
 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 1/129

Prox–DU & Prox–SU
Dual interface USB smart card reader

PC/SC Guide

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 2/129

All information herein is either public information or is the property of and owned solely by
Gemalto NV. and/or its subsidiaries who shall have and keep the sole right to file patent
applications or any other kind of intellectual property protection in connection with such
information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant
or otherwise, under any intellectual and/or industrial property rights of or concerning any of
Gemalto’s information.

This document can be used for informational, non-commercial, internal and personal use
only provided that:

• The copyright notice below, the confidentiality and proprietary legend and this full warning
notice appear in all copies.

• This document shall not be posted on any network computer or broadcast in any media
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal
liabilities.

The information contained in this document is provided “AS IS” without any warranty of any
kind. Unless otherwise expressly agreed in writing, Gemalto makes no warranty as to the
value or accuracy of information contained herein.

The document could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein. Furthermore, Gemalto reserves the right to
make any change or improvement in the specifications data, information, and the like
described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information
contained herein, including all implied warranties of merchantability, fitness for a particular
purpose, title and non-infringement. In no event shall Gemalto be liable, whether in contract,
tort or otherwise, for any indirect, special or consequential damages or any damages
whatsoever including but not limited to damages resulting from loss of use, data, profits,
revenues, or customers, arising out of or in connection with the use or performance of
information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible
attacks and shall not incur, and disclaims, any liability in this respect. Even if each product is
compliant with current security standards in force on the date of their design, security
mechanisms' resistance necessarily evolves according to the state of the art in security and
notably under the emergence of new attacks. Under no circumstances, shall Gemalto be
held liable for any third party actions and in particular in case of any successful attack
against systems or equipment incorporating Gemalto products. Gemalto disclaims any
liability with respect to security for direct, indirect, incidental or consequential damages that
result from any use of its products. It is further stressed that independent testing and
verification by the person using the product is particularly encouraged, especially in any
application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service or loss of privacy.

© Copyright 2011 Gemalto N.V. All rights reserved. Gemalto and the Gemalto logo are
trademarks and service marks of Gemalto N.V. and/or its subsidiaries and are registered in
certain countries. All other trademarks and service marks, whether registered or not in
specific countries, are the property of their respective owners.

GEMALTO, B.P. 100, 13881 GEMENOS CEDEX, FRANCE.

Tel: +33 (0)4.42.36.50.00 Fax: +33 (0)4.42.36.50.90

Printed in France.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 3/129

REVISION HISTORY

Date Release Comments
November 2010 V0 Creation - Draft
February 2011 A First release

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 5/129

TABLE OF CONTENTS

INTRODUCTION ... 9

OVERVIEW ... 11

USING PC/SC APPLICATION .. 12

PC/SC OVERVIEW .. 12
Resource Manager ... 13
Service Provider ... 14

The smart card Service Provider .. 15
The Cryptographic Service Provider .. 15

WINSCARD API .. 18

SCARDGETPROVIDERID FUNCTION .. 18
SCARDLISTCARDS FUNCTION .. 20
SCARDLISTINTERFACES FUNCTION .. 22
SCARDLISTREADERGROUPS FUNCTION ... 24
SCARDLISTREADERS FUNCTION .. 26
SCARDADDREADERTOGROUP FUNCTION .. 29
SCARDFORGETCARDTYPE FUNCTION .. 30
SCARDFORGETREADER FUNCTION .. 31
SCARDFORGETREADERGROUP FUNCTION ... 32
SCARDINTRODUCECARDTYPE FUNCTION ... 33
SCARDINTRODUCEREADER FUNCTION ... 35
SCARDINTRODUCEREADERGROUP FUNCTION .. 37
SCARDREMOVEREADERFROMGROUP FUNCTION ... 38
SCARDESTABLISHCONTEXT FUNCTION .. 39
SCARDRELEASECONTEXT FUNCTION ... 41
SCARDFREEMEMORY FUNCTION ... 42
SCARDLOCATECARDS FUNCTION .. 43
SCARDGETSTATUSCHANGE FUNCTION .. 47
SCARDCANCEL FUNCTION ... 49
SCARDCONNECT FUNCTION .. 50
SCARDRECONNECT FUNCTION .. 53
SCARDDISCONNECT FUNCTION ... 55
SCARDBEGINTRANSACTION FUNCTION .. 56
SCARDENDTRANSACTION FUNCTION ... 57
SCARDSTATUS FUNCTION ... 59
SCARDTRANSMIT FUNCTION .. 62
SCARDCONTROL FUNCTION .. 66
SCARDGETATTRIB FUNCTION .. 68
SCARDSETATTRIB FUNCTION .. 72
SCARD RETURN VALUES ... 74

LINUX WINSCARD API .. 79

PROX–DU AND PROX–SU READER NAME ... 81

WINDOWS OPERATING SYSTEMS .. 81
LINUX AND MAC OS X OPERATING SYSTEMS ... 82

GEM_PC/SC SOFTWARE TOOL ... 84

PLAYING WITH PC/SC ... 85

KNOWN ISSUES AND LIMITATIONS WITH ALL THE OPERATING SYSTEMS 89

KNOWN ISSUES AND LIMITATIONS WITH WINDOWS OPERATING SYSTEMS 89

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 6/129

KNOWN ISSUES AND LIMITATIONS WITH LINUX OPERATING SYSTEMS 91

KNOWN ISSUES AND LIMITATIONS WITH MAC OPERATING SYSTEMS 91

INTERFACING WITH CONTACTLESS CARDS .. 93

DETECTING AN INSERTION .. 93
DETECTING A REMOVAL ... 93
ATR FOR CONTACTLESS SMART CARDS .. 94

INTERFACING WITH MIFARE® DESFIRE CARDS ... 96

REQUESTING CONTACTLESS SMART CARD INFORMATION .. 97

INTERFACING WITH MIFARE® CARDS .. 99

ATR FOR MIFARE® CARDS ... 100
GET DATA COMMAND ... 102
LOAD KEYS COMMAND ... 103
GENERAL AUTHENTICATE COMMAND .. 105
READ BINARY COMMAND.. 107
UPDATE BINARY COMMAND .. 108
ERROR CODE LIST SUMMARY .. 109

INTERFACING WITH CONTACT CARDS .. 111

DETECTING AN INSERTION ... 111
DETECTING A REMOVAL ... 111
ATR FOR CONTACT SMART CARDS .. 111

Structures and content ... 113
Structure of the subsequent characters in the ATR ... 113

Format character T0 ... 113
Interface characters TAi, TBi, TCi, TDi .. 114
Historical characters T1, T2, ... ,TK .. 114
Check character TCK ... 115
Protocol type T ... 115
Specifications of the global interface bytes .. 115

TA1 ... 115
TB1 and TB2 .. 116
TC1 .. 116
TA2 ... 116
The first TA1 for T=15 .. 117
The first TB for T=15 .. 117

MIFARE® CARDS MAPPING .. 118

MIFARE® 1K MEMORY MAPPING .. 118
MIFARE® MINI MEMORY MAPPING .. 119
MIFARE® 4K MEMORY MAPPING .. 120
MIFARE® UL MEMORY MAPPING .. 122

Serial Number Area .. 122
Lock Bytes Area .. 123
OTP Bytes Area .. 123
Data Bytes Area .. 123
MIFARE® UL Read/Write Operation ... 123

MIFARE® MEMORY ORGANIZATION ... 124
Sector Trailer .. 124

Authentication Keys .. 124
Access Bits ... 125
Data Block Access Conditions ... 125
Sector Trailer Access Conditions ... 127

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 7/129

FOR MORE INFORMATION ... 129

STANDARDS AND SPECIFICATIONS .. 129

TABLE LIST

Table 1 – Dual interface USB smart card reader/writer models .. 9
Table 2 – Smart Card Database Query Functions .. 16
Table 3 – Smart Card Database Management Functions ... 16
Table 4 – Resource Manager Context Functions ... 16
Table 5 – Resource Manager Support Function ... 16
Table 6 – Smart Card Tracking Functions .. 17
Table 7 – Smart Card and Reader Access Functions ... 17
Table 8 – Direct Card Access Functions ... 17
Table 9 – SCard return values .. 78
Table 10 – Linux WinSCard Functions .. 80
Table 10 – Known issues and limitations (Windows OS) .. 90
Table 11 – Known issues and limitations (Linux OS) .. 91
Table 12 – PCSC-Lite known issues and limitations (Mac OS X) ... 92
Table 13 – ATR for contactless Smart cards .. 94
Table 14 – ATR for MIFARE® cards .. 100
Table 15 – SS Byte for Standard .. 101
Table 16 – NN Bytes for Card Name .. 101
Table 17 – Memory card error codes .. 110
Table 18 – ATR for contact smart cards ... 113
Table 19 – Clock rate conversion factor F .. 115
Table 20 – Bit rate adjustment factor D ... 116
Table 21 – clock stop indicator X .. 117
Table 22 – class indicator Y .. 117
Table 23 – Memory Sectors of MIFARE® 1K ... 118
Table 24 – Memory Sectors of MIFARE® Mini .. 119
Table 25 – Memory Sectors of MIFARE® 4K ... 121
Table 26 – Memory mapping of MIFARE® UL .. 122
Table 27 – Access to Data Blocks .. 127
Table 28 – Access to Sector Trailer .. 128

FIGURE LIST

Figure 1 – PC/SC Architecture .. 13
Figure 2 – Prox–DU PC/SC name (Windows) .. 81
Figure 3 – Prox–SU PC/SC name (Windows) ... 81
Figure 4 – Prox–DU and Prox–SU PC/SC names (Windows) .. 81
Figure 5 – Two Prox–DU PC/SC names (Windows) ... 81
Figure 6 – Prox–DU PC/SC name (Linux) .. 82
Figure 7 – Prox–SU PC/SC name (Linux) ... 82
Figure 8 – Prox–DU and Prox–SU PC/SC names (Linux) .. 82
Figure 9 – Two Prox–DU PC/SC names (Linux) ... 82
Figure 10 – Gem_PCSC window .. 84
Figure 11 – Gem_PCSC window at start up ... 85
Figure 12 – Gem_PCSC window after “SCardEstablishContext” ... 85
Figure 13 – Gem_PCSC window after “SCardConnect” ... 86
Figure 14 – Gem_PCSC window after “SCardTransmit” the Authentication command 86
Figure 15 – Gem_PCSC window after “SCardTransmit” the Read command 87

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 8/129

Figure 16 – Gem_PCSC window after “SCardDisconnect” .. 88
Figure 17 – Gem_PCSC window after “SCardReleaseContext” ... 88
Figure 18 – Information provided by T0 .. 114
Figure 19 – Information provided by TDi ... 114

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 9/129

Introduction
This guide provides information on the use of the Prox–DU and the Prox–SU dual interface
(contactless and contact) USB smart card reader/writer in the PC/SC environment.

This document is applicable to following reference, revision C and later:

Model Reference Comments

Prox–DU HWP118184 Dual interface USB smart card reader
Contact & contactless

Prox–SU HWP118185 Contactless interface USB smart card reader
With optional SIM/SAM slot

Prox–DU
with stand HWP118830 Prox–DU with a stand for vertical use

Prox–SU
with stand HWP118831 Prox–SU with a stand for vertical use

Table 1 – Dual interface USB smart card reader/writer models

For information on installation, please refer to the “Installation Guide” document.

For information on detailed operation about the smart card reader/writer, please refer to the
“Reference Manual” document.

For information on how to install the smart card reader/writer in a computer, please refer to
the “Computer Installation Guide” document.

Who Should Read This Book
This reference manual is designed for developers of PC/SC smart card application.

Conventions
Bit Numbering
A byte consists of 8 bits, b7 to b0, where b7 is the most significant bit and b0 is the least
significant bit.

One byte b7 b6 b5 b4 b3 b2 b1 b0

Byte Numbering
A string of n bytes consists of n number of concatenated bytes: Bn…B3…B0.

Bn is the most significant byte and B0 is the least significant byte:

A string of
n bytes Bn Bn-1 - - - B2 B1 B0

Contact Our Hotline
If you do not find the information you need in this document, or if you find errors, contact the
Gemalto hotline at http://support.gemalto.com/.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 10/129

Please note the document reference number, your job function, and the name of your
company. (You will find the document reference number at the bottom of the document.)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 11/129

Overview
PC/SC (short for “Personal Computer/Smart Card”) is a specification for smart-card
integration into computing environments.

For detailled information about PC/SC specification, please refer to the PC/SC workgroup
website: http://www.pcscworkgroup.com

Microsoft has implemented PC/SC in Microsoft Windows operating systems:

• The Winscard Smart Card API functions available in Microsoft Windows operating
systems are defined in the following website: http://msdn.microsoft.com

A free implementation of PC/SC, PC/SC Lite, is available for Linux and other unixes.

A forked version comes bundled with Mac OS X.

• The Winscard Smart Card API functions available in Linux or MAC OS X operating
systems are defined in the following website: http://pcsclite.alioth.debian.org

This document will provide detailed information about the PC/SC Winscard API functions
and will give some implementation examples.

The Prox–DU and the Prox–SU devices were designed to be fully compliant with the latest
PC/SC V2.0 specification.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 12/129

Using PC/SC application
PC/SC Overview
The PC/SC specification describes the minimum functionality required of smart cards, smart
card readers, and PCs to allow interoperability among compliant elements as provided by a
variety of vendors.

The specification as a whole seeks to achieve the following objectives:

• Maintain consistency with existing smart card-related and PC-related standards
while expanding upon them where necessary and practical.

• Enable interoperability among components running on various platforms (platform
neutral).

• Enable applications to take advantage of products and components from multiple
manufacturers (vendor neutral).

• Enable the use of advances in technology without rewriting application-level
software (application neutral).

• Facilitate the development of standards for application-level interfaces to smart card
services in order to enhance the fielding of a broad range of smart card-based
applications in the PC environment.

• Support an environment that encourages the widest possible use of smart cards as
an adjunct to the PC environment.

The interoperability specification for smart cards and personal computer systems is
composed of nine parts. These are intended to apply only to devices and software intended
to operate as a part of an overall system that includes a personal computer.

These documents include:

• Part 1: Introduction and architecture overview
• Part 2: Interface requirements for compatible smart cards and interface devices
• Part 3: Requirements for PC-connected interface devices
• Part 4: Interface devices design considerations and reference design information.

This part is here as an example reference only.
• Part 5: Smart card resource manager definition
• Part 6: Smart card service provider interface definition
• Part 7: Application domain/developer design considerations
• Part 8: Recommendation for implementation of security and privacy smart card

devices
• Part 9: Interface devices with extended capabilities

The PC/SC Winscard API functions detailed hereafter are related to the Part 5 : Smart card
resource manager definition.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 13/129

The next figure shows the PC/SC architecture:

Figure 1 – PC/SC Architecture

The software design considerations presented in the PC/SC specification address the
development of applications built on the architecture presented in the figure below.

This paragraph describes the way smart card-aware applications can use the functionality
provided by the smart card. By using the smart card resource manager and the service
provider layers, an application can use smart card functionality with some level of
independence from a specific reader, or to some extent, from a specific smart card.

Resource Manager
The resource manager is a key component of the PC/SC architecture. It is responsible for
managing the other smart card-relevant resources within the system and for supporting
controlled access to smart card readers and, through them, individual smart cards. The
resource manager is assumed to be a system-level component of the architecture. It must
be present and will most likely be provided by the operating system vendor. There should be
only a single resource manager within a given system.

The resource manager solves three basic problems in managing access to multiple readers
and smart cards.

First, it is responsible for identification and tracking of resources. This includes:

• Tracking installed readers and making this information accessible to other
applications.

• Tracking known smart card types, along with their associated service providers and
supported Interfaces, and making this information accessible to other applications.

• Tracking smart card insertion and removal events to maintain accurate information
on available smart cards within the readers.

Smart Card

 Smart Card Reader

Smart Card Resource Manager

Smart Card - Aware Applications

 Smart Card Reader Handler

Service Provider

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 14/129

Second, it is responsible for controlling the allocation of reader resources (and hence
access to smart cards) across multiple applications. It does this by providing mechanisms
for attaching to specific readers in shared or exclusive modes of operations.

Finally, it supports transaction primitives on access to services available within a given
smart card. This is extremely important because current smart cards are single-threaded
devices that often require execution of multiple commands to complete a single function.
Transactions allow multiple commands to be executed without interruption, ensuring that
intermediate state information is not corrupted.

Service Provider
The service provider is optional and is not described in this document because it is smart
card dependant. However some information is given in the next paragraph.

The service provider is the mechanism through which a smart card-specific set of
functionalities (in the form of an API) is made accessible to smart card-aware application
software. For every smart card, there will be at least one service provider; it is through this
service provider that an application can access data or services on that specific smart card.

The following three classes of services are widely implemented within existing smart cards:

• File services

• Authentication Services

• Cryptographic Services

These services, when present, have a high degree of functionality in common across smart
cards. Consequently, it is beneficial to standardize interfaces to these services so that
application development and maintenance are simpler. This specification defines such
interfaces as well as a standard interface for controlling basic access to a smart card.

Additional smart card services tend to reflect the needs of specific application domains
(EMV, GSM, and so on). It is believed most appropriate for groups within specific industries
to standardize interfaces in such areas. This architecture fully supports the addition of such
interfaces to the core set identified above.

The definition of the API’s exposed by a specific service provider generally comes from a
third-party workgroup (EMV, GSM, PC/SC, etc.). The service provider, by definition, has an
intimate knowledge of the smart card to which it provides access. The implementation of
these API’s might be expected to come from a variety of sources, including (but not limited
to) the following:

• The smart card supplier who wants to enable smart card use within the PC
environment. Providing a service provider makes accessing the smart card an
application software development effort that can be pursued by application
developers with no specific expertise in smart card technology (either smart cards
or readers).

• The smart card issuer, who might layer a “personalized” service provider on top of
the service provider provided by its smart card supplier.

• A smart card-Aware Application supplier who wishes to define the level of
functionality required of a smart card to adequately support the application. In
defining the API, the application supplier enables one or more smart card suppliers
to provide a smart card and the service provider that implements the API defined by
the application supplier.

• One or more parties interested in a specific domain, who wish to enable the
development of both applications and smart cards to support those applications
within a domain of interest.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 15/129

The smart card Service Provider
The smart card service provider is one of two possible sub-components of the service
provider. It is responsible for exposing high-level interfaces to non-cryptographic services.
This exposure is expected to include common interfaces, defined in this specification, for
managing connections to a specific smart card, as well as access to file and authentication
services. In addition, the smart card service provider may implement interfaces that the
vendor defines for features specific to the application domain.

All smart card service providers shall implement the interface for managing connections to a
smart card as defined herein (see Section 3). This interface provides mechanisms for
connecting and disconnecting to a smart card.

In addition, to be compliant with this specification, smart card service providers that expose
file access and authentication services shall do so using the interfaces defined herein (see
Section 3.4). These interfaces encapsulate functionality defined by ISO 7816-4, along with
natural extensions for functionality such as file creation and deletion.

The file access interface defines mechanisms for the following tasks:

• Locating files by name

• Creating or opening files

• Reading and writing file contents

• Closing a file

• Deleting files

• Managing file attributes

The authentication interface defines mechanisms for the following tasks:

• Cardholder verification

• smart card authentication

• Application authentication to the smart card

The Cryptographic Service Provider
The cryptographic service provider is a sub-component of the service provider. In contrast to
the smart card service provider, the cryptographic service provider isolates cryptographic
services because existing regulations imposed by various governments affect import and
export. The cryptographic service provider allows applications to make use of cryptographic
services in a manner that compartmentalizes the sensitive elements of cryptographic
support into a well-defined and independently installable software package.

The cryptographic service provider encapsulates access to cryptographic functionality
provided by a specific smart card through high level programming interfaces. Its purpose is
to expose available cryptographic functions to applications running on a PC. All other
functionality should be implemented in the smart card service provider.

Interfaces are defined in this specification for the following general-purpose cryptographic
services:

• Key generation

• Key management

• Digital signatures

• Hashing (or message digests)

• Bulk encryption services

• Key import and export

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 16/129

The PC/SC Winscard API functions are listed the following tables:

Table 2 – Smart Card Database Query Functions

Smart Card Database Management Functions: Manage the smart card database

SCardAddReaderToGroup Add a reader to a reader group

SCardForgetCardType Remove a smart card from the system

SCardForgetReader Remove a reader from the system

SCardForgetReaderGroup Remove a reader group from the system

SCardIntroduceCardType Introduce a new card to the system

SCardIntroduceReader Introduce a new reader to the system

SCardIntroduceReaderGroup Introduce a new reader group to the system

SCardRemoveReaderFromGroup Remove a reader from a reader group

Table 3 – Smart Card Database Management Functions

Resource Manager Context Functions: Manage the context of the resource manager's
database operations

SCardEstablishContext Establishes a context for accessing the smart card
database

SCardReleaseContext Closes an established context

Table 4 – Resource Manager Context Functions

Resource Manager Support Function: Release allocated memory

SCardFreeMemory Release memory returned through the use of
SCARD_AUTOALLOCATE

Table 5 – Resource Manager Support Function

Smart Card Tracking Functions: Track smart cards within readers

SCardLocateCards Search for a card whose ATR string matches a
supplied card name

Smart Card Database Query Functions: Query the smart card database

SCardGetProviderId Retrieve the identifier (GUID) of the primary service
provider for the given card

SCardListCards Retrieve a list of cards previously introduced to the
system by a specific user

SCardListInterfaces Retrieve the identifiers (GUIDs) of the interfaces
supplied by a given card

SCardListReaderGroups Retrieve a list of reader groups that have previously
been introduced to the system

SCardListReaders Retrieve the list of readers within a set of named
reader groups

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 17/129

SCardGetStatusChange Block execution until the current availability of cards
changes

SCardCancel Terminate outstanding actions

Table 6 – Smart Card Tracking Functions

Smart Card and Reader Access Functions: Connect to and communicate with a smart
card, including transferring data using T=0, T=1, and raw protocols

SCardConnect Connect to a card

SCardReconnect Reestablish a connection

SCardDisconnect Terminate a connection

SCardBeginTransaction Start a transaction, blocking other applications from
accessing a card

SCardEndTransaction End a transaction, allowing other applications to
access a card

SCardStatus Provide the current status of the reader

SCardTransmit Requests service and receives data back from a
card using T=0, T=1, and raw protocols

Table 7 – Smart Card and Reader Access Functions

Direct Card Access Functions: Communicate with cards that may not conform to the ISO
7816 specifications

SCardControl Provide direct control of the reader

SCardGetAttrib Get reader attributes

SCardSetAttrib Set reader attribute

Table 8 – Direct Card Access Functions

The next paragraphs give more information about these commands (extracts from the
MSDN website: http://msdn.microsoft.com)

Most of the functions are defined in the “Part 5: Smart card resource manager definition” of
the PC/SC specification.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 18/129

WinScard API
The next paragraph contains information retrieved from the http://msdn.microsoft.com web
site.

SCardGetProviderId Function
The SCardGetProviderId function returns the identifier (GUID) of the primary service
provider for a given card.

The caller supplies the name of a smart card (previously introduced to the system) and
receives the registered identifier of the primary service provider GUID, if one exists.

Syntax:

LONG WINAPI SCardGetProviderId(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szCard,

 __out LPGUID pguidProviderId

);

Parameters:

hContext [in]

Handle that identifies the resource manager context for the query. The resource
manager context can be set by a previous call to SCardEstablishContext. This
parameter cannot be NULL.

szCard [in]

Name of the card defined to the system.

pguidProviderId [out]

Identifier (GUID) of the primary service provider. This provider may be activated
using COM, and will supply access to other services in the card.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardGetProviderId function is a database query function. For more information on
other database query functions, see Smart Card Database Query Functions.

Examples:

The following example shows how to get the provider ID for the specified card. The example
assumes that hContext is a valid handle obtained from a previous call to the
SCardEstablishContext function and that "MyCardName" was introduced by a previous call
to the SCardIntroduceCardType function.

GUID guidProv;

LONG lReturn;

lReturn = SCardGetProviderId(hContext,

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 19/129

 L"MyCardName",

 &guidProv);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardGetProviderId - %x\n", lReturn);

else

{

 // Use the provider GUID as needed.

 // ...

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 20/129

SCardListCards Function
The SCardListCards function searches the smart card database and provides a list of
named cards previously introduced to the system by the user.

The caller specifies an ATR string, a set of interface identifiers (GUIDs), or both. If both an
ATR string and an identifier array are supplied, the cards returned will match the ATR string
supplied and support the interfaces specified.

Syntax:

LONG WINAPI SCardListCards(

 __in SCARDCONTEXT hContext,

 __in_opt LPCBYTE pbAtr,

 __in LPCGUID rgguidInterfaces,

 __in DWORD cguidInterfaceCount,

 __out LPTSTR mszCards,

 __inout LPDWORD pcchCards

);

Parameters:

hContext [in]

Handle that identifies the resource manager context for the query. The resource
manager context can be set by a previous call to SCardEstablishContext.

pbAtr [in, optional]

Address of an ATR string to compare to known cards, or NULL if no ATR matching
is to be performed.

rgguidInterfaces [in]

Array of identifiers (GUIDs), or NULL if no interface matching is to be performed.
When an array is supplied, a card name will be returned only if all the specified
identifiers are supported by the card.

cguidInterfaceCount [in]

Number of entries in the rgguidInterfaces array. If rgguidInterfaces is NULL, then
this value is ignored.

mszCards [out]

Multi-string that lists the smart cards found. If this value is NULL, SCardListCards
ignores the buffer length supplied in pcchCards, returning the length of the buffer
that would have been returned if this parameter had not been NULL to pcchCards
and a success code.

pcchCards [in, out]

Length of the mszCards buffer in characters. Receives the actual length of the
multi-string structure, including all trailing null characters. If the buffer length is
specified as SCARD_AUTOALLOCATE, then mszCards is converted to a pointer to
a byte pointer, and receives the address of a block of memory containing the multi-
string structure. This block of memory must be deallocated with SCardFreeMemory.

Return Value:

This function returns different values depending on whether it succeeds or fails:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 21/129

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

To return all smart cards introduced to the subsystem, set pbAtr and rgguidInterfaces to
NULL.

The SCardListCards function is a database query function. For more information on other
database query functions, see Smart Card Database Query Functions.

Examples:

The following example shows listing of the smart cards.

LPTSTR pmszCards = NULL;

LPTSTR pCard;

LONG lReturn;

DWORD cch = SCARD_AUTOALLOCATE;

// Retrieve the list of cards.

lReturn = SCardListCards(NULL,

 NULL,

 NULL,

 NULL,

 (LPTSTR)&pmszCards,

 &cch);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardListCards\n");

 exit(1); // Or other appropriate error action

}

// Do something with the multi string of cards.

// Output the values.

// A double-null terminates the list of values.

pCard = pmszCards;

while ('\0' != *pCard)

{

 // Display the value.

 printf("%S\n", pCard);

 // Advance to the next value.

 pCard = pCard + wcslen(pCard) + 1;

}

// Remember to free pmszCards (by calling SCardFreeMemory).

// ...

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 22/129

SCardListInterfaces Function
The SCardListInterfaces function provides a list of interfaces supplied by a given card.

The caller supplies the name of a smart card previously introduced to the subsystem, and
receives the list of interfaces supported by the card.

Syntax:

LONG WINAPI SCardListInterfaces(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szCard,

 __out LPGUID pguidInterfaces,

 __inout LPDWORD pcguidInterfaces

);

Parameters:

hContext [in]

Handle that identifies the resource manager context for the query. The resource
manager context can be set by a previous call to SCardEstablishContext. This
parameter cannot be NULL.

szCard [in]

Name of the smart card already introduced to the smart card subsystem.

pguidInterfaces [out]

Array of interface identifiers (GUIDs) that indicate the interfaces supported by the
smart card. If this value is NULL, SCardListInterfaces ignores the array length
supplied in pcguidInterfaces, returning the size of the array that would have been
returned if this parameter had not been NULL to pcguidInterfaces and a success
code.

pcguidInterfaces [in, out]

Size of the pcguidInterfaces array, and receives the actual size of the returned
array. If the array size is specified as SCARD_AUTOALLOCATE, then
pcguidInterfaces is converted to a pointer to a GUID pointer, and receives the
address of a block of memory containing the array. This block of memory must be
deallocated with SCardFreeMemory.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardListInterfaces function is a database query function. For more information on
other database query functions, see Smart Card Database Query Functions.

Examples:

The following example shows listing the interfaces for a smart card.

LPGUID pGuids = NULL;

LONG lReturn;

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 23/129

DWORD cGuid = SCARD_AUTOALLOCATE;

// Retrieve the list of interfaces.

lReturn = SCardListInterfaces(NULL,

 (LPCSTR) "MyCard",

 (LPGUID)&pGuids,

 &cGuid);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardListInterfaces\n");

 exit(1); // Or other appropriate action

}

if (0 != cGuid)

{

 // Do something with the array of Guids.

 // Remember to free pGuids when done (by SCardFreeMemory).

 // ...

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 24/129

SCardListReaderGroups Function
The SCardListReaderGroups function provides the list of reader groups that have previously
been introduced to the system.

Syntax:

LONG WINAPI SCardListReaderGroups(

 __in SCARDCONTEXT hContext,

 __out LPTSTR mszGroups,

 __inout LPDWORD pcchGroups

);

Parameters:

hContext [in]

Handle that identifies the resource manager context for the query. The resource
manager context can be set by a previous call to SCardEstablishContext. This
parameter cannot be NULL.

mszGroups [out]

Multi-string that lists the reader groups defined to the system and available to the
current user on the current terminal. If this value is NULL, SCardListReaderGroups
ignores the buffer length supplied in pcchGroups, writes the length of the buffer that
would have been returned if this parameter had not been NULL to pcchGroups, and
returns a success code.

pcchGroups [in, out]

Length of the mszGroups buffer in characters, and receives the actual length of the
multi-string structure, including all trailing null characters. If the buffer length is
specified as SCARD_AUTOALLOCATE, then mszGroups is converted to a pointer
to a byte pointer, and receives the address of a block of memory containing the
multi-string structure. This block of memory must be deallocated with
SCardFreeMemory.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

A group is returned only if it contains at least one reader. This includes the group
SCard$DefaultReaders. The group SCard$AllReaders cannot be returned, since it only
exists implicitly.

The SCardListReaderGroups function is a database query function. For more information on
other database query functions, see Smart Card Database Query Functions.

Examples:

The following example shows listing the reader groups.

LPTSTR pmszReaderGroups = NULL;

LPTSTR pReaderGroup;

LONG lReturn;

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 25/129

DWORD cch = SCARD_AUTOALLOCATE;

// Retrieve the list the reader groups.

// hSC was set by a previous call to SCardEstablishContext.

lReturn = SCardListReaderGroups(hSC,

 (LPTSTR)&pmszReaderGroups,

 &cch);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardListReaderGroups\n");

else

{

 // Do something with the multi string of reader groups.

 // Output the values.

 // A double-null terminates the list of values.

 pReaderGroup = pmszReaderGroups;

 while ('\0' != *pReaderGroup)

 {

 // Display the value.

 printf("%S\n", pReaderGroup);

 // Advance to the next value.

 pReaderGroup = pReaderGroup + wcslen((wchar_t *) pReaderGroup) + 1;

 }

 // Remember to free pmszReaderGroups by a call to SCardFreeMemory.

 // ...

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 26/129

SCardListReaders Function
The SCardListReaders function provides the list of readers within a set of named reader
groups, eliminating duplicates.

The caller supplies a list of reader groups, and receives the list of readers within the named
groups. Unrecognized group names are ignored.

Syntax:

LONG WINAPI SCardListReaders(

 __in SCARDCONTEXT hContext,

 __in_opt LPCTSTR mszGroups,

 __out LPTSTR mszReaders,

 __inout LPDWORD pcchReaders

);

Parameters:

hContext [in]

Handle that identifies the resource manager context for the query. The resource
manager context can be set by a previous call to SCardEstablishContext. This
parameter cannot be NULL.

mszGroups [in, optional]

Names of the reader groups defined to the system, as a multi-string. Use a NULL
value to list all readers in the system (that is, the SCard$AllReaders group).

mszReaders [out]

Multi-string that lists the card readers within the supplied reader groups. If this value
is NULL, SCardListReaders ignores the buffer length supplied in pcchReaders,
writes the length of the buffer that would have been returned if this parameter had
not been NULL to pcchReaders, and returns a success code.

pcchReaders [in, out]

Length of the mszReaders buffer in characters. This parameter receives the actual
length of the multi-string structure, including all trailing null characters. If the buffer
length is specified as SCARD_AUTOALLOCATE, then mszReaders is converted to
a pointer to a byte pointer, and receives the address of a block of memory
containing the multi-string structure. This block of memory must be deallocated with
SCardFreeMemory.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Group contains no readers: SCARD_E_NO_READERS_AVAILABLE

Other: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardListReaders function is a database query function. For more information on other
database query functions, see Smart Card Database Query Functions.

Examples:

The following example shows listing the readers.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 27/129

LPTSTR pmszReaders = NULL;

LPTSTR pReader;

LONG lReturn, lReturn2;

DWORD cch = SCARD_AUTOALLOCATE;

// Retrieve the list the readers.

// hSC was set by a previous call to SCardEstablishContext.

lReturn = SCardListReaders(hSC,

 NULL,

 (LPTSTR)&pmszReaders,

 &cch);

switch(lReturn)

{

 case SCARD_E_NO_READERS_AVAILABLE:

 printf("Reader is not in groups.\n");

 // Take appropriate action.

 // ...

 break;

 case SCARD_S_SUCCESS:

 // Do something with the multi string of readers.

 // Output the values.

 // A double-null terminates the list of values.

 pReader = pmszReaders;

 while ('\0' != *pReader)

 {

 // Display the value.

 printf("Reader: %S\n", pReader);

 // Advance to the next value.

 pReader = pReader + wcslen((wchar_t *)pReader) + 1;

 }

 // Free the memory.

 lReturn2 = SCardFreeMemory(hSC,

 pmszReaders);

 if (SCARD_S_SUCCESS != lReturn2)

 printf("Failed SCardFreeMemory\n");

 break;

default:

 printf("Failed SCardListReaders\n");

 // Take appropriate action.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 28/129

 // ...

 break;

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 29/129

SCardAddReaderToGroup Function
The SCardAddReaderToGroup function adds a reader to a reader group.

Syntax:

LONG WINAPI SCardAddReaderToGroup(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szReaderName,

 __in LPCTSTR szGroupName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szReaderName [in]

Display name of the reader that you are adding.

szGroupName [in]

Display name of the group to which you are adding the reader.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

SCardAddReaderToGroup automatically creates the reader group specified if it does not
already exist.

The SCardAddReaderToGroup function is a database management function. For more
information on other database management functions, see Smart Card Database
Management Functions.

Examples:

The following example demonstrates how to add a smart card reader to a group. The
example assumes that lReturn is an existing variable of type LONG, that hContext is a valid
handle received from a previous call to the SCardEstablishContext function, and that
"MyReader" and "MyReaderGroup" are known by the system through previous calls to the
SCardIntroduceReader and SCardIntroduceReaderGroup functions, respectively.

lReturn = SCardAddReaderToGroup(hContext,

 L"MyReader",

 L"MyReaderGroup");

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardAddReaderToGroup\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 30/129

SCardForgetCardType Function
The SCardForgetCardType function removes an introduced smart card from the smart card
subsystem.

Syntax:

LONG WINAPI SCardForgetCardType(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szCardName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szCardName [in]

Display name of the card to be removed from the smart card database.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardForgetCardType function is a database management function. For more
information on other database management functions, see Smart Card Database
Management Functions.

Examples:

The following example removes the specified card type from the system. The example
assumes that lReturn is a valid variable of type LONG, that hContext is a valid handle
received from a previous call to the SCardEstablishContext function, and that
"MyCardName" was previously introduced by a call to the SCardIntroduceCardType
function.

lReturn = SCardForgetCardType(hContext,

 L"MyCardName");

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardForgetCardType\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 31/129

SCardForgetReader Function
The SCardForgetReader function removes a previously introduced reader from control by
the smart card subsystem. It is removed from the smart card database, including from any
reader group that it may have been added to.

Syntax:

LONG WINAPI SCardForgetReader(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szReaderName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szReaderName [in]

Display name of the reader to be removed from the smart card database.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

If the specified reader is the last member of a reader group, the reader group is
automatically removed as well.

The SCardForgetReader function is a database management function. For more information
on other database management functions, see Smart Card Database Management
Functions.

Examples:

The following example removes the display name of the specified card reader from the
system. The example assumes that lReturn is a valid variable of type LONG and that
hContext is a valid handle received from a previous call to the SCardEstablishContext
function.

lReturn = SCardForgetReader(hContext,

 TEXT("MyReader"));

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardForgetReader\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 32/129

SCardForgetReaderGroup Function
The SCardForgetReaderGroup function removes a previously introduced smart card reader
group from the smart card subsystem. Although this function automatically clears all readers
from the group, it does not affect the existence of the individual readers in the database.

Syntax:

LONG WINAPI SCardForgetReaderGroup(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szGroupName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szGroupName [in]

Display name of the reader group to be removed. System-defined reader groups
cannot be removed from the database.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardForgetReaderGroup function is a database management function. For more
information on other database management functions, see Smart Card Database
Management Functions.

Examples:

The following example shows how to remove a reader group from the system. The example
assumes that lReturn is an existing variable of type LONG, and that hContext is a valid
handle to a resource manager context previously obtained from a call to the
SCardEstablishContext function.

lReturn = SCardForgetReaderGroup(hContext,

 L"MyReaderGroup");

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardForgetReaderGroup\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 33/129

SCardIntroduceCardType Function
The SCardIntroduceCardType function introduces a smart card to the smart card subsystem
(for the active user) by adding it to the smart card database.

Syntax:

LONG WINAPI SCardIntroduceCardType(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szCardName,

 __in_opt LPCGUID pguidPrimaryProvider,

 __in_opt LPCGUID rgguidInterfaces,

 __in DWORD dwInterfaceCount,

 __in LPCBYTE pbAtr,

 __in LPCBYTE pbAtrMask,

 __in DWORD cbAtrLen

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szCardName [in]

Name by which the user can recognize the card.

pguidPrimaryProvider [in, optional]

Pointer to the identifier (GUID) for the smart card's primary service provider.

rgguidInterfaces [in, optional]

Array of identifiers (GUIDs) that identify the interfaces supported by the smart card.

dwInterfaceCount [in]

Number of identifiers in the rgguidInterfaces array.

pbAtr [in]

ATR string that can be used for matching purposes when querying the smart card
database (for more information, see SCardListCards). The length of this string is
determined by normal ATR parsing.

pbAtrMask [in]

Optional bitmask to use when comparing the ATRs of smart cards to the ATR
supplied in pbAtr. If this value is non-NULL, it must point to a string of bytes the
same length as the ATR string supplied in pbAtr. When a given ATR string A is
compared to the ATR supplied in pbAtr, it matches if and only if A & M = pbAtr,
where M is the supplied mask, and & represents bitwise AND.

cbAtrLen [in]

Length of the ATR and optional ATR mask. If this value is zero, then the length of
the ATR is determined by normal ATR parsing. This value cannot be zero if a pbAtr
value is supplied.

Return Value:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 34/129

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardIntroduceCardType function is a database management function. For more
information on other database management functions, see Smart Card Database
Management Functions.

To remove a smart card, use SCardForgetCardType.

Examples:

The following example shows how to introduce a card type. The example assumes that
hContext is a valid handle obtained from a previous call to the SCardEstablishContext
function.

GUID MyGuid = { 0xABCDEF00,

 0xABCD,

 0xABCD,

 0xAA, 0xBB, 0xCC, 0xDD,

 0xAA, 0xBB, 0xCC, 0xDD };

static const BYTE MyATR[] = { 0xaa, 0xbb, 0xcc, 0x00, 0xdd };

static const BYTE MyATRMask[] = { 0xff, 0xff, 0xff, 0x00, 0xff};

LONG lReturn;

lReturn = SCardIntroduceCardType(hContext,

 L"MyCardName",

 &MyGuid,

 NULL, // No interface array

 0, // Interface count = 0

 MyATR,

 MyATRMask,

 sizeof(MyATR));

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardIntroduceCardType\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 35/129

SCardIntroduceReader Function
The SCardIntroduceReader function introduces a new name for an existing smart card
reader.

Note Smart card readers are automatically introduced to the system; a smart card reader
vendor's setup program can also introduce a smart card reader to the system.

Syntax:

LONG WINAPI SCardIntroduceReader(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szReaderName,

 __in LPCTSTR szDeviceName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szReaderName [in]

Display name to be assigned to the reader.

szDeviceName [in]

System name of the smart card reader, for example, "MyReader 01".

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

All readers installed on the system are automatically introduced by their system name.
Typically, SCardIntroduceReader is called only to change the name of an existing reader.

The SCardIntroduceReader function is a database management function. For more
information on other database management functions, see Smart Card Database
Management Functions.

To remove a reader, use SCardForgetReader.

Examples:

The following example shows introducing a smart card reader.

// This example renames the reader name.

// This is a two-step process (first add the new

// name, then forget the old name).

LPBYTE pbAttr = NULL;

DWORD cByte = SCARD_AUTOALLOCATE;

LONG lReturn;

// Step 1: Add the new reader name.

// The device name attribute is a necessary value.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 36/129

// hCardHandle was set by a previous call to SCardConnect.

lReturn = SCardGetAttrib(hCardHandle,

 SCARD_ATTR_DEVICE_SYSTEM_NAME,

 (LPBYTE)&pbAttr,

 &cByte);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardGetAttrib\n");

 exit(1); // Or other error action

}

// Add the reader name.

// hContext was set earlier by SCardEstablishContext.

lReturn = SCardIntroduceReader(hContext,

 TEXT("My New Reader Name"),

 (LPCTSTR)pbAttr);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardIntroduceReader\n");

 exit(1); // Or other error action

}

// Step 2: Forget the old reader name.

lReturn = SCardForgetReader(hContext,

 (LPCTSTR)pbAttr);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardForgetReader\n");

 exit(1); // Or other error action

}

// Free the memory when done.

lReturn = SCardFreeMemory(hContext, pbAttr);

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 37/129

SCardIntroduceReaderGroup Function
The SCardIntroduceReaderGroup function introduces a reader group to the smart card
subsystem. However, the reader group is not created until the group is specified when
adding a reader to the smart card database.

Syntax:

LONG WINAPI SCardIntroduceReaderGroup(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szGroupName

);

Parameters:

hContext [in]

Supplies the handle that identifies the resource manager context. The resource
manager context is set by a previous call to the SCardEstablishContext function. If
this parameter is NULL, the scope of the resource manager is
SCARD_SCOPE_SYSTEM.

szGroupName [in]

Supplies the display name to be assigned to the new reader group.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardIntroduceReaderGroup function is provided for PC/SC specification compatibility.
Reader groups are not stored until a reader is added to the group.

The SCardIntroduceReaderGroup function is a database management function. For a
description of other database management functions, see Smart Card Database
Management Functions.

To remove a reader group, use SCardForgetReaderGroup.

Examples:

The following example shows introducing a smart card reader group.

// Introduce the reader group.

// lReturn is of type LONG.

// hContext was set by a previous call to SCardEstablishContext.

lReturn = SCardIntroduceReaderGroup(hContext,

 L"MyReaderGroup");

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardIntroduceReaderGroup\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 38/129

SCardRemoveReaderFromGroup Function
The SCardRemoveReaderFromGroup function removes a reader from an existing reader
group. This function has no effect on the reader.

Syntax:

LONG WINAPI SCardRemoveReaderFromGroup(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szReaderName,

 __in LPCTSTR szGroupName

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext. This parameter cannot be NULL.

szReaderName [in]

Display name of the reader to be removed.

szGroupName [in]

Display name of the group from which the reader should be removed.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

When the last reader is removed from a group, the group is automatically forgotten.

The SCardRemoveReaderFromGroup function is a database management function. For
information about other database management functions, see Smart Card Database
Management Functions.

To add a reader to a reader group, use SCardAddReaderToGroup.

Examples:

The following example shows how to remove a reader from the group.

// Remove a reader from the group.

// lReturn is of type LONG.

// hContext was set by a previous call to SCardEstablishContext.

// The group is automatically forgotten if no readers remain in it.

lReturn = SCardRemoveReaderFromGroup(hContext,

 L"MyReader",

 L"MyReaderGroup");

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardRemoveReaderFromGroup\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 39/129

SCardEstablishContext Function
The SCardEstablishContext function establishes the resource manager context (the scope)
within which database operations are performed.

Syntax:

LONG WINAPI SCardEstablishContext(

 __in DWORD dwScope,

 __in LPCVOID pvReserved1,

 __in LPCVOID pvReserved2,

 __out LPSCARDCONTEXT phContext

);

Parameters:

dwScope [in]

Scope of the resource manager context. This parameter can be one of the following
values:

SCARD_SCOPE_USER: Database operations are performed within the domain of
the user.

SCARD_SCOPE_SYSTEM: Database operations are performed within the domain
of the system. The calling application must have appropriate access permissions for
any database actions.

pvReserved1 [in]

Reserved for future use and must be NULL. This parameter will allow a suitably
privileged management application to act on behalf of another user.

pvReserved2 [in]

Reserved for future use and must be NULL.

phContext [out]

A handle to the established resource manager context. This handle can now be
supplied to other functions attempting to do work within this context.

Return Value:

If the function succeeds, the function returns SCARD_S_SUCCESS.

If the function fails, it returns an error code. For more information, see Smart Card Return
Values.

Remarks:

The context handle returned by SCardEstablishContext can be used by database query and
management functions. For more information, see Smart Card Database Query Functions
and Smart Card Database Management Functions.

To release an established resource manager context, use SCardReleaseContext.

If the client attempts a smart card operation in a remote session, such as a client session
running on a terminal server, and the operating system in use does not support smart card
redirection, this function returns ERROR_BROKEN_PIPE.

Examples:

The following example establishes a resource manager context.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 40/129

SCARDCONTEXT hSC;

LONG lReturn;

// Establish the context.

lReturn = SCardEstablishContext(SCARD_SCOPE_USER,

 NULL,

 NULL,

 &hSC);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardEstablishContext\n");

else

{

 // Use the context as needed. When done,

 // free the context by calling SCardReleaseContext.

 // ...

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 41/129

SCardReleaseContext Function
The SCardReleaseContext function closes an established resource manager context,
freeing any resources allocated under that context, including SCARDHANDLE objects and
memory allocated using the SCARD_AUTOALLOCATE length designator.

Syntax:

LONG WINAPI SCardReleaseContext(

 __in SCARDCONTEXT hContext

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Examples:

The following example shows releasing a context.

// Free the context.

// lReturn is of type LONG.

// hSC was set by an earlier call to SCardEstablishContext.

lReturn = SCardReleaseContext(hSC);

if (SCARD_S_SUCCESS != lReturn)

printf("Failed SCardReleaseContext\n")

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 42/129

SCardFreeMemory Function
The SCardFreeMemory function releases memory that has been returned from the resource
manager using the SCARD_AUTOALLOCATE length designator.

Syntax:

LONG WINAPI SCardFreeMemory(

 __in SCARDCONTEXT hContext,

 __in LPCVOID pvMem

);

Parameters:

hContext [in]

Handle that identifies the resource manager context returned from
SCardEstablishContext, or NULL if the creating function also specified NULL for its
hContext parameter. For more information, see Smart Card Database Query
Functions.

pvMem [in]

Memory block to be released.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Examples:

The following example shows how to free memory allocated by the resource manager. The
example assumes that lReturn is an existing variable of type LONG, that hSC is a valid
handle to a resource manager context obtained from a previous call to the
SCardEstablishContext function, and that pmszReaders is a string initialized in a previous
call to the SCardListReaders function.

lReturn = SCardFreeMemory(hSC,

 pmszReaders);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardFreeMemory\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 43/129

SCardLocateCards Function
The SCardLocateCards function searches the readers listed in the rgReaderStates
parameter for a card with an ATR string that matches one of the card names specified in
mszCards, returning immediately with the result.

Syntax:

LONG WINAPI SCardLocateCards(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR mszCards,

 __inout LPSCARD_READERSTATE rgReaderStates,

 __in DWORD cReaders

);

Parameters:

hContext [in]

A handle that identifies the resource manager context. The resource manager
context is set by a previous call to SCardEstablishContext.

mszCards [in]

A multiple string that contains the names of the cards to search for.

rgReaderStates [in, out]

An array of SCARD_READERSTATE structures that, on input, specify the readers
to search and that, on output, receives the result.

cReaders [in]

The number of elements in the rgReaderStates array.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

This service is especially useful when used in conjunction with SCardGetStatusChange. If
no matching cards are found by means of SCardLocateCards, the calling application may
use SCardGetStatusChange to wait for card availability changes.

The SCardLocateCards function is a smart card tracking function. For more information on
other tracking functions, see Smart Card Tracking Functions.

Examples:

The following example shows locating smart cards.

// Copyright (c) Microsoft Corporation. All rights reserved.

#include <stdio.h>

#include <winscard.h>

#include <tchar.h>

#pragma comment(lib, "winscard.lib")

HRESULT __cdecl main()

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 44/129

{

HRESULT hr = S_OK;

LPTSTR szReaders, szRdr;

DWORD cchReaders = SCARD_AUTOALLOCATE;

DWORD dwI, dwRdrCount;

SCARD_READERSTATE rgscState[MAXIMUM_SMARTCARD_READERS];

TCHAR szCard[MAX_PATH];

SCARDCONTEXT hSC;

LONG lReturn;

// Establish the card to watch for.

// Multiple cards can be looked for, but

// this sample looks for only one card.

_tcscat_s (szCard, MAX_PATH * sizeof(TCHAR), TEXT("GemSAFE"));

szCard[lstrlen(szCard) + 1] = 0; // Double trailing zero.

// Establish a context.

lReturn = SCardEstablishContext(SCARD_SCOPE_USER,

 NULL,

 NULL,

 &hSC);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardEstablishContext\n");

 exit(1);

}

// Determine which readers are available.

lReturn = SCardListReaders(hSC,

 NULL,

 (LPTSTR)&szReaders,

 &cchReaders);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardListReaders\n");

 exit(1);

}

// Place the readers into the state array.

szRdr = szReaders;

for (dwI = 0; dwI < MAXIMUM_SMARTCARD_READERS; dwI++)

{

 if (0 == *szRdr)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 45/129

 break;

 rgscState[dwI].szReader = szRdr;

 rgscState[dwI].dwCurrentState = SCARD_STATE_UNAWARE;

 szRdr += lstrlen(szRdr) + 1;

}

dwRdrCount = dwI;

// If any readers are available, proceed.

if (0 != dwRdrCount)

{

 for (;;)

 {

 // Look for the card.

 lReturn = SCardLocateCards(hSC,

 szCard,

 rgscState,

 dwRdrCount);

 if (SCARD_S_SUCCESS != lReturn)

 {

 printf("Failed SCardLocateCards\n");

 exit(1);

 }

 // Look through the array of readers.

 for (dwI=0; dwI < dwRdrCount; dwI++)

 {

 if (0 != (SCARD_STATE_ATRMATCH &

 rgscState[dwI].dwEventState))

 {

 _tprintf(TEXT("Card '%s' found in reader '%s'.\n"),

 szCard,

 rgscState[dwI].szReader);

 SCardFreeMemory(hSC,

 szReaders);

 return 0; // Context will be release automatically.

 }

 // Update the state.

 rgscState[dwI].dwCurrentState = rgscState[dwI].dwEventState;

 }

 // Card not found yet; wait until there is a change.

 lReturn = SCardGetStatusChange(hSC,

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 46/129

 INFINITE, // infinite wait

 rgscState,

 dwRdrCount);

 if (SCARD_S_SUCCESS != lReturn)

 {

 printf("Failed SCardGetStatusChange\n");

 exit(1);

 }

 } // for (;;)

}

else

 printf("No readers available\n");

// Release the context.

lReturn = SCardReleaseContext(hSC);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardReleaseContext\n");

 exit(1);

}

SCardFreeMemory(hSC,

 szReaders);

return hr;

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 47/129

SCardGetStatusChange Function
The SCardGetStatusChange function blocks execution until the current availability of the
cards in a specific set of readers changes.

The caller supplies a list of readers to be monitored by an SCARD_READERSTATE array
and the maximum amount of time (in milliseconds) that it is willing to wait for an action to
occur on one of the listed readers. Note that SCardGetStatusChange uses the user-
supplied value in the dwCurrentState members of the rgReaderStates
SCARD_READERSTATE array as the definition of the current state of the readers. The
function returns when there is a change in availability, having filled in the dwEventState
members of rgReaderStates appropriately.

Syntax:

LONG WINAPI SCardGetStatusChange(

 __in SCARDCONTEXT hContext,

 __in DWORD dwTimeout,

 __inout LPSCARD_READERSTATE rgReaderStates,

 __in DWORD cReaders

);

Parameters:

hContext [in]

A handle that identifies the resource manager context. The resource manager
context is set by a previous call to the SCardEstablishContext function.

dwTimeout [in]

The maximum amount of time, in milliseconds, to wait for an action. A value of zero
causes the function to return immediately. A value of INFINITE causes this function
never to time out.

rgReaderStates [in, out]

An array of SCARD_READERSTATE structures that specify the readers to watch,
and that receives the result.

To be notified of the arrival of a new smart card reader, set the szReader member
of a SCARD_READERSTATE structure to "\\\\?PnP?\\Notification", and set all of the
other members of that structure to zero.

Important: Each member of each structure in this array must be initialized to zero
and then set to specific values as necessary. If this is not done, the function will fail
in situations that involve remote card readers.

cReaders [in]

The number of elements in the rgReaderStates array.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardGetStatusChange function is a smart card tracking function. For more information
about other tracking functions, see Smart Card Tracking Functions.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 48/129

Examples:

For information about how to call this function, see the example in SCardLocateCards.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 49/129

SCardCancel Function
The SCardCancel function terminates all outstanding actions within a specific resource
manager context.

The only requests that you can cancel are those that require waiting for external action by
the smart card or user. Any such outstanding action requests will terminate with a status
indication that the action was canceled. This is especially useful to force outstanding
SCardGetStatusChange calls to terminate.

Syntax:

LONG WINAPI SCardCancel(

 __in SCARDCONTEXT hContext

);

Parameters:

hContext [in]

Handle that identifies the resource manager context. The resource manager context
is set by a previous call to SCardEstablishContext.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardCancel function is a smart card tracking function. For a description of other
tracking functions, see Smart Card Tracking Functions.

Examples:

The following example cancels all outstanding actions in the specified context. The example
assumes that lReturn is an existing variable of type LONG and that hContext is a valid
handle received from a previous call to SCardEstablishContext.

lReturn = SCardCancel(hContext);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardCancel\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 50/129

SCardConnect Function
The SCardConnect function establishes a connection (using a specific resource manager
context) between the calling application and a smart card contained by a specific reader. If
no card exists in the specified reader, an error is returned.

Syntax:

LONG WINAPI SCardConnect(

 __in SCARDCONTEXT hContext,

 __in LPCTSTR szReader,

 __in DWORD dwShareMode,

 __in DWORD dwPreferredProtocols,

 __out LPSCARDHANDLE phCard,

 __out LPDWORD pdwActiveProtocol

);

Parameters:

hContext [in]

A handle that identifies the resource manager context. The resource manager
context is set by a previous call to SCardEstablishContext.

szReader [in]

The name of the reader that contains the target card.

dwShareMode [in]

A flag that indicates whether other applications may form connections to the card.

SCARD_SHARE_SHARED: This application is willing to share the card with other
applications.

SCARD_SHARE_EXCLUSIVE: This application is not willing to share the card with
other applications.

SCARD_SHARE_DIRECT: This application is allocating the reader for its private
use, and will be controlling it directly. No other applications are allowed access to it.

dwPreferredProtocols [in]

A bitmask of acceptable protocols for the connection. Possible values may be
combined with the OR operation.

SCARD_PROTOCOL_T0: T=0 is an acceptable protocol.

SCARD_PROTOCOL_T1: T=1 is an acceptable protocol.

0: This parameter may be zero only if dwShareMode is set to
SCARD_SHARE_DIRECT. In this case, no protocol negotiation will be performed
by the drivers until an IOCTL_SMARTCARD_SET_PROTOCOL control directive is
sent with SCardControl.

phCard [out]

A handle that identifies the connection to the smart card in the designated reader.

pdwActiveProtocol [out]

A flag that indicates the established active protocol.

SCARD_PROTOCOL_T0: T=0 is the active protocol.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 51/129

SCARD_PROTOCOL_T1: T=1 is the active protocol.

SCARD_PROTOCOL_UNDEFINED: SCARD_SHARE_DIRECT has been
specified, so that no protocol negotiation has occurred. It is possible that there is no
card in the reader.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardConnect function is a smart card and reader access function. For more
information about other access functions, see Smart Card and Reader Access Functions.

Examples:

The following example creates a connection to a reader. The example assumes that
hContext is a valid handle of type SCARDCONTEXT received from a previous call to
SCardEstablishContext.

SCARDHANDLE hCardHandle;

LONG lReturn;

DWORD dwAP;

lReturn = SCardConnect(hContext,

 (LPCTSTR)"Rainbow Technologies SCR3531 0",

 SCARD_SHARE_SHARED,

 SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1,

 &hCardHandle,

 &dwAP);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardConnect\n");

 exit(1); // Or other appropriate action.

}

// Use the connection.

// Display the active protocol.

switch (dwAP)

{

 case SCARD_PROTOCOL_T0:

 printf("Active protocol T0\n");

 break;

 case SCARD_PROTOCOL_T1:

 printf("Active protocol T1\n");

 break;

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 52/129

 case SCARD_PROTOCOL_UNDEFINED:

 default:

 printf("Active protocol unnegotiated or unknown\n");

 break;

}

// Remember to disconnect (by calling SCardDisconnect).

// ...

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 53/129

SCardReconnect Function
The SCardReconnect function reestablishes an existing connection between the calling
application and a smart card. This function moves a card handle from direct access to
general access, or acknowledges and clears an error condition that is preventing further
access to the card.

Syntax:

LONG WINAPI SCardReconnect(

 __in SCARDHANDLE hCard,

 __in DWORD dwShareMode,

 __in DWORD dwPreferredProtocols,

 __in DWORD dwInitialization,

 __out_opt LPDWORD pdwActiveProtocol

);

Parameters:

hCard [in]

Reference value obtained from a previous call to SCardConnect.

dwShareMode [in]

Flag that indicates whether other applications may form connections to this card:

SCARD_SHARE_SHARED: This application will share this card with other
applications.

SCARD_SHARE_EXCLUSIVE: This application will not share this card with other
applications.

dwPreferredProtocols [in]

Bitmask of acceptable protocols for this connection. Possible values may be
combined with the OR operation. The value of this parameter should include the
current protocol. Attempting to reconnect with a protocol other than the current
protocol will result in an error.

SCARD_PROTOCOL_T0: T=0 is an acceptable protocol.

SCARD_PROTOCOL_T1: T=1 is an acceptable protocol.

dwInitialization [in]

Type of initialization that should be performed on the card:

SCARD_LEAVE_CARD: Do not do anything special on reconnect.

SCARD_RESET_CARD: Reset the card (Warm Reset).

SCARD_UNPOWER_CARD: Power down the card and reset it (Cold Reset).

pdwActiveProtocol [out, optional]

Flag that indicates the established active protocol:

SCARD_PROTOCOL_T0: T=0 is the active protocol.

SCARD_PROTOCOL_T1: T=1 is the active protocol.

Return Value:

This function returns different values depending on whether it succeeds or fails.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 54/129

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

SCardReconnect is a smart card and reader access function. For information about other
access functions, see Smart Card and Reader Access Functions.

Examples:

The following example shows reestablishing a connection.

DWORD dwAP;

LONG lReturn;

// Reconnect.

// hCardHandle was set by a previous call to SCardConnect.

lReturn = SCardReconnect(hCardHandle,

 SCARD_SHARE_SHARED,

 SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1,

 SCARD_LEAVE_CARD,

 &dwAP);

if (SCARD_S_SUCCESS != lReturn)

printf("Failed SCardReconnect\n")

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 55/129

SCardDisconnect Function
The SCardDisconnect function terminates a connection previously opened between the
calling application and a smart card in the target reader.

Syntax:

LONG WINAPI SCardDisconnect(

 __in SCARDHANDLE hCard,

 __in DWORD dwDisposition

);

Parameters:

hCard [in]

Reference value obtained from a previous call to SCardConnect.

dwDisposition [in]

Action to take on the card in the connected reader on close:

SCARD_LEAVE_CARD: Do not do anything special.

SCARD_RESET_CARD: Reset the card.

SCARD_UNPOWER_CARD: Power down the card.

SCARD_EJECT_CARD: Eject the card.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

If an application (which previously called SCardConnect) exits without calling
SCardDisconnect, the card is automatically reset.

The SCardDisconnect function is a smart card and reader access function. For more
information on other access functions, see Smart Card and Reader Access Functions.

Examples:

The following example terminates the specified smart card connection. The example
assumes that lReturn is a variable of type LONG, and that hCardHandle is a valid handle
received from a previous call to SCardConnect.

lReturn = SCardDisconnect(hCardHandle,

 SCARD_LEAVE_CARD);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardDisconnect\n");

 exit(1); // Or other appropriate action.

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 56/129

SCardBeginTransaction Function
The SCardBeginTransaction function starts a transaction.

The function waits for the completion of all other transactions before it begins. After the
transaction starts, all other applications are blocked from accessing the smart card while the
transaction is in progress.

Syntax:

LONG WINAPI SCardBeginTransaction(

 __in SCARDHANDLE hCard

);

Parameters:

hCard [in]

A reference value obtained from a previous call to SCardConnect.

Return Value:

If the function succeeds, it returns SCARD_S_SUCCESS.

If the function fails, it returns an error code. For more information, see Smart Card Return
Values.

Note: This function returns SCARD_S_SUCCESS even if another process or thread has
reset the card. To determine whether the card has been reset, call the SCardStatus function
immediately after calling this function.

Remarks:

The SCardBeginTransaction function is a smart card and reader access function. For more
information on other access functions, see Smart Card and Reader Access Functions.

Examples:

The following example demonstrates how to begin a smart card transaction. The example
assumes that lReturn is an existing variable of type LONG and that hCard is a valid handle
received from a previous call to SCardConnect.

lReturn = SCardBeginTransaction(hCard);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardBeginTransaction\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 57/129

SCardEndTransaction Function
The SCardEndTransaction function completes a previously declared transaction, allowing
other applications to resume interactions with the card.

Syntax:

LONG WINAPI SCardEndTransaction(

 __in SCARDHANDLE hCard,

 __in DWORD dwDisposition

);

Parameters:

hCard [in]

Reference value obtained from a previous call to SCardConnect. This value would
also have been used in an earlier call to SCardBeginTransaction.

dwDisposition [in]

Action to take on the card in the connected reader on close:

SCARD_EJECT_CARD: Eject the card.

SCARD_LEAVE_CARD: Do not do anything special.

SCARD_RESET_CARD: Reset the card.

SCARD_UNPOWER_CARD: Power down the card.

Return Value:

If the function succeeds, the function returns SCARD_S_SUCCESS.

If the function fails, it returns an error code. For more information, see Smart Card Return
Values. Possible error codes follow:

SCARD_W_RESET_CARD (0x80100068L)

The transaction was released. Any future communication with the card requires a
call to the SCardReconnect function.

Windows Server 2008, Windows Vista, Windows Server 2003, Windows XP, and
Windows 2000: The transaction was not released. The application must
immediately call the SCardDisconnect, SCardReconnect, or SCardReleaseContext
function to avoid an existing transaction blocking other threads and processes from
communicating with the smart card.

Remarks:

The SCardEndTransaction function is a smart card and reader access function. For more
information on other access functions, see Smart Card and Reader Access Functions.

Examples:

The following example ends a smart card transaction. The example assumes that lReturn is
a valid variable of type LONG, that hCard is a valid handle received from a previous call to
the SCardConnect function, and that hCard was passed to a previous call to the
SCardBeginTransaction function.

lReturn = SCardEndTransaction(hCard,

 SCARD_LEAVE_CARD);

if (SCARD_S_SUCCESS != lReturn)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 58/129

 printf("Failed SCardEndTransaction\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 59/129

SCardStatus Function
The SCardStatus function provides the current status of a smart card in a reader. You can
call it any time after a successful call to SCardConnect and before a successful call to
SCardDisconnect. It does not affect the state of the reader or reader driver.

Syntax:

LONG WINAPI SCardStatus(

 __in SCARDHANDLE hCard,

 __out LPTSTR szReaderName,

 __inout_opt LPDWORD pcchReaderLen,

 __out_opt LPDWORD pdwState,

 __out_opt LPDWORD pdwProtocol,

 __out LPBYTE pbAtr,

 __inout_opt LPDWORD pcbAtrLen

);

Parameters:

hCard [in]

Reference value returned from SCardConnect.

szReaderName [out]

List of display names (multiple string) by which the currently connected reader is
known.

pcchReaderLen [in, out, optional]

On input, supplies the length of the szReaderName buffer.

On output, receives the actual length (in characters) of the reader name list,
including the trailing NULL character. If this buffer length is specified as
SCARD_AUTOALLOCATE, then szReaderName is converted to a pointer to a byte
pointer, and it receives the address of a block of memory that contains the multiple-
string structure.

pdwState [out, optional]

Current state of the smart card in the reader. Upon success, it receives one of the
following state indicators:

SCARD_ABSENT: There is no card in the reader.

SCARD_PRESENT: There is a card in the reader, but it has not been moved into
position for use.

SCARD_SWALLOWED: There is a card in the reader in position for use. The card
is not powered.

SCARD_POWERED: Power is being provided to the card, but the reader driver is
unaware of the mode of the card.

SCARD_NEGOTIABLE: The card has been reset and is awaiting PTS negotiation.

SCARD_SPECIFIC: The card has been reset and specific communication
protocols have been established.

pdwProtocol [out, optional]

Current protocol, if any. The returned value is meaningful only if the returned value

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 60/129

of pdwState is SCARD_SPECIFICMODE:

SCARD_PROTOCOL_RAW: The Raw Transfer protocol is in use.

SCARD_PROTOCOL_T0: The ISO 7816/3 T=0 protocol is in use.

SCARD_PROTOCOL_T1: The ISO 7816/3 T=1 protocol is in use.

pbAtr [out]

Pointer to a 32-byte buffer that receives the ATR string from the currently inserted
card, if available.

pcbAtrLen [in, out, optional]

On input, supplies the length of the pbAtr buffer.

On output, receives the number of bytes in the ATR string (32 bytes maximum). If
this buffer length is specified as SCARD_AUTOALLOCATE, then pbAtr is converted
to a pointer to a byte pointer, and it receives the address of a block of memory that
contains the multiple-string structure.

Return Value:

If the function successfully provides the current status of a smart card in a reader, the return
value is SCARD_S_SUCCESS.

If the function fails, it returns an error code. For more information, see Smart Card Return
Values.

Remarks:

The szReaderName function is a smart card and reader access function. For information
about other access functions, see Smart Card and Reader Access Functions.

Examples:

The following example shows how to determine the state of the smart card.

WCHAR szReader[200];

DWORD cch = 200;

BYTE bAttr[32];

DWORD cByte = 32;

DWORD dwState, dwProtocol;

LONG lReturn;

// Determine the status.

// hCardHandle was set by an earlier call to SCardConnect.

lReturn = SCardStatus(hCardHandle,

 szReader,

 &cch,

 &dwState,

 &dwProtocol,

 (LPBYTE)&bAttr,

 &cByte);

if (SCARD_S_SUCCESS != lReturn)

{

 printf("Failed SCardStatus\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 61/129

 exit(1); // or other appropriate action

}

// Examine retrieved status elements.

// Look at the reader name and card state.

printf("%S\n", szReader);

switch (dwState)

{

 case SCARD_ABSENT:

 printf("Card absent.\n");

 break;

 case SCARD_PRESENT:

 printf("Card present.\n");

 break;

 case SCARD_SWALLOWED:

 printf("Card swallowed.\n");

 break;

 case SCARD_POWERED:

 printf("Card has power.\n");

 break;

 case SCARD_NEGOTIABLE:

 printf("Card reset and waiting PTS negotiation.\n");

 break;

 case SCARD_SPECIFIC:

 printf("Card has specific communication protocols set.\n");

 break;

 default:

 printf("Unknown or unexpected card state.\n");

 break;

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 62/129

SCardTransmit Function
The SCardTransmit function sends a service request to the smart card and expects to
receive data back from the card.

Syntax:

LONG WINAPI SCardTransmit(

 __in SCARDHANDLE hCard,

 __in LPCSCARD_IO_REQUEST pioSendPci,

 __in LPCBYTE pbSendBuffer,

 __in DWORD cbSendLength,

 __inout_opt LPSCARD_IO_REQUEST pioRecvPci,

 __out LPBYTE pbRecvBuffer,

 __inout LPDWORD pcbRecvLength

);

Parameters:

hCard [in]

A reference value returned from the SCardConnect function.

pioSendPci [in]

A pointer to the protocol header structure for the instruction. This buffer is in the
format of an SCARD_IO_REQUEST structure, followed by the specific protocol
control information (PCI).

For the T=0, T=1, and Raw protocols, the PCI structure is constant. The smart card
subsystem supplies a global T=0, T=1, or Raw PCI structure, which you can
reference by using the symbols SCARD_PCI_T0, SCARD_PCI_T1, and
SCARD_PCI_RAW respectively.

pbSendBuffer [in]

A pointer to the actual data to be written to the card.

For T=0, the data parameters are placed into the address pointed to by
pbSendBuffer according to the following structure:

struct {

 BYTE

 bCla, // the instruction class

 bIns, // the instruction code

 bP1, // parameter to the instruction

 bP2, // parameter to the instruction

 bP3; // size of I/O transfer

} CmdBytes;

The data sent to the card should immediately follow the send buffer. In the special
case where no data is sent to the card and no data is expected in return, bP3 is not
sent.

 Member Meaning:

bCla The T=0 instruction class.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 63/129

bIns An instruction code in the T=0 instruction class.

bP1, bP2 Reference codes that complete the instruction code.

bP3 The number of data bytes to be transmitted during the command, per ISO
7816-4, Section 8.2.1.

cbSendLength [in]

The length, in bytes, of the pbSendBuffer parameter.

For T=0, in the special case where no data is sent to the card and no data expected
in return, this length must reflect that the bP3 member is not being sent; the length
should be sizeof(CmdBytes) - sizeof(BYTE).

pioRecvPci [in, out, optional]

Pointer to the protocol header structure for the instruction, followed by a buffer in
which to receive any returned protocol control information (PCI) specific to the
protocol in use. This parameter can be NULL if no PCI is returned.

pbRecvBuffer [out]

Pointer to any data returned from the card.

For T=0, the data is immediately followed by the SW1 and SW2 status bytes. If no
data is returned from the card, then this buffer will only contain the SW1 and SW2
status bytes.

pcbRecvLength [in, out]

Supplies the length, in bytes, of the pbRecvBuffer parameter and receives the
actual number of bytes received from the smart card. This value cannot be
SCARD_AUTOALLOCATE because SCardTransmit does not support
SCARD_AUTOALLOCATE.

For T=0, the receive buffer must be at least two bytes long to receive the SW1 and
SW2 status bytes.

Return Value:

If the function successfully sends a service request to the smart card, the return value is
SCARD_S_SUCCESS.

If the function fails, it returns an error code. For more information, see Smart Card Return
Values.

Remarks:

The SCardTransmit function is a smart card and reader access function. For information
about other access functions, see Smart Card and Reader Access Functions.

For the T=0 protocol, the data received back are the SW1 and SW2 status codes, possibly
preceded by response data. The following paragraphs provide information about the send
and receive buffers used to transfer data and issue a command.

Sending data to the card :

To send n bytes of data to the card, where n>0, the send and receive buffers must
be formatted as follows.

The first four bytes of the pbSendBuffer buffer contain the CLA, INS, P1, and P2
values for the T=0 operation. The fifth byte must be set to n: the size, in bytes, of
the data to be transferred to the card. The next n bytes must contain the data to be
sent to the card.

The cbSendLength parameter must be set to the size of the T=0 header information
(CLA, INS, P1, and P2) plus a byte that contains the length of the data to be

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 64/129

transferred (n), plus the size of data to be sent. In this example, this is n+5.

The pbRecvBuffer will receive the SW1 and SW2 status codes from the operation.

The pcbRecvLength should be at least two and will be set to two upon return.

Retrieving data from the card:

To receive n>0 bytes of data from the card, the send and receive buffers must be
formatted as follows.

The first four bytes of the pbSendBuffer buffer contain the CLA, INS, P1, and P2
values for the T=0 operation. The fifth byte must be set to n: the size, in bytes, of
the data to be transferred from the card. If 256 bytes are to be transferred from the
card, then this byte must be set to zero.

The cbSendLength parameter must be set to five, the size of the T=0 header
information.

The pbRecvBuffer will receive the data returned from the card, immediately followed
by the SW1 and SW2 status codes from the operation.

The pcbRecvLength should be at least n+2 and will be set to n+2 upon return.

Issuing a command without exchanging data:

To issue a command to the card that does not involve the exchange of data (either
sent or received), the send and receive buffers must be formatted as follows.

The pbSendBuffer buffer must contain the CLA, INS, P1, and P2 values for the T=0
operation. The P3 value is not sent. (This is to differentiate the header from the
case where 256 bytes are expected to be returned.)

The cbSendLength parameter must be set to four, the size of the T=0 header
information (CLA, INS, P1, and P2).

The pbRecvBuffer will receive the SW1 and SW2 status codes from the operation.

The pcbRecvLength should be at least two and will be set to two upon return.

Examples:

The following example shows sending a service request to the smart card.

// Transmit the request.

// lReturn is of type LONG.

// hCardHandle was set by a previous call to SCardConnect.

// pbSend points to the buffer of bytes to send.

// dwSend is the DWORD value for the number of bytes to send.

// pbRecv points to the buffer for returned bytes.

// dwRecv is the DWORD value for the number of returned bytes.

lReturn = SCardTransmit(hCardHandle,

 SCARD_PCI_T0,

 pbSend,

 dwSend,

 NULL,

 pbRecv,

 &dwRecv);

if (SCARD_S_SUCCESS != lReturn)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 65/129

{

 printf("Failed SCardTransmit\n");

 exit(1); // or other appropriate error action

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 66/129

SCardControl Function
The SCardControl function gives you direct control of the reader. You can call it any time
after a successful call to SCardConnect and before a successful call to SCardDisconnect.
The effect on the state of the reader depends on the control code.

Syntax:

LONG WINAPI SCardControl(

 __in SCARDHANDLE hCard,

 __in DWORD dwControlCode,

 __in LPCVOID lpInBuffer,

 __in DWORD nInBufferSize,

 __out LPVOID lpOutBuffer,

 __in DWORD nOutBufferSize,

 __out LPDWORD lpBytesReturned

);

Parameters:

hCard [in]

Reference value returned from SCardConnect.

dwControlCode [in]

Control code for the operation. This value identifies the specific operation to be
performed.

lpInBuffer [in]

Pointer to a buffer that contains the data required to perform the operation. This
parameter can be NULL if the dwControlCode parameter specifies an operation that
does not require input data.

nInBufferSize [in]

Size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer [out]

Pointer to a buffer that receives the operation's output data. This parameter can be
NULL if the dwControlCode parameter specifies an operation that does not produce
output data.

nOutBufferSize [in]

Size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned [out]

Pointer to a DWORD that receives the size, in bytes, of the data stored into the
buffer pointed to by lpOutBuffer.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 67/129

The SCardControl function is a direct card access function. For more information on other
direct access functions, see Direct Card Access Functions.

Examples:

The following example issues a control code. The example assumes that hCardHandle is a
valid handle received from a previous call to SCardConnect and that dwControlCode is a
variable of type DWORD previously initialized to a valid control code. This particular control
code requires no input data and expects no output data.

lReturn = SCardControl(hCardHandle,

 dwControlCode,

 NULL,

 0,

 NULL,

 0,

 0);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardControl\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 68/129

SCardGetAttrib Function
The SCardGetAttrib function retrieves the current reader attributes for the given handle. It
does not affect the state of the reader, driver, or card.

Syntax:

LONG WINAPI SCardGetAttrib(

 __in SCARDHANDLE hCard,

 __in DWORD dwAttrId,

 __out LPBYTE pbAttr,

 __inout LPDWORD pcbAttrLen

);

Parameters:

hCard [in]

Reference value returned from SCardConnect.

dwAttrId [in]

Identifier for the attribute to get. The following table lists possible values for
dwAttrId. These values are read-only. Note that vendors may not support all
attributes:

SCARD_ATTR_ATR_STRING: Answer to reset (ATR) string.

SCARD_ATTR_CHANNEL_ID: DWORD encoded as 0xDDDDCCCC, where
DDDD = data channel type and CCCC = channel number:

The following encodings are defined for DDDD:

0x01 serial I/O; CCCC is a port number.

0x02 parallel I/O; CCCC is a port number.

0x04 PS/2 keyboard port; CCCC is zero.

0x08 SCSI; CCCC is SCSI ID number.

0x10 IDE; CCCC is device number.

0x20 USB; CCCC is device number.

0xFy vendor-defined interface with y in the range zero through 15; CCCC is
vendor defined.

SCARD_ATTR_CHARACTERISTICS: DWORD indicating which mechanical
characteristics are supported. If zero, no special characteristics are supported. Note
that multiple bits can be set:

0x00000001 Card swallowing mechanism

0x00000002 Card ejection mechanism

0x00000004 Card capture mechanism

All other values are reserved for future use (RFU).

SCARD_ATTR_CURRENT_BWT: Current block waiting time.

SCARD_ATTR_CURRENT_CLK: Current clock rate, in kHz.

SCARD_ATTR_CURRENT_CWT: Current character waiting time.

SCARD_ATTR_CURRENT_D: Bit rate conversion factor.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 69/129

SCARD_ATTR_CURRENT_EBC_ENCODING: Current error block control
encoding.

0 = longitudinal redundancy check (LRC)

1 = cyclical redundancy check (CRC)

SCARD_ATTR_CURRENT_F: Clock conversion factor.

SCARD_ATTR_CURRENT_IFSC: Current byte size for information field size card.

SCARD_ATTR_CURRENT_IFSD: Current byte size for information field size
device.

SCARD_ATTR_CURRENT_N: Current guard time.

SCARD_ATTR_CURRENT_PROTOCOL_TYPE: DWORD encoded as 0x0rrrpppp
where rrr is RFU and should be 0x000. pppp encodes the current protocol type.
Whichever bit has been set indicates which ISO protocol is currently in use. (For
example, if bit zero is set, T=0 protocol is in effect.)

SCARD_ATTR_CURRENT_W: Current work waiting time.

SCARD_ATTR_DEFAULT_CLK: Default clock rate, in kHz.

SCARD_ATTR_DEFAULT_DATA_RATE: Default data rate, in bps.

SCARD_ATTR_DEVICE_FRIENDLY_NAME: Reader's display name.

SCARD_ATTR_DEVICE_IN_USE: Reserved for future use.

SCARD_ATTR_DEVICE_SYSTEM_NAME: Reader's system name.

SCARD_ATTR_DEVICE_UNIT: Instance of this vendor's reader attached to the
computer. The first instance will be device unit 0, the next will be unit 1 (if it is the
same brand of reader) and so on. Two different brands of readers will both have
zero for this value.

SCARD_ATTR_ICC_INTERFACE_STATUS: Single byte. Zero if smart card
electrical contact is not active; nonzero if contact is active.

SCARD_ATTR_ICC_PRESENCE: Single byte indicating smart card presence:

0 = not present

1 = card present but not swallowed (applies only if reader supports smart
card swallowing)

2 = card present (and swallowed if reader supports smart card swallowing)

4 = card confiscated.

SCARD_ATTR_ICC_TYPE_PER_ATR: Single byte indicating smart card type:

0 = unknown type

1 = 7816 Asynchronous

2 = 7816 Synchronous

Other values RFU.

SCARD_ATTR_MAX_CLK: Maximum clock rate, in kHz.

SCARD_ATTR_MAX_DATA_RATE: Maximum data rate, in bps.

SCARD_ATTR_MAX_IFSD: Maximum bytes for information file size device.

SCARD_ATTR_POWER_MGMT_SUPPORT: Zero if device does not support
power down while smart card is inserted. Nonzero otherwise.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 70/129

SCARD_ATTR_PROTOCOL_TYPES: DWORD encoded as 0x0rrrpppp where rrr is
RFU and should be 0x000. pppp encodes the supported protocol types. A '1' in a
given bit position indicates support for the associated ISO protocol, so if bits zero
and one are set, both T=0 and T=1 protocols are supported.

SCARD_ATTR_VENDOR_IFD_SERIAL_NO: Vendor-supplied interface device
serial number.

SCARD_ATTR_VENDOR_IFD_TYPE: Vendor-supplied interface device type
(model designation of reader).

SCARD_ATTR_VENDOR_IFD_VERSION: Vendor-supplied interface device
version (DWORD in the form 0xMMmmbbbb where MM = major version, mm =
minor version, and bbbb = build number).

SCARD_ATTR_VENDOR_NAME: Vendor name.

pbAttr [out]

Pointer to a buffer that receives the attribute whose ID is supplied in dwAttrId. If this
value is NULL, SCardGetAttrib ignores the buffer length supplied in pcbAttrLen,
writes the length of the buffer that would have been returned if this parameter had
not been NULL to pcbAttrLen, and returns a success code.

pcbAttrLen [in, out]

Length of the pbAttr buffer in bytes, and receives the actual length of the received
attribute If the buffer length is specified as SCARD_AUTOALLOCATE, then pbAttr
is converted to a pointer to a byte pointer, and receives the address of a block of
memory containing the attribute. This block of memory must be deallocated with
SCardFreeMemory.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Attribute value not supported: ERROR_NOT_SUPPORTED.

Other Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardGetAttrib function is a direct card access function. For more information on other
direct access functions, see Direct Card Access Functions.

Examples:

The following example shows how to retrieve an attribute for a card reader. The example
assumes that hCardHandle is a valid handle obtained from a previous call to the
SCardConnect function.

LPBYTE pbAttr = NULL;

DWORD cByte = SCARD_AUTOALLOCATE;

DWORD i;

LONG lReturn;

lReturn = SCardGetAttrib(hCardHandle,

 SCARD_ATTR_VENDOR_NAME,

 (LPBYTE)&pbAttr,

 &cByte);

if (SCARD_S_SUCCESS != lReturn)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 71/129

{

 if (ERROR_NOT_SUPPORTED == lReturn)

 printf("Value not supported\n");

 else

 {

 // Some other error occurred.

 printf("Failed SCardGetAttrib - %x\n", lReturn);

 exit(1); // Or other appropriate action

 }

}

else

{

 // Output the bytes.

 for (i = 0; i < cByte; i++)

 printf("%c", *(pbAttr+i));

 printf("\n");

 // Free the memory when done.

 // hContext was set earlier by SCardEstablishContext

 lReturn = SCardFreeMemory(hContext, pbAttr);

}

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 72/129

SCardSetAttrib Function
The SCardSetAttrib function sets the given reader attribute for the given handle. It does not
affect the state of the reader, reader driver, or smart card. Not all attributes are supported by
all readers (nor can they be set at all times) as many of the attributes are under direct
control of the transport protocol.

Syntax:

LONG WINAPI SCardSetAttrib(

 __in SCARDHANDLE hCard,

 __in DWORD dwAttrId,

 __in LPCBYTE pbAttr,

 __in DWORD cbAttrLen

);

Parameters:

hCard [in]

Reference value returned from SCardConnect.

dwAttrId [in]

Identifier for the attribute to set. The values are write-only. Note that vendors may
not support all attributes:

SCARD_ATTR_SUPRESS_T1_IFS_REQUEST: Suppress sending of T=1 IFSD
packet from the reader to the card. (Can be used if the currently inserted card does
not support an IFSD request.)

pbAttr [in]

Pointer to a buffer that supplies the attribute whose ID is supplied in dwAttrId.

cbAttrLen [in]

Length (in bytes) of the attribute value in the pbAttr buffer.

Return Value:

This function returns different values depending on whether it succeeds or fails:

Success: SCARD_S_SUCCESS.

Failure: An error code. For more information, see Smart Card Return Values.

Remarks:

The SCardSetAttrib function is a direct card access function. For information about other
direct access functions, see Direct Card Access Functions.

Examples:

The following example shows how to set an attribute.

// Set the attribute.

// hCardHandle was set by a previous call to SCardConnect.

// dwAttrID is a DWORD value, specifying the attribute ID.

// pbAttr points to the buffer of the new value.

// cByte is the count of bytes in the buffer.

lReturn = SCardSetAttrib(hCardHandle,

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 73/129

 dwAttrID,

 (LPBYTE)pbAttr,

 cByte);

if (SCARD_S_SUCCESS != lReturn)

 printf("Failed SCardSetAttrib\n");

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 74/129

SCard Return Values
Smart Card Functions return the following return values. These return values are defined in
Scarderr.h.

Note: Some return values may have the same value as existing Windows return values that
signify a similar condition.

Error Code Hexadecimal
value

Description

SCARD_F_INTERNAL_ERROR 0x80100001 An internal consistency check
failed

SCARD_E_CANCELLED 0x80100002 The action was cancelled by a
SCardCancel request

SCARD_E_INVALID_HANDLE 0x80100003 The supplied handle was invalid

SCARD_E_INVALID_PARAMETER 0x80100004 One or more of the supplied
parameters could not be
properly interpreted

SCARD_E_INVALID_TARGET 0x80100005 Registry startup information is
missing or invalid

SCARD_E_NO_MEMORY 0x80100006 Not enough memory available to
complete this command

SCARD_F_WAITED_TOO_LONG 0x80100007 An internal consistency timer
has expired

SCARD_E_INSUFFICIENT_BUFFER 0x80100008 The data buffer to receive
returned data is too small for the
returned data

SCARD_E_UNKNOWN_READER 0x80100009 The specified reader name is
not recognized

SCARD_E_TIMEOUT 0x8010000A The user-specified timeout value
has expired

SCARD_E_SHARING_VIOLATION 0x8010000B The smart card cannot be
accessed because of other
connections outstanding

SCARD_E_NO_SMARTCARD 0x8010000C The operation requires a smart
card, but no smart card is
currently in the device

SCARD_E_UNKNOWN_CARD 0x8010000D The specified smart card name
is not recognized

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 75/129

SCARD_E_CANT_DISPOSE 0x8010000E The system could not dispose of
the media in the requested
manner

SCARD_E_PROTO_MISMATCH 0x8010000F The requested protocols are
incompatible with the protocol
currently in use with the smart
card

SCARD_E_NOT_READY 0x80100010 The reader or smart card is not
ready to accept commands

SCARD_E_INVALID_VALUE 0x80100011 One or more of the supplied
parameters values could not be
properly interpreted

SCARD_E_SYSTEM_CANCELLED 0x80100012 The action was cancelled by the
system, presumably to log off or
shut down

SCARD_F_COMM_ERROR 0x80100013 An internal communications
error has been detected

SCARD_F_UNKNOWN_ERROR 0x80100014 An internal error has been
detected, but the source is
unknown

SCARD_E_INVALID_ATR 0x80100015 An ATR obtained from the
registry is not a valid ATR string

SCARD_E_NOT_TRANSACTED 0x80100016 An attempt was made to end a
non-existent transaction

SCARD_E_READER_UNAVAILABLE 0x80100017 The specified reader is not
currently available for use

SCARD_P_SHUTDOWN 0x80100018 The operation has been aborted
to allow the server application to
exit

SCARD_E_PCI_TOO_SMALL 0x80100019 The PCI Receive buffer was too
small

SCARD_E_READER_UNSUPPORTED 0x8010001A The reader driver does not meet
minimal requirements for
support

SCARD_E_DUPLICATE_READER 0x8010001B The reader driver did not
produce a unique reader name

SCARD_E_CARD_UNSUPPORTED 0x8010001C The smart card does not meet

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 76/129

minimal requirements for
support

SCARD_E_NO_SERVICE 0x8010001D The Smart Card Resource
Manager is not running

SCARD_E_SERVICE_STOPPED 0x8010001E The Smart Card Resource
Manager has shut down

SCARD_E_UNEXPECTED 0x8010001F An unexpected card error has
occurred

SCARD_E_ICC_INSTALLATION 0x80100020 No primary provider can be
found for the smart card

SCARD_E_ICC_CREATEORDER 0x80100021 The requested order of object
creation is not supported.

SCARD_E_UNSUPPORTED_FEATURE 0x80100022 This smart card does not
support the requested feature

SCARD_E_DIR_NOT_FOUND 0x80100023 The identified directory does not
exist in the smart card

SCARD_E_FILE_NOT_FOUND 0x80100024 The identified file does not exist
in the smart card

SCARD_E_NO_DIR 0x80100025 The supplied path does not
represent a smart card directory

SCARD_E_NO_FILE 0x80100026 The supplied path does not
represent a smart card file

SCARD_E_NO_ACCESS 0x80100027 Access is denied to this file

SCARD_E_WRITE_TOO_MANY 0x80100028 The smart card does not have
enough memory to store the
information

SCARD_E_BAD_SEEK 0x80100029 There was an error trying to set
the smart card file object pointer

SCARD_E_INVALID_CHV 0x8010002A The supplied PIN is incorrect

SCARD_E_UNKNOWN_RES_MNG 0x8010002B An unrecognized error code was
returned from a layered
component

SCARD_E_NO_SUCH_CERTIFICATE 0x8010002C The requested certificate does
not exist

SCARD_E_CERTIFICATE_UNAVAILABLE 0x8010002D The requested certificate could

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 77/129

not be obtained

SCARD_E_NO_READERS_AVAILABLE 0x8010002E Cannot find a smart card reader

SCARD_E_COMM_DATA_LOST 0x8010002F A communications error with the
smart card has been detected.
Retry the operation

SCARD_E_NO_KEY_CONTAINER 0x80100030L The requested key container
does not exist on the smart card

SCARD_E_SERVER_TOO_BUSY 0x80100031 The Smart Card Resource
Manager is too busy to complete
this operation

SCARD_W_UNSUPPORTED_CARD 0x80100065 The reader cannot communicate
with the card, due to ATR string
configuration conflicts

SCARD_W_UNRESPONSIVE_CARD 0x80100066 The smart card is not
responding to a reset

SCARD_W_UNPOWERED_CARD 0x80100067L Power has been removed from
the smart card, so that further
communication is not possible

SCARD_W_RESET_CARD 0x80100068 The smart card has been reset,
so any shared state information
is invalid

SCARD_W_REMOVED_CARD 0x80100069 The smart card has been
removed, so further
communication is not possible

SCARD_W_SECURITY_VIOLATION 0x8010006A Access was denied because of
a security violation

SCARD_W_WRONG_CHV 0x8010006B The card cannot be accessed
because the wrong PIN was
presented

SCARD_W_CHV_BLOCKED 0x8010006C The card cannot be accessed
because the maximum number
of PIN entry attempts has been
reached

SCARD_W_EOF 0x8010006D The end of the smart card file
has been reached

SCARD_W_CANCELLED_BY_USER 0x8010006E The action was cancelled by the
user

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 78/129

SCARD_W_CARD_NOT_AUTHENTICATED 0x8010006F No PIN was presented to the
smart card

Table 9 – SCard return values

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 79/129

Linux WinSCard API

The Linux WinSCard API is similar to the Microsoft Windows API with the following
exception:

SCardStatus()

SCardStatus() returns a bit field on pcsc-lite but a enumeration on Windows.

This difference may be resolved in a future version of pcsc-lite. The bit-fields would
then only contain one bit set.

You can have a portable code using:

 if (dwState & SCARD_PRESENT)

 {

 // card is present

 }

SCARD_E_UNSUPPORTED_FEATURE

Windows may return ERROR_NOT_SUPPORTED instead of
SCARD_E_UNSUPPORTED_FEATURE

This difference will not be corrected. pcsc-lite only uses SCARD_E_* error codes.

SCARD_E_UNSUPPORTED_FEATURE

For historical reasons the value of SCARD_E_UNSUPPORTED_FEATURE is
0x8010001F in pcsc-lite but 0x80100022 in Windows WinSCard. You should not
have any problem if you always use the symbolic name.

The value 0x8010001F is also used by SCARD_E_UNEXPECTED on pcsc-lite but
SCARD_E_UNEXPECTED is never returned by pcsc-lite. So 0x8010001F does
always means SCARD_E_UNSUPPORTED_FEATURE.

Applications like rdekstop that allow a Windows application to talk to pcsc-lite
should take care of this difference and convert the value between the two worlds.

SCardConnect()

If SCARD_SHARE_DIRECT is used the reader is accessed in shared mode (like
with SCARD_SHARE_SHARED) and not in exclusive mode (like with
SCARD_SHARE_EXCLUSIVE) as on Windows.

SCardEstablishContext()

Each thread of an application shall use its own SCARDCONTEXT. SCardCancel()
is the only exception to the rule. On Windows the same SCARDCONTEXT can be
shared by different threads of same application.

The next functions are available:

SCardEstablishContext Creates an Application Context for a client.
SCardReleaseContext Destroys a communication context to the PC/SC Resource

Manager.
SCardIsValidContext Check if a SCARDCONTEXT is valid.
SCardConnect Establishes a connection to the reader specified in *

szReader.
SCardReconnect Reestablishes a connection to a reader that was previously

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 80/129

connected to using SCardConnect().
SCardDisconnect Terminates a connection made through SCardConnect().
SCardBeginTransaction Establishes a temporary exclusive access mode for doing a

serie of commands in a transaction.
SCardEndTransaction Ends a previously begun transaction.
SCardStatus Returns the current status of the reader connected to by

hCard.
SCardGetStatusChange
SCardControl Sends a command directly to the IFD Handler (reader driver)

to be processed by the reader.
SCardTransmit Sends an APDU to the smart card contained in the reader

connected to by SCardConnect().
SCardListReaderGroups Returns a list of currently available reader groups on the

system.
SCardListReaders This function returns a list of currently available readers on

the system.
SCardFreeMemory Releases memory that has been returned from the resource

manager using the SCARD_AUTOALLOCATE length
designator.

SCardCancel This function cancels all pending blocking requests on the
SCardGetStatusChange() function.

SCardGetAttrib Get an attribute from the IFD Handler (reader driver).
SCardSetAttrib Set an attribute of the IFD Handler.

Table 10 – Linux WinSCard Functions

For more information, please refer to the pcsc-lite website: http://pcsclite.alioth.debian.org.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 81/129

Prox–DU and Prox–SU reader name
The Prox–DU and the Prox–SU devices will be recognized using their PC/SC name.

The string name depends on the operating system.

Windows operating systems
The name will comply with the following string format:

• “Gemalto Prox-DU Contactless_xxxxxxxx N1” for the Prox–DU contactless interface

• “Gemalto Prox-DU Contact_xxxxxxxx N2” for the Prox–DU contact interface

• “Gemalto Prox-SU Contactless_yyyyyyyy N3” for the Prox–SU contactless interface

• “Gemalto Prox-SU Contact_yyyyyyyy N4” for the Prox–SU contact interface

N1, N2, N3, N4 are numbers delivered by the computer. xxxxxxxx or yyyyyyyy is the 8-byte
reader/writer’s serial number printed on the label located on the rear cabinet.

The next figure displays the name for one Prox–DU connected to the computer:

Figure 2 – Prox–DU PC/SC name (Windows)

The next figure displays the name for one Prox–SU connected to the computer:

Figure 3 – Prox–SU PC/SC name (Windows)

The next figure displays the name for one Prox–DU and one Prox–SU both connected to the
computer:

Figure 4 – Prox–DU and Prox–SU PC/SC names (Windows)

The next figure displays the name for two Prox–DU devices both connected to the
computer:

Figure 5 – Two Prox–DU PC/SC names (Windows)

Gemalto Prox-DU Contactless_xxxxxxxx 0

Gemalto Prox-DU Contact_xxxxxxxx 1

Gemalto Prox-SU Contactless_xxxxxxxx 0

Gemalto Prox-SU Contact_xxxxxxxx 1

Gemalto Prox-DU Contactless_xxxxxxxx 0

Gemalto Prox-DU Contact_xxxxxxxx 1

Gemalto Prox-SU Contactless_yyyyyyyy 2

Gemalto Prox-SU Contact_yyyyyyyy 3

Gemalto Prox-DU Contactless_xxxxxxxx 0

Gemalto Prox-DU Contact_xxxxxxxx 1

Gemalto Prox-DU Contactless_yyyyyyyy 2

Gemalto Prox-DU Contact_yyyyyyyy 3

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 82/129

The two first names belong to the first Prox–DU device. The two next names belong to the
second Prox–DU device.

Note: The application should use the name of the device for connecting the appropriate
smart card interface.

Linux and Mac OS X operating systems
The name will comply with the following string format:

• “Gemalto Prox-DU (xxxxxxxx) N1 00” for the Prox–DU contactless interface

• “Gemalto Prox-DU (xxxxxxxx) N1 01” for the Prox–DU contact interface

• “Gemalto Prox-SU (yyyyyyyy) N2 00” for the Prox–SU contactless interface

• “Gemalto Prox-SU (yyyyyyyy) N2 01” for the Prox–SU contact interface

N1, N2 are numbers delivered by the computer. xxxxxxxx or yyyyyyyy is the 8-byte
reader/writer’s serial number printed on the label located on the rear cabinet.

The next figure displays the name for one Prox–DU connected to the computer:

Figure 6 – Prox–DU PC/SC name (Linux)

The next figure displays the name for one Prox–SU connected to the computer:

Figure 7 – Prox–SU PC/SC name (Linux)

The next figure displays the name for one Prox–DU and one Prox–SU both connected to the
computer:

Figure 8 – Prox–DU and Prox–SU PC/SC names (Linux)

The next figure displays the name for two Prox–DU devices both connected to the
computer:

Figure 9 – Two Prox–DU PC/SC names (Linux)

The two first names belong to the first Prox–DU device. The two next names belong to the

Gemalto Prox-DU (xxxxxxxx) 00 00

Gemalto Prox-DU (xxxxxxxx) 00 01

Gemalto Prox-SU (xxxxxxxx) 00 00

Gemalto Prox-SU (xxxxxxxx) 00 01

Gemalto Prox-DU (xxxxxxxx) 00 00

Gemalto Prox-DU (xxxxxxxx) 00 01

Gemalto Prox-SU (yyyyyyyy) 01 00

Gemalto Prox-SU (yyyyyyyy) 01 01

Gemalto Prox-DU (xxxxxxxx) 00 00

Gemalto Prox-DU (xxxxxxxx) 00 01

Gemalto Prox-DU (yyyyyyyy) 01 00

Gemalto Prox-DU (yyyyyyyy) 01 01

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 83/129

second Prox–DU device.

Note: The application should use the name of the device for connecting the appropriate
smart card interface.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 84/129

Gem_PC/SC software tool
The Gemalto Gem_PCSC tool may help to become familiar with the PC/SC environment:

Figure 10 – Gem_PCSC window

The Gemalto Gem_PCSC tool can be used to easily evaluate the Prox–DU and the Prox–
SU in the PC/SC environment with a Windows based operating system.

In the example below the read of the memory block number 0 of a Mifare® 1K smart card will
be performed:

1. The contactless reader is selected

2. The Mifare® 1K is connected

3. Then the block number 0 is authenticated and read

4. The smart card is disconnected

5. The reader is deselected

The Gem_PCSC tool is available for download in the Gemalto support website:
http://support.gemalto.com.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 85/129

Playing with PC/SC
After the Gem_PCSC installation run the Gem_PCSC tool. The next window will be
displayed:

Figure 11 – Gem_PCSC window at start up

The main window displays the available PC/SC commands. The Gem_PCSC.phb small
window is used to display the current commands stored by the user.

1- Click the “SCardEstablishContext” button to have the list of all the available PC/SC
devices.
The next window will be displayed:

Figure 12 – Gem_PCSC window after “SCardEstablishContext”

2- Perform the following operations to start a communication with the smart card:

• Put a Mifare® 1K contactless smart card in front of the landing zone of the reader
• In the “Reader Name” box select the contactless interface of the Prox-DU named

“Gemalto Prox-DU Contactless_xxxxxxxx 0” (xxxxxxxx is the reader serial
number printed on the label located in the rear of the casing)

• Click the “SCardConnect” button

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 86/129

The next window will be displayed:

Figure 13 – Gem_PCSC window after “SCardConnect”

The ATR of the smart card will be displayed: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00
01 00 00 00 00 6A corresponding to a Mifare® 1K smart card.

3- Define the Mifare® commands to be used:

3-a First authenticate the block number 0:

• In the “Command Name” box type the following smart card command:
o “GeneralAuthenticateBlock0”

• In the field below type the corresponding APDU command (according to PC/SC V2
specification)

o “FF 86 00 00 05 01 00 00 60 00“
o Meaning “Authenticate block number 0 using the Key A number 0”

• Click the “SCardTransmit” button

The next window will be displayed:

Figure 14 – Gem_PCSC window after “SCardTransmit” the Authentication command

The smart card response is displayed:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 87/129

• 90 00 if the command was correctly processed
• Else an error status code

3-b Then read the block number 0:

• In the “Command Name” box type the following smart card command:
o “ReadBlock0”

• In the field below type the corresponding APDU command (according to PC/SC V2
specification)

o “FF B0 00 00 10“
o Meaning “Read block number 0 – 16 bytes”

• Click the “SCardTransmit” button

The next window will be displayed:

Figure 15 – Gem_PCSC window after “SCardTransmit” the Read command

The smart card response is displayed:

• 20 22 6E 03 6F 08 04 00 43 3F 00 00 32 31 39 35 are the data bytes
• Followed by the status code 90 00 if the command was correctly processed
• Else an error status code will only be displayed

20 22 6E 03 is the serial number of the smart card (03 is the MSB and 20 the LSB).

Note: the data bytes displayed are depending on the smart card content. The Key A into the
smart card should be the same as the Key A into the reader for a proper authentication.

4- Perform the following operations to close the communication with the smart card:

• Remove the contactless smart card from the landing zone
• Click the “SCardDisconnect” button

The next window will be displayed:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 88/129

Figure 16 – Gem_PCSC window after “SCardDisconnect”

5- Click the “SCardReleaseContext” button to close the connection with all the available
PC/SC devices.
The next window will be displayed:

Figure 17 – Gem_PCSC window after “SCardReleaseContext”

You can now close the Gem_PCSC tool.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 89/129

Known issues and limitations with
all the operating systems
The Prox–DU and the Prox–SU devices have the following limitations:

• The contactless interface will only support the T=1 protocol.

Consequently any connection requiring the T=0 protocol will not be accepted by the
contactless interface.

• Multi-activation of contactless smart cards is not supported.
Consequently the first smart card detected in front of the reader/writer will be
activated. The remaining smart cards will be ignored.

• The communication with the contactless interface and the contact interface shall be
exclusive.

Consequently the application shall not use the two interfaces simultaneously. Else
communication errors can occur.

Known issues and limitations with
Windows operating systems
The Prox–DU and the Prox–SU devices have the following limitations when operating with
Windows operating systems:

Operating
System

Known issue Workaround

Windows XP

Vista

Seven

Prox–DU & Prox–SU:

Simultaneous use of
the contact and the
contactless interface
may freeze the device

Prox–DU: Do not use the the dual interface
card protection in off mode

Prox–SU: Do not use the two interfaces
simulatneously

When the device is frozen, unplug and
replug the USB cable to recover a proper
operation

Windows XP Prox–SU:

When the computer is
restarting it may
happen the internal
SIM/SAM card is not
detected by the device

Unplug and replug the USB cable to
recover a proper operation

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 90/129

Windows XP

Vista

Seven

Prox–SU:

Enabling/Disabling the
USB smart card
reader ,

Installing/Uninstalling
the USB smart card
reader,

from the Device
Manager window may
cause an issue

These operations should be done from the
composite device and not the USB smart
card reader

Windows Vista Prox–SU:

When the computer is
restarting or rebooting,
the contactless card
notification event may
not be detected

Unplug and replug the USB cable to
recover a proper operation

Windows Seven Prox–DU:

Some “exotic“
contacless cards may
not be recognized by
the device

Some “exotic” dual
cards may not be
recognized by the
device

Unplug and replug the USB cable to
recover a proper operation

Windows XP Prox–DU & Prox–SU:

High speed contact
smart cards
(supporting TA1=97h
ISO7816 parameter)
are not recognized

The Microsoft CCID driver does not support
high speed contact smart cards (with
TA1=97h parameter).

Please contact the Gemalto support
website http://support.gemalto.com/.

Table 11 – Known issues and limitations (Windows OS)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 91/129

Known issues and limitations with
Linux operating systems
The Prox–DU and the Prox–SU devices have the following limitations when operating with
Linux operating systems:

Operating
System

Known issue Workaround

Linux Prox-DU & Prox-SU:

The reader can be
frozen when both
interfaces (contact &
contactless) are used
simultaneously.

Use libccid driver version 1.4.0 minimum.

The libccid source code is available on the
following web site:

http://pcsclite.alioth.debian.org/ccid.html

Table 12 – Known issues and limitations (Linux OS)

Known issues and limitations with
Mac operating systems
Please note the following issues and limitations related to PCSC-Lite included into the MAC
OS X operating systems:

Operating System Known issue

For PCSC-Lite

Workaround

Mac OS X

Tiger (10.4)
SCardControl() issue:

PC/SC SCardControl()
command requires two
arguments at least.

To compile and use a C source
code using SCardControl()
command, please use the reader.h
file delivered with the "Secure Pin
Entry sample code" available in the
website
http://support.gemalto.com/?id=63

Mac OS X

Tiger (10.4)
Dual protocol card issue:

For dual protocol cards
(T=0 and T=1) the
connection will be used in
T=0 (default protocol).
pcsc-lite will not switch
the card to T=1 as it is
required for contactless
cards.

If the application needs to use the
contactless interface the connection
should be made using the T=1
protocol only.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 92/129

Mac OS X

Leopard (10.5)

Snow Leopard (10.6)

“Ghost” reader:

After the connection 3
PC/SC readers will be
displayed instead of 2:
The second reader
(contact) will be displayed
twice (A “ghost” contact
reader will be displayed)

Both contact readers are the same.

Mac OS X

Leopard (10.5)

Snow Leopard (10.6)

“Ghost” reader:

After the device is
disconnected one “ghost”
PC/SC reader will still be
displayed.

This PC/SC reader is no more
available.

Mac OS X

Leopard (10.5)

Snow Leopard (10.6)

“Ghost” reader:

After a Suspend /
Wakeup cycle only the
PC/SC contactless reader
will be displayed
correctly. The PC/SC
contact reader is
displayed but is no more
useable. The “ghost”
PC/SC contact reader is
still present.

Unplug and Replug the reader.

Mac OS X

Tiger (10.4)

Leopard (10.5)

Snow Leopard (10.6)

SCardStatus() issue:

The pdwProtocol
parameter is not correct
with the contact reader.
Returned value is 0
(SCARD_PROTOCOL_U
NDEFINED)

No workaround

Table 13 – PCSC-Lite known issues and limitations (Mac OS X)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 93/129

Interfacing with Contactless Cards
As defined in the PC/SC V2.0 specifications, the Prox–DU and the Prox–SU devices handle
all the ISO7816-4 Inter Industry commands to interface ISO14443 contactless smart cards.

The Prox–DU and the Prox–SU devices support both type ISO14443-A and ISO14443-B
cards.

In addition the Prox–DU and the Prox–SU devices will poll the field for the following smart
card events:

• Insertion
• Removal

Detecting an insertion
The contactless reader/writer periodically sends out commands to poll the RF field. If a
smart card comes within the range of the RF field, the contactless reader/writer detects the
card and activates it.

When the card is activated, its properties are recorded and an insertion event is generated.

The ISO14443 contactless smart card will be activated using the reader parameters stored
into the device’s configuration EEPROM.

ISO14443-A and ISO14443-B cards are polled with a default periodic rate of 100 ms.

Note: Multi-activation of contactless smart cards is not supported by the Prox–DU and the
Prox–SU devices. The first smart card detected in front of the reader/writer will be activated.

When a smart card insertion is detected, a CCID insertion notification message will be
generated and the blue LED of the contactless reader/writer will be set to an enlightened
steady state.

Detecting a removal
A smart card being removed from the field is detected by the contactless reader/writer.

The contactless reader/writer polls for an ISO14443-3 (MIFARE®) smart card by periodically
accessing the smart card during periods when there is no communication between the
reader/writer and the card.

The contactless reader/writer polls for an ISO14443-4 (T=CL) smart card by periodically
sending negative acknowledge frames to the smart card expecting, either a positive
acknowledge or the last I-block to be repeated (according to the ISO14443-4 standards).

When a smart card removal is detected, a CCID removal notification message will be
generated and the blue LED of the contactless reader/writer will blink slowly.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 94/129

ATR for contactless smart cards
The Answer To Request (ATR) returned by an ISO14443-A or ISO14443-B smart card is
compliant with the PC/SC V2.0 Part 3 Revision 2.01.09 specifications.

The ATR is as follows:

Byte
Number Value Designation Description

0 3Bh Initial
header

1 8Nh T0

• Higher nibble 8 means no TA1, TB1, TC1
only TD1 is following.

• Lower nibble N is the number of historical
bytes (HistByte 0 to HistByte N-1).

2 80h TD1

• Higher nibble 8 means no TA2, TB2, TC2
only TD2 is following.

• Lower nibble 0 means T = 0.

3 01h TD2

• Higher nibble 0 means no TA3, TB3, TC3,
TD3 following.

• Lower nibble 1 means T = 1.

4 to 3+N

XX

XX

XX

T1

…

..

Tk

Historical bytes:
• ISO14443A:

The historical bytes from ATS response.
Refer to the ISO14443-4 specification

• ISO14443B:
Byte 1-4: Application Data from ATQB
Byte 5-7: Protocol Info Byte from ATQB
Byte 8: Higher nibble = MBLI from ATTRIB
command. Lower nibble (RFU) = 0
Refer to the ISO14443-3 specification

4 + N UU TCK Exclusive-OR of bytes T0 to Tk

Table 14 – ATR for contactless Smart cards

The contactless smart card exposes its ATS or information bytes not directly, but via a
specific ATR mapping. For those cards that provide such information, optionally with
Historical Bytes (or Application Information respectively), the mapping in the table above
applies.

• The ATR returned by a DESFire smart card is:

3Bh 8Fh 80h 01h 80h 80h 65h B0h 07h 02h 02h 89h 83h 00h 90h 00h 00h 00h 00h
46h

With:

n = Fh (15 historical bytes)

Historical bytes from the ATS response = 80h 80h 65h B0h 07h 02h 02h 89h 83h

00h 90h 00h 00h 00h 00h

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 95/129

UU = 46h (TCK)

• The ATR returned by a GemCombi Xpresso Lite R2 STD smart card will be:

3Bh 8Bh 80h 01h 80h 31h 80h 65h B0h 07h 02h 02h 89h 83h 00h E3h

With:

n = Bh (11 historical bytes)

Historical bytes from the ATS response = 80h 31h 80h 65h B0h 07h 02h 02h 89h

83h 00h

UU = E3h (TCK)

• The ATR returned by a GemCombi CDLite smart card will be:

3Bh 80h 80h 01h 01h

With:

n = 0h (no historical byte)

UU = 01h (TCK)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 96/129

Interfacing with MIFARE® DESFire
Cards
The MIFARE® DESFire smart card is based on open global standards for both air interface
and cryptographic methods. It is compliant to all 4 levels of ISO14443-A and uses optional
ISO 7816-4 commands.

The native MIFARE® DESFire commands are non ISO7816-4 commands.

A proprietary APDU command is implemented into the Prox–DU and Prox–SU reader/writer
in order to send and receive these native commands.

Warning: Note that the EEPROM configuration parameter byte “T=CL card presence check
behavior” should be set to value “01h” to avoid the reader to send a dummy APDU
command during the selection process, because when the MIFARE® DESFire smart card
receives an APDU command after the selection process the native commands are no more
available. Refer to the “Reference Manual” document for more information.
The command is formatted as follows:

CLA INS P1 P2 Lc Data In

FFh DEh 00h 00h N DESFire
Command

1 byte 1 byte 1 byte 1 byte 1 byte N bytes

The response is formatted as follows:

Data Out [SW1 SW2]

M bytes 1 byte 1 byte

Where:

N Length of the Data In field Length of the native command

Data In DESFire native command Refer to the DESFire datasheet

Data Out DESFire native response Refer to the DESFire datasheet

[SW1-SW2] Command execution status

Optional field: SW1 SW2 = 90h 00h
is added by the reader when the
DESFire smart card response is
only one byte Status.

 Command executed successfully 90h 00h

Others
67h 00h
6Ah 81h
6Bh 00h

Wrong length
Function not supported
Wrong P1 or P2

As an example, to get the version of the DESFire smart card, the following native command
should be send: 60h

The proprietary command to consider is the following:

FFh DEh 00h 00h 01h 60h

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 97/129

The response will be:

AFh 04h 01h 01h 00h 02h 18h 05h (example)

Refer to the DESFire datasheet for more information about the response.

Requesting contactless smart card
information
This proprietary APDU command is used to retrieve the contactless smart card parameters
returned by the smart card during the contactless selection process.

The command is formatted as follows:

CLA INS P1 P2 Lc Data In Le

FFh FCh Param 00h - - 00h

1 byte 1 byte 1 byte 1 byte - - 1 byte

The response is formatted as follows:

Data Out SW1 SW2

M bytes 1 byte 1 byte

Where:

Param ISO14443-A or ISO14443-B
requested information

00h : ATQA + SN + SAK
01h : complete ATS
02h : ATQB
03h :complete ATTRIB response

Data Out Requested information Refer to the ISO14443 standard

SW1-SW2 Command execution status added by the reader

 Command executed successfully 90h 00h

Others
67h 00h
6Bh 00h
6Ch xxh
62h 82h

Wrong length
Wrong P1 or P2
Wrong length (XX is required)
End of data reach before Le bytes

Note: When the requested information does not correspond to the current smart card type
(ISO14443-A or ISO14443-B) an error is reported.
For ISO14443-A3 smart cards, the ATS field is empty.

As an example, to get the ATQA + SN + SAK of the DESFire smart card, the proprietary
command to consider is the following:

FFh FCh 01h 00h 00h

The response will be:

44h 03h 04h 26h 47h 09h 48h E8h 10h 20h 90h 00h (example)

ATQA = 44h 03h 04h

SN = 26h 47h 09h 48h E8h 10h (7 bytes)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 98/129

SAK = 20h

Refer to the DESFire datasheet for more information about the response.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 99/129

Interfacing with MIFARE® Classic
Cards
As defined in PC/SC V2.0 Part 3 Revision 2.01.09 specifications, the Prox–DU and the
Prox–SU devices perform the appropriate mapping for memory smart card commands that
consist of Inter Industry commands (and the exposed data structures) to memory card
commands (and the associated data structures defined for the MIFARE® contactless
memory smart cards).

The Prox–DU and the Prox–SU devices will handle the following ISO7816-4 Inter Industry
commands to interface with MIFARE® 1K, MIFARE® 4K, MIFARE® Ultralight and MIFARE®
Mini memory smart cards:

• Get Data: retrieves the UID or the historical bytes of the ATS of the inserted smart
card.

• Load Keys: Load MIFARE® secret into the contactless reader/writer.
• General Authenticate: Perform an authentication between the contactless

reader/writer and the MIFARE® memory smart cards.
• Read Binary: Read data from the MIFARE® memory smart cards.
• Update Binary: Write data to the MIFARE® memory smart cards.

The MIFARE® 1K is a 8-Kbit (1 Kbyte) MIFARE® memory contactless smart card arranged
as 64 memory blocks as shown in the appendix “MIFARE® cards mapping”.

The MIFARE® 4K is a 32-Kbit (4 Kbytes) MIFARE® memory contactless smart card
arranged as 256 memory blocks as shown in the appendix “MIFARE® cards mapping”.

The MIFARE® Ultralight is a 512-bit (64 bytes) MIFARE® memory contactless smart card
arranged as 16 memory pages as shown in the appendix “MIFARE® cards mapping”.

The MIFARE® Mini is a 2.5-Kbit (320 bytes) MIFARE® memory contactless smart card
arranged as 20 memory blocks as shown in the appendix “MIFARE® cards mapping”.

Important note regarding contactless smart cards including both MIFARE® and
ISO14443-A4 (T=CL) modes:
When the smart card is connected, the ISO14443-A4 (T=CL) mode will be selected. The
corresponding ATR will be returned.

When a MIFARE® command is send to the smart card an automatic switch to the MIFARE®
mode is done and the command will be processed accordingly.

When an ISO14443-A4 (T=CL) command is send to the smart card an automatic switch to
the ISO14443-A4 (T=CL) mode is done and the command will be processed accordingly.

When the smart card is in the MIFARE® mode, the only way to retrieve the MIFARE® type
(1K-4K-UL-Mini) is to reconnect the smart card. The appropriate MIFARE® ATR will then be
returned.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 100/129

ATR for MIFARE® cards
The Answer To Request (ATR) returned by a MIFARE® card is compliant with PC/SC V2.0
Part 3 Revision 2.01.09 specifications.

The ATR will be as follows:

Byte
Number Value Designatio

n Description

0 3Bh Initial
header

1 8Nh T0

• Higher nibble 8 means no TA1, TB1, TC1
only TD1 is following.

• Lower nibble N is the number of historical
bytes (HistByte 0 to HistByte N-1).

2 80h TD1
• Higher nibble 8 means no TA2, TB2, TC2

only TD2 is following.

• Lower nibble 0 means T = 0.

3 01h TD2
• Higher nibble 0 means no TA3, TB3, TC3,

TD3 following.

• Lower nibble 1 means T = 1.

4 to 2+n

80h

T1

…

..

Tk

Category indicator byte, 80h means a status
indicator may be present in an optional
COMPACT-TLV data object.

4Fh Application identifier presence indicator
LL Length

A0h

00h

00h

03h

06h

5 bytes for registered application provider
identifier (RID)

SS 1 byte for Standard

NN

NN
2 bytes for Card Name

00h

00h

00h

00h

RFU: Shall be set to zero.

Assigned by PC/SC for future extensions.

3 + n UU TCK Exclusive-OR of bytes T0 to Tk

Table 15 – ATR for MIFARE® cards

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 101/129

The ATR of a contactless storage card is structured in the manner described in the table
above. In order to allow the application to identify a storage card type properly, its Standard
and Card Name bytes must be interpreted according to the following tables:

b7 b6 b5 b4 b3 b2 b1 b0 Description

0 0 0 0 0 0 0 0 No information given

0 0 0 0 0 0 1 1 ISO14443-A, part 3

0 0 0 0 0 1 0 0 ISO14443-A, part 4
… RFU

1 1 1 1 1 1 1 1 RFU

Table 16 – SS Byte for Standard

Card Name Two bytes
identifier

MIFARE® Standard 1K 00h 01h
MIFARE® Standard 4K 00h 02h
MIFARE® Ultralight 00h 03h
MIFARE® Mini 00h 26h

Table 17 – NN Bytes for Card Name

• The ATR returned by a MIFARE® Standard 1K will be:

3Bh 8Fh 80h 01h 80h 4Fh 0Ch A0h 00h 00h 03h 06h 03h 00h 01h 00h 00h 00h 00h
6Ah

With:

LL = 0Ch (12 bytes)

SS = 03h (ISO14443-A, part 3)

NN NN = 00h 01h (MIFARE® Standard 1K)

UU = 6Ah (TCK)

• The ATR returned by a MIFARE® Standard 4K will be:

3Bh 8Fh 80h 01h 80h 4Fh 0Ch A0h 00h 00h 03h 06h 03h 00h 02h 00h 00h 00h 00h
69h

With:

LL = 0Ch (12 bytes)

SS = 03h (ISO14443-A, part 3)

NN NN = 00h 02h (MIFARE® Standard 4K)

UU = 69h (TCK)

• The ATR returned by a MIFARE® Ultralight will be:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 102/129

3Bh 8Fh 80h 01h 80h 4Fh 0Ch A0h 00h 00h 03h 06h 03h 00h 03h 00h 00h 00h 00h
68h

With:

LL = 0Ch (12 bytes)

SS = 03h (ISO14443-A, part 3)

NN NN = 00h 03h (MIFARE® Ultralight)

UU = 68h (TCK)

• The ATR returned by a MIFARE® Mini will be:

3Bh 8Fh 80h 01h 80h 4Fh 0Ch A0h 00h 00h 03h 06h 03h 00h 26h 00h 00h 00h 00h
4Dh
With:

LL = 0Ch (12 bytes)

SS = 03h (ISO14443-A, part 3)

NN NN = 00h 26h (MIFARE® Mini)

UU = 4Dh (TCK)

Get Data command
This command is used to retrieve information about the inserted smart card. This command
can be used for all kinds of contactless cards.

The command is formatted as follows:

CLA INS P1 P2 Lc Data Le

FFh CAh INF 00h - - NN

1 byte 1 byte 1 byte 1 byte - - 1 byte

The response is formatted as follows:

Data SW1 SW2

NN bytes 1 byte 1 byte

Where:

INF Info type INF = 00h means: Card serial
number (UID or PUPI) is returned

INF = 01h means: All historical bytes
from the ATS of a ISO14443 A card
without CRC are returned

NN Expected length of the data

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 103/129

NN = 00h means: Return full length
of the UID (e.g. for ISO14443-A
single 4 bytes, double 7 bytes, triple
10 bytes, for ISO14443-B 4 bytes
PUPI)

Data Serial Number

For ISO14443-A smart cards:
UID0-UID1-UID2-UID3 or
UID0-UID1-UID2-UID3-UID4-UID5-
UID6 or
UID0-UID1-UID2-UID3-UID4-UID5-
UID6-UID7-UID8-UID9

For ISO14443-B smart cards:
PUPI3-PUPI2-PUPI1-PUPI0

The UID is exposed as a string of
the expected length. If the expected
length is greater than the actual
length the rest of the string is filled
with zero-value padding bytes.
No cast must be done over the UID
or parts of it. For example, casting
four bytes of the UID to a 32-bit
Integer is illegal.
The order of the bytes within the
string matches the order of bytes
received from the card during the
anti-collision process. Consequently,
the first byte received will be at
index zero.
The bit order of the string bytes must
be such that the LSB (MSB)
matches with the LSB (MSB) of the
card-defined UID.

 Historical bytes of the ATS

Refer to ISO14443-A standard.

For a MIFARE® or ISO14443-B card
that command is not supported.

SW1-SW2 Command execution status

 Command executed successfully 90h 00h

 Others Refer to the error codes table below

Load Keys command
This command is used to load the MIFARE® secret keys into the contactless reader/writer.

Up to 160 keys can be loaded to support all the keys pairs needed for the Mifare 4K cards
(2 keys for each sector):

• 80 keys stored in the reader/writer’s EEPROM

• 80 keys stored in the reader/writer’s RAM

The command is formatted as follows:

CLA INS P1 P2 Lc Data

FFh 82h KS KN KL Key

1 byte 1 byte 1 byte 1 byte 1 byte 6 bytes

If the Load MIFARE® key security bit is set to one in the configuration EEPROM, a Transport
secret key should be added to the MIFARE® key:

The command is formatted as follows:

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 104/129

CLA INS P1 P2 Lc Data

FFh 82h KS KN KL Key

1 byte 1 byte 1 byte 1 byte 1 byte 12 bytes

The response is formatted as follows:

SW1 SW2

1 byte 1 byte

Where:

KS Key Structure 00h for key location storage in RAM

20h for key location storage in
EEPROM

KN Key Number 160 keys are available

 MIFARE® Key Number 0 to 159 (00h to 9Fh)

The key number which will be used for
the authentication

The key number 0 to 79 (00h to 4Fh)
are reserved for the non volatile key
stored in EEPROM

The key number 80 to 159 (50h to
9Fh) are reserved for the volatile key
stored in RAM

KL Key Length KL = 06h means: 6 bytes long

KL = 0Ch means: 12 bytes long if the
Load MIFARE® key security bit is set
on.

Key MIFARE® Secret Key The MIFARE® key value

Should be followed by the Gemalto
Transport key if the Load MIFARE® key
security bit is set on.

The byte order must be the same as
the byte order in the card sector trailer
(A0h first for the key A0h A1h A2h A3h
A4h A5h)

 Gemalto default Key A A0h A1h A2h A3h A4h A5h

 Gemalto default Key B B0h B1h B2h B3h B4h B5h

 Gemalto Transport Key T0 T1 T2 T3 T4 T5

 Other values User Key

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 105/129

Warning: If the Load MIFARE® key security bit is set to one, a 6 bytes transport key must be
added to the Data field and the total key length must be equal to 12.

The Transport keys are secret and are available upon request.

To load the secret key A0h-A1h-A2h-A3h-A4h-A5h into the key number KN using location
storage in RAM the following APDU command should be used:

CLA INS P1 P2 Lc Data

FFh 82h 00h KN 06h A0h A1h A2h A3h A4h A5h

With KN = 80 to 159 (50h to 9Fh)

To load the secret key A0h-A1h-A2h-A3h-A4h-A5h into the key number KN using location
storage in EEPROM the following APDU command should be used:

CLA INS P1 P2 Lc Data

FFh 82h 20h KN 06h A0h A1h A2h A3h A4h A5h

With KN = 0 to 79 (00h to 4Fh)

Note: Loading key number 0 to 79 in RAM is forbidden. Loading key number 80 to 159 in
EEPROM is forbidden. The error code SW1-SW2 69h 88h will be returned (Key number not
valid)

Note: After delivery the non volatile keys stored in EEPROM (number 0 to 79) are initialized
to a default value:

The keys number 00 to 39 are initialized with value A0h A1h A2h A3h A4h A5h

The keys number 40 to 79 are initialized with value B0h B1h B2h B3h B4h B5h

Note: Each time the Prox–DU and the Prox–SU is powered, the volatile keys stored in RAM
(number 80 to 159) are initialized to a default value:

The keys number 80 to 119 are initialized with value A0h A1h A2h A3h A4h A5h

The keys number 120 to 159 are initialized with value B0h B1h B2h B3h B4h B5h

General Authenticate command
The General Authenticate command is used to perform an authentication between the
contactless reader/writer and a MIFARE® memory block.

For MIFARE® 1K, MIFARE® 4K and MIFARE® Mini it is mandatory to perform the
General Authenticate command before each read or write memory block operation.
Otherwise, an authentication error will occur.

For MIFARE® Ultralight the General Authenticate operation is not required.

SW1-SW2 Command execution status

 Command executed successfully 90h 00h

 Others Refer to the error codes table below

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 106/129

This command is formatted as follows:

CLA INS P1 P2 Lc Data In

FFh 86h 00h 00h 05h VER ABLM ABLL KT KN

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1byte

The response is formatted as follows:

SW1 SW2

1 byte 1 byte

Where:

VER Version

01h

VER is used in the future to
differentiate different version of this
command.

ABLM Address Block MSB 00h

ABLL Address Block LSB

MIFARE® 1K

MIFARE® 4K

MIFARE® Mini

00h – 3Fh

00h – FFh

00h – 13h

KT Key Type

 Key A 60h

 Key B 61h

KN Key Number

MIFARE® Key Number 0 to 159 (00h to 9Fh)

The key number 0 to 79 are
reserved for the non volatile key
stored in EEPROM
The key number 80 to 159 are
reserved for the volatile key stored in
RAM

SW1-SW2 Command execution status

Command executed
successfully

90h 00h

Others Refer to the error codes table below

The authentication is performed for a memory sector. As each memory sector is composed
of four memory blocks, the authentication will be done for all the four memory blocks.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 107/129

The authentication operation is not required for a MIFARE® Ultralight chip.
If an authentication fails, the smart card is automatically deselected (MIFARE®
specification). However the reader/writer automatically recovers the communication with the
smart card.

Read Binary command
The Read Binary command is used to read data from a MIFARE® memory area.

Data consist of a memory block (16 bytes) or a memory page (4 bytes).

This command is formatted as follows:

CLA INS P1 P2 Lc

FFh B0h ABLM ABLL Size

1 byte 1 byte 1 byte 1 byte 1 byte

The response is formatted as follows:

Data SW1 SW2

16 bytes 1 byte 1 byte

Where:

ABLM Address Block MSB 00h

ABLL Address Block LSB

 MIFARE® 1K

MIFARE® 4K

MIFARE® Mini

MIFARE® Ultralight

00h – 3Fh

00h – FFh

00h – 13h

00h – 0Fh

Size Size of the memory area

MIFARE® 1K, 4K, Mini

MIFARE® Ultralight

10h (size of the memory block)

04h (size of the memory page)

If this parameters is 00h then all the bytes
of the block will be returned (16 bytes or
4 bytes)

Data

 MIFARE® 1K, 4K, Mini

MIFARE® Ultralight

16-byte of data

 4-byte of data

The first byte of the block is byte 0

Present only when there is no error in
the status report.

SW1-SW2 Command execution status

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 108/129

 Command executed successfully 90 00h

 Others Refer to the error codes table below

Note:

For MIFARE® 1K, MIFARE® 4K and MIFARE® Mini, it is mandatory to perform the General
Authenticate command before each read memory block operation. Otherwise, an
authentication error will occur.
For MIFARE® Ultralight the General Authenticate operation is not required. Refer to the
appendix for the MIFARE® Ultralight read operation.

Update Binary command
The Update Binary command is used to write data into a MIFARE® memory area.

Data consist of a memory block (16 bytes) or a memory page (4 bytes).

This command is formatted as follows:

CLA INS P1 P2 Lc DATA

FFh D6h ABLM ABLL Size Data

1 byte 1 byte 1 byte 1 byte 1 byte 16 bytes

The response is formatted as follows:

SW1 SW2

1 byte 1 byte

Where:

ABLM Address Block MSB 00h

ABLL Address Block LSB

 MIFARE® 1K

MIFARE® 4K

MIFARE® Mini

MIFARE® Ultralight

00h – 3Fh

00h – FFh

00h – 13h

00h – 0Fh (*)

Size Size of the memory area

MIFARE® 1K, 4K, Mini

MIFARE® Ultralight

10h (size of the memory block)

04h (size of the memory page)

Data

 MIFARE® 1K, 4K, Mini

MIFARE® Ultralight

16-byte of data

 4-byte of data

The first byte of the block is byte 0

Present only when there is no error

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 109/129

in the status report.

SW1-SW2 Command execution status

 Command executed successfully 90 00h

 Others Refer to the error codes table below

Note:

For MIFARE® 1K, MIFARE® 4K and MIFARE® Mini, it is mandatory to perform the General
Authenticate command before each write memory block operation. Otherwise, an
authentication error will occur.
For MIFARE® Ultralight the General Authenticate operation is not required. Refer to the
appendix for the MIFARE® Ultralight write operation.

Error code list summary
The error codes returned by the commands listed above are defined in the following table:

SW1 SW2 Meaning
Get Data error codes
62h 82h End of data reach before Le bytes (Le is greater than data length)
67h 00h Wrong length
6Ah 81h Function not supported
6Bh 00h Wrong parameter P1-P2

6Ch XXh Wrong length (wrong number Le; XX is the exact number) if Le is
less than the available data length

6Dh 00h Instruction code not supported
Load Keys error codes
65h 81h Memory failure
67h 00h Wrong length
69h 83h Reader key not supported
69h 85h Secure transmission not supported
69h 88h Key number not valid
69h 89h Key length is not correct

General Authenticate error codes
67h 00h Wrong length
69h 82h Security status not satisfied
69h 83h Authentication cannot be done
69h 85h Secure transmission not supported
69h 86h Key type not known
69h 88h Key number not valid
6Ah 81h Function not supported
6Bh 00h Wrong parameter P1-P2
6Dh 00h Instruction code not supported

Read Binary error codes
62h 82h End of data reach before Le bytes (Le is greater than data length)

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 110/129

67h 00h Wrong length
68h 00h Class byte is not correct
69h 82h Security not satisfied
69h 85h Address out of range
6Ah 81h Function not supported

6Ch XX Wrong length (wrong number Le; XX is the exact number) if Le is
less than the available data length

Update Binary error codes
67h 00h Wrong length
69h 82h Security not satisfied
69h 85h Address out of range
6Ah 81h Function not supported

Table 18 – Memory card error codes

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 111/129

Interfacing with Contact Cards
ISO7816 asynchronous smart cards are accessible via standard PC/SC using Microsoft’s
library “winscard.dll”. This type of cards supports at least one of the asynchronous protocols
T=0 or T=1. No additional libraries or third-party software components are necessary to
integrate ISO7816 smart cards.

As defined in the PC/SC specifications, the Prox–DU and the Prox–SU devices handle all
the ISO7816-4 Inter Industry commands to interface ISO7816 asynchronous contact smart
cards.

In addition the Prox–DU device will support the following smart card events:

• Insertion
• Removal

As the Prox–SU has no capability to detect a smart card insertion or removal, the SIM/SAM
card will always be considered as inserted when the SIM/SAM card is into its connector.

Detecting an Insertion
The contact reader/writer will check if a smart card is inserted into the slot.

When a smart card insertion is detected, its properties are recorded and a CCID insertion
notification message will be generated.

Detecting a Removal
A smart card being removed from the slot is detected by the contact reader/writer.

When a smart card removal is detected, a CCID removal notification message will be
generated.

ATR for Contact Smart Cards
The Answer To Request (ATR) returned by a contact smart card is compliant with the
ISO7816-3 specifications.

The Prox–DU and the Prox–SU will return the smart card ATR after a smart card power up.

The ATR is as follows:

Byte
Number Value Designation Description

0 3Bh or
3Fh TS

Initial header (Mandatory)

Direct or inverse convention

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 112/129

1 Y1-K T0

Format character (Mandatory)

Encodes Y1 and K

Y1 indicator for the presence of the interface
characters TA1-TB1-TC1-TD1

K=number of historical bytes

2 Fi-Di TA1
Interface characters (Optional)

Global, encodes Fi and Di

3 XX TB1
Interface characters (Optional)

Global, deprecated

4 N TC1
Interface characters (Optional)

Global, encodes N

5 Y2-T TD1
Interface characters (Optional)

Strutctural, encodes Y2 and T

6 XX TA2
Interface characters (Optional)

Global, specific mode byte

7 XX TB2
Interface characters (Optional)

Global, deprecated

8 XX TC2
Interface characters (Optional)

Specific to T=0

9 Y3-T TD2
Interface characters (Optional)

Structural, encodes Y3 and T

 - For i > 2

 Yi-T TDi-1
Interface characters (Optional)

Structural, encodes Yi and T

 XX TAi
Interface characters (Optional)

Specific to T after T from 0 to 14 in TDi–1

Global after T=15 in TDi–1

 XX TBi

 XX TCi

 Yi+1-T TDi

Interface characters (Optional)

Interface characters (Optional)

Structural, encodes Yi+1 and T

 -

XX T1

Historical characters (Optional): max 15 bytes

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 113/129

XX

XX

…

..

Tk

N UU TCK Check character (Conditional): Exclusive-OR of
bytes T0 to Tk

Table 19 – ATR for contact smart cards

Structures and content
A reset operation results in the answer from the smart card consisting of the initial character
TS followed by at most 32 characters in the following order:

• T0 Format character (Mandatory)

• TAi, TBi, TCi, TDi Interface characters (Optional)

• T1, T2, ... ,TK Historical characters (Optional)

• TCK Check character (Conditional)

The interface characters specify physical parameters of the integrated circuit in the smart
card and logical characteristics of the subsequent exchange protocol.

The historical characters designate general information, for example, the smart card
manufacturer, the chip inserted in the smart card, the masked ROM in the chip, the state of
the life of the smart card. The specification of the historical characters falls outside the
scope of this part of ISO7816.

For simplicity, T0, TAi, ... ,TCK will designate the bytes as well as the characters in which
they are contained.

Structure of the subsequent characters in the ATR
The initial character TS is followed by a variable number of subsequent characters in the
following order: The format character T0 and, optionally the interface characters TAi, TBi,
TCi, TDi and the historical characters T1, T2, ... , TK and conditionally, the check character
TCK.

The presence of the interface characters is indicated by a bit map technique explained
below.

The presence of the historical characters is indicated by the number of bytes as specified in
the format character defined below.

The presence of the check character TCK depends on the protocol type(s) as defined as
below.

Format character T0
The T0 character contains two parts:

• The most significant half byte (b4, b5, b5, b7) is named Y1 and indicates with a
logic level ONE the presence of subsequent characters TA1, TB1, TC1, TD1
respectively.

• The least significant half byte (b3 to b0) is named K and indicates the number (0 to
15) of historical characters.

b7 b6 b5 b4 b3 b2 b2 b0

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 114/129

Y1 K

Figure 18 – Information provided by T0

Y1: indicator for the presence of the interface characters

• TA1 is transmitted when b4=1

• TB1 is transmitted when b5=1

• TC1 is transmitted when b6=1

• TD1 is transmitted when b7=1

• K: number of historical characters

Interface characters TAi, TBi, TCi, TDi
TAi, TBi, TCi (i=1, 2, 3, ...) indicate the protocol parameters.

Each interface byte TA, TB or TC is either global or specific:

• Global interface bytes refer to parameters of the integrated circuit within the smart
card,

• Specific interface bytes refer to parameters of a transmission protocol offered by the
smart card.

TDi indicates the protocol type T and the presence of subsequent characters.

Bits b4, b5, b6, b7 of the byte containing Yi (T0 contains Y1; TDi contains Yi+1) state
whether character TAi for b4, character TBi for b5, character TCi for b6, character TDi for b7
are or are not (depending on whether the relevant bit is 1 or 0) transmitted subsequently in
this order after the character containing Yi.

When needed, the interface device shall attribute a default value to information
corresponding to a non transmitted interface character.

When TDi is not transmitted, the default value of Yi+1 is null, indicating that no further
interface characters TAi+j, TBi+j, TCi+j, TDi+j will be transmitted.

b7 b6 b5 b4 b3 b2 b2 b0
Yi+1 T

Figure 19 – Information provided by TDi

Yi+1: indicator for the presence of the interface characters

• TAi+1 is transmitted when b4=1

• TBi+1 is transmitted when b5=1

• TCi+1 is transmitted when b6=1

• TDi+1 is transmitted when b7=1

T: Protocol type for subsequent transmission.

If TD1, TD2 and so on are present, the encoded types T shall be in ascending numerical
order. If present, T=0 shall be first, T=15 shall be last. T=15 is invalid in TD1.

Historical characters T1, T2, ... ,TK
When K is not null, the answer to reset is continued by transmitting K historical characters
T1, T2, ... , TK.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 115/129

Check character TCK
The value of TCK shall be such that the exclusive-oring of all bytes from T0 to TCK included
is null.

Protocol type T
The four least significant bits of any interface character TDi indicate a protocol type T,
specifying rules to be used to process transmission protocols. When TDi is not transmitted,
T=0 is used.

• T=0 is the asynchronous half duplex character transmission protocol.

• T=1 is the asynchronous half duplex block transmission protocol.

• T=2 and T=3 are reserved for future full duplex operations.

• T=4 is reserved for an enhanced asynchronous half duplex character transmission
protocol.

• T=5 to T=13 are reserved for future use.

• T=14 is reserved for protocols not standardized by ISO.

• T=15 does not refer to a transmission protocol, but only qualifies global interface
bytes.

Note: If only T=0 is indicated, TCK shall not be sent. In all other cases TCK shall be sent.

Specifications of the global interface bytes
Among the interface bytes possibly transmitted by the smart card in answering to reset, this
subclaus defines only the global interface bytes TA1, TB1, TC1, TA2, TB2, the first TA for
T=15 and the first TB for T=15.

These global interface bytes convey information to determine parameters which the
interface device shall take into account.

TA1

TA1 encodes the indicated value of the clock rate conversion integer (Fi), the indicated
value of the baud rate adjustment integer (Di) and the maximum value of the frequency
supported by the smart card (f (max.)). The default values are Fi = 372, Di = 1 and f (max.) =
5 MHz.

Fi 0000 0001 0010 0011 0100 0101 0110 0111

F 372 372 558 744 1116 1488 1860 RFU

Fs (max)
MHz 4 5 6 8 12 16 20 -

Fi 1000 1001 1010 1011 1100 1101 1110 1111

F RFU 512 768 1024 1536 2048 RFU RFU

Fs (max)
MHz - 5 7.5 10 15 20 - -

 Table 20 – Clock rate conversion factor F

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 116/129

Di 0000 0001 0010 0011 0100 0101 0110 0111

D RFU 1 2 4 8 16 32 64

Di 1000 1001 1010 1011 1100 1101 1110 1111

D 12 20 RFU RFU RFU RFU RFU RFU

Table 21 – Bit rate adjustment factor D

TB1 and TB2

TB1 and TB2 are deprecated. The smart card should not transmit them. The interface
device shall ignore them.

Note: The first two editions of ISO 7816-3 specified TB1 and TB2 to fix electrical parameters
of the integrated circuit for the deprecated use of contact C6.

TC1

TC1 encodes the extra guard time integer (N) from 0 to 255 over the eight bits. The default
value is N = 0.

If N = 0 to 254, then before being ready to receive the next character, the smart card
requires the following delay from the leading edge of the previous character (transmitted by
the smart card or the interface device):

GT =12 etu + R × N/f

• If T=15 is absent in the Answer-to-Reset, then R = F / D, i.e., the integers used for
computing the etu.

• If T=15 is present in the Answer-to-Reset, then R = Fi / Di, i.e., the integers defined
above by TA1.

No extra guard time is used to transmit characters from the card: GT = 12 etu.

The use of N = 255 is protocol dependent: GT = 12 etu in PPS and in T=0. For the use of N
= 255 in T=1, refer to the ISO7816-3 standard.

TA2

TA2 is the specific mode byte. For the use of TA2 refer to the ISO7816-3 standard.

Bit 7 indicates the ability for changing the negotiable/specific mode:

• capable to change if bit 7 is set to 0,

• unable to change if bit 7 is set to 1.

Bits 6 and 5 are reserved for future use (set to 0 when not used).

Bit 4 indicates the definition of the parameters F and D.

• If bit 4 is set to 0, then the integers Fi and Di defined above by TA1 shall apply.

• If bit 4 is set to 1, then implicit values (not defined by the interface bytes) shall
apply.

Bits 3 to 0 encode a type T.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 117/129

The first TA1 for T=15

The first TA for T=15 encodes the clock stop indicator (X) and the class indicator (Y). The
default values are X = “clock stop not supported” and Y = “only class A supported”. For the
use of clock stop and for the use of the classes of operating conditions refer to the ISO7816-
3 standard.

• According to the next table, bits 7 and 6 indicate whether the smart card supports
clock stop (≠ 00) or not (= 00) and, when supported, which state is preferred on the
electrical circuit CLK when the clock is stopped.

Bits 7 and 6 00 01 10 11

X Clock stop not
supported

State L State H No preference

Table 22 – clock stop indicator X

• According to the next table 10, bits 5 to 1 indicate the classes of operating
conditions accepted by the smart card. Each bit represents a class: bit 1 for class A,
bit 2 for class B and bit 3 for class C.

Bits 5 to 0 00 0001 00 0010 00 0100 00 0011

Y A only (5V) B only (3V) C only (1.8V) A and B

Bits 5 to 0 00 0110 00 0111 Any other value

Y B and C A, B and C RFU

Table 23 – class indicator Y

The first TB for T=15

The first TB for T=15 indicates the use of standard or proprietary use contact (SPU) by the
smart card. The default value is “SPU not used”.

Coded over bits 6 to 0, the use is either standard (bit 7 set to 0), or proprietary (bit 7 set to
1). The value '00' indicates that the smart card does not use SPU. Any other value where bit
7 is set to 0 are reserved for future use.

For additional information about the ATR contents please refer to the ISO7816-3 standard.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 118/129

MIFARE® Cards Mapping
MIFARE® 1K Memory Mapping
This is an 8-Kbit (1 Kbyte) MIFARE® memory contactless smart card arranged as 16 four-
block sectors as shown in the following table:

 Bytes

Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Description

0

0 Manufacturer
Block

1 Data

2 Data

3 Key A Access Bits Key B Sector Trailer 0

1

4 Data

5 Data

6 Data

7 Key A Access Bits Key B Sector Trailer 1

2

8 Data

9 Data

10 Data

11 Key A Access Bits Key B Sector Trailer 2

– – – –

15

60 Data

61 Data

62 Data

63 Key A Access Bits Key B Sector Trailer 15

Table 24 – Memory Sectors of MIFARE® 1K

Each contactless smart card consists of a 16-byte memory block assembled in sectors.

The first block of the first sector contains manufacturing information.

The last block of each sector is the sector trailer containing the keys and the access
conditions of the blocks.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 119/129

MIFARE® Mini Memory Mapping
This is a 2.5-Kbit (320 bytes) MIFARE® memory contactless smart card arranged as 5 four-
block sectors as shown in the following table:

 Bytes

Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Description

0

0 Manufacturer
Block

1 Data

2 Data

3 Key A Access Bits Key B Sector Trailer 0

1

4 Data

5 Data

6 Data

7 Key A Access Bits Key B Sector Trailer 1

2

8 Data

9 Data

10 Data

11 Key A Access Bits Key B Sector Trailer 2

– – – –

4

16 Data

17 Data

18 Data

19 Key A Access Bits Key B Sector Trailer 4

Table 25 – Memory Sectors of MIFARE® Mini

Each contactless smart card consists of a 16-byte memory block assembled in sectors.

The first block of the first sector contains manufacturing information.

The last block of each sector is the sector trailer containing the keys and the access
conditions of the blocks.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 120/129

MIFARE® 4K Memory Mapping
This is a 32-Kbit (4 Kbytes) MIFARE® memory contactless smart card arranged as 32 four-
block sectors and 8 sixteen-block sectors as shown in the following table:

 Bytes

Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Description

0

0 Manufacturer
Block

1 Data

2 Data

3 Key A Access Bits Key B Sector Trailer 0

1

4 Data

5 Data

6 Data

7 Key A Access Bits Key B Sector Trailer 1

2

8 Data

9 Data

10 Data

11 Key A Access Bits Key B Sector Trailer 2

– – – –

31

124 Data

125 Data

126 Data

127 Key A Access Bits Key B Sector Trailer 31

32

128 Data

129 Data

130 Data

131 Data

132 Data

133 Data

134 Data

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 121/129

135 Data

136 Data

137 Data

138 Data

139 Data

140 Data

141 Data

142 Data

143 Key A Access Bits Key B Sector Trailer 32

– – – –

39

240 Data

241 Data

242 Data

243 Data

244 Data

245 Data

246 Data

247 Data

248 Data

249 Data

250 Data

251 Data

252 Data

253 Data

254 Data

255 Key A Access Bits Key B Sector Trailer 39

Table 26 – Memory Sectors of MIFARE® 4K

Each contactless smart card consists of a 16-byte memory block assembled in sectors.

The first block of the first sector contains manufacturing information.

The last block of each sector is the sector trailer containing the keys and the access

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 122/129

conditions of the blocks.

MIFARE® UL Memory Mapping
The MIFARE® Ultralight chip is a 512-bit EEPROM memory card.

The MIFARE® UL memory is organized in 16 pages with 4 bytes each as depicted in the
following table:

Bold frame indicates user area.

Table 27 – Memory mapping of MIFARE® UL

Serial Number Area
SN0-SN7 is the 7 bytes serial number according to ISO14443-3.

BCC0 and BCC1 are the check bytes according to ISO14443-3.

Internal byte is reserved for internal data.

These 10 bytes are write-protected after having been programmed by the chip manufacturer
after production.

Byte Number 0 1 2 3 Page

Serial Number SN0 SN1 SN2 BCC0 0

Serial Number SN3 SN4 SN5 SN6 1

Internal/Lock BCC1 Internal Lock0 Lock1 2

OTP OTP0 OTP1 OTP2 OTP3 3

Data Read-Write Data0 Data1 Data2 Data3 4

Data Read-Write Data4 Data5 Data6 Data7 5

Data Read-Write Data8 Data9 Data10 Data11 6

Data Read-Write Data12 Data13 Data14 Data15 7

Data Read-Write Data16 Data17 Data18 Data19 8

Data Read-Write Data20 Data21 Data22 Data23 9

Data Read-Write Data24 Data25 Data26 Data27 10

Data Read-Write Data28 Data29 Data30 Data31 11

Data Read-Write Data32 Data33 Data34 Data35 12

Data Read-Write Data36 Data37 Data38 Data39 13

Data Read-Write Data40 Data41 Data42 Data43 14

Data Read-Write Data44 Data45 Data46 Data47 15

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 123/129

Lock Bytes Area
Lock0 and Lock1 represent the field-programmable read-only locking mechanism. Each
Page x from 3 (OTP) to 15 may be locked individually to prevent further write access by
setting the corresponding locking bit Lx to 1. After locking the page is read-only memory.

The 3 least significant bits of lock byte 0 are the block-locking bits. Bit 2 handles pages 15 to
10, bit 1 pages 9 to 4 and bit 0 page 3 (OTP). Once the blocking-locking bits are set the
locking configuration for the corresponding memory area is frozen - for example if BL15-10
is set to “1”, L15 to L10 (bit 7 to bit 2 of lock byte 2) can no longer be changed.

Lock0 byte Lock1 byte

MSB LSB MSB LSB

L7 L6 L5 L4 L
OTP

BL

15-
10

BL

9-
4

BL

OTP

L15 L14 L13 L12 L11 L10 L9 L8

Lx locks Page x to read-only

BLx blocks further locking for the memory area x

The locking and block-locking bits are set via standard write command to Page 2.

Bytes 2 and 3 of the write command and the actual contents of the lock bytes are bite-wise
“OR-ed” and the result then becomes the new contents of the lock bytes.

This process is irreversible. If a bit is set to “1”, it cannot be changed back to “0” again.

Note: The content of bytes 0 and 1 of Page 2 is not affected by the corresponding data
bytes of the write command.

Warning: To activate the new locking configuration after a write to the lock bit area, a new
smart card selection has to be carried out.

OTP Bytes Area
Page 3 is the OTP page. It is pre-set to all “0” (zeros) after production. These bytes may be
bit-wise modified by a write command.

The bytes of the write command of the current contents of the OTP bytes are bit-wise “OR-
ed” and the result becomes the new contents of the OTP bytes.

This process is irreversible. If a bit is set to “1”, it cannot be changed back to “0” again.

Note: This memory area may be used as a 32 ticks one-time counter.

Data Bytes Area
Pages 4 to 15 constitute the user read/write area. After production the data pages are
initialized to all “0” (zeroes).

MIFARE® UL Read/Write Operation
The MIFARE® Ultralight chip does not embed the MIFARE® Classic security.

So no authentication operation is required before any read/write operation.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 124/129

MIFARE® Memory Organization
Sector Trailer
The last block of every sector is the sector trailer. It contains the individual secret
authentication Key A, optional Key B and the access condition bits for the blocks of the
particular sector.

Sector Trailer Byte bit 8
MSB

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
LSB

Secret Key

0

Authentication Key A

1

2

3

4

5

Access Bits

6 
C23


C22


C21


C20


C13


C12


C11


C10

7
C13

C12

C11

C10


C33


C32


C31


C30

8
C33

C32

C31

C30

C23

C22

C21

C20

Data 9

Secret Key

10

Authentication Key B

11

12

13

14

15

CXy: Access bit x for block y

CXy: Complement of CXy

Authentication Keys
Each sector contains a six-byte authentication Key A and a six-byte optional Key B. All
sectors are assigned to the different applications determined by different system providers.

The mutual authentication procedure is performed between the reader/writer and the
contactless card and is driven by the reader/writer. Access to the data stored in a sector is
only possible after a successful authentication.

The secret authentication keys are always read as logical "0". In applications using only one
authentication key, Key A, user can set the access bits where the memory space of the
optional authentication Key B can be used for data storage.

In this case when the authentication key, Key B can no longer be used for authentication,

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 125/129

the card will not allow memory access using Key B.

Access Bits
The access conditions for the specified operations are defined for each block. The sector
trailer and the data blocks are controlled independently.

In sectors consisting of four blocks, the access conditions for each individual block are
programmable.

In sectors consisting of sixteen blocks, the 15 data blocks are arranged into three groups of
five blocks, with the access conditions are defined independently for each group.

Refer to “Access to Data Blocks” Table and “Access to Sector Trailer” Table for the values
of these bytes.

The access bits determine the access rights to the memory using the authentication keys A
and B. The access conditions may be altered, provided that the relevant key is known and
the actual access condition allows this operation.

The following table describes only access bits in the non-inverted mode (although they can
be stored in both non-inverted and inverted mode):

Access Bits Valid Commands Block Description

C10 C20 C30
Read, Write, Increment,
Decrement, Transfer, Restore 0 Data Block

C11 C21 C31
Read, Write, Increment,
Decrement, Transfer, Restore 1 Data Block

C12 C22 C32
Read, Write, Increment,
Decrement, Transfer, Restore 2 Data Block

C13 C23 C33 Read, Write 3 Sector Trailer

Table 19 – Access Bits and the Valid Commands

The internal logic of the MIFARE® circuit ensures that the commands are executed only
after an authentication using either Key A or Key B has been successfully performed.

Note: the “Increment”, “Decrement”, “Transfer”, “Restore” commands are not available using
the PC/SC V2 MIFARE® commands.

Data Block Access Conditions
The access bits for the data blocks are specified as Never, Key A or Key B.

The setting of the relevant access bits defines the application and the resulting applicable
commands. Key A | B indicates that access is possible only after an authentication using
Key A or Key B of this sector.

The access condition for every block is dependant on the sector number as explained in the
following table:

Sector Block Description

N
(0 – 31)

0 C30 - C20 - C10

1 C31 - C21 - C11

2 C32 - C22 - C12

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 126/129

3 C33 - C23 - C13

N
(32 – 39)

0

C30 - C20 - C10

1

2

3

4

5

C31 - C21 - C11

6

7

8

9

10

C32 - C22 - C12

11

12

13

14

15 C33 - C23 - C13

Table 20 – Access Condition for Data Blocks

The MIFARE® system regards authentication Key B as the primary key for access control to
the data memory. Operations which are performed with authentication Key A can also be
done with authentication Key B. But, only some sensitive operations can be performed with
Key B.

The previous Table “Access Bits and the Valid Commands” shows the types of access
conditions associated with their bit values and the access granted by authentication with
Key A and Key B.

Access Bits
Access Condition

Data Block or Superior Block Group
b = 0, 1, 2

C1b C2b C3b Read Write Increment
Decremen

t/
Transfer/
Restore

Comments

0 0 0 Key A | B1 Key A | B1 Key A | B1 Key A | B1 A or B All function
memory block

0 0 1 Key A | B1 Never Never Key A | B1
A or B Read
/Subtract Value
block

0 1 0 Key A | B1 Never Never Never A or B Read only
memory block

0 1 1 Key B1 Key B1 Never Never B Read /Write
memory block

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 127/129

1 0 0 Key A | B1 Key B1 Never Never
A or B Read and B
Write memory
block

1 0 1 Key B1 Never Never Never B Read only
memory Block

1 1 0 Key A | B1 Key B1 Key B1 Key A | B1
A Read/Subtract B
Write/Add Value
block

1 1 1 Never Never Never Never
Locked block,
Access never
allowed

Transport Configuration: When the card is delivered, the access conditions for the sector
trailer and the authentication Keys A and B are already containing a particular transport
configuration.
1 When Key B can be read in the corresponding Sector trailer, it cannot be used for
authentication. If the reader/writer tries to authenticate any block of a sector with Key B
using the shaded access conditions, the card will reject subsequent memory access after
authentication.

Table 28 – Access to Data Blocks

Note: the “Increment”, “Decrement”, “Transfer”, “Restore” commands are not available using
the PC/SC V2 MIFARE® commands.

The following describes the functions of the blocks in previous Table “Access Condition for
Data Blocks”:

Read/Write Block The operation read and write are allowed,

Value Block Allows the additional value operations such as
Increment, Decrement, Transfer and Restore.

In the case ('001') only Read and Decrement are
possible for a non-rechargeable card. In the other case
('110') recharging is possible using Key B.

Manufacturer Block The read-only condition is not affected by the setting of
the access bits.

Key Management In transport configuration, the use of Key A for
authentication is mandatory.

Sector Trailer Access Conditions
The access bits for the sector trailer shown in the following table determine the access
condition to either of the authentication keys or the access bits themselves to be Never, Key
B, or Key A | B.

Key A | B indicates the access for this sector is only possible after an authentication using
either Key A or Key B.

Access Bits Access Condition Comments

Authentication

Key A
Access Bits

Authentication
Key B

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 128/129

C1b C2b
C3

b
Read Write Read Write Read Write

0 0 0 Never Key A Key A Never Key A Key A Key B may be
read

0 0 1 Never Key A Key A Key A Key A Key A
Key B may be
read.
(Transport
configuration)

0 1 0 Never Never Key A Never Key A Never Key B may be
read

0 1 1 Never Key B Key A | B Key B Never Key B

1 0 0 Never Key B Key A | B Never Never Key B

1 0 1 Never Never Key A | B Key B Never Never

1 1 0 Never Never Key A | B Never Never Never

1 1 1 Never Never Key A | B Never Never Never

The shaded areas are access conditions where Key B is readable and may be used for data.

Table 29 – Access to Sector Trailer

The access conditions for the sector trailer and Key A are predefined as transport
configuration upon card delivery.

As Key B is read in transport configuration, new cards are authenticated with Key A.

Note:

The access bits can also be blocked by the user to prohibit any further changes to the
access conditions.

As the access bits can be altered by the user, special care should be taken during
personalization phase.

 PC/SC Guide

Prox–DU & Prox–SU

www.gemalto.com

DOC119811A Public Use Page 129/129

For More Information
Standards and Specifications

• PC/SC V2 specifications: Part 3. Requirements for PC-Connected Interface Devices
- Revision 2.01.09

End of Document

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

