF OFF OFF
2 OFF ON OFF OFF
3 ON ON OFF OFF
4 OFF OFF ON OFF
5 ON OFF ON OFF
6 OFF ON ON OFF
7 ON ON ON OFF
8 OFF OFF OFF ON
9 ON OFF OFF ON
10 OFF ON OFF ON
11 ON ON OFF ON
12 OFF OFF ON ON
13 ON OFF ON ON
14 OFF ON ON ON
15 ON ON ON ON
SRT1-D08S SRT1-D08S
53
SRT1-OD08S
DIP Switch
Mounting Screw Holes
Used when screwing the Unit to a control panel.
CompoBus/S Indicators
Indicate the operating status of the Slave and the status of communications.
Output Indicators
Indicate the output status
of each channel.
Communications Terminals
Communications Power
Supply Terminals
Connect the communications
cable.
DIN Track
Mounting Hook
Used when mounting the Unit
to a DIN track.
Output Connectors
Connect the cables from
the output device.
Switch Setting
All pins are factory-set to OFF.
Hold/Clear outputs for
Node number communications error
settings
Reserved (OFF)
Pin 5 (Reserved)
Always set pin 5 to OFF.
Output HOLD/CLEAR Mode (SRT-ND16S)
HOLD Function
OFF Output status is cleared when a
communications error occurs.
ON Output status is maintained when a
communications error occurs.
Node Number Settings
Node number 4 3 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
SRT1-D08S SRT1-D08S
54
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID08S
Mounting Holes
SRT1-ND08S
Mounting Holes
100
Cover opening and
closing directions
Two, 4.2 dia or M4
Four, M3
50
50
70 max.
Four, M3
Cover opening and
closing directions
Two, 4.2 dia or M4
(75)
(75)
SRT1-D08S SRT1-D08S
55
SRT1-OD08S
100
Cover opening and
closing directions
(75)
2.8
37
Two, 4.2 dia. or M4
7 Four, M3
50
40
92
40±0.2
92±0.2
Mounting Holes
4
6
Cable Connector for SRT1-OD08S
Applicable conductor size (mm2) Model
0.3 to 0.5 XS8A-0441
0.14 to 0.2 XS8A-0442
0.3 to 0.5 XS8B-0443
XS8B-0443
(Relay Socket )
XS8A-044
(Cable Connector)
Plug
connector
Cover
Model number
Pin number
Check window
Calculate the cable conductor size as explained below.
The following information is given on each sensor cable:
Cable dia. (Number of conductors/Conductor dia.)
Conductor size (mm2) = (Conductor dia./2)2 x p x Number of conductors
Example: E3S-A
4 dia. (18/0.12)
Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 0.20
The conductor size is 0.2 mm2. Therefore, use the XS8A-0442.
SRT1-D08S SRT1-D08S
56
Installation
Internal Circuit Configuration
SRT1-ID08S SRT1-ND08S
Internal
circuit
Photocoupler
Internal
circuit
Photocoupler
Photocoupler
SRT1-OD08S
Internal
circuit
For one output
External Connections
SRT1-ID08S SRT1-ND08S
Three-wired Sensor Two-wired Sensor Sensor with Teaching Function
Sensor with External Diagnostic function
Sensor with Bank-switching Function
Three-wired Sensor
Brown
Black
Blue
Sensor
Brown
Blue
Sensor
Brown
Black
Pink
Blue
Sensor
Brown
Black
Blue
Sensor
Two-wired Sensor
Brown
Blue
Sensor
SRT1-D08S SRT1-D08S
57
Terminal Arrangement and I/O Device Connection Example
Input
SRT1-ID08S
I/O
SRT1-ND08S
Photoelectric Sensor
Proximity Sensor
(Sensor with Teaching Function, Sensor with External Diagnostic
function, Sensor with Bank-switching Function)
24 VDC
Communications
power supply
CompoBus/S
communications
CompoBus/S
communications
Communications
power supply
Blue
Brown
Blue
Black
Brown
Photoelectric Sensor
Proximity Sensor
(3-wired Sensor)
Proximity Sensor
(2-wired Sensor)
CompoBus/S
communications
Communications
power supply
CompoBus/S
communications
Communications
power supply
Brown
Brown
Blue
24 VDC
Orange
CompoBus/S
CompoBus/S
Output
SRT1-OD08S CompoBus/S
SOURCE
24 VDC
BDL BDH – +
CompoBus/S
communications
Communications
power supply
Output connector
Pin number
Solenoid, etc. Valve, etc.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
General Safety Precautions
Installation Environment
Do not install the Unit in the following places.
• Places with water, oil, or chemical sprayed on the Unit.
• Places with rapid temperature changes.
• Places with high humidity resulting in condensation.
• Places with intense electric and magnetic fields.
• Places with excessive vibration or shock.
Wiring
To prevent inductive noise, do not wire power lines or high-tension
lines along with or near the cables.
Make sure that the polarity of each terminal is correct.
Make sure that the communications path and power line are connected
correctly.
Secure the cables properly. Do not pull the cables with strong force,
otherwise the cables may be disconnected from the terminals or
connectors of the Unit.
Do not touch the Unit when the Unit is used in places with high ambient
temperatures because the surface temperature of the Unit may
be high.
Do not use paint thinner to clean the surface of the Unit, otherwise
the surface will be damaged or discolored.
SRT1-D08S SRT1-D08S
58
Correct Use
Use the Unit under its rated conditions.
Mount the Unit with M4 screws or to DIN tracks securely.
Typical Causes of Communications Errors
• The cables are not connected correctly.
• The node number setting is incorrect.
• The baud rate setting is incorrect.
• There is a strong noise source, such as an inverter motor, near
the Unit. Install the Unit as far as possible from the noise source
or shield the noise source.
Others
Use OMRON’s XS8A-0441 or XS8A-0442 Connectors with the
Unit.
Insert each connector into the Unit until the connector snaps in
place. Make sure that terminal number 1 of the connector is on the
lock lever side when inserting the connector.
Refer to the CompoBus/S Operation Manual (W266) for wiring the
Unit.
59
Sensor Amplifier Terminal SRT1-D04S
Snap On to Connect and
Save Wiring Effort
The 4-channel fiber photoelectric amplifiers in
Terminals with connectors offer a low cost and
space savings.
The product lineup included Terminal Block Units
for easy connection to sensors with amplifiers, limit
switches, etc.
Connect to up to eight channels of sensors by using
Expansion Blocks.
Features
Low Cost and Space Savings with
Four-channel Fiber Connectors
Just Snap On to Connect
Connector Units
Fiber connector (1 channel)
Fiber connector (4 channels)
Terminal Block Unit
Photoelectric sensor
Various input units
can be connected.
Proximity sensor
Basic switch and limit switch
SRT1-D04S SRT1-D04S
60
Ordering Information
CompoBus/S Sensor Amplifier Terminals
Classification I/O points Model
Communications 4 SRT1-TID04S
SRT1-TKD04S
Expansion SRT1-XID04S
SRT1-XKD04S
Connector Units
Classification Specifications Model
E3X-N Connector Type General-purpose, 1 channel E3X-NT16
Multi-functional, 1 channel E3X-NT26
Long distance, high accuracy, 1 channel E3X-NH16
Multi-functional, 4 channels E3X-NM16
Terminal Block Unit One input point E39-JID01
SRT1-D04S SRT1-D04S
61
Specifications
Characteristics
CompoBus/S Sensor Amplifier Terminals
Item Communication Terminals Expansion Terminals
Model SRT1-TID04S SRT1-TKD04S SRT1-XID04S SRT1-XKD04S
Communications power
supply voltage
14 to 26.4 VDC (See note 1) --- ---
I/O points 4 input points
Connected sensors Total of four E3X-NT6
or E39-JID01
(See note 2)
One E3X-NM16
(See note 2)
Total of four E3X-NT6
or E39-JID01
One E3X-NM16
Current consumption 60 mA max. (See note 3) 10 mA max. (See note 3)
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms
Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screw mounting or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
(except the DIN track directions and a pulling force of 10 N
Terminal strength No damage when 49 N pull load was applied for 10 s in all directions.
Tighten each screw to a torque of 0.6 to 1.18 N m.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 70 g max. 65 g max. 45 g max. 35 g max.
Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Terminal is connected to 2-wired proximity sensors.
2. When adding Connector Units, use SRT1-XID04S or SRT1-XKD04S.
3. The value doesn’t include the current consumption of Connector Units.
With E3X-N Connectors
Model E3X-NH16 E3X-NT16 E3X-NT26 E3X-NM16
Current consumption 75 mA max. 50 mA max. 150 mA
Response time 1 ms max. (4.0 ms max.
when connected to the
SRM1-D04S)
500 mS max. (2.0 ms max. when connected to the SRT1-D04S)
Timer function Not available OFF-delay timer (fixed to 40 ms)
Remote teaching input Not available Available (Remote teaching disabled)
Indicator Orange LED: Lit during output operation
Green LED: Lit with stable light reception or no light
Teaching confirmation
function
Indicators (red/green LED) and buzzer
Output Light ON and Dark ON switch selectable
Ambient illumination Sunlight: 10,000 lux max.; incandescent lamp: 3,000 lux max.
Insulation resistance 20 MW max. (at 500 VDC)
Dielectric strength 1,000 VAC at 50/60 Hz for 1 min
Vibration resistance Destruction:10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Destruction:500 m/s2
Mounting method Connector connection to the SRT1-D04S
Mounting strength No damage when 49 N pull load was applied for 10 s in all directions
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 30 g max. 30 g max. 30 g max. 60 g max.
SRT1-D04S SRT1-D04S
62
Terminal Block Units
Model E39-JID01
Input current 10 mA max.
ON voltage 12 VDC min. between input terminal and external sensor power supply
OFF voltage 4 VDC max. between input terminal and external sensor power supply
OFF current 1 mA max.
ON delay time 1 ms max. (connected to SRT1-D04S)
OFF delay time 1.5 ms max. (connected to SRT1-D04S)
Input indicators LED (Orange)
External sensor current capacity 50 mA max.
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screws or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
(except the DIN track directions and a pulling force of 10 N
Terminal strength No damage when 49 N pull load was applied for 10 s in all directions.
Tighten each screw to a torque of 0.6 to 1.18 N m.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 25 g max.
SRT1-D04S SRT1-D04S
63
Nomenclature
SRT1-TID04S
SRT1-TKD04S
Mounting Screw Holes
Communications
Terminals
Communications Power Supply
Terminals
Contact 0
Contact 1
Contact 2
Contact 3
DIN Track Mounting Hook
Node Number Settings
Refer to the CompoBus/S Operation Manual (W266)
for details on DIP switch settings.
Mounting Screw Holes
DIN Track Mounting Hook
Contacts 0 to 3
Communications Power Supply
Terminals
Connect a 24-VDC power supply.
Communications
Terminals
Connect a communications
cable.
DIP Switch
Indicators
Indicator Name Display Color Meaning
PWR Power supply Lit Green The communications power supply is ON.
Not lit
G ee
The communications power supply is OFF.
COMM Communications Lit Yellow Normal communications.
Not lit
e o
A communications error has occurred or the Unit is in standby status.
ERR Communications Lit Red A communications error has occurred.
error Not lit
ed
Normal communications or the Unit is in standby status.
SRT1-D04S SRT1-D04S
64
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-TID04
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
Two, 4.2 dia. or M4
Two, 4.5 dia. SRT1-XID04S
Mounting Holes
(75)
3.4
SRT1-D04S SRT1-D04S
65
SRT1-TKD04S
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
SRT1-XKD04S
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
SRT1-D04S SRT1-D04S
66
E3X-NM16
Output indicator Stability indicator
Eight, 2.4 dia.
E3X-NT6
Output indicator Stability indicator
Two, 2.4 dia.
SRT1-D04S SRT1-D04S
67
E3X-NH16
Light level indicators
Threshold indicators
Output indicator
Two, 2.4 dia.
E39-JID01 Output indicator
Installation
Internal Circuit Configuration
E39-JID01
Internal
circuit
SRT1-D04S SRT1-D04S
68
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Terminal.
Refer to page 80 for precautions common to all SRT1 Terminals.
General Safety Precautions
Connector Units
Use only the Connector Units listed in this data sheet for the Sensor
Amplifier Units.
E39-JID01 Terminal Block Unit
Do not apply any voltage to the Terminal Block Unit.
Correct Use
Expanding Sensor Amplifier Terminals
1. Remove the cover from the side of the SRT1-TD04S. (See
Figure 1.)
2. When the cover is removed, you can see the expansion
connector inside.
3. Connect this expansion connector to the connector located
on the side of the SRT1-XD04S. (See Figure 2.)
Figure 1
Cover
Figure 2
Connector
Attaching and Removing Connector Units
(SRT1-TID04S, SRT1-XID04S, E3X-NT6, E39-JID01)
Attaching Connector Units
1. Hook Section A of the Connector Unit onto Section B of the
Sensor Amplifier Terminal.
2. Push in the Connector Unit until Section C locks inside
Section D of the Sensor Amplifier Terminal.
Section C
Section D
Section A
Section B
Bottom View
Section A
Removing Connector Units
1. While pushing Section D, pull the Connector Unit in direction
E.
2. When Section D releases from the lock, the Connector Unit
can be removed.
Push here
Section D
SRT1-D04S SRT1-D04S
69
Attaching or Removing Connector Unit
(SRT1-TKD04S, SRT1-XKD04S, E3X-NM16)
Attaching Connector Unit
1. Hook Section A of the Connector Unit onto Section B of the
Sensor Amplifier Terminal.
2. Push in the Connector Unit until Section C locks inside
Section D of the Sensor Amplifier Terminal.
Bottom View
Section A
Section C
Section D
Section A
Section B
Removing Connector Unit
1. While pushing Section D, pull the Connector Unit in direction
E.
2. When Section D releases from the lock, the Connector Unit
can be removed.
Push here
Section D
Channel Numbers
Channel numbers 1 to 4 of the E3X-NM16 correspond to contact
numbers 0 to 3 of the SRT1-TKD04S, and to contact numbers 4 to 7
of the SRT1-XKD04S.
70
Analog Input Terminal SRT2-AD04
Compact Analog Input Model is the
Same Shape as 16-point Remote I/O
Terminals
Allows flexible input point settings up to a maximum
of four points.
Resolution: 1/6,000
Takes only 1 ms to exchange each input point.
Wide input ranges available.
105 x 48 x 50 (W x H x D)
Ordering Information
Classification I/O points Model
Analog Input Terminal 1 to 4 (selectable with DIP switch) SRT2-AD04
Note: For details about connecting the SRT2-AD04 to the Master Unit. Refer to page 10.
Specifications
Ratings
Input
Item Voltage input Current input
Max. signal input ±15 V ±30 mA
Input impedance 1 MW max. Approx. 250 W
Resolution 1/6,000 (FS)
Total 25°C ±0.3% FS ±0.4% FS
accuracy –10 to 55°C ±0.6% FS ±0.8% FS
Conversion time 4 ms/4 points, 3 ms/3 points, 2 ms/2 points, and 1 ms/1 point
Dielectric strength 500 VAC for 1 min between communications power supply, analog input, and communications terminals (see note)
Note: There is no insulation between analog inputs.
Characteristics
Communications power supply voltage 14 to 26.4 VDC (possible to provide through dedicated flat cable)
Current consumption 100 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC (between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage with 100 N pull load applied in all directions.
Terminal strength No damage with 100 N pull load applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight Approx. 120 g
SRT2-AD04 SRT2-AD04
71
Nomenclature
SRT2-AD04
Mounting Screw Holes
DIN Track Mounting Hook
Terminal Block
Indicators
Indicators
Indicator Name Color Display Meaning
PWR Power supply Green Lit The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Yellow Lit Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Red Lit A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
U.ERR Unit error Red Lit An error has occurred in the Unit.
Not lit Normal communications or the Unit is in standby status.
DIP Switch (SW101)
(Open cover to access.)
Pin 1 Pin 2 Input points
OFF OFF 4 points (default setting)
OFF ON 3 points (inputs 0 to 2 enabled)
ON OFF 2 points (inputs 0 and 2 enabled)
ON ON 1 point (input 0 enabled)
Pin 3 Communications mode
OFF High-speed communications (default setting)
ON Long-distance communications
Pin 4 Be sure to turn OFF.
Pin No. Node address
Pin 5 23
Pin 6 22
Pin 7 21
Pin 8 20
The default setting is for all of these pins to be OFF.
DIP Switch (SW102)
(Open cover to access.)
Pin 1 Pin 2 Pin 3 Range for inputs 0, 1
Pin 4 Pin 5 Pin 6 Range for inputs 2, 3
OFF OFF OFF 0 to 5 (V) (default setting)
ON OFF OFF 1 to 5 (V)
OFF ON OFF 0 to 10 (V)
ON ON OFF –10 to 10 (V)
OFF OFF ON 4 to 20 (mA)
ON OFF ON 0 to 20 (mA)
Do not make any settings other than the ones listed above.
Pin 7 Mean value processing
OFF Without mean value processing (default setting)
ON With mean value processing (mean for 8 operations)
Pin 8 Be sure to turn OFF.
SRT2-AD04 SRT2-AD04
72
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-AD04
Mounting Holes
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT2-AD04
Isolation
DC-DC static
converter
Internal circuit
Input 0
Input 1
Input 2
Input 3
Analog ground
Terminal Arrangement
SRT2-AD04
Note: When the input is current input, short-circuit the “V+” terminals
and the “I+” terminals. When short-circuiting, use the
short-circuiting tool provided as an accessory.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For details about general precautions, refer to page 80.
Connections to the Master Unit
Connections cannot be made to the following Master Units. If the following
Master Units are connected, incorrect data may be transferred.
C200HW-SRM21 (-V1 and later versions supported)
CQM1-SRM21 (-V1 and later versions supported)
SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported)
C200PC-ISA2-SRM
3G8B3-SRM0
SDD-CS1 (made by NKE Ltd.)
73
Analog Output Terminal SRT2-DA02
Compact Analog Output Model is the
Same Shape as 16-point Remote I/O
Terminals
Two output points or 1 output point is selectable.
Resolution: 1/6,000
105 x 48 x 50 (W x H x D)
Ordering Information
Classification I/O points Model
Analog Output Terminal 1 or 2 (selectable with DIP switch) SRT2-DA02
Note: For details about connecting the SRT2-DA02 to the Master Unit, refer to page 10.
Specifications
Ratings
Output
Item Voltage output Current output
External output permissible
load resistance
5 kW min. 600 W max.
Output impedance 0.5 W max. ---
Resolution 1/6,000 (FS)
Total 25°C ±0.4% FS
accuracy –10 to 55°C ±0.8% FS
Conversion time 2 ms/2 points and 2 ms/1 point
Dielectric strength 500 VAC for 1 min between communications power supply, analog output, and communications terminals (see note)
Note: There is no insulation between analog outputs.
Characteristics
Communications power supply voltage 14 to 26.4 VDC (power supply possible from dedicated flat cable)
Current consumption (see note) 170 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC (between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage when 100 N pull load was applied in all directions
Terminal strength No damage when 100 N pull load was applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight Approx. 100 g
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external load.
SRT2-DA02 SRT2-DA02
74
Nomenclature
SRT2-DA02
Mounting Screw Holes
DIN Track Mounting Hook
Terminal Block
Indicators
Indicators
Indicator Name Color Display Meaning
PWR Power supply Green Lit The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Yellow Lit Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Red Lit A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
U.ERR Unit error Red Lit An error has occurred in the Unit.
Not lit A communications error has occurred or the Unit is in standby status.
DIP Switch (SW101)
(Open cover to access.)
Pin 1 Be sure to turn OFF.
Pin 2 Output points
OFF 2 points (default setting)
ON 1 point (output 0 enabled)
Pin 3 Communications mode
OFF High-speed communications (default setting)
ON Long-distance communications
Pin 4 Be sure to turn OFF.
Pin No. Node addresses
Pin 5 23
Pin 6 22
Pin 7 21
Pin 8 20
The default setting is for all of these switches to be OFF.
DIP Switch (SW102)
(Open cover to access.)
Pin 1 Pin 2 Pin 3 Range for output 0
Pin 4 Pin 5 Pin 6 Range for output 1
OFF OFF OFF 0 to 5 (V) (default setting)
ON OFF OFF 1 to 5 (V)
OFF ON OFF 0 to 10 (V)
ON ON OFF –10 to 10 (V)
OFF OFF ON 4 to 20 (mA)
Do not make any settings other than the ones listed above.
Pin 7 Pin 8 Output during communications error
OFF OFF Clear at the output lower limit when
communications error occurs. (default
setting)
OFF ON Clear at the output upper limit when
communications error occurs.
ON OFF Clear at the output lower limit when
communications error occurs (however, if
the range is –10 to 10 V, the output will be
0).
ON ON Output held when communications error
occurs.
SRT2-DA02 SRT2-DA02
75
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-DA02
Mounting Holes
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT2-DA02
Isolation
DC-DC
static
converter
Internal circuit
Output 0
Output 1
Analog ground
Terminal Arrangement
SRT2-DA02
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For details about general precautions, refer to page 80.
Connections to the Master Unit
Connections cannot be made to the following Master Units. If the following
Master Units are connected, incorrect data may be transferred.
C200HW-SRM21 (-V1 and later versions supported)
CQM1-SRM21 (-V1 and later versions supported)
SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported)
C200PC-ISA2-SRM
3G8B3-SRM0
SDD-CS1 (made by NKE Ltd.)
76
Remote I/O Module SRT1-IDP/ODP
Module Type that Allows PCB Mounting
Compact size at 60 x 16 x 35 (W x H x D)
Lineup now includes the 16-point input model and
16-point output model.
Ordering Information
I/O classification Internal I/O circuit
common
I/O points Rated voltage I/O rated voltage Model
Input NPN (+ common) 16 24 VDC 24 VDC SRT1-ID16P
Output NPN (– common) SRT1-OD16P
Specifications
Ratings
Input (SRT1-ID16P)
Input current 2 mA max./point
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. between each input terminal and BS+ terminal
OFF voltage 5 VDC max. between each input terminal and BS + terminal
Output (SRT1-OD16P)
Rated output current 0.2 A/point, 0.6 A/common
Residual voltage 0.6 V max. between each output terminal and G terminal at 0.2 A
Leakage current 0.1 mA max. between each output terminal and G terminal at 24 VDC
SRT1-IDP/ODP SRT1-IDP/ODP
77
Characteristics
Communications power supply
voltage
20.4 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
Current consumption (see note) 60 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 8 Input Terminals and 8 Output Terminals per Master
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
5-V output current 20 mA max. (5 V 0.5 V)
LED drive current (COMM, ERR) 10 mA max. (5 VDC)
SW carry current
(ADR0 to 3, HOLD)
1 mA max.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 35 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input model and the current consumption of the load connected to the output model.
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID16P
SRT1-OD16P
Incorrect insertion
prevention pin
PCB dimensions (top view)
No cumulative tolerance allowed
16
2.54x15=38.1
27.94±0.1
2.54±0.1
2.54x15=38.1 8.95±0.1
1.53±0.1
0.63
27.94±0.1
1.6
1.6 dia.
0.63
3.5
2.54
35
60
2.2 dia. +0.1
0
32-0.9 dia. +0.1
0
SRT1-IDP/ODP SRT1-IDP/ODP
78
Installation
Internal Circuit Configuration
SRT1-ID16P SRT1-OD16P
Internal circuit
Internal circuit
External Connections
Communications
Two-wired
proximity
sensor
BS– or G
Input Module (SRT1-ID16P) Output Module (SRT1-OD16P)
Communications
Relay
Internal circuit
Internal circuit
D1: Reverse voltage prevention diode
Note: NC in parentheses is for the Input Modules.
Node Number Settings and
Output HOLD/CLEAR Mode
Internal circuit
BS– or G
Note: Refer to the CompoBus/S Operation Manual (W266) for
details on the switch.
Indicators
R: LED current limiting resistor
LED1: LED for COMM
LED2: LED for ERR
The maximum current for LED1 and 2 is 10 mA.
Internal circuit
The 5-V Output Terminals have positive power supplies (maximum
output current of 20 mA) for the ERR and COMM LEDs. Recommended
LED colors are red for ERR and yellow for COMM.
SRT1-IDP/ODP SRT1-IDP/ODP
79
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for precautions common to all SRT1 Terminals.
Correct Use
Noise Protection Circuit
Add the following protection circuit if noise is generated from the
power supply, input section, or output section.
Power Supply Noise Protection Circuit
L: Coil for the common mode
Install the coil near the SRT1.
50 V
100 mF
50 V
0.1 mF
BS
L
V
BS
Input Section Noise Protection Circuit
C: 0.1 mF min.
R: Resistor for limiting current to PC
PC: Photocoupler
Input device
0 to 15
V
R
G
PC
C
Output Section Noise Protection Circuit
V1 and V2: Power supply.
R: Resistor for limiting current to PC
PC: Photocoupler
0 to 15 Load
G
V2
PC
R
V1
5-V Output Terminals
The 5-V Output Terminals have positive power supplies (maximum
output current of 20 mA) for the ERR and COMM LED. Use them as
shown below. Recommended LED colors are red for ERR and yellow
for COMM.
Wiring Method
R: LED current limiting resistor
LED1: LED for COMM
LED2: LED for ERR
The maximum current for the LED1 and 2 is 10 mA.
LED1
R R
5 VOUT
COMM
ERR
LED2
SRT SRT
80
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Terminal.
The following precautions are the same for all SRT1 Terminals.
Refer also to the precautions specified for individual Terminals.
General Safety Precautions
Wiring
Turn OFF the Unit before wiring the Unit and do not remove the terminal
block cover or touch the terminal block while the Unit is turned
ON, otherwise an electric shock may occur.
Do not impose any voltage other than the rated voltage on the input
terminal. Doing so may result in damage to the Unit or cause the Unit
to malfunction.
Relay I/O Type
SRT1-ROC08 and SRT2-ROC16
Do not connect the Unit to loads operating at any voltage or consuming
a total current exceeding the permissible switching voltage
or current of the Unit. Doing so may result in the faulty insulation,
contact weld, or faulty contact of the relays, or damage to the relays,
or cause the relays to malfunction or burn.
The life of a relay varies with the switching condition. Test the relays
under the actual operating conditions before using the relays within
the permissible switching frequency. The use of deteriorated relays
may result in the faulty insulation of the relays or cause the relays to
burn.
Do not use the Unit in places with inflammable gas. Doing so may
result in a fire or explosion due to the heat of the relays or a spark
from the relays when they are switched.
Transistor, Power MOS FET, and SSR I/O Types
SRT1-OD04, SRT2-OD08, SRT2-OD16, SRT1-OD16P,
SRT1-ROF08, and SRT2-ROF16
Do not connect the Unit to loads consuming a total current exceeding
the rated output current of the Unit. Doing so may damage the
output element and a short or open-circuit malfunction may result.
If the Unit is connected to a DC inductive load, connect a diode to the
Unit to protect the Unit from counter-electromotive voltage, otherwise
the counter-electromotive voltage may damage the output element
and a short or open-circuit malfunction may result.
Correct Use
Replacing Relays
Use the relay removal tool to the left of the screw terminals to
replace relays.
Turn OFF the Unit to replace relays, otherwise an electric shock
may occur or the Unit may malfunction.
Installation Environment
Do not install the Unit in the following places. Doing so may result in
damage to the Unit or cause the Unit to malfunction.
• Places with direct sunlight.
• Places with ambient temperature ranges not within 0°C to 55°C.
• Places with rapid temperature changes resulting in condensation
or relative humidity ranges not within 10% to 90%.
• Places with corrosive or inflammable gas.
• Places with excessive dust, salinity, or metal powder.
• Places with vibration or shock affecting the Unit.
• Places with water, oil, or chemical sprayed on the Unit.
Screw Tightening Torques
Tighten all screws of the Unit properly, otherwise the Unit may malfunction.
• Tighten each terminal screw to a torque of 0.6 to 1.18 N m (6.2
to 12.0 kgf cm).
• Tighten each mounting screw to a torque of 0.6 to 0.98 N m (6.2
to 10.0 kgf cm).
Terminal screws
Mounting screws
Cleaning
Use alcohol or benzine to clean the surface of the Unit. Do not use
paint thinner to clean the surface, otherwise the surface will be damaged
or discolored.
Handling
Do not drop the Unit or shock or vibrate the Unit excessively. Doing
so may result in damage to the Unit or cause the Unit to malfunction.
Disassembling, Repairing, and Modifying
Do not disassemble, repair, or modify the Unit, otherwise an electric
shock may occur or the Unit may malfunction.
81
Position Driver FND-X-SRT
Advanced Servodrivers with Positioner
Functions
DIO and CompoBus/S Models are Newly
Added
Servodriver and positioner are combined into one
Unit.
Conventional U-series, U-series UE type, H-series,
and M-series AC Servomotors can be used.
Feeder control/DTP control and single operation/
automatic incremental/continuous operation are
available.
Easy to set, operate, and adjust.
Ordering Information
Specifications Model
CCoompooBuuss//SS mooddeelss For 200-VAC input 6 A FND-X06H-SRT
12 A FND-X12H-SRT
25 A FND-X25H-SRT
50 A FND-X50H-SRT
For 100-VAC input 6 A FND-X06L-SRT
12 A FND-X12L-SRT
Note: For details, refer to OMNUC FND-X-series User’s Manual (I524).
Specifications
General Specifications
Ambient temperature Operating: 0°C to 55°C
Storage: –10°C to 70°C
Ambient humidity Operating: 35% to 90% (with no icing)
Storage: 35% to 90% (with no icing)
Operating atmosphere No corrosive gases
Dielectric strength 1,500 VACRMS for 1 min at 50/60 Hz
Insulation resistance 5 MW min. (at 500 VDC) between power input terminals and between the power terminal and
the case
Vibration resistance 10 to 150 Hz in X, Y, and Z directions with 0.10-mm single amplitude; acceleration: 9.8 m/s2
max.; time coefficient: 8 min; 4 sweeps
Shock resistance 98 m/s2 max., three times each in X, Y, and Z directions
Degree of protection Built into panel (IP00)
FND-X-SRT FND-X-SRT
82
Performance Specifications
Model (see note 1)
Item
FND-X06H-SRT FND-X12H-SRT FND-X25H-SRT FND-X06L-SRT FND-X12L-SRT
Continuous output current (0-P) 2.0 A 4.8 A 8.0 A 2.0 A 3.0 A
Momentary maximum output
current (0-P)
6.0 A 12 A 25 A 6.0 A 12 A
Input power supply Single-phase 200/240 VAC (170 to 264 V) 50/60 Hz Single-phase 100/115 VAC (85 to
127 V) 50/60 Hz
Position/speed
f db k
os o /U Series (INC) Optical Incremental encoder, 2,048 pulses/revolution
feedback U Series (ABS) Optical Absolute encoder, 1,024 pulses/revolution
U-UE Series Optical Incremental encoder, 1,024 pulses/revolution
H Series Magnetic Incremental encoder, 2,000 pulses/revolution
M Series Resolver, absolute accuracy 0.18° max.; ambient temperature 25°
Applicable load
inertia
U Series (INC) Maximum of 30 times motor’s rotor
inertia
Maximum of 20
times motor’s
rotor inertia
Maximum of 30 times motor’s rotor
inertia
U Series (ABS) Maximum of 20 times motor’s rotor
inertia
Maximum of 18
times motor’s
rotor inertia
Maximum of 20 times motor’s rotor
inertia
U-UE Series Maximum of 30 times motor’s rotor
inertia
Maximum of 20
times motor’s
rotor inertia
Maximum of 30 times motor’s rotor
inertia
H Series Maximum of 10 times motor’s rotor inertia
M Series Maximum of 10 times motor’s rotor inertia
Inverter method PWM method based on IGBT
PWM frequency 10 kHz
Weight Approx. 1.5 kg Approx. 2.5 kg Approx. 1.5 kg
Frequency response (speed
control)
100 Hz (at a load inertia equivalent to motor’s rotor inertia)
Position loop gain 1 to 200 (rad/s)
Feed forward 0% to 200% of speed reference
Pulse rate 1/32,767 (pulse rate 1 / pulse rate 2) 32,767/1
Positioning completion width 1 to 32,767 (pulses)
U Series (INC): 8,192 pulses/revolution; U Series (ABS): 4,096 pulses/revolution;
M Series 24,000 pulses/revolution
Acceleration/Deceleration time 0 to 9,999 (ms); acceleration and deceleration times set separately. Two types can be set for
each. S-curve acceleration/deceleration function available (filter time constant: 0.00 to 32.76 s).
Sequence input 19 pts. (limit inputs, origin proximity, RUN command, START, alarm reset, origin search, JOG
operation, teaching, point selection, position data, deceleration stop)
Photocoupler input: 24 VDC, 8 mA
External power supply: 24 VDC ±1 V, 150 mA min.
Sequence output 15 pts. (brake output, READY, origin search completion, origin, teaching, motor running,
positioning completion, alarm, point output, position selection, speed selection)
Open collector output: 24 VDC, 40 mA
Monitor output
(S t 2 )
o o ou pu Speed monitor 3 V/motor’s rated speed (output accuracy: approx. ±10%)
See note 2.) Current monitor 3 V/motor’s maximum current (output accuracy: approx. ±10%)
Regenerative absorption capacity 13 W + 17 J 24 W + 17 J 37 W + 22 J 13 W + 17 J 17 W + 17 J
Protective functions Overcurrent, overvoltage, voltage drop, resolver disconnection, power status error, clock
stopped, overcurrent (soft), speed amp saturation, motor overload, temporary overload,
resolver error, speed over, error counter over, parameter setting error, software limit over,
coordinate counter over, overrun, encoder disconnection, encoder communications error,
absolute encoder backup error, absolute encoder checksum error, absolute encoder absolute
error, absolute encoder over speed, encoder data not transmitted, BCD data error, present
value undetermined, PTP data not set
Note: 1. When using the 100-VAC-input Position Drivers in combination with the U-series or U-series UE type models, use 200-VAC Servomotors
(-HA, -TA , or -H models).
2. For the monitor output, the monitor items and voltage polarity can be set by parameter UP-25 (monitor output selection).
FND-X-SRT FND-X-SRT
83
Dimensions
Note: All units are in millimeters unless otherwise indicated.
200-VAC FND-X06H-SRT/-X12H-SRT
100-VAC FND-X06L-SRT/-X12L-SRT
200-VAC FND-X25H-SRT
80
68 150
158
170
Three, 6 dia.
158
68
Three, M5
Mounting Holes
Mounting Holes
119
150 107
158
170
Three, 6 dia.
158
Three, M5
107
Position Drivers
Item Model Continuous
output current
(0-P)
Momentary
maximum output
current (0-P)
Input power
supply
Inverter
method
PWM
frequency
Weight
200-VAC input FND-X06H-SRT 2.0 A 6.0 A Single-phase
200/240 VAC
PWM method
b d
10
kH
Approx.
1 5 k
00 C u
FND-X12H-SRT 4.8 A 12 A
S g e ase
(170 to 264 V)
e od
based on
IGBT
0
kHz
o
1.5 kg
FND-X25H-SRT 8.0 A 25 A
50/60 Hz
Approx.
2.5 kg
100-VAC input FND-X06L-SRT 2.0 A 6.0 A Single-phase
100/115 VAC (85
Approx.
1.5 kg
FND-X12L-SRT 3.0 A 12 A
to 127 V)
50/60 Hz
84
Peripheral Devices
Connectors, Cables, and
Terminal-block Terminator
Dedicated Flat Cable Allows
Communication Path Extension and
T-branching with Ease
Ordering Information
Product Appearance Model Specification
Branch Connector SCN1-TH4 ---
Extension Connector SCN1-TH4E ---
Connector Terminator SCN1-TH4T ---
Communications Cable SCA1-4F10 Flat cable, 100 m, 4 conductors
(0.75 mm2 each)
Terminal-block Terminator SRS1-T ---
Note: Branch Connectors and Extension Connectors are sold in blocks of 10 Units.
Peripheral Devices Peripheral Devices
85
Specifications
Ratings/Characteristics
Rated current 4 A
Contact resistance 20 mW max.
Insulation resistance 1,000 MW min. (at 500 VDC)
Withstand voltage 1,000 VAC for 1 min, leakage current: 1 mA max.
Cable pulling strength 50 N (5.1 kgf) min.
Operating temperature –20°C to 70°C
Materials
Housing PA66 resin (UL94V-2)
Branching and extension: Gray
Cover
Terminator: Black
Contact Phosphor bronze and nickel base, tin plated
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SCN1-TH4 Branch Connector
SCN1-TH4E Extension Connector
SCN1-TH4T Connector Terminator
Peripheral Devices Peripheral Devices
86
SRS1-T Terminal-block Terminator
40
Two, 4.4 dia.
30±0.2
Two, 4.2 dia. or M4
20
20
Mounting Holes
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Correct Use
The SCN1-TH4, SCN1-TH4E, and SCN1-TH4T are dedicated connectors
for CompoBus/S. Always use dedicated CompoBus/S
cables with these connectors.
Do not locate the cables in places where excessive force may be
imposed on the connectors of the cables such as an area where
cables may entangle feet.
These connectors cannot be reused once they have been attached
to cables. Use new connectors if they were not attached to cables
properly.
Refer to the CompoBus/S Operation Manual (W266) to assemble
the connectors.
CompoBus/S CompoBus/S
87
Ordering Information
Note: Abbreviations for standards: U: UL, C: CSA, CE: EC Directive
Product Appearance Model Specifications Standards
Master Control Units SRM1-C01-V2 Stand-alone model with built-in
controller functions (without
RS-232C)
UL
CSA
CE
(see
SRM1-C02-V2 Stand-alone model with built-in
controller functions and RS-232C
note 2)
Master Units C200HW-SRM21-V1 For C200HX (-ZE), C200HG (-ZE),
C200HE (-ZE), and C200HS
CQM1-SRM21-V1 For CQM1
SYSMAC Boards C200PC-ISA02-SRM
C200PC-ISA12-SRM
For C200HX/HG/HE ---
I/O Link Unit CPM1A-SRT21 8 inputs
8 outputs
UL
CSA
CE
(see
note 2)
Remote Terminals
(Transistor Models)
SRT1-ID04
SRT1-ID04-1
SRT2-ID08
SRT2-ID08-1
SRT2-ID16
SRT2-ID16-1
SRT1-OD04
SRT1-OD04-1
SRT2-OD08
SRT2-OD08-1
SRT2-OD16
SRT2-OD16-1
4 transistor input (NPN)
4 transistor inputs (PNP)
8 transistor inputs (NPN)
8 transistor inputs (PNP)
16 transistor inputs (NPN)
16 transistor inputs (PNP)
4 transistor outputs (NPN)
4 transistor outputs (PNP)
8 transistor outputs (NPN)
8 transistor outputs (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
Remote Terminals
(M3 Terminal Block Models)
SRT1-ID16T
SRT1-ID16T-1
SRT2-MD16T
SRT2-MD16T-1
SRT2-OD16T
SRT2-OD16T-1
16 transistor inputs (NPN)
16 transistor inputs (PNP)
16 transistor I/O points (NPN)
16 transistor I/O points (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
CE
(see
note 2)
Remote Terminals
(Relay-mounted Models)
SRT2-ROC08
SRT2-ROC16
SRT2-ROF08
SRT2-ROF16
8 relay outputs
16 relay outputs
8 power MOS FET relay outputs
16 power MOS FET relay outputs
UL
CSA
CE
(see
note 2)
Connector Terminals SRT2-VID08S
SRT2-VID08S-1
SRT2-VOD08S
SRT2-VOD08S-1
SRT2-VID16ML
SRT2-VID16ML-1
SRT2-VOD16ML
SRT2-VOD16ML-1
SRT2-ATT01
SRT2-ATT02
8 transistor input (NPN)
8 transistor inputs (PNP)
8 transistor outputs (NPN)
8 transistor outputs (PNP)
16 transistor inputs (NPN)
16 transistor inputs (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
Mounting hook A
Mounting hook B
CE
(see
note 2)
Sensor Terminals SRT1-ID08S
SRT1-ND08S
SRT1-OD08S
8 inputs (NPN)
4 automatic teaching points (NPN)
8 outputs
---
CompoBus/S CompoBus/S
88
Product Standards
Appearance Model Specifications
Sensor Amplifier Terminals
for CompoBus/S
SRT1-TID04S
SRT1-TKD04S
SRT1-XID04S
SRT1-XKD04S
--- ---
E3X-N Connector Type E3X-NH16
E3X-NT16
E3X-NT26
Long-distance, high-precision, 1
channel
General-purpose, 1 channel
Multi-functional, 1 channel
E3X-NM16 Multi-functional, 4 channels
Terminal Block Unit E39-JID01 One input point
Analog Input Terminal SRT2-AD04 1 to 4 inputs (set with DIP switch) CE
(see
note 2)
Analog Output Terminal SRT2-DA02 1 or 2 outputs (set with DIP switch)
Remote I/O Modules SRT1-ID16P
SRT1-OD16P
--- ---
Position Drivers FND-X06H-SRT 200-VAC input, momentary maximum
output current: 6.0 A
FND-X12H-SRT 200-VAC input, momentary maximum
output current: 12 A
FND-X25H-SRT 200-VAC input, momentary maximum
output current: 25 A
FND-X06L-SRT 100-VAC input, momentary maximum
output current: 6.0 A
FND-X12L-SRT 100-VAC input, momentary maximum
output current: 12 A
Branch Connector
Extension Connector
Connector Terminator
SCN1-TH4
SCN1-TH4E
SCN1-TH4T
---
Flat Cable SCA1-4F10 100 m
Terminal-block Terminator SRS1-T ---
Note: 1. Refer to the C200HS Catalog (P32).
Refer to the C200HX/C200HG/C200HE (-ZE) Catalog
2. Information on EC Directives
Individual OMRON products that comply with EC Directives conform to the common emission standards of EMC Directives. However,
the emission characteristics of these products installed on customers’ equipment may vary depending on the configuration,
wiring, layout, and other conditions of the control panel used. For this reason, customers are requested to check whether the emission
characteristics of the entire machine or equipment comply with the EMC Directives.
CompoBus/S CompoBus/S
89
Model Number Legend
SRT-
2 3 4 5 6 7
-1
1
1. Communications Mode
1: High-speed communications mode
2: High-speed/Long-distance communications mode
2. I/O Module Replacement
None: Impossible
R: Possible (Relays and power MOS FET relays)
3. I/O Specifications
I: Input
O: Output
N: Input and output (with remote teaching)
AD: Analog input
DA: Analog output
4. I/O Voltage Specifications
D: DC
C: AC/DC (contact type)
F: AC/DC (power MOS FET type)
5. I/O Points
04: 4 points
08: 8 points
16: 16 points
6. I/O Connection Method
None: Screw terminals
S: Connector
P: PCB terminals
7.
None: NPN
-1: PNP
CompoBus/S CompoBus/S
90
Notes:
Cat. No. Q103-E1-6 Note: Specifications subject to change without notice. Printed in Japan
0200-8C (0796) a
Authorized Distributor:
OMRON Corporation
Systems Components Division
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)559-77-9633/Fax: (81)559-77-9097
Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ELECTRONICS, INC.
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)835-3011/Fax: (65)835-2711
The essential guide
Harmony
Control and Signalling units
2013
Control and
signalling units
Harmony, simple and innovative solutions
for your applications
World leader in control and signalling components, Schneider Electric continues
its policy of innovation within the Harmony ranges in order to perfect the efficiency
of your dialogue solutions.
Invest with complete
peace of mind!
The right solution for your application
An offer unrivalled in content and
complementarity
Optimised cost saving solutions due
to increased flexibility of the offers,
enabling multiple combinations and
full compatibility
Quality you can rely on
Robust products that comply to the
highest quality standards
Valuable time that you save
Simple selection and quick installation
for all Harmony components
This document is a selection
of the top selling products.
For more information:
http://www.schneider-electric.com
Contents
Pushbuttons, switches, pilot lights and control stations
Ø 16, plastic bezel, Harmony XB6 .......................................................................................... 2 to 4
Ø 8 and 12, pilot lights, Harmony XVL .......................................................................................... 5
Ø 22, metal bezel, Harmony XB4 / Control stations Harmony XAP ...................................... 6 to 9
Ø 22, plastic bezel, Harmony XB5 / Control stations Harmony XAL ................................. 10 to 13
Ø 22, plastic bezel, wireless and batteryless, Harmony XB5R ........................................... 14 to 15
Ø 22, plastic bezel - Monolithic, Harmony XB7 .................................................................. 16 to 17
Ø 30, metal and plastic bezel, Harmony 9001K, 9001SK .................................................. 18 to 20
Cam switches
Harmony K series ............................................................................................................... 21 to 22
Signalling solutions
Ø 40, 60, 100 mm monolithic tower lights, Harmony XVC ........................................................... 23
Ø 45 mm monolithic beacons and tower lights, accessories, Harmony XVDLS / XVC ............... 24
Ø 70 mm modular tower lights (IP 66), Harmony XVB ................................................................ 25
Ø 70 mm modular tower lights (up to IP 54), Harmony XVE ....................................................... 26
Ø 45, 50 mm modular tower lights (up to IP 54), Harmony XVM / XVP ...................................... 27
Modular tower lights accessories, Harmony XV .......................................................................... 28
Ø 84, 106, 120, 130 mm rotating mirror beacons, Harmony XVR ............................................... 29
Accessories for rotating mirror beacons, Harmony XVR ............................................................. 30
Electronic alarms and multisound sirens, Harmony XVS ............................................................ 30
Components for hoisting applications
Pendant control stations, Harmony XAC ............................................................................ 31 to 32
Illuminated pushbuttons
Type of head Flush push
Shape of head rectangular (2)
Degree of protection IP 65 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of push Spring return
Complete products
12 … 24 V AC/DC
Products for user assembly
References white NO XB6DW1B1B ZB6Ep1B (1) ZB6Z1B ZB6DW1
NO + NC XB6DW1B5B ZB6Ep1B (1) ZB6Z5B ZB6DW1
green NO XB6DW3B1B ZB6Ep3B (1) ZB6Z1B ZB6DW3
NO + NC XB6DW3B5B ZB6Ep3B (1) ZB6Z5B ZB6DW3
red NC XB6DW4B2B ZB6Ep4B (1) ZB6Z2B ZB6DW4
NO + NC XB6DW4B5B ZB6Ep4B (1) ZB6Z5B ZB6DW4
yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DW5
NO + NC XB6DW5B5B ZB6Ep5B (1) ZB6Z5B ZB6DW5
Type of push Latching
References white NO – ZB6Ep1B (1) ZB6Z1B ZB6DF1
NO + NC XB6DF1B5B ZB6Ep1B (1) ZB6Z5B ZB6DF1
green NO XB6DF3B1B ZB6Ep3B (1) ZB6Z1B ZB6DF3
NO + NC XB6DF3B5B ZB6Ep3B (1) ZB6Z5B ZB6DF3
red NC XB6DF4B2B ZB6Ep4B (1) ZB6Z2B ZB6DF4
NO + NC XB6DF4B5B ZB6Ep4B (1) ZB6Z5B ZB6DF4
yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DF5
NO + NC – ZB6Ep5B (1) ZB6Z5B ZB6DF5
Pilot lights
Type of head Smooth lens cap
Shape of head rectangular (2)
Complete products Products for user assembly
12 … 24 V AC/DC
References white XB6DV1BB ZB6Ep1B (1) ZB6DV1
green XB6DV3BB ZB6Ep3B (1) ZB6DV3
red XB6DV4BB ZB6Ep4B (1) ZB6DV4
yellow XB6DV5BB ZB6Ep5B (1) ZB6DV5
blue – ZB6Ep6B (1) ZB6DV6
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) For products with a square head, replace the letter D in the reference by the letter C (XB6DW1B1B becomes XB6CW1B1B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DW1B1B becomes XB6AW1B1B).
(3) Alternative connection: 1 x 0.5 pins for printed circuit boards.
Pushbuttons, switches and pilot lights Ø 16
with plastic bezel
Contact functions and light functions
with integral LED
(1):
Voltage Letter (p)
12…24 V AC/DC (15 mA) B
48…120 V AC (25 mA) G
230…240 V AC (25 mA) M
+ 0.2
0
Harmony
XB6
= + +
= +
Pushbuttons
Type of head Flush push
Shape of head rectangular (1)
Degree of protection IP 65 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (2) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of push Spring return
Complete products Products for user assembly
References white NO XB6DA11B ZB6Z1B ZB6DA1
NO + NC XB6DA15B ZB6Z5B ZB6DA1
black NO – ZB6Z1B ZB6DA2
NO + NC XB6DA25B ZB6Z5B ZB6DA2
green NO XB6DA31B ZB6Z2B ZB6DA3
NO + NC XB6DA35B ZB6Z5B ZB6DA3
red NO – ZB6Z1B ZB6DA4
NO + NC XB6DA45B ZB6Z5B ZB6DA4
(1) For products with a square head, replace the letter D in the reference by the letter C (XB6DA11B becomes XB6CA11B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DA11B becomes XB6AA11B).
(2) Alternative connection: 1 x 0.5 pins for printed circuit boards.
Ø 30 mushroom head Emergency stop pushbuttons (3)
Type of head Trigger action (EN/ISO 13850)
Shape of head cylindrical
Type of push Turn to release
Complete products Products for user assembly
References red 2 NC + 1 NO XB6AS8349B ZB6E2B ZB6Z5B ZB6AS834
Type of push Key release, 200
References red 2 NC + 1 NO XB6AS9349B ZB6E2B ZB6Z5B ZB6AS934
(3) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard
EN/IEC 60947-5-5.
+ 0.2
0
Contact functions
= +
= + +
Selector switches and key switches
Type of head Black handle
Shape of head rectangular (2)
Degree of protection IP 66 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of operator Black handle
Complete products Products for user assembly
Number and type of positions 2 positions 2 positions 2 positions
stay put stay put spring return to centre
References NO XB6DD221B ZB6Z1B ZB6DD22 ZB6Z1B ZB6DD24
NO + NC XB6DD225B ZB6Z5B ZB6DD22 ZB6Z5B ZB6DD24
Number and type of positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre
References NO XB6DD235B ZB6Z5B ZB6DD23 ZB6Z5B ZB6DD25
Type of operator Key, n° 200
Complete products Products for user assembly
Number and type of positions 2 positions 2 positions 2 positions
stay put stay put spring return to centre
References NO + NC XB6DGC5B ZB6Z5B ZB6DGC ZB6Z5B ZB6DGB
Number and type of positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre
References NO + NC XB6DGH5B ZB6Z5B ZB6DGH ZB6Z5B ZB6DGS
Illuminated selector switches
Type of operator Coloured handle
Products for user assembly
Number and type of positions 2 positions 3 positions
stay put stay put
References white NO + NC ZB6Ep1B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK1
green NO + NC ZB6Ep3B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK3
red NO + NC ZB6Ep4B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK4
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) For products with a square head, replace the letter D in the reference by the letter C (XB6DD221B becomes XB6CD221B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DD221B becomes XB6AD221B).
(3) Alternative connection: 1 x 0.5 pins for printed circuit boards.
(1):
Voltage Letter (p)
12…24 V AC/DC (15 mA) B
48…120 V AC (25 mA) G
230…240 V AC (25 mA) M
+ 0.2
0
Harmony
XB6
60° 60° 45°
60° 60° 60° 60° 45° 45°
70° 70° 45°
70° 70° 70° 70° 45° 45°
60° 60° 60°
Pushbuttons, switches and pilot lights Ø 16
with plastic bezel
Contact functions and light functions
with integral LED
= +
= +
= + +
LED pilot lights With black bezel With integral lens cap
Type of head Protruding LED, Ø 8 mm Covered LED, Ø 8 mm Covered LED, Ø 12 mm
Degree of protection IP 40, IP 65 with seal (2)
Mounting (mm) panel cut-out Ø 8.2 mm Ø 8.2 mm Ø 12.2 mm
mounting centres 12.5 x 12.5 mm 10.5 x 10.5 mm 16.5 x 16.5 mm
Dimensions (mm) Ø x Depth (below head) Ø 12 x 32 Ø 10 x 34 Ø 16 x 45
Connection Tags (3) Tags (3) Threaded connectors
References (1) green XVLA1p3 XVLA2p3 XVLA3p3
red XVLA1p4 XVLA2p4 XVLA3p4
yellow XVLA1p5 XVLA2p5 XVLA3p5
Tightening key For Ø 8 mm pilot lights For Ø 12 mm pilot lights
References XVLX08 XVLX12
(1) Basic reference, to be completed by the number 1, 2, 3 or 4 indicating the required voltage. See voltage table above.
(2) For an IP 65 degree of protection, include the seals: XVLZ911 for pilot lights XVLA1pp and XVLA2pp; XVLZ912 for pilot lights XVLA3pp.
(3) Tags for 2.8 x 0.5 Faston connectors or for soldering.
Sub-assemblies & accessories for Ø 16
plastic bezel control and signalling units
Sub-assemblies Bodies for pushbuttons and
selector switches
Bodies for pilot lights
Rated operational characteristics, AC-15: Ue = 240 V and Ie = 1.5 A or Ue = 120 V and Ie = 3 A Consumption
Positive operation of contacts conforming to IEC/EN 60947-5-1: NC contacts with positive opening operation, 15 mA 12…24 V AC/DC
positive opening force 20 N 25 mA 48…120 V AC
25 mA 230…240 V AC
Type of Fixing collar Contacts Pilot light 12 … 24 V 48 … 120 V 230 … 240 V
contact + contacts bodies
References NO ZB6Z1B ZB6E1B White ZB6EB1B ZB6EG1B ZB6EM1B
NC ZB6Z2B ZB6E2B Green ZB6EB3B ZB6EG3B ZB6EM3B
2 NO ZB6Z3B – Red ZB6EB4B ZB6EG4B ZB6EM4B
2 NC ZB6Z4B – Yellow ZB6EB5B ZB6EG5B ZB6EM5B
NO + NC ZB6Z5B – Blue ZB6EB6B ZB6EG6B ZB6EM6B
LED pilot lights Ø 8 and 12
(1):
Voltage Number (p)
5 V (25 mA) 1
12 V (18 mA) 2
24 V (18 mA) 3
48 V (10 mA) 4
Accessories
Legend holders 24 x 28 mm (8 x 21 mm legend) 24 x 36 mm (16 x 21 mm legend)
Blank legend Background colour without legend yellow or white black or red without legend yellow or white black or red
References (10)* ZB6YD20 ZB6YD21 ZB6YD22 ZB6YD30 ZB6YD31 ZB6YD32
Blank legends for legend holders 8 x 21 mm (24 x 28 mm legend holder) 16 x 21 mm (24 x 36 mm legend holder)
Background colour – yellow or white black or red – yellow or white black or red
References (20)* – ZB6Y1001 ZB6Y2001 – ZB6Y4001 ZB6Y3001
Ø 45 mm yellow legend for mushroom head Emergency stop pushbutton
Marking Blank, for engraving EMERGENCY STOP ARRET D’URGENCE
References ZB6Y7001 ZB6Y7330 ZB6Y7130
Body/fixing collar Plate Tightening tool Dismantling tool
anti-rotation and slackening, for fixing nut for removal of contact blocks
References ZB6Y009 (10)* ZB6Y003 (10)* ZB6Y905 (2)* ZB6Y018 (5)*
Protective shutter for pushbuttons and switches Connector Blanking plug
for rectangular heads for circular and square heads Faston, female IP 65
References ZB6YD001 ZB6YA001 ZB6Y004 (100)* ZB6Y005 (10)*
* sold in lots of
Harmony
XVL
Pushbuttons, spring return
Type of head Chromium plated circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of push Flush Flush, booted
Unmarked Products Complete For user assembly Complete For user assembly
References black NO XB4BA21 ZB4BZ101 ZB4BA2 XB4BP21 ZB4BZ101 ZB4BP2
green NO XB4BA31 ZB4BZ101 ZB4BA3 XB4BP31 ZB4BZ101 ZB4BP3
red NC XB4BA42 ZB4BZ102 ZB4BA4 XB4BP42 ZB4BZ102 ZB4BP4
yellow NO XB4BA51 ZB4BZ101 ZB4BA5 XB4BP51 ZB4BZ101 ZB4BP5
blue NO XB4BA61 ZB4BZ101 ZB4BA6 XB4BP61 ZB4BZ101 ZB4BP6
Type of push Flush
With international marking Products Complete For user assembly
References green NO XB4BA3311 ZB4BZ101 ZB4BA331 – – –
red NC XB4BA4322 ZB4BZ102 ZB4BA432 – – –
white NO XB4BA3341 ZB4BZ101 ZB4BA334 – – –
black NO XB4BA3351 ZB4BZ101 ZB4BA335 _ _ _
Type of push Projecting Mushroom head, Ø 40 mm
Unmarked Products Complete For user assembly Complete For user assembly
References black NO – – – XB4BC21 ZB4BZ101 ZB4BC2
red NC XB4BL42 ZB4BZ102 ZB4BL4 – – –
Type of push Double-headed pushbuttons Triple-headed pushbuttons
Degree of protection IP 66 - IP 69K IP 66 - IP 69K
With international marking Products Complete For user assembly Complete For user assembly
(A) (B)
References (A) NO + NC XB4BL73415 ZB4BZ105 ZB4BL7341 – – –
(B) NO + NC + NO – – – XB4BA711237 ZB4BZ103 +
ZBE102
ZB4BA71123
(1) Alternative connections: plug-in connector,
Faston connectors (6.35 and 2 x 2.8).
Ø 40 mm mushroom head Emergency stop pushbuttons (2)
Trigger action (EN/ISO 13850)
Type of push Push-pull NO + NC
Unmarked Products Complete For user assembly
References red NO + NC XB4BT845 ZB4BZ105 ZB4BT84
Type of push Turn to release NO + NC
References red NO + NC XB4BS8445 ZB4BZ105 ZB4BS844
Type of push Key release NO + NC
References red NO + NC XB4BS9445 ZB4BZ105 ZB4BS944
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard
EN/IEC 60947-5-5.
Harmony
XB4
+ 0.4
0
Pushbuttons, switches and pilot lights Ø 22
with metal bezel
Contact functions
+
= +
= +
Contact functions
Selector switches and key switches
Type of head Chromium plated circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of operator Key, n° 455
Products Complete For user assembly Complete For user assembly
Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions
stay put stay put stay put stay put
References black NO XB4BG21 ZB4BZ101 ZB4BG2 XB4BG41 ZB4BZ101 ZB4BG4
Number and type of positions 2 positions 2 positions 3 positions 3 positions
spring return to left spring return to left stay put stay put
References
black NO XB4BG61 ZB4BZ101 ZB4BG6 – – –
black NO + NO – – – XB4BG33 ZB4BZ103 ZB4BG3
+ 0.4
0
Type of operator Handle
Products Complete For user assembly Complete For user assembly
Number and type of positions 2 positions 2 positions 2 positions 2 positions
stay put stay put spring return to left spring return to left
References black NO XB4BD21 ZB4BZ101 ZB4BD2 XB4BD41 ZB4BZ101 ZB4BD4
Number and type of positions 3 positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre spring return to centre
References black NO + NO XB4BD33 ZB4BZ103 ZB4BD3 XB4BD53 ZB4BZ103 ZB4BD5
= +
= +
Type Double-headed pushbuttons with LED pilot light Illuminated selector switches
(1 flush green push, 1 projecting red push) (2 position stay put)
Degree of protection IP 66 - IP 69K IP 66
Light source Integral LED Integral LED
Products Complete Complete
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC
References green NO + NC – – – XB4BK123B5 XB4BK123G5 XB4BK123M5
red NO + NC – – – XB4BK124B5 XB4BK124G5 XB4BK124M5
orange NO + NC – – – XB4BK125B5 XB4BK125G5 XB4BK125M5
White NO + NC XB4BW73731B5 XB4BW73731G5 XB4BW73731M5 – – –
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
Harmony
XB4
Pushbuttons, switches and pilot lights Ø 22
with metal bezel
Light functions
Pilot lights
Type of head Circular bezel
Smooth lens cap
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth below head 43
Connection (1) Screw clamp terminals
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white XB4BVB1 XB4BVG1 XB4BVM1 XB4BV61 ZB4BV6 ZB4BV01
green XB4BVB3 XB4BVG3 XB4BVM3 XB4BV63 ZB4BV6 ZB4BV03
red XB4BVB4 XB4BVG4 XB4BVM4 XB4BV64 ZB4BV6 ZB4BV04
yellow XB4BVB5 XB4BVG5 XB4BVM5 XB4BV65 ZB4BV6 ZB4BV05
blue XB4BVB6 XB4BVG6 XB4BVM6 – – –
+ 0.4
0
Illuminated pushbuttons and selector switches
Type Flush push, spring return, illuminated pushbuttons
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white NO + NC XB4BW31B5 XB4BW31G5 XB4BW31M5 XB4BW3165 ZB4BW065 ZB4BW31
green NO + NC XB4BW33B5 XB4BW33G5 XB4BW33M5 XB4BW3365 ZB4BW065 ZB4BW33
red NO + NC XB4BW34B5 XB4BW34G5 XB4BW34M5 XB4BW3465 ZB4BW065 ZB4BW34
orange NO + NC XB4BW35B5 XB4BW35G5 XB4BW35M5 XB4BW3565 ZB4BW065 ZB4BW35
blue NO + NC XB4BW36B5 XB4BW36G5 XB4BW36M5 – – –
= +
= +
Separate components and accessories
Electrical blocks (1) (2)
Single contact blocks Light blocks with integral LED Light block, direct supply
Rated operational characteristics
AC-15, 240 V - 3 A Consumption
18 mA 24 V AC/DC
Positive operation of contacts NC contacts with positive
opening operation
14 mA 120 V AC
conforming to IEC/EN 60947-5-1 14 mA 240 V AC
Screw clamp
terminal
Spring clamp
terminal
To combine with heads for integral LED For BA 9s bulb (not included)
24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References (5)* NC ZBE101 ZBE1015 white ZBVB1 ZBVG1 ZBVM1 ZBV6
NO ZBE102 ZBE1025 green ZBVB3 ZBVG3 ZBVM3 Colour provided by lens
red ZBVB4 ZBVG4 ZBVM4
orange ZBVB5 ZBVG5 ZBVM5
blue ZBVB6 ZBVG6 ZBVM6
Diecast metal enclosures
(Zinc alloy, usable depth 49 mm) 1 vertical row 2 vertical rows
Number of cut-outs Front face dimensions 1 2 3 4 2 4 6
References 80 x 80 mm XAPM1201 – – – XAPM1202 – –
80 x 130 mm – XAPM2202 XAPM2203 – – XAPM2204 –
80 x 175 mm – – XAPM3203 XAPM3204 – – XAPM3206
Accessories (2)
Legend holders, 30 x 40 mm, for 8 x 27 mm legends
Marking Background colour: black or red white or yellow
References (10)* Blank ZBY2101 ZBY4101
International 0 (red background) ZBY2931 I ZBY2147 AUTO ZBY2115 STOP ZBY2304 –
English OFF ZBY2312 ON ZBY2311 START ZBY2303 – –
French ARRET (red b/grnd) ZBY2104 ARRET-MARCHE ZBY2166 MARCHE ZBY2103 – –
German AUS ZBY2204 AUS-EIN ZBY2266 EIN ZBY2203 – –
Spanish PARADA (red b/grnd) ZBY2404 PARADA-MARCHA ZBY2466 MARCHA ZBY2403 – –
Legend holders, 30 x 50 mm, for 18 x 27 mm legends
Background colour black or red white or yellow
References (10)* Blank ZBY6101 ZBY6102
Ø 60 mm legend for mushroom head Emergency stop pushbutton
Background colour yellow
Marking Blank EMERGENCY STOP ARRET D’URGENCE NOT HALT PARADA DE EMERGENCIA
References ZBY9140 ZBY9330 ZBY9130 ZBY9230 ZBY9430
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
(2) Electrical blocks and accessories also for use with Harmony XB5 plastic range
* sold in lots of
Type of push Double-headed pushbuttons Triple-headed pushbuttons
Degree of protection IP 66 - IP 69K IP 66 - IP 69K
With international marking Products Complete
(A)
For user assembly Complete
(B)
For user assembly
References (A) NO + NC XB5AL73415 ZB5AZ105 ZB5AL7341 – – –
(B) NO + NC + NO – – – XB5AA711237 ZB5AZ103 +
ZBE102
ZB5AA71123
(1) Alternative connections: plug-in connector,
Faston connectors (6.35 and 2 x 2.8).
Harmony
XB5
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel
Contact functions
Pushbuttons, spring return
Type of head Circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
+ 0.4
0
Type of push Flush Flush, booted
Unmarked Products Complete For user assembly Complete For user assembly
References black NO XB5AA21 ZB5AZ101 ZB5AA2 XB5AP21 ZB5AZ101 ZB5AP2
green NO XB5AA31 ZB5AZ101 ZB5AA3 XB5AP31 ZB5AZ101 ZB5AP3
red NC XB5AA42 ZB5AZ102 ZB5AA4 XB5AP42 ZB5AZ102 ZB5AP4
yellow NO XB5AA51 ZB5AZ101 ZB5AA5 XB5AP51 ZB5AZ101 ZB5AP5
blue NO XB5AA61 ZB5AZ101 ZB5AA6 XB5AP61 ZB5AZ101 ZB5AP6
Type of push Flush
With international marking Products Complete For user assembly Complete For user assembly
References green NO XB5AA3311 ZB5AZ101 ZB5AA331 – – –
red NC XB5AA4322 ZB5AZ102 ZB5AA432 – – –
white NO XB5AA3341 ZB5AZ101 ZB5AA334 – – –
black NO XB5AA3351 ZB5AZ101 ZB5AA335 – – –
Type of push Projecting Mushroom head, Ø 40 mm
Unmarked Products Complete For user assembly Complete For user assembly
References black NO – – – XB5AC21 ZB5AZ101 ZB5AC2
red NC XB5AL42 ZB5AZ102 ZB5AL4 – – –
Ø 40 mm mushroom head Emergency stop pushbuttons (2)
Trigger action (EN/ISO 13850)
Type of push Push-pull NO + NC
Unmarked Products Complete For user assembly
References red NO + NC XB5AT845 ZB5AZ105 ZB5AT84
Type of push Turn to release NO + NC
References red NO + NC XB5AS8445 ZB5AZ105 ZB5AS844
Type of push Key release NO + NC
References red NO + NC XB5AS9445 ZB5AZ105 ZB5AS944
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850: to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5.
+
= +
= +
10
Contact functions
Selector switches and key switches
Type of head Circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of operator Handle
Products Complete For user assembly Complete For user assembly
Number and type of positions 2 positions 2 positions 2 positions 2 positions
stay put stay put spring return to left spring return to left
References black NO XB5AD21 ZB5AZ101 ZB5AD2 XB5AD41 ZB5AZ101 ZB5AD4
Number and type of positions 3 positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre spring return to centre
References black NO + NO XB5AD33 ZB5AZ103 ZB5AD3 XB5AD53 ZB5AZ103 ZB5AD5
Type of operator Key, n° 455
Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions
stay put stay put stay put stay put
References black NO XB5AG21 ZB5AZ101 ZB5AG2 XB5AG41 ZB5AZ101 ZB5AG4
(2) The symbol indicates key withdrawal position.
+ 0.4
0
= +
11
Harmony
XB5
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel
Light functions
Pilot lights
Type of head Circular bezel
Smooth lens cap
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth below head 43
Connection (1) Screw clamp terminals
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white XB5AVB1 XB5AVG1 XB5AVM1 XB5AV61 ZB5AV6 ZB5AV01
green XB5AVB3 XB5AVG3 XB5AVM3 XB5AV63 ZB5AV6 ZB5AV03
red XB5AVB4 XB5AVG4 XB5AVM4 XB5AV64 ZB5AV6 ZB5AV04
orange XB5AVB5 XB5AVG5 XB5AVM5 XB5AV65 ZB5AV6 ZB5AV05
blue XB5AVB6 XB5AVG6 XB5AVM6 – – –
Illuminated pushbuttons and selector switches
Type Flush push, spring return, illuminated pushbuttons
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white NO + NC XB5AW31B5 XB5AW31G5 XB5AW31M5 XB5AW3165 ZB5AW065 ZB5AW31
green NO + NC XB5AW33B5 XB5AW33G5 XB5AW33M5 XB5AW3365 ZB5AW065 ZB5AW33
red NO + NC XB5AW34B5 XB5AW34G5 XB5AW34M5 XB5AW3465 ZB5AW065 ZB5AW34
orange NO + NC XB5AW35B5 XB5AW35G5 XB5AW35M5 XB5AW3565 ZB5AW065 ZB5AW35
blue NO + NC XB5AW36B5 XB5AW36G5 XB5AW36M5 – – –
Type Double-headed pushbuttons with LED pilot light Illuminated selector switches
(1 flush green push, 1 projecting red push) (2 position stay put)
Degree of protection IP 66 - IP 69K IP 66
Light source Integral LED Integral LED
Products Complete Complete
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC
References green NO + NC – – – XB5AK123B5 XB5AK123G5 XB5AK123M5
red NO + NC – – – XB5AK124B5 XB5AK124G5 XB5AK124M5
orange NO + NC – – – XB5AK125B5 XB5AK125G5 XB5AK125M5
white NO + NC XB5AW73731B5 XB5AW73731G5 XB5AW73731M5 – – –
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
+ 0.4
0
= +
= +
12
Separate components and accessories: see page 9.
Control stations
For XB5 pushbuttons, switches and pilot lights
Ø 22 with plastic bezel
Harmony
XAL
(1) Empty enclosures:
Basic reference: XALK0p, replace the p
by the number of cut-outs required (see
cut-out table above)
(1):
Number of cut-outs Number (p)
1 1
2 2
3 3
4 4
5 5
Complete stations with 1 pushbutton, selector switch or key switch
(light grey RAL 7035 base with dark grey RAL 7016 lid)
Degree of protection IP 65 / Nema 4X and 13 / Class II
Dimensions (mm) W x H x D 68 x 68 x 113 max. (with key release Ø 40 mushroom head pushbutton)
Fixing (mm) 2 x Ø 4.3 on 54 mm centres
Function 1 Start or Stop function 1 Start-Stop function
Marking On spring return push On legend holder and legend below head
Number and type of pushbutton/selector switch/key switch 1 flush green p/b 1 flush red p/b 1 projecting red p/b 1 2 position stay put selector switch or key switch
Black handle Key n° 455 (key withdrawal LH pos.)
References NO I XALD102 – – – –
Start XALD103 – – – –
O - I – – – XALD134 XALD144
O – XALD112 XALD115 – –
Function Emergency stop (2) (light grey RAL 7035 base with yellow RAL 1012 lid)
Number and type of mushroom head pushbutton 1 red Ø 40 head, turn to release 1 red Ø 40 head, key release
Latching mechanism Trigger action (EN/ISO 13850) Trigger action (EN/ISO 13850)
References NC XALK178 XALK188
NC + NC XALK178F XALK188F
NO + NC XALK178E XALK188E
NC + NC + NO XALK178G XALK188G
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5.
(1) Empty enclosures:
Basic reference: XALD0p, replace the p
by the number of cut-outs required (see
cut-out table above)
Complete stations with 2 and 3 pushbuttons or 2 pushbuttons + 1 pilot light
(light grey RAL 7035 base with dark grey RAL 7016 lid)
Dimensions (mm) W x H x D 2-way control stations: 68 x 106 x 62; 3-way control stations: 68 x 136 x 87
Fixing (mm) 2-way control stations: 2 x Ø 4.3 on 54 x 68 centres; 3-way control stations: 2 x Ø 4.3 on 54 x 98 centres
Function Start-Stop functions 2 functions 3 functions
Marking On spring return push
Number and type of pushbutton/pilot light 1 flush green p/b 1 flush green pushbutton 1 flush white p/b 1 flush white p/b 1 flush white p/b
1 flush red p/b 1 flush red pushbutton 1 flush black p/b 1 flush red p/b 1 Ø 30 red mush-
1 red pilot light with integral LED 1 flush black p/b room head p/b
1 flush black p/b
24 V AC/DC 230 V AC
References NO + NC I - O XALD213 XALD363B XALD363M – – –
Start - Stop XALD215 – – – – –
NO + NO – – – XALD222 – –
NO + NC + NO – – – – XALD324 XALD328
Accessories Standard contact blocks Light blocks with integral LED, colour red
Description NO contact NC contact 24 V AC/DC 230 V AC
References ZENL1111 ZENL1121 ZALVB4 ZALVM4
13
Harmony
XB5R
Wireless and batteryless pushbuttons
Packages and components
Ready to use packs Panel mounting Mobile application
Wireless and batteryless 22mm pushbutton assembled on fixing collar Plastic head Metal head Plastic head Metal head Plastic head in handy box
Caps 1 black cap 1 set of 10 different
coloured caps
1 black cap 1 set of 10 different
coloured caps
Receiver Non configurable Configurable functions:
monostable, bistable,
stop/start
Non configurable Configurable functions:
monostable, bistable,
stop/start
Relay output 1relay output type RT 3A 2 relays output type RT 3A 1relay output type RT 3A 2 relays output type RT 3A
Voltage receiver 24 VDC 24….240 AC/DC 24 VDC 24….240 AC/DC
References XB5RFB01 XB4RFB01 XB5RFA02 XB4RFA02 XB5RMB03 XB5RMA04
The pushbutton and receiver are factory paired
Transmitter components for wireless and
batteryless pushbuttons
Plastic mushroom head Plastic head Metal head
Wireless and batteryless pushbuttons including - a transmitter fitted with fixing collar
- a spring return pushbutton head with clipped-in cap
Reference Cap colour White – ZB5RTA1 ZB4RTA1
Black – ZB5RTA2 ZB4RTA2
Green – ZB5RTA3 ZB4RTA3
White I on green background – ZB5RTA331 ZB4RTA331
Red – ZB5RTA4 ZB4RTA4
White O on red background – ZB5RTA432 ZB4RTA432
Yellow – ZB5RTA5 ZB4RTA5
Blue – ZB5RTA6 ZB4RTA6
Black ZB5RTC2 – –
Transmitter components for wireless and
batteryless rope pull switch
Rope pull switch with wireless and batteryless transmitter
Reference ZBRP1
14
Components and accessories
Configurable receivers
Description - 2 buttons (learn, parameter setting)
- 6 indicating LEDs (power ON, outputs, signal strenght)
Output function Monostable Monostable, bistable Monostable, bistable, stop/start
Output type 4 PNP outputs 200 mA / 24V 2 relay outputs type RT 3A
Receiver voltage 24 VDC 24….240 AC/DC
References ZBRRC ZBRRD ZBRRA
Configurable access point (1)
Description - 7-segment display
- jog dial
- 8 indicating LEDs (power ON, functions mode, communication status, signal strength)
- external antenna connector and protective plug
Output function Monostable
Output type 2 RS485 for Modbus RS485 serial line 1 slot for communication module ZBRCETH
Receiver voltage 24….240 AC/DC
References ZBRN2 ZBRN1
(1) Available 1st quarter 2013.
Complementary accessories Relay antennas Communication
module
Plastic empty boxes
Description 1 power-ON LED
2 LEDs reception /
transmission
1 RF connector
Modbus/TCP protocol
2 RJ45 connectors
Handy,
1 cut-out 1 cut-out 2 cut-outs
Cable lenght 5m 2m
Voltage 24….240 AC/DC
Reference ZBRA1 ZBRA2 (1) ZBRCETH (1) ZBRM01 XALD01 XALD02
(1) Available 1st quarter 2013.
15
Pushbuttons
Type of head Flush or projecting push
circular
Degree of protection IP 65, class II, NEMA type 3 and 12
Mounting (mm) panel cut-out Ø 22.4 (0 +0.1)
mounting centres 30 (horizontal) x 40 (vertical)
Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5 (Ø 40 x 41.5 for Emergency stop)
Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2
Type of push Flush, spring return Flush, push and latching
References (10)* white NO XB7NA11 –
NO + NC XB7NA15 –
black NO XB7NA21 XB7NH21
NO + NC XB7NA25 XB7NH25
green NO XB7NA31 XB7NH31
NO + NC XB7NA35 XB7NH35
red NC XB7NA42 –
NO + NC XB7NA45 –
yellow NO XB7NA81 –
Type of push Flush, spring return Projecting, spring return
References green NO XB7NA3131 –
red NC – XB7NL4232
white NO XB7NA11341 –
black NO XB7NA21341 –
NO + NC XB7NA25341 –
Selector switches and key switches
Type of operator Black handle Key, n° 455
Number and
type of positions
2 positions 3 positions 2 positions 3 positions
stay put stay put stay put stay put
References (10*) NO XB7ND21 – XB7NG21 –
NO + NC XB7ND25 – – –
2 NO – XB7ND33 – XB7NG33
Ø 40mm Emmergency Stop trigger action and mechanical latching pushbuttons (EN/ISO 13850, UL) (1)
Type of push Turn to release Push, Pull Key release (n° 455)
References* red NC XB7 NS8442 XB7 NT842 -
red NO + NC XB7 NS8445 XB7 NT845 XB7 NS9445
red 2NC XB7 NS8444 XB7 NT844 XB7 NS9444
(1) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5. Please consult your Customer Care Centre for a full explanation of these standards and directives.
* Sold in lots of 10.
Harmony
XB7
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel - Monolithic
Contact functions
16
Illuminated pushbuttons
Type of head Projecting push
circular
Degree of protection IP 65, class II, NEMA type 12
Mounting (mm) panel cut-out Ø 22.4 (0 +0.1)
mounting centres 30 (horizontal) x 40 (vertical)
Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5, (Ø 40 x 41.5 for Emergency stop)
Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2
Light source Integral LED BA 9s base fitting Incandescent bulb
direct supply (bulb not included)
Type of push Spring return
References (10)* green NO XB7NW33p1 (1) XB7NW3361
red NO XB7NW34p1 (1) XB7NW3461
NC XB7NW34p2 (1) _
orange NO XB7NW35p1 (1) –
blue NO XB7NW36p1 (1) –
clear NO XB7NW37p1 (1) –
yellow NO XB7NW38p1 (1) XB7NW3561
Type of push Push and latching
References (10)* green NO XB7NH03p1 (1) XB7NH0361
red NO XB7NH04p1 (1) XB7NH0461
NC XB7NH04p2 (1) –
yellow NO XB7NH08p1 (1) XB7NH0861
Pilot lights (2)
Light source Integral LED Ba 9s base fitting incandescent bulb Incandescent bulb
direct supply direct through resistor
(bulb not included) (bulb included)
Supply voltage 24VAC/DC or 120VAC or 230…240VAC 6 or 24 V DC, or 130 V AC 230 V AC
References (10)* clear XB7EV07pP (1) XB7EV67P XB7EV77P
green XB7EV03pP (1) XB7EV63P XB7EV73P
red XB7EV04pP (1) XB7EV64P XB7EV74P
yellow XB7EV05pP (1) XB7EV65P XB7EV75P
blue XB7EV06pP (1) XB7EV66P XB7EV76P
orange XB7EV08pP (1) XB7EV68P XB7EV78P
Incandescent bulbs, long life
BA 9s base fitting, Ø 11 mm max., length 28 mm max.
6 V (1.2 W) 24 V (2 W) 130 V (2.4 W)
References DL1CB006 DL1CE024 DL1CE130
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) Alternative connection: 1 x 6.35 and 2 x 2.8 mm Faston connectors.
* sold in lots of 10
Contact functions and light functions
(1):
Supply voltage for integral LED light source only Letter (p)
24 V AC/DC B
120 V AC G
230 V AC M
17
Pushbuttons, spring return
Type of push Flush Projecting Projecting (high guard)
Colour of push Multi-colour (set of 7 clip-in coloured caps)
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
References CO 9001KR1UH13 9001KR3UH13 9001KR2UH13
NO 9001KR1UH5 9001KR3UH5 9001KR2UH5
Mushroom head pushbuttons, latching (1) Emergency switching off Emergency stop
Type of push Push-pull Turn-to-Release, trigger action
Ø 41 mushroom head Ø 35 mushroom head Ø 40 red mushroom head
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class III
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp),
57.2 x 50.8 (with legend 9001KN3pp)
57,2 x 44,5 (without legend plate),
100 x 100 ((with legend plate 9001KN8330) (2)
Depth below head (mm) 42 60
Connection Screw clamp terminals
References – – – 9001KR16
CO 9001KR9R94H13 9001KR9R20H13 –
NC 9001KR9RH6 9001KR9R20H6 –
2NO + 2NC – – 9001KR16H2
NO – – 9001KR16H13
(1) Mushroom head switching off mechanical latching pushbuttons conform to standard IEC 60364-5-53 and EN/IEC 60947-5-5. Mushroom head Emergency stop trigger action and
mechanical latching pushbuttons conforming to standard EN/IEC 60204‑1 and EN/ISO 13850, to Machinery directive 2006/42/EC and standard EN/IEC 60947-5-5.
Selector switches and key switches
Type of operator Long black handle Key, n° 455
positions (2) 3 - spring return 2 - stay put 2 - spring return 3 - stay put 2 - stay put
Number and type
of positions
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
References NO – 9001KS11FBH5 9001KS34FBH5 – –
CO 9001KS53FBH1 – – 9001KS43FBH1 9001KS11K1RH1
(2) The symbol indicates key withdrawal position.
Harmony
9001K/SK
Pushbuttons, switches and pilot lights Ø 30
with metal bezel
Contact functions
18
(2) For yellow circular Emergency Stop legend plates: see page 9
Pilot lights
Type of head Smooth lens cap
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC
References green 9001KP35LGG9 9001KP36LGG9 9001KP38LGG9 9001KP7G9
red 9001KP35LRR9 9001KP36LRR9 9001KP38LRR9 9001KP7R9
yellow 9001KP35LYA9 9001KP36LYA9 9001KP38LYA9 9001KP7A9
Illuminated pushbuttons, spring return
Type of head Spring return flush push
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC
References green CO 9001K3L35LGGH13 9001K3L36LGGH13 9001K3L38LGGH13 9001K2L7RH13
red CO 9001K3L35LRRH13 9001K3L36LRRH13 9001K3L38LRRH13 9001K2L7GH13
yellow CO 9001K3L35LYAH13 9001K3L36LYAH13 9001K3L38LYAH13 9001K2L7AH13
Illuminated Ø 41 mushroom head pushbuttons, latching, high luminosity LED
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC/DC
Type of head 2 position, push-pull
References red CO 9001KR9P35RH13 9001KR9P36RH13 9001KR9P38RH13 9001KR9P7RH13
Type of head 3 position, push-pull (pull: spring return, centre: stay put, push: spring return)
References red NC + NC
late break
9001KR8P35RH25 9001KR8P36RH25 9001KR8P38RH25 9001KR8P7RH25
Light functions
19
Contact blocks with protected terminals
Type of contact Single contact blocks
Connection Screw clamp terminals
References CO 9001KA1
NO 9001KA2
NC 9001KA3
CO, late break 9001KA4
NC, late break 9001KA5
NO, early make 9001KA6
Enclosures
Type Number of Ø 30 mm cut-outs NEMA ratings Reference
Aluminium 1 1, 3, 4, 6, 12, 13 9001KY1
2 1, 3, 4, 6, 12, 13 9001KY2
3 1, 3, 4, 6, 12, 13 9001KY3
4 1, 3, 4, 6, 12, 13 9001KY4
Stainless steel 1 1, 3, 4, 4X, 13 9001KYSS1
2 1, 3, 4, 4X, 13 9001KYSS2
3 1, 3, 4, 4X, 13 9001KYSS3
Legends
44 x 43 mm 57 x 57 mm Ø 60 Ø 90
Type Aluminium Plastic Plastic
Colour of legend black background white background Yellow background
Marking Blank 9001KN200 9001KN100WP 9001KN9100 9001KN8100
START 9001KN201 9001KN101WP – –
STOP (red background) 9001KN202 9001KN102RP – –
FORWARD 9001KN206 9001KN106WP – –
REVERSE 9001KN207 9001KN107WP – –
RESET 9001KN223 9001KN123WP –
PULL TO START/ 9001KN379 9001KN179WP – –
PUSH TO STOP
EMERGENCY STOP – – 9001KN9330 9001KN8330
ARRET D’URGENCE – – 9001KN9330F 9001KN8330F
PARADA DE EMERGENCIA – – 9001KN9330S 9001KN8330S
Harmony
9001K/SK
Pushbuttons, switches and pilot lights Ø 30
with metal bezel
Accessories
20
Cam switches
12 and 20 A ratings
Harmony
K series
positions (°)
Cam switches, K1 / K2 series
Function Switches ON-OFF switches Stepping switches
45° switching angle 90° switching angle with “0” position
Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1)
Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 2 2 + “0” position
Number of poles 2 2 2
Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45
Front mounting method Multifixing plate, 45 x 45 mm K1B002ALH K2B 002ALH K1B1002HLH K2B 1002HLH K1D012QLH K2D012QLH
Plastic mounting plate for Ø 22 mm hole K1B002ACH K2B 002ACH K1B1002HCH K2B 1002HCH K1D012QCH K2D012QCH
positions (°)
Cam switches, K1 / K2 series
Function Changeover switches Ammeter switches Voltmeter switches
Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1)
Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 + “0” position 3 + “0” position 6 + “0” position (measurements
(3 circuits + “0” position) between 3 phases & N + “0” pos.)
Number of poles 2 4 7
Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45
Front mounting method Multifixing plate, 45 x 45 mm K1D002ULH K2D002ULH K1F003MLH to be compiled * K1F027MLH to be compiled *
Plastic mounting plate for Ø 22 mm hole K1D002UCH K2D002UCH K1F003MCH to be compiled * K1F027MCH to be compiled *
(1) With seal KZ73 for switch with Multifixing plate, with seal KZ65 for Ø 22 mm hole mounting switches. Seal to be ordered separately.
(*) Please consult your Schneider Electric agency.
positions (°)
Cam switches with key operated lock, K1 series
Function Stepping switches Run switches Changeover switches + “0” pos.
Degree of protection front face IP 65 IP 65 IP 65
Conventional thermal current (Ith) 12 A 12 A 12 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 + “0” position 3 + “0” position 2 + “0” position
Number of poles 3 2 2
Dimensions of front plate (mm) 55 x 100 55 x 100 55 x 100
Colour of handle red black red black red black
Front mounting method Ø 22 mm hole + Ø 43.5 mm hole K1F022QZ2 K1F022QZ4 K1G043RZ2 K1G043RZ4 K1D002UZ2 K1D002UZ4
12
0 45
34
1-pole
2-pole
12
0 90
34
2-pole
90
1
0 45
2345678
135 180 225
2-pole
45
1
315 0
2345678
1-pole
2-pole
180
1
234
0 90 270
56789
10
11
12
0
1
234
270 315
5678
225
9
10
45 90
11
12
135
0
1
23456789
10
11
12
60 120
123456789
10
11
12
13
14
0 60 120 180
300
1
2345678
0 60
21
positions (°)
Cam switches, K10 series
Function Switches Changeover switches Ammeter Voltmeter
60° switching angle with “0” position switches switches
Degree of protection front face IP 65 IP 65 IP 65 IP 65
Conventional thermal current (Ith) 10 A 10 A 10 A 10 A
Rated insulation voltage (Ui) conforming to IEC60947-1 440 V 440 V 440 V 440 V
Number of positions 2 2 + “0” position 3 + “0” pos. (1) 6 + “0” pos. (2)
Number of poles 1 2 3 2 3 3 3
Dimensions of front plate (mm) 30 x 30 30 x 30 30 x 30 30 x 30
Front mounting method By Ø 16 mm or 22 mm hole K10A001ACH K10B002ACH K10C003ACH K10D002UCH K10F003UCH K10F003MCH K10F027MCH
(1) (3 circuits + “0” position).
(2) (Measurements between 3 phases and N + “0” position).
positions (°)
Cam switches, K30 series
Function Switches Switches Changeover Starting Starting Reversing
ON-OFF with “0” position star-delta 2-speed
Degree of protection front face IP 40 IP 40 IP 40 IP 40 IP 40 IP 40
Conventional thermal current (Ith) 32 A 32 A 32 A 32 A 32 A 32 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V 690 V 690 V 690 V
Number of positions 2 2 3 3 3 3
Number of poles 3 3 4 4 3 3 3
Dimensions of front plate (mm) 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64
Front mounting method Multifixing K30C003AP(3) K30C003HP(3) K30D004HP(3) K30H004UP(3) K30H001YP(3) K30H004PP(3) K30E003WP(3)
(3) To order switches with other thermal current ratings (50, 63, 115, 150 A): replace the number 30 in the reference by 50, 63, 115 or 150 respectively.
Example: a switch with a 32 A current rating, for example K30C003AP, becomes K50 C003AP for a current rating of 50 A.
Accessories for cam switches K1/K2
Rubber seals
for IP 65 degree of protection
For use with heads with 45 x 45 mm front plate with 60 x 60 mm front plate with 45 x 45 mm front plate
Ø 22 mm hole or 4 hole front mtg. Ø 22 mm hole or 4 hole front mtg. multifixing
References* KZ65 KZ66 KZ73
* Sold in lots of 5.
Cam switches
10 to 150 A ratings
Harmony
K series
0
1
23456
60
1-pole
2-pole
3-pole
0
1
2
60
34
300
56789
10
11
12
1-pole
2-pole
3-pole
90
1
2
180
34
0 270
56789
10
11
12
300
1
2
330
34
270 0 30 60 90
56789
10
11
12
0
1
23456
60
1-pole
2-pole
3-pole
0
1
2345678
90
1-pole
2-pole
0
12
60
34
1234
300
56789
10
11
12
13
14
15
16
1-pole
2-pole
3-pole
4-pole
0
12
60
34
1234
300
56789
10
11
12
13
14
15
16
0
1260
34 1234 300
56789
10
11
12
13
14
15
16
0
12
60
34
1234
300
56789
10
11
12
22
Monolithic tower lights
Ø 40, Ø 60, Ø 100 mm, complete, pre-wired
tower lights
Harmony
XVC
Ø 40 mm / Up to IP54
Complete, pre-wired tower lights Steady light Steady / Flashing light (1)
Light source (included) LEDs LEDs
Base mount Base mounting Support tube mounting, 17 mm Support tube mounting, 17 mm
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V AC/DC 24V AC/DC 100-240V AC 24V AC/DC 100 - 240V AC
References (2) Red XVC4B1K XVC4B1 XVC4M1 (4) XVC4B15S XVC4M15S (4)
Red / orange XVC4B2K XVC4B2 XVC4M2 XVC4B25S XVC4M25S
Red / Orange / green XVC4B3K XVC4B3 XVC4M3 XVC4B35S XVC4M35S
red / orange / green / blue XVC4B4K XVC4B4 XVC4M4 XVC4B45S XVC4M45S
red / orange / green / blue / Clear XVC4B5K XVC4B5 XVC4M5 XVC4B55S XVC4M55S
Ø 60 mm / Up to IP54
Complete, pre-wired tower lights Steady light Steady / Flashing light (1)
Light source (included) LEDs LEDs
Base mount Base mounting Support tube mounting, 22 mm Support tube mounting, 22 mm Base mounting
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V AC/DC 24V AC/DC 100-240 V AC (4) 24V AC/DC 100-240 V AC (4)
References (2) Red XVC6B1K XVC6B1 XVC6M1 (3) XVC6B15S (3) XVC6M15S XVC6M15SK
Red / orange XVC6B2K XVC6B2 XVC6M2 (3) XVC6B25S (3) XVC6M25S XVC6M25SK
Red / Orange / green XVC6B3K XVC6B3 XVC6M3 (3) XVC6B35S (3) XVC6M35S XVC6M35SK
red / orange / green / blue XVC6B4K XVC6B4 XVC6M4 (3) XVC6B45S (3) XVC6M45S XVC6M45SK
red / orange / green / blue / Clear XVC6B5K XVC6B5 XVC6M5 (3) XVC6B55S (3) XVC6M55S XVC6M55SK
Ø 100 mm / Up to IP54
Complete, pre-wired tower lights Steady / Flashing light (1)
Light source (included) LEDs
Base mount Base mounting
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V DC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4)
References (2) Red XVC1B1K XVC1M1K XVC1B1SK XVC1M1SK XVC1B1HK XVC1M1HK
Red / orange XVC1B2K XVC1M2K XVC1B2SK XVC1M2SK XVC1B2HK XVC1M2HK
Red / Orange / green XVC1B3K XVC1M3K XVC1B3SK XVC1M3SK XVC1B3HK XVC1M3HK
red / orange / green / blue XVC1B4K XVC1M4K XVC1B4SK XVC1M4SK - -
red / orange / green / blue / Clear XVC1B5K XVC1M5K XVC1B5SK XVC1M5SK - -
(1) Flashing function can be simply selected/programmed by wiring
(2) The colours are listed in the same order as the mounting order of the illuminated units (from top to bottom)
(3) To order products for base mounting, add the letter K to the end of the reference (ex. XVC6M1K)
(4) NPN only
23
Monolithic tower lights and accessories
Ø 45 mm, complete illuminated beacons
Harmony
XVDLS / XVC
Ø 45 mm / IP40
Illuminated beacons XVDLS Steady light Flashing light
Light source Incandescent BA 15d bulb, 5 W max. (not included) “Flash” discharge tube, 0.5 J
Degree of protection IP 40
References (1) 24…230 V AC/DC XVDLS3p –
24 V AC/DC – XVDLS6Bp
120 V AC – XVDLS6Gp
230 V AC – XVDLS6Mp
(1) To obtain the complete reference, replace the p by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
Accessories
XVDLS
Incandescent bulbs, with BA 15d base Beacons XVDLS
Description 24 V, 4 W 120 V, 5 W 230 V, 5 W
References DL1BEBS DL1BEGS DL1BEMS
XVC4 / XVC6
Mounting accessories Tower lights Ø 40 mm, XVC4 Tower lights Ø 60 mm, XVC6
Description Support tube mounting Support tube
mounting
Base mounting Support tube
mounting
Diameter (mm) Ø 90 Ø 84 – Ø 100 Ø 84 –
For use with – – – XVC6ppand
XVC6pp5S
XVC6ppK and
XVC6pp5SK
XVC6Bpand
XVC6Bpp5S,
XVC6Mpand
XVC6Mp5S
Height to be added (mm) 32 24,5 82 30 21,6 82
References Metal fixing plate XVCZ11 – – XVCZ02 XVCZ12 –
Plastic fixing plate – XVCZ01 – – – –
Wall mounting bracket – – XVCZ31 – – XVCZ32
XVC1
Mounting accessories Tower lights Ø 100 mm, XVC1
Description Vertical support
Diameter (mm) Ø 140 Ø 140 – –
For use with XVC1ppK
and
XVC1ppSK
XVC1ppHK (with siren) XVC1ppK and XVC1ppSK XVC1ppHK
(with siren)
Height to be added (mm) 300 306 – –
References Metal fixing plate (2) XVCZ13 XVCZ14 – –
Metal fixing bracket – – XVCZ23 XVCZ24
(2) Chromium plated-steel extension tube
24
Modular tower lights
Ø 70 mm, for customer assembly
Harmony
XVB
Ø 70 mm / Up to IP66
Illuminated beacons XVBL Steady light Flashing light
Light source Incandescent BA 15d bulb, Protected BA 15d LED Protected BA 15d LED “Flash” discharge tube
10 W max. (not included) (included) (included) 5 J (2)
Degree of protection IP 66
References (1) 12…250 V AC/DC XVBL3p – – –
24 V AC/DC – XVBL0Bp XVBL1Bp XVBL6Bp
120 V AC – XVBL0Gp XVBL1Gp XVBL6Gp
230 V AC – XVBL0Mp XVBL1Mp XVBL6Mp
Ø 70 mm / Up to IP66
Tower lights XVBC
comprising 2 to 5 signalling units (3)
Base units Steady light Flashing
light
“Flash”
light
Audible
units (90 db
at 1 m)
Light source – Incandescent Integral Integral “Flash” –
BA 15d bulb, 10 W protected LED protected LED discharge tube
max. (not included) 5 J (2)
Degree of protection IP 66
Base unit references with cover XVBC21 (4) – – – – –
without cover XVBC07 (5) – – – – –
References (2) 12… 230 V AC/DC – XVBC3p – – – –
24 V AC/DC – – XVBC2Bp XVBC5Bp XVBC6Bp –
120 V AC – – XVBC2Gp XVBC5Gp XVBC6Gp –
230 V AC – – XVBC2Mp XVBC5Mp XVBC6Mp –
Audible unit references 12…48 V AC/DC – – – – – XVBC9B
unidirectional 120…230 V AC – – – – – XVBC9M
(1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
(2) To order a lens unit with a 10 J discharge tube, replace the number 6 by 8 in the reference (example: XVBL6Bp becomes XVBL8Bp).
(3) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
(4) For connection on AS-Interface, order base unit XVBC21A (side cable entry) or XVBC21B (bottom cable entry with M12 connector on flying lead).
(5) For indicator banks with “flash” discharge tube unit.
25
Modular tower lights
Ø 70 mm, for customer assembly
Harmony
XVE
Ø 70 mm / Up to IP54
Illuminated beacons XVEL Steady light Flashing light
Light source Incandescent Integral “Flash” discharge tube, 1 J
BA 15d bulb, 5 W max. LED
(not included)
Degree of protection IP 42/IP 54 (with sealing kit)
References (1) 24… 240 V AC/DC XVEL3p –
24 V AC/DC – XVEL2Bp XVEL6Bp
120 V AC – XVEL2Gp XVEL6Gp
230 V AC – XVEL2Mp XVEL6Mp
Ø 70 mm / Up to IP54
Indicator banks XVEC
comprising 2 to 5 signalling units (2)
Base units Steady light Flashing
light
“Flash”
light
Audible
units (85 db
at 1 m)
Light source – Incandescent Integral Integral “Flash” –
BA 15d bulb, 5 W LED LED discharge tube
max. (not included) 1 J
Degree of protection IP 42/IP 54 (with sealing kit)
Base unit references IP 42 XVEC21 – – – – –
IP 54 XVEC21P – – – – –
Lens unit references (1) 24…230 V AC/DC – XVEC3p –
24 V AC/DC – – XVEC2Bp XVEC5Bp XVEC6Bp XVEC9B
120 V AC – – XVEC2Gp XVEC5Gp XVEC6Gp XVEC9G
230 V AC – – XVEC2Mp XVEC5Mp XVEC6Mp XVEC9M
(1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
(2) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
26
Modular tower lights
Ø 45, Ø 50 mm, complete or
for customer assembly
Harmony
XVM / XVP
Ø 45 mm / IP42
Complete, pre-wired tower light XVM (1) 2 sig. units + integral buzzer (2)
Steady light
3 signalling units + integral buzzer (2)
Steady light Steady light + “flash” (3)
Light source (included) Incandescent BA 15d Incandescent BA 15d Incandescent BA 15d
BA 15d bulb, 5 W “Super bright”
LED
BA 15d bulb, 5 W “Super bright”
LED
BA 15d bulb, 5 W “Super bright”
max. max. max. LED
Degree of protection IP 54
Signalling colours Red - Green Red - Orange - Green
References 24 V AC/DC XVMB1RGS XVMB2RGSSB XVMB1RAGS XVMB2RAGSSB XVMB1R6AGS XVMB2R6AGSSB
120 V AC/DC (bulb) - 120 V AC (LED) XVMG1RGS XVMG2RGSSB XVMG1RAGS XVMG2RAGSSB XVMG1R6AGS XVMG2R6AGSSB
230 V AC/DC (bulb) - 230 V AC (LED) XVMM1RGS XVMM2RGSSB XVMM1RAGS XVMM2RAGSSB XVMM1RA6GS XVMM2R6AGSSB
(1) Tower lights XVM are also available as separate components for customised assembly by the user: please refer to www.schneider-electric.com.
(2) To order products without an integral buzzer, delete the letter S at the end of the reference (example: XVMB2RGS becomes XVMB2RG, XVMB2RGSSB becomes XVMB2RGSB).
(3) Flash signalling colour: red - 0.8 J.
Ø 50 mm / IP65
Tower lights XVP
comprising 2 to 5 signalling units (4),
black clamping ring (5)
Base unit Steady or
flashing light
signalling
“Flash” light signalling Audible units
(55…85 dB
at 1 m)
Light source – Incandescent “Flash” “Flash” –
BA 15d bulb, 7 W discharge tube discharge tube
max. (not included) 0.3 J 0.6 J
Degree of protection IP 65
Base unit with cover XVPC21 – – – –
References (6) 250 V max. – XVPC3p – – –
24 V AC/DC (flash) - 24 V DC (buzzer) – – XVPC6Bp – XVPC09B
120 V AC – – – XVPC6Gp XVPC09G
230 V AC – – – XVPC6Mp XVPC09M
(4) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
(5) To order products with a cream clamping ring, add the letter W to the end of the reference (example: base unit + green lens unit: XVPC21W + XVPC33W etc.).
(6) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
27
Bulbs Beacons and tower lights
XVB / XVP (1)
Type of light source Incandescent Incandescent LED (2) Flashing
BA 15d base BA 15d base BA 15d base LED (2)
7 W 10 W (not XVP) BA 15d base
References 12 V DL1BEJ DL1BLJ – –
24 V DL1BEB DL1BLB DL1BDBp DL1BKBp
48 V DL1BEE DL1BLE – –
120 V DL1BEG DL1BLG DL1BDGp DL1BKGp
230 V DL1BEM DL1BLM DL1BDMp DL1BKMp
(1) Tower lights XVP can be fitted with 5 W incandescent bulbs: see beacons XVDLS / XVE.
(2) To obtain the complete reference, replace the p by the number designating the colour as follow: 1 = white, 3 = green , 4 = red , 5 = orange, 6 = blue, 8 = yellow.
Bulbs Tower lights
XVM
Type of light source Incandescent LED (3) Flashing “Flash” discharge
BA 15d base BA 15d base LED (3) tube, 0.8 Joule
5 W BA 15d base BA 15d base
References 24 V DL1EDBS DL2EDBpSB DL1EKBpSB DL6BB
120 V DL1EDGS DL2EDGpSB DL1EKGpSB DL6BG
230 V DL1EDMS DL2EDMpSB DL1EKMpSB DL6BM
(3) To obtain the complete reference, replace the p by the number designating the colour as follows: 1 = white, 3 = green , 4 = red , 6 = blue, 8 = orange.
Mounting accessories Beacons and
tower lights
XVB / XVE
Tower lights Tower lights
XVP XVM
Description Aluminium tube Plastic tube Aluminium tube Aluminium tube Aluminium tube Aluminium tube
with integral black with integral black with integral black with steel fixing with integral cream with steel fixing
plastic fixing base plastic fixing base plastic fixing base bracket plastic fixing base bracket
Diameter (mm) Ø 25 Ø 25 Ø 20 Ø 20 Ø 20 Ø 20
Support tubes 60 mm XVEZ13 – – – – –
100 mm – – – XVPC02T XVMZ02 XVMZ02T
112 mm – – XVPC02 (4) – – –
120 mm XVBZ02 – – – – –
140 mm – XVDC02 – – – –
250 mm – – – XVPC03T XVMZ03 XVMZ03T
260 mm – – XVPC03 (4) – – –
400 mm – – – XVPC04T XVMZ04 XVMZ04T
410 mm – – XVPC04 (4) – – –
420 mm XVBZ03 – – – – –
820 mm XVBZ04 – – – – –
Fixing plates, for vertical support XVBC12 XVPC12 (4) –
for horizontal support XVBZ01 – XVMZ06
(4) To order an aluminium support tube with integral cream fixing base, add the letter W to the end of the reference (example: XVPC02W).
Modular tower lights accessories
For XVB, XVP, XVE, XVM
Harmony
XV
28
Rotating beacons
Ø 84, 106, 120, 130 mm rotating beacons
Harmony
XVR
Ø 84 / 106 mm
Complete, pre-wired rotating beacons Ø 84 mm Ø 106 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x Ø 05
Buzzer Without buzzer
Degree of protection IP23 (IP 65 with accessories) IP23 (IP 55 with accessories)
Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC
References Red XVR08J04 XVR08B04 XVR10J04 XVR10B04
Orange XVR08J05 XVR08B05 XVR10J05 XVR10B05
Green XVR08J03 XVR08B03 XVR10J03 XVR10B03
Blue XVR08J06 XVR08B06 XVR10J06 XVR10B06
Ø 120 mm
Complete, pre-wired rotating beacons Ø 120 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x M5
Buzzer Without buzzer With buzzer
Degree of protection IP23
Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC
References Red XVR12J04 XVR12B04 XVR12J04S XVR12B04S
Orange XVR12J05 XVR12B05 XVR12J05S XVR12B05S
Green XVR12J03 XVR12B03 XVR12J03S XVR12B03S
Blue XVR12J06 XVR12B06 XVR12J06S XVR12B06S
Ø 130 mm
Complete, pre-wired rotating beacons Ø 130 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x Ø 09
Buzzer Without buzzer
Degree of protection IP66 - Resistant to vibration IP66 and IP67
Voltage 12V DC 24V DC 24V AC/DC 120V AC 230V AC
References Red XVR13J04 XVR13B04 XVR13B04L XVR13G04L XVR13M04L
Orange XVR13J05 XVR13B05 XVR13B05L XVR13G05L XVR13M05L
29
Accesories for rotating mirrors Reflecting prism Rubber base Metal angle
bracket
Metal fixing plate
To be used for/with – Increasing the IP degree Horizontal support Horizontal support
Height (mm) – – – 300
References Ø 84 mm XVRZR1 XVRZ081 XVCZ23 –
Ø 106 mm XVRZR2 XVRZ082 XVCZ23 XVCZ13
Ø 120 mm XVRZR3 – XVCZ23 XVCZ13
Ø 130 mm XVRZR3 – XVR012L –
Electronic alarms and multisound sirens
Sirens and electronic alarms Sirens Multisound
sirens
pre-wired
Electronic alarms
Panel Mount DIN72
Electronic alarms
Panel Mount DIN96
Sound level 106 dB 105 dB 90 dB 96 dB
Tones 2 43 16 16
Channels – 8 4 4
Degree of protection IP 53 IP53 IP 54 IP 54
Colors White White Black White Black White
References 12/24V AC/DC XVS10BMW – XVS72BMBp (1) XVS72BMWp (1) XVS96BMBp (1) XVS96BMWp (1)
12/24V DC – XVS14BMW – – – –
120V AC XVS10GMW XVS14GMW – – – –
230V AC XVS10MMW XVS14MMW – – – –
(1) To obtain a complete reference, replace the p by the letter as follow: P = PNP, N = NPN (ex. XVS72BMBP)
Rotating beacons accessories
and sound solutions
Accessories for rotating beacons
Harmony
XVR / XVS
30
Type XACA “Pistol grip”
Degree of protection IP 65 / Nema 4, 4X / Class II
Rated operational characteristics AC 15 (240 V 3 A), DC 13
Conventional thermal current Ithe 10 A
Connection Screw clamp terminals, 1 x 2.5 mm2 or 2 x 1.5 mm2
For control of single-speed motors 2-speed motors
Dimensions (mm) W x H x D 52 x 295 x 71 (x 85 with ZA2BS834) 52 x 295 x 71 (x 85 with ZA2BS834)
Number of operators mechanically interlocked 2 2
Emergency stop without ZA2BS834 without ZA2BS834
References XACA201 XACA2014 XACA207 XACA2074
Type XACA
For control of single-speed motors
Dimensions (mm) W x H x D 80 x 314 x 70 (x 90 with ZA2BS834) 80 x 440 x 70 (x 90 with ZA2BS844)
Number of operators mechanically interlocked between pairs 2 4
Emergency stop without ZA2BS834 without ZA2BS844
References XACA271 XACA2714 XACA471 XACA4714
For control of single-speed motors + I / O
Dimensions (mm) W x H x D 80 x 500 x 70 (x 90 with ZA2BS844) 80 x 560 x 70
Number of operators mechanically interlocked between pairs 6 8
Emergency stop without ZA2BS844 without
References XACA671 XACA6714 XACA871
Empty enclosures type XACA
Number of ways 2 3 4 5 6 8 12
References XACA02 XACA03 XACA04 XACA05 XACA06 XACA08 XACA12
Pendant control stations
for control circuits
Ready to use
Harmony
XAC
31
(1) Trigger action mechanically latching Emergency stop pushbuttons conform to standards EN/IEC 60204-32, EN/ISO 13850, Machinery directive 2006/42/EC and standard
EN/IEC 60947-5-5.
Legends, 30 x 40 mm With symbols conforming to NF E 52-124 With text
References ZB2BY4901 ZB2BY4903 ZB2BY4907 ZB2BY4909 ZB2BY4913 ZB2BY4915 ZB2BY4930 ZB2BY2303 ZB2BY2304
References ZB2BY2904 ZB2BY2906 ZB2BY2910 ZB2BY2912 ZB2BY2916 ZB2BY2918 ZB2BY2931 ZB2BY1W140
blank
white or yellow
background
Separate components (for mounting in enclosures XACA)
Booted operators
white XACA9411
black XACA9412
Mushroom head, latching, trigger action (1)
turn to release Ø 40 ZA2BS844
Ø 30 ZA2BS834
Mushroom head, latching, trigger action (1)
key release Ø 40 ZA2BS944
Ø 30 ZA2BS934
Selector switch
2 pos. stay put ZA2BD2
3 pos. stay put ZA2BD3
Key switch
key n° 455 2 pos. stay put ZA2BG4
3 pos. stay put ZA2BG5
Blanking plug
with seal and ZB2SZ3
fixing nut
Pilot light heads
white ZA2BV01
green ZA2BV03
red ZA2BV04
yellow ZA2BV05
Pilot light bodies
direct supply ZB2BV006
direct supply, through resistor ZB2BV007
Protective guard (for base mounted units)
For selector switch XACA982/983
For emergency stop pushbutton XACA984
Contact blocks
Single-speed NO ZB2BE101
Single-speed NC ZB2BE102
Contacts blocks for XACA941p
Single-speed NC+NO XENG1491
2-speed NC+NO+NO XENG1191
Contact blocks (for mounting in enclosure base)
NO XACS101
NC+NO XACS105
Isolating switch, slow break, for front mounting
Emergency stop NC+NC+NC
with positive opening operation
XENT1192
Double blocks latching, slow break
Single-speed NO+NO XENG3781
Single-speed NO+NC XENG3791
32
Notes
33
ART. 097419 01/2013 - V10.0
DIA4ED2040408EN
Head Office
35, rue Joseph Monier - CS 30323
F92500 Rueil-Malmaison Cedex
France
www.schneider-electric.com
The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein.
Design : IGS-CP
Photos : Schneider Electric
Print :
http://www.farnell.com/datasheets/1761538.pdf
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 39-01-2020
Status: Active
Overview: Mini-Fit Jr.™ Power Connectors
Description: Mini-Fit Jr.™ Receptacle Housing, Dual Row, UL 94V-2, 2 Circuits
Documents:
3D Model Product Specification PS-5556-001 (PDF)
Drawing (PDF) Test Summary TS-5556-002 (PDF)
Product Specification PS-45750-001 (PDF) RoHS Certificate of Compliance (PDF)
Agency Certification
CSA LR19980
UL E29179
General
Product Family Crimp Housings
Series 5557
Application Power, Wire-to-Wire
Comments Current = 13A max. per circuit when header is mated
to a receptacle loaded with 45750 series terminals
crimped to 16 AWG wire. . See Molex product
specification PS-45750-001 for additional current
derating information.. Glow Wire Equivalent Part.
MolexKits Yes
Overview Mini-Fit Jr.™ Power Connectors
Product Name Mini-Fit Jr.™
UPC 800753584259
Physical
Breakaway No
Circuits (maximum) 2
Color - Resin Natural
Flammability 94V-2
Gender Female
Glow-Wire Compliant No
Material - Resin Nylon
Net Weight 0.657/g
Number of Rows 2
Packaging Type Bag
Panel Mount No
Pitch - Mating Interface 4.20mm
Pitch - Termination Interface 4.20mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -40°C to +105°C
Electrical
Current - Maximum per Contact 13A
Material Info
Old Part Number 5557-02R
Reference - Drawing Numbers
Product Specification PS-45750-001, PS-5556-001, RPS-5557-046
Sales Drawing SD-5557-003
Test Summary TS-5556-002
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
5557Series
Mates With
5559 Dual Row, 5566 Vertical with Pegs,
5566 Vertical without Pegs, 5569 Right
Angle Dual Row with Flanges, 5569 Right
Angle Dual Row with Pegs, 43810 , 44068 ,
44281 , 87427 , 42404 , 42440
Use With
5556 Mini-Fit® Female Crimp Terminals,
45750 Mini-Fit® Plus HCS Crimp TerminalThis document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 10/10/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 87439-0400
Status: Active
Overview: Pico-Spox™ Wire-to-Board Connector System
Description: 1.50mm Pitch Pico-SPOX™ Wire-to-Board Housing, 4 Circuits, Off-White Housing
Documents:
3D Model RoHS Certificate of Compliance (PDF)
Drawing (PDF) Product Literature (PDF)
Product Specification PS-87437 (PDF)
Agency Certification
CSA LR19980
UL E29179
General
Product Family Crimp Housings
Series 87439
Application Signal, Wire-to-Board
MolexKits Yes
Overview Pico-Spox™ Wire-to-Board Connector System
Product Literature Order No USA-235
Product Name Pico-SPOX™
UPC 800753537224
Physical
Circuits (maximum) 4
Color - Resin Natural
Flammability 94V-0
Gender Female
Glow-Wire Compliant No
Lock to Mating Part Yes
Material - Resin Nylon
Net Weight 55.000/mg
Number of Rows 1
Packaging Type Bag
Panel Mount No
Pitch - Mating Interface 1.50mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -55°C to +105°C
Electrical
Current - Maximum per Contact 2.5A
Material Info
Reference - Drawing Numbers
Product Specification PS-87437, RPS-87437, RPS-87437-001,
RPS-87437-200, RPS-87438-002
Sales Drawing SD-87439-**00
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
87439Series
Mates With
Pico-SPOX™ Wire-to-Board Header 87437 ,
87438
Use With
87421 Pico-SPOX™ Crimp Terminal
This document was generated on 10/10/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
PMBFJ620
Dual N-channel field-effect transistor
Rev. 2 — 15 September 2011 Product data sheet
CAUTION
This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken
during transport and handling.
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit
Per FET
VDS drain-source voltage - - 25 V
VGSoff gate-source cut-off
voltage
VDS = 10 V; ID = 1 A 2 - 6.5 V
IDSS drain current VGS = 0 V; VDS = 10 V 24 - 60 mA
Ptot total power
dissipation
Ts 90 C - - 190 mW
yfs forward transfer
admittance
VDS = 10 V;
ID = 10mA
10 - - mS
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 2 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
2. Pinning information
3. Ordering information
4. Marking
[1] * = p: made in Hong Kong.
* = t: made in Malaysia.
* = W: made in China.
Table 2. Discrete pinning information
Pin Description Simplified outline Symbol
1 source (1)
2 source (2)
3 gate (2)
4 drain (2)
5 drain (1)
6 gate (1)
1 2 3
6 5 4
sym034
6
3 2
4
1
5
Table 3. Ordering information
Type number Package
Name Description Version
PMBFJ620 - plastic surface mounted package; 6 leads SOT363
Table 4. Marking
Type number Marking code[1]
PMBFJ620 A8*
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 3 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
5. Limiting values
6. Thermal characteristics
[1] Ts is the temperature at the soldering point of the gate pins, see Figure 1.
Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
Per FET
VDS drain-source voltage - 25 V
VGSO gate-source voltage open drain - 25 V
VGDO drain-gate voltage open source - 25 V
IG forward gate current (DC) - 50 mA
Ptot total power dissipation Ts 90 C - 190 mW
Tstg storage temperature 65 +150 C
Tj junction temperature - 150 C
Table 6. Thermal characteristics
Symbol Parameter Conditions Typ Unit
Rth(j-s) thermal resistance from junction
to soldering points
single loaded [1] 315 K/W
double loaded [1] 160 K/W
(1) Double loaded.
(2) Single loaded.
Fig 1. Power derating curve.
Ts (°C)
0 50 100 150 200
001aaa742
200
100
300
400
Ptot
(mW)
0
(1)
(2)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 4 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
7. Static characteristics
8. Dynamic characteristics
Table 7. Characteristics
Tj = 25 C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Per FET
V(BR)GSS gate-source breakdown
voltage
IG = 1 A; VDS = 0 V 25 - - V
VGSoff gate-source cut-off voltage ID = 1 A; VDS = 10 V 2 - 6.5 V
VGSS gate-source forward voltage IG = 1 mA; VDS = 0 V - - 1 V
IDSS drain-source leakage current VDS = 10 V; VGS = 0 V 24 - 60 mA
IGSS gate-source leakage current VGS = 15 V; VDS = 0 V - - 1 nA
RDSon drain-source on-state
resistance
VGS = 0 V; VDS = 100mV - 50 -
yfs common source forward
transfer admittance
ID = 10 mA; VDS = 10 V 10 - - mS
yos common source output
admittance
ID = 10 mA; VDS = 10 V - - 250 S
Table 8. Characteristics
Tj = 25 C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Per FET
Ciss input capacitance VDS = 10 V; VGS = 10 V; f =1 MHz - 3 5 pF
VDS = 10 V; VGS = 0 V; Tamb = 25 C - 6 - pF
Crss reverse transfer capacitance VDS = 0 V; VGS = 10 V; f = 1 MHz - 1.3 2.5 pF
gis common source input
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 200 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 3 - mS
gfs common source transfer
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 13 - mS
VDS = 10 V; ID = 10 mA; f = 450 MHz - 12 - mS
grs common source reverse
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 30 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 450 - S
gos common source output
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 150 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 400 - S
Vn equivalent input noise voltage VDS = 10 V; ID = 10 mA; f = 100 Hz - 6 - nV/Hz
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 5 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; Tj = 25 C. VDS = 10 V; ID = 10 mA; Tj = 25 C.
Fig 2. Drain current as a function of gate-source
cut-off voltage; typical values.
Fig 3. Common source forward transfer admittance
as a function of gate-source cut-off voltage;
typical values.
VDS = 10 V; ID = 10 mA; Tj = 25 C. VDS = 100 mV; VGS = 0 V; Tj = 25 C.
Fig 4. Common-source output conductance as a
function of gate-source cut-off voltage; typical
values.
Fig 5. Drain-source on-state resistance as a function
of gate-source cut-off voltage; typical values.
VGSoff (V)
0 −1 −2 −3 −4
mcd220
20
30
10
40
50
IDSS
(mA)
0
0 −2 −4 −8
mcd219
−6
20
0
16
12
8
yfs
(mS)
4
VGSoff (V)
0
150
100
50
0
−1 −2 −4
mcd221
−3
gos
(μS)
VGSoff (V)
0 −1 −2 −4
80
60
20
0
40
mcd222
−3
RDSon
(Ω)
VGSoff (V)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 6 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
Tj = 25 C. VDS = 10 V; Tj = 25 C.
Fig 6. Typical output characteristics. Fig 7. Typical transfer characteristics.
VDS = 10 V; Tj = 25 C. VDS = 10 V; Tj = 25 C.
Fig 8. Reverse transfer capacitance as a function of
gate-source voltage; typical values.
Fig 9. Input capacitance as a function of gate-source
voltage; typical values.
VDS (V)
0 4 8 12 16
mcd217
20
10
30
40
ID
(mA)
0
(2)
(4)
(1)
(5)
(6)
(3)
−4 −3 −2 0
40
30
10
0
20
mcd214
−1
ID
(mA)
VGS (V)
−10 −4 0
4
3
1
0
2
mcd224
−8 −6 −2
Crs
(pF)
VGS (V)
−10 0
10
0
mcd223
−8 −6 −4 −2
8
6
4
2
Cis
(pF)
VGS (V)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 7 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; Tj = 25 C.
Fig 10. Drain current as a function of gate-source voltage; typical values.
Tj = 25 C.
Fig 11. Gate current as a function of drain-gate voltage; typical values.
mcd229
1
10−2
10−1
102
10
103
ID
(μA)
10−3
VGS (V)
−2.5 −2.0 −1.5 −1.0 −0.5 0
mcd230
−10
−1
−103
−102
−104
IGSS
(pA)
−10−1
VDG (V)
0 4 8 12 16
(1)
(2)
(3)
(4)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 8 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
Fig 12. Gate current as a function of junction temperature; typical values.
mcd231
10
1
103
102
104
IGSS
(pA)
10−1
Tj (°C)
−25 25 75 125 175
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 9 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C.
Fig 13. Input admittance as a function of frequency;
typical values.
Fig 14. Forward transfer admittance as a function of
frequency; typical values.
VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C.
Fig 15. Reverse transfer admittance as a function of
frequency; typical values.
Fig 16. Output admittance as a function of frequency;
typical values.
mcd228
10
1
gis, bis
(mS)
10−1
102
f (MHz)
10 102 103
bis
gis
f (MHz)
10 102 103
mcd227
10
102
gfs,−bfs
(mS)
1
gfs
−bfs
mcd226
f (MHz)
10 102 103
−10−1
−1
−10
−102
brs, grs
(mS)
−10−2
brs
grs
mcd225
10
1
bos, gos
(mS)
10−1
102
f (MHz)
10 102 103
bos
gos
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 10 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
9. Package outline
Fig 17. Package outline.
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT363 SC-88
bp w M B
D
e1
e
pin 1
index A
A1
Lp
Q
detail X
HE
E
v M A
B A
y
0 1 2 mm
scale
c
X
1 2 3
6 5 4
Plastic surface-mounted package; 6 leads SOT363
UNIT
A1
max
bp c D E e1 HE Lp Q v w y
mm 0.1
0.30
0.20
2.2
1.8
0.25
0.10
1.35
1.15
0.65
e
1.3 2.2
2.0
0.2 0.2 0.1
DIMENSIONS (mm are the original dimensions)
0.45
0.15
0.25
0.15
A
1.1
0.8
04-11-08
06-03-16
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 11 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
10. Revision history
Table 9. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PMBFJ620 v.2 20110915 Product data sheet - PMBFJ620 v.1
Modifications: • The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors.
• Legal texts have been adapted to the new company name where appropriate.
• Package outline drawings have been updated to the latest version.
PMBFJ620 v.1
(9397 750 13006)
20040511 Product data sheet - -
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 12 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
11. Legal information
11.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
11.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
11.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 13 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
11.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
12. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
© NXP B.V. 2011. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 15 September 2011
Document identifier: PMBFJ620
Advanced Materials
Araldite® 2014-1
Structural Adhesives
TECHNICAL DATA SHEET
Araldite® 2014-1
Two component epoxy paste adhesive
Key properties Grey paste
High temperature and chemical resistance
Low shrinkage
Very resistant to water and a variety of chemicals
Gap filling, non sagging up to 5mm thickness
Description Araldite 2014-1 is a two component, room temperature curing, thixotropic paste adhesive of high strength with good
environmental and excellent chemical resistance.
Used for bonding of metals, electronic components, GRP structures and many other items where a higher than
normal temperature or more aggressive environment is to be encountered in service. The low out gassing makes this
product suitable for specialist electronic telecommunication and aerospace applications.
Product data
Property 2014-1/A 2014-1/B 2014-1 (mixed)
Colour (visual) beige paste grey paste grey paste
Specific gravity ca. 1.6 ca. 1.6 ca. 1.6
Viscosity at 25°C (Pas) ca. 100 thixotropic thixotropic
Pot Life (100 gm at 25 C) - - 60 minutes
Shelf life (2-40 C) 3 years 3 years -
Processing Pretreatment
The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded.
At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone or other proprietary
degreasing agents in order to remove all traces of oil, grease and dirt.
Low grade alcohol, gasoline (petrol) or paint thinners should never be used.
The strongest and most durable joints are obtained by either mechanically abrading or chemically etching ( pickling )
the degreased surfaces. Abrading should be followed by a second degreasing treatment.
Mix ratio Parts by weight Parts by volume
Araldite 2014-1/A 100 100
Araldite 2014-1/B 50 50
Araldite 2014-1 is available in cartridges incorporating mixers and can be applied as ready to use adhesive with the
aid of the tool recommended by Huntsman Advanced Materials.
April 2007 Araldite® 2014-1 2/6
Application of adhesive
The resin/hardener mix may be applied manually or robotically to the pretreated and dry joint surfaces. Huntsman's
technical support group can assist the user in the selection of an suitable application method as well as suggest a
variety of reputable companies that manufacture and service adhesive dispensing equipment.
A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman
stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be
assembled and secured in a fixed position as soon as the adhesive has been applied.
For more detailed explanations regarding surface preparation and pretreatment, adhesive joint design, and the dual
syringe dispensing system, visit www.araldite2000plus.com.
Equipment maintenance
All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of
cured residues is a difficult and time-consuming operation.
If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition,
avoid skin and eye contact.
Times to minimum shear strength
Temperature C 10 15 23 40 60 100
Cure time to reach hours 14 8 3 - - -
LSS > 1MPa minutes - - - 60 15 3
Cure time to reach hours 20 11 5 - - -
LSS > 10MPa minutes - - - 80 20 4
LSS = Lap shear strength.
Typical cured
properties
Unless otherwise stated, the figures given below were all determined by testing standard specimens made by lapjointing
114 x 25 x 1.6 mm strips of aluminium alloy. The joint area was 12.5 x 25 mm in each case.
The figures were determined with typical production batches using standard testing methods. They are provided
solely as technical information and do not constitute a product specification.
Average lap shear strengths of typical metal-to-metal joints (ISO 4587)
Cured for 16 hours at 40°C and tested at 23 C
Pretreatment - Sand blasting
0 5 10 15 20 25
Aluminium
Steel 37/11
Stainless steel V4A
Galvanised steel
Copper
Brass
MPa
April 2007 Araldite® 2014-1 3/6
Average lap shear strengths of typical plastic-to-plastic joints (ISO 4587)
Cured for 16 hours at 40 C and tested at 23 C. Pretreatment - Lightly abrade and alcohol degrease.
0 2 4 6 8 10 12 14
GRP
CFRP
SMC
ABS
PVC
PMMA
Polycarbonate
Polyamides
MPa
Lap shear strength versus temperature (ISO 4587) (typical average values)
Cure: (a) = 7 days /23 C; (b) = 24 hours/23 C + 30 minutes/80 C
0
5
10
15
20
25
30
°C -40 -20 0 20 40 60 80 100 120 140
MPa
a
b
Roller peel test (ISO 4578)
Cured: 16 hours/40 C 3.0 N/mm
Glass transition temperature (DSC)
Cure: 24 hours at 23 C plus 1 hour at 80 C: ca. 85 C
Shear modulus (DIN 53445) Cure: 16 hours/40 C
50 C - 1.2 GPa
75 C - 400 MPa
100 C - 180 Mpa
125 C - 20 Mpa
E - modulus (ISO R527) at 23 C 4 GPa
April 2007 Araldite® 2014-1 4/6
Flexural Properties (ISO 178) Cure 16 hours/ 40ºC Cure 1 day/ 23°C +30mins/ 80°C tested at 23°C
Flexural Strength 61 MPa
Flexural Modulus 4355 MPa
Tensile strength (ISO R527) at 23 C 26 MPa
Elongation at break 0,7%
Lap shear strength versus immersion in various media (typical average values)
Unless otherwise stated, L.S.S. was determined after immersion for 90 days at 23 C
0 5 10 15 20 25 30
As-made value
IMS
Gasoline (petrol)
Ethyl acetate
Acetic acid, 10%
Xylene
Lubricating oil
Paraffin
Water at 23°C
Water at 60°C
Water at 90°C
30 days 60 days 90 days
MPa
Cure: 16 hour/40°C
Lap shear strength versus tropical weathering
(40/92, DIN 50015; typical average values)
Cure: 16 hours/40C Test: at 23 C
0 5 10 15 20 25
As made value
After 30 days
After 60 days
After 90 days
MPa
April 2007 Araldite® 2014-1 5/6
Lap shear strength versus heat ageing
Cure: 16 hours/40 C
0 5 10 15 20 25
As-made value
30 days/ 70°C
60 days/ 70°C
90 days/ 70°C
MPa
April 2007 Araldite® 2014-1 6/6
Huntsman
Advanced
Materials
All recommendations for the use of our products, whether given by us in writing, verbally, or to be implied from the
results of tests carried out by us, are based on the current state of our knowledge. Notwithstanding any such
recommendations the Buyer shall remain responsible for satisfying himself that the products as supplied by us are
suitable for his intended process or purpose. Since we cannot control the application, use or processing of the
products, we cannot accept responsibility therefor. The Buyer shall ensure that the intended use of the products will
not infringe any third party s intellectual property rights. We warrant that our products are free from defects in
accordance with and subject to our general conditions of supply.
Storage Araldite 2014-1A and Araldite 2014-1/B may be stored for up to 3 years at room temperature provided the
components are stored in sealed containers. The expiry date is indicated on the label.
Handling
precautions
Caution
Our products are generally quite harmless to handle provided that certain precautions normally taken when handling
chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with
foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact
with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or
plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleansed
at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided.
Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is
recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual
products and should be referred to for fuller information.
Huntsman Advanced Materials
(Switzerland) GmbH
Klybeckstrasse 200
4057 Basel
Switzerland
Tel: +41 (0)61 966 33 33
Fax: +41 (0)61 966 35 19
www.huntsman.com/advanced_materials
Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties,
where stated, are to be considered as representative of current production and should not be treated as specifications.
The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is
not implied by this publication.
While all the information and recommendations in this publication are, to the best of our knowledge, information and belief,
accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR
OTHERWISE.
IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION
AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.
The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use
environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are
not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and
the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof.
Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman
Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures,
and should comply with all applicable safety and environmental standards.
Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing
circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to
handlers, processors and end users.
Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and
conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman
Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong
Kong) Ltd.
Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades
through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the
USA and Huntsman Advanced Materials (Europe) BVBA in Europe.
[Araldite® 2014-1] is a registered trademark of Huntsman Corporation or an affiliate thereof.
Copyright © 2007 Huntsman Corporation or an affiliate thereof. All rights reserved.
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
:
1.1 Identifiant du produit
1.3 Renseignements concernant le fournisseur de la fiche de données de sécurité
Adresse email de la
personne responsable
pour cette FDS
: Global_Product_EHS_AdMat@huntsman.com
Description du produit : Non disponible.
1.2 Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées
SECTION 1: Identification de la substance/du mélange et de la
société/l’entreprise
Code du produit : 00057058
1.4 Numéro d’appel d’urgence
Organisme de conseil/centre antipoison national
Fournisseur
Numéro de téléphone : EUROPE: +32 35 75 1234
France ORFILA: +33(0)145425959
ASIA: +65 6336-6011
China: +86 20 39377888
Australia: 1800 786 152
New Zealand: 0800 767 437
USA: +1/800/424.9300
Système Utilisation du produit : adhésif bi-composants
Fournisseur : Huntsman Advanced Materials (Europe)BVBA
Everslaan 45
3078 Everberg / Belgium
Tel.: +41 61 299 20 41
Fax: +41 61 299 20 40
France : ORFILA 01.45.42.59.59 - Hors de France : +33.(0)1.45.42.59.59
Classification Xi; R41, R38
R43
N; R51/53
:
Dangers pour la santé :
humaine
Risque de lésions oculaires graves. Irritant pour la peau. Peut entraîner une
sensibilisation par contact avec la peau.
Dangers pour :
l’environnement
Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long
terme pour l'environnement aquatique.
Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11.
SECTION 2: Identification des dangers
2.1 Classification de la substance ou du mélange
Définition du produit : Working pack (preparation)
Voir section 16 pour le texte intégral des phrases R et mentions H déclarées ci-dessus.
Classification selon la directive 1999/45/CE [DPD]
Le produit est classé dangereux selon la directive 1999/45/CE et ses amendements.
2.2 Éléments d’étiquetage
Date d'édition / Date de révision : 3 Août 2011 1/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
2/19
SECTION 2: Identification des dangers
Autres dangers qui ne :
donnent pas lieu à une
classification
Non disponible.
Récipients devant être
pourvus d'une fermeture
de sécurité pour les
enfants
Non applicable.
Avertissement tactile de
danger
Non applicable.
:
:
Exigences d‘emballages spéciaux
Symbole(s) de danger
Conseils de prudence S26- En cas de contact avec les yeux, laver immédiatement et abondamment avec
de l'eau et consulter un spécialiste.
S39- Porter un appareil de protection des yeux/du visage.
S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche
de données de sécurité.
R41- Risque de lésions oculaires graves.
R38- Irritant pour la peau.
R43- Peut entraîner une sensibilisation par contact avec la peau.
R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes
à long terme pour l'environnement aquatique.
Phrases de risque
Ingrédients dangereux
:
:
:
:
Irritant, Dangereux pour l'environnement
produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids
moléculaire moyen < 700)
résine époxidique à base de bisphénol F
éther diglycidique du 1,4-butanediol
N(3-diméthylaminopropyl)-1,3-propylènediamine
Indication de danger :
2.3 Autres dangers
Éléments d’étiquetage
supplémentaires
: Contient des composés époxydiques. Voir les informations transmises par le
fabricant.
Substance/préparation : Working pack (preparation)
Nom du Identifiants 67/548/CEE
produit/composant
SECTION 3: Composition/informations sur les composants
% Règlement (CE) Type
n° 1272/2008 [CLP]
Classification
produit de réaction:
bisphénol-Aépichlorhydrine;
résines époxydiques
(poids moléculaire
moyen < 700)
REACH #: 01-
2119456619-26
CAS: 25068-38-6
13 - 30 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2, H411
[1]
résine époxidique à
base de bisphénol F
REACH #: 01-
2119454392-40
CAS: 9003-36-5
3 - 7 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2, H411
[1]
éther diglycidique du
1,4-butanediol
REACH #: 01-
2119494060-45
CAS: 2425-79-8
1 - 3 Xn; R20/21
Xi; R36/38
Acute Tox. 4, H312
Acute Tox. 4, H332
[1]
Date d'édition / Date de révision : 3 Août 2011 2/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
3/19
SECTION 3: Composition/informations sur les composants
Les limites d'exposition professionnelle, quand elles sont disponibles, sont énumérées à la section 8.
Dans l'état actuel des connaissances du fournisseur et dans les concentrations d'application, aucun autre ingrédient
présent n'est classé comme dangereux pour la santé ou l'environnement, et donc nécessiterait de figurer dans cette
section.
Voir section 16 pour
le texte intégral des
phrases R
mentionnées cidessus
Voir section 16 pour le
texte intégral des
mentions H déclarées
ci-dessus.
R43
R52/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
N(3-
diméthylaminopropyl)-
1,3-propylènediamine
CAS: 10563-29-8 1 - 3 Xn; R21/22
C; R34
R43
Acute Tox. 4, H302
Acute Tox. 4, H312
Skin Corr. 1B, H314
Eye Dam. 1, H318
Skin Sens. 1, H317
[1]
diglycidylester de
l'acide téréphthalique
CAS: 7195-44-0 0.1 - 1 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2, H411
[1]
triglycidylester de
l'acide trimellitique
CAS: 7237-83-4 0.1 - 1 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2, H411
[1]
[1] Substance classée avec un danger pour la santé ou l'environnement
[2] Substance avec une limite d'exposition au poste de travail
[3] La substance remplit les critères des PTB selon le Règlement (CE) n° 1907/2006, Annexe XIII
[4] La substance remplit les critères des tPtB selon le Règlement (CE) n° 1907/2006, Annexe XIII
Type
Contact avec la peau
Consulter un médecin immédiatement. Rincer immédiatement les yeux à grande
eau, en soulevant de temps en temps les paupières supérieures et inférieures.
Vérifier si la victime porte des verres de contact et dans ce cas, les lui enlever.
Continuez de rincer pendant 10 minutes au moins. Les brûlures chimiques doivent
être traitées sans tarder par un médecin.
Rincer la peau contaminée à grande eau. Retirer les vêtements et les chaussures
contaminés. Laver abondamment à l'eau les vêtements contaminés avant de les
retirer, ou porter des gants. Continuez de rincer pendant 10 minutes au moins.
Consulter un médecin. En cas d'affections ou de symptômes, évitez d'exposer plus
longuement. Laver les vêtements avant de les réutiliser. Laver les chaussures à
fond avant de les remettre.
4.1 Description des premiers secours
Transporter la victime à l'extérieur et la maintenir au repos dans une position où elle
peut confortablement respirer. S'il ne respire pas, en cas de respiration irrégulière
ou d'arrêt respiratoire, que le personnel qualifié pratique la respiration artificielle ou
administre de l'oxygène. Il peut être dangereux pour la personne assistant une
victime de pratiquer le bouche à bouche. Appelez un médecin en cas de
persistance ou d'aggravation des effets néfastes sur la santé. En cas
d'évanouissement, placez la personne en position latérale de sécurité et appelez un
médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout
ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon.
En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes
peuvent être différés. La personne exposée peut avoir besoin de rester sous
surveillance médicale pendant 48 heures.
Inhalation
Contact avec les yeux
:
:
:
SECTION 4: Premiers secours
Date d'édition / Date de révision : 3 Août 2011 3/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
4/19
SECTION 4: Premiers secours
Rincez la bouche avec de l'eau. Enlever les prothèses dentaires s'il y a lieu.
Transporter la victime à l'extérieur et la maintenir au repos dans une position où elle
peut confortablement respirer. Si une personne a avalé de ce produit et est
consciente, lui faire boire de petites quantités d’eau. Si la personne est indisposée,
cesser de la faire boire car des vomissements pourraient entraîner un risque
supplémentaire. Ne pas faire vomir sauf indication contraire émanant du personnel
médical. En cas de vomissement, maintenez la tête vers le bas pour empêcher le
passage des vomissures dans les poumons. Appelez un médecin en cas de
persistance ou d'aggravation des effets néfastes sur la santé. Ne rien faire ingérer à
une personne inconsciente. En cas d'évanouissement, placez la personne en
position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous
d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col,
une cravate, une ceinture ou un ceinturon.
Note au médecin traitant En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes
peuvent être différés. La personne exposée peut avoir besoin de rester sous
surveillance médicale pendant 48 heures.
Ingestion :
:
Traitements spécifiques
Protection des sauveteurs : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence
de formation appropriée. Il peut être dangereux pour la personne assistant une
victime de pratiquer le bouche à bouche. Laver abondamment à l'eau les vêtements
contaminés avant de les retirer, ou porter des gants.
4.2 Effets et symptômes les plus importants, aigus ou différés
Effets aigus potentiels sur la santé
Inhalation : L'exposition aux produits de décomposition peut présenter des risques pour la santé.
Les effets graves d’une exposition peuvent être différés.
Irritant pour la bouche, Ingestion : la gorge et l'estomac.
Contact avec la peau : Irritant pour la peau. Peut entraîner une sensibilisation par contact avec la peau.
Contact avec les yeux : Gravement irritant pour les yeux. Risque de lésions oculaires graves.
Signes/symptômes de surexposition
Contact avec la peau
Ingestion
Inhalation Aucune donnée spécifique.
Aucune donnée spécifique.
Les symptômes néfastes peuvent éventuellement comprendre ce qui suit:
irritation
rougeur
:
:
:
Contact avec les yeux : Les symptômes néfastes peuvent éventuellement comprendre ce qui suit:
douleur ou irritation
larmoiement
rougeur
4.3 Indication quant à la nécessité d’une prise en charge médicale immédiate ou d’un traitement spécial
: Traitement symptomatique et thérapie de soutien comme indiqué. Après une
exposition sévère le patient doit être gardé sous contrôle médical pendant au moins
48 heures.
Utiliser un agent extincteur approprié pour étouffer l'incendie avoisinant.
5.1 Moyens d’extinction
Aucun connu.
Moyens d’extinction
appropriés
:
Moyens d’extinction
inappropriés
:
SECTION 5: Mesures de lutte contre l’incendie
5.2 Dangers particuliers résultant de la substance ou du mélange
Date d'édition / Date de révision : 3 Août 2011 4/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
5/19
SECTION 5: Mesures de lutte contre l’incendie
En présence d'incendie, circonscrire rapidement le site en évacuant toute personne
se trouvant près des lieux de l'accident. Aucune initiative ne doit être prise qui
implique un risque individuel ou en l’absence de formation appropriée. Ce produit
est toxique pour les organismes aquatiques. L'eau du réseau d'extinction d'incendie
qui a été contaminée par ce produit doit être conservée en milieu fermé et ne doit
être déversée ni dans le milieu aquatique, ni aucun égout ou conduit d'évacuation.
Risque lié aux produits de
décomposition thermique
Dangers dus à la
substance ou au mélange
Les produits de décomposition peuvent éventuellement comprendre les substances
suivantes:
dioxyde de carbone
monoxyde de carbone
oxydes d'azote
oxydes de soufre
oxyde/oxydes de métal
L’augmentation de pression résultant d’un incendie ou d’une exposition à des
températures élevées peut provoquer l’explosion du conteneur.
Les pompiers devront porter un équipement de protection approprié ainsi qu'un
appareil de protection respiratoire autonome avec masque intégral fonctionnant en
mode pression positive. Les vêtements pour sapeurs-pompiers (y compris casques,
bottes de protection et gants) conformes à la Norme européenne EN 469 procurent
un niveau de protection de base contre les accidents chimiques.
Équipement de protection
spécial pour le personnel
préposé à la lutte contre
l'incendie
:
:
:
5.3 Conseils aux pompiers
Précautions spéciales pour
les pompiers
:
6.2 Précautions pour la
protection de
l’environnement
Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone
de déversement accidentel. S'approcher des émanations dans la même direction
que le vent. Bloquer toute pénétration possible dans les égouts, les cours d’eau, les
caves ou les zones confinées. Laver le produit répandu dans une installation de
traitement des effluents ou procéder comme suit. Contenir les fuites et les ramasser
à l'aide de matières absorbantes non combustibles telles que le sable, la terre, la
vermiculite, la terre à diatomées. Les placer ensuite dans un récipient pour
élimination conformément à la réglementation locale. Élimination par une entreprise
Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout
contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Informez
les autorités compétentes en cas de pollution de l'environnement (égouts, voies
d'eau, sol et air) par le produit. Matière propre à polluer l’eau. Peut-être nocif pour
l'environnement en cas de déversement de grandes quantités.
Grand déversement
accidentel
:
Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone
de déversement accidentel. Diluer avec de l'eau et éponger si la matière est soluble
dans l'eau. Sinon, ou si la matière est insoluble dans l'eau, absorber avec un
matériau sec inerte et placer dans un conteneur à déchets approprié. Élimination
par une entreprise autorisée de collecte des déchets.
Petit déversement
accidentel
:
6.3 Méthodes et matériel de confinement et de nettoyage
SECTION 6: Mesures à prendre en cas de dispersion accidentelle
6.1 Précautions individuelles, équipement de protection et procédures d’urgence
Pour le personnel autre
que le personnel
d’intervention
:
Pour les agents
d'intervention
:
Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence
de formation appropriée. Évacuer les environs. Empêcher l'accès aux personnes
non requises et ne portant pas de vêtements de protection. NE PAS TOUCHER ni
marcher dans le produit répandu. Éviter de respirer les vapeurs ou le brouillard.
Assurer une ventilation adéquate. Porter un appareil de protection respiratoire
approprié lorsque le système de ventilation est inadéquat. Porter un équipement de
protection individuelle adapté.
Si des vêtements spécifiques sont nécessaires pour traiter le déversement,
consulter la section 8 pour les matériaux appropriés et inappropriés. Voir également
la section 8 pour plus d'informations sur les mesures d'hygiène.
:
Date d'édition / Date de révision : 3 Août 2011 5/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
6/19
SECTION 6: Mesures à prendre en cas de dispersion accidentelle
autorisée de collecte des déchets. Les matériaux absorbants contaminés peuvent
présenter les mêmes risques que le produit répandu.
6.4 Référence à d’autres
sections
Voir section 1 pour les coordonnées d'urgence.
Voir la section 8 pour toute information sur les équipements de protection
individuelle adaptés.
Voir la section 13 pour toute information supplémentaire sur le traitement des
déchets.
:
Stocker entre les températures suivantes: 2 à 40°C (35.6 à 104°F). Stocker
conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri
de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des
matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement
fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent
être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne
pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour
éviter toute contamination du milieu ambiant.
SECTION 7: Manipulation et stockage
Les informations de cette section contiennent des directives et des conseils généraux. Consulter la liste des Utilisations
Identifiées de la section 1 pour toute information spécifique aux usages disponible dans le(s) scénario(s) d'exposition.
7.1 Précautions à prendre pour une manipulation sans danger
Mesures de protection :
Conseils sur l'hygiène
professionnelle en général
:
7.2 Conditions d’un
stockage sûr, y compris
d’éventuelles
incompatibilités
7.3 Utilisations finales spécifiques
Recommandations :
Solutions spécifiques au :
secteur industriel
Non disponible.
Non disponible.
Revêtir un équipement de protection individuelle approprié (voir Section 8). Les
personnes ayant des antécédents de sensibilisation cutanée ne doivent pas
intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les
yeux, la peau ou les vêtements. Ne pas ingérer. Éviter de respirer les vapeurs ou le
brouillard. Éviter le rejet dans l'environnement. Consulter les instructions
spéciales/la fiche de données de sécurité. Garder dans le conteneur d'origine ou
dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau
compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les conteneurs
vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas
réutiliser ce conteneur.
Il est interdit de manger, boire ou fumer dans les endroits où ce produit est
manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver
les mains et la figure avant de manger, boire ou fumer. Retirer les vêtements
contaminés et les équipements de protection avant d'entrer dans un lieu de
restauration. Voir également la section 8 pour plus d'informations sur les mesures
d'hygiène.
:
Classe de danger de
stockage Huntsman
Advanced Materials
: Classe de stockage 10, Liquide nocif pour l'ambience
Date d'édition / Date de révision : 3 Août 2011 6/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
7/19
Procédures de surveillance
recommandées
Limites d'exposition professionnelle
Si ce produit contient des ingrédients présentant des limites d'exposition, il peut
s'avérer nécessaire d'effectuer un examen suivi des personnes, de l'atmosphère sur
le lieu de travail ou des organismes vivants pour déterminer l'efficacité de la
ventilation ou d'autres mesures de contrôle ou évaluer le besoin d'utiliser du matériel
de protection des voies respiratoires. Il importe de vous reporter à la norme
européenne EN 689 concernant les méthodes pour évaluer l'exposition par
inhalation aux agents chimiques et aux documents de politique générale nationaux
relatifs aux méthodes pour déterminer les substances dangereuses.
Protection des mains Le port de gants imperméables et résistants aux produits chimiques conformes à
une norme approuvée, est obligatoire en tout temps lors de la manutention de
produits chimiques si une évaluation des risques le préconise.
Utiliser une protection oculaire conforme à une norme approuvée dès lors qu'une
évaluation du risque indique qu'il est nécessaire d'éviter l'exposition aux projections
de liquides, aux fines particules pulvérisées ou aux poussières.
Protection oculaire/faciale
Aucune valeur de limite d'exposition connue.
:
:
:
Protection de la peau
Contrôles d’ingénierie
appropriés
: Aucune ventilation particulière requise. Une bonne ventilation générale devrait être
suffisante pour contrôler l'exposition du technicien aux contaminants en suspension
dans l'air. Si ce produit contient des composants pour lesquels des contraintes
liées à l'exposition existent, utiliser des enceintes de protection, une ventilation
locale par aspiration, ou d'autres moyens de contrôle automatiques intégrés afin de
maintenir le seuil d'exposition du technicien inférieur aux limites recommandées ou
légales.
Se laver abondamment les mains, les avant-bras et le visage après avoir manipulé
des produits chimiques, avant de manger, de fumer et d'aller aux toilettes ainsi qu'à
la fin de la journée de travail. Il est recommandé d'utiliser les techniques
appropriées pour retirer les vêtements potentiellement contaminés. Les vêtements
de travail contaminés ne devraient pas sortir du lieu de travail. Laver les vêtements
contaminés avant de les réutiliser. S'assurer que les dispositifs rince-oeil
automatiques et les douches de sécurité se trouvent à proximité de l'emplacement
des postes de travail.
8.2 Contrôles de l’exposition
Mesures d'hygiène :
Aucune DEL disponible.
Concentrations prédites avec effet
Aucune PEC disponible.
SECTION 8: Contrôles de l’exposition/protection individuelle
Les informations de cette section contiennent des directives et des conseils généraux. Consulter la liste des Utilisations
Identifiées de la section 1 pour toute information spécifique aux usages disponible dans le(s) scénario(s) d'exposition.
8.1 Paramètres de contrôle
Doses dérivées avec effet
Mesures de protection individuelles
Les limites d'exposition sur la place de travail doivent être dans les normes (poussière totale, poussière de quartz
potentiellement inhalable). Si les limites sont dépassées, portez un masque à poussière approprié.
A T T E N T I O N ! Ce produit contient du quartz, classé par l'IARC parmi les substances carcinogènes pour
l'homme (Groupe 1), pouvant causer une silicose ou un cancer des poumons par inhalation des poussières. Il est
donc important d'éviter de s'exposer à toute inhalation lors des opérations mécaniques effectuées avec le produit fini
(mouture, décapage, coupe...).
QUARTZ (CAS RN 14808-60-7):
France: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable aerosol
Suisse: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust
Belgique: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust
Date d'édition / Date de révision : 3 Août 2011 7/19
ARALDITE 2014-1
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
Date d'impression :
Date d'édition :
3 Août 2011
3 Août 2011
N° de FDS.
Version :
: 00057058
1
8/19
SECTION 8: Contrôles de l’exposition/protection individuelle
Lorsque la ventilation du local est insuffisante, porter un équipement de protection
respiratoire. Le choix de l'appareil de protection respiratoire doit être fondé sur les
niveaux d'expositions prévus ou connus, les dangers du produit et les limites
d'utilisation sans danger de l'appareil de protection respiratoire retenu.
Protection respiratoire :
L'équipement de protection personnel pour le corps devra être choisi en fonction de
la tâche à réaliser ainsi que des risques encourus, et il est recommandé de le faire
valider par un spécialiste avant de procéder à la manipulation du produit.
:
Contrôle de l'exposition
de l'environnement
: Il importe de tester les émissions provenant des systèmes de ventilation ou du
matériel de fabrication pour vous assurer qu'elles sont conformes aux exigences de
la législation sur la protection de l'environnement. Dans certains cas, il sera
nécessaire d'équiper le matériel de fabrication d'un épurateur de gaz ou d'un filtre
ou de le modifier techniquement afin de réduire les émissions à des niveaux
acceptables.
Protection corporelle :
Autre protection cutanée Des chaussures adéquates et toutes mesures de protection corporelle devraient
être déterminées en fonction de l'opération effectuée et des risques impliqués, et
devraient être approuvées par un spécialiste avant toute manipulation de ce produit.
Alcool éthylvinylique laminé (EVAL), caoutchouc butyle
néoprène, Matériaux pour gants caoutchouc nitrile
pour utilisation à court
terme/projection (10
min