
Teradata Database

SQL Functions, Operators,
Expressions, and Predicates

Release 13.10
B035-1145-109A
September 2010

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise, Meta Warehouse, MyCommerce,
SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, Teradata Source Experts, WebAnalyst, and You’ve Never Seen Your Business Like
This Before are trademarks or registered trademarks of Teradata Corporation or its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of GoldenGate Software, Inc.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI and Engenio are registered trademarks of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademark of SPARC International, Inc.

Sun Microsystems, Solaris, Sun, and Sun Java are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a collective membership mark and a service mark of Unicode, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please e-mail: teradata-books@lists.teradata.com

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 2000 – 2010 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

SQL Functions, Operators, Expressions, and Predicates 3

Preface

Purpose

SQL Functions, Operators, Expressions, and Predicates describes the functions, operators,
expressions, and predicates of Teradata SQL.

Use this book with the other books in the SQL book set.

Audience

Application programmers and end users are the principal audience for this manual. System
administrators, database administrators, security administrators, Teradata field engineers, and
other technical personnel responsible for designing, maintaining, and using Teradata
Database might also find this manual to be useful.

Supported Software Releases and Operating
Systems

This book supports Teradata® Database 13.10.

Teradata Database 13.10 supports:

• Microsoft Windows Server 2003 64-bit

• SUSE Linux Enterprise Server 10

Teradata Database client applications can support other operating systems.

Prerequisites

You should be familiar with basic relational database management technology and SQL. This
book is not an SQL primer.

If you are not familiar with Teradata Database, read Introduction to Teradata before reading
this book.

For information about developing applications using embedded SQL, see Teradata
Preprocessor2 for Embedded SQL Programmer Guide.

Preface
Changes to This Book

4 SQL Functions, Operators, Expressions, and Predicates

Changes to This Book

Release Description

Teradata Database 13.10

September 2010

Added clarification that the CAMSET compression function currently
can only compress Unicode characters from U+0000 to U+00FF.

Teradata Database 13.10

August 2010

Added the following:

• Using CASE_N and RANGE_N with CURRENT_DATE or
CURRENT_TIMESTAMP in a PPI.

• Restrictions when using CASE_N and RANGE_N with Period data
types in a PPI.

• SQL user-defined function (UDF) expressions.

• Using CASE_N and RANGE_N with character data.

• New arithmetic functions: CEILING and FLOOR.

• New chapter on BYTE/BIT manipulation functions.

• New chapter on calendar functions.

• New chapter on compression and decompression functions.

• New table functions for normalize and sequenced aggregation
operations over Period data types.

• AT clause extensions used for time zone specification, and using
time zone strings and the GetTimeZoneDisplacement UDF to adjust
for daylight saving time.

• The effect of the DBS Control flag TimeDateWZControl on the
built-in functions: CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, DATE, and TIME.

• Window feature support for user-defined aggregate functions.

Teradata Database 13.0

April 2009

Added the following:

• Clarification that UDT expressions cannot be used as input
arguments to UDFs written in Java, and they cannot be used as IN
and INOUT parameters of external stored procedures written in
Java.

• Restriction that the HASH BY or LOCAL ORDER BY clauses cannot
be used in derived tables with set operators.

• Information about Period data types.

• Information about the CURRENT_USER and CURRENT_ROLE
built-in functions.

• Information about the RESET WHEN clause.

• Information about the NEW VARIANT_TYPE expression for
constructing dynamic UDTs.

• Additional information about implicit DateTime conversions.

• Clarification for determining the server character set of the result of
a CASE expression.

• Information on calculating the interval difference between two
DateTime values.

• A new chapter about UDF expressions.

Preface
Additional Information

SQL Functions, Operators, Expressions, and Predicates 5

Additional Information

To maintain the quality of our products and services, we would like your comments on the
accuracy, clarity, organization, and value of this document. Please e-mail: teradata-
books@lists.teradata.com.

URL Description

www.info.teradata.com/ Use the Teradata Information Products Publishing Library site
to:

• View or download a manual:

1 Under Online Publications, select General Search.

2 Enter your search criteria and click Search.

• Download a documentation CD-ROM:

1 Under Online Publications, select General Search.

2 In the Title or Keyword field, enter CD-ROM, and click
Search.

• Order printed manuals:

Under Print & CD Publications, select How to Order.

www.teradata.com The Teradata home page provides links to numerous sources of
information about Teradata. Links include:

• Executive reports, case studies of customer experiences with
Teradata, and thought leadership

• Technical information, solutions, and expert advice

• Press releases, mentions and media resources

www.teradata.com/t/TEN/ Teradata Customer Education designs, develops and delivers
education that builds skills and capabilities for our customers,
enabling them to maximize their Teradata investment.

www.teradataatyourservice.com Use Teradata @ Your Service to access Orange Books, technical
alerts, and knowledge repositories, view and join forums, and
download software patches.

developer.teradata.com/ Teradata Developer Exchange provides articles on using
Teradata products, technical discussion forums, and code
downloads.

http://www.info.teradata.com
http://www.teradata.com
http://www.teradata.com/t/TEN/
www.teradataatyourservice.com
http://developer.teradata.com/
mailto:teradata-books@lists.teradata.com
mailto:teradata-books@lists.teradata.com

Preface
Additional Information

6 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 7

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Software Releases and Operating Systems .3

Prerequisites .3

Changes to This Book. .4

Additional Information .5

Chapter 1: Introduction. 19

SQL Functions. 19

SQL Operators. 21

SQL Expressions . 22

SQL Predicates. 23

Chapter 2: CASE Expressions . 25

CASE . 25

Valued CASE Expression . 26

Searched CASE Expression . 29

Error Conditions . 33

Rules for the CASE Expression Result Type . 34

Format for a CASE Expression . 39

CASE and Nulls . 40

COALESCE Expression . 42

NULLIF Expression . 44

Table of Contents

8 SQL Functions, Operators, Expressions, and Predicates

Chapter 3: Arithmetic Operators and Functions /
Trigonometric and Hyperbolic Functions .47

Arithmetic Operators .48

Binary Arithmetic Result Data Types .49

Structure of Arithmetic Expressions .53

Arithmetic Functions .55

ABS .56

CASE_N .58

CEILING .68

EXP. .71

FLOOR. .73

LN. .76

LOG .78

NULLIFZERO .80

RANDOM .83

RANGE_N .87

SQRT .101

WIDTH_BUCKET .103

ZEROIFNULL .107

Trigonometric Functions
(COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2). .110

DEGREES
RADIANS .113

Hyperbolic Functions
(COSH, SINH, TANH, ACOSH, ASINH, ATANH) .116

Chapter 4: Byte/Bit Manipulation Functions .119

Bit and Byte Numbering Model. .119

Performing Bit-Byte Operations against Arguments with Non-Equal Lengths123

BITAND .125

BITNOT .128

BITOR .130

BITXOR .133

COUNTSET .136

GETBIT .138

ROTATELEFT .140

Table of Contents

SQL Functions, Operators, Expressions, and Predicates 9

ROTATERIGHT . 143

SETBIT . 146

SHIFTLEFT . 149

SHIFTRIGHT . 152

SUBBITSTR . 155

TO_BYTE . 158

Chapter 5: Comparison Operators . 161

Comparison Operators. 161

Comparison Operators in Logical Expressions . 163

Comparisons That Produce TRUE Results. 165

Data Type Evaluation . 166

Implicit Type Conversion of Comparison Operands . 168

Comparison of ANSI DateTime and Interval in USING Clause . 170

Proper Forms of DATE Types in Comparisons . 171

Character String Comparisons . 172

Comparison of KANJI1 Characters. 175

Comparison Operators and the DEFAULT Function in Predicates 177

Chapter 6: Set Operators . 179

Overview of Set Operators . 179

Rules for Set Operators. 181

Precedence of Set Operators . 182

Retaining Duplicate Rows Using the ALL Option . 183

Attributes of a Set Result . 183

Set Operators With Derived Tables. 185

Set Operators in Subqueries. 186

Set Operators in INSERT … SELECT Statements . 188

Set Operators in View Definitions. 189

Queries Connected by Set Operators . 191

INTERSECT Operator . 195

MINUS/EXCEPT Operator . 198

UNION Operator . 200

Table of Contents

10 SQL Functions, Operators, Expressions, and Predicates

Chapter 7: DateTime and Interval Functions
and Expressions .209

Overview .209

ANSI DateTime and Interval Data Type Assignment Rules .210

Scalar Operations on ANSI SQL:2008 DateTime and Interval Values.212

ANSI DateTime Expressions .213

ANSI Interval Expressions .222

Arithmetic Operators .229

Aggregate Functions and ANSI DateTime and Interval Data Types .231

Scalar Operations and DateTime Functions. .232

Teradata Date and Time Expressions .233

Scalar Operations on Teradata DATE Values .234

ADD_MONTHS .236

EXTRACT .242

GetTimeZoneDisplacement .246

Chapter 8: Calendar Functions .253

day_of_week .254

day_of_month .256

day_of_year .258

day_of_calendar .260

weekday_of_month .262

week_of_month .264

week_of_year .266

week_of_calendar .268

month_of_quarter .270

month_of_year .272

month_of_calendar .274

quarter_of_year .276

quarter_of_calendar .278

year_of_calendar .280

Table of Contents

SQL Functions, Operators, Expressions, and Predicates 11

Chapter 9: Period Functions and Operators . 283

Period Value Constructor . 284

Arithmetic Operators . 287

Comparison of Period Types . 289

BEGIN . 291

CONTAINS . 293

END . 295

IS UNTIL_CHANGED/IS NOT UNTIL_CHANGED . 297

IS UNTIL_CLOSED/IS NOT UNTIL_CLOSED . 299

INTERVAL . 300

LAST. 302

MEETS . 304

NEXT . 306

OVERLAPS . 308

P_INTERSECT . 312

P_NORMALIZE . 314

PRECEDES . 316

PRIOR . 318

LDIFF . 320

RDIFF. 322

SUCCEEDS . 324

TD_NORMALIZE_OVERLAP . 326

TD_NORMALIZE_MEET . 328

TD_NORMALIZE_OVERLAP_MEET . 330

TD_SUM_NORMALIZE_OVERLAP . 332

TD_SUM_NORMALIZE_MEET . 334

TD_SUM_NORMALIZE_OVERLAP_MEET . 336

TD_SEQUENCED_SUM . 338

TD_SEQUENCED_AVG . 340

TD_SEQUENCED_COUNT . 342

Chapter 10: Aggregate Functions . 345

Aggregate Functions . 345

AVG . 350

CORR . 353

Table of Contents

12 SQL Functions, Operators, Expressions, and Predicates

COUNT .356

COVAR_POP .361

COVAR_SAMP .364

GROUPING .367

KURTOSIS. .370

MAX .372

MIN .375

REGR_AVGX .378

REGR_AVGY .381

REGR_COUNT. .384

REGR_INTERCEPT .388

REGR_R2. .392

REGR_SLOPE .396

REGR_SXX .400

REGR_SXY .403

REGR_SYY .406

SKEW .409

STDDEV_POP .412

STDDEV_SAMP .415

SUM .418

VAR_POP .421

VAR_SAMP. .424

Chapter 11: Ordered Analytical Functions. .427

Ordered Analytical Functions .428

Ordered Analytical Functions Benefits .428

Syntax Alternatives for Ordered Analytical Functions .429

Window Feature .430

Applying Windows to Aggregate Functions .437

Characteristics of Ordered Analytical Functions .439

Nesting Aggregates in Ordered Analytical Functions .442

GROUP BY Clause .443

Using Ordered Analytical Functions Examples .446

Window Aggregate Functions .449

CSUM. .467

MAVG .470

Table of Contents

SQL Functions, Operators, Expressions, and Predicates 13

MDIFF . 473

MLINREG . 476

MSUM . 479

PERCENT_RANK. 481

QUANTILE . 485

RANK . 488

RANK . 491

ROW_NUMBER. 494

Chapter 12: String Operator and Functions . 497

Concatenation Operator . 502

CHAR2HEXINT . 508

INDEX . 511

LOWER . 517

POSITION . 520

SOUNDEX. 523

STRING_CS. 527

SUBSTRING/SUBSTR . 530

TRANSLATE . 536

TRANSLATE_CHK . 545

TRIM . 549

UPPER . 553

VARGRAPHIC . 556

VARGRAPHIC Function Conversion Tables. 559

Chapter 13: Logical Predicates. 569

Logical Predicates . 569

ANY/ALL/SOME Quantifiers . 573

BETWEEN/NOT BETWEEN . 578

EXISTS/NOT EXISTS. 579

IN/NOT IN . 585

IS NULL/IS NOT NULL. 592

LIKE . 594

OVERLAPS . 604

Table of Contents

14 SQL Functions, Operators, Expressions, and Predicates

Logical Operators and Search Conditions .608

Chapter 14: Attribute Functions .613

BYTES .614

CHARACTER_LENGTH .616

CHARACTERS .619

DEFAULT .621

FORMAT .625

OCTET_LENGTH .626

TITLE .629

TYPE .630

Chapter 15: Hash-Related Functions .633

Features .633

HASHAMP .634

HASHBAKAMP .637

HASHBUCKET .640

HASHROW .643

Chapter 16: Compression/Decompression Functions 645

CAMSET .646

CAMSET_L .649

DECAMSET. .652

DECAMSET_L .654

LZCOMP .656

LZCOMP_L .658

LZDECOMP .660

LZDECOMP_L .662

TransUnicodeToUTF8 .664

TransUTF8ToUnicode .667

Table of Contents

SQL Functions, Operators, Expressions, and Predicates 15

Chapter 17: Built-In Functions . 669

ACCOUNT . 670

CURRENT_DATE . 671

CURRENT_ROLE. 675

CURRENT_TIME . 677

CURRENT_TIMESTAMP . 681

CURRENT_USER . 685

DATABASE . 686

DATE . 687

PROFILE . 691

ROLE . 692

SESSION . 695

TEMPORAL_DATE . 696

TEMPORAL_TIMESTAMP. 697

TIME . 699

USER . 702

Chapter 18: User-Defined Functions . 705

SQL UDF . 706

Scalar UDF. 711

Aggregate UDF . 714

Window Aggregate UDF . 717

Table UDF . 725

Chapter 19: UDT Expressions and Methods . 729

UDT Expression . 730

NEW. 734

NEW VARIANT_TYPE . 737

Method Invocation . 740

Table of Contents

16 SQL Functions, Operators, Expressions, and Predicates

Chapter 20: Data Type Conversions .745

Forms of Data Type Conversions .745

Implicit Type Conversions. .745

CAST in Explicit Data Type Conversions. .752

Teradata Conversion Syntax in Explicit Data Type Conversions. .755

Data Conversions in Field Mode .757

Byte Conversion .758

Character-to-Character Conversion .762

Implicit Character-to-Character Translation. .765

Character-to-DATE Conversion .767

Character-to-INTERVAL Conversion .773

Character-to-Numeric Conversion. .775

Character-to-Period Conversion. .781

Character-to-TIME Conversion .784

Character-to-TIMESTAMP Conversion .790

Character-to-UDT Conversion .795

Character Data Type Assignment Rules .797

DATE-to-Character Conversion .798

DATE-to-DATE Conversion .802

DATE-to-Numeric Conversion. .804

DATE-to-Period Conversion. .807

DATE-to-TIMESTAMP Conversion .809

DATE-to-UDT Conversion .815

INTERVAL-to-Character Conversion .817

INTERVAL-to-INTERVAL Conversion. .819

INTERVAL-to-Numeric Conversion .823

INTERVAL-to-UDT Conversion .825

Numeric-to-Character Conversion. .827

Numeric-to-DATE Conversion. .832

Numeric-to-INTERVAL Conversion .835

Numeric-to-Numeric Conversion .837

Numeric-to-UDT Conversion. .841

Period-to-Character Conversion. .843

Period-to-DATE Conversion. .846

Period-to-Period Conversion .848

Period-to-TIME Conversion .853

Period-to-TIMESTAMP Conversion .855

Table of Contents

SQL Functions, Operators, Expressions, and Predicates 17

Signed Zone DECIMAL Conversion. 857

TIME-to-Character Conversion . 861

TIME-to-Period Conversion . 864

TIME-to-TIME Conversion. 866

TIME-to-TIMESTAMP Conversion . 874

TIME-to-UDT Conversion . 888

TIMESTAMP-to-Character Conversion . 890

TIMESTAMP-to-DATE Conversion . 894

TIMESTAMP-to-Period Conversion . 905

TIMESTAMP-to-TIME Conversion . 907

TIMESTAMP-to-TIMESTAMP Conversion . 915

TIMESTAMP-to-UDT Conversion . 923

UDT-to-Byte Conversion. 925

UDT-to-Character Conversion . 928

UDT-to-DATE Conversion . 932

UDT-to-INTERVAL Conversion . 935

UDT-to-Numeric Conversion . 938

UDT-to-TIME Conversion . 941

UDT-to-TIMESTAMP Conversion . 944

UDT-to-UDT Conversion . 947

Appendix A: Notation Conventions . 949

Syntax Diagram Conventions . 949

Character Shorthand Notation Used In This Book . 954

Predicate Calculus Notation Used In This Book . 956

Glossary . 957

Index . 959

Table of Contents

18 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 19

CHAPTER 1 Introduction

This chapter provides a brief introduction and description of the SQL functions, operators,
expressions, and predicates described in this book.

SQL Functions

SQL functions return information about some aspect of the database, depending on the
arguments specified at the time the function is invoked.

Functions provide a single result by accepting input arguments, and returning an output
value.

Some SQL functions, referred to as niladic functions, do not have arguments, but do return
values. An example of a niladic SQL function is CURRENT_DATE.

Types of SQL Functions

There are four types of SQL functions:

• Scalar

• Aggregate

• Table

• Ordered Analytical Function

The following table defines these types.

Function Type Definition

Scalar The arguments are individual scalar values of either same or mixed type that can
have different meanings.

The result is a single value or null.

Can be used in any SQL statement where an expression can be used.

Aggregate The argument is a group of rows.

The result is a single value or null.

Normally used in the expression list of a SELECT statement and in the summary
list of a WITH clause.

Chapter 1: Introduction
SQL Functions

20 SQL Functions, Operators, Expressions, and Predicates

Examples of Functions

For examples of table functions, see SQL External Routine Programming.

Domain-specific Functions

Domain-specific functions are Teradata system functions that are created using a development
infrastructure that allows for quick and easy addition of new system functions to the Teradata
Database. Domain-specific functions behave and perform in the same manner as native
Teradata system functions, except that domain-specific functions follow UDF implicit type
conversion rules that are more restrictive than the implicit type conversion rules normally
used by Teradata Database.

Activating Domain-specific Functions

Before you can use the domain-specific functions, you must run the Database Initialization
Program (DIP) utility and execute the DIPALL or DIPUDT script. Normally, DIPALL has
already been executed as part of system installation.

The DIP scripts create a new database named TD_SYSFNLIB. If a database or user with the
same name already exists, you must removed it before activating the domain-specific
functions.

Table The arguments are individual scalar values of either same or mixed type that can
have different meanings.

The result is a table.

Can be used only within the FROM clause of a SELECT statement.

Table functions are a form of user-defined functions and are described in SQL
External Routine Programming.

Ordered
Analytical
Function

The arguments are any normal SQL expression.

The result is handled the same as any other SQL expression. It can be a result
column or part of a more complex arithmetic expression.

Used in operations that require an ordered set of results rows or depend on values
in a previous row. See “Ordered Analytical Functions” on page 428.

Function Type Definition

Function Description

SELECT CHARACTER_LENGTH(Details)
FROM Orders;

Scalar function taking the character or CLOB value
in the Details column and returning a numeric
value for each row in the Orders table.

SELECT AVG(Salary)
FROM Employee;

Aggregate function returning a single numeric value
for the group of numeric values specified by the
Salary column in the Employee table.

Chapter 1: Introduction
SQL Operators

SQL Functions, Operators, Expressions, and Predicates 21

Note: The TD_SYSFNLIB database should be used only by the system to support the domain-
specific functions. Do not store any database objects in this database. Doing so may interfere
with the proper operation of the domain-specific functions.

If you perform a BAR operation that involves the TD_SYSFNLIB database or the DBC
dictionary tables, you must re-execute the DIPALL or the DIPUDT script to reactivate the
domain-specific functions.

Invoking Domain-specific Functions

You can invoke a domain-specific function using the function name alone. For example,
CEILING (arg).

You can also qualify the function name by adding the TD_SYSFNLIB database name. For
example, you can invoke the CEILING function using the fully qualified syntax,
TD_SYSFNLIB.CEILING(arg).

Note: If you try to invoke a domain-specific function using the function name alone, but you
also have a user-defined function (UDF) with the same name in the current database or in the
SYSLIB database, Teradata Database will execute the user-developed UDF instead of the
domain-specific function.

Therefore, to ensure that you are invoking the domain-specific function, do one of the
following:

• To invoke a domain-specific function using the function name alone, you must first
remove any user-developed functions with the same name from the normal UDF search
path. That is, you must remove any existing UDFs with the same name from the current
database and from the SYSLIB database. For detailed information, see “Locations Where
Teradata Database Looks for Functions” in SQL External Routine Programming.

• Use the fully qualified syntax to invoke the domain-specific function. For example,
TD_SYSFNLIB.domain_specific_function. In this case, Teradata Database will invoke the
domain-specific function instead of the user-developed UDF with the same name.

SQL Operators

SQL operators are symbols and keywords that perform operations on their arguments.

Types of Operators

The following types of operators are available in SQL:

• Arithmetic operators such as + and - operate on numeric, DateTime, and Interval data
types.

• The concatenation operator || operates on character and byte types.

• Comparison operators such as = and > test the truth of relations between their arguments.
(Comparison operators are a type of logical predicate. See also “Types of Logical
Predicates” on page 24.)

Chapter 1: Introduction
SQL Expressions

22 SQL Functions, Operators, Expressions, and Predicates

• Set operators, or relational operators, such as INTERSECT and UNION combine result
sets from multiple sources into a single result set.

SQL Expressions

SQL expressions specify a value.

They allow you to perform arithmetic and logical operations, and to generate new values or
Boolean results from constants and stored values.

An expression can consist of any of the following things:

• Column name

• Constant (also referred to as literal)

• Function

• USING variable

• parameter

• parameter marker (question mark (?) placeholder)

• Combination of column names, constants, and functions connected by operators

Types of Expressions

SQL expressions generally fall into the following categories.

Type Description

Numeric expression Expressions are generally classified by the type of result they produce.

For example, a numeric expression consists of a column name, constant,
function, or combination of column names, constants, and functions
connected by arithmetic operators where the result is a numeric type.

String expression

DateTime expression

Interval expression

Period expression

Conditional
expression

An expression that results in a value of TRUE, FALSE, or unknown
(NULL).

Conditional expressions are also referred to as logical predicates. See “SQL
Predicates” on page 23.

Chapter 1: Introduction
SQL Predicates

SQL Functions, Operators, Expressions, and Predicates 23

Examples of Expressions

The following are examples of expressions.

SQL Predicates

SQL predicates, also referred to as conditional expressions, specify a condition of a row or
group that has one of three possible states:

• TRUE

• FALSE

• NULL (or unknown)

Predicates can appear in the following:

CASE expressions CASE expressions consist of a set of WHEN/THEN clauses and an optional
ELSE clause.

A valued CASE expression tests for the first WHEN expression that is equal
to a test expression and returns the value of the matching THEN expression.
If no WHEN expression is equal to the test expression, CASE returns the
ELSE expression, or, if omitted, NULL.

A searched CASE expression tests for the first WHEN expression that
evaluates to TRUE and returns the value of the matching THEN expression.
If no WHEN expression evaluates to TRUE, CASE returns the ELSE
expression, or, if omitted, NULL.

Type Description

Expression Description

'Test Tech' Character string constant

1024 Numeric constant

Employee.FirstName Column name

Salary * 12 + 100 Arithmetic expression producing a numeric value

INTERVAL '10' MONTH * 4 Interval expression producing an interval value

CURRENT_DATE + INTERVAL '2' DAY DateTime expression producing a DATE value

CURRENT_TIME - INTERVAL '1' HOUR DateTime expression producing a TIME value

'Last' || ' Order' String expression producing a character string value

CASE x
WHEN 1
THEN 1001
ELSE 1002

END

Valued CASE conditional expression producing a
numeric value

Chapter 1: Introduction
SQL Predicates

24 SQL Functions, Operators, Expressions, and Predicates

• WHERE, ON, or HAVING clause to qualify or disqualify rows in a SELECT statement.

• WHEN clause search condition of a searched CASE expression

• CASE_N function

• IF, WHILE, REPEAT, and CASE statements in stored procedures

Types of Logical Predicates

SQL provides the following logical predicates:

• Comparison operators

• [NOT] BETWEEN

• LIKE

• [NOT] IN

• [NOT] EXISTS

• OVERLAPS

• IS [NOT] NULL

Logical Operators that Operate on Predicates

• NOT

• AND

• OR

Predicate Quantifiers

• SOME

• ANY

• ALL

Examples of Predicates

Predicate Description

SELECT *
FROM Employee
WHERE Salary < 40000;

Predicate in a WHERE clause specifying a condition
for selecting rows from the Employee table.

SELECT SUM(CASE
WHEN part BETWEEN 100 AND 199
THEN 0
ELSE cost
END)

FROM Orders;

Predicate in a CASE expression specifying a
condition that determines the value passed to the
SUM function for a particular row in the Orders
table.

SQL Functions, Operators, Expressions, and Predicates 25

CHAPTER 2 CASE Expressions

This chapter describes SQL CASE expressions.

CASE

Purpose

Specifies alternate values for a conditional expression or expressions based on equality
comparisons and conditions that evaluate to TRUE.

ANSI Compliance

CASE is ANSI SQL:2008 compliant.

Overview

CASE provides an efficient and powerful method for application developers to change the
representation of data, permitting conversion without requiring host program intervention.

For example, you could code employee status as 1 or 2, meaning full-time or part-time,
respectively. For efficiency, the system stores the numeric code but prints or displays the
appropriate textual description in reports. This storage and conversion is managed by
Teradata Database.

In addition, CASE permits applications to generate nulls based on information derived from
the database, again without host program intervention. Conversely, CASE can be used to
convert a null into a value.

Two Forms of CASE Expressions

CASE expressions are specified in two different forms: Valued and Searched.

• Valued CASE is described under “Valued CASE Expression” on page 26.

• Searched CASE is described under “Searched CASE Expression” on page 29.

CASE Shorthands for Handling Nulls

Two shorthand forms of CASE are provided to handle nulls:

• COALESCE is described under “COALESCE Expression” on page 42.

• NULLIF is described under “NULLIF Expression” on page 44.

Chapter 2: CASE Expressions
Valued CASE Expression

26 SQL Functions, Operators, Expressions, and Predicates

Valued CASE Expression

Purpose

Evaluates a set of expressions for equality with a test expression and returns as its result the
value of the scalar expression defined for the first WHEN clause whose value equals that of the
test expression. If no equality is found, then CASE returns the scalar value defined by an
optional ELSE clause, or if omitted, NULL.

Syntax

where:

ANSI Compliance

Valued CASE is ANSI SQL:2008 compliant.

Teradata Database does not enforce the ANSI restriction that value_expression_1 must be a
deterministic function. In particular, Teradata Database allows the function RANDOM to be
used in value_expression_1.

Note that if RANDOM is used, nondeterministic behavior may occur, depending on whether
value_expression_1 is recalculated for each comparison to value_expression_n.

Syntax element … Specifies …

value_expression_1 an expression whose value is tested for equality with value_expression_n.

value_expression_n a set of expressions against which the value for value_expression_1 is tested
for equality.

scalar_expression_n an expression whose value is returned on the first equality comparison of
value_expression_1 and value_expression_n.

scalar_expression_m an expression whose value is returned if evaluation falls through to the ELSE
clause.

1101A012

value_expression_1CASE

END

A

B

scalar_expression_mELSE

WHEN BA value_expression_n THEN scalar_expression_n

Chapter 2: CASE Expressions
Valued CASE Expression

SQL Functions, Operators, Expressions, and Predicates 27

Usage Notes

WHEN clauses are processed sequentially.

The first WHEN clause value_expression_n that equates to value_expression_1 returns the
value of its associated scalar_expression_n as its result. The evaluation process then terminates.

If no value_expression_n equals value_expression_1, then scalar_expression_m, the argument of
the ELSE clause, is the result.

If no ELSE clause is defined, then the result defaults to NULL.

The data type of value_expression_1 must be comparable with the data types of all of the
value_expression_n values.

For information on the result data type of a CASE expression, see “Rules for the CASE
Expression Result Type” on page 34.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a
runtime error is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or
CURRENT_TIMESTAMP in a CASE expression that is specified in a partitioning expression
for a partitioned primary index (PPI). In this case, all rows are scanned during reconciliation.

Default Title

The default title for a CASE expression appears as:

<CASE expression>

Restrictions on the Data Types in a CASE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n,
scalar_expression_m, or scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n,
scalar_expression_m, or scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression only when they are identical types
because Teradata Database does not perform implicit type conversion on UDTs in
CASE expressions.

A workaround for this restriction is to use CREATE CAST to define casts that cast
between the UDTs, and then explicitly invoke the CAST function in the CASE
expression.

For more information on CREATE CAST, see SQL Data Definition Language.

Chapter 2: CASE Expressions
Valued CASE Expression

28 SQL Functions, Operators, Expressions, and Predicates

Related Topics

Example 1

The following example uses a Valued CASE expression to calculate the fraction of cost in the
total cost of inventory represented by parts of type ‘1’:

SELECT SUM(CASE part
WHEN '1'
THEN cost
ELSE 0

END
)/SUM(cost)

FROM t;

Example 2

A CASE expression can be used in place of any value-expression.

SELECT *
FROM t
WHERE x = CASE y

WHEN 2
THEN 1001
WHEN 5
THEN 1002

END;

Example 3

The following example shows how to combine a CASE expression with a concatenation
operator:

SELECT prodID, CASE prodSTATUS
WHEN 1
THEN 'SENT'
ELSE 'BACK ORDER'
END || ' STATUS'

FROM t1;

For additional notes on … See …

error conditions “Error Conditions” on page 33.

the result data type of a CASE
expression

“Rules for the CASE Expression Result Type” on page 34.

format of the result of a CASE
expression

“Format for a CASE Expression” on page 39.

nulls and CASE expressions “CASE and Nulls” on page 40.

Chapter 2: CASE Expressions
Searched CASE Expression

SQL Functions, Operators, Expressions, and Predicates 29

Searched CASE Expression

Purpose

Evaluates a search condition and returns one of a WHEN clause-defined set of scalar values
when it finds a value that evaluates to TRUE. If no TRUE test is found, then CASE returns the
scalar value defined by an ELSE clause, or if omitted, NULL.

Syntax

where:

ANSI Compliance

Searched CASE is ANSI SQL:2008 compliant.

Usage Notes

WHEN clauses are processed sequentially.

The first WHEN clause search_condition_n that is TRUE returns the value of its associated
scalar_expression_n as its result. The evaluation process then ends.

If no search_condition_n is TRUE, then scalar_expression_m, the argument of the ELSE clause,
is the result.

If no ELSE clause is defined, then the default value for the result is NULL.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a
runtime error is returned.

Syntax element … Specifies …

search_condition_n a predicate condition to be tested for truth.

scalar_expression_n a scalar expression whose value is returned when search_condition_n is the
first search condition that evaluates to TRUE.

scalar_expression_m a scalar expression whose value is returned when no search_condition_n
evaluates to TRUE.

FF07D224

CASE

END

A

A

scalar_expression_mELSE

WHEN search_condition_n THEN scalar_expression_n

Chapter 2: CASE Expressions
Searched CASE Expression

30 SQL Functions, Operators, Expressions, and Predicates

Recommendation: Do not use the built-in functions CURRENT_DATE or
CURRENT_TIMESTAMP in a CASE expression that is specified in a partitioning expression
for a partitioned primary index (PPI). In this case, all rows are scanned during reconciliation.

Default Title

The default title for a CASE expression appears as:

<CASE expression>

Rules for WHEN Search Conditions

WHEN search conditions have the following properties:

• Can take the form of any comparison operator, such as LIKE, =, or <>.

• Can be a quantified predicate, such as ALL or ANY.

• Can contain a scalar subquery.

• Can contain joins of two tables.

For example:

SELECT CASE
WHEN t1.x=t2.x THEN t1.y
ELSE t2.y
END FROM t1,t2;

• Cannot contain SELECT statements.

Restrictions on the Data Types in a CASE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data Type Restrictions

BLOB A BLOB can only appear in search_condition_n, scalar_expression_m, or
scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in search_condition_n, scalar_expression_m, or
scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression only when they are identical types
because Teradata Database does not perform implicit type conversion on UDTs in
CASE expressions.

A workaround for this restriction is to use CREATE CAST to define casts that cast
between the UDTs, and then explicitly invoke the CAST function in the CASE
expression.

For more information on CREATE CAST, see SQL Data Definition Language.

Chapter 2: CASE Expressions
Searched CASE Expression

SQL Functions, Operators, Expressions, and Predicates 31

Related Topics

Example 1

The following statement is equivalent to the first example of the valued form of CASE on
“Example 1” on page 28:

SELECT SUM(CASE
WHEN part='1'
THEN cost
ELSE 0

END
) / SUM(cost)

FROM t;

Example 2

CASE expressions can be used in place of any value-expressions.

Note that the following example does not specify an ELSE clause. ELSE clauses are always
optional in a CASE expression. If an ELSE clause is not specified and none of the WHEN
conditions are TRUE, then a null is returned.

SELECT *
FROM t
WHERE x = CASE

WHEN y=2
THEN 1
WHEN (z=3 AND y=5)
THEN 2

END;

Example 3

The following example uses an ELSE clause.

SELECT *
FROM t
WHERE x = CASE

WHEN y=2
THEN 1
ELSE 2

END;

For additional notes on … See …

error conditions “Error Conditions” on page 33.

the result data type of a CASE
expression

“Rules for the CASE Expression Result Type” on page 34.

format of the result of a CASE
expression

“Format for a CASE Expression” on page 39.

nulls and CASE expressions “CASE and Nulls” on page 40.

Chapter 2: CASE Expressions
Searched CASE Expression

32 SQL Functions, Operators, Expressions, and Predicates

Example 4

The following example shows how using a CASE expression can result in significantly
enhanced performance by eliminating multiple passes over the data. Without using CASE,
you would have to perform multiple queries for each region and then consolidate the answers
to the individual queries in a final report.

SELECT SalesMonth, SUM(CASE
WHEN Region='NE'
THEN Revenue
ELSE 0

END),
SUM(CASE

WHEN Region='NW'
THEN Revenue
ELSE 0

END),
SUM(CASE

WHEN Region LIKE 'N%'
THEN Revenue
ELSE 0

END)
AS NorthernExposure, NorthernExposure/SUM(Revenue),
SUM(Revenue)
FROM Sales
GROUP BY SalesMonth;

Example 5

All employees whose salary is less than $40000 are eligible for an across the board pay increase.

The following SELECT statement uses a CASE expression to produce a report showing all
employees making under $40000, displaying the first 15 characters of the last name, the salary
amount (formatted with $ and punctuation), the number of years of service based on the
current date (in the column named On_The_Job) and which of the four categories they
qualify for: '15% Increase', '10% Increase', '05% Increase' or 'Not Qualified'.

SELECT CAST(last_name AS CHARACTER(15))
,salary_amount (FORMAT '$,$$9,999.99')
,(date - hire_date)/365.25 (FORMAT 'Z9.99') AS On_The_Job
,CASE

WHEN salary_amount < 30000 AND On_The_Job > 8
THEN '15% Increase'
WHEN salary_amount < 35000 AND On_The_Job > 10
THEN '10% Increase'
WHEN salary_amount < 40000 AND On_The_Job > 10

IF your salary is less
than …

AND you have greater than this
many years of service …

THEN you receive this percentage
salary increase …

$30000.00 8 15

$35000.00 10 10

$40000.00 5

Chapter 2: CASE Expressions
Error Conditions

SQL Functions, Operators, Expressions, and Predicates 33

THEN '05% Increase'
ELSE 'Not Qualified'

END AS Plan
WHERE salary_amount < 40000
FROM employee
ORDER BY 4;

The result of this query appears in the following table:

Error Conditions

The following conditions or expressions are considered illegal in a CASE expression:

last_name salary_amount On_The_Job Plan

Trader $37,850.00 20.61 05% Increase

Charles $39,500.00 18.44 05% Increase

Johnson $36,300.00 20.41 05% Increase

Hopkins $37,900.00 19.99 05% Increase

Morrissey $38,750.00 18.44 05% Increase

Ryan $31,200.00 20.41 10% Increase

Machado $32,300.00 18.03 10% Increase

Short $34,700.00 17.86 10% Increase

Lombardo $31,000.00 20.11 10% Increase

Phillips $24,500.00 19.95 15% Increase

Rabbit $26,500.00 18.03 15% Increase

Kanieski $29,250.00 20.11 15% Increase

Hoover $25,525.00 20.73 15% Increase

Crane $24,500.00 19.15 15% Increase

Stein $29,450.00 20.41 15% Increase

Condition or Expression Example

A condition after the keyword CASE is
supplied.

SELECT CASE a=1
WHEN 1
THEN 1
ELSE 0
END

FROM t;

Chapter 2: CASE Expressions
Rules for the CASE Expression Result Type

34 SQL Functions, Operators, Expressions, and Predicates

Rules for the CASE Expression Result Type

Because the expressions in CASE THEN/ELSE clauses can be different data types, determining
the result type is not always straightforward. You can use the TYPE attribute function with the
CASE expression as the argument to find out the result data type. See “TYPE” on page 630.

The following rules apply to the data type of the CASE expression result.

THEN/ELSE Expressions Having the Same Non-Character Data Type

If all of the THEN and ELSE expressions have the same non-character data type, the result of
the CASE expression is that type. For example, if all of the THEN and ELSE expressions have
an INTEGER type, the result type of the CASE expression is INTEGER.

For information about how the precision and scale of DECIMAL results are calculated, see
“Binary Arithmetic Result Data Types” on page 49.

An invalid WHEN expression is supplied in a
valued CASE expression.

SELECT CASE a
WHEN a=1
THEN 1
ELSE 0
END

FROM t;

An invalid WHEN condition is supplied in a
searched CASE expression.

SELECT CASE
WHEN a
THEN 1
ELSE 0
END

FROM t;

SELECT CASE
WHEN NULL
THEN 'NULL'
END

FROM table_1;

A non-scalar subquery is specified in a WHEN
condition of a searched CASE expression.

SELECT CASE
WHEN t.a IN
(SELECT u.a
FROM u)

THEN 1
ELSE 0
END

FROM t;

A CASE expression references multiple UDTs
that are not identical to each other.

SELECT CASE t.shape.gettype()
WHEN 1
THEN NEW circle('18,18,324')
WHEN 2
THEN NEW square('20,20,400')
END;

Condition or Expression Example

Chapter 2: CASE Expressions
Rules for the CASE Expression Result Type

SQL Functions, Operators, Expressions, and Predicates 35

THEN/ELSE Character Type Expressions

The following rules apply to CASE expressions where the data types of all of the THEN/ELSE
expressions are character:

• The result of the CASE expression is also a character data type, with the length equal to the
maximum length of the different character data types of the THEN/ELSE expressions.

• If the data types of all of the THEN/ELSE expressions are CHARACTER (or CHAR), the
result data type will be CHARACTER. If one or more expressions are VARCHAR (or
LONG VARCHAR), the result data type will be VARCHAR.

• The server character set of the result is determined by scanning all the server character sets
of the THEN/ELSE character expressions.

If any THEN/ELSE character expression is a KANJI1 constant (for example, _Kanji1'<hex
value>'XC), then all other THEN/ELSE character expressions must be of KANJI1 server
character set. Otherwise, an error is returned.

In all other cases, the server character set of the result is set to the server character set of the
first THEN/ELSE character expression that is not a constant. The remaining THEN/ELSE
character expressions must be translatable to this server character set.

If all THEN/ELSE character expressions are constants, the server character set of the result
is Unicode.

Examples of Character Data in a CASE Expression

For the following examples of CHARACTER data behavior, assume the default server
character set is KANJI1 and the table definition for the CASE examples is as follow:

CREATE table_1
(
i INTEGER,
column_l CHARACTER(10) CHARACTER SET LATIN,
column_u CHARACTER(10) CHARACTER SET UNICODE,
column_j CHARACTER(10) CHARACTER SET KANJISJIS,
column_g CHARACTER(10) CHARACTER SET GRAPHIC,
column_k CHARACTER(10) CHARACTER SET KANJI1

);

Example 1

The server character set of the result of the following query is UNICODE, because the server
character set of the first THEN expression is UNICODE:

SELECT i, CASE
WHEN i=2 THEN column_u
WHEN i=3 THEN column_j
WHEN i=4 THEN column_g
WHEN i=5 THEN column_k
ELSE column_l

END
FROM table_1
ORDER BY 1;

Chapter 2: CASE Expressions
Rules for the CASE Expression Result Type

36 SQL Functions, Operators, Expressions, and Predicates

Example 2

The result of the following query is a failure because one THEN/ELSE expression is a KANJI1
constant, but the server character sets of all the other THEN/ELSE expressions are not
KANJI1.

SELECT i, CASE
WHEN i=1 THEN column_l
WHEN i=2 THEN column_u
WHEN i=3 THEN column_j
WHEN i=4 THEN column_g
WHEN i=5 THEN _Kanji1'4142'XC
ELSE column_k

END
FROM table_1
ORDER BY 1;

Example 3

One THEN/ELSE expression in the following query has a KANJI1 constant. The query is
successful and the result data type is KANJI1 because the server character set of all the other
THEN/ELSE expressions are KANJI1.

SELECT i, CASE
WHEN i=1 THEN column_k
WHEN i=2 THEN ‘abc’
WHEN i=3 THEN 8
WHEN i=4 THEN _Kanji1’4142’XC
ELSE 10

END
FROM table_1
ORDER BY 1;

THEN/ELSE Expressions Having Mixed Data Types

The rules for mixed data appear in the following table:

IF the THEN/ELSE clause expressions … THEN …

consist of BYTE and/or VARBYTE data
types

if the data types of all of the THEN/ELSE expressions are
BYTE, the result data type will be BYTE. If one or more
expressions are VARBYTE, the result data type will be
VARBYTE.

contain a DateTime or Interval data
type

all of the THEN/ELSE clause expressions must have the
same data type.

contain a FLOAT (approximate
numeric) and no character strings

the CASE expression returns a FLOAT result.

Note: Some inaccuracy is inherent and unavoidable
when FLOAT data types are involved.

Chapter 2: CASE Expressions
Rules for the CASE Expression Result Type

SQL Functions, Operators, Expressions, and Predicates 37

Examples of Numeric Data in a CASE Expression

For the following examples of numeric data behavior, assume the following table definitions
for the CASE examples:

CREATE TABLE dec22
(column_l INTEGER
,column_2 INTEGER
,column_3 DECIMAL(22,2));

Example 1

In the following statement, the CASE expression fails when column_2 contains the value 1 and
column_3 contains the value 11223344556677889900.12 because the result is a DECIMAL
value that requires more than 38 digits of precision:

SELECT SUM (CASE
WHEN column_2=1
THEN column_3 * 6.112233445566778800000
ELSE column_3

END)
FROM dec22;

Example 2

The following query corrects the problem in Example 1 by shortening the scale of the
multiplier in the THEN expression:

SELECT SUM (CASE
WHEN column_2=1
THEN column_3 * 6.1122334455667788

are composed only of DECIMAL data the CASE expression returns a DECIMAL result.

Note: A DECIMAL arithmetic result can have up to 38
digits. A result larger than 38 digits produces a numeric
overflow error.

For information about how the precision and scale of
DECIMAL results are calculated, see “Binary Arithmetic
Result Data Types” on page 49.

are composed only of mixed
DECIMAL, BYTEINT, SMALLINT,
INTEGER, and BIGINT data

are a mix of BYTEINT, SMALLINT,
INTEGER, and BIGINT data

the resulting type is the largest type of any of the THEN/
ELSE clause expressions, where the following list orders
the types from largest to smallest:

• BIGINT

• INTEGER

• SMALLINT

• BYTEINT

are composed only of numeric and
character data

the numeric data is converted to character.

Note: An error is generated if the server character set is
GRAPHIC.

IF the THEN/ELSE clause expressions … THEN …

Chapter 2: CASE Expressions
Rules for the CASE Expression Result Type

38 SQL Functions, Operators, Expressions, and Predicates

ELSE column_3
END)

FROM dec22;

Example 3

In the following query, the CASE expression returns a DECIMAL result because its THEN and
ELSE clauses contain both INTEGER and DECIMAL values:

SELECT SUM (CASE
WHEN column_2=1
THEN column_3 * 6
ELSE column_3
END)

FROM dec22;

Examples of Character and Numeric Data in a CASE Expression

The following examples illustrate the behavior of queries containing CASE expressions with a
THEN/ELSE clause composed of numeric and character data.

Example 1

In the following query, the CASE expression returns a VARCHAR result because its THEN
and ELSE clause contains both FLOAT and VARCHAR values. The length of the result is 30
since the default format for FLOAT is a string less than 30 characters, and USER is defined as
VARCHAR(30) CHARACTER SET UNICODE.

SELECT a, CASE
WHEN a=1
THEN TIME
ELSE USER
END

FROM table_1
ORDER BY 1;

Example 2

For this example, assume the following table definition:

CREATE table_1
(i INTEGER,
column_l CHARACTER(10) CHARACTER SET LATIN,
column_u CHARACTER(10) CHARACTER SET UNICODE,
column_j CHARACTER(10) CHARACTER SET KANJISJIS,
column_g CHARACTER(10) CHARACTER SET GRAPHIC,
column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server
character set of the first THEN with a character type is GRAPHIC):

SELECT i, CASE
WHEN i=1 THEN 4
WHEN i=2 THEN column_g
WHEN i=3 THEN 5
WHEN i=4 THEN column_l

Chapter 2: CASE Expressions
Format for a CASE Expression

SQL Functions, Operators, Expressions, and Predicates 39

WHEN i=5 THEN column_k
ELSE 10

END
FROM table_1
ORDER BY 1;

Format for a CASE Expression

Default Format

The result of a CASE expression is displayed using the default format for the resulting data
type. The result of a CASE expression does not apply the explicit format that may be defined
for a column appearing in a THEN/ELSE expression.

Consider the following table definition:

CREATE TABLE duration
(i INTEGER
,start_date DATE FORMAT 'EEEEBMMMBDD,BYYYY'
,end_date DATE FORMAT 'DDBM3BY4');

Assume the default format for the DATE data type is 'YY/MM/DD'.

The following query displays the result of the CASE expression using the 'YY/MM/DD' default
DATE format, not the format defined for the start_date or end_date columns:

SELECT i, CASE
WHEN i=1
THEN start_date
WHEN i=2
THEN end_date

END
FROM duration
ORDER BY 1;

Using Explicit Type Conversion to Change Format

To modify the format of the result of a CASE expression, use CAST and specify the FORMAT
clause.

Here is an example that uses CAST to change the format of the result of the CASE expression
in the previous query:

SELECT i, (CAST ((CASE
WHEN i=1
THEN start_date
WHEN i=2
THEN end_date

END) AS DATE FORMAT 'M4BDD,BYYYY'))
FROM duration
ORDER BY 1;

For information on the default data type formats and the FORMAT phrase, see SQL Data
Types and Literals.

Chapter 2: CASE Expressions
CASE and Nulls

40 SQL Functions, Operators, Expressions, and Predicates

CASE and Nulls

The ANSI SQL:2008 standard specifies that the CASE expression and its related expressions
COALESCE and NULLIF must be capable of returning a null result.

Nulls and CASE Expressions

The rules for null usage in CASE, NULLIF, and COALESCE expressions are as follows.

• If no ELSE clause is specified in a CASE expression and the evaluation falls through all the
WHEN clauses, the result is null.

• Nulls and expressions containing nulls are valid as value_expression_1 in a valued CASE
expression.

The following examples are valid.

SELECT CASE NULL
WHEN 10
THEN 'TEN'

END;

SELECT CASE NULL + 1
WHEN 10
THEN 'TEN'

END;

Both of the preceding examples return NULL because no ELSE clause is specified, and the
evaluation falls through the WHEN clause because NULL is not equal to any value or to
NULL.

• Comparing NULL to any value or to NULL is always FALSE. When testing for NULL, it is
best to use a searched CASE expression using IS NULL or IS NOT NULL in the WHEN
condition.

The following example is valid.

SELECT CASE
WHEN column_1 IS NULL
THEN 'NULL'

END
FROM table_1;

Often, Teradata Database can detect when an expression that always evaluates to NULL is
compared to some other expression or NULL, and gives an error that recommends using
IS NULL or IS NOT NULL instead. Note that ANSI SQL does not consider this to be an
error; however, Teradata Database reports an error since it is unlikely that comparing
NULL in this manner is the intent of the user.

The following examples are not legal.

SELECT CASE column_1
WHEN NULL
THEN 'NULL'

END
FROM table_1;

Chapter 2: CASE Expressions
CASE and Nulls

SQL Functions, Operators, Expressions, and Predicates 41

SELECT CASE column_1
WHEN NULL + 1
THEN 'NULL'

END
FROM table_1;
SELECT CASE

WHEN column_1 = NULL
THEN 'NULL'

END
FROM table_1;
SELECT CASE

WHEN column_1 = NULL + 1
THEN 'NULL'

END
FROM table_1;

• Nulls and expressions containing nulls are valid as THEN clause expressions.

The following example is valid.

SELECT CASE
WHEN column_1 = 10
THEN NULL

END
FROM table_1

Note that, unlike the previous examples, the NULL in the THEN clause is an SQL keyword
and not the value of a character constant.

CASE Shorthands

ANSI also defines two shorthand special cases of CASE specifically for handling nulls.

• COALESCE expression (see “COALESCE Expression” on page 42)

• NULLIF expression (see “NULLIF Expression” on page 44)

Chapter 2: CASE Expressions
COALESCE Expression

42 SQL Functions, Operators, Expressions, and Predicates

COALESCE Expression

Purpose

COALESCE returns NULL if all its arguments evaluate to null. Otherwise, it returns the value
of the first non-null argument in the scalar_expression list.

COALESCE is a shorthand expression for the following full CASE expression:

CASE
WHEN scalar_expression_1 IS NOT NULL
THEN scalar_expression_1
...
WHEN scalar_expression_n IS NOT NULL
THEN scalar_expression_n
ELSE NULL

END

Syntax

where:

ANSI Compliance

COALESCE is ANSI SQL:2008 compliant.

Usage Notes

A scalar_expression_n in the argument list may be evaluated twice: once as a search condition
and again as a return value for that search condition.

Using a nondeterministic function, such as RANDOM, in a scalar_expression_n may have
unexpected results, because if the first calculation of scalar_expression_n is not NULL, the
second calculation of that scalar_expression_n, which is returned as the value of the
COALESCE expression, might be NULL.

You can use a scalar subquery in a COALESCE expression. However, if you use a non-scalar
subquery (a subquery that returns more than one row), a runtime error is returned.

Syntax element … Specifies …

scalar_expression_n an argument list.

Each COALESCE function must have at least two operands.

1101E227

COALESCE

2,

()scalar_expression_n

Chapter 2: CASE Expressions
COALESCE Expression

SQL Functions, Operators, Expressions, and Predicates 43

For additional information, such as the rules for evaluation and result data type, see “CASE”
on page 25.

Default Title

The default title for a COALESCE expression appears as:

<CASE expression>

Restrictions on the Data Types in a COALESCE Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a COALESCE expression:

Example 1

The following example returns the home phone number of the named individual (if present),
or office phone if HomePhone is null, or MessageService if present and both home and office
phone values are null. Returns NULL if all three values are null.

SELECT Name, COALESCE (HomePhone, OfficePhone, MessageService)
FROM PhoneDir;

Example 2

The following example uses COALESCE with an arithmetic operator.

SELECT COALESCE(Boxes,0) * 100
FROM Shipments;

Example 3

The following example uses COALESCE with a comparison operator.

SELECT Name
FROM Directory
WHERE Organization <> COALESCE (Level1, Level2, Level3);

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types
because Teradata Database does not perform implicit type conversion on UDTs in a
COALESCE expression.

Chapter 2: CASE Expressions
NULLIF Expression

44 SQL Functions, Operators, Expressions, and Predicates

NULLIF Expression

Purpose

NULLIF returns NULL if its arguments are equal. Otherwise, it returns its first argument,
scalar_expression_1.

NULLIF is a shorthand expression for the following full CASE expression:

CASE
WHEN scalar_expression_1=scalar_expression_2
THEN NULL
ELSE scalar_expression_1

END

Syntax

where:

ANSI Compliance

NULLIF is ANSI SQL:2008 compliant.

Usage Notes

The scalar_expression_1 argument may be evaluated twice: once as part of the search
condition (see the preceding expanded CASE expression) and again as a return value for the
ELSE clause.

Using a nondeterministic function, such as RANDOM, may have unexpected results if the
first calculation of scalar_expression_1 is not equal to scalar_expression_2, in which case the
result of the CASE expression is the value of the second calculation of scalar_expression_1,
which may be equal to scalar_expression_2.

You can use a scalar subquery in a NULLIF expression. However, if you use a non-scalar
subquery (a subquery that returns more than one row), a runtime error is returned.

Syntax element … Specifies …

scalar_expression_1 the scalar expression to the left of the = in the expanded CASE
expression, as shown previously in “Purpose.”

scalar_expression_2 the scalar expression to the right of the = in the expanded CASE
expression, as shown previously in “Purpose.”

HH01B094

NULLIF scalar_expression1, scalar_expression2()

Chapter 2: CASE Expressions
NULLIF Expression

SQL Functions, Operators, Expressions, and Predicates 45

For additional information, such as the rules for evaluation and result data type, see “CASE”
on page 25.

Default Title

The default title for a NULLIF expression appears as:

<CASE expression>

Restrictions on the Data Types in a NULLIF Expression

The following restrictions apply to CLOB, BLOB, and UDT types in a NULLIF expression:

Examples

The following examples show queries on the following table:

CREATE TABLE Membership
(FullName CHARACTER(39)
,Age SMALLINT
,Code CHARACTER(4));

Example 1

Here is the ANSI-compliant form of the Teradata SQL NULLIFZERO(Age) function, and is
more versatile.

SELECT FullName, NULLIF (Age,0) FROM Membership;

Example 2

In the following query, blanks indicate no value.

SELECT FullName, NULLIF (Code, ' ') FROM Membership;

Example 3

The following example uses NULLIF in an expression with an arithmetic operator.

SELECT NULLIF(Age,0) * 100;

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types and
have an ordering definition.

Chapter 2: CASE Expressions
NULLIF Expression

46 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 47

CHAPTER 3 Arithmetic Operators and
Functions / Trigonometric and

Hyperbolic Functions

This chapter describes the SQL arithmetic operators and functions/trigonometric and
hyperbolic functions.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Arithmetic Operators

48 SQL Functions, Operators, Expressions, and Predicates

Arithmetic Operators

Teradata SQL supports the following arithmetic operators.

ANSI Compliance

Except for MOD and **, the arithmetic operators are ANSI SQL:2008 compliant.

Arithmetic Operators and LOBs

Arithmetic operators do not support BLOB or CLOB types.

Arithmetic Operators and DateTime and Interval Data Types

For details on the arithmetic operators permitted for DateTime and Interval data types, see
“Arithmetic Operators” on page 229.

Arithmetic Operators and Period Data Types

For details on the arithmetic operators permitted for Period data types, see “Arithmetic
Operators” on page 287.

Operator Function

** Exponentiate

This is a Teradata extension to the ANSI SQL:2008 standard.

* Multiply

/ Divide

MOD Modulo (remainder).

MOD calculates the remainder in a division operation.

For example, 60 MOD 7 = 4: 60 divided by 7 equals 8, with a remainder of 4. The
result takes the sign of the dividend, thus:

-17 MOD 4 = -1

-17 MOD -4 = -1

17 MOD -4 = 1

17 MOD 4 = 1

This is a Teradata extension to the ANSI SQL:2008 standard.

+ Add

- Subtract

+ Unary plus (positive value)

- Unary minus (negative value)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Binary Arithmetic Result Data Types

SQL Functions, Operators, Expressions, and Predicates 49

Arithmetic Operators and UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and a predefined numeric data type such as
FLOAT or INTEGER.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including arithmetic
operators, is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see “Implicit Type Conversions”
on page 745.

Binary Arithmetic Result Data Types

The data type of the result of an arithmetic expression depends on the data types of the two
operands. Operands are converted to the result type before the operation is performed.

For example, before an INTEGER value is added to a FLOAT value, the INTEGER value is
converted to FLOAT, the data type of the result.

Result Data Type

The following table shows the result data type for binary arithmetic operators.

The result data type for binary arithmetic operations involving UDT operands is the same as
the result data type for the predefined data types to which the UDTs are implicitly cast.

For details on the result data type for binary arithmetic operations involving DateTime and
Interval types, see “Arithmetic Operators and Result Types” on page 229.

When the operand
on the left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

any type any type ** FLOAT

DATE BYTEINT
SMALLINT
INTEGER
BIGINT

+ - DATE1

BYTEINT
SMALLINT
INTEGER

* / MOD INTEGER4

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Binary Arithmetic Result Data Types

50 SQL Functions, Operators, Expressions, and Predicates

DATE
(continued)

BIGINT * / MOD BIGINT4

DECIMAL(k,j) + - DATE2,4

* / MOD DECIMAL(p,j)4,6

FLOAT * / + - MOD FLOAT

DATE - INTEGER5

+ * / MOD INTEGER4

CHAR(n)
VARCHAR(n)

, / + - MOD FLOAT3,4

BYTEINT
SMALLINT
INTEGER

BYTEINT
SMALLINT
INTEGER

* / + - MOD INTEGER

BIGINT * / + - MOD BIGINT

DECIMAL(k,j) * / + - MOD DECIMAL(p,j)6

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT3

DATE + DATE1

- error

* / MOD INTEGER4

BIGINT BYTEINT
SMALLINT
INTEGER
BIGINT

* / + - MOD BIGINT

DECIMAL(k,j) * / + - MOD DECIMAL(p,j)6

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT3

DATE + DATE1

- error

* / MOD BIGINT4

When the operand
on the left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Binary Arithmetic Result Data Types

SQL Functions, Operators, Expressions, and Predicates 51

1 If the value of a date result is not in the range of values allowed for the DATE type, an error
is reported.

The range is any date on the Gregorian calendar from year 1 to year 9999.

DECIMAL(m,n) BYTEINT
SMALLINT
INTEGER
BIGINT

+ - * DECIMAL(p,n)6

/ MOD DECIMAL(m,n)

DECIMAL(k,j) + - DECIMAL
(min(p,(1+max(n,j)+max(m-n,k-j))),
max(n,j))7

* DECIMAL(min(p,m+k),(n+j))7

/ MOD DECIMAL(p,max(n,j))7

FLOAT * / + - MOD FLOAT

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT3

DATE + DATE2

- error

* DECIMAL(p,n)4,6

/ MOD DECIMAL(m,n)4

FLOAT BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(k,j)
FLOAT

* / + - MOD FLOAT

DATE * / + - MOD FLOAT4

CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT3

CHAR(n)
VARCHAR(n)

BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(k,j)
FLOAT
CHAR(n)
VARCHAR(n)

* / + - MOD FLOAT3

DATE * / + - MOD FLOAT3,4

When the operand
on the left is …

And the operand
on the right is …

And the
operator is … Then the result data type is …

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Binary Arithmetic Result Data Types

52 SQL Functions, Operators, Expressions, and Predicates

2 Fractions of decimal values are truncated when added to or subtracted from date values.

Note 1 also applies.

3 If an argument of an arithmetic operator is a character string, the first action is to attempt
to convert the character string to a floating value.

If this conversion fails, an error is reported.

4 These operations on DATE do not report an error, but results are generally not
meaningful.

5 The difference between two dates is the number of days between those dates.

Note that this is not the numeric difference between the values.

6 The value of p, the number of digits in the decimal result, depends on:

• The value specified for MaxDecimal in DBSControl.

For more information on DBSControl and MaxDecimal, see “DBS Control utility” in
the Utilities book.

• The number of digits in the decimal operand, where the number of digits is k for a
DECIMAL(k,j) operand on the right side of the operator or m for a DECIMAL(m,n)
operand on the left side of the operator.

7 The value of p in the definition of the decimal result data type depends on the value
specified for MaxDecimal in DBSControl and the number of digits in the DECIMAL(m,n)
and DECIMAL(k,j) operands.

IF MaxDecimal is … AND the number of digits in the decimal operand is … THEN p is …

0 or 15 <= 15 15

> 15 and <=18 18

> 18 38

18 <= 18 18

> 18 38

38 any value 38

IF MaxDecimal is … AND … THEN p is …

0 or 15 m and k <= 15 15

(m or k > 15) and (m and k <= 18) 18

m or k > 18 38

18 m and k <= 18 18

m or k > 18 38

38 m and k = any value 38

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Structure of Arithmetic Expressions

SQL Functions, Operators, Expressions, and Predicates 53

Error Conditions

An error is reported when any of the following events occurs:

• Division by zero is attempted.

• The numeric range is exceeded.

• The exponentiation operator is used with a negative left argument and a right argument
that is not a whole number.

Decimal Results and Rounding

When computing an expression, decimal results that are not exact are rounded, not truncated.

For more information on rounding rules and how the RoundHalfwayMagUp field in
DBSControl affects rounding, see “Decimal/Numeric Data Types” in SQL Data Types and
Literals and “DBS Control utility” in Utilities.

Integer Division and Truncation

Integer division yields whole results, truncated toward zero.

Structure of Arithmetic Expressions

Order of Evaluation

The following table lists the precedence of operations in arithmetic expressions.

Precedence Operation

 Highest + operand (unary plus)

- operand (unary minus)

Intermediate operand ** operand (exponentiation)

operand * operand (multiplication)

operand / operand (division)

operand MOD operand (modulo operator)

operand + operand (addition)

operand - operand (subtraction)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Structure of Arithmetic Expressions

54 SQL Functions, Operators, Expressions, and Predicates

In general, the order of evaluation is:

1 Operations enclosed in parentheses are performed first.

2 When no parentheses are present, operations are performed in order of precedence.

3 Operators of the same precedence are evaluated from left to right.

The Optimizer may reorder evaluations based on associative and commutative properties of
the operations involved.

Format

The format of an arithmetic expression is the same as the default format of the result data
type.

You can use the FORMAT phrase to change the default format of the result data type. The
FORMAT phrase is relevant only in field mode, such as BTEQ applications, and in conversion
to a character data type.

Example

You want to raise the salary for each employee in department 600 by $200 for each year spent
with the company (up to a maximum of $2500 per month).

To determine who is eligible, and the new salary, enter the following statement:

SELECT Name, (Salary+(YrsExp*200))/12 AS Projection
FROM Employee
WHERE Deptno = 600
AND Projection < 2500 ;

This statement returns the following response:

Name Projection
-------- ----------
Newman P 2483.33

The statement uses parentheses to perform the operation YrsExp * 200 first. Its result is then
added to Salary and the total is divided by 12.

The parentheses enclosing YrsExp * 200 are not strictly necessary, but the parentheses
enclosing Salary + (YrsExp * 200) are necessary, because, if no parentheses were used in this
expression, the operation YrsExp * 200 would be divided by 12 and the result added to Salary,
producing an erroneous value.

The phrase AS Projection in this example associates the arithmetic expression (Salary +
(YrsExp * 200)/12) with Projection. Using the AS phrase lets you use the name Projection in
the WHERE clause to refer to the entire expression.

The result is formatted without a comma separating thousands from hundreds.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Arithmetic Functions

SQL Functions, Operators, Expressions, and Predicates 55

Arithmetic Functions

The next sections describe the following arithmetic functions:

• ABS

• CASE_N

• CEILING

• EXP

• FLOOR

• LN

• LOG

• NULLIFZERO

• RANDOM

• RANGE_N

• SQRT

• WIDTH_BUCKET

• ZEROIFNULL

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
ABS

56 SQL Functions, Operators, Expressions, and Predicates

ABS

Purpose
Computes the absolute value of an argument.

Syntax

where:

ANSI Compliance

ABS is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The following table lists the default attributes for the result of ABS(arg).

For information on data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If the argument is not numeric, it is converted to a numeric value, based on implicit type
conversion rules. If the argument cannot be converted, an error is reported. For more
information on implicit type conversion, see “Implicit Type Conversions” on page 745.

Syntax element … Specifies …

arg a numeric argument.

1101A480

ABS arg()

Data Type Format Title

Same data
type as arga

a. Note that the NULL keyword has a data type of INTEGER.

ABS(arg)

IF the operand is … THEN the format is the default format for …

numeric the resulting data type.

character FLOAT.

a UDT the predefined type to which the UDT is
implicitly cast.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
ABS

SQL Functions, Operators, Expressions, and Predicates 57

If arg is a character string, it is converted to a numeric value of the FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DateTime

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including ABS, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

ABS cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples

Representative ABS arithmetic function expressions and the results are as follows.

Expression Result

ABS(-12) 12

ABS('23') 2.30000000000000E+001

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

58 SQL Functions, Operators, Expressions, and Predicates

CASE_N

Purpose
Evaluates a list of conditions and returns the position of the first condition that evaluates to
TRUE, provided that no prior condition in the list evaluates to UNKNOWN.

Syntax

where:

ANSI Compliance

CASE_N is a Teradata extension to the ANSI SQL:2008 standard.

Syntax element … Specifies …

conditional_expression a conditional expression or comma-separated list of condition expressions
to evaluate.

A conditional expression must evaluate to TRUE, FALSE, or UNKNOWN.

NO CASE an optional condition that evaluates to TRUE if every
conditional_expression in the list evaluates to FALSE.

OR UNKNOWN an optional condition to use with NO CASE.

The NO CASE OR UNKNOWN condition evaluates to TRUE if every
conditional_expression in the list evaluates to FALSE, or if a
conditional_expression evaluates to UNKNOWN and all prior conditions
in the list evaluate to FALSE.

UNKNOWN an optional condition that evaluates to TRUE if a conditional_expression
evaluates to UNKNOWN and all prior conditions in the list evaluate to
FALSE.

1101A069

A

A

NO CASE

UNKNOWN

OR UNKNOWN

, UNKNOWN

,

)

CASE_N

,

conditional_expression(

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

SQL Functions, Operators, Expressions, and Predicates 59

Evaluation

CASE_N evaluates conditional_expressions from left to right until a condition evaluates to
TRUE or UNKNOWN, or until every condition evaluates to FALSE. The position of the first
conditional_expression is one and the positions of subsequent conditions increment by one up
to n, where n is the total number of conditional expressions.

Result Type and Attributes

The data type, format, and title for CASE_N are as follows.

For information on default data type formats, see SQL Data Types and Literals.

IF … THEN …

a conditional_expression
evaluates to TRUE, and all
prior conditions evaluate to
FALSE

CASE_N returns the position of the conditional_expression.

a conditional_expression
evaluates to UNKNOWN,
and all prior conditions
evaluate to FALSE

IF … THEN CASE_N returns …

NO CASE OR UNKNOWN is
specified

n + 1.

UNKNOWN is specified and NO
CASE is not specified

n + 1.

NO CASE and UNKNOWN are
specified

n + 2.

neither UNKNOWN nor NO CASE
OR UNKNOWN is specified

NULL.

every conditional_expression
evaluates to FALSE IF … THEN CASE_N returns …

NO CASE or NO CASE OR
UNKNOWN is specified

n + 1.

neither NO CASE nor NO CASE
OR UNKNOWN is specified

NULL.

Data Type Format Title

INTEGER Default format for INTEGER <CASE_N function>

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

60 SQL Functions, Operators, Expressions, and Predicates

Using CASE_N to Define Partitioned Primary Indexes

The primary index for a table or join index controls the distribution and retrieval of the data
for that table or join index across the AMPs. If the primary index is a partitioned primary
index (PPI), the data can be assigned to user-defined partitions on the AMPs.

To define a primary index for a table or join index, you specify the PRIMARY INDEX phrase
in the CREATE TABLE or CREATE JOIN INDEX data definition statement. To define a
partitioned primary index, you include the PARTITION BY phrase when you define the
primary index.

The PARTITION BY phrase requires one or more partitioning expressions that determine the
partition assignment of a row. You can use CASE_N to construct a partitioning expression
such that a row with any value or NULL for the partitioning columns is assigned to some
partition.

You can also use RANGE_N to construct a partitioning expression. For more information, see
“RANGE_N” on page 87.

If the PARTITION BY phrase specifies a list of partitioning expressions, the PPI is a multilevel
PPI, where each partition for a level is subpartitioned according to the next partitioning
expression in the list. Unlike the partitioning expression for a single-level PPI, which can
consist of any valid SQL expression (with some exceptions), each expression in the list of
partitioning expressions for a multilevel PPI must be a CASE_N or RANGE_N function.

You cannot ADD or DROP partitioning expressions that are based on a CASE_N function. To
modify a partitioning expression that is based on a CASE_N function, you must use the
ALTER TABLE statement with the MODIFY PRIMARY INDEX option to redefine the entire
PARTITION BY clause, and the table must be empty. For more information, see “ALTER
TABLE” in SQL Data Definition Language.

Using CASE_N with CURRENT_DATE or CURRENT_TIMESTAMP in a PPI

You can define a partitioning expression that uses CASE_N with the built-in functions
CURRENT_DATE or CURRENT_TIMESTAMP. Subsequently, you can use the ALTER
TABLE TO CURRENT statement to repartition the table data using a newly resolved current
date or timestamp. For more information, see “Rules and Guidelines for Optimizing the
Reconciliation of CASE_N PPI Expressions Based On Moving Current Date and Moving
Current Timestamp” in SQL Data Definition Language Detailed Topics.

Using CASE_N with Character Comparison

You can specify conditional expressions in the CASE_N function that compare CHAR,
VARCHAR, GRAPHIC or VARGRAPHIC data types. The following usage rules apply:

• A CASE_N partitioning expression can use character or graphic comparison except when
the comparison involves KANJI1 or KANJISJIS columns or constant expressions.

• A CASE_N partitioning expression can use the UPPERCASE qualifier and the following
functions: LOWER, UPPER, TRANSLATE, TRIM, VARGRAPHIC, INDEX, MINDEX,
POSITION, TRANSLATE_CHK, CHAR2HEXINT.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

SQL Functions, Operators, Expressions, and Predicates 61

• Any string literal referenced within a CASE_N expression must be less than 31,000 bytes.

• The order of character data used in evaluating the conditional expressions in a CASE_N
function is determined by the session collation and case specificity of the expression.

• If the expression is not part of a PPI, the current session collation is used.

• If the expression is part of a PPI, evaluation is done using the session collation that was
in effect when the table or join index was created, or when the partitioning was
modified using the ALTER TABLE statement.

• The case specificity of column references and literals is determined based on the
session default, or an explicit CAST, or a specification in the CREATE TABLE
statement when the table was created. The column can be explicitly assigned to be
CASESPECIFIC or NOT CASESPECIFIC, and constant expressions can be CAST with
these qualifiers.

If not explicitly specified, the default of NOT CASESPECIFIC is used if Teradata
session transaction semantics are in effect. If ANSI session transaction semantics are
in effect, the default is CASESPECIFIC.

For example, if a conditional expression is a combination of NOT CASESPECIFIC
expressions and a constant with no case specific qualifier (CASESPECIFIC, NOT
CASESPECIFIC), the case specificity will be case specific in ANSI mode sessions and
not case specific in Teradata mode sessions.

Note: All character string comparisons involving graphic data are case specific.

• In character comparison operations (=, <, >, <=, >=, <>, BETWEEN, LIKE), if a string
literal is shorter than the column data to which it is compared, the string literal is treated
as if it is padded with a pad character specific to the character set (for example, a <space>
character).

Note that the pad character might not collate to the lowest code point in the collation. For
a constant of length n, if the column value being compared precisely matches the constant
for the first n characters, but contains a character that collates less than the pad character
at position n+1, then the column value will collate less than the string literal. See “Example
9” on page 66.

Restrictions

If CASE_N is used in a PARTITION BY phrase, it:

• Can specify a maximum of 65533 conditions (unless it is part of a larger partitioning
expression)

• Must not contain the system-derived columns PARTITION or PARTITION#L1 through
PARTITION#L15

• Must not use Period data types, but can use the following:

• BEGIN bound function for which input is a Period data type column and not a Period
value expression.

• END bound function for which input is a Period data type column and not a Period
value expression.

• IS [NOT] UNTIL_CHANGED.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

62 SQL Functions, Operators, Expressions, and Predicates

• IS [NOT] UNTIL_CLOSED.

If CASE_N is used in a partitioning expression for a multilevel PPI, it must define at least two
partitions.

Note that partition elimination for queries is often limited to constant or using value equality
conditions on the partitioning columns, and the Optimizer may not eliminate some partitions
when it possibly could. Also, evaluating a complex CASE_N may be costly in terms of CPU
cycles and the overhead of CASE_N may cause the table header to be excessively large.

Example 1

Here is an example that uses CASE_N and the value of the totalorders column to define the
partition to which a row is assigned:

CREATE TABLE orders
(storeid INTEGER NOT NULL
,productid INTEGER NOT NULL
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
,totalorders INTEGER)
PRIMARY INDEX (storeid, productid)
PARTITION BY CASE_N(totalorders < 100, totalorders < 1000,

NO CASE, UNKNOWN);

In the example, CASE_N specifies four partitions to which a row can be assigned, based on the
value of the totalorders column.

Example 2

Here is an example that modifies “Example 1” to use CASE_N in a list of partitioning
expressions that define a multilevel PPI:

CREATE TABLE orders
(storeid INTEGER NOT NULL
,productid INTEGER NOT NULL
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
,totalorders INTEGER NOT NULL)
PRIMARY INDEX (storeid, productid)
PARTITION BY (CASE_N(totalorders < 100, totalorders < 1000,

NO CASE)
,CASE_N(orderdate <= '2005-12-31', NO CASE));

The example defines six partitions to which a row can be assigned. The first CASE_N
expression defines three partitions based on the value of the totalorders column. The second

Partition
Number Condition

1 The value of the totalorders column is less than 100.

2 The value of the totalorders column is less than 1000, but greater than or equal to 100.

3 The value of the totalorders column is greater than or equal to 1000.

4 The totalorders column is NULL.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

SQL Functions, Operators, Expressions, and Predicates 63

CASE_N expression subdivides each of the three partitions into two partitions based on the
value of the orderdate column.

Example 3

The following example shows the count of rows in each partition if the orders table were to be
partitioned using the CASE_N expression.

CREATE TABLE orders
(orderkey INTEGER NOT NULL
,custkey INTEGER
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL)
PRIMARY INDEX (orderkey);

INSERT INTO orders (1, 1, '1996-01-01');
INSERT INTO orders (2, 1, '1997-04-01');

The CASE_N expression in the following SELECT statement specifies three conditional
expressions and the NO CASE condition.

SELECT COUNT(*),
CASE_N(orderdate >= '1996-01-01' AND

orderdate <= '1996-12-31' AND
custkey <> 999999,
orderdate >= '1997-01-01' AND
orderdate <= '1997-12-31' AND
custkey <> 999999,
orderdate >= '1998-01-01' AND
orderdate <= '1998-12-31' AND
custkey <> 999999,
NO CASE

) AS Partition_Number

Level 1
Partition
Number

Level 2
Partition
Number Condition

1 1 The value of the totalorders column is less than 100 and the value of the
orderdate column is less than or equal to '2005-12-31'.

2 The value of the totalorders column is less than 100 and the value of the
orderdate column is greater than '2005-12-31'.

2 1 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is less than or equal to
'2005-12-31'.

2 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is greater than
'2005-12-31'.

3 1 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is less than or equal to '2005-12-31'.

2 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is greater than '2005-12-31'.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

64 SQL Functions, Operators, Expressions, and Predicates

FROM orders
GROUP BY Partition_Number
ORDER BY Partition_Number;

The results look like this:

Count(*) Partition_Number
----------- ----------------

1 1
1 2

Example 4

The following example creates a table partitioned with orders data for each quarter in 2008.

CREATE TABLE Orders
(O_orderkey INTEGER NOT NULL,
O_custkey INTEGER,
O_orderperiod PERIOD (DATE) NOT NULL,
O_orderpriority CHAR (21),
O_comment VARCHAR (79))

PRIMARY INDEX (O_orderkey)
PARTITION BY

CASE_N (END (O_orderperiod) <= date'2008-03-31', /* First Quarter */
END (O_orderperiod) <= date'2008-06-30', /* Second Quarter */
END (O_orderperiod) <= date'2008-09-30', /* Third Quarter */
END (O_orderperiod) <= date'2008-12-31' /* Fourth Quarter */
);

The following SELECT statement scans two partitions and displays the details of the orders
placed for the first two quarters.

SELECT *
FROM Orders
WHERE END (O_orderperiod) > date'2008-06-30';

Example 5

The following example uses IS [NOT] UNTIL_CHANGED in the PPI partitioning expression
to check whether or not the ending bound of a period value expression is
UNTIL_CHANGED.

CREATE TABLE TESTUC
(A INTEGER,
B PERIOD (DATE),
C INTEGER)

PRIMARY INDEX (A)
PARTITION BY

CASE_N (END (b) IS UNTIL_CHANGED,
END (b) IS NOT UNTIL_CHANGED, UNKNOWN);

Example 6

The following example uses IS [NOT] UNTIL_CLOSED in the PPI partitioning expression to
check whether or not the ending bound of a transaction time column is UNTIL_CLOSED.

CREATE TABLE TESTUCL
(A INTEGER,

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

SQL Functions, Operators, Expressions, and Predicates 65

B PERIOD (TIMESTAMP (6) WITH TIME ZONE) NOT NULL AS TRANSACTIONTIME,
C INTEGER)

PRIMARY INDEX (A)
PARTITION BY

CASE_N (END (b) IS UNTIL_CLOSED,
END (b) IS NOT UNTIL_CLOSED, UNKNOWN);

Example 7

In this example, the session collation is ASCII.

CASE_N (a<'b', a>='ba' and a<'dogg' and b<>'cow', c<>'boy', NO CASE OR
UNKNOWN)

The following table shows the result value returned by the above CASE_N function given the
specified values for a, b, and c. x and y represent any value or NULL. The value 4 is returned
when all the conditions are FALSE, or a condition is UNKNOWN with all preceding
conditions evaluating to FALSE.

Example 8

In this example, the session collation is ASCII.

CASE_N (a<'b', a>='ba' and a<'dogg' and b<>'cow', c<>'boy', UNKNOWN)

The following table shows the result value returned by the above CASE_N function given the
specified values for a, b, and c. The x and y represent any value or NULL. The value 4 is
returned if a condition is UNKNOWN with all preceding conditions evaluating to FALSE.
NULL is returned if all the conditions are false.

a b c Result

'a' x y 1

'boy' 'girl' y 2

'boy' NULL y 4

'boy' 'cow' 'man' 3

'boy' 'cow' 'boy' 4

'dog' 'ball' y 2

'dogg' x NULL 4

'dogg' x 'man' 3

'egg' x 'boy' 4

'egg' x NULL 4

'egg' x 'girl' 3

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

66 SQL Functions, Operators, Expressions, and Predicates

Example 9

In this example, the session collation is ASCII when submitting the CREATE TABLE
statement, and the pad character is <space>. The example defines two partitions (numbered 1
and 2) based on the value of a:

• The value of a is between 'a ' (a followed by 9 spaces) and 'b '.

• The value of a is between 'b ' and 'c '.

CREATE SET TABLE t2
(a VARCHAR(10) CHARACTER SET UNICODE NOT CASESPECIFIC,
b INTEGER)

PRIMARY INDEX (a)
PARTITION BY CASE_N(a BETWEEN 'a' AND 'b', a BETWEEN 'b' AND 'c');

The following INSERT statement inserts a character string consisting of a single <tab>
character between the 'b' and '1'.

INSERT t2 ('b 1', 1);

The following INSERT statement inserts a character string consisting of a single <space>
character between the 'b' and '1'.

INSERT t2 ('b 1', 2);

The following SELECT statement shows the result of the INSERT statements. Since the <tab>
character has a lower code point than the <space> character, the first string inserted maps to
partition 1.

SELECT PARTITION, a, b FROM t2 ORDER BY 1;

*** Query completed. 2 rows found. 3 columns returned.
*** Total elapsed time was 1 second.

a b c Result

'a' x y 1

'boy' 'girl' y 2

'boy' NULL y 4

'boy' 'cow' 'man' 3

'boy' 'cow' 'boy' NULL

'dog' 'ball' y 2

'dogg' x NULL 4

'dogg' x 'man' 3

'egg' NULL 'boy' NULL

'egg' x 'boy' NULL

'egg' x NULL 4

'egg' x 'girl' 3

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CASE_N

SQL Functions, Operators, Expressions, and Predicates 67

PARTITION a b
----------- ------ -----

1 b 1 1 (string contains single <tab> character)
2 b 1 2 (string contains single <space> character)

Related Topics

For information on … See …

PPI properties and performance
considerations

Database Design.

PPI considerations and capacity planning

the specification of a PPI for a table CREATE TABLE in SQL Data Definition Language.

the specification of a PPI for a join index CREATE JOIN INDEX in SQL Data Definition
Language.

the modification of the partitioning of the
primary index for a table

ALTER TABLE in SQL Data Definition Language.

the reconciliation of the partitioning based
on newly resolved CURRENT_DATE and
CURRENT_TIMESTAMP values

ALTER TABLE TO CURRENT in SQL Data
Definition Language

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CEILING

68 SQL Functions, Operators, Expressions, and Predicates

CEILING

Purpose
Returns the smallest integer that is not less than the input argument.

Syntax

where:

ANSI Compliance

CEILING is a Teradata extension to the ANSI SQL:2008 standard.

Prerequisites

CEILING is a domain-specific function; therefore, before you can use this function, you must
run the Database Initialization Program (DIP) utility and execute the DIPALL or DIPUDT
script. For details, see “Activating Domain-specific Functions” on page 20.

Usage

CEILING returns the following values:

Invocation

You can invoke the CEILING system function using the function name alone. For example,
CEILING (arg).

Syntax element… Specifies…

arg a numeric expression.

CEILING (arg)

TD_SYSFNLIB. CEIL 1101A662

IF arg is... THEN CEILING returns...

a non-exact number the next integer that is greater than arg.

an exact number the input argument arg.

NULL NULL.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CEILING

SQL Functions, Operators, Expressions, and Predicates 69

The CEILING function is associated with the system database TD_SYSFNLIB, and you can
also invoke the function using the fully qualified syntax. For example,
TD_SYSFNLIB.CEILING(arg).

Note: If you try to invoke the CEILING system function using the function name alone, but
you also have a user-defined function (UDF) named CEILING in the current database or in
the SYSLIB database, Teradata Database will execute the user-developed UDF instead of the
CEILING system function. You must remove any user-developed functions named CEILING
(or CEIL) from the normal UDF search path or invoke the CEILING system function using
the fully qualified syntax. For details, see “Invoking Domain-specific Functions” on page 21.

Argument Types and Rules

CEILING is an overloaded scalar function. It is defined with the following parameter data
types:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• FLOAT

All numeric expressions passed to this function must either match one of these declared data
types or can be converted to one of these types using the implicit data type conversion rules
that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If the argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the numeric input argument that is passed to
the function as shown in the following table:

IF the data type of the
input argument is... THEN the result type is... AND the format is the default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
CEILING

70 SQL Functions, Operators, Expressions, and Predicates

The default title for CEILING is: CEILING(arg).

For information on default data type formats, see SQL Data Types and Literals.

Example 1

The following query will return the FLOAT value 1.6E1, since 16 is the smallest integer that is
not less than the FLOAT value 15.7E0.

SELECT CEILING(157E-1);

Example 2

In the following query, the DECIMAL value 15.7 will be implicitly cast to the FLOAT value
157E-1. The query will return the result FLOAT value 1.6E1, since 16 is the smallest integer
that is not less than the FLOAT value 15.7E0.

SELECT CEILING(15.7);

Example 3

In the following query, the DECIMAL value -12.3 will be implicitly cast to the FLOAT value
-123E-1. The query will return the result FLOAT value -1.2E1, since -12 is the smallest integer
that is not less than the FLOAT value -12.3E0.

SELECT CEILING(-12.3);

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

FLOAT FLOAT FLOAT

IF the data type of the
input argument is... THEN the result type is... AND the format is the default format for...

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
EXP

SQL Functions, Operators, Expressions, and Predicates 71

EXP

Purpose
Raises e (the base of natural logarithms) to the power of the argument, where
e = 2.71828182845905.

Syntax

where:

ANSI Compliance

EXP is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The following table lists the default attributes for the result of EXP(arg).

For information on default data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT, based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information on implicit type
conversion, see “Implicit Type Conversions” on page 745.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

Syntax element … Specifies …

arg a numeric argument.

1101A484

EXP arg()

Data Type Format Title

FLOAT Default format for the resulting data type EXP(arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
EXP

72 SQL Functions, Operators, Expressions, and Predicates

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including EXP, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

EXP cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Usage Notes

Executing EXP may sometimes result in a numeric overflow error.

Examples

Representative EXP arithmetic function expressions and the results are as follows.

Expression Result

EXP(1) 2.71828182845905E+000

EXP(0) 1.00000000000000E+000

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
FLOOR

SQL Functions, Operators, Expressions, and Predicates 73

FLOOR

Purpose
Returns the largest integer equal to or less than the input argument.

Syntax

where:

ANSI Compliance

FLOOR is a Teradata extension to the ANSI SQL:2008 standard.

Prerequisites

FLOOR is a domain-specific function; therefore, before you can use this function, you must
run the Database Initialization Program (DIP) utility and execute the DIPALL or DIPUDT
script. For details, see “Activating Domain-specific Functions” on page 20.

Usage

FLOOR returns the following values:

Invocation

You can invoke the FLOOR system function using the function name alone. For example,
FLOOR(arg).

Syntax element… Specifies…

arg a numeric expression.

FLOOR (arg)

TD_SYSFNLIB. 1101A663

IF arg is... THEN FLOOR returns...

a non-exact number the next largest integer that is equal to or less than arg.

an exact number the input argument arg.

NULL NULL.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
FLOOR

74 SQL Functions, Operators, Expressions, and Predicates

The FLOOR function is associated with the system database TD_SYSFNLIB, and you can also
invoke the function using the fully qualified syntax. For example,
TD_SYSFNLIB.FLOOR(arg).

Note: If you try to invoke the FLOOR system function using the function name alone, but you
also have a user-defined function (UDF) named FLOOR in the current database or in the
SYSLIB database, Teradata Database will execute the user-developed UDF instead of the
FLOOR system function. You must remove any user-developed functions named FLOOR
from the normal UDF search path or invoke the FLOOR system function using the fully
qualified syntax. For details, see “Invoking Domain-specific Functions” on page 21.

Argument Types and Rules

FLOOR is an overloaded scalar function. It is defined with the following parameter data types:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• FLOAT

All numeric expressions passed to this function must either match one of these declared data
types or can be converted to one of these types using the implicit data type conversion rules
that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If the argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the numeric input argument that is passed to
the function as shown in the following table:

IF the data type of the
input argument is... THEN the result type is... AND the format is the default format for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
FLOOR

SQL Functions, Operators, Expressions, and Predicates 75

The default title for FLOOR is: FLOOR(arg).

For information on default data type formats, see SQL Data Types and Literals.

Example 1

The following query will return the FLOAT value 1.3E1, since 13 is the largest integer that is
less than the FLOAT value 13.6E0.

SELECT FLOOR (136E-1);

Example 2

In the following query, the DECIMAL value -6.5 will be implicitly cast to the FLOAT value
-6.5E0. The query will return the result FLOAT value -7E0, since -7 is the largest integer that is
less than the FLOAT value -6.5E0.

SELECT FLOOR(-6.5);

BIGINT BIGINT BIGINT

FLOAT FLOAT FLOAT

IF the data type of the
input argument is... THEN the result type is... AND the format is the default format for...

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
LN

76 SQL Functions, Operators, Expressions, and Predicates

LN

Purpose
Computes the natural logarithm of the argument.

Syntax

where:

ANSI Compliance

LN is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type, format, and title for LN(arg) are as follows.

For information on default data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information on implicit type
conversion, see “Implicit Type Conversions” on page 745.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

Syntax element … Specifies …

arg a nonzero, positive numeric argument.

1101A485

LN arg()

Data Type Format Title

FLOAT Default format for FLOAT LN(arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
LN

SQL Functions, Operators, Expressions, and Predicates 77

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including LN, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

LN cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples

Representative LN arithmetic function expressions and the results are as follows.

Expression Result

LN(2.71828182845905) 1.00000000000000E+000

LN(0) Error

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
LOG

78 SQL Functions, Operators, Expressions, and Predicates

LOG

Purpose
Computes the base 10 logarithm of an argument.

Syntax

where:

ANSI Compliance

LOG is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type, format, and title for LOG(arg) are as follows.

For information on default data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information on implicit type
conversion, see “Implicit Type Conversions” on page 745.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

Syntax element … Specifies …

arg a nonzero, positive numeric argument.

1101A486

LOG arg()

Data Type Format Title

FLOAT Default format for FLOAT LOG(arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
LOG

SQL Functions, Operators, Expressions, and Predicates 79

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including LOG, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

LOG cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples

Representative LOG arithmetic function expressions and the results are as follows.

Expression Result

LOG(50) 1.69897000433602E+000

LOG(100) 2.00000000000000E+000

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
NULLIFZERO

80 SQL Functions, Operators, Expressions, and Predicates

NULLIFZERO

Purpose
Converts data from zero to null to avoid problems with division by zero.

Syntax

where:

ANSI Compliance

NULLIFZERO is a Teradata extension to the ANSI SQL:2008 standard.

The ANSI form of this function is the CASE shorthand expression NULLIF. For more
information, see “NULLIF Expression” on page 44.

Result Type and Attributes

Here are the default attributes for the result of NULLIFZERO(arg).

For information on data type formats, see SQL Data Types and Literals.

Syntax element … Specifies …

arg a numeric argument, or an argument that can be converted to a numeric
argument based on implicit type conversion rules.

1101F225

NULLIFZERO ()arg

Data Type and Format Title

NULLIFZERO(arg)

IF arg is … THEN the data type is … AND the format is the …

numeric the same type as arga

a. Note that the NULL keyword has a data type of INTEGER.

same format as arg.

character FLOAT default format for FLOAT.

a UDT the type to which the
UDT is implicitly cast

the format of the data type to
which the UDT is implicitly cast.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
NULLIFZERO

SQL Functions, Operators, Expressions, and Predicates 81

Result Value

Argument Types and Rules

If arg is not numeric, it is converted to a numeric value, based on implicit type conversion
rules. If the argument cannot be converted, an error is reported. For more information on
implicit type conversion, see “Implicit Type Conversions” on page 745.

If arg is a character string, it is converted to a numeric value of FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including
NULLIFZERO, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

NULLIFZERO cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Example 1

The following expressions return an error if the value of x or expression is zero.

6 / x
6 / expression

On the other hand, the following expressions return null, which is not an error because there
is no violation of the divide by zero rule.

6 / NULLIFZERO(x)
6 / NULLIFZERO(expression)

IF the value of arg is … THEN NULLIFZERO returns …

nonzero the value of the numeric argument

null or zero NULL

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
NULLIFZERO

82 SQL Functions, Operators, Expressions, and Predicates

Example 2

The following request returns a null in the second column because the HCap field value for
Newman is zero. In BTEQ (field mode) this appears as a ‘?’.

SELECT empno, NULLIFZERO(hcap)
FROM employee
WHERE empno = 10019 ;

Related Topics

For additional expressions involving checks for nulls, see:

• “COALESCE Expression” on page 42

• “NULLIF Expression” on page 44

• “ZEROIFNULL” on page 107

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANDOM

SQL Functions, Operators, Expressions, and Predicates 83

RANDOM

Purpose
Returns a random integer number for each row of the results table.

Syntax

where:

ANSI Compliance

RANDOM is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type, format, and title for RANDOM(x,y) are as follows.

For information on default data type formats, see SQL Data Types and Literals.

Computation

RANDOM uses the linear congruential algorithm and 48-bit integer arithmetic.

Syntax element … Specifies …

lower_bound an integer constant to define the lower bound on the closed interval over which
a random number is to be selected.

The limits for lower_bound range from -2147483648 to 2147483647, inclusive.

lower_bound must be less than or equal to upper_bound.

upper_bound an integer constant to define the upper bound on the closed interval over which
a random number is to be selected.

The limits for upper_bound range from -2147483648 to 2147483647, inclusive.

upper_bound must be greater than or equal to lower_bound.

1101C025

RANDOM lower_bound, upper_bound()

Data Type Format Title

INTEGER Default format for INTEGER Random(x,y)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANDOM

84 SQL Functions, Operators, Expressions, and Predicates

The algorithm works by generating a sequence of 48-bit integer values, Xi, using the following
equation:

where:

Multiple RANDOM Calls Within a SELECT List

You can call RANDOM any number of times in the SELECT list, for example:

SELECT RANDOM(1,100), RANDOM(1,100);

Each call defines a new random value.

Restrictions

The following rules and restrictions apply to the use of the RANDOM function.

• RANDOM can only be called in one of the following SELECT query clauses:

• WHERE

• GROUP BY

• ORDER BY

• HAVING/QUALIFY

• RANDOM cannot be referenced by position in a GROUP BY or ORDER BY clause.

• RANDOM cannot be nested inside aggregate or ordered analytical functions.

• RANDOM cannot be used in the expression list of an INSERT statement to create a
primary index or partitioning column value.

For example:

INSERT t1 (RANDOM(1,10),...)

RANDOM causes an error to be reported in this case if the first column in the table is a
primary index or partitioning column.

This variable … Represents …

X a random number over a defined closed interval

n an integer >= 0

a 0x5DEECE66D

c 0xB

% the modulo operator

m 248

Xn+1 aXn c+() % m=

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANDOM

SQL Functions, Operators, Expressions, and Predicates 85

Using RANDOM as a Condition on an Index

Because the RANDOM function is evaluated for each selected row, a condition on an index
column that includes the RANDOM function results in an all-AMP operation.

For example, consider the following table definition:

CREATE TABLE t1
(c1 INTEGER
,c2 VARCHAR(9))

PRIMARY INDEX (c1);

The following SELECT statement results in an all-AMP operation:

SELECT *
FROM t1
WHERE c1 = RANDOM(1,12);

Example

Suppose you have a table named sales_table with the following subset of columns.

The following SELECT statement returns a random number between 1 and 3, inclusive, for
each row in the results table.

SELECT store_id, product_id, sales, RANDOM(1,3)
FROM sales_table;

The results table might look like this.

Store_ID Product_ID Sales

1003 C 20000

1002 C 35000

1001 C 60000

1002 D 50000

1003 D 50000

1001 D 35000

1001 A 100000

1002 A 40000

1001 E 30000

Store_ID Product_ID Sales RANDOM(1,3)

1003 C 20000 1

1002 C 35000 2

1001 C 60000 2

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANDOM

86 SQL Functions, Operators, Expressions, and Predicates

1002 D 50000 3

1003 D 50000 2

1001 D 35000 3

1001 A 100000 2

1002 A 40000 1

1001 E 30000 2

Store_ID Product_ID Sales RANDOM(1,3)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 87

RANGE_N

Purpose
Evaluates an expression and maps the result into one of a list of specified ranges and returns
the position of the range in the list.

Syntax

where:

Syntax element … Specifies …

test_expression an expression that results in a BYTEINT, SMALLINT, INTEGER, DATE,
CHAR, VARCHAR, GRAPHIC or VARGRAPHIC data type.

NO RANGE

UNKNOWN

OR UNKNOWN

, UNKNOWN

,

BETWEENRANGE_N test_expression(

1101B068

A B

B

C

D

C

A

start_expression end_expressionAND

* EACH range_size

* end_expressionAND

*

start_expression

end_expressionAND EACH range_size

*

D

| range_list |

)

end_expressionAND

start_expression,

end_expressionAND EACH range_size

start_expression, end_expressionAND

* EACH range_size

 range_list

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

88 SQL Functions, Operators, Expressions, and Predicates

start_expression
*

a constant or constant expression that defines the starting boundary of a
range.

The data type of start_expression must be the same as the data type of
test_expression, or must be such that it can be implicitly cast to the same data
type as test_expression.

If an ending boundary is not specified, the range is defined by its starting
boundary, inclusively, up to but not including the starting boundary of the
next range.

Use an asterisk (*) for the starting boundary of the first range in the list to
indicate the lowest possible value (all values and NULL are greater than a
starting boundary specified as an asterisk). An asterisk is compatible with any
data type.

end_expression
*

a constant or constant expression that defines the ending boundary of a range.

The data type of end_expression must be the same as the data type of
test_expression, or must be such that it can be implicitly cast to the same data
type as test_expression.

The last range in the list must specify an ending boundary. For all other
ranges, if an ending boundary is not specified, the range is defined by its
starting boundary, inclusively, up to but not including the starting boundary
of the next range.

Use an asterisk (*) for the ending boundary of the last range in the list to
indicate the highest possible value (all values and NULL are less than an
ending boundary specified as an asterisk).

EACH range_size a constant or constant expression with a value greater than zero.

A range that specifies an EACH phrase is equivalent to a series of ranges, where
the first range in the series starts at start_expression, and subsequent ranges
start at start_expression + (range_size * n), where n starts at one and
increments by one while start_expression + (range_size * n) is less than or equal
to end_expression, or less than the next start_expression in the list of ranges.

For DATE types, the calculation of valid dates in subsequent ranges uses
ADD_MONTHS instead of the + arithmetic operator. For more information
on ADD_MONTHS, see “ADD_MONTHS” on page 236.

The data type of range_size must be compatible for adding to test_expression.

Note: If the data type of test_expression is a character type (CHAR,
VARCHAR, GRAPHIC or VARGRAPHIC), you cannot specify the EACH

phrase.

NO RANGE an optional range to handle a test_expression that does not map into any of the
specified ranges.

OR UNKNOWN an option to use with NO RANGE.

The NO RANGE OR UNKNOWN option handles a test_expression that does
not map into any of the specified ranges, or a test_expression that evaluates to
NULL when RANGE_N does not specify the range BETWEEN * AND *.

UNKNOWN an option to handle a test_expression that evaluates to NULL when RANGE_N
does not specify the range BETWEEN * AND *.

Syntax element … Specifies …

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 89

ANSI Compliance

RANGE_N is a Teradata extension to the ANSI SQL:2008 standard.

Range Definition

A range is defined by a starting boundary and an optional ending boundary. If an ending
boundary is not specified, the range is defined by its starting boundary, inclusively, up to but
not including the starting boundary of the next range.

The list of ranges must specify ranges in increasing order, where the ending boundary of a
range is less than the starting boundary of the next range.

Evaluation

RANGE_N evaluates test_expression and determines whether the result is within a range in the
list of ranges. The position of the first range is one and the positions of subsequent ranges
increment by one up to n, where n is the total number of ranges.

IF … THEN …

the result of
test_expression is
within a range

RANGE_N returns the position of the range.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

90 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

The data type, format, and title for RANGE_N are as follows.

For information on default data type formats, see SQL Data Types and Literals.

the result of
test_expression is
NULL

IF RANGE_N … THEN …

does not specify one of
the following:

• BETWEEN * AND *

• UNKNOWN

• NO RANGE OR
UNKNOWN

RANGE_N returns NULL.

specifies the range
BETWEEN * AND *

RANGE_N returns 1, regardless of whether
NO RANGE, NO RANGE OR UNKNOWN, or
UNKNOWN is specified.

does not specify the range
BETWEEN * AND * IF … THEN RANGE_N

returns …

NO RANGE OR
UNKNOWN is specified

n + 1.

UNKNOWN is specified
and NO RANGE is not
specified

n + 1.

NO RANGE and
UNKNOWN are
specified

n + 2.

test_expression is
outside all the
ranges in the list

IF … THEN RANGE_N returns …

NO RANGE or NO
RANGE OR UNKNOWN
is specified

n + 1.

neither NO RANGE nor
NO RANGE OR
UNKNOWN is specified

NULL.

IF … THEN …

Data Type Format Title

INTEGER Default format of the INTEGER data type <RANGE_N function>

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 91

Using RANGE_N to Define Partitioned Primary Indexes

The primary index for a table or join index controls the distribution of the data for that table
or join index across the AMPs, as well as its retrieval. If the primary index is a partitioned
primary index (PPI), the data can be assigned to user-defined partitions on the AMPs.

To define a primary index for a table or join index, you specify the PRIMARY INDEX phrase
in the CREATE TABLE or CREATE JOIN INDEX data definition statement. To define a
partitioned primary index, you include the PARTITION BY phrase when you define the
primary index.

The PARTITION BY phrase requires one or more partitioning expressions that determine the
partition assignment of a row. You can use RANGE_N to construct a partitioning expression
such that a row with any value or NULL for the partitioning columns is assigned to some
partition.

You can also use CASE_N to construct a partitioning expression. For more information, see
“CASE_N” on page 58.

If the PARTITION BY phrase specifies a list of partitioning expressions, the PPI is a multilevel
PPI, where each partition for a level is subpartitioned according to the next partitioning
expression in the list. Unlike the partitioning expression for a single-level PPI, which can
consist of any valid SQL expression (with some exceptions), each expression in the list of
partitioning expressions for a multilevel PPI must be a CASE_N or RANGE_N function.

Using RANGE_N with CURRENT_DATE or CURRENT_TIMESTAMP in a PPI

You can define a partitioning expression that uses RANGE_N with the built-in functions
CURRENT_DATE or CURRENT_TIMESTAMP. Use of CURRENT_DATE or
CURRENT_TIMESTAMP in a partitioning expression is most appropriate when the data
must be partitioned as one or more current partitions and one or more history partitions
where the current and history partitions are based on the resolved CURRENT_DATE or
CURRENT_TIMESTAMP in the partitioning expression. This allows you to periodically
reconcile the table to move older data from the current partition into one or more history
partitions using the ALTER TABLE TO CURRENT statement instead of redefining the
partitioning using explicit dates which must be determined each time the ALTER TABLE
DROP/ADD RANGE is done.

For more information, see “Rules and Guidelines for Optimizing the Reconciliation of
RANGE_N PPI Expressions Based On Moving Current Date and Moving Current
Timestamp” in SQL Data Definition Language Detailed Topics.

Using RANGE_N with Character Data

You can specify character expressions (CHAR, VARCHAR, GRAPHIC or VARGRAPHIC) as
the test_expression and/or the range boundaries in a RANGE_N function. The following usage
rules apply:

• A RANGE_N partitioning expression can use the UPPERCASE qualifier and the following
functions: LOWER, UPPER, TRANSLATE, TRIM, VARGRAPHIC, INDEX, MINDEX,
POSITION, TRANSLATE_CHK, CHAR2HEXINT.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

92 SQL Functions, Operators, Expressions, and Predicates

• If test_expression is a character data type, you cannot specify the EACH phrase.

• Any string literal referenced within a RANGE_N expression must be less than 31,000
bytes.

• If test_expression is a character data type, and the length of any of the range boundaries
(minus trailing pad characters) is greater than the length of test_expression, an error is
returned.

• For character RANGE_N partitioning, the increasing order of ranges is determined by the
session collation and case specificity of the test_expression. If the test_expression is a
combination of NOT CASESPECIFIC expressions and a constant with no case specific
qualifier (CASESPECIFIC, NOT CASESPECIFIC), the case specificity will be case specific
in ANSI mode sessions and not case specific in Teradata mode sessions.

Note: All character string comparisons involving graphic data are case specific.

• An error is returned if any of the specified ranges are defined with null boundaries, are not
increasing, or overlap. For character test values, increasing order is determined by the
session collation and case specificity of the test_expression.

• In character comparison operations (=, <, >, <=, >=, <>, BETWEEN, LIKE), if a string
literal is shorter than the column data to which it is compared, the string literal is treated
as if it is padded with a pad character specific to the character set (for example, a <space>
character). Therefore, if a character test_expression is defined with a longer length than a
character range boundary, comparison of the test _expression to that range boundary will
behave as if the range boundary is padded with pad characters.

Note that the pad character might not collate to the lowest code point in the collation. For
a range boundary of length n, if the test_expression precisely matches that range boundary
for the first n characters, but contains a character that collates less than the pad character
at position n+1, then the test_expression will collate less than the range boundary. See
“Example 10” on page 99.

Restrictions

If RANGE_N appears in a PARTITION BY phrase, it:

• Can specify a maximum of 65,533 ranges (unless it is part of a larger partitioning
expression)

• Must not contain the system-derived columns PARTITION or PARTITION#L1 through
PARTITION#L15

• Must not use Period data types, but can use the BEGIN or END bound functions on a
Period data type column when they result in a DATE data type.

If RANGE_N is used in a partitioning expression for a multilevel PPI, it must define at least
two partitions.

If RANGE_N specifies CURRENT_DATE or CURRENT_TIMESTAMP in a partitioning
expression, you cannot use ALTER TABLE to add or drop ranges for the table. You must use
the ALTER TABLE TO CURRENT statement to achieve this function.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 93

Using a UDT as the Test Expression

The test_expression should not be an expression that results in a UDT data type. An error is
reported if this occurs when RANGE_N is used to define a PPI. If RANGE_N is not used to
define a PPI, you should explicitly cast the expression so that it is BYTEINT, SMALLINT,
INTEGER, DATE, CHAR, VARCHAR, GRAPHIC or VARGRAPHIC instead of depending
upon any implicit conversions.

Example 1

Here is an example that uses RANGE_N and the value of the totalorders column to define the
partition to which a row is assigned:

CREATE TABLE orders
(storeid INTEGER NOT NULL
,productid INTEGER NOT NULL
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
,totalorders INTEGER)
PRIMARY INDEX (storeid, productid)
PARTITION BY RANGE_N(totalorders BETWEEN *, 100, 1000 AND *,

UNKNOWN);

In the example, RANGE_N specifies four partitions to which a row can be assigned, based on
the value of the totalorders column:

Example 2

Here is an example that modifies “Example 1” to use RANGE_N in a list of partitioning
expressions that define a multilevel PPI:

CREATE TABLE orders
(storeid INTEGER NOT NULL
,productid INTEGER NOT NULL
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
,totalorders INTEGER NOT NULL)
PRIMARY INDEX (storeid, productid)
PARTITION BY (RANGE_N(totalorders BETWEEN *, 100, 1000 AND *)

,RANGE_N(orderdate BETWEEN *, '2005-12-31' AND *));

The example defines six partitions to which a row can be assigned. The first RANGE_N
expression defines three partitions based on the value of the totalorders column. The second
RANGE_N expression subdivides each of the three partitions into two partitions based on the
value of the orderdate column.

Partition
Number Condition

1 The value of the totalorders column is less than 100.

2 The value of the totalorders column is less than 1000, but greater than or equal to 100.

3 The value of the totalorders column is greater than or equal to 1000.

4 The totalorders column is NULL, so the range is UNKNOWN.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

94 SQL Functions, Operators, Expressions, and Predicates

Example 3

Here is an example that defines a partitioned primary index that specifies one partition to
which rows are assigned, for any value of the totalorders column, including NULL:

CREATE TABLE orders
(storeid INTEGER NOT NULL
,productid INTEGER NOT NULL
,orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL
,totalorders INTEGER)
PRIMARY INDEX (storeid, productid)
PARTITION BY RANGE_N(totalorders BETWEEN * AND *);

Example 4

The following example shows the count of rows in each partition if the table were to be
partitioned using the RANGE_N expression.

CREATE TABLE orders
(orderkey INTEGER NOT NULL
,custkey INTEGER
,orderdate DATE FORMAT 'yyyy-mm-dd')
PRIMARY INDEX (orderkey);

INSERT INTO orders (1, 100, '1998-01-01');
INSERT INTO orders (2, 100, '1998-04-01');
INSERT INTO orders (3, 109, '1998-04-01');
INSERT INTO orders (4, 101, '1998-04-10');
INSERT INTO orders (5, 100, '1998-07-01');
INSERT INTO orders (6, 109, '1998-07-10');
INSERT INTO orders (7, 101, '1998-08-01');
INSERT INTO orders (8, 101, '1998-12-01');
INSERT INTO orders (9, 111, '1999-01-01');

Level 1
Partition
Number

Level 2
Partition
Number Condition

1 1 The value of the totalorders column is less than 100 and the value of the
orderdate column is less than '2005-12-31'.

2 The value of the totalorders column is less than 100 and the value of the
orderdate column is greater than or equal to '2005-12-31'.

2 1 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is less than '2005-12-31'.

2 The value of the totalorders column is less than 1000 but greater than or
equal to 100, and the value of the orderdate column is greater than or equal
to '2005-12-31'.

3 1 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is less than '2005-12-31'.

2 The value of the totalorders column is greater than or equal to 1000 and the
value of the orderdate column is greater than or equal to '2005-12-31'.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 95

INSERT INTO orders (10, 111, NULL);

The RANGE_N expression in the following SELECT statement uses the EACH phrase to
define a series of 12 ranges, where the first range starts at '1998-01-01' and the ranges that
follow have starting boundaries that increment sequentially by one month intervals.

SELECT COUNT(*),
RANGE_N(orderdate

BETWEEN DATE '1998-01-01' AND DATE '1998-12-31'
EACH INTERVAL '1' MONTH

) AS Partition_Number
FROM orders
GROUP BY Partition_Number
ORDER BY Partition_Number;

The results look like this:

Count(*) Partition_Number
----------- ----------------

2 ?
1 1
3 4
2 7
1 8
1 12

Example 5

The following example creates a table with partitioning defined using a RANGE_N expression
involving the END bound function. The table creates 10 partitions where each partition
represents the sales history for one year.

CREATE TABLE SalesHistory
(product_code CHAR (8),
quantity_sold INTEGER,
transaction_period PERIOD (DATE))

PRIMARY INDEX (product_code)
PARTITION BY

RANGE_N (END (transaction_period) BETWEEN date'2006-01-01'
AND date '2015-12-31' EACH INTERVAL'1' YEAR);

The following SELECT statement scans five partitions of the sales history before the year 2010.

SELECT *
FROM SalesHistory
WHERE transaction_period < period (date'2010-01-01');

Example 6 Start_expression with CURRENT_DATE

If CURRENT_DATE or CURRENT_TIMESTAMP is specified in the start_expression of the
first range in RANGE_N, and if this start_expression when resolved with a new
CURRENT_DATE or CURRENT_TIMESTAMP falls on a partition boundary, then all
partitions prior to the partition matched are dropped. Otherwise, the entire table is
repartitioned with the new partitioning expression.

Consider the following CREATE TABLE statement submitted on April 1, 2006:

CREATE TABLE ppi (i INT, j DATE)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

96 SQL Functions, Operators, Expressions, and Predicates

PRIMARY INDEX (i)
PARTITION BY

RANGE_N (j BETWEEN CURRENT_DATE AND
CURRENT_DATE + INTERVAL '1' YEAR - INTERVAL '1' DAY
EACH INTERVAL '1' MONTH);

The last resolved date is April 1, 2006. If you submit an ALTER TABLE TO CURRENT
statement on June 1, 2006, the start_expression, newly resolved to CURRENT_DATE ('2006-
06-01'), falls on a partition boundary of the third partition. Therefore, partitions 1 and 2 are
dropped, and the last reconciled date is set to the newly resolved CURRENT_DATE.

However, if you submitted the ALTER TABLE TO CURRENT statement on June 10, 2006
instead of June 1, 2006, the start_expression, newly resolved to CURRENT_DATE ('2006-06-
10'), does not fall on a partition boundary. Therefore, all rows are scanned and the rows are
repartitioned based on the new partitioning expression. The partition boundary after this
statement aligns with the 10th day of the month instead of the earlier 1st day of the month.

Example 7

The following table definition is created in the year 2007 (the current year at the time). The
table is partitioned to record 5 years of order history plus orders for the current year and one
future year.

CREATE TABLE Orders
(o_orderkey INTEGER NOT NULL,
o_custkey INTEGER,
o_orderstatus CHAR(1) CASESPECIFIC,
o_totalprice DECIMAL(13,2) NOT NULL,
o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
o_orderpriority CHAR(21),
o_comment VARCHAR(79))

PRIMARY INDEX (o_orderkey)
PARTITION BY RANGE_N(

o_orderdate BETWEEN DATE '2002-01-01' AND DATE '2008-12-31'
EACH INTERVAL '1' MONTH)

UNIQUE INDEX (o_orderkey);

If, in 2008, you want to alter the table such that it continues to maintain 5 years of history plus
the current year and one future year, you can submit the following statement in 2008:

ALTER TABLE Orders MODIFY PRIMARY INDEX (o_orderkey)
DROP RANGE WHERE PARTITION BETWEEN 1 AND 12
ADD RANGE BETWEEN DATE '2009-01-01' AND DATE '2009-12-31'

EACH INTERVAL '1' MONTH
WITH DELETE;

In this case, you must compute the new dates and specify them explicitly in the ADD RANGE
clause. This requires manual intervention every year the statement is submitted.

Alternatively, you can define the table using CURRENT_DATE as follows. This makes it easier
to alter the partitioning.

CREATE TABLE Orders
(o_orderkey INTEGER NOT NULL,
o_custkey INTEGER,
o_orderstatus CHAR(1) CASESPECIFIC,
o_totalprice DECIMAL(13,2) NOT NULL,

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 97

o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
o_orderpriority CHAR(21),
o_comment VARCHAR(79))

PRIMARY INDEX (o_orderkey)
PARTITION BY RANGE_N(o_orderdate BETWEEN

CAST(((EXTRACT(YEAR FROM CURRENT_DATE)-5-1900)*10000+0101) AS DATE)
AND

CAST(((EXTRACT(YEAR FROM CURRENT_DATE)+1-1900)*10000+1231) AS DATE)
EACH INTERVAL '1' MONTH)

UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur yearly. This statement rolls
the partition window forward by efficiently dropping and adding partitions.

ALTER TABLE Orders TO CURRENT WITH DELETE;

With the use of CURRENT_DATE, you do not need to modify the ALTER TABLE statement
each time you want to repartition the data based on the new dates.

In both cases, the partitioning starts on a year boundary. In the first example, the ALTER
TABLE statement does not change this, so partitioning continues to start on a year boundary.
However, you can specifiy an ALTER TABLE statement that changes the partitioning to start
on a different boundary. For example, you can roll forward to start on a particular month in a
year by specifying the desired dates in the ALTER TABLE statement.

In the second example, which uses CURRENT_DATE, you can only roll forward to start on a
year boundary. However, you can modify the example as follows so that partitioning can be
used to roll forward to start at the beginning of a month. This case assumes that, as of the
CREATE TABLE date, the Orders table will contain the last 71 months of history plus the
current month and 12 months in the future (a total of 84 months).

CREATE TABLE Orders
(o_orderkey INTEGER NOT NULL,
o_custkey INTEGER,
o_orderstatus CHAR(1) CASESPECIFIC,
o_totalprice DECIMAL(13,2) NOT NULL,
o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
o_orderpriority CHAR(21),
o_comment VARCHAR(79))

PRIMARY INDEX (o_orderkey)
PARTITION BY RANGE_N(o_orderdate BETWEEN

CAST(((EXTRACT(YEAR FROM CURRENT_DATE)-1900)*10000 +
EXTRACT(MONTH FROM CURRENT_DATE)*100 + 01) AS DATE) -

INTERVAL '71' MONTH
AND
CAST(((EXTRACT(YEAR FROM CURRENT_DATE)+1-1900)*10000 +

EXTRACT(MONTH FROM CURRENT_DATE)*100 + 01) AS DATE)+
INTERVAL '13' MONTH - INTERVAL '1' DAY

EACH INTERVAL '1' MONTH)
UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur monthly or less frequently
(but before running out of future months). This statement rolls the partition window forward
by dropping and adding partitions so that the Orders table continues to contain the last 71
months of history plus the current month and 12 months in the future.

ALTER TABLE Orders TO CURRENT WITH DELETE;

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

98 SQL Functions, Operators, Expressions, and Predicates

You can define the following simpler partitioning , but it might not be optimized, and the
entire table might be scanned to reconcile rows when you submit an ALTER TABLE TO
CURRENT statement. This case assumes that, as of the CREATE TABLE date, the Orders table
will contain about 2,191 days of history plus the current day and about 365 days in the future
(a total of about 7 years).

CREATE TABLE Orders
(o_orderkey INTEGER NOT NULL,
o_custkey INTEGER,
o_orderstatus CHAR(1) CASESPECIFIC,
o_totalprice DECIMAL(13,2) NOT NULL,
o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
o_orderpriority CHAR(21),
o_comment VARCHAR(79))

PRIMARY INDEX (o_orderkey)
PARTITION BY RANGE_N(o_orderdate BETWEEN

CURRENT_DATE - INTERVAL '6' YEAR
AND

CURRENT_DATE + INTERVAL '1' YEAR
EACH INTERVAL '1' MONTH)

UNIQUE INDEX (o_orderkey);

You can schedule the following ALTER TABLE statement to occur daily or less frequently (but
before running out of future days). This statement rolls the partition window forward by
dropping and adding partitions only if the CURRENT_DATE is the same day of the month as
the day when the last CREATE TABLE or ALTER TABLE TO CURRENT statement was
submitted. Otherwise, the entire table is scanned to reconcile the rows.

ALTER TABLE Orders TO CURRENT WITH DELETE;

This can be very inefficient if the ALTER TABLE statement is not submitted on the same day
of the month as the day when the last CREATE TABLE or ALTER TABLE TO CURRENT
statement was submitted. Performance degrades as the number of days between the last
resolved date and the new resolved date increases due to the increasing number of rows that
must be moved.

For example, if the last resolved date was January 1, 2008, and the next ALTER TABLE TO
CURRENT statement is submitted on February 2, 2008, all the rows of the table will be moved
to new partitions.

Example 8

The following example defines 5 ranges. The session collation is ASCII.

RANGE_N(animal BETWEEN *, 'ape', 'bird', 'bull' AND 'cow',
'dog' AND *, NO RANGE, UNKNOWN)

where:

Range Includes...

1 all values less than 'ape'.

2 strings greater than or equal to 'ape' and less than 'bird'.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

SQL Functions, Operators, Expressions, and Predicates 99

If the value of animal matches one of the defined ranges, RANGE_N returns the number of
the matched range.

If the value of animal is greater than 'cow' but less than 'dog', it does not match any of the
ranges, so RANGE_N returns 6 because NO RANGE is specified.

If the value of animal is NULL, RANGE_N returns 7 because UNKNOWN is specified.

Example 9

The following example defines 5 ranges. The session collation is ASCII.

RANGE_N(animal BETWEEN *, 'ape', 'bird', 'bull' AND 'cow',
'dog' AND *, UNKNOWN)

where:

If the value of animal matches one of the defined ranges, RANGE_N returns the number of
the matched range.

If the value of animal is greater than 'cow' but less than 'dog', it does not match any of the
ranges, so RANGE_N returns NULL because NO RANGE is not specified.

If the value of animal is NULL, RANGE_N returns 6 because UNKNOWN is specified.

Example 10

In this example, the session collation is ASCII when submitting the CREATE TABLE
statement, and the pad character is <space>. The example defines two ranges (numbered 1
and 2):

• Any values greater than or equal to 'a ' (a followed by 9 spaces) or less than 'b ' are
mapped to partition 1.

3 strings greater than or equal to 'bird' and less than 'bull'.

4 strings between 'bull' and 'cow'.

5 strings greater than or equal to 'dog'.

Range Includes...

Range Includes...

1 all values less than 'ape'.

2 strings greater than or equal to 'ape' and less than 'bird'.

3 strings greater than or equal to 'bird' and less than 'bull'.

4 strings between 'bull' and 'cow'.

5 strings greater than or equal to 'dog'.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
RANGE_N

100 SQL Functions, Operators, Expressions, and Predicates

• Any values greater than or equal to 'b ' or less than 'c ' are mapped to partition 2.

CREATE SET TABLE t2
(a VARCHAR(10) CHARACTER SET UNICODE NOT CASESPECIFIC,
b INTEGER)

PRIMARY INDEX (a)
PARTITION BY RANGE_N(a BETWEEN 'a','b' AND 'c');

The following INSERT statement inserts a character string consisting of a single <tab>
character between the 'b' and '1'.

INSERT t2 ('b 1', 1);

The following INSERT statement inserts a character string consisting of a single <space>
character between the 'b' and '1'.

INSERT t2 ('b 1', 2);

The following SELECT statement shows the result of the INSERT statements. Since the <tab>
character has a lower code point than the <space> character, the first string inserted maps to
partition 1.

SELECT PARTITION, a, b FROM t2 ORDER BY 1;

*** Query completed. 2 rows found. 3 columns returned.
*** Total elapsed time was 1 second.

PARTITION a b
----------- ------ -----

1 b 1 1 (string contains single <tab> character)
2 b 1 2 (string contains single <space> character)

Related Topics

For information on … See …

PPI properties and performance considerations Database Design.

PPI considerations and capacity planning

specifying a PPI for a table CREATE TABLE in SQL Data
Definition Language.

specifying a PPI for a join index CREATE JOIN INDEX in SQL Data
Definition Language.

modifying the partitioning of the primary index for a table ALTER TABLE in SQL Data Definition
Language.

the reconciliation of the partitioning based on newly
resolved CURRENT_DATE and
CURRENT_TIMESTAMP values

ALTER TABLE TO CURRENT in SQL
Data Definition Language

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
SQRT

SQL Functions, Operators, Expressions, and Predicates 101

SQRT

Purpose
Computes the square root of an argument.

Syntax

where:

ANSI Compliance

SQRT is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type, format, and title for SQRT(arg) are as follows.

For information on default data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If arg is not FLOAT, it is converted to FLOAT based on implicit type conversion rules. If the
argument cannot be converted, an error is reported. For more information on implicit type
conversion, see “Implicit Type Conversions” on page 745.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

Syntax element … Specifies …

arg a positive, numeric argument.

1101A487

SQRT arg()

Data Type Format Title

FLOAT Default format for FLOAT SQRT(arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
SQRT

102 SQL Functions, Operators, Expressions, and Predicates

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including SQRT, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

SQRT cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples

Representative SQRT arithmetic function expressions and the results are as follows.

Expression Result

SQRT(2) 1.41421356237309E+000

SQRT(-2) Error

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
WIDTH_BUCKET

SQL Functions, Operators, Expressions, and Predicates 103

WIDTH_BUCKET

Purpose
Returns the number of the partition to which value_expression is assigned.

Syntax

where:

ANSI Compliance

WIDTH_BUCKET is ANSI SQL:2008 compliant.

Result Type and Attributes

The data type, format, and title for WIDTH_BUCKET(x, l, u, y) are as follows.

For information on default data type formats, see SQL Data Types and Literals.

Syntax element … Specifies the …

value_expression value for which a partition number is to be returned.

lower_bound lower boundary for the range of values to be partitioned equally.

upper_bound upper boundary for the range of values to be partitioned equally.

partition_count number of partitions to be created.

This value also specifies the width of the partitions by default.

The number of partitions created is partition_count + 2. Partition 0 and
partition partition_count + 1 account for values of value_expression that are
outside the lower and upper boundaries.

1101A492

WIDTH BUCKET value_expression, lower_bound, upper_bound, partition_count()

Data Type Format Title

INTEGER the default format for INTEGER Width_bucket(x, l, u, y)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
WIDTH_BUCKET

104 SQL Functions, Operators, Expressions, and Predicates

Argument Types and Rules

Use the following table for rules concerning WIDTH_BUCKET arguments.

If an argument cannot be implicitly converted to an acceptable type, an error is reported. For
more information on implicit type conversion, see “Implicit Type Conversions” on page 745.

Rules

The following rules apply to WIDTH_BUCKET:

• If any argument is null, then the result is also null.

• If partition_count <=0 or if partition_count > 2147483646, an error is returned to the
requestor.

Data Type Rules

Numeric WIDTH_BUCKET accepts all numeric data types as
arguments. The arguments value_expression, lower_bound,
and upper_bound are converted to REAL before
processing. The partition_count argument is converted to
INTEGER before processing.

Character WIDTH_BUCKET accepts character strings that represent
numeric values, and converts them to the appropriate
numeric type.

• TIME, TIMESTAMP, or Period

• INTERVAL

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the
server character set is GRAPHIC

WIDTH_BUCKET does not accept these types of
arguments.

UDT The following rules apply to UDT arguments:

• The UDT must have an implicit cast to any of the
following predefined types:

• Numeric

• Character

• DATE

To define an implicit cast for a UDT, use the CREATE
CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see
SQL Data Definition Language.

• Implicit type conversion of UDTs for system operators
and functions, including WIDTH_BUCKET, is a
Teradata extension to the ANSI SQL standard. To
disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS
Control Record to TRUE. For details, see Utilities.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
WIDTH_BUCKET

SQL Functions, Operators, Expressions, and Predicates 105

• If lower_bound = upper_bound, an error is returned to the requestor.

• If lower_bound < upper_bound, then the rules in the following table apply.

• If lower_bound > upper_bound, then the rules in the following table apply.

Example

You want to create a histogram for the salaries of all employees whose salary amount ranges
between $70000 and $200000. The width of each partition, or bucket, within the specified
range is to be $32500.

The employee salary table contains eight employees:

salary first_name last_name
-------- ------------ -----------
50000 William Crawford
150000 Todd Crawford
220000 Bob Stone
199999 Donald Stone
70000 Betty Crawford
70000 James Crawford
70000 Mary Lee
120000 Mary Stone

IF … THEN the result is …

value_expression <
lower_bound

0.

value_expression >=
upper_bound

partition_count +1.

If the result cannot be represented by the data type specified for the
result, then an error is returned.

anything else the greatest exact numeric value with scale 0 that is less than or equal to
the following expression.

IF … THEN the result is …

value_expression >
lower_bound

0.

value_expression <=
upper_bound

partition_count +1.

If the result cannot be represented by the data type specified for the
result, then an error is returned.

anything else the least exact numeric value with scale 0 that is less than or equal to the
following expression.

partition_count() value_expression lower_bound–()
upper_bound lower_bound–()

--⎝ ⎠
⎛ ⎞ 1+

partition_count() lower_bound value_expression–()
lower_bound upper_bound–()

--⎝ ⎠
⎛ ⎞ 1+

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
WIDTH_BUCKET

106 SQL Functions, Operators, Expressions, and Predicates

You perform the following SELECT statement.

SELECT salary, WIDTH_BUCKET(salary,70000,200000,4),COUNT(salary)
FROM emp_salary
GROUP BY 1
ORDER BY 1;

The report produced by this statement looks like this.

salary Width_bucket(salary,70000,200000,4) Count(salary)
-------- ------------------------------------ ----------------
50000 0 1
70000 1 3
120000 2 1
150000 3 1
199999 4 1
220000 5 1

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
ZEROIFNULL

SQL Functions, Operators, Expressions, and Predicates 107

ZEROIFNULL

Purpose
Converts data from null to 0 to avoid cases where a null result creates an error.

Syntax

where:

ANSI Compliance

ZEROIFNULL is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

Here are the default attributes for the result of ZEROIFNULL(arg).

For information on data type formats, see SQL Data Types and Literals.

Syntax element … Specifies …

arg a numeric argument.

1101F226

ZEROIFNULL ()arg

Data Type Format Title

Same data
type as arga

a. Note that the NULL keyword has a data type of INTEGER.

ZEROIFNULL(arg)

IF the operand is … THEN the format is the …

numeric same format as arg.

character default format for FLOAT.

UDT format of the predefined type to
which the UDT is implicitly cast.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
ZEROIFNULL

108 SQL Functions, Operators, Expressions, and Predicates

Argument Types and Rules

If the argument is not numeric, it is converted to a numeric value according to implicit type
conversion rules. If the argument cannot be converted, an error is reported. For more
information on implicit type conversion, see “Implicit Type Conversions” on page 745.

If arg is a character string, it is converted to a numeric value of FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including
ZEROIFNULL, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

ZEROIFNULL cannot be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Example

In this example, you can test the Salary column for null.

SELECT empno, ZEROIFNULL(salary)
FROM employee ;

A nonzero value is returned for each employee number, indicating that no nulls exist in the
Salary column.

IF the value of arg is … THEN ZEROIFNULL returns …

not null the value of the numeric argument.

null or zeroa

a. A structured UDT column value is null only when you explicitly place a NULL value in the column,
not when a structured UDT instance has an attribute that is set to NULL.

zero.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
ZEROIFNULL

SQL Functions, Operators, Expressions, and Predicates 109

Related Topics

For additional expressions involving checks for nulls, see:

• “COALESCE Expression” on page 42

• “NULLIF Expression” on page 44

• “NULLIFZERO” on page 80

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Trigonometric Functions (COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2)

110 SQL Functions, Operators, Expressions, and Predicates

Trigonometric Functions
(COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2)

Purpose
Performs the trigonometric or inverse trigonometric function of an argument.

Syntax

where:

ANSI Compliance

Trigonometric and inverse trigonometric functions are Teradata extensions to the ANSI
SQL:2008 standard.

Definitions

Syntax element … Specifies …

arg any valid numeric expression that expresses an angle in radians.

x the x-coordinate of a point to use in the arctangent calculation.

y the y-coordinate of a point to use in the arctangent calculation.

1101A482

COS (arg)

SIN

TAN

ACOS

ASIN

ATAN

ATAN2 (x, y)

Function Definition

Arccosine The arccosine is the angle whose cosine is the argument.

Arcsine The arcsine is the angle whose sine is the argument.

Arctangent The arctangent is the angle whose tangent is the argument.

Cosine The cosine of an angle is the ratio of two sides of a right triangle. The ratio is the
length of the side adjacent to the angle divided by the length of the hypotenuse.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Trigonometric Functions (COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2)

SQL Functions, Operators, Expressions, and Predicates 111

Result Type and Attributes

Here are the default data type, format, and title for the result of the trigonometric and inverse
trigonometric functions.

For information on default data type formats, see SQL Data Types and Literals.

Result Value

Sine The sine of an angle is the ratio of two sides of a right triangle. The ratio is the length
of the side opposite to the angle divided by the length of the hypotenuse.

Tangent The tangent of an angle is the ratio of two sides of a right triangle. The ratio is the
length of the side opposite to the angle divided by the length of the side adjacent to the
angle.

Function Definition

Data Type Format Title

FLOAT Default format for FLOAT Cos(arg)
Sin(arg)
Tan(arg)
ArcCos(arg)
ArcSin(arg)
ArcTan(arg)
Atan2(x,y)

Function Result Value

COS(arg) The cosine of arg in radians in the range -1 to 1, inclusive.

SIN(arg) The sine of arg in radians in the range -1 to 1, inclusive.

TAN(arg) The tangent of arg in radians.

ACOS(arg) An angle in the range 0 to π radians, inclusive.

ASIN(arg) An angle in the range -π/2 to π/2 radians, inclusive.

ATAN(arg) An angle in the range -π/2 to π/2 radians, inclusive.

ATAN2(x,y) An angle between -π and π radians, excluding -π.

A positive result represents a counterclockwise angle from the x-axis. A negative
result represents a clockwise angle.

ATAN2(x,y) equals ATAN(y/x), except that x can be 0 in ATAN2(x,y) and x cannot
be 0 in ATAN(y/x) since this results in a divide by zero error.

If both x and y are 0, an error is returned.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Trigonometric Functions (COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2)

112 SQL Functions, Operators, Expressions, and Predicates

Argument Types and Rules

Arguments that are not FLOAT are converted to FLOAT based on implicit type conversion
rules. If an argument cannot be converted, an error is reported. For more information on
implicit type conversion, see “Implicit Type Conversions” on page 745.

If an argument is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including
trigonometric and inverse trigonometric functions, is a Teradata extension to the ANSI
SQL standard. To disable this extension, set the DisableUDTImplCastForSysFuncOp field
of the DBS Control Record to TRUE. For details, see Utilities.

Trigonometric and inverse trigonometric functions cannot take the following types of
arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Examples

The following are representative function expressions and results.

Expression Result

COS(5-4) 5.40302305868140E -001

SIN(LOG(0.5)) -2.96504042171437E -001

SIN(RADIANS(180.0)) 1.22464679914735E-016

TAN(ABS(-3)) -1.42546543074278E -001

ACOS(-0.5) 2.09439510239320E 000

ASIN(1) 1.57079632679490E 000

ATAN(1+2) 1.24904577239825E 000

ATAN2(1,1) 7.85398163397448E -001

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
DEGREES RADIANS

SQL Functions, Operators, Expressions, and Predicates 113

DEGREES
RADIANS

Purpose
DEGREES takes a value specified in radians and converts it to degrees. RADIANS takes a value
specified in degrees and converts it to radians.

Syntax

where:

ANSI Compliance

DEGREES and RADIANS are Teradata extensions to the ANSI SQL:2008 standard.

Result Title

The following table lists the default titles for DEGREES(arg) and RADIANS(arg).

Syntax element … Specifies …

arg a numeric expression.

IF the function is … THEN arg is interpreted as an angle in …

DEGREES radians.

RADIANS degrees.

1101A481

DEGREES (arg)

RADIANS

Function Title

DEGREES(arg) (5.72957795130823E001*arg)

RADIANS(arg) (1.74532925199433E-002*arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
DEGREES RADIANS

114 SQL Functions, Operators, Expressions, and Predicates

Result Type and Format

The following table lists the result type and format of DEGREES(arg) and RADIANS(arg).

For information on data type formats, see SQL Data Types and Literals.

Argument Types and Rules

If the argument is not numeric, it is converted to a numeric value, based on implicit type
conversion rules. If the argument cannot be converted, an error is reported. For more
information on implicit type conversion, see “Implicit Type Conversions” on page 745.

If arg is a character string, it is converted to a numeric value of the FLOAT data type.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DateTime

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including DEGREES
and RADIANS, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

Neither DEGREES nor RADIANS can be applied to the following types of arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Data Type Format

Same data type
as arga

a. Note that the NULL keyword has a data type of INTEGER.

IF the operand is … THEN the format is the default format for …

numeric the resulting data type.

character FLOAT.

a UDT the predefined type to which the UDT is implicitly cast.

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
DEGREES RADIANS

SQL Functions, Operators, Expressions, and Predicates 115

Usage Notes

DEGREES and RADIANS are useful when working with trigonometric functions such as SIN
and COS, which expect arguments to be specified in radians, and inverse trigonometric
functions such as ASIN and ACOS, which return values specified in radians.

Examples

Representative DEGREES and RADIANS function expressions and the results are as follows.

Expression Result

SIN(RADIANS(60.0)) 8.66025403784439E-001

DEGREES(1.0) 5.72957795130823E 001

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Hyperbolic Functions (COSH, SINH, TANH, ACOSH, ASINH, ATANH)

116 SQL Functions, Operators, Expressions, and Predicates

Hyperbolic Functions
(COSH, SINH, TANH, ACOSH, ASINH, ATANH)

Purpose
Performs the hyperbolic or inverse hyperbolic function of an argument.

Syntax

where:

ANSI Compliance

Hyperbolic and inverse hyperbolic functions are Teradata extensions to the ANSI SQL:2008
standard.

Result Type and Attributes

Here are the default attributes for the result of hyperbolic and inverse hyperbolic functions.

For information on default data type formats, see SQL Data Types and Literals.

Syntax element … Specifies …

arg any real number.

1101A483

COSH (arg)

SINH

TANH

ACOSH

ASINH

ATANH

Data Type Format Title

FLOAT Default format for FLOAT Hyperbolic Cos(arg)
Hyperbolic Sin(arg)
Hyperbolic Tan(arg)
Hyperbolic ArcCos(arg)
Hyperbolic ArcSin(arg)
Hyperbolic ArcTan(arg)

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Hyperbolic Functions (COSH, SINH, TANH, ACOSH, ASINH, ATANH)

SQL Functions, Operators, Expressions, and Predicates 117

Result Value

Argument Types and Rules

If arg is not FLOAT, it is converted to a FLOAT value, based on implicit type conversion rules.
If the argument cannot be converted, an error is reported. For more information on implicit
type conversion, see “Implicit Type Conversions” on page 745.

If arg is a UDT, the following rules apply:

• The UDT must have an implicit cast to any of the following predefined types:

• Numeric

• Character

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

• Implicit type conversion of UDTs for system operators and functions, including
hyperbolic and inverse hyperbolic functions, is a Teradata extension to the ANSI SQL
standard. To disable this extension, set the DisableUDTImplCastForSysFuncOp field of
the DBS Control Record to TRUE. For details, see Utilities.

Hyperbolic and inverse hyperbolic functions cannot be applied to the following types of
arguments:

• BYTE or VARBYTE

• BLOB or CLOB

• CHARACTER or VARCHAR if the server character set is GRAPHIC

Function Result

COSH(arg) Hyperbolic cosine of arg.

SINH(arg) Hyperbolic sine of arg.

TANH(arg) Hyperbolic tangent of arg.

ACOSH(arg) Inverse hyperbolic cosine of arg. The inverse hyperbolic cosine is the value whose
hyperbolic cosine is a number so that:

acosh(cosh(arg)) = arg

ASINH(arg) Inverse hyperbolic sine of arg. The inverse hyperbolic sine is the value whose
hyperbolic sine is a number so that:

asinh(sinh(arg)) = arg

ATANH(arg) Inverse hyperbolic tangent of arg. The inverse hyperbolic tangent is the value
whose hyperbolic tangent is a number so that:

atanh(tanh(arg)) = arg

Chapter 3: Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
Hyperbolic Functions (COSH, SINH, TANH, ACOSH, ASINH, ATANH)

118 SQL Functions, Operators, Expressions, and Predicates

Examples

The following are representative hyperbolic and inverse hyperbolic function expressions and
results.

Expression Result

COSH(EXP(1)) 7.61012513866229E 000

SINH(1) 1.17520119364380E 000

TANH(0) 0.00000000000000E 000

ACOSH(3) 1.76274717403909E 000

ASINH(LOG(0.1)) -8.81373587019543E -001

ATANH(LN(0.5)) -8.53988047997524E -001

SQL Functions, Operators, Expressions, and Predicates 119

CHAPTER 4 Byte/Bit Manipulation Functions

This chapter describes the functions that provide support for byte/bit manipulation
operations.

Prerequisites
The byte/bit manipulation functions in this chapter are domain-specific functions; therefore,
before you can use these functions, you must run the Database Initialization Program (DIP)
utility and execute the DIPALL or DIPUDT script. For details, see “Activating Domain-
specific Functions” on page 20.

Bit and Byte Numbering Model

The following diagrams show the logical bit and byte numbering model employed by the byte/
bit manipulation functions described in this chapter.

The model is big endian or little endian independent. Note that the numbering system used
for numeric data types is consistent with that used for byte strings. This simplifies the
development of appropriate bit masks.

Users of the byte/bit manipulation functions should mentally visualize the numeric and byte
data types as shown below when contemplating what masks (bit_mask_arg) need to be
applied to the target data (target_arg).

BYTEINT

Example

A BYTEINT value of 40 with a binary representation of 00101000:

1101A689

msb
MSB

lsb : most and least significant bits
LSB : Most and Least Significant Bytes

Bit 7 . . . Bit 0 : Bit Numbering

BYTE 1 : Computer Science binary representation

Chapter 4: Byte/Bit Manipulation Functions
Bit and Byte Numbering Model

120 SQL Functions, Operators, Expressions, and Predicates

SMALLINT

Example

A SMALLINT value of 10,280 with a binary representation of 0010100000101000:

INTEGER

Example

An INTEGER value of 673,720,360 with a binary representation of
00101000 00101000 00101000 00101000:

1101A690

msb
MSB

lsb
LSB

Bit 7 . . . Bit 0

00101000

1101A691

msb
MSB

lsb : most and least significant bits
LSB : Most and Least Significant Bytes

Bit 15 . . . Bit 0 : Bit Numbering

BYTE 1 BYTE 2 : Computer Science binary representation

1101A692

msb
MSB

lsb
LSB

Bit 15 . . . Bit 0

00101000 00101000

1101A693

msb
MSB

lsb
LSB

Bit 32 . . . Bit 0 : Bit Numbering

BYTE 1 BYTE 2 BYTE 3 BYTE 4 : Computer Science binary representation

1101A694

msb
MSB

lsb
LSB

Bit 32 . . . Bit 0

00101000 00101000 00101000 00101000

Chapter 4: Byte/Bit Manipulation Functions
Bit and Byte Numbering Model

SQL Functions, Operators, Expressions, and Predicates 121

BIGINT

Example

A BIGINT value of 2,893,606,913,523,066,920 with a binary representation of
00101000 00101000 00101000 00101000 00101000 00101000 00101000 00101000:

BYTE and VARBYTE

Example 1

A VARBYTE(8) with 8 bytes:

Example 2

A VARBYTE(8) with 3 bytes:

Example 3

Example of BYTE(4):

1101A695

msb
MSB

lsb
LSB

Bit 63 . . . Bit 0

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 BYTE 8

1101A696

msb
MSB

lsb
LSB

Bit 63 . . . Bit 0

00101000 00101000 00101000 00101000 00101000 00101000 00101000 00101000

1101A697

msb
MSB

lsb
LSB

Bit 63 . . . Bit 0

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 BYTE 8

1101A698

msb
MSB

lsb
LSB

Bit 23 . . . Bit 0 // Bit Numbering

BYTE 1 BYTE 2 BYTE 3

Chapter 4: Byte/Bit Manipulation Functions
Bit and Byte Numbering Model

122 SQL Functions, Operators, Expressions, and Predicates

HEXADECIMAL BYTE LITERALS

With respect to byte-bit system functions, hexadecimal byte literals are interpreted as follows:

A 2-byte hexadecimal byte literal: '00FF'XB

A 4-byte hexadecimal byte literal: '01020304'XB

Note that hexadecimal byte literals are represented by an even number of hexadecimal digits.
Hexadecimal literals are extended on the right with zeros when required. For example:

A 3-byte hexadecimal byte literal, '112233'XB, becomes a 4-byte hexadecimal byte literal:
'11223300'XB

For more information, see “Hexadecimal Byte Literals” in SQL Data Types and Literals.

1101A699

msb
MSB

lsb
LSB

Bit 31 . . . Bit 0

BYTE 1 BYTE 2 BYTE 3 BYTE 4

1101A700

msb
MSB

lsb
LSB

Bit 15 . . . Bit 0

00 FF

1101A701

msb
MSB

lsb
LSB

Bit 31 . . . Bit 0

01 02 03 04

1101A702

msb
MSB

lsb
LSB

Bit 31 . . . Bit 0

11 22 33 00

Chapter 4: Byte/Bit Manipulation Functions
Performing Bit-Byte Operations against Arguments with Non-Equal Lengths

SQL Functions, Operators, Expressions, and Predicates 123

Performing Bit-Byte Operations against
Arguments with Non-Equal Lengths

This section applies only to the BITOR, BITXOR, and BITAND functions.

If the target_arg and bit_mask_arg arguments passed to these functions differ in length, the
arguments are processed as follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.

• The smaller argument is padded with zeros to the left until it becomes the same size as the
larger argument.

Teradata Database pads to the left (instead of to the right) so that the hexadecimal byte
literals, serving as bit masks, will not have to be changed every time the size of a byte string

is changed.

Example

The following query performs the BITAND operation on an INTEGER and a single-byte
hexadecimal byte literal.

SELECT BITAND(287454020, 'FFFF'XB);

The INTEGER value 287,454,020 has a hexadecimal value of 0x11223344 and a bit numbering
representation of:

The hexadecimal byte literal 0xFFFF has a bit numbering representation of:

To process the BITAND operation, the two arguments are aligned on their least significant
byte/bit as follows:

1101A703

msb
MSB

lsb
LSB

Bit 31 . . . Bit 0

11 22 33 44

1101A704

msb
MSB

lsb
LSB

Bit 15 . . . Bit 0

FF FF

Chapter 4: Byte/Bit Manipulation Functions
Performing Bit-Byte Operations against Arguments with Non-Equal Lengths

124 SQL Functions, Operators, Expressions, and Predicates

The shorter-length hexadecimal byte literal 0xFFFF is padded with zeros to the left until it is
the same length as the INTEGER value 287,454,020.

When both operands are the same size, the BITAND operation is performed, producing the
following result:

1101A705

MSB LSB

Bit 31 . . . Bit 0

11 22 33 44

1101A706

MSB LSB

Bit 15 . . . Bit 0

FF FF

1101A707

MSB LSB

Bit 31 . . . Bit 0

11 22 33 44

1101A708

MSB LSB

Bit 31 . . . Bit 0

00 00 FF FF

1101A709

MSB LSB

Bit 31 . . . Bit 0

00 00 33 44

Chapter 4: Byte/Bit Manipulation Functions
BITAND

SQL Functions, Operators, Expressions, and Predicates 125

BITAND

Purpose
Performs the logical AND operation on the corresponding bits from the two input arguments.

Syntax

where:

ANSI Compliance

BITAND is a Teradata extension to the ANSI SQL:2008 standard.

Description

This function takes two bit patterns of equal length and performs the logical AND operation
on each pair of corresponding bits. If the bits at the same position are both 1, then the result is
1; otherwise, the result is 0. If either input argument is NULL, the function returns NULL.

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as
follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.

• The smaller argument is padded with zeros to the left until it becomes the same size as the
larger argument.

For more information, see “Performing Bit-Byte Operations against Arguments with Non-
Equal Lengths” on page 123.

Invocation

BITAND is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

bit_mask_arg a fixed byte value, a variable byte value, or a numeric expression.

BITAND (target_arg, bit_mask_arg)

TD_SYSFNLIB. 1101A671

Chapter 4: Byte/Bit Manipulation Functions
BITAND

126 SQL Functions, Operators, Expressions, and Predicates

Argument Types and Rules

BITAND is an overloaded scalar function. The data type of the target_arg parameter can be
one of the following:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• VARBYTE(n)

The data type of the bit_mask_arg parameter varies depending upon the data type of the
target_arg parameter. The following (target_arg, bit_mask_arg) input combinations are
permitted:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs. For
example, BITAND(BYTEINT, INTEGER) is allowed because it can be implicitly converted to
BITAND(INTEGER,INTEGER).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITAND

SQL Functions, Operators, Expressions, and Predicates 127

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITAND is: BITAND(target_arg, bit_mask_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 23 has a data type of BYTEINT and a binary
representation of 00010111. The input argument 20 has a data type of BYTEINT and a binary
representation of 00010100. The bitwise AND product of the two arguments results in a
BYTEINT value of 20, or binary 00010100, which is returned by the query.

SELECT BITAND(23,20);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITNOT

128 SQL Functions, Operators, Expressions, and Predicates

BITNOT

Purpose
Performs a bitwise complement on the binary representation of the input argument.

Syntax

where:

ANSI Compliance

BITNOT is a Teradata extension to the ANSI SQL:2008 standard.

Description

The bitwise NOT, or complement, is a unary operation which performs logical negation on
each bit, forming the ones' complement of the specified binary value. The digits in the
argument which were 0 become 1, and vice versa. BITNOT returns NULL if target_arg is
NULL.

Invocation

BITNOT is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

BITNOT is an overloaded scalar function. It is defined with the following parameter data
types:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• VARBYTE(n)

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

BITNOT (target_arg)

TD_SYSFNLIB. 1101A669

Chapter 4: Byte/Bit Manipulation Functions
BITNOT

SQL Functions, Operators, Expressions, and Predicates 129

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If the argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITNOT is: BITNOT(target_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 2 has a data type of BYTEINT and a binary
representation of 00000010. Performing a BITNOT operation on this value results in a
BYTEINT value of -2, or binary 11111101.

SELECT BITNOT(2);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITOR

130 SQL Functions, Operators, Expressions, and Predicates

BITOR

Purpose
Performs the logical OR operation on the corresponding bits from the two input arguments.

Syntax

where:

ANSI Compliance

BITOR is a Teradata extension to the ANSI SQL:2008 standard.

Description

This function takes two bit patterns of equal length and performs the logical OR operation on
each pair of corresponding bits as follows:

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as
follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.

• The smaller argument is padded with zeros to the left until it becomes the same size as the
larger argument.

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

bit_mask_arg a fixed byte value, a variable byte value, or a numeric expression.

BITOR (target_arg, bit_mask_arg)

TD_SYSFNLIB. 1101A668

IF... THEN the result is...

either of the bits from the input
arguments is 1

1

both of the bits from the input
arguments are 0

0

any of the input arguments is
NULL

NULL

Chapter 4: Byte/Bit Manipulation Functions
BITOR

SQL Functions, Operators, Expressions, and Predicates 131

For more information, see “Performing Bit-Byte Operations against Arguments with Non-
Equal Lengths” on page 123.

Invocation

BITOR is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

BITOR is an overloaded scalar function. The data type of the target_arg parameter can be one
of the following:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• VARBYTE(n)

The data type of the bit_mask_arg parameter varies depending upon the data type of the
target_arg parameter. The following (target_arg, bit_mask_arg) input combinations are
permitted:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs. For
example, BITOR(BYTEINT, INTEGER) is allowed because it can be implicitly converted to
BITOR(INTEGER,INTEGER).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITOR

132 SQL Functions, Operators, Expressions, and Predicates

one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITOR is: BITOR(target_arg, bit_mask_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 23 has a data type of BYTEINT and a binary
representation of 00010111. The input argument 45 has a data type of BYTEINT and a binary
representation of 00101101. The bitwise OR product of the two arguments results in a
BYTEINT value of 63, or binary 00111111, which is returned by the query.

SELECT BITOR(23,45);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITXOR

SQL Functions, Operators, Expressions, and Predicates 133

BITXOR

Purpose
Performs a bitwise XOR operation on the binary representation of the two input arguments.

Syntax

where:

ANSI Compliance

BITXOR is a Teradata extension to the ANSI SQL:2008 standard.

Description

The bitwise exclusive OR takes two bit patterns of equal length and performs the logical XOR
operation on each pair of corresponding bits. The result in each position is 1 if the two bits are
different, and 0 if they are the same. If either input argument is NULL, the function returns
NULL.

If the target_arg and bit_mask_arg arguments differ in length, the arguments are processed as
follows:

• The target_arg and bit_mask_arg arguments are aligned on their least significant byte/bit.

• The smaller argument is padded with zeros to the left until it becomes the same size as the
larger argument.

For more information, see “Performing Bit-Byte Operations against Arguments with Non-
Equal Lengths” on page 123.

Invocation

BITXOR is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

bit_mask_arg a fixed byte value, a variable byte value, or a numeric expression.

BITXOR (target_arg, bit_mask_arg)

TD_SYSFNLIB. 1101A670

Chapter 4: Byte/Bit Manipulation Functions
BITXOR

134 SQL Functions, Operators, Expressions, and Predicates

Argument Types and Rules

BITXOR is an overloaded scalar function. The data type of the target_arg parameter can be
one of the following:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• VARBYTE(n)

The data type of the bit_mask_arg parameter varies depending upon the data type of the
target_arg parameter. The following (target_arg, bit_mask_arg) input combinations are
permitted:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs. For
example, BITXOR(BYTEINT, INTEGER) is allowed because it can be implicitly converted to
BITXOR(INTEGER,INTEGER).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

target_arg type bit_mask_arg type

BYTEINT BYTE(1)

BYTEINT BYTEINT

SMALLINT BYTE(2)

SMALLINT SMALLINT

INTEGER BYTE(4)

INTEGER INTEGER

BIGINT BYTE(8)

BIGINT BIGINT

VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
BITXOR

SQL Functions, Operators, Expressions, and Predicates 135

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for BITXOR is: BITXOR(target_arg, bit_mask_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 12 has a data type of BYTEINT and a binary
representation of 00001100. The input argument 45 has a data type of BYTEINT and a binary
representation of 00101101. The bitwise XOR product of the two arguments results in a
BYTEINT value of 33, or binary 00100001, which is returned by the query.

SELECT BITXOR(12,45);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
COUNTSET

136 SQL Functions, Operators, Expressions, and Predicates

COUNTSET

Purpose
Returns the count of the binary bits within the target_arg expression that are either set to 1 or
set to 0 depending on the target_value_arg value.

Syntax

where:

ANSI Compliance

COUNTSET is a Teradata extension to the ANSI SQL:2008 standard.

Description

COUNTSET takes the target_arg input expression and counts the number of bits within the
expression that are either set to 1 or set to 0, depending on the value of target_value_arg.

The target_value_arg parameter only accepts a value of 0 or 1. If a value for target_value_arg
is not specified, the default value of 1 is used, and COUNTSET counts the bit values that are
set to 1.

If any of the input arguments is NULL, the function returns NULL.

Invocation

COUNTSET is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

COUNTSET is an overloaded scalar function. It is defined with the following parameter data
types for the following (target_arg[, target_value_arg]) input combinations:

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

target_value_arg an optional integer value. Only a value of 0 or 1 is allowed.

If target_value_arg is not specified, the default is 1.

COUNTSET (target_arg)

TD_SYSFNLIB. 1101A676, target_value_arg

Chapter 4: Byte/Bit Manipulation Functions
COUNTSET

SQL Functions, Operators, Expressions, and Predicates 137

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type is INTEGER.

The result format is the default format for INTEGER.

The default title for COUNTSET is: COUNTSET(target_arg[, target_value_arg]).

For information on default data type formats, see SQL Data Types and Literals.

Example

The following query takes the input argument 23, which has a data type of BYTEINT and a
binary representation of 00010111. Since target_value_arg is not specified, the default value of
1 is used. Therefore, the function counts the number of bit values that are set to 1. The query
result is an INTEGER value of 4.

SELECT COUNTSET(23);

target_arg type target_value_arg type (optional)

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

Chapter 4: Byte/Bit Manipulation Functions
GETBIT

138 SQL Functions, Operators, Expressions, and Predicates

GETBIT

Purpose
Returns the value of the bit specified by target_bit_arg from the target_arg byte expression.

Syntax

where:

ANSI Compliance

GETBIT is a Teradata extension to the ANSI SQL:2008 standard.

Description

GETBIT gets the bit specified by target_bit_arg from the target_arg byte expression and
returns either 0 or 1 to indicate the value of that bit.

The range of input values for target_bit_arg can vary from 0 (bit 0 is the least significant bit) to
the (sizeof(target_arg) - 1).

If target_bit_arg is negative or out-of-range (meaning that it exceeds the size of target_arg), an
error is returned.

If either input argument is NULL, the function returns NULL.

Invocation

GETBIT is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

GETBIT is an overloaded scalar function. It is defined with the following parameter data types
for the following (target_arg, target_bit_arg) input combinations:

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

target_bit_arg an integer expression.

GETBIT (target_arg, target_bit_arg)

TD_SYSFNLIB. 1101A672

Chapter 4: Byte/Bit Manipulation Functions
GETBIT

SQL Functions, Operators, Expressions, and Predicates 139

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

GETBIT returns a BYTEINT value of either 0 or 1, reflecting the value of the bit residing at
the target_bit_arg position of the target_arg byte expression.

The result format is the default format for BYTEINT.

The default title for GETBIT is: GETBIT(target_arg, target_bit_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

The following query gets the value of the third bit of the input argument 23, which has a data
type of BYTEINT and a binary representation of 00010111. The query result is a BYTEINT
value of 1 or binary 00000001.

SELECT GETBIT(23,2);

target_arg type target_bit_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

Chapter 4: Byte/Bit Manipulation Functions
ROTATELEFT

140 SQL Functions, Operators, Expressions, and Predicates

ROTATELEFT

Purpose
Returns the expression target_arg rotated by the specified number of bits (num_bits_arg) to
the left, with the most significant bits wrapping around to the left.

Syntax

where:

ANSI Compliance

ROTATELEFT is a Teradata extension to the ANSI SQL:2008 standard.

Description

ROTATELEFT functions as follows:

Note: When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or
BIGINT), rotating a bit into the most significant position will result in the integer becoming
negative. This is because all integers in Teradata Database are signed integers.

Syntax element… Specifies…

target_arg a numeric or variable expression.

num_bits_arg an integer expression indicating the number of bit positions to rotate.

ROTATELEFT (target_arg, num_bits_arg)

TD_SYSFNLIB. 1101A664

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative rotates the bits to the right instead of the left.

target_arg and/or num_bits_arg are
NULL

returns NULL.

num_bits_arg is larger than the size
of target_arg

rotates (num_bits_arg MOD sizeof(target_arg)) bits.

The scope of the rotation operation is bounded by the size of
the target_arg expression.

Chapter 4: Byte/Bit Manipulation Functions
ROTATELEFT

SQL Functions, Operators, Expressions, and Predicates 141

Invocation

ROTATELEFT is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

ROTATELEFT is an overloaded scalar function. It is defined with the following parameter data
types for the following (target_arg, num_bits_arg) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

Chapter 4: Byte/Bit Manipulation Functions
ROTATELEFT

142 SQL Functions, Operators, Expressions, and Predicates

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for ROTATELEFT is: ROTATELEFT(target_arg, num_bits_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example 1

In the following query, the input argument 16 has a data type of BYTEINT and a binary
representation of 00010000. When this value is rotated left by two bits, the result in binary is
01000000. This value translates to a BYTEINT value of 64, which is the result returned by the
query.

SELECT ROTATELEFT(16,2);

Example 2

In the following query, the input argument 64 has a data type of BYTEINT and a binary
representation of 01000000. When this value is rotated left by three bits, the result in binary is
00000010. This value translates to a BYTEINT value of 2, which is the result returned by the
query.

SELECT ROTATELEFT(64,3);

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

Chapter 4: Byte/Bit Manipulation Functions
ROTATERIGHT

SQL Functions, Operators, Expressions, and Predicates 143

ROTATERIGHT

Purpose
Returns the expression target_arg rotated by the specified number of bits (num_bits_arg) to
the right, with the least significant bits wrapping around to the left.

Syntax

where:

ANSI Compliance

ROTATERIGHT is a Teradata extension to the ANSI SQL:2008 standard.

Description

ROTATERIGHT functions as follows:

Note: When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or
BIGINT), rotating a bit into the most significant position will result in the integer becoming
negative. This is because all integers in Teradata Database are signed integers.

Syntax element… Specifies…

target_arg a numeric or variable expression.

num_bits_arg an integer expression indicating the number of bit positions to rotate.

ROTATERIGHT (target_arg, num_bits_arg)

TD_SYSFNLIB. 1101A665

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative rotates the bits to the left instead of the right.

target_arg and/or num_bits_arg are
NULL

returns NULL.

num_bits_arg is larger than the size
of target_arg

rotates (num_bits_arg MOD sizeof(target_arg)) bits.

The scope of the rotation operation is bounded by the size of
the target_arg expression.

Chapter 4: Byte/Bit Manipulation Functions
ROTATERIGHT

144 SQL Functions, Operators, Expressions, and Predicates

Invocation

ROTATERIGHT is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

ROTATERIGHT is an overloaded scalar function. It is defined with the following parameter
data types for the following (target_arg, num_bits_arg) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

Chapter 4: Byte/Bit Manipulation Functions
ROTATERIGHT

SQL Functions, Operators, Expressions, and Predicates 145

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for ROTATERIGHT is: ROTATERIGHT(target_arg, num_bits_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example 1

In the following query, the input argument 32 has a data type of BYTEINT and a binary
representation of 00100000. When this value is rotated right by two bits, the result in binary is
00001000. This value translates to a BYTEINT value of 8, which is the result returned by the
query.

SELECT ROTATERIGHT(32,2);

Example 2

In the following query, the input argument 4 has a data type of BYTEINT and a binary
representation of 00000100. When this value is rotated right by four bits, the result in binary is
01000000. This value translates to a BYTEINT value of 64, which is the result returned by the
query.

SELECT ROTATERIGHT(4,4);

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

Chapter 4: Byte/Bit Manipulation Functions
SETBIT

146 SQL Functions, Operators, Expressions, and Predicates

SETBIT

Purpose
Sets the value of the bit specified by target_bit_arg to the value of target_value_arg in the
target_arg byte expression.

Syntax

where:

ANSI Compliance

SETBIT is a Teradata extension to the ANSI SQL:2008 standard.

Description

SETBIT takes the target_arg input and sets the bit specified by target_bit_arg to the value, 0 or
1, as provided by the target_value_arg argument.

The target_value_arg parameter only accepts a value of 0 or 1. If a value for target_value_arg
is not specified, the default value of 1 is used.

The range of input values for target_bit_arg can vary from 0 (bit 0 is the least significant bit) to
the (sizeof(target_arg) - 1).

If target_bit_arg is negative or out-of-range (meaning that it exceeds the size of target_arg), an
error is returned.

If any of the input arguments is NULL, the function returns NULL.

Invocation

SETBIT is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

target_bit_arg an integer expression.

target_value_arg an optional integer value. Only a value of 0 or 1 is allowed. If
target_value_arg is not specified, the default is 1.

SETBIT (target_arg, target_bit_arg)

TD_SYSFNLIB. 1101A673, target_value_arg

Chapter 4: Byte/Bit Manipulation Functions
SETBIT

SQL Functions, Operators, Expressions, and Predicates 147

Argument Types and Rules

SETBIT is an overloaded scalar function. It is defined with the following parameter data types
for the following (target_arg, target_bit_arg[,target_value_arg]) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

The maximum supported size (n) for VARBYTE is 8192 bytes.

target_arg type target_bit_arg type target_value_arg type (optional)

BYTEINT INTEGER INTEGER

SMALLINT INTEGER INTEGER

INTEGER INTEGER INTEGER

BIGINT INTEGER INTEGER

VARBYTE(n) INTEGER INTEGER

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
SETBIT

148 SQL Functions, Operators, Expressions, and Predicates

The default title for SETBIT is: SETBIT(target_arg, target_bit_arg[,target_value_arg]).

For information on default data type formats, see SQL Data Types and Literals.

Example 1

The following query takes the input argument 23, which has a data type of BYTEINT and a
binary representation of 00010111, and sets the value of the third bit to 1. The query result is a
BYTEINT value of 23 or binary 00010111.

SELECT SETBIT(23,2);

Example 2

The following query takes the input argument 23, which has a data type of BYTEINT and a
binary representation of 00010111, and sets the value of the third bit to 0. The query result is a
BYTEINT value of 19 or binary 00010011.

SELECT SETBIT(23,2,0);

Chapter 4: Byte/Bit Manipulation Functions
SHIFTLEFT

SQL Functions, Operators, Expressions, and Predicates 149

SHIFTLEFT

Purpose
Returns the expression target_arg shifted by the specified number of bits (num_bits_arg) to
the left. The bits in the most significant positions are lost, and the bits in the least significant
positions are filled with zeros.

Syntax

where:

ANSI Compliance

SHIFTLEFT is a Teradata extension to the ANSI SQL:2008 standard.

Description

SHIFTLEFT functions as follows:

Syntax element… Specifies…

target_arg a numeric or variable expression.

num_bits_arg an integer expression indicating the number of bit positions to shift.

SHIFTLEFT (target_arg, num_bits_arg)

TD_SYSFNLIB. 1101A667

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative shifts the bits to the right instead of the left.

target_arg and/or num_bits_arg are
NULL

returns NULL.

num_bits_arg is larger than the size
of target_arg

returns an error.

The scope of the shift operation is bounded by the size of the
target_arg expression. Specifying a shift that is outside the
range of target_arg results in an SQL error.

Chapter 4: Byte/Bit Manipulation Functions
SHIFTLEFT

150 SQL Functions, Operators, Expressions, and Predicates

Note: When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or
BIGINT), shifting a bit into the most significant position will result in the integer becoming
negative. This is because all integers in Teradata Database are signed integers.

Invocation

SHIFTLEFT is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

SHIFTLEFT is an overloaded scalar function. It is defined with the following parameter data
types for the following (target_arg, num_bits_arg) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

Chapter 4: Byte/Bit Manipulation Functions
SHIFTLEFT

SQL Functions, Operators, Expressions, and Predicates 151

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SHIFTLEFT is: SHIFTLEFT(target_arg, num_bits_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 3 has a data type of BYTEINT and a binary
representation of 00000011. When this value is shifted left by two bits, the result in binary is
00001100. This value translates to a BYTEINT value of 12, which is the result returned by the
query.

SELECT SHIFTLEFT(3,2);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
SHIFTRIGHT

152 SQL Functions, Operators, Expressions, and Predicates

SHIFTRIGHT

Purpose
Returns the expression target_arg shifted by the specified number of bits (num_bits_arg) to
the right. The bits in the least significant positions are lost, and the bits in the most significant
positions are filled with zeros.

Syntax

where:

ANSI Compliance

SHIFTRIGHT is a Teradata extension to the ANSI SQL:2008 standard.

Description

SHIFTRIGHT functions as follows:

Syntax element… Specifies…

target_arg a numeric or variable expression.

num_bits_arg an integer expression indicating the number of bit positions to shift.

SHIFTRIGHT (target_arg, num_bits_arg)

TD_SYSFNLIB. 1101A666

IF... THEN the function...

num_bits_arg is equal to zero returns target_arg unchanged.

num_bits_arg is negative shifts the bits to the left instead of the right.

target_arg and/or num_bits_arg are
NULL

returns NULL.

num_bits_arg is larger than the size
of target_arg

returns an error.

The scope of the shift operation is bounded by the size of the
target_arg expression. Specifying a shift that is outside the
range of target_arg results in an SQL error.

Chapter 4: Byte/Bit Manipulation Functions
SHIFTRIGHT

SQL Functions, Operators, Expressions, and Predicates 153

Note: When operating against an integer value (BYTEINT, SMALLINT, INTEGER, or
BIGINT), shifting a bit out of the most significant position will result in the integer becoming
negative. This is because all integers in Teradata Database are signed integers.

Invocation

SHIFTRIGHT is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

SHIFTRIGHT is an overloaded scalar function. It is defined with the following parameter data
types for the following (target_arg, num_bits_arg) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type depends on the data type of the target_arg input argument that is passed
to the function as shown in the following table:

target_arg type num_bits_arg type

BYTEINT INTEGER

SMALLINT INTEGER

INTEGER INTEGER

BIGINT INTEGER

VARBYTE(n) INTEGER

Chapter 4: Byte/Bit Manipulation Functions
SHIFTRIGHT

154 SQL Functions, Operators, Expressions, and Predicates

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SHIFTRIGHT is: SHIFTRIGHT(target_arg, num_bits_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 3 has a data type of BYTEINT and a binary
representation of 00000011. When this value is shifted right by two bits, the result in binary is
00000000. This value translates to a BYTEINT value of 0, which is the result returned by the
query.

SELECT SHIFTRIGHT(3,2);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTEINT BYTEINT

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

VARBYTE(n) VARBYTE(n) VARBYTE(n)

Chapter 4: Byte/Bit Manipulation Functions
SUBBITSTR

SQL Functions, Operators, Expressions, and Predicates 155

SUBBITSTR

Purpose
Extracts a bit substring from the target_arg input expression based on the specified bit
position.

Syntax

where:

ANSI Compliance

SUBBITSTR is a Teradata extension to the ANSI SQL:2008 standard.

Description

SUBBITSTR extracts a bit substring from the target_arg string expression starting at the bit
position specified by position_arg. See “Bit and Byte Numbering Model” on page 119 for the
range of bit positions for each data type.

The num_bits_arg value specifies the length of the bit substring to be extracted and indicates
the number of bits that the function should return. Note that since the return value of the
function is a VARBYTE string, the number of bits returned will be rounded to the byte
boundary greater than the number of bits requested.

The bits returned will be right-justified, and the excess bits (those exceeding the requested
number of bits) will be filled with zeroes.

If position_arg is negative or out-of-range (meaning that it exceeds the size of target_arg), an
error is returned.

If num_bits_arg is negative, or is greater than the number of bits remaining once the starting
position_arg is taken into account, an error is returned.

Syntax element… Specifies…

target_arg a numeric or variable byte expression.

position_arg an integer expression indicating the starting position of the bit
substring to be extracted.

num_bits_arg an integer expression indicating the length of the bit substring to be
extracted. This specifies the number of bits for the function to return.

SUBBITSTR (target_arg, position_arg, num_bits_arg)

TD_SYSFNLIB. 1101A674

Chapter 4: Byte/Bit Manipulation Functions
SUBBITSTR

156 SQL Functions, Operators, Expressions, and Predicates

If any of the input arguments is NULL, the function returns NULL.

Invocation

SUBBITSTR is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

SUBBITSTR is an overloaded scalar function. It is defined with the following parameter data
types for the following (target_arg, position_arg, num_bits_arg) input combinations:

The maximum supported size (n) for VARBYTE is 8192 bytes.

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If any argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If any argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type is a VARBYTE string. The size (number of bytes) of the VARBYTE string
depends on the data type of the target_arg input argument and the number of bits requested.

For example:

target_arg type position_arg type num_bits_arg type

BYTEINT INTEGER INTEGER

SMALLINT INTEGER INTEGER

INTEGER INTEGER INTEGER

BIGINT INTEGER INTEGER

VARBYTE(n) INTEGER INTEGER

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT VARBYTE(1) VARBYTE(1)

Chapter 4: Byte/Bit Manipulation Functions
SUBBITSTR

SQL Functions, Operators, Expressions, and Predicates 157

The maximum supported size (n) for VARBYTE is 8192 bytes.

The default title for SUBBITSTR is: SUBBITSTR(target_arg, position_arg, num_bits_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

The following query takes the input argument 20, which has a data type of BYTEINT and a
binary representation of 00010100, and requests that 3 bits be returned starting at the third
bit. The 3 bits returned are 101, which are placed into a right-justified zero-filled byte. The
result from the query is a value of 5, or binary 00000101, with the result data type being
VARBYTE(1).

SELECT SUBBITSTR(20,2,3);

SMALLINT VARBYTE(2) VARBYTE(2)

INTEGER VARBYTE(4) VARBYTE(4)

BIGINT VARBYTE(8) VARBYTE(8)

VARBYTE(n) VARBYTE(m)

where m is the smallest
number of bytes to
accommodate the
requested number of bits.

VARBYTE(m)

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

Chapter 4: Byte/Bit Manipulation Functions
TO_BYTE

158 SQL Functions, Operators, Expressions, and Predicates

TO_BYTE

Purpose
Converts a numeric data type to the Teradata Database server byte representation (byte value)
of the input value.

Syntax

where:

ANSI Compliance

TO_BYTE is a Teradata extension to the ANSI SQL:2008 standard.

Description

The number of bytes returned by the function varies according to the data type of the
target_arg value.

For information on the server representation of integral values, see SQL Data Types and
Literals.

If target_arg is NULL, the function returns NULL.

Invocation

TO_BYTE is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Types and Rules

TO_BYTE is an overloaded scalar function. It is defined with the following parameter data
types:

• BYTEINT

• SMALLINT

• INTEGER

Syntax element… Specifies…

target_arg a numeric expression.

TO_BYTE (target_arg)

TD_SYSFNLIB. 1101A675

Chapter 4: Byte/Bit Manipulation Functions
TO_BYTE

SQL Functions, Operators, Expressions, and Predicates 159

• BIGINT

All expressions passed to this function must either match these declared data types or can be
converted to these types using the implicit data type conversion rules that apply to UDFs.

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
one of the declared data types by following UDF implicit conversion rules, it must be explicitly
cast. For details, see “Compatible Types” and “Parameter Types in Overloaded Functions” in
SQL External Routine Programming.

If the argument cannot be converted to one of the declared data types, an error is returned
indicating that no function exists that matches the DML UDF expression submitted.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result Type and Attributes

The result data type is a BYTE value (a fixed byte data type). The size of the byte string
returned varies according to the data type of the target_arg input argument as shown in the
following table:

The default title for TO_BYTE is: TO_BYTE(target_arg).

For information on default data type formats, see SQL Data Types and Literals.

Example

In the following query, the input argument 23 has a data type of BYTEINT and a binary
representation of 00010111. Performing a TO_BYTE operation on this value results in the
value 00010111 being returned with the data type of BYTE(1).

SELECT TO_BYTE(23);

IF the data type of
target_arg is... THEN the result type is...

AND the result format is the default format
for...

BYTEINT BYTE(1) BYTE(1)

SMALLINT BYTE(2) BYTE(2)

INTEGER BYTE(4) BYTE(4)

BIGINT BYTE(8) BYTE(8)

Chapter 4: Byte/Bit Manipulation Functions
TO_BYTE

160 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 161

CHAPTER 5 Comparison Operators

This chapter describes SQL comparison operators.

Comparison Operators

Purpose

Comparison operators test the truth of relations between expressions.

Comparison operators are a type of logical predicate and can appear in conditional
expressions in:

• IF, WHILE, REPEAT, and CASE statements in stored procedures

• WHEN clauses in searched CASE expressions

• WHERE, ON, and HAVING clauses to qualify or disqualify rows in a SELECT statement

• CASE_N functions

Syntax

where:

ANSI Compliance

The following comparison operators are ANSI SQL:2008 compliant.

Syntax element … Specifies …

scalar_expression an expression to be evaluated in comparison with a second scalar_expression.

Comparison operators do not support BLOB or CLOB type expressions. You
can explicitly cast BLOBs to BYTE or VARBYTE and cast CLOBs to
CHARACTER or VARCHAR, and use the result with comparison operators.

An expression that results in a UDT data type can only be compared with
another expression that results in the same UDT data type.

comparison_operator the type of comparison to be evaluated for truth.

For a list of the supported comparison operators, see “Supported
Comparison Operators” on page 162.

FF07D160

scalar_expression comparison_operator scalar_expression

Chapter 5: Comparison Operators
Comparison Operators

162 SQL Functions, Operators, Expressions, and Predicates

The following comparison operators are Teradata extensions to the ANSI SQL:2008 standard.
Their use is deprecated.

Supported Comparison Operators

Teradata Database supports the following comparison operators.

Further Information on Predicates

• =

• >

• <

• <>

• <=

• >=

• EQ

• ^=

• NE

• NOT=

• LT

• LE

• GT

• GE

ANSI Operator Teradata Extensions Function

= EQ Tests for equality.

<> ^=
NE
NOT=

Tests for inequality.

< LT Tests for less than.

<= LE Tests for less than or equal.

> GT Tests for greater than.

>= GE Tests for greater than or equal.

FOR more information on … SEE …

using predicates in conditional expressions in searched
CASE expressions

Chapter 2: “CASE Expressions.”

using predicates in conditional expressions in WHERE,
ON, or HAVING clauses in SELECT statements

“The SELECT Statement” in SQL Data
Manipulation Language.

using predicates in conditional expressions in IF,
WHILE, or REPEAT statements in stored procedures

SQL Stored Procedures and Embedded
SQL.

Chapter 5: Comparison Operators
Comparison Operators in Logical Expressions

SQL Functions, Operators, Expressions, and Predicates 163

Comparison Operators in Logical Expressions

Syntax

A logical expression using comparison operators has the following valid forms.

where:

other logical predicates, including: Chapter 13: “Logical Predicates.”

• [NOT] EXISTS

• [NOT] IN

• LIKE

• IS [NOT] NULL

• OVERLAPS

• [NOT] BETWEEN … AND …

predicate quantifiers:

• ALL

• ANY

• SOME

FOR more information on … SEE …

Syntax Element … Specifies …

operator one of the comparison operators.

expression_1
expression_2

an SQL scalar expression.

quantifier one of the following quantifier keywords:

• ANY

• SOME

• ALL

For information, see “ANY/ALL/SOME Quantifiers” on page 573.

1101D219

expression_1 expression_2

quantifier

,
operator

expression_1 quantifieroperator constant()

expression_1 operator subquery()

quantifier

operator subquery()expression_1()

,

Chapter 5: Comparison Operators
Comparison Operators in Logical Expressions

164 SQL Functions, Operators, Expressions, and Predicates

Results

A logical expression that uses a comparison operator evaluates to TRUE, FALSE, or
UNKNOWN.

Using Subqueries in Comparison Operations

A subquery is a SELECT statement that returns values used to satisfy the comparison
operation. The subquery must be enclosed in parentheses, and it does not end with a
semicolon.

The subquery must refer to at least one table. A table that is in the WHERE clause, but that is
not referred to in any other parts of the subquery, is not applicable.

A comparison operation may be used with a subquery whether or not a quantifier is used. If a
quantifier is not used, however, then an error condition results if the subquery returns more
than one value.

If a subquery returns no values, and if a quantifier is not used, then the result of the
comparison is false. Therefore, if the following form is used, the subquery must return either
no values (in which case the comparison evaluates to false), or it returns one value.

expression > (subquery)

With the following form, subquery must select the same number of expressions as are
specified in the expression list.

The two expression lists are equal if each of the respective expressions are equal.

constant one or more constant values. A constant may be any of the following:

• Defined value

• Macro parameter

• Built-in value such as TIME, DATE, or USER

The comparison operation may compare an expression against a list of
explicit constants.

The data types of expression and constant must be compatible. If the
data types of the operands differ, Teradata Database performs an
implicit conversion from one type to another in some cases. For details,
see “Implicit Type Conversion of Comparison Operands” on page 168.

subquery an SQL SELECT statement.

Using a subquery in a condition is restricted in certain cases.

Syntax Element … Specifies …

1101B041

comparison_operator subqueryexpression() ()ALL
ANY

SOME

,

Chapter 5: Comparison Operators
Comparisons That Produce TRUE Results

SQL Functions, Operators, Expressions, and Predicates 165

If the respective expressions are not equal, then the result of the comparison is determined by
comparing the first pair of expressions (from the left) for which the comparison is not true.

A subquery in a comparison operation cannot specify a SELECT AND CONSUME statement.

Example

The following statement uses the ALL quantifier to compare two expressions with the values
returned from a subquery to find the employee(s) with the most years of experience in the
group of employees having the highest salary:

SELECT EmpNo, Name, DeptNo, JobTitle, Salary, YrsExp
FROM Employee
WHERE (Salary,YrsExp) >= ALL
(SELECT Salary,YrsExp FROM Employee) ;

Comparisons That Produce TRUE Results

Conditions

The following table provides the conditions when comparisons produce TRUE results.

For simplicity, assume the syntax:

expression_1 — operator — expression_2

expression_1 and expression_2 must contain the same number of scalar values and range from
1 through n rows, represented by r, so that the rth components of expression_1 and
expression_2 are expression_1r and expression_2r.

The δth item in the range is notated as row δ such that the δth component of expression_1 is
notated as expression_1δ and the δth component of expression_2 is notated as expression_2δ.

The data types of expression_1 and expression_2 must be compatible. If the data types of the
expressions differ, Teradata Database performs an implicit conversion from one type to
another in some cases. For details, see “Implicit Type Conversion of Comparison Operands”
on page 168.

For an explanation of the symbols used in this table, see “Predicate Calculus Notation Used In
This Book” on page 956.

This comparison … Is TRUE iff …

expression_1 = expression_2 ∀ r, expression_1r = expression_2r is TRUE.

expression_1 <> expression_2 ∃ δ such that expression_1δ <> expression_2δ is TRUE.

expression_1 < expression_2 ∃ δ such that expression_1δ < expression_2δ is TRUE and for all
r < δ, expression_1r = expression_2r is TRUE.

expression_1 > expression_2 ∃ δ such that expression_1δ >expression_2δ is TRUE and for all
r > δ, expression_1r = expression_2r is TRUE.

Chapter 5: Comparison Operators
Data Type Evaluation

166 SQL Functions, Operators, Expressions, and Predicates

Null Expressions

If any expression in a comparison is null, the result of the comparison is unknown.

For a comparison to provide a TRUE result when comparing fields that might result in nulls,
the statement must include the IS [NOT] NULL operator.

Floating Point Expressions

Calculations involving floating point values often produce results that are not what you
expect. If you perform a floating point calculation and then compare the results against some
expected value, it is unlikely that you get the intended result.

Instead of comparing the results of a floating point calculation, make sure that the result is
greater or less than what is needed, with a given error. Here is an example:

SELECT i, SUM(a) as sum_a, SUM(b) as sum_b
FROM t1
GROUP BY i
HAVING ABS(sum_a - sum_b) > 1E-10;

For more information on potential problems associated with floating point values in
comparison operations, see SQL Data Types and Literals.

Data Type Evaluation

Different data types define equality and inequality differently. The following table explains the
foundations for how the various data types are compared:

expression_1 <= expression_2 expression_1 < expression_2 is TRUE or
expression_1 = expression_2 is TRUE.

expression_1 => expression_2 expression_1 > expression_2 is TRUE or
expression_1 = expression_2 is TRUE.

This comparison … Is TRUE iff …

This data
type … Is evaluated in this way …

Numeric Algebraically, with negatives considered to be smaller irrespective of their absolute
value.

Chapter 5: Comparison Operators
Data Type Evaluation

SQL Functions, Operators, Expressions, and Predicates 167

Byte Bit-by-bit from left to right. A 0 bit is less than a 1 bit.

IF … THEN …

every pairwise comparison is equal the two byte strings are equal.

any pairwise comparison is not equal that comparison determines the result.

two byte strings of different lengths are
compared

the shorter string is padded to the right
with binary zeros to make the lengths
equal prior to making the comparison.

Character Character-by-character from left to right. Exact comparisons depend on the collation
sequence assigned and whether the comparison is case specific or case blind.

The available collations are:

• ASCII

• EBCDIC

• MULTINATIONAL

• CHARSET_COLL

• JIS_COLL

IF … THEN …

every pairwise comparison is equal the two character strings are equal.

any pairwise comparison is not equal that comparison determines the result.

For more information on character comparison, see “Character String Comparisons”
on page 172.

DateTime Chronologically.

For information on how Time Zone affects Time comparison, see “Time Zone Sort
Order” on page 221.

Interval According to sign and magnitude.

Period Assuming p1 and p2 are Period value expressions, the evaluation of a Period
comparison predicate uses the following logic:

IF BEGIN(p1) = BEGIN(p2) is TRUE, return END(p1) operator
END(p2)
ELSE return (BEGIN(p1) operator BEGIN(p2))

For details on BEGIN and END, see Chapter 9: “Period Functions and Operators.”

UDT According to the ordering definition of the UDT.

Teradata Database generates ordering functionality for distinct UDTs where the source
types are not LOBs. To create an ordering definition for structured UDTs or distinct
UDTs where the source types are LOBs, or to replace system-generated ordering
functionality, use CREATE ORDERING.

For more information on CREATE ORDERING, see SQL Data Definition Language.

This data
type … Is evaluated in this way …

Chapter 5: Comparison Operators
Implicit Type Conversion of Comparison Operands

168 SQL Functions, Operators, Expressions, and Predicates

Implicit Type Conversion of Comparison
Operands

Expression operands must be of the same data type before a comparison operation can occur.

Data Types on Which Implicit Conversion is Performed

If operand data types differ, then Teradata Database performs an implicit conversion
according to the following table. Implicit conversions are Teradata extensions to the ANSI
SQL:2008 standard.

IF one expression
operand is …

AND the other expression
operand is …

THEN Teradata Database compares the data
as …

Character Character Character.

For more details, see “Character String
Comparisons” on page 172.

Character Date Datea.

BYTEINT
SMALLINT
INTEGER
FLOAT

FLOATa,b.

Period Period.

CHAR(k)
VARCHAR(k)

where k <= 16

BIGINT FLOATa,b.

Note: Teradata Database returns an error if a
comparison involves either of the following
combination of operand types:

• BIGINT and CHAR(k) or
VARCHAR(k) where k > 16.

• DECIMAL(m,n) where m > 16 and
CHAR(k) or VARCHAR(k) where
k > 16.

DECIMAL(m,n)

CHAR(k)
VARCHAR(k)

where k > 16

DECIMAL(m,n)

where m <= 16

BYTEINT SMALLINT SMALLINT.

BYTEINT
SMALLINT

INTEGER INTEGER.

BYTEINT
SMALLINT
INTEGER
BIGINT

BIGINT BIGINT.

Chapter 5: Comparison Operators
Implicit Type Conversion of Comparison Operands

SQL Functions, Operators, Expressions, and Predicates 169

BYTEINT DECIMAL(m,n)

where m <= 18 and m-n >= 3

DECIMAL(18,n).

SMALLINT DECIMAL(m,n)

where m <= 18 and m-n >= 5

INTEGER DECIMAL(m,n)

where m <= 18 and m-n >= 10DATE

BYTEINT DECIMAL(m,n)

where m > 18 or m-n < 3

DECIMAL(38,n).

SMALLINT DECIMAL(m,n)

where m > 18 or m-n < 5

INTEGER DECIMAL(m,n)

where m > 18 or m-n < 10DATE

BIGINT DECIMAL(m,n)

DECIMAL(m,n) DECIMAL(k,j)

where max(m-n,k-j) +
max(j,n) <= 18

DECIMAL(18,max(j,n)).

DECIMAL(k,j)

where max(m-n,k-j) +
max(j,n) > 18

DECIMAL(38,max(j,n)).

DATE BYTEINT
SMALLINT
INTEGER

INTEGER.

BIGINT BIGINT.

FLOAT FLOAT.

FLOAT BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL(m,n)

FLOAT.

Period Character Period.

a. Returns an error for character data with GRAPHIC server character set.

b. Comparisons between character and numeric data types require that the character field be convertible
to a numeric value.

IF one expression
operand is …

AND the other expression
operand is …

THEN Teradata Database compares the data
as …

Chapter 5: Comparison Operators
Comparison of ANSI DateTime and Interval in USING Clause

170 SQL Functions, Operators, Expressions, and Predicates

Implicit Conversion of DateTime Types

In comparisons involving DateTime operands that differ, Teradata Database performs an
implicit conversion according to the following table.

Data Types on Which Implicit Conversion is Not Performed

The following table identifies data types on which Teradata Database does not perform
implicit type conversion.

Comparison of ANSI DateTime and Interval in
USING Clause

External values for ANSI DateTime and Interval data are expressed as fixed length character
strings in the designated client character set for the session.

When you import ANSI DateTime and Interval values with a USING phrase, you must
explicitly cast them from the external character format to the proper ANSI DateTime and
Interval types for comparison.

IF one expression
operand is …

AND the other expression
operand is … THEN Teradata Database compares the data as …

TIMESTAMP DATEb

b. ANSIDate dateform mode or IntegerDate dateform mode

DATE.

See “Implicit TIMESTAMP-to-DATE Conversion” on page 897.TIMESTAMP
WITH TIME ZONE

Intervala

a. The INTERVAL type must have only one field, e.g. INTERVAL YEAR.

Exact Numeric Numeric.

See “Implicit INTERVAL-to-Numeric Conversion” on page 824.

Type Rules

Byte Byte data types can only be compared with byte data types. Attempts to compare
a byte type with another type produces an error.

TIME Teradata Database does not perform implicit type conversion from TIME to
TIMESTAMP and from TIMESTAMP to TIME in comparison operations.

TIMESTAMP

UDT Teradata Database does not perform implicit type conversion on UDTs for
comparison operations. A UDT value can only be compared with another value
of the same UDT type.

To compare UDTs with other data types, you must use explicit data type
conversion. For more information, see Chapter 20: “Data Type Conversions.”

Chapter 5: Comparison Operators
Proper Forms of DATE Types in Comparisons

SQL Functions, Operators, Expressions, and Predicates 171

For example, consider the following statement, where the data type of the TimeField column
is TIME(2):

USING (TimeVal CHARACTER(11), NumVal INTEGER)
UPDATE TABLE_1
SET TimeField=:TimeVal, NumField=:NumVal
WHERE CAST(:TimeVal AS TIME(2)) > TimeField;

Although you can use TimeVal CHAR(11) directly for assignment in this USING phrase, you
must CAST the column data definition explicitly as TIME(2) in order to compare the field
value TimeField in the table because TimeField is an ANSI TIME defined as TIME(2).

Proper Forms of DATE Types in Comparisons

A DATE operand must be submitted in the proper form in order to achieve a correct
comparison.

Arithmetic on DATE operands causes an error if a created value is not a valid date. Therefore,
although a date value can be submitted in integer form for comparison purposes, a column
that contains date data should be defined as data type DATE, not INTEGER.

If an integer is used for input to DATE (this is not recommended), the way to enter the first
date of the year 2000 is 1000101.

For more information, see “Teradata Date and Time Expressions” on page 233.

Proper forms for submitting a DATE operand are:

• An integer in the form (year-1900)*10000 + month*100 + day. The form YYMMDD is
only valid for the years 1900 - 1999. For the years 2000 - 2099, the form is 1YYMMDD.

• As a character string in the same form as the date against which the compare is being done
or as the date field the assignment is being done.

• A character string that is qualified with a data type phrase defining the appropriate data
conversion, and a FORMAT phrase defining the format.

• As an ANSI date literal, which is always valid for a date comparison with any date format.

Examples

The following examples use a comparison operator on a value in the Employee.DOB column
(defined as DATE FORMAT 'MMMbDDbYYYY') to illustrate correct forms for a DATE
operand.

Example 1

In the first example, the operand is entered as an integer.

SELECT *
FROM Employee
WHERE DOB = 420327 ;

Chapter 5: Comparison Operators
Character String Comparisons

172 SQL Functions, Operators, Expressions, and Predicates

Example 2

In the second example, the character string is entered in a form that agrees with the format of
the DOB column.

SELECT *
FROM Employee
WHERE DOB = 'Mar 27 1942';

Example 3

In the third example, the value is entered as a character string, and so is cast with both a data
type phrase (DATE) and a FORMAT phrase.

SELECT *
FROM Employee
WHERE DOB = CAST ('03/27/42' AS DATE FORMAT 'MM/DD/YY');

Example 4

In the fourth example, the value is entered as an ANSI date literal, which works regardless of
the date format of the column.

SELECT *
FROM Employee
WHERE DOB = DATE '1942-03-27';

Character String Comparisons

Comparison of Character Strings of Unequal Length

If character strings of unequal length are being compared, the shorter of the two is padded on
the right with pad characters before the comparison occurs.

Character Strings and Server Character Sets

When comparing character strings, data characters must have the same server character set. If
they do not, then the system translates them using the implicit translation rules described in
“Implicit Character-to-Character Translation” on page 765.

Effect of Collation on Character String Comparisons

Collations control character ordering. The results of character comparisons depends on the
collation sequence of the character set in use.

You can set the default collation to a sequence that is compatible with the character set for
your session. Use the HELP SESSION SQL statement to determine the collation setting for
your current session.

The availability of diacritical or Japanese character sets, and your default collation sequence
are under the control of your database administrator.

Chapter 5: Comparison Operators
Character String Comparisons

SQL Functions, Operators, Expressions, and Predicates 173

To ensure that sorting and comparison of character data are identical with the same
operations performed by the client, users on a Japanese language site should set collation to
CHARSET_COLL.

For collation details, see:

• “SET SESSION COLLATION” in SQL Data Definition Language

• International Character Set Support

• “ORDER BY Clause” in SQL Data Manipulation Language

Case Sensitivity

All character data, except for CLOBs, accessed in the execution of a Teradata SQL statement
has an attribute of CASESPECIFIC or NOT CASESPECIFIC, either by default or by explicit
designation. Character string comparisons use this attribute to determine whether the
comparison is case blind or case specific. Case specificity does not apply to CLOBs.

This is not an ANSI SQL:2008 compatible attribute—ANSI does all character comparisons as
the equivalent of CASESPECIFIC.

The CASESPECIFIC attribute has higher precedence over the NOT CASESPECIFC attribute:

The exception is comparisons on GRAPHIC character data, which are always CASESPECIFIC.

To apply a case specification attribute to a character string, you can:

• Use the default case specification for the session.

Default case specification applies to all character data, including literals.

• Use the CASESPECIFIC or NOT CASESPECIFIC phrase with a character column in a
CREATE TABLE or ALTER TABLE statement.

For example:

CREATE TABLE Students
(StudentID INTEGER
,Firstname CHAR(10) CASESPECIFIC

IF … THEN the comparison is …

either argument is CASESPECIFIC case specific.

both arguments are NOT CASESPECIFIC case blind.

IF the session mode is … THEN the default case specification is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.

The exception is character data of type GRAPHIC, which
is always CASESPECIFIC.

Chapter 5: Comparison Operators
Character String Comparisons

174 SQL Functions, Operators, Expressions, and Predicates

,Lastname CHAR(20) NOT CASESPECIFIC);

Table columns carry the attribute assigned at the time the columns were defined or altered
unless a CASESPECIFIC or NOT CASESPECIFIC phrase is used in their access.

• Apply the CASESPECIFIC or NOT CASESPECIFIC phrase to a character expression in the
comparison.

For example, the following statement applies the CASESPECIFIC phrase to a character
literal:

SELECT *
FROM Students
WHERE Firstname = 'Ike' (CASESPECIFIC);

Use this to override the default case specification for character data, or to override the case
specification attribute assigned at the time a character column was defined or altered.

For case blind comparisons, any lowercase single byte Latin letters are converted to uppercase
before comparison begins. The prepared strings are compared and any trailing pad characters
are ignored.

A case blind comparison always considers lowercase and uppercase Cyrillic, Greek and full-
width ASCII letters to be equivalent. To distinguish lowercase and uppercase Cyrillic, Greek,
and fullwidth ASCII letters you must explicitly declare CASESPECIFIC comparison.

These options work for the KANJISJIS character set as if the data were first converted to the
Unicode type and then the options applied.

Using UPPER for Case Blind Comparisons

Case blind comparisons can be accomplished using the UPPER function, to make sure a
character string value contains no lowercase Latin letters.

The UPPER function is not the same as declaring a value UPPERCASE.

For a description of the UPPER function, see “UPPER” on page 553.

Example

Consider the following query:

SELECT *
FROM STUDENTS
WHERE Firstname = 'George';

The behavior of the comparison Firstname = 'George' under different case specification
attributes and session modes is described in the table that follows.

Chapter 5: Comparison Operators
Comparison of KANJI1 Characters

SQL Functions, Operators, Expressions, and Predicates 175

Comparison of KANJI1 Characters

The following sections describe how Teradata Database compares KANJI1 characters.

Equality Comparison

Comparison of character strings, which can contain mixed single byte and multibyte character
data, is handled as follows:

• If expression_1 and expression_2 have different server character sets, then they are
converted to the same type. For details, see “Implicit Character-to-Character Translation”
on page 765.

• If expression_1 and expression_2 are of different lengths, the shorter string is padded with
enough pad characters to make both the same length.

• Session mode is identified:

IF column
Firstname is … THEN …

CASESPECIFIC

IF the session
mode is …

THEN 'George'
is …

AND the match succeeds for rows with
Firstname containing …

ANSI CASESPECIFIC 'George'

When either character string is
CASESPECIFIC, the comparison is case
specific.

Teradata NOT
CASESPECIFIC

NOT
CASESPECIFIC IF the session

mode is …
THEN 'George'
is …

AND the match succeeds for rows with
Firstname containing …

ANSI CASESPECIFIC 'George'

When either character string is
CASESPECIFIC, the comparison is case
specific.

Teradata NOT
CASESPECIFIC

any combination of cases that spell the
name George, such as:

• 'george'

• 'GEORGE'

• 'George'

When both character strings are NOT
CASESPECIFIC, the comparison is case
blind.

Chapter 5: Comparison Operators
Comparison of KANJI1 Characters

176 SQL Functions, Operators, Expressions, and Predicates

To override the default case specification of a character expression, apply the
CASESPECIFIC or NOT CASESPECIFIC phrase.

• Case specification is determined:

• Trailing pad characters are ignored.

Nonequality Comparison

Nonequality comparisons are handled as follows:

1 If expression_1 and expression_2 are of different lengths, the shorter string is padded with
enough pad characters to make both the same length.

2 Session mode is identified.

To override the default case specification of a character expression, apply the
CASESPECIFIC or NOT CASESPECIFIC phrase.

3 Characters identified as single byte characters under the current character set are
converted according to the collation sequence in effect for the session.

4 For the KanjiEUC character set, the ss3 0x8F character is converted to 0xFF. This means
that a user-defined KanjiEUC codeset 3 is not properly ordered with respect to other
KanjiEUC code sets.

In this mode … The default case specification for a character string is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.

Unless the CASESPECIFIC phrase is applied to one or both of the expressions,
any simple Latin letters in both expression_1 and expression_2 are converted to
uppercase before comparison begins.

IF … THEN the comparison is …

either argument is CASESPECIFIC case specific.

both arguments are NOT CASESPECIFIC case blind.

In this mode … The default case specification for a character string is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.

Unless the CASESPECIFIC qualifier is applied to one or both of the
expressions, any simple Latin letters in both expression_1 and expression_2 are
converted to uppercase before comparison begins.

Chapter 5: Comparison Operators
Comparison Operators and the DEFAULT Function in Predicates

SQL Functions, Operators, Expressions, and Predicates 177

The ordering of other KanjiEUC codesets is proper; that is, ordering is the same as the
binary ordering on the client system.

5 The prepared strings are compared and trailing pad characters are ignored.

Nonequality comparisons involve the collation in effect for the session. Five collations are
available:

• EBCDIC

• ASCII

• MULTINATIONAL

• CHARSET_COLL

• JIS_COLL

Collation can be set at the user level with the COLLATION option of the CREATE USER or
MODIFY USER statements, and at the session level with the [[.]SET] SESSION COLLATION
statement or the CLIv2 CHARSET call.

If the MULTINATIONAL collation sequence is in effect, the collation sequence of a Japanese
language site is determined by the collation setting installed during start-up.

For further details on collation sequences, see International Character Set Support.

Comparison Operators and the DEFAULT
Function in Predicates

The DEFAULT function returns the default value of a column. It has two forms: one that
specifies a column name and one that omits the column name.

Predicates using comparison operators support both forms of the DEFAULT function, but
when the DEFAULT function omits the column name, the following conditions must be true:

• The comparison can only involve a single column reference.

• The DEFAULT function cannot be part of an expression.

For example, the following statement uses DEFAULT to compare the values of the Dept_No
column with the default value of the Dept_No column. Because the comparison operation
involves a single column reference, Teradata Database can derive the column context of the
DEFAULT function even though the column name is omitted.

SELECT * FROM Employee WHERE Dept_No < DEFAULT;

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the
WHERE condition is false.

For more information on the DEFAULT function, see “DEFAULT” on page 621.

Chapter 5: Comparison Operators
Comparison Operators and the DEFAULT Function in Predicates

178 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 179

CHAPTER 6 Set Operators

This chapter describes SQL set operators.

Overview of Set Operators

The SQL set operators manipulate the results sets of two or more queries by combining the
results of each individual query into a single results set.

Teradata SQL Set Operators

Teradata SQL supports the following set operators:

Set operators appear in query expressions. A query expression is a set of queries combined by
the set operators INTERSECT, MINUS/EXCEPT, and UNION.

Syntax for query_term

Syntax for query_factor

Set Operator Function

INTERSECT Returns result rows that appear in all answer sets generated by the individual
SELECT statements.

MINUS /
EXCEPT

Result is those rows returned by the first SELECT except for those also selected
by the second SELECT.

MINUS is the same as EXCEPT.

UNION Combines the results of two or more SELECT statements.

FF07D178

(query_expression)

SELECT statement

HH01A061

query_term

INTERSECT query_termquery_factor

ALL

Chapter 6: Set Operators
Overview of Set Operators

180 SQL Functions, Operators, Expressions, and Predicates

Syntax for query_expression

where:

ANSI Compliance

INTERSECT, EXCEPT, and UNION are ANSI SQL:2008 compliant.

MINUS and the ALL option are Teradata extensions to the ANSI standard.

Syntax Element … Specifies …

query_term

SELECT statement a SELECT statement.

For details, see SQL Data Manipulation Language.

query_expression an optional expression that might or might not include set operators, other
expressions, and an ORDER BY clause.

query_factor

INTERSECT a set operator returning the result rows appearing in all answer sets.

ALL an optional keyword, allowing duplicate rows to be returned.

query_expression

UNION

MINUS/EXCEPT

optional set operators specifying how the two or more queries or subqueries
are to combine and determine what result rows are required to be returned.

ALL an optional keyword, allowing duplicate rows to be returned.

ORDER BY the ORDER BY clause to order the result rows returned.

For details, see SQL Data Manipulation Language.

expression an expression used in the ORDER BY clause to determine the sort order of
returned rows in the result.

ASC

DESC

the sort order for the returned result rows.

ASC is the default.

FF07D179

query_expression

query_factor

UNION

MINUS

EXCEPT

ALL

query_factor

(query_expression) ORDER BY expression

,

ASC

DESC

Chapter 6: Set Operators
Rules for Set Operators

SQL Functions, Operators, Expressions, and Predicates 181

Rules for Set Operators

Duplicate Rows

By default, duplicate rows are not returned.

To permit duplicate rows to be returned, specify the ALL option. For an example, see
“Retaining Duplicate Rows Using the ALL Option” on page 183.

Operations That Support Set Operators

You can use set operators within the following operations:

• Simple queries

• Derived tables

Note: You cannot use the HASH BY or LOCAL ORDER BY clauses in derived tables with
set operators.

• Subqueries

• INSERT … SELECT clauses

• View definitions

SELECT statements connected by set operators can include all of the normal clause options
for SELECT except the WITH clause.

SELECT AND CONSUME Statement

Set operations do not operate on SELECT AND CONSUME statements.

Support for ORDER BY Clause

A query expression can include only one ORDER BY specification, at the end.

Restrictions on the Data Types Involved in Set Operations

The following restrictions apply to CLOB, BLOB, and UDT types involved in set operations:

Data Type Restrictions

BLOB You cannot use set operators with CLOB or BLOB types.

CLOB

Chapter 6: Set Operators
Precedence of Set Operators

182 SQL Functions, Operators, Expressions, and Predicates

Precedence of Set Operators

The precedence for processing set operators is as follows:

1 INTERSECT

2 UNION and MINUS/EXCEPT

The set operators evaluate from left to right if no parentheses explicitly specify another order.

Example

For example, consider the following query.

SELECT statement_1
UNION
SELECT statement_2
EXCEPT
SELECT statement_3
INTERSECT
SELECT statement_4;

The operations are performed in the following order:

1 Intersect the results of statement_3 and statement_4.

2 Union the results of statement_1 and statement_2.

3 Subtract the intersected rows from the union.

Using Parentheses to Customize Precedence

To override precedence, use parentheses. Operations in parentheses are performed first.

For example, consider the following form:

((SELECT statement_1
UNION

UDT • Multiple UDTs involved in set operations must be identical types because Teradata
Database does not perform implicit type conversion on UDTs involved in set
operations.

A workaround for this restriction is to use CREATE CAST to define casts that cast
between the UDTs and then explicitly invoke the CAST function within the set
operation.

• UDTs involved in set operations must have ordering definitions.

Teradata Database generates ordering functionality for distinct UDTs where the
source types are not LOBs. To create an ordering definition for structured UDTs or
distinct UDTs where the source types are LOBs, or to replace system-generated
ordering functionality, use CREATE ORDERING.

For more information on CREATE CAST and CREATE ORDERING, see SQL Data
Definition Language.

Data Type Restrictions

Chapter 6: Set Operators
Retaining Duplicate Rows Using the ALL Option

SQL Functions, Operators, Expressions, and Predicates 183

SELECT statement_2)
EXCEPT
(SELECT statement_3

UNION
SELECT statement_4)

)
EXCEPT
SELECT statement_5
INTERSECT
SELECT statement_6;

The following list explains the precedence of operators for this example.

1 UNION SELECT statement_1 and SELECT statement_2.

2 UNION SELECT statement_3 and SELECT statement_4.

3 Subtract the result of the second UNION from the result of the first UNION.

4 INTERSECT SELECT statement_5 and SELECT statement_6.

5 Subtract the INTERSECT result from the remainder of the UNION operations.

Retaining Duplicate Rows Using the ALL Option

Unless you specify the ALL option, duplicate rows are eliminated from the final result. The
ALL option retains duplicate rows for the result set to which it is applied.

Example

The following query returns duplicate rows for each result set, including the final:

SELECT statement_1
UNION ALL
SELECT statement_2
MINUS ALL
SELECT statement_3
INTERSECT ALL
SELECT statement_4

Attributes of a Set Result

The data type, title, and format clauses contained in the first SELECT statement determine the
data type, title, and format information that appear in the final result.

Attributes for all other SELECT statements in the query are ignored.

Example 1

SELECT level, param, 'GMKSA' (TITLE 'OWNER')
FROM gmksa
WHERE cycle = '03'
UNION

Chapter 6: Set Operators
Attributes of a Set Result

184 SQL Functions, Operators, Expressions, and Predicates

SELECT level, param, 'GMKSA CONTROL'
FROM gmksa_control
WHERE cycle = '03'
ORDER BY 1, 2;

The query returns the following results set:

***QUERY COMPLETED. 5 ROWS FOUND. 3 COLUMNS RETURNED.
LEVEL PARAM OWNER
----- ----- -----
00 A GMKSA
00 T GMKSA
85 X GMKSA
SF A GMKSA
SF T GMKSA

The first SELECT specifies GMKSA, which is CHAR(5)—that data type is then forced on the
second SELECT. As a result, GMKSA_CONTROL entries are dropped because the first five
characters are the same.

Because this query does not specify the ALL option, duplicate rows are dropped.

Example 2

In the next query, the SELECT order is reversed:

SELECT level, param 'GMKSA CONTROL' (TITLE 'OWNER')
FROM gmksa_control
WHERE cycle = '03'
UNION
SELECT level, param, 'GMKSA'
FROM gmksa
WHERE cycle = '03'
ORDER BY 1, 2;

This query returns the following answer set:

***QUERY COMPLETED.10 ROWS FOUND. 3 COLUMNS RETURNED.
LEVEL PARAM OWNER
----- ----- -------------
00 A GMKSA
00 A GMKSA CONTROL
00 T GMKSA
00 T GMKSA CONTROL
85 X GMKSA
85 X GMKSA CONTROL
SF A GMKSA
SF A GMKSA CONTROL
SF T GMKSA
SF T GMKSA CONTROL

In this case, because the first SELECT specified ‘GMKSA CONTROL’, the rows were not
duplicates and were included in the answer set.

Example 3

This example demonstrates how a poorly formed query can cause truncation of the results.

SELECT level, param, 'GMKSA ' (TITLE 'OWNER')

Chapter 6: Set Operators
Set Operators With Derived Tables

SQL Functions, Operators, Expressions, and Predicates 185

FROM gmksa
WHERE cycle = '03'
UNION
SELECT level, param,'GMKSA CONTROL'
FROM gmksa_control
WHERE cycle = '03'
ORDER BY 1, 2;

This query returns the following answer set:

***QUERY COMPLETED.10 ROWS FOUND. 3 COLUMNS RETURNED.
LEVEL PARAM OWNER
----- ----- ------------
00 A GMKSA
00 A GMKSA CONTRO
00 T GMKSA
00 T GMKSA CONTRO
85 X GMKSA
85 X GMKSA CONTRO
SF A GMKSA
SF A GMKSA CONTRO
SF T GMKSA
SF T GMKSA CONTRO

This query returned the expected rows; note, however, that because of the way the name was
specified in the first SELECT, there was some truncation.

Set Operators With Derived Tables

Derived tables support set operators, as demonstrated in the following example:

Example

SELECT x1
FROM table_1,
(SELECT x2
FROM table_2
UNION
SELECT x3
FROM table_3
) derived_table;

SELECT x1,y1
FROM table_1,
(SELECT *
FROM table_2) derived_table(column_1, column_2)
WHERE column_2 = 1 ;

Restrictions

You cannot use the HASH BY or LOCAL ORDER BY clauses in derived tables with set
operators. The following example returns an error.

Chapter 6: Set Operators
Set Operators in Subqueries

186 SQL Functions, Operators, Expressions, and Predicates

Example

The following table function "add2int" takes two integers as input and returns the two integers
and their summation.

CREATE TABLE t1 (a1 INTEGER, b1 INTEGER);
CREATE TABLE t2 (a2 INTEGER, b2 INTEGER);

REPLACE FUNCTION add2int
(a INTEGER,
b INTEGER)

RETURNS TABLE
(addend1 INTEGER,
addend2 INTEGER,
mysum INTEGER)

SPECIFIC add2int
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
NOT DETERMINISTIC
CALLED ON NULL INPUT
EXTERNAL NAME 'CS!add3int!add2int.c';

/* Query Q1 */
WITH dt(a1, b1) AS
(SELECT a1, b1
FROM t1
UNION ALL
SELECT a2, b2
FROM t2

)
SELECT *
FROM TABLE (add2int(dt.a1, dt.b1)
HASH BY b1
LOCAL ORDER BY b1) tf;

Set Operators in Subqueries

Set operators are permitted in subqueries. The following examples demonstrate their correct
use.

Example 1

SELECT x1
FROM table_1
WHERE (x1,y1) IN
(SELECT * FROM table_2
UNION
SELECT * FROM table_3);

Example 2

SELECT *
FROM table_1
WHERE table_1.x1 IN

Chapter 6: Set Operators
Set Operators in Subqueries

SQL Functions, Operators, Expressions, and Predicates 187

(SELECT x2
FROM table_2
UNION
(SELECT x3
FROM table_3
UNION
SELECT x4
FROM table_4));

Example 3

SELECT *
FROM table_1
WHERE x1 IN
(SELECT SUM(x2)
FROM table_2
UNION
SELECT x3
FROM table_3);

Example 4

SELECT *
FROM table_1
WHERE x1 IN
(SELECT MAX(x2)
FROM table_2
UNION
SELECT MIN(x3)
FROM table_3);

Example 5

SELECT *
FROM table_1
WHERE X1 IN
(SELECT x2 FROM table_2
UNION
SELECT x3 FROM table_3
UNION
SELECT x4 FROM table_4);

Example 6

SELECT x1
FROM table_1
WHERE x1 IN ANY
(SELECT x2 FROM table_2
INTERSECT
SELECT x3 FROM table_3
MINUS
SELECT x4 FROM table_4);

Example 7

UPDATE table_1
SET x1=1

Chapter 6: Set Operators
Set Operators in INSERT … SELECT Statements

188 SQL Functions, Operators, Expressions, and Predicates

WHERE table_1.x1 IN
(SELECT x2
FROM table_2
UNION
SELECT x3
FROM table_3
UNION
SELECT x4
FROM table_4);

Set Operators in INSERT … SELECT Statements

Set operators are permitted in INSERT … SELECT statements. The following examples
demonstrate their correct use.

Example 1

The first example demonstrates a simple INSERT … SELECT using set operators.

INSERT table1 (x1,y1)
SELECT *
FROM table_2
UNION
SELECT x3,y3
FROM table_3;

Example 2

The second example demonstrates an INSERT … SELECT from a view that uses set operators.

REPLACE VIEW v AS
SELECT *
FROM table_1
UNION
SELECT *
FROM table_2;

INSERT table_3(x3,y3)
SELECT *
FROM v;

Example 3

This example demonstrates an INSERT … SELECT from a derived table with set operators.

INSERT table_1
SELECT *
FROM
(SELECT x2,y2
FROM table_2
UNION
SELECT *
FROM table_3 DerivedTable
);

Chapter 6: Set Operators
Set Operators in View Definitions

SQL Functions, Operators, Expressions, and Predicates 189

Set Operators in View Definitions

Set operators are permitted within view definitions.

For example, the following REPLACE VIEW statement uses UNION within a view definition:

REPLACE VIEW view_1 AS
SELECT x1,y1
FROM table_1
UNION
SELECT x2,y2
FROM table_2;

Support for the GROUP BY Clause

GROUP BY can be used within views with set operators. For details, see “GROUP BY and
ORDER BY Clauses” on page 192.

Chapter 6: Set Operators
Set Operators in View Definitions

190 SQL Functions, Operators, Expressions, and Predicates

Restrictions

The following limitations apply to view definitions that specify set operators:

• UPDATE, DELETE, and INSERT are not applicable. The following example does not work:

REPLACE VIEW V AS
SELECT X
FROM TABLE_1
UNION
SELECT Y FROM
TABLE_1;

UPDATE V
SET X=0;

An attempt to perform this sequence of statements produces the following error message:

***Failure 3823 VIEW 'v' may not be used for Help Index/
Constraint/Statistics, Update, Delete or Insert.

• WITH CHECK OPTION is not applicable. The following example does not work:

REPLACE VIEW ERRV(c) AS
SELECT *
FROM TABLE_1
UNION
SELECT *
FROM TABLE_2
WHERE TABLE_2.X=2 WITH CHECK OPTION;

An attempt to perform this statement causes the following error message:

***Failure 3847 Illegal use of a WITH clause.

• Column level privileges cannot be granted. The following example does not work:

GRANT UPDATE (c) ON TABLE_VIEW TO USER_NAME;

An attempt to perform this statement causes the following error message:

***Failure 3499: GRANT cannot be used on views with set operators.

• A view definition that uses set operators cannot specify an ORDER BY clause, but a
SELECT statement applied on the view can use ORDER BY. For details, see “GROUP BY
and ORDER BY Clauses” on page 192.

Examples

The following examples provide correct uses of set operators within view definitions.

Example 1

REPLACE VIEW v AS
SELECT x1
FROM TABLE_1
UNION
SELECT x2
FROM TABLE_2
UNION

Chapter 6: Set Operators
Queries Connected by Set Operators

SQL Functions, Operators, Expressions, and Predicates 191

SELECT x3
FROM TABLE_3;

SELECT * FROM v;

Example 2

REPLACE VIEW view_2 AS
SELECT *
FROM view_1
UNION
SELECT *
FROM table_3
UNION
SELECT *
FROM table_4;

SELECT *
FROM view_2
ORDER BY 1,2;

Example 3

REPLACE VIEW v AS
SELECT x1
FROM table_1
WHERE x1 IN
(SELECT x2
FROM table_2
UNION
SELECT x3
FROM table_3
);

SELECT * FROM v;

Queries Connected by Set Operators

Certain rules and restrictions apply to SELECT statements connected by set operators that
might not apply elsewhere.

Number of Expressions in SELECT Statements

All SELECT statements must have the same number of expressions.

If the first SELECT statement contains three expressions, all succeeding SELECT statements
must contain three expressions.

You can use a null expression in a SELECT statement as a place holder for a missing
expression.

In the following example, the second expression is null.

SELECT EmpNo, NULL (CHAR(5))
FROM Employee;

Chapter 6: Set Operators
Queries Connected by Set Operators

192 SQL Functions, Operators, Expressions, and Predicates

WITH Clause

WITH clauses cannot be used in SELECT statements connected by set operators.

GROUP BY and ORDER BY Clauses

GROUP BY clauses are allowed in individual SELECT statements of a query expression but
apply only to that SELECT statement and not to the result set.

ORDER BY clauses are allowed only in the last SELECT statement of a query expression and
specify the order of the result set.

ORDER BY clauses can contain only numeric literals.

For example, to order by the first column in your result set, specify ORDER BY 1.

View definitions with set operators can use GROUP BY but cannot use ORDER BY. A
SELECT statement applied to a view definition with set operators can use GROUP BY and
ORDER BY. The following examples are correct uses of these operations within a view
definition:

REPLACE VIEW v AS
SELECT x1,y1
FROM table1
UNION
SELECT x2,y2
FROM table2;

SELECT *
FROM v
ORDER BY 1;

SELECT SUM(x1), y1
FROM v
GROUP BY 2;

You can also apply independent GROUP BY operations to each unioned SELECT. The
following example demonstrates how to do this:

REPLACE VIEW v(column_1,column_2) AS
SELECT MIN(x1),y1
FROM table_1
GROUP BY 2
UNION ALL
SELECT MIN(x2),y2
FROM table_2
GROUP BY 2
UNION ALL
SELECT x3,y3 FROM table_3;

SELECT SUM(v.column_1) (NAMED sum_c1),column_2
GROUP BY 2
ORDER BY 2;

SELECT *
FROM table_1

Chapter 6: Set Operators
Queries Connected by Set Operators

SQL Functions, Operators, Expressions, and Predicates 193

WHERE (x1,y1) IN
(SELECT SUM(x2), y2
FROM table_2
GROUP BY 2
UNION
SELECT SUM(x3), y3
FROM table_3
GROUP BY 2
);

Table Name in SELECT Statements

Each SELECT statement must identify the table that the data is to come from even if all
SELECT statements reference the same table.

Data Type Compatibility

Corresponding fields in each SELECT statement must have data types that are compatible. For
example, if the first field in the first SELECT statement is a character data type, then the first
field in each succeeding SELECT statement must be a character data type.

Corresponding numeric types do not have to be the same, but they must be compatible. For
example, a field in one SELECT statement can be defined as INTEGER and the corresponding
field in another SELECT statement can be defined as SMALLINT.

The data types in the first SELECT statement determine the data types of corresponding
columns in the result set.

The following table provides details about data type compatibility.

Data Type Details

Character Character types in the first SELECT statement determine the length of
character strings in the result set. This can lead to truncation of
character strings in the result set if the length of a character type in the
first SELECT statement is less than the length of corresponding
character types in succeeding SELECT statements.

Numeric Numeric types in the first SELECT statement determine the size of
numeric types in the result set. All corresponding numeric fields in
succeeding SELECT statements are converted to the numeric data type
in the first SELECT statement. This can lead to a numeric overflow
error if the size of a numeric type in the first SELECT statement is
smaller than the size of corresponding numeric types in succeeding
SELECT statements and the values returned by the succeeding
statements do not fit into the smaller data type.

Chapter 6: Set Operators
Queries Connected by Set Operators

194 SQL Functions, Operators, Expressions, and Predicates

For examples that show how the length of the character type in the first SELECT statement
affects the result set, see “Attributes of a Set Result” on page 183. For examples that show how
the numeric data type in the first SELECT statement affects the result set, see “Example 6:
Effect of the Order of SELECT Statements on Data Type” on page 206.

TIME
TIMESTAMP
PERIOD(TIME)
PERIOD(TIMESTAMP)

TIME, TIMESTAMP, PERIOD(TIME), and PERIOD(TIMESTAMP)
types in the first SELECT statement determine the precision of
corresponding columns in the result set. All corresponding fields in
succeeding SELECT statements are implicitly converted to the data type
in the first SELECT statement. If a corresponding field does not have a
time zone and the data type in the first SELECT statement does, the
time zone is set to the current session time zone displacement. If the
precision of a corresponding field is lower than the precision of the data
type in the first SELECT statement, trailing zeros are appended to the
fractional digits as needed. If the precision of corresponding fields in
succeeding SELECT statements is higher than the precision of the data
type in the first SELECT statement, an error is reported.

Data Type Details

Chapter 6: Set Operators
INTERSECT Operator

SQL Functions, Operators, Expressions, and Predicates 195

INTERSECT Operator

Purpose
Returns only the rows that exist in the result of both queries.

Syntax

where:

ANSI Compliance

INTERSECT is ANSI SQL:2008 compliant.

The ALL option is a Teradata extension to the ANSI standard.

Rules for INTERSECT

The following rules apply to the use of INTERSECT:

• In addition to using INTERSECT within simple queries, you can use INTERSECT within
the following operations:

• Derived tables

Note: You cannot use the HASH BY or LOCAL ORDER BY clauses in derived tables
with set operators.

• Subqueries

• INSERT … SELECT statements

• View definitions

• Each query connected by INTERSECT is executed to produce a result consisting of a set of
rows. The intersection must include the same number of columns from each table in each

Syntax element … Specifies …

query_expression_1 a complete SELECT statement to be INTERSECTed with query_expression_2.

See “Syntax for query_factor” on page 179.

ALL that duplicate rows are to be retained for the INTERSECT.

query_expression_2 a complete SELECT statement to be INTERSECTed with query_expression_1.

See “Syntax for query_term” on page 179.

FF07D176

ALL
query_expression_1 INTERSECT query_expression_2

Chapter 6: Set Operators
INTERSECT Operator

196 SQL Functions, Operators, Expressions, and Predicates

SELECT statement (more formally, they must be of the same degree), and the data types of
these columns should be compatible.

• INTERSECT cannot be used within the following:

• SELECT AND CONSUME statements.

• WITH RECURSIVE clause

• CREATE RECURSIVE VIEW statements

Attributes of a Set Result

The data type, title, and format clauses contained in the first SELECT statement in the
intersection determine the data type, title, and format information that appear in the final
result.

Attributes for all other SELECT statements in the query are ignored.

Data Type of Nulls

When you specify an explicit NULL for any intersection operation, its data type is INTEGER.
For an example of this principle using the UNION operator, see “Example 5: Effect of Explicit
NULLs on Data Type of a UNION” on page 205.

On the other hand, column data defined as NULL has neither value nor data type and
evaluates like any other null in a scalar expression.

Duplicate Row Handling

Unless the ALL option is used, duplicate rows are eliminated from the final result.

If the ALL option is specified, duplicate rows are retained. The ALL option can be specified for
as many INTERSECT operators as are used in a multistatement query.

Example

Assume that two tables contain the following rows:

SPart table SLocation table

SuppNo PartNo SuppNo SuppLoc

100 P2 100 London

101 P1 101 London

102 P1 102 Toronto

103 P2 103 Tokyo

Chapter 6: Set Operators
INTERSECT Operator

SQL Functions, Operators, Expressions, and Predicates 197

To then select supplier number (SuppNo) for suppliers located in London (SuppLoc) who
supply part number P1 (PartNo), use the following request:

SELECT SuppNo FROM SLocation
WHERE SuppLoc = 'London'
INTERSECT
SELECT SuppNo FROM SPart
WHERE PartNo = 'P1';

The result of this request is:

SuppNo

 101

Chapter 6: Set Operators
MINUS/EXCEPT Operator

198 SQL Functions, Operators, Expressions, and Predicates

MINUS/EXCEPT Operator

Purpose
Returns the results rows that appear in query_expression_1 and not in query_expression_2.

Syntax

where:

ANSI Compliance

EXCEPT is ANSI SQL:2008 compliant.

MINUS and the ALL option are Teradata extensions to the ANSI SQL:2008 standard.

Usage Notes

Besides simple queries, MINUS or EXCEPT can be used within the following operations:

• Derived tables

Note: You cannot use the HASH BY or LOCAL ORDER BY clauses in derived tables with
set operators.

• Subqueries

• INSERT … SELECT statements

• View definitions

MINUS and EXCEPT cannot be used within the following operations:

• SELECT AND CONSUME statements.

• WITH RECURSIVE clause

• CREATE RECURSIVE VIEW statements

Syntax element … Specifies …

query_expression_1 a complete SELECT statement whose results table is to be MINUSed with
query_expression_2.

ALL that duplicate rows are to be retained for the MINUS operation.

query_expression_2 a complete SELECT statement to be MINUSed from query_expression_1.

FF07D177

ALL
query_expression_1 MINUS query_expression_2

EXCEPT

Chapter 6: Set Operators
MINUS/EXCEPT Operator

SQL Functions, Operators, Expressions, and Predicates 199

Each query connected by MINUS or EXCEPT is executed to produce a result consisting of a
set of rows. The exception must include the same number of columns from each table in each
SELECT statement (more formally, they must be of the same degree), and the data types of
these columns should be compatible. All the result sets are then combined into a single result
set, which has the data types of the columns specified in the first SELECT statement in the
exception.

MINUS/EXCEPT and NULL

When you specify an explicit NULL for any exception operation, its data type is INTEGER.
For an example of this principle using the UNION operator, see “Example 5: Effect of Explicit
NULLs on Data Type of a UNION” on page 205.

On the other hand, column data defined as NULL has neither value nor data type and
evaluates like any other null in a scalar expression.

Duplicate Rows

Unless the ALL option is used, duplicate rows are eliminated from the final result.

If the ALL option is specified, duplicate rows are retained. The ALL option can be specified for
as many MINUS operators as are used in a multistatement query.

Chapter 6: Set Operators
UNION Operator

200 SQL Functions, Operators, Expressions, and Predicates

UNION Operator

Purpose
Combines two or more SELECT results tables into a single result.

Syntax

where:

ANSI Compliance

UNION is ANSI SQL:2008 compliant.

Valid UNION Operations

Besides simple queries, UNION can be used within the following operations:

• Derived tables

Note: You cannot use the HASH BY or LOCAL ORDER BY clauses in derived tables with
set operators.

• Subqueries

• INSERT … SELECT statements

• Non-recursive CREATE VIEW statements

UNION ALL is the only valid set operator in a WITH RECURSIVE clause or CREATE
RECURSIVE VIEW statement that defines a recursive query.

Unsupported Operations

UNION cannot be used within the following:

Syntax element … Specifies …

query_expression_1 a complete SELECT statement to be unioned with query_expression_2.

For details, see “Syntax for query_expression” on page 180.

ALL that duplicate rows are to be retained for the UNION.

query_expression_2 a complete SELECT statement to be unioned with query_expression_1.

For details, see “Syntax for query_factor” on page 179.

FF07D175

ALL
query_expression_1 UNION query_expression_2

Chapter 6: Set Operators
UNION Operator

SQL Functions, Operators, Expressions, and Predicates 201

• SELECT AND CONSUME statements.

• WITH RECURSIVE clause (unless the ALL option is also specified)

• CREATE RECURSIVE VIEW statements (unless the ALL option is also specified)

Description of a UNION Operation

Each query connected by UNION is performed to produce a result consisting of a set of rows.
The union must include the same number of columns from each table in each SELECT
statement (more formally, they must be of the same degree), and the data types of these
columns should be compatible. All the result sets are then combined into a single result set
that has the data type of the columns specified in the first SELECT statement in the union. For
an example, see “Example 6: Effect of the Order of SELECT Statements on Data Type” on
page 206.

UNION and NULL

When you specify an explicit NULL for any union operation, its data type is INTEGER. For an
example, see “Example 5: Effect of Explicit NULLs on Data Type of a UNION” on page 205.

On the other hand, column data defined as NULL has neither value nor data type and
evaluates like any other null in a scalar expression.

Duplicate Rows

Unless the ALL option is used, duplicate rows are eliminated from each result set and from the
final result.

If the ALL option is used, duplicate rows are retained for the applicable result set.

You can specify the ALL option for each UNION operator in the query to retain every
occurrence of duplicate rows in the final result.

Unexpected Row Length Errors: Sorting Rows for UNION

Before performing the sort operation used to check for duplicates in some union operations,
Teradata Database creates a sort key and appends it to the rows to be sorted. If the length of
this temporary data structure exceeds the system limit of 64K bytes, the operation fails and
returns an error to the requestor. Depending on the situation, the message text is one of the
following:.

• A data row is too long.

• Maximum row length exceeded in database_object_name.

See Messages for explanations of these messages.

Example 1

To select the name, project, and the number of hours spent by employees assigned to project
OE1-0001, plus the names of employees not assigned to a project, the following query could
be used:

Chapter 6: Set Operators
UNION Operator

202 SQL Functions, Operators, Expressions, and Predicates

SELECT Name, Proj_Id, Hours
FROM Employee,Charges
WHERE Employee.Empno = Charges.Empno
AND Proj_Id IN ('OE1-0001')
UNION
SELECT Name, NULL (CHAR (8)), NULL (DECIMAL (4,2))
FROM Employee
WHERE Empno NOT IN
(SELECT Empno
FROM Charges);

This query returns the following rows:

In this example, null expressions are used in columns 2 and 3 of the second SELECT
statement. The null expressions are used as place markers so that both SELECT statements in
the query contain the same number of expressions.

Example 2

To determine the department number and names of all employees in departments 500 and
600, the UNION operator could be used as follows:

Name Project Id Hours

Aguilar J ? ?

Brandle B ? ?

Chin M ?

Clements D ? ?

Kemper R

Marston A ? ?

Phan A ? ?

Regan R ? ?

Russell S ? ?

Smith T

Watson L

Inglis C 0E1-0001 30.0

Inglis C 0E1-001 30.5

Leidner P 0E1-001 10.5

Leidner P 0E1-001 23.0

Moffit H 0E1-001 12.0

Moffit H 0E1-001 35.5

Chapter 6: Set Operators
UNION Operator

SQL Functions, Operators, Expressions, and Predicates 203

SELECT DeptNo, Name
FROM Employee
WHERE DeptNo = 500
UNION
SELECT DeptNo, Name
FROM Employee
WHERE DeptNo = 600 ;

This query returns the following rows:

The same results could have been returned with a simpler query, such as the following:

SELECT Name, DeptNo
FROM Employee
WHERE (DeptNo = 500)
OR (DeptNo = 600);

The advantage to formulating the query using the UNION operator is that if the DeptNo
column is the primary index for the Employee table, then using the UNION operator
guarantees that the basic selects are prime key operations. There is no guarantee that a query
using the OR operation will make use of the primary index.

Example 3

In addition, the UNION operator is useful if you must merge lists of values taken from two or
more tables.

For example, if departments 500 and 600 had their own Employee tables, the following query
could be used to select data from two different tables and merge that data into a single list:

SELECT Name, DeptNo
FROM Employee_dept_500
UNION
SELECT Name, DeptNo

DeptNo Name

500 Carter J

500 Inglis C

500 Marston A

500 Omura H

500 Reed C

500 Smith T

500 Watson L

600 Aguilar J

600 Kemper R

600 Newman P

600 Regan R

Chapter 6: Set Operators
UNION Operator

204 SQL Functions, Operators, Expressions, and Predicates

FROM Employee_dept_600 ;

Example 4

Suppose you want to know the number of man-hours charged by each employee who is
working on a project. In addition, suppose you also wanted the result to include the names of
employees who are not working on a project.

To do this, you would have to perform a union operation as illustrated in the following
example.

SELECT Name, Proj_Id, Hours
FROM Employee, Charges
WHERE Employee.EmpNo = Charges.EmpNo
UNION
SELECT Name, Null (CHAR(8)), Null (DECIMAL(4,2)),
FROM Employee
WHERE EmpNo NOT IN
(SELECT EmpNo
FROM Charges
)
UNION
SELECT Null (VARCHAR(12)), Proj_Id, Hours
FROM Charges
WHERE EmpNo NOT IN
(SELECT EmpNo
FROM Employee
);

The first portion of the statement joins the Employee table with the Charges table on the
EmpNo column. The second portion accounts for the employees who might be listed in the
Employee table, but not the Charges table. The third portion of the statement accounts for the
employees who might be listed in the Charges table and not in the Employee table. This
ensures that all the information asked for is included in the response.

UNION Operator and the Outer Join

“Example 4” on page 204 does not illustrate an outer join. That operation returns all rows in
the joined tables for which there is a match on the join condition and rows from the “left” join
table, or the “right” join table, or both tables for which there is no match. Moreover, non-
matching rows are extended with null values.

It is possible, however, to achieve an outer join using inner joins and the UNION operator,
though the union of any two inner joins is not the equivalent of an outer join.

The following example shows how to achieve an outer join using two inner joins and the
UNION operator. Notice how the second inner join uses null values.

SELECT Offering.CourseNo, Offerings.Location, Enrollment.EmpNo
FROM Offerings, Enrollment
WHERE Offerings.CourseNo = Enrollment.CourseNo
UNION
SELECT Offerings.CourseNo, Offerings.Location, NULL
FROM Offerings, Enrollment
WHERE Offerings.CourseNo <> Enrollment.CourseNo;

Chapter 6: Set Operators
UNION Operator

SQL Functions, Operators, Expressions, and Predicates 205

The above UNION operation returns results equivalent to the results of the left outer join
example shown above.

Example 5: Effect of Explicit NULLs on Data Type of a UNION

Set operator results evaluate to the data type of the columns defined in the first SELECT
statement in the operation. When a column in the first SELECT is defined as an explicit
NULL, the data type of the result is not intuitive.

Consider the following two examples, which you might intuitively think would evaluate to the
same result but do not.

In the first, an explicit NULL is selected as a column value.

SELECT 'p', NULL
FROM TableVM
UNION
SELECT 'q', 145.87
FROM TableVM;

BTEQ returns the result as follows.

'p' Null
--- -----------
p ?
q 145

The expected value for the second row of the Null column probably differs from what you
might expect—a decimal value of 145.87.

What if the order of the two SELECTs in the union is reversed?

SELECT 'q', 145.87
FROM TableVM
UNION
SELECT 'p', NULL
FROM TableVM;

BTEQ returns the result as follows.

'q' 145.87
--- -----------
p ?
q 145.87

The value for q is now reported as its true data type—DECIMAL—and without truncation.
Why the difference?

O.CourseNo O.Location E.EmpNo

C100 El Segundo 235

C100 El Segundo 668

C200 Dayton ?

C400 El Segundo ?

Chapter 6: Set Operators
UNION Operator

206 SQL Functions, Operators, Expressions, and Predicates

In the first union example, the explicit NULL is specified for the second column in the first
SELECT statement. The second column in the second SELECT statement, though specified as
a DECIMAL number, evaluates to an integer because in this context, NULL, though having no
value, does have the data type INTEGER, and that type is retained for the result of the union.

The second union example carries the data type for the value 145.87—DECIMAL—through
to the result.

You can confirm the unconverted data type for NULL and 145.87 by performing the following
SELECT statement.

SELECT TYPE(NULL), TYPE(145.87)

BTEQ returns the result as follows.

Type(Null) Type(145.87)
----------------- ----------------------
INTEGER DECIMAL(5,2)

Example 6: Effect of the Order of SELECT Statements on Data Type

The result of any UNION is always expressed using the data type of the selected value of the
first SELECT. This means that SELECT A UNION SELECT B does not always return the same
result as SELECT B UNION SELECT A unless you explicitly convert the output data type to
ensure the same result in either case.

Consider the following complex unioned queries:

SELECT MIN(X8.i1)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1=X1.i1
AND X8.i1 IN
(SELECT COUNT(*)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1=X1.i1
AND X8.i1 = ANY
(SELECT COUNT(*)
FROM t7 X7
WHERE X7.i1 = ANY
(SELECT AVG(X1.i1)
FROM t1 X1)))
UNION
SELECT AVG(X4.i1)
FROM t4 X4
WHERE X4.i1 = ANY
(SELECT (X8.i1)
FROM t1 X1
RIGHT JOIN t8 X8 ON X8.i1=X1.i1
AND X8.i1 = IN
(SELECT MAX(X8.i1)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1=X1.i1
AND
(SELECT (X4.i1)
FROM t6 X6
RIGHT JOIN t4 X4 ON X6.i1=i1))));

Chapter 6: Set Operators
UNION Operator

SQL Functions, Operators, Expressions, and Predicates 207

The result is the following report.

Minimum(i1)

-2
0

You might intuitively expect that reversing the order of the queries on either side of the
UNION would produce the same result. Because the data types of the selected value of the
first SELECT can differ, this is not always true, as the following query on the same database
demonstrates.

SELECT AVG(X4.i1)
FROM t4 X4
WHERE X4.i1 = ANY
(SELECT (X8.i1)
FROM t1 X1
RIGHT JOIN t8 X8 ON X8.i1 = X1.i1
AND X8.i1 = ANY
(SELECT MAX(X8.i1)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1 = X1.i1
AND
(SELECT (X4.i1)
FROM t6 X6
RIGHT JOIN t4 X4 ON X6.i1 = i
)
)
)
UNION
SELECT MIN(X8.i1)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1 = X1.i1
AND X8.i1 IN
(SELECT COUNT(*)
FROM t8 X8
LEFT JOIN t1 X1 ON X8.i1 = X1.i1
AND X8.i1 = ANY
(SELECT COUNT(*)
FROM t7 X7
WHERE X7.i1 = ANY
(SELECT AVG(X1.i1)
FROM t1 X1
)
);

The result is the following report.

Average(i1)

-2
1

The actual average is < 0.5. Why the difference when the order of SELECTs in the UNION is
reversed? The following table explains the seemingly paradoxical results.

Chapter 6: Set Operators
UNION Operator

208 SQL Functions, Operators, Expressions, and Predicates

WHEN the first SELECT specifies
this function … The result data type is …

AND the value returned as the
result is …

AVG REAL 1

MIN INTEGER truncated to 0

SQL Functions, Operators, Expressions, and Predicates 209

CHAPTER 7 DateTime and Interval Functions
and Expressions

This chapter describes functions and expressions that operate on ANSI DateTime and Interval
values, and also describes functions and expressions that operate on Teradata DATE values,
which are extensions to the ANSI SQL:2008 standard.

Overview

ANSI DateTime Data Types

ANSI DateTime data types include:

• DATE

• TIME

• TIME WITH TIME ZONE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

Interval Data Types

There are two categories of ANSI Interval data types:

• Year-Month Intervals, which include:

• YEAR

• YEAR TO MONTH

• MONTH

• Day-Time Intervals, which include:

• DAY

• DAY TO HOUR

• DAY TO MINUTE

• DAY TO SECOND

• HOUR

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE

• MINUTE TO SECOND

• SECOND

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime and Interval Data Type Assignment Rules

210 SQL Functions, Operators, Expressions, and Predicates

ANSI DateTime and Interval Data Type
Assignment Rules

Data Type Compatibility and Conversion

The following rules apply to assignments involving ANSI DateTime or Interval data types:

IF the source type
is …

AND the target type
is … THEN …

DATE DATE the types are compatible and assignments do not
require conversion.

For compatibility with existing Teradata assignments,
non-ANSI operations such as assigning a DATE to an
INTEGER or an INTEGER to a DATE (with validity
checking) follow existing Teradata assignment rules.

TIME TIME the types are compatible and assignments do not
require conversion.

The Teradata system value TIME is encoded as a
REAL and is not compatible with ANSI TIME or
TIME WITH TIME ZONE.

TIMESTAMP TIMESTAMP the types are compatible and assignments do not
require conversion.

Year-Month
INTERVAL

Year-Month
INTERVAL

Day-Time
INTERVAL

Day-Time
INTERVAL

Numeric DATE Teradata Database performs implicit type conversion
before the assignment.

See “Implicit Type Conversions” on page 745 for
details.

DATE • Character

• Numeric

• TIMESTAMP

Character • DATE

• TIME

• TIMESTAMP

TIME TIMESTAMP

TIMESTAMP • DATE

• TIME

Intervala

a. The INTERVAL type must have only one field, e.g. INTERVAL YEAR.

Exact Numeric

Exact Numeric Intervala

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime and Interval Data Type Assignment Rules

SQL Functions, Operators, Expressions, and Predicates 211

For all other source/target data type combinations in assignments involving ANSI DateTime
or Interval data types, the types must be explicitly converted.

To perform explicit conversions on ANSI DateTime or Interval data types, use the CAST
function:

where:

For more information, see “CAST in Explicit Data Type Conversions” on page 752.

Interval Data Type Assignment Rules

The following rules apply to Year-Month INTERVAL assignments.

Syntax element … Specifies …

expression an expression with known data type to be cast as a different data type.

ansi_sql_data_type the new data type for expression.

data_definition_list the new data type or data attributes or both for expression.

1101A627

CAST AS ansi_sql_data_type

data_definition_list

expression()

WHEN … THEN …

the types match assignment is straightforward.

the source is INTERVAL YEAR and
the target is INTERVAL YEAR TO
MONTH

the value for MONTH in the target is set to zero.

the source is INTERVAL MONTH
and the target is INTERVAL YEAR
TO MONTH

the source is extended to include the YEAR field initialized
to zero, and the resulting interval is normalized.

For example, if the source is '15' then the extended source
is '0-15', normalized to '1-03'.

the target is INTERVAL MONTH and
the source is either INTERVAL YEAR
or INTERVAL YEAR TO MONTH

the source is converted to INTERVAL MONTH before
assignment.

For example, if the source is '2-11', it is converted to '35'.

the least significant field of the source
is lower than that of the target

the values of fields in the source with precision lower than
the least significant field of the target are truncated.

For example, if a source of INTERVAL '32' MONTH is
assigned to a target column of type INTERVAL YEAR, the
value stored is '2'.

Chapter 7: DateTime and Interval Functions and Expressions
Scalar Operations on ANSI SQL:2008 DateTime and Interval Values

212 SQL Functions, Operators, Expressions, and Predicates

The following rules apply to Day-Time INTERVAL assignments.

Scalar Operations on ANSI SQL:2008 DateTime
and Interval Values

Teradata SQL defines a set of permissible scalar operations for ANSI DateTime and Interval
values.

Scalar operations include:

Data Type Compatibility

The Teradata Database convention of performing implicit conversions to resolve expressions
of mixed data types is not supported for operations that include ANSI DateTime or Interval
values.

WHEN … THEN …

the types match assignment is straightforward.

the target is of lower significance than
the least significant field of the source

values for those fields are set to zero.

For example, if the source is INTERVAL '49:30' HOUR TO
MINUTE and it is assigned to a target column of type
INTERVAL HOUR(4) TO SECOND(2), the value stored is
'49:30:00.00'.

the target has fields of higher
significance than the most significant
field of the source

the source type is extended to match the target type, setting
the new fields to zeros, and normalizing the content as the
final step.

For example, if the source is INTERVAL '49:30' HOUR TO
MINUTE and it is assigned to a target column of type
INTERVAL DAY TO MINUTE, the value stored is '2 1:30'.

the least significant field of the source
is lower than that of the target

the values of fields in the source with precision lower than
the least significant field of the target are truncated.

For example, if the source is INTERVAL '10:12:58' HOUR
TO SECOND and it is assigned to a target column of type
INTERVAL HOUR TO MINUTE, the value stored is
'10:12'.

Operation Description

DateTime
Expressions

Expressions providing a result that is a DateTime value. DateTime
expressions have arguments that are also DateTime or Interval expressions.

Interval
Expressions

Expressions providing a result that is an Interval. Interval expressions may
include components that are Interval, DateTime, or Numeric expressions.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

SQL Functions, Operators, Expressions, and Predicates 213

To convert ANSI DateTime or Interval expressions, use the CAST function. See “CAST in
Explicit Data Type Conversions” on page 752.

The following restrictions apply to the values appearing in all DateTime and Interval scalar
operations:

ANSI DateTime Expressions

Purpose

Perform a computation on a DATE, TIME, or TIMESTAMP value (or value expression) and
return a single value of the same type.

Definition

A DateTime expression is any expression that returns a result that is a DATE, TIME, or
TIMESTAMP value.

date_time_expression Syntax

IF … THEN …

two DateTime values appear in the
same DateTime expression

both must be DATE types

ELSE both must be TIME types

ELSE both must be TIMESTAMP types.

You cannot mix DATE, TIME, and TIMESTAMP values
across type.

a DateTime and Interval values appear
in the same DateTime expression

the Interval value must contain only DateTime fields that
are also contained within the DateTime value.

two Interval values appear in the same
Interval expression

both must be Year-Month intervals

ELSE both must be Day-Time intervals.

You cannot mix Year-Month with Day-Time intervals.

FF07D266

interval_expression

date_time_term

date_time_term+

date_time_expression interval_term±

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

214 SQL Functions, Operators, Expressions, and Predicates

date_time_term Syntax

where:

Syntax element … Specifies …

date_time_expression an expression that evaluates to a DATE, TIME, or TIMESTAMP value.

The form of the expression is one of the following:

• a single date_time_term.

• the sum of an interval_expression and a date_time_term expression.

• the sum or difference of a date_time_expression and an interval_term.

date_time_term a single date_time_primary or a date_time_primary with a time zone
specifier of AT LOCAL, AT [TIME ZONE] expression, or AT [TIME ZONE]
time_zone_string.

interval_expression one of the following:

• a single interval_term.

• an interval_term added to or subtracted from an interval_expression.

• the difference between a date_time_expression and a date_time_term
(enclosed by parentheses) preceding a start TO end phrase.

For more information on interval_expression and interval_term, see “ANSI
Interval Expressions” on page 222.

date_time_primary one of the following elements, any of which must have the appropriate
DateTime type:

• Column reference

• DateTime literal value

For details on DateTime literals, see SQL Data Types and Literals.

• DateTime function reference

For example, the result of a CASE expression or CAST function or
DateTime built-in function such as CURRENT_DATE or
CURRENT_TIME.

• Scalar function reference

• Aggregate function reference

• (table_expression)

A scalar subquery.

• (date_time_timestamp_expression)

1101A677

date_time_primary

expression

time_zone_string

AT LOCAL

TIME ZONE

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

SQL Functions, Operators, Expressions, and Predicates 215

AT LOCAL and AT TIME ZONE Time Zone Specifiers

A date_time_primary can include an AT LOCAL or AT [TIME ZONE] clause only if the
date_time_primary evaluates to a TIME or TIMESTAMP value or is the built-in function
CURRENT_DATE or DATE.

The effect is to adjust date_time_term to be in accordance with the specified time zone
displacement.

The expression that specifies the time zone displacement in an AT [TIME ZONE] clause is
implicitly converted, as needed and if allowed, to a time zone displacement or time zone string
depending on its data type as defined in the following table:

AT LOCAL that the default time zone displacement based on the current session time
zone is used. The current session time zone may be specified as a time zone
string or a time zone displacement expressed as an Interval data type that
defines the local time zone offset.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data type
of expression should be INTERVAL HOUR(2) TO MINUTE or it must be a
data type that can be implicitly converted to INTERVAL HOUR(2) TO
MINUTE.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement.

Syntax element … Specifies …

Data type of expression Implicit Conversion

INTERVAL HOUR(n) TO MINUTE
where n is not 2

CAST(expression AS INTERVAL HOUR(2) TO
MINUTE)

INTERVAL HOUR
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL HOUR
INTERVAL HOUR TO SECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL SECOND

CAST(expression AS INTERVAL HOUR(2) TO
MINUTE)

BYTEINT
SMALLINT
INTEGER
BIGINT
DECIMAL/NUMERIC if the
fractional precision is 0

CAST(CAST(expression AS INTERVAL HOUR(2))
AS INTERVAL HOUR(2) TO MINUTE)

DECIMAL/NUMERIC if the
fractional precision is greater than 0

CAST(CAST((expression)*60 AS INTERVAL
MINUTE(4)) AS INTERVAL HOUR(2) TO MINUTE)

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

216 SQL Functions, Operators, Expressions, and Predicates

Note: There is a general restriction that in Numeric-to-Interval conversions, the INTERVAL
type must have only one DateTime field. However, this restriction is not an issue when
implicitly converting the expression of an AT clause because the conversion is done with two
CAST statements.

If the conversion to INTERVAL HOUR(2) TO MINUTE results in a value that is not between
INTERVAL -'12:59' HOUR TO MINUTE and INTERVAL '14:00' HOUR TO MINUTE, an
error is returned.

You can specify two kinds of time zone strings in the AT [TIME ZONE] time_zone_string
clause:

• Time zone strings that do not follow separate daylight saving time (DST) and standard
time zone displacements from Coordinated Universal Time (UTC) time.

• Time zone strings that follow different DST and standard time zone displacements from
UTC time.

The following time zone strings are supported:

Character with CHARACTER SET
UNICODE

CAST(CAST(expression AS INTERVAL HOUR(2))
AS INTERVAL HOUR(2) TO MINUTE)

If an error occurs for the above CAST statement, Teradata
Database attempts the following:

CAST(expression AS INTERVAL HOUR(2) TO
MINUTE)

If an error occurs for this CAST statement also, Teradata
Database treats the character value as a time zone string.

Character that is not CHARACTER
SET UNICODE

TRANSLATE(expression USING
source_repertoire_name_TO_Unicode)

where source_repertoire_name is the server character set of
expression. The translated value is then processed as above
for a character value with CHARACTER SET UNICODE.

other An error is returned.

Data type of expression Implicit Conversion

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

SQL Functions, Operators, Expressions, and Predicates 217

Teradata Database resolves the time zone string and calculates the time zone displacement for
the session or requested query.

Note: Teradata Database will automatically adjust the time zone displacement to account for
the start or end of daylight saving time only if you specify a time zone using a time zone string
that follows different DST and standard time zone displacements. GMT format strings
represent time zone strings that follow only one standard time and does not have a separate

Strings that do not follow separate DST and standard time zone displacements

• 'GMT'

• 'GMT+1'

• 'GMT+10'

• 'GMT+11'

• 'GMT+11:30'

• 'GMT+12'

• 'GMT+13'

• 'GMT+14'

• 'GMT+2'

• 'GMT+3'

• 'GMT+3:30'

• 'GMT+4'

• 'GMT+4:30'

• 'GMT+5'

• 'GMT+5:30'

• 'GMT+5:45'

• 'GMT+6'

• 'GMT+6:30'

• 'GMT+7'

• 'GMT+8'

• 'GMT+8:45'

• 'GMT+9'

• 'GMT+9:30'

• 'GMT-1'

• 'GMT-10'

• 'GMT-11'

• 'GMT-2'

• 'GMT-3'

• 'GMT-4'

• 'GMT-5'

• 'GMT-6'

• 'GMT-6:30'

• 'GMT-7'

• 'GMT-8'

Strings that follow different DST and standard time zone displacements

• 'Africa Egypt'

• 'Africa Morocco'

• 'Africa Namibia'

• 'America Alaska'

• 'America Aleutian'

• 'America Argentina'

• 'America Atlantic'

• 'America Brazil'

• 'America Central'

• 'America Chile'

• 'America Cuba'

• 'America Eastern'

• 'America Mountain'

• 'America Newfoundland'

• 'America Pacific'

• 'America Paraguay'

• 'America Uruguay'

• 'Asia Gaza'

• 'Asia Iran'

• 'Asia Iraq'

• 'Asia Irkutsk'

• 'Asia Israel'

• 'Asia Jordan'

• 'Asia Kamchatka'

• 'Asia Krasnoyarsk'

• 'Asia Lebanon'

• 'Asia Magadan'

• 'Asia Omsk'

• 'Asia Syria'

• 'Asia Vladivostok'

• 'Asia West Bank'

• 'Asia Yakutsk'

• 'Asia Yekaterinburg'

• 'Australia Central'

• 'Australia Eastern'

• 'Australia Western'

• 'Europe Central'

• 'Europe Eastern'

• 'Europe Kaliningrad'

• 'Europe Moscow'

• 'Europe Samara'

• 'Europe Western'

• 'Indian Mauritius'

• 'Mexico Central'

• 'Mexico Northwest'

• 'Mexico Pacific'

• 'Pacific New Zealand'

• 'Pacific Samoa'

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

218 SQL Functions, Operators, Expressions, and Predicates

daylight saving time. For example, the time zone string 'GMT+5:30' can be used for India in
order to use the displacement interval 5:30, which is applicable all year around.

Teradata Database resolves the time zone string based on the rules and time zone
displacement information stored in the system UDF (user-defined function),
GetTimeZoneDisplacement.

If the time zone strings provided by Teradata do not meet your requirements, you may add
new time zone strings or modify the existing time zone strings by modifying or adding new
rules to the GetTimeZoneDisplacement UDF. For details, see “GetTimeZoneDisplacement”
on page 246.

You can also use the AT clause to explicitly specify a time zone in the following cases:

• With the following built-in functions:

• “CURRENT_DATE” on page 671.

• “CURRENT_TIME” on page 677.

• “CURRENT_TIMESTAMP” on page 681.

• “DATE” on page 687.

• “TIME” on page 699.

Note: If you specify these built-in functions with an AT LOCAL clause, the value returned
depends on the setting of the DBS Control flag TimeDateWZControl.

• When converting DateTime data types using the CAST function or Teradata conversion
syntax. You can specify the time zone used for the CAST or conversion as the source time
zone, a specific time zone displacement or time zone string, or the current session time
zone. For more information, see Chapter 20: “Data Type Conversions.”

• With the EXTRACT function to specify a time zone for the source expression before
extracting the fields.

For more information about time zones, see “DateTime and Interval Data Types” in SQL Data
Types and Literals.

Related Topics

Gregorian Calendar Rules

DateTime expressions always operate within the rules of the Gregorian calendar.

For more information on… See…

Setting session time zones SET TIME ZONE, CREATE USER, MODIFY USER in
SQL Data Definition Language.

System time zone settings "System TimeZone Hour" and "System TimeZone
Minute" in Utilities.

Automatic adjustment of the system time
to account for daylight saving time

"SDF file" and "Locale Definition Utility (tdlocaledef)"
in Utilities.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

SQL Functions, Operators, Expressions, and Predicates 219

When an evaluation results in a value outside the permissible range for any contained field or
results in a value impermissible according to the natural rules for DATE and TIME values,
then an error is returned.

For example, the following operation returns an error because it evaluates to a date that is not
valid (‘1996-09-31’).

SELECT DATE '1996-08-31' + INTERVAL '1' MONTH;

The desired result is obtained with a slight rephrasing of the second operand.

SELECT DATE '1996-08-31' + INTERVAL '30' DAY;

This operation returns the desired result, ‘1996-09-30’. No error is returned.

Evaluation Types

Expressions involving DateTime values evaluate to a DateTime type, with DATE being the
least significant type and TIMESTAMP the most significant.

Adding and Subtracting Interval Values

DateTime expressions formed by adding an Interval to a DateTime value or by subtracting an
Interval from a DateTime value are performed by adding or subtracting values of the
appropriate component fields and carrying overflow from lower precision fields with the
appropriate modulo to represent proper arithmetic in terms of the calendar and clock.

An interval_expression or interval_term may only contain DateTime fields that are contained
in the corresponding date_time_expression or date_time_term.

When an Interval value is added to or subtracted from a TIME or TIMESTAMP value, the
time zone displacement value associated with the result is identical to that associated with the
TIME or TIMESTAMP value.

Computations With Time Zones

If you perform arithmetic on DateTime expressions containing time zones, the results are
computed in the following way.

Call the DateTime value of the expression DV and the time zone value component
(normalized to UTC) TZ.

The result is computed as DV - TZ.

DateTime expressions involving … Evaluate to a …

Dates date.

Times time.

Timestamps timestamp.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

220 SQL Functions, Operators, Expressions, and Predicates

Example 1: date_time_primary

In this example, the date_time_primary is a built-in time function.

CURRENT_TIME

Example 2: date_time_term With an Interval Column Time Zone Specifier

In this example, the date_time_term is a date_time_primary column value named f1.

TS.f1 is a value of type TIME or TIMESTAMP and intrvl.a is a column interval value of type
INTERVAL HOUR(2) TO MINUTE.

SELECT f1 AT TIME ZONE intrvl.a
FROM TS;

Example 3: date_time_term With an Interval Literal Time Zone Specifier

In this example, the date_time_term is a date_time_primary column value named f1.

The specified interval is an interval literal value of type INTERVAL HOUR TO MINUTE.

SELECT f1 AT TIME ZONE INTERVAL '01:00' HOUR TO MINUTE
FROM TS;

Example 4: date_time_term With a Time Zone String Time Zone Specifier

In this example, the date_time_term is a date_time_primary column value named f1.

TS.f1 is a value of type TIME or TIMESTAMP and the time zone displacement is based on the
time zone string 'America Pacific'.

SELECT f1 AT TIME ZONE 'America Pacific'
FROM TS;

Example 5: date_time_expression

In this example, the date_time_expression is an interval_expression added to a date_time_term.
Note that you can only add these terms—subtraction of a date_time_term from an
interval_expression is not permitted.

SELECT INTERVAL '20' YEAR + CURRENT_DATE;

Example 6: date_time_expression With Addition

In this example, the date_time_expression is comprised of another date_time_expression added
to an interval_term.

The columns subscribe_date and subscription_interval are typed DATE and INTERVAL
MONTH(4), respectively.

SUBSCRIBE_DATE + SUBSCRIPTION_INTERVAL

Example 7: date_time_expression With Subtraction

You can also subtract an interval_term from a date_time_expression.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI DateTime Expressions

SQL Functions, Operators, Expressions, and Predicates 221

In this example, an interval_term is subtracted from the date_time_expression.

The columns expiration_date and subscription_interval are typed DATE and INTERVAL
MONTH(4), respectively.

EXPIRATION_DATE - SUBSCRIPTION_INTERVAL

Time Zone Sort Order

Time zones are ordered chronologically, using the same time zone.

Examples

Consider the following examples using ordered SELECT statements on a table having a
column with type TIMESTAMP(0) WITH TIME ZONE.

The identical ordering demonstrated in these ORDER BY SELECTs applies to all time zone
comparison operations.

SELECT f1 TIMESTAMPFIELD
FROM timestwz
ORDER BY f1;

This statement returns the following results table.

TIMESTAMPFIELD

1997-10-07 15:43:00+08:00
1997-10-07 15:43:00-00:00
1997-10-07 15:47:52-08:00

Note how the values are displayed with the stored time zone information, but that the
ordering is not immediately evident.

Now note how normalizing the time zones by means of a CAST function indicates
chronological ordering explicitly.

SELECT CAST(f1 AS TIMESTAMP(0)) TIMESTAMP_NORMALIZED
FROM timestwz
ORDER BY f1;

This statement returns the following results table.

TIMESTAMP_NORMALIZED

1997-10-06 23:43:00
1997-10-07 07:43:00
1997-10-07 15:45:52

While the ordering is the same as for the previous query, the display of TIMESTAMP values
has been normalized to the time zone in effect for the session, which is ‘-08:00’.

A different treatment of the time zones, this time to reflect local time, indicates the same
chronological ordering but from a different perspective.

SELECT f1 AT LOCAL LOCALIZED
FROM timestwz
ORDER BY f1;

This statement returns the following results table.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

222 SQL Functions, Operators, Expressions, and Predicates

LOCALIZED

1997-10-06 23:43:00-08:00
1997-10-07 07:43:00-08:00
1997-10-07 15:45:52-08:00

ANSI Interval Expressions

Purpose

Performs a computation on an Interval value (or value expression) and returns a single value
of the same type.

Definition

An interval expression is any expression that returns a result that is an INTERVAL value.

interval_expression Syntax

interval_term Syntax

numeric_term Syntax

numeric_factor Syntax

where:

1101A010

interval_expression

interval_term

interval_term±

date_time_expression date_time_term)(start

TO end

FF07D268

interval_term

interval_primary

numeric_factor*

numeric_term interval_factor*

±

/

FF07D270

numeric_term

numeric_factor

numeric_factor*

/

FF07D269

numeric_primary±

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

SQL Functions, Operators, Expressions, and Predicates 223

Syntax element … Specifies …

interval_expression an expression that evaluates to an INTERVAL value.

The form of theexpression is one of the following:

• a single interval_term

• the sum or difference of an interval_term and an interval_expression

• the difference between a date_time_expression and a date_time_term
(enclosed by parentheses) preceding a start TO end phrase

interval_term one of the following expressions:

• a single interval_factor

• an interval_term multiplied or divided by a numeric_factor

• the product of a numeric_term and an interval_factor

interval_factor a signed interval_primary.

date_time_expression an expression that evaluates to a DATE, TIME, or TIMESTAMP value.

The form of the expression is one of the following:

• a single date_time_term

• the sum of an interval_expression and a date_time_term expression

• the sum or difference of a date_time_expression and an interval_term

For more information on date_time_expression, see “ANSI DateTime
Expressions” on page 213.

date_time_term a single date_time_primary or a date_time_primary with a time zone
specifier of AT LOCAL, AT [TIME ZONE] expression, or AT [TIME ZONE]
time_zone_string.

For more information on date_time_term, see “ANSI DateTime
Expressions” on page 213.

start a DateTime value with the following syntax that defines the beginning of a
date or time interval:

where:

• precision specifies the permitted range of digits, ranging from one to
four. The default precision is two.

• fractional_seconds_precision specifies the fractional precision for values
of SECOND, ranging from zero to six. The default is six.

MONTH and SECOND values are only permitted when used without TO
end.

1101A018

(precision

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

)

,fractional_seconds_precision

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

224 SQL Functions, Operators, Expressions, and Predicates

Examples of Interval Expression Components and Their Processing

The following examples illustrate the components of an interval expression and describe how
those components are processed.

TO end a DateTime value with the following syntax that defines the end of a date or
time interval:

where fractional_seconds_precision specifies the fractional precision for
values of SECOND, ranging from zero to six. The default is six.

The value for end must be less significant than the value for start.

If start is a YEAR value, then end must be a MONTH value.

numeric_factor a signed numeric_primary.

numeric_term a numeric_factor or a numeric_term multiplied or divided by a
numeric_factor.

numeric_primary one of the following elements, any of which must have the appropriate
numeric type:

• Column reference

• Numeric literal value

• Scalar function reference

• Aggregate function reference

• (table_expression)

A scalar subquery.

• (numeric_expression)

interval_primary one of the following elements, any of which must have the appropriate
INTERVAL type:

• Column reference

• Interval literal value

For details on Interval literals, see SQL Data Types and Literals.

• Scalar function reference

• Aggregate function reference

• (table_expression)

A scalar subquery.

• (interval_expression)

Syntax element … Specifies …

1101A017

(fractional_seconds_precision)

MONTH

HOUR

MINUTE

SECOND

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

SQL Functions, Operators, Expressions, and Predicates 225

Example of interval_term

The definition for interval_term can be expressed in four forms.

• interval_factor

• interval_term * numeric_factor

• interval_term / numeric_factor

• numeric_term * interval_factor

This example uses the second definition.

SELECT (INTERVAL '3-07' YEAR TO MONTH) * 4;

The interval_term in this operation is INTERVAL '3-07' YEAR TO MONTH.

The numeric_factor is 4.

The processing involves the following stages:

1 The interval is converted into 43 months as an INTEGER value.

2 The INTEGER value is multiplied by 4, giving the result 172 months.

3 The result is converted to '14-4'.

Example of numeric_factor

This example uses a numeric_factor with an INTERVAL YEAR TO MONTH typed value.

SELECT INTERVAL '10-02' YEAR TO MONTH * 12/5;

The numeric_factor in this operation is the integer 12.

The processing involves the following stages:

1 The interval is multiplied by 12, giving the result as an interval.

2 The interval result is divided by 5, giving '24-04'.

Note that very different results are obtained by using parentheses to change the order of
evaluation as follows.

SELECT INTERVAL '10-02' YEAR TO MONTH * (12/5);

The numeric_factor in this operation is (12/5).

The processing involves the following stages:

1 The numeric_factor is computed, giving the result 2.4, which is truncated to 2 because the
value is an integer by default.

2 The interval is multiplied by 2, giving '20-04'.

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

226 SQL Functions, Operators, Expressions, and Predicates

Example of interval_term / numeric_factor

The following example uses an interval_term value divided by a numeric_factor value.

SELECT INTERVAL '10-03' YEAR TO MONTH / 3;

The interval_term is INTERVAL '10-03' YEAR TO MONTH.

The numeric_factor is 3.

The processing involves the following stages:

1 The interval value is decomposed into a value of months.

Ten years and three months evaluate to 123 months.

2 The interval total is divided by the numeric_factor 3, giving '3-05'.

The next example is similar to the first except that it shows how truncation is used in integer
arithmetic.

SELECT INTERVAL '10-02' YEAR TO MONTH / 3;

The interval_term is INTERVAL '10-02' YEAR TO MONTH.

The numeric_factor is 3.

The processing involves the following stages:

1 The interval value is decomposed into a value of months.

Ten years and two months evaluate to 122 months.

2 The interval total is divided by the numeric_factor 3, giving 40.67 months, which is
truncated to 40 because the value is an integer.

3 The interval total is converted back to the appropriate format, giving INTERVAL '3-04'.

Example of numeric_term * interval_primary

In this format, the value for numeric_term can include instances of multiplication and
division.

SELECT 12/5 * INTERVAL '10-02' YEAR TO MONTH;

The numeric_term is 12/5.

The interval_primary is INTERVAL '10-02' YEAR TO MONTH.

The processing involves the following stages:

1 The numeric_term 12/5 is evaluated, giving 2.4, which is truncated to 2 because the value is
an integer by default.

2 The interval_primary is multiplied by 2, giving '20-04'.

Example of numeric_term * ± interval_primary

This example multiplies a negative interval_primary by a numeric_term and adds the negative
result to an interval_term.

SELECT (RACE_DURATION + (2 * INTERVAL -'30' DAY));

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

SQL Functions, Operators, Expressions, and Predicates 227

The numeric_term in this case is the numeric_primary 2.

The interval_primary is INTERVAL -'30' DAY.

RACE_DURATION is an interval_term, with type INTERVAL DAY TO SECOND.

The processing involves the following stages:

1 The interval_primary is converted to an exact numeric, or 60 days.

2 The operations indicated in the arithmetic are performed on the operands (which are both
numeric at this point), producing an exact numeric result having the appropriate scale and
precision.

In this example, 60 days are subtracted from RACE_DURATION, which is an INTERVAL
type of INTERVAL DAY TO SECOND.

3 The numeric result is converted back into the indicated INTERVAL type, DAY TO
SECOND.

Example of interval_expression

The definition for interval_expression can be expressed in three forms.

• interval_term

• interval_expression + interval_term

• (date_time_expression - date_time_term) start TO end

This example uses the second definition.

SELECT (CAST(INTERVAL '125' MONTH AS INTERVAL YEAR(2) TO MONTH))
+ INTERVAL '12' YEAR;

The interval_expression is INTERVAL '125' MONTH.

The interval_term is INTERVAL '12' YEAR.

The processing involves the following stages:

1 The CAST function converts the interval_expression value of 125 months to 10 years and 5
months.

2 The interval_term amount of 12 years is added to the interval_expression amount, giving
22 years and 5 months.

3 The result is converted to the appropriate data type, which is INTERVAL YEAR(2) TO
MONTH, giving '22-05'.

This example uses the third definition for interval_expression.

You must ensure that the values for date_time_expression and date_time_term are comparable.

SELECT (TIME '23:59:59.99' - CURRENT_TIME(2)) HOUR(2) TO SECOND(2);

The date_time_expression is TIME '23:59:59.99'.

The date_term is the date_time_primary - CURRENT_TIME(2).

Chapter 7: DateTime and Interval Functions and Expressions
ANSI Interval Expressions

228 SQL Functions, Operators, Expressions, and Predicates

The processing involves the following stages:

1 Assume that the current system time is 18:35:37.83.

2 The HOUR(2) TO SECOND(2) time interval 18:35:37.83 is subtracted from the TIME
value 23:59:59.99, giving the result '5:24:22.16'.

Here is another example that uses the third definition for interval_expression to find the
difference in minutes between two TIMESTAMP values. First define a table:

CREATE TABLE BillDateTime
(start_time TIMESTAMP(0)
,end_time TIMESTAMP(0));

Now, determine the difference in minutes:

SELECT (end_time - start_time) MINUTE(4)
FROM BillDateTime;

The processing involves the following stages:

1 The start_time TIMESTAMP value is subtracted from the end_time TIMESTAMP value,
giving an interval result.

2 The MINUTE(4) specifies an interval unit of minutes with a precision of four digits, which
allows for a maximum of 9999 minutes, or approximately one week.

Rules

The following rules apply to Interval expressions.

• Expressions involving intervals are evaluated by converting the operands to integers,
evaluating the resulting arithmetic expression, and then converting the result back to the
appropriate interval.

• The data type of both an interval_expression and an interval_primary is INTERVAL.

• An interval_expression must contain either year-month interval components or day-time
interval components. Mixing of INTERVAL types is not permitted.

• Expressions involving intervals always evaluate to an interval, even if the expressions
contain DateTime or Numeric expressions.

Normalization of Intervals with Multiple Fields

Because of the way the Parser normalizes multiple field INTERVAL values, the defined
precision for an INTERVAL value may not be large enough to contain the value once it has
been normalized.

IF an interval_expression contains … THEN the result …

only one component of type INTERVAL is of the same INTERVAL type.

a single DateTime value or a start TO end
phrase

contains the DateTime fields specified for the
DateTime or start TO end phrase values.

more than one component of type
INTERVAL

is of an INTERVAL type including all the DateTime
fields of the INTERVAL types of the component fields.

Chapter 7: DateTime and Interval Functions and Expressions
Arithmetic Operators

SQL Functions, Operators, Expressions, and Predicates 229

For example, inserting a value of '99-12' into a column defined as INTERVAL YEAR(2) TO
MONTH causes an overflow error because the Parser normalizes the value to '100-00'. When
an attempt is made to insert that value into a column defined to have a 2-digit YEAR field, it
fails because it is a 3-digit year.

Here is an example that returns an overflow error because it violates the permissible range
values for the type.

First define the table.

CREATE TABLE BillDateTime
(column_1 INTERVAL YEAR
,column_2 INTERVAL YEAR(1) TO MONTH
,column_3 INTERVAL YEAR(2) TO MONTH
,column_4 INTERVAL YEAR(3) TO MONTH);

Now insert the value INTERVAL '999-12' YEAR TO MONTH using this INSERT statement.

INSERT BillDateTime (column_1, column_4)
VALUES (INTERVAL '40' YEAR, INTERVAL '999-12' YEAR TO MONTH);

The result is an overflow error because the valid range for INTERVAL YEAR(3) TO MONTH
values is -'999-11' to '999-11'.

You might expect the value '999-12' to work, but it fails because the Parser normalizes it to a
value of '1000-00' YEAR TO MONTH. Because the value for year is then four digits, an
overflow occurs and the operation fails.

Arithmetic Operators

Operations on ANSI DateTime and Interval values can include the scalar arithmetic operators
+, -, *, and /. However, the operators are only valid on specific combinations of DateTime and
Interval values.

Arithmetic Operators and Result Types

The following arithmetic operations are permitted for DateTime and Interval data types:

First Value Type Operator Second Value Type Result Type

DateTime - DateTime Interval

DateTime + Interval DateTime

DateTime - Interval DateTime

Interval + DateTime DateTime

Interval + Interval Interval

Interval - Interval Interval

Interval * Number Interval

Chapter 7: DateTime and Interval Functions and Expressions
Arithmetic Operators

230 SQL Functions, Operators, Expressions, and Predicates

Adding or Subtracting Numbers from DATE

Teradata SQL extends the ANSI SQL:2008 standard to allow the operations of adding or
subtracting a number of days from an ANSI DATE value.

Teradata SQL treats the number as an INTERVAL DAY value.

For more information, see “DATE and Integer Arithmetic” on page 233.

Calculating the Difference Between Two DateTime Values

Teradata Database calculates the interval difference between two DATE, TIME or
TIMESTAMP values according to the ANSI SQL standard. Units smaller than the unit of the
result are ignored when calculating the interval value.

For example, when computing the difference in months for two DATE values, the day values
in each of the two operands are ignored. Similarly when computing the difference in hours for
two TIMESTAMP values, the minutes and the seconds values of the operands are ignored.

Example 1

The following query calculates the difference in days between the two DATE values.

SELECT (DATE '2007-05-10' - DATE '2007-04-28') DAY;

The result is the following:

(2007-05-10 - 2007-04-28) DAY

12

The following query calculates the difference in months between the two DATE values.

SELECT (DATE '2007-05-10' - DATE '2007-04-28') MONTH;

The result is the following:

(2007-05-10 - 2007-04-28) MONTH

1

There is a difference of 12 days between the two dates, which does not constitute one month.
However, Teradata Database ignores the day values during the calculation and only considers
the month values, so the result is an interval of one month indicating the difference between
April and May.

Interval / Number Interval

Number * Interval Interval

First Value Type Operator Second Value Type Result Type

Chapter 7: DateTime and Interval Functions and Expressions
Aggregate Functions and ANSI DateTime and Interval Data Types

SQL Functions, Operators, Expressions, and Predicates 231

Example 2: Add Interval to DATE

The following example adds an Interval value to a DateTime value:

CREATE TABLE Subscription
(id CHARACTER(13)
,subscribe_date DATE
,subscribe_interval INTERVAL MONTH(4));

INSERT Subscription (subscribe_date, subscribe_interval)
VALUES (CURRENT_DATE, INTERVAL ’24’ MONTH);

SELECT subscribe_date + subscribe_interval FROM Subscription;

The result is a DateTime value.

Aggregate Functions and ANSI DateTime and
Interval Data Types

DateTime Data Types

The following aggregate functions are valid for ANSI SQL:2008 DateTime types.

Interval Data Types

The following aggregate functions are valid for Interval types.

For this
function … The result is … For more information, see …

AVG(arg) the type of the argument. “AVG” on page 350.

MAX(arg) the type of the argument, based on the
comparison rules for DateTime types.

“MAX” on page 372.

MIN(arg) “MIN” on page 375.

COUNT(arg) INTEGER, if the mode is Teradata. “COUNT” on page 356.

DECIMAL(n,0), if the mode is ANSI, where:

n is … if MaxDecimal in DBSControl is …

15 0, 15, or 18

38 38

For this
function … The result is … For more information, see …

AVG(arg) the type of the argument. “AVG” on page 350.

Chapter 7: DateTime and Interval Functions and Expressions
Scalar Operations and DateTime Functions

232 SQL Functions, Operators, Expressions, and Predicates

Scalar Operations and DateTime Functions

DateTime functions are those functions that operate on either DateTime or Interval values
and provide a DateTime value as a result.

The supported DateTime functions are:

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• EXTRACT

To avoid any synchronization problems, operations among any of these functions are
guaranteed to use identical definitions for DATE, TIME, or TIMESTAMP so that the following
are always true:

• CURRENT_DATE = CURRENT_DATE

• CURRENT_TIME = CURRENT_TIME

• CURRENT_TIMESTAMP = CURRENT_TIMESTAMP

• CURRENT_DATE and CURRENT_TIMESTAMP always identify the same DATE

• CURRENT_TIME and CURRENT_TIMESTAMP always identify the same TIME

The values reflect the time when the request started and do not change during the duration of
the request.

Example

The following example uses the CURRENT_DATE DateTime function:

SELECT INTERVAL '20' YEAR + CURRENT_DATE;

COUNT(arg) INTEGER, if the mode is Teradata. “COUNT” on page 356.

DECIMAL(n,0), if the mode is ANSI, where:

n is … if MaxDecimal in DBSControl is …

15 0, 15, or 18

38 38

MAX(arg) the type of the argument, based on the
comparison rules for DateTime types.

“MAX” on page 372.

MIN(arg) “MIN” on page 375.

SUM(arg) the type of the argument. “SUM” on page 418.

For this
function … The result is … For more information, see …

Chapter 7: DateTime and Interval Functions and Expressions
Teradata Date and Time Expressions

SQL Functions, Operators, Expressions, and Predicates 233

Related Topics

Teradata Date and Time Expressions

Teradata SQL provides a data type for DATE values and stores TIME values as encoded
numbers with type REAL. This is a Teradata extension of the ANSI SQL:2008 standard and its
use is strongly deprecated.

Since both DATE and TIME are encoded values, not simple integers or real numbers,
arithmetic operations on these values are restricted.

ANSI DATE and TIME values are stored using appropriate DateTime types and have their
own set of rules for DateTime assignment and expressions. For information, see “ANSI
DateTime and Interval Data Type Assignment Rules” on page 210 and “Scalar Operations on
ANSI SQL:2008 DateTime and Interval Values” on page 212.

DATE and Integer Arithmetic

The following arithmetic functions can be performed with date and an integer (INTEGER is
interpreted as a number of days):

• DATE + INTEGER

• INTEGER + DATE

• DATE - INTEGER

These expressions are not processed as simple addition or subtraction, but rather as explained
in the following process:

1 The encoded date value is converted to an intermediate value which is the number of days
since some system-defined fixed date.

2 The integer value is then added or subtracted, forming another value as number of days,
since the fixed base date.

3 The result is converted back to a date, valid in the Gregorian calendar.

For more information on … See …

CURRENT_DATE “CURRENT_DATE” on page 671

CURRENT_TIME “CURRENT_TIME” on page 677

CURRENT_TIMESTAMP “CURRENT_TIMESTAMP” on page 681

EXTRACT “EXTRACT” on page 242

Chapter 7: DateTime and Interval Functions and Expressions
Scalar Operations on Teradata DATE Values

234 SQL Functions, Operators, Expressions, and Predicates

DATE and Date Arithmetic

The DATE - DATE expression is not processed as a simple subtraction, but rather as explained
in the following process:

1 The encoded date values are converted to intermediate values which are each the number
of days since a system-defined fixed date.

2 The second of these values is then subtracted from the first, giving the number of days
between the two dates.

3 The result is returned as if it were in the ANSI SQL:2008 form INTERVAL DAY, though the
value itself is an integer.

Other arithmetic operations on date values may provide results, but those results are not
meaningful.

Example

DATE/2 provides an integer result, but the value has no meaning.

There are no simple arithmetic operations that have meaning for time values. The reason is
that a time value is simply a real number with time encoded as:

(HOUR*10000 + MINUTE*100 + SECOND)

where SECOND may include a fractional value.

Scalar Operations on Teradata DATE Values

The operations of addition and subtraction are allowed as follows, where integer values
represent the number of days:

Adding 90 days, for example, is not identical to adding 3 months, because of the varying
number of days in months.

Also, adding multiples of 365 days is not identical to adding years because of leap years.

Note that scalar operations on Teradata DATE expressions are performed using ANSI
SQL:2008 data types, so an expression of the type date_expression - numeric_expression is
treated as if the numeric_expression component were typed as INTERVAL DAY.

Argument 1 Operation Argument 2 Result

DATE + INTEGER DATE

DATE - INTEGER DATE

INTEGER + DATE DATE

DATE - DATE INTEGER

Chapter 7: DateTime and Interval Functions and Expressions
Scalar Operations on Teradata DATE Values

SQL Functions, Operators, Expressions, and Predicates 235

ANSI SQL:2008 DateTime and Interval values have their own set of scalar operations and with
the exception of the scalar operations defined here for DATE, do not support the implicit
conversions to resolve expressions of mixed data types.

ADD_MONTHS Function

The ADD_MONTHS function provides for adding or subtracting months or years, handling
the variable number of days involved.

For details, see “ADD_MONTHS” on page 236.

EXTRACT Function

Use the EXTRACT function to get the year, month, or day from a date. The result has
INTEGER data type.

For details, see “EXTRACT” on page 242.

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

236 SQL Functions, Operators, Expressions, and Predicates

ADD_MONTHS

Purpose
Adds an integer number of months to a DATE or TIMESTAMP expression and normalizes the
result.

Date Syntax

Timestamp Syntax

where:

ANSI Compliance

ADD_MONTHS is a Teradata extension to the ANSI SQL:2008 standard.

FF07D202

ADD_MONTHS ()date_expression, integer_expression

Syntax element … Specifies …

date_expression one of the following, to which integer_expression months are to be added:

• A DATE value enclosed in apostrophes

• A DATE literal

• The CURRENT_DATE keyword

• The DATE keyword

• A UDT that has an implicit cast that casts between the UDT and a
character or DATE type.

CURRENT_DATE and DATE specify the current system DATE value.

timestamp_expression one of the following, to which integer_expression months are to be added:

• A TIMESTAMP literal

• The CURRENT_TIMESTAMP keyword

• A UDT that has an implicit cast that casts between the UDT and a
character or TIMESTAMP type.

CURRENT_TIMESTAMP specifies the current system TIMESTAMP
value.

integer_expression the number of integer months to be added to date_expression or
timestamp_expression.

FF07D208

ADD_MONTHS ()timestamp_expression, integer_expression

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

SQL Functions, Operators, Expressions, and Predicates 237

Rules

ADD_MONTHS observes the following rules:

• If either argument of ADD_MONTHS is NULL, then the result is NULL.

• If the result is not in the range ‘0000-01-01’ to ‘9999-12-31’, then an error is reported.

• Results of an ADD_MONTHS function that are invalid dates are normalized to ensure
that all reported dates are valid.

Support for UDTs

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
ADD_MONTHS, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see “Implicit Type Conversions”
on page 745.

Scalar Arithmetic on Months Issues

Consistent handling of a target month having fewer days than the month in the source date is
an important issue for scalar arithmetic on month intervals because the concept of a month
has no fixed definition.

All scalar function operations on dates use the Gregorian calendar. Peculiarities of the
Gregorian calendar ensure that arithmetic operations such as adding 90 days (to represent
three months) or 730 days (to represent two years) to a DATE value generally do not provide
the desired result. For more information, see “Gregorian Calendar Rules” on page 218.

The ADD_MONTHS function uses an algorithm that lets you add or subtract a number of
months to a date_expression or timestamp_expression and to obtain consistently valid results.

IF this argument is a
UDT …

THEN Teradata Database performs implicit type conversion if the UDT has an
implicit cast that casts between the UDT and any of the following predefined
types …

date_expression • Character

• Date

• Timestamp
timestamp_expression

integer_expression Numeric

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

238 SQL Functions, Operators, Expressions, and Predicates

When deciding whether to use the Teradata SQL ADD_MONTHS function or ANSI
SQL:2008 DateTime interval arithmetic, you are occasionally faced with choosing between
returning a result that is valid, but probably neither desired nor expected, or not returning any
result and receiving an error message.

A third option that does not rely on system-defined functions is to use the Teradata Database-
defined Calendar view for date arithmetic. For information, see “CALENDAR View” in the
Data Dictionary book.

Normalization Behavior of ADD_MONTHS

The standard approach to interval month arithmetic is to increment MONTH and YEAR
values as appropriate and retain the source value for DAY. This is a problem for the case when
the target DAY value is smaller than the source DAY value from the source date.

For example, what approach should be taken to handle the result of adding one MONTH to a
source DATE value of ‘1999-01-31’? Using the standard approach, the answer would be ‘1999-
02-31’, but February 31 is not a valid date.

The behavior of ADD_MONTHS is equivalent to that of the ANSI SQL:2008 compliant
operations DATE ± INTERVAL ‘n’ MONTH and TIMESTAMP ± INTERVAL ‘n’ MONTH
with one important difference.

The difference between these two scalar arithmetic operations is their behavior when a invalid
date value is returned by the function.

• ANSI SQL:2008 arithmetic returns an error.

• ADD_MONTHS arithmetic makes normative adjustments and returns a valid date.

Definition of Normalization

The normalization process is explained more formally as follows.

When the DAY field of the source date_expression or timestamp_expression is greater than the
resulting target DAY field, ADD_MONTHS sets DD equal to the last day of the month + n to
normalize the reported date or timestamp.

Define date_expression as ‘YYYY-MM-DD’ for simplicity.

For a given date_expression, you can then express the syntax of ADD_MONTHS as follows.

ADD_MONTHS('YYYY-MM-DD' , n)

Recalling that n can be negative, and substituting ‘YYYY-MM-DD’ for date_expression, you
can redefine ADD_MONTHS in terms of ANSI SQL:2008 dates and intervals as follows.

ADD_MONTHS('YYYY-MM-DD', n) = 'YYYY-MM-DD' ± INTERVAL 'n' MONTH

The equation is true unless an invalid date such as 1999-09-31 results, in which case the ANSI
expression traps the invalid date exception and returns an error.

ADD_MONTHS, on the other hand, processes the exception and returns a valid, though not
necessarily expected, date. The algorithm ADD_MONTHS uses to produce its normalized
result is as follows, expressed as pseudocode.

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

SQL Functions, Operators, Expressions, and Predicates 239

WHEN
DD > last_day_of_the_month(MM+n)
THEN SET
DD = last_day_of_the_month(MM+n)

This property is also true for the date portion of any timestamp_expression.

Note that normalization produces valid results for leap years.

Non-Intuitive Results of ADD_MONTHS

Because of the normalization made by ADD_MONTHS, many results of the function are not
intuitive, and their inversions are not always symmetrical. For example, compare the results of
“Example 5” on page 240 with the results of “Example 7” on page 241.

This is because the function always produces a valid date, but not necessarily an expected date.
Correctness in the case of interval month arithmetic is a relative term. Any definition is
arbitrary and cannot be generalized, so the word ‘expected’ is a better choice for describing the
behavior of ADD_MONTHS.

The following SELECT statements return dates that are both valid and expected:

SELECT ADD_MONTHS ('1999-08-15' , 1);

This statement returns 1999-09-15.

SELECT ADD_MONTHS ('1999-09-30' , -1);

This statement returns 1999-08-30.

The following SELECT statement returns a valid date, but its ‘correctness’ depends on how
you choose to define the value ‘one month.’

SELECT ADD_MONTHS ('1999-08-31' , 1);

This statement returns 1999-09-30, because September has only 30 days and the non-
normalized answer of 1999-09-31 is not a valid date.

ADD_MONTHS Summarized

ADD_MONTHS returns a new date_expression or timestamp_expression with YEAR and
MONTH fields adjusted to provide a correct date, but a DAY field adjusted only to guarantee a
valid date, which might not be a date you expect intuitively.

If this behavior is not acceptable for your application, use ANSI SQL:2008 DateTime interval
arithmetic instead. For more information, see “ANSI Interval Expressions” on page 222.

Remember that ADD_MONTHS changes the DAY value of the result only when an invalid
date_expression or timestamp_expression would otherwise be reported.

For examples of this behavior, see the example set listed under “Non-Intuitive Examples” on
page 240.

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

240 SQL Functions, Operators, Expressions, and Predicates

Intuitive Examples

“Example 1” through “Example 5” are simple, intuitive examples of the ADD_MONTHS
function. All results are both valid and expected.

Example 1

This statement returns the current date plus 13 years.

SELECT ADD_MONTHS (CURRENT_DATE, 12*13);

Example 2

This statement returns the date 6 months ago.

SELECT ADD_MONTHS (CURRENT_DATE, -6);

Example 3

This statement returns the current TIMESTAMP plus four months.

SELECT ADD_MONTHS (CURRENT_TIMESTAMP, 4);

Example 4

This statement returns the TIMESTAMP nine months from January 1, 1999. Note the literal
form, which includes the keyword TIMESTAMP.

SELECT ADD_MONTHS (TIMESTAMP '1999-01-01 23:59:59', 9);

Example 5

This statement adds one month to January 30, 1999.

SELECT ADD_MONTHS ('1999-01-30', 1);

The result is 1999-02-28.

Non-Intuitive Examples

“Example 6” through “Example 10” illustrate how the results of an ADD_MONTHS function
are not always what you might expect them to be when the value for DAY in date_expression or
the date component of timestamp_expression is 29, 30, or 31.

All examples use a date_expression for simplicity. In every case, the function behaves as
designed.

Chapter 7: DateTime and Interval Functions and Expressions
ADD_MONTHS

SQL Functions, Operators, Expressions, and Predicates 241

Example 6

The result of the SELECT statement in this example is a date in February, 1996. The result
would be February 31, 1996 if that were a valid date, but because February 31 is not a valid
date, ADD_MONTHS normalizes the answer.

That answer, because the DAY value in the source date is greater than the last DAY value for
the target month, is the last valid DAY value for the target month.

SELECT ADD_MONTHS ('1995-12-31', 2);

The result of this example is 1996-02-29.

Note that 1996 was a leap year. If the interval were 14 months rather than 2, the result would
be '1997-02-28'.

Example 7

This statement performs the converse of the ADD_MONTHS function in “Example 5” on
page 240.

You might expect it to return ‘1999-01-30’, which is the source date in that example, but it
does not.

SELECT ADD_MONTHS ('1999-02-28' , -1);

ADD_MONTHS returns the result 1999-01-28.

The function performs as designed and this result is not an error, though it might not be what
you would expect from reading “Example 5.”

Example 8

You might expect the following statement to return ‘1999-03-31’, but it does not.

SELECT ADD_MONTHS ('1999-02-28' , 1);

ADD_MONTHS returns the result 1999-03-28.

Example 9

You might expect the following statement to return ‘1999-03-31’, but it does not.

SELECT ADD_MONTHS ('1999-04-30' , -1);

ADD_MONTHS returns the result 1999-03-30.

Example 10

You might expect the following statement to return '1999-05-31', but it does not.

SELECT ADD_MONTHS ('1999-04-30' , 1);

ADD_MONTHS returns the result 1999-05-30.

Chapter 7: DateTime and Interval Functions and Expressions
EXTRACT

242 SQL Functions, Operators, Expressions, and Predicates

EXTRACT

Purpose
Extracts a single specified full ANSI SQL:2008 field from any DateTime or Interval value,
converting it to an exact numeric value.

Syntax

where:

Syntax element … Specifies …

YEAR that the integer value for YEAR is to be extracted from the date
represented by value.

MONTH that the integer value for MONTH is to be extracted from the date
represented by value.

DAY that the integer value for DAY is to be extracted from the date represented
by value.

HOUR that the integer value for HOUR is to be extracted from the date
represented by value.

MINUTE that the integer value for MINUTE is to be extracted from the date
represented by value.

TIMEZONE_HOUR that the integer value for TIMEZONE_HOUR is to be extracted from the
date represented by value.

TIMEZONE_MINUTE that the integer value for TIMEZONE_MINUTE is to be extracted from
the date represented by value.

SECOND that the integer value for SECOND is to be extracted from the date
represented by value.

value an expression that results in a DateTime, Interval, or UDT value.

FF07D144

EXTRACT

MONTH

()YEAR valueFROM

DAY

HOUR

MINUTE

SECOND

TIMEZONE_HOUR

TIMEZONE_MINUTE

Chapter 7: DateTime and Interval Functions and Expressions
EXTRACT

SQL Functions, Operators, Expressions, and Predicates 243

ANSI Compliance

EXTRACT is partially ANSI SQL:2008 compliant.

ANSI SQL:2008 EXTRACT allows extraction of any field in any DateTime or Interval value. In
addition to the ANSI SQL:2008 extract function, Teradata SQL also supports HOUR,
MINUTE, or SECOND extracted from a floating point value.

Arguments

IF value is … THEN …

a character string expression
that represents a date

the string must match the 'YYYY-MM-DD' format.

a character string expression
that represents a time

the string must match the 'HH:MI:SS.SSSSSS' format.

a floating point type value must be a time value encoded with the algorithm HOUR *
10000 + MINUTE * 100 + SECOND.

Only HOUR, MINUTE, and SECOND can be extracted from a
floating point value.

Externally created time values can be appropriately encoded and
stored in a REAL column to any desired precision if the encoding
creates a value representable by REAL without precision loss.

Do not store time values as REAL in any new applications. Instead,
use the more rigorously defined ANSI SQL:2008 DateTime data
types.

a UDT the UDT must have an implicit cast that casts between the UDT
and any of the following predefined types:

• Numeric

• Character

• DateTime

To define an implicit cast for a UDT, use the CREATE CAST
statement and specify the AS ASSIGNMENT clause. For more
information on CREATE CAST, see SQL Data Definition Language.

Implicit type conversion of UDTs for system operators and
functions, including EXTRACT, is a Teradata extension to the ANSI
SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control
Record to TRUE. For details, see Utilities.

For more information on implicit type conversion of UDTs, see
“Implicit Type Conversions” on page 745.

not a character string
expression or floating point
type or UDT

the expression must evaluate to a DateTime or Interval type.

Chapter 7: DateTime and Interval Functions and Expressions
EXTRACT

244 SQL Functions, Operators, Expressions, and Predicates

Results

EXTRACT returns an exact numeric value for ANSI SQL:2008 DateTime values.

EXTRACT returns values adjusted for the appropriate time zone if the data type of the
argument is TIME or TIMESTAMP. If no time zone is specified for the argument, then the
time zone displacement based on the current session time zone is used. Otherwise, the explicit
time zone of the argument is used. You can use the AT clause to explicitly specify a time zone
for the argument. For details, see “ANSI DateTime Expressions” on page 213.

If value is NULL, the result is NULL.

Example 1

The following example returns the year, as an integer, from the current date.

SELECT EXTRACT (YEAR FROM CURRENT_DATE);

Example 2

Assuming PurchaseDate is a DATE field, this example returns the month of the date value
formed by adding 90 days to PurchaseDate as an integer.

SELECT EXTRACT (MONTH FROM PurchaseDate+90) FROM SalesTable;

Example 3

The following returns 12 as an integer.

SELECT EXTRACT (DAY FROM '1996-12-12');

Example 4

This example returns an error because the character literal does not evaluate to a valid date.

SELECT EXTRACT (DAY FROM '1996-02-30');

If you extract … THEN …

SECOND

IF value has a seconds
fractional precision of …

THEN the result is …

zero INTEGER.

greater than zero DECIMAL with the scaling as specified for
the SECOND field in its data description.

anything else the result is INTEGER, with 32 bits of precision.

Chapter 7: DateTime and Interval Functions and Expressions
EXTRACT

SQL Functions, Operators, Expressions, and Predicates 245

Example 5

The following returns an error because the character string literal does not match the ANSI
SQL:2008 date format.

SELECT EXTRACT (DAY FROM '96-02-15');

If the argument to EXTRACT is a value of type DATE, the value contained is warranted to be a
valid date, for which EXTRACT cannot return an error.

Example 6

The following example relates to non-ANSI DateTime definitions. If the argument is a
character literal formatted as a time value, it is converted to REAL and processed. In this
example, 59 is returned.

SELECT EXTRACT (MINUTE FROM '23:59:17.3');

Example 7

This example returns the hour, as an integer, from the current time.

SELECT EXTRACT (HOUR FROM CURRENT_TIME);

Current time is retrieved as the system value TIME, to the indicated precision.

Example 8

The following example returns the seconds as DECIMAL(8,2). This is based on the fractional
seconds precision of 2 for CURRENT_TIME.

SELECT EXTRACT (SECOND FROM CURRENT_TIME (2));

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

246 SQL Functions, Operators, Expressions, and Predicates

GetTimeZoneDisplacement

Purpose
Returns the rules and time zone displacement information for a specified time zone string.

Syntax

where:

ANSI Compliance

GetTimeZoneDisplacement is a Teradata extension to the ANSI SQL:2008 standard.

Result

GetTimeZoneDisplacement returns a string of bytes containing the rules and time zone
displacement information for the specified time zone string. The result data type is BYTE. The
information returned is:

Syntax element … Specifies …

time_zone_string a valid time zone string specified using a VARBYTE data type. For a list of
time zone strings supported by Teradata, see “AT LOCAL and AT TIME
ZONE Time Zone Specifiers” on page 215.

If time_zone_string is invalid or unsupported,
GetTimeZoneDisplacement returns a value of 1 in the first byte to
indicate that the time zone string does not exist.

GetTimeZoneDisplacement (time_zone_string)
1101A720

Byte Value

First byte • 1, if the time zone string is not found. That is, the time zone string specified in
the input argument is invalid or unsupported.

• 0, if the time zone string is found.

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

SQL Functions, Operators, Expressions, and Predicates 247

Usage Notes

GetTimeZoneDisplacement is a system user-defined function (UDF) that Teradata Database
invokes internally to resolve a time zone string specified in an SQL statement or Specification
for Data Formatting (SDF) file. Users do not invoke this function directly; however, users can
modify this UDF to add new time zone strings or add or modify the rules of an existing time
zone string.

Adding or Modifying Time Zone Strings

Teradata Database provides a set of time zone strings that represent commonly used time
zones. For a list of supported time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215. The GetTimeZoneDisplacement UDF stores and maintains
these time zone strings and the related rules for converting between UTC and the time in the
local time zone.

If the supplied time zone strings do not meet your requirements, you may add or modify the
time zone strings by modifying the GetTimeZoneDisplacement UDF, which is located in the
SYSLIB database. The source code for the UDF is available as part of the DBS package and is
located at /tdbms/etc/dem/src.

To define new time zone strings or add or modify the rules of an existing time zone string:

1 Make a backup copy of the existing GetTimeZoneDisplacement UDF.

2 To modify an existing time zone string:

a Find the time zone string entry in the TZ_DST structure of the
GetTimeZoneDisplacement UDF.

b Modify the rules and information associated with the time zone string entry or add
new rules to the entry.

3 To add a new time zone string:

a Create a new entry in the TZ_DST structure for the new time zone string and its
related rules.

b Place the new time zone string entry in the correct alphabetical position within the
TZ_DST structure.

Second byte • 1, if the time zone string has separate daylight saving time and standard time
zone displacements from Coordinated Universal Time (UTC) time.

In this case, the next 480 or so bytes store the set of rules describing a valid
standard time zone displacement, daylight saving time zone displacement, and
the start and end time for daylight saving time. A maximum of 6 rules are
stored for each time zone string.

• 0, if the time zone string does not have separate daylight saving time and
standard time zone displacements from UTC time.

In this case, the next 4 bytes store the time zone displacement hour and minute
values.

Byte Value

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

248 SQL Functions, Operators, Expressions, and Predicates

4 Recompile the UDF using the REPLACE FUNCTION statement. For more information,
see “CREATE FUNCTION (External Form)/ REPLACE FUNCTION (External Form)” in
SQL Data Definition Language. For example:

Database SYSLIB;
DROP FUNCTION GetTimeZoneDisplacement;

REPLACE FUNCTION GetTimeZoneDisplacement
(tzstringinfo VARBYTE(130))

RETURNS BYTE(340)
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
EXTERNAL; //or specify the path of the new source code.

The TZ_DST Structure

The TZ_DST structure is an array of TZwithDST elements where each element describes a
time zone string and its related rules. The definition of the TZwithDST structure is:

typedef struct TZwithDST
{

CHARACTER_LATIN tzstring[TZSTRINGSIZE];
int number_of_rules;
DSTRules TZRules[TZRulesEntries];
SMALLINT Standardtzdispl_hour;
SMALLINT Standardtzdispl_minute;

} TZwithDST;

where:

Each DSTRules element of the TZRules array describes a rule for the time zone string. The
definition of the DSTRules structure is:

typedef struct DSTRules
{

startendDSTInfo startDST;
startendDSTInfo endDST;
yearDisplInfo validyrs;

} DSTRules;

Field Description

tzstring The name of the time zone string. For example, "America Pacific."

The maximum length of a time zone string is 130 bytes.

number_of_rules The number of rules related to this time zone string. A maximum
of 6 rules is allowed for each time zone string.

TZRules An array where each DSTRules element describes a rule. These
rules are used to calculate the time zone displacement for the time
zone string.

Standardtzdispl_hour The standard time zone displacement hour.

Standardtzdispl_minute The standard time zone displacement minute.

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

SQL Functions, Operators, Expressions, and Predicates 249

where:

You can specify the following for startDST and endDST. Enter zero if a field is not applicable.

Field Description

startDST Specifies the date and time when daylight saving time (DST) starts.

endDST Specifies the date and time when daylight saving time ends.

validyrs Specifies the years in which the DST start and end dates apply. The following
information related to this year range is included:

• start_year - the year when these DST rules start.

• end_year - the year when these DST rules end.

• Standardtzdispl_hour - the standard time zone displacement hour.

• Standardtzdispl_minute - the standard time zone displacement minute.

• DSTtzdispl_hour - the time zone displacement hour for daylight saving time.

• DSTtzdispl_minute -the time zone displacement minute for daylight saving
time.

Field Description

rule_type Indicates how the start and end date for DST is specified. The valid values are:

• 0 - No DST start or end information is specified. The standard time zone
displacement is used.

• 1 - DST starts or ends on the specified fixed date. The date is specified by the
month and day_of_month fields.

• 2 - DST starts or ends on the 1st, 2nd, or 3rd weekday of the month as
indicated by the month, day_of_week, and week_of_month fields.

• 3 - DST starts or ends on the 2nd to the last, 3rd to the last, or the last
weekday of the month as indicated by the month, day_of_week, and
week_of_month fields.

• 4 - DST starts or ends on the next weekday on or immediately after the date
specified in the day_of_month field. The month and weekday are specified in
the month and day_of_week fields.

For example, for time zone string 'America Pacific', the start date rule is the
first Sunday after March 8th, which gives us March 14th for the year 2010.

month The month when DST starts or ends. Valid values are 0- 12. This field is used for
rule_type 1, 2, 3, and 4.

For example, for time zone string 'America Pacific', the start date rule is the first
Sunday after March 8; therefore, this field has a value of 3 in the startDST
structure to represent March.

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

250 SQL Functions, Operators, Expressions, and Predicates

Example

Assume that you want to add a new time zone string 'Europe Azores', which has one rule with
the following time zone displacement information:

• DST starts on the last Sunday in March at 12:00 am local time.

• DST ends on the last Sunday in October at 1:00 am local time.

• The standard time zone offset from UTC is -1.

• The daylight saving time offset from UTC is 0.

• The start year for the rule is 2009.

• The end year for the rule is 2010.

day_of_month If rule_type is 1, this field specifies the day of the month when DST starts or
ends. For example, if DST ends at 12:00 am local time on August 21, this field
contains the value 21 in the endDST structure.

If rule_type is 4, DST starts or ends on the next weekday on or immediately after
the date specified by this field. For example, for time zone string 'America
Pacific', the start date rule is the first Sunday after March 8; therefore, this field
has a value of 8 in the startDST structure.

When rule_type is 0, 2 or 3, this field is not used and the value is 0.

day_of_week The valid values are 0-7 representing the weekdays Sunday-Saturday. This field
is used for rule_type 2, 3 and 4.

For example, for time zone string 'America Pacific', the start date rule is the first
Sunday after March 8; therefore, this field has a value of 0 in the startDST
structure to represent Sunday.

week_of_month The valid values are 1, 2, 3, 4, 5, -1, and -2 representing the 1st, 2nd, 3rd, 4th,
5th, last, and second to the last weekday of the month. This field is used for
rule_type 2 and 3.

For example, for time zone string 'Europe Azores', the start date rule is the last
Sunday in March; therefore, this field has a value of -1 in the startDST structure
to represent the last week of the month.

loctime The local time when DST starts or ends.

For example, "02:00:00" indicates that DST starts or ends at 2:00 am local time.

Field Description

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

SQL Functions, Operators, Expressions, and Predicates 251

Based on this information, the new time zone string entry for 'Europe Azores' is:

{"Europe Azores", 1, <= 1 rule defined for 'Europe Azores'
{{{3, 3, 0, 0, -1, "00:00:00"}, <= Start of rule 1, startDST information

{3, 10, 0, 0, -1, "01:00:00"}, <= endDST information
{2009, 2010, -1, 0, 0, 0}}, <= validyrs information

{{0, 0, 0, 0, 0, "00:00:00"}, <= Start of rule 2
{0, 0, 0, 0, 0, "00:00:00"},
{0, 0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0, "00:00:00"}, <= Start of rule 3
{0, 0, 0, 0, 0, "00:00:00"},
{0, 0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0, "00:00:00"}, <= Start of rule 4
{0, 0, 0, 0, 0, "00:00:00"},
{0, 0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0, "00:00:00"}, <= Start of rule 5
{0, 0, 0, 0, 0, "00:00:00"},
{0, 0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0, "00:00:00"}, <= Start of rule 6
{0, 0, 0, 0, 0, "00:00:00"},
{0, 0, 0, 0, 0, 0}}

},
-1, 0 <= Standard time zone displacement

},

Note that the time zone string entry has space for 6 rules but only one rule is used for the start
year 2009 and end year 2010.

You must place the new 'Europe Azores' time zone string in between the 'Australia Western'
and 'Europe Central' time zone strings in the TZ_DST structure to maintain the alphabetical
order of the structure.

Related Topics

For more information on… See…

Setting session time zones SET TIME ZONE, CREATE USER, MODIFY USER in
SQL Data Definition Language.

System time zone settings "System TimeZone Hour" and "System TimeZone
Minute" in Utilities.

Automatic adjustment of the system time
to account for daylight saving time

"SDF file" and "Locale Definition Utility (tdlocaledef)"
in Utilities.

Chapter 7: DateTime and Interval Functions and Expressions
GetTimeZoneDisplacement

252 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 253

CHAPTER 8 Calendar Functions

This chapter describes the functions that provide support for DateTime operations that use
calendar attributes.

Prerequisites
Before you can use these functions, you must run the Database Initialization Program (DIP)
utility and execute the DIPUDT script. The DIPALL or DIPUDT script will create the calendar
functions in the SYSLIB database. For more information about the DIP utility, see Utilities.

If you have a user-developed UDF with the same name as a calendar function, you must
remove that user-developed UDF from the normal UDF search path before you can invoke the
calendar function. If the calendar function is not found in the current database, Teradata
Database searches for the function in the SYSLIB database. Alternatively, you may invoke the
calendar function by using the fully qualified syntax, SYSLIB.calendar_function_name.

Chapter 8: Calendar Functions
day_of_week

254 SQL Functions, Operators, Expressions, and Predicates

day_of_week

Purpose
Returns the day of the week which the specified date falls upon.

Syntax

where:

ANSI Compliance

day_of_week is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

day_of_week is an overloaded scalar function. It is defined with the following parameter data
types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 7, representing the day of the week, where
Sunday = 1 and Saturday = 7.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A725
SYSLIB.

day_of_week (expression)

Chapter 8: Calendar Functions
day_of_week

SQL Functions, Operators, Expressions, and Predicates 255

Usage Notes

The day_of_week function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is October 18, 2010, which is a Monday, the following queries return the
value 2 as the result since Monday is the 2nd day of the week.

SELECT SYSLIB.day_of_week(CURRENT_DATE);

SELECT SYSLIB.day_of_week(DATE '2010-10-18');

Chapter 8: Calendar Functions
day_of_month

256 SQL Functions, Operators, Expressions, and Predicates

day_of_month

Purpose
Returns the number of days from the beginning of the month to the specified date.

Syntax

where:

ANSI Compliance

day_of_month is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

day_of_month is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 31.

Usage Notes

The day_of_month function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A726
SYSLIB.

day_of_month (expression)

Chapter 8: Calendar Functions
day_of_month

SQL Functions, Operators, Expressions, and Predicates 257

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is May 27, 2010, the following queries return the value 27 as the result since
May 27, 2010 is the 27th day from the beginning of the month of May.

SELECT SYSLIB.day_of_month(CURRENT_DATE);

SELECT SYSLIB.day_of_month(DATE '2010-05-27');

Chapter 8: Calendar Functions
day_of_year

258 SQL Functions, Operators, Expressions, and Predicates

day_of_year

Purpose
Returns the number of days from the beginning of the year (January 1st) to the specified date.

Syntax

where:

ANSI Compliance

day_of_year is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

day_of_year is an overloaded scalar function. It is defined with the following parameter data
types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 366.

Usage Notes

The day_of_year function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A727
SYSLIB.

day_of_year (expression)

Chapter 8: Calendar Functions
day_of_year

SQL Functions, Operators, Expressions, and Predicates 259

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is February 10, 2010, the following queries return the value 41 as the result
since February 10, 2010 is the 41st day from the beginning of the year.

SELECT SYSLIB.day_of_year(CURRENT_DATE);

SELECT SYSLIB.day_of_year(DATE '2010-02-10');

Chapter 8: Calendar Functions
day_of_calendar

260 SQL Functions, Operators, Expressions, and Predicates

day_of_calendar

Purpose
Returns the number of days from the beginning of the calendar starting on 01/01/1900 to the
specified date.

Syntax

where:

ANSI Compliance

day_of_calendar is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

day_of_calendar is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value representing the number of days since and including 01/01/
1900.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A728
SYSLIB.

day_of_calendar (expression)

Chapter 8: Calendar Functions
day_of_calendar

SQL Functions, Operators, Expressions, and Predicates 261

Usage Notes

The day_of_calendar function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is January 05, 1901, the following queries return the value 370 as the result
since January 05, 1901 is the 370th day since January 01, 1900.

SELECT SYSLIB.day_of_calendar(CURRENT_DATE);

SELECT SYSLIB.day_of_calendar(DATE '1901-01-05');

Chapter 8: Calendar Functions
weekday_of_month

262 SQL Functions, Operators, Expressions, and Predicates

weekday_of_month

Purpose
Returns the nth occurrence of the weekday in the month for the specified date.

Syntax

where:

ANSI Compliance

weekday_of_month is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

weekday_of_month is an overloaded scalar function. It is defined with the following
parameter data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 5, representing the nth occurrence of the
weekday in the month.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A729
SYSLIB.

weekday_of_month (expression)

Chapter 8: Calendar Functions
weekday_of_month

SQL Functions, Operators, Expressions, and Predicates 263

Usage Notes

The weekday_of_month function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is May 01, 2010, the following queries return the value 1 as the result since
May 01, 2010 falls on the first Saturday of the month.

SELECT SYSLIB.weekday_of_month(CURRENT_DATE);

SELECT SYSLIB.weekday_of_month(DATE '2010-05-01');

Chapter 8: Calendar Functions
week_of_month

264 SQL Functions, Operators, Expressions, and Predicates

week_of_month

Purpose
Returns the nth full week from the beginning of the month to the specified date.

Syntax

where:

ANSI Compliance

week_of_month is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

week_of_month is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 0 to 5, representing the nth full week from the
beginning of the month, where the first partial week is 0.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A730
SYSLIB.

week_of_month (expression)

Chapter 8: Calendar Functions
week_of_month

SQL Functions, Operators, Expressions, and Predicates 265

Usage Notes

The week_of_month function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is May 01, 2010, the following queries return the value 0 as the result since
May 01, 2010 falls on the first partial week of May.

SELECT SYSLIB.week_of_month(CURRENT_DATE);

SELECT SYSLIB.week_of_month(DATE '2010-05-01');

Chapter 8: Calendar Functions
week_of_year

266 SQL Functions, Operators, Expressions, and Predicates

week_of_year

Purpose
Returns the nth full week from the beginning of the year (January 1st) to the specified date.

Syntax

where:

ANSI Compliance

week_of_year is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

week_of_year is an overloaded scalar function. It is defined with the following parameter data
types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 0 to 53, representing the nth full week from the
beginning of the year, where the first partial week is 0.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A731
SYSLIB.

week_of_year (expression)

Chapter 8: Calendar Functions
week_of_year

SQL Functions, Operators, Expressions, and Predicates 267

Usage Notes

The week_of_year function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is May 04, 2010, the following queries return the value 18 as the result since
May 04, 2010 falls on the 18th week of the year.

SELECT SYSLIB.week_of_year(CURRENT_DATE);

SELECT SYSLIB.week_of_year(DATE '2010-05-04');

Chapter 8: Calendar Functions
week_of_calendar

268 SQL Functions, Operators, Expressions, and Predicates

week_of_calendar

Purpose
Returns the number of weeks from the beginning of the calendar starting on 01/01/1900 to the
specified date.

Syntax

where:

ANSI Compliance

week_of_calendar is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

week_of_calendar is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value representing the number of full weeks since and including the
week of 01/01/1900, where the first partial week is 0.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A732
SYSLIB.

week_of_calendar (expression)

Chapter 8: Calendar Functions
week_of_calendar

SQL Functions, Operators, Expressions, and Predicates 269

Usage Notes

The week_of_calendar function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is January 10, 1901, the following queries return the value 53 as the result
since January 10, 1901 falls on the 53rd week since January 01, 1900.

SELECT SYSLIB.week_of_calendar(CURRENT_DATE);

SELECT SYSLIB.week_of_calendar(DATE '1901-01-10');

Chapter 8: Calendar Functions
month_of_quarter

270 SQL Functions, Operators, Expressions, and Predicates

month_of_quarter

Purpose
Returns the number of months from the beginning of the quarter to the specified date.

Syntax

where:

ANSI Compliance

month_of_quarter is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

month_of_quarter is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 3.

Usage Notes

The month_of_quarter function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A733
SYSLIB.

month_of_quarter (expression)

Chapter 8: Calendar Functions
month_of_quarter

SQL Functions, Operators, Expressions, and Predicates 271

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is June 12, 2010, the following queries return the value 3 as the result
because June 12, 2010 falls on the 3rd month of the 2nd quarter.

SELECT SYSLIB.month_of_quarter(CURRENT_DATE);

SELECT SYSLIB.month_of_quarter(DATE '2010-06-12');

Chapter 8: Calendar Functions
month_of_year

272 SQL Functions, Operators, Expressions, and Predicates

month_of_year

Purpose
Returns the number of months from the beginning of the year (January 1st) to the specified
date.

Syntax

where:

ANSI Compliance

month_of_year is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

month_of_year is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 12.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A734
SYSLIB.

month_of_year (expression)

Chapter 8: Calendar Functions
month_of_year

SQL Functions, Operators, Expressions, and Predicates 273

Usage Notes

The month_of_year function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is August 29, 2010, the following queries return the value 8 as the result
because August 29, 2010 falls on the 8th month of the year.

SELECT SYSLIB.month_of_year(CURRENT_DATE);

SELECT SYSLIB.month_of_year(DATE '2010-08-29');

Chapter 8: Calendar Functions
month_of_calendar

274 SQL Functions, Operators, Expressions, and Predicates

month_of_calendar

Purpose
Returns the number of months from the beginning of the calendar starting on 01/01/1900 to
the specified date.

Syntax

where:

ANSI Compliance

month_of_calendar is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

month_of_calendar is an overloaded scalar function. It is defined with the following
parameter data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value representing the number of months since and including
January, 1900.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A735
SYSLIB.

month_of_calendar (expression)

Chapter 8: Calendar Functions
month_of_calendar

SQL Functions, Operators, Expressions, and Predicates 275

Usage Notes

The month_of_calendar function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is August 29, 1901, the following queries return the value 20 as the result
since August 29, 1901 falls on the 20th month since January 01, 1900.

SELECT SYSLIB.month_of_calendar(CURRENT_DATE);

SELECT SYSLIB.month_of_calendar(DATE '1901-08-29');

Chapter 8: Calendar Functions
quarter_of_year

276 SQL Functions, Operators, Expressions, and Predicates

quarter_of_year

Purpose
Returns the quarter number of the year for the specified date.

Syntax

where:

ANSI Compliance

quarter_of_year is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

quarter_of_year is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value between 1 to 4, representing the quarter number from the
beginning of the year, where 1 = first quarter (Jan/Feb/Mar) and 4 = fourth quarter (Oct/Nov/
Dec).

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A736
SYSLIB.

quarter_of_year (expression)

Chapter 8: Calendar Functions
quarter_of_year

SQL Functions, Operators, Expressions, and Predicates 277

Usage Notes

The quarter_of_year function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is November 14, 1983, the following queries return the value 4 as the result
since November 14, 1983 falls on the 4th quarter of the year.

SELECT SYSLIB.quarter_of_year(CURRENT_DATE);

SELECT SYSLIB.quarter_of_year(DATE '1983-11-14');

Chapter 8: Calendar Functions
quarter_of_calendar

278 SQL Functions, Operators, Expressions, and Predicates

quarter_of_calendar

Purpose
Returns the number of quarters from the beginning of the calendar starting on 01/01/1900 to
the specified date.

Syntax

where:

ANSI Compliance

quarter_of_calendar is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

quarter_of_calendar is an overloaded scalar function. It is defined with the following
parameter data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value representing the number of quarters since and including the
first quarter of 1900.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A737
SYSLIB.

quarter_of_calendar (expression)

Chapter 8: Calendar Functions
quarter_of_calendar

SQL Functions, Operators, Expressions, and Predicates 279

Usage Notes

The quarter_of_calendar function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is November 14, 1901, the following queries return the value 8 as the result
since November 14, 1901 falls on the 8th quarter since January 01, 1900.

SELECT SYSLIB.quarter_of_calendar(CURRENT_DATE);

SELECT SYSLIB.quarter_of_calendar(DATE '1901-11-14');

Chapter 8: Calendar Functions
year_of_calendar

280 SQL Functions, Operators, Expressions, and Predicates

year_of_calendar

Purpose
Returns the year of the specified date.

Syntax

where:

ANSI Compliance

year_of_calendar is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

year_of_calendar is an overloaded scalar function. It is defined with the following parameter
data types:

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

If the argument passed to the function does not match one of these declared data types, an
error is returned indicating that the function does not exist.

For more information on overloaded functions, see “Function Name Overloading” in SQL
External Routine Programming.

Result

The result is an INTEGER value in 4 digit format representing the year of the specified date.

Usage Notes

The year_of_calendar function provides improved performance compared to using the
Sys_Calendar.Calendar system view to obtain similar results.

Syntax element… Specifies…

expression an expression that results in a DATE, TIMESTAMP, or TIMESTAMP
WITH TIME ZONE value.

1101A738
SYSLIB.

year_of_calendar (expression)

Chapter 8: Calendar Functions
year_of_calendar

SQL Functions, Operators, Expressions, and Predicates 281

For more information about the CALENDAR system view, see Data Dictionary.

Example

If the current date is November 14, 1977, the following queries return the value 1977 as the
result, which is the year of the specified date.

SELECT SYSLIB.year_of_calendar(CURRENT_DATE);

SELECT SYSLIB.year_of_calendar(DATE '1977-11-14');

Chapter 8: Calendar Functions
year_of_calendar

282 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 283

CHAPTER 9 Period Functions and Operators

This chapter describes the Period functions and operators.

Chapter 9: Period Functions and Operators
Period Value Constructor

284 SQL Functions, Operators, Expressions, and Predicates

Period Value Constructor

Purpose
Initializes an instance of a Period data type.

Syntax

where:

Result Value

The following rules apply to the result value:

• If the beginning or ending bound is NULL, or both the bounds are NULL, the result is
NULL.

Syntax element ... Specifies ...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data
type.

UNTIL_CHANGED a DATE or TIMESTAMP value that is considered to be forever or
until it is changed. For PERIOD(DATE) types, UNTIL_CHANGED
has a value of DATE '9999-12-31' and for
PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]) types,
UNTIL_CHANGED has a value of TIMESTAMP '9999-12-31
23:59:59.999999 00:00'(with the precision truncated to the precision
of the beginning bound and the time zone omitted if the beginning
bound does not have a time zone).

UNTIL_CLOSED an ending bound for the Period value of a temporal table transaction-
time column that indicates that the row is an open row.

UNTIL_CLOSED has a data type of TIMESTAMP(6) WITH TIME
ZONE and a value of TIMESTAMP '9999-12-
31 23:59:59:999999+00:00'.

For more information about temporal tables, see Temporal Table
Support.

PERIOD (datetime_expression)

1182A015

PERIOD (datetime_expression, datetime_expression)

PERIOD (datetime_expression, UNTIL_CHANGED)

PERIOD (datetime_expression, UNTIL_CLOSED)

Chapter 9: Period Functions and Operators
Period Value Constructor

SQL Functions, Operators, Expressions, and Predicates 285

• If the beginning and ending bounds are NULL or if the beginning bound is NULL and the
ending bound is UNTIL_CHANGED, then the type of the period defaults to
PERIOD(TIMESTAMP(0)).

• If only the beginning bound is specified, the result ending bound is the beginning bound
plus one granule of the result element type. If the result ending bound exceeds or becomes
equal to the maximum allowed DATE or TIMESTAMP value for result data type of
PERIOD(DATE) or PERIOD(TIMESTAMP(n) [WITH TIME ZONE]), respectively, an
error is reported.

• If an ending bound is specified as a value expression and the beginning bound and ending
bound have different precisions, the result precision is the higher of the two precisions.
Otherwise, the result precision is the precision of the beginning bound.

• UNTIL_CHANGED sets the result ending element to a maximum DATE or TIMESTAMP
value depending on the data type of the beginning bound. If the data type of the beginning
bound is TIMESTAMP(n) WITH TIME ZONE, the result ending element is set to the
maximum TIMESTAMP(n) WITH TIME ZONE value at UTC (that is, the time zone
displacement for the ending bound is INTERVAL '00:00' HOUR TO MINUTE).

• If the beginning bound or the ending bound or the beginning and ending bounds include
a time zone value, and the ending bound is not UNTIL_CHANGED, the result data type is
WITH TIME ZONE. If only one of the bounds includes a time zone value, the time zone
field of the other is set to the current session time zone displacement. If both bounds
include time zone values, the result bounds include the corresponding time zone value.

• The result Period data type has an element type that is the same as the DateTime data type
of the beginning bound except with the precision and time zone as defined previously.

• The handling of leap seconds for Period data types with TIME and TIMESTAMP element
types is as follows. If the value for the beginning or ending bound contains leap seconds,
the seconds portion gets adjusted to 59.999999 with the precision truncated to the result
precision. During this process, if the beginning and ending bounds are the same, an error
is reported.

Usage Rules

The following rules apply to the Period value constructor:

• The beginning bound must have a DateTime data type and, if an ending bound is
specified, the data types of the beginning and ending bounds must be comparable.

• The ending bound where the data type of the beginning bound is DATE or TIMESTAMP
can be set to UNTIL_CHANGED.

• If the ending bound is set to UNTIL_CLOSED, the following must be true:

• The data type of the beginning bound value must be comparable with
TIMESTAMP(6) WITH TIME ZONE.

• The constructor is only valid in an assignment operation where the target column to
which the result is assigned is a transaction-time column.

• Because the only way to set the value of a transaction-time column is by using
nontemporal DML, the constructor is only valid in a nontemporal DML statement.

Chapter 9: Period Functions and Operators
Period Value Constructor

286 SQL Functions, Operators, Expressions, and Predicates

• Teradata Database reports an error if any of the following are true:

• UNTIL_CHANGED is specified for the beginning bound.

• The result beginning bound is greater than or equal to the result ending bound.

• The data types of the beginning and ending bounds are not comparable.

• UNTIL_CHANGED is specified for the ending bound and the data type of the
beginning bound is TIME(n) [WITH TIME ZONE].

• UNTIL_CLOSED is specified for the beginning bound.

Example

In the following example, assume t1 is a table with an INTEGER column c1 and a
PERIOD(DATE) column c2 and t2 is a table with an INTEGER column a and two DATE
columns b and c.

This example shows the Period value constructor used in two INSERT statements.

INSERT INTO t1
 VALUES (1, PERIOD(DATE '2005-02-03', DATE '2006-02-04'));
INSERT INTO t1 SELECT a, PERIOD(b, c) FROM t2;

Chapter 9: Period Functions and Operators
Arithmetic Operators

SQL Functions, Operators, Expressions, and Predicates 287

Arithmetic Operators

Purpose
Adds or subtracts an Interval value to or from a Period value, or adds a Period value to an
Interval value.

Syntax

where:

Usage Notes

Assuming that p is a Period expression of element type DATE or TIMESTAMP and v is an
Interval value expression:

• p + v and v + p are both equivalent to:

PERIOD(BEGIN(p) + v, CASE WHEN END(p) IS UNTIL_CHANGED THEN END(p)
ELSE (END(p) + v) END)

• p - v is equivalent to:

PERIOD(BEGIN (p) - v, CASE WHEN END(p) IS UNTIL_CHANGED THEN END(p)
ELSE (END(p) - v) END)

Assuming that p is a Period expression of element type TIME and v is an interval value
expression:

• p + v and v + p are both equivalent to:

PERIOD(BEGIN(p) + v, END(p) + v)

• p - v is equivalent to:

PERIOD(BEGIN (p) - v, END(p) - v)

Usage Rules

The following rules apply to arithmetic operators and Period data types:

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

interval_expression an expression that evaluates to an INTERVAL data type. For
information on INTERVAL data types, see SQL Data Types and Literals.

 period_expression interval_expression +
 _

1101A586

 interval_expression period_expression +
 _

Chapter 9: Period Functions and Operators
Arithmetic Operators

288 SQL Functions, Operators, Expressions, and Predicates

• The interval value expression must be a valid interval expression and must follow the rules
of an Interval expression (see “ANSI Interval Expressions” on page 222). Otherwise, an
error is reported. For example, the interval expression (DATE '2006-02-03' - DATE '2005-
02-03') DAY, results in a value of 365 days which cannot fit into the default precision 2 of
the interval qualifier DAY; therefore, an error is reported.

• The period arithmetic operations of adding or subtracting an Interval to or from a period
or adding a period to an Interval follow the rules of DateTime expressions. Otherwise,
errors are reported. See “ANSI DateTime Expressions” on page 213 for details on
DateTime expression rules.

• An interval value expression can be subtracted from a Period expression but not vice versa.
If a period expression is subtracted from an interval value expression, an error is reported.

• For a Period expression with an element type of TIME, if the Period arithmetic operation
results in a beginning bound less than the ending bound, an error is reported.

• For a period of element type DATE or TIMESTAMP, if the ending bound is
UNTIL_CHANGED, the ending bound in the result ending bound is
UNTIL_CHANGED. If the ending bound is not UNTIL_CHANGED and the ending
bound in the result evaluates to an UNTIL_CHANGED value, an error is reported.

• For a period arithmetic operation, one of the operands must be an INTERVAL data type.
Otherwise, an error is reported.

Chapter 9: Period Functions and Operators
Comparison of Period Types

SQL Functions, Operators, Expressions, and Predicates 289

Comparison of Period Types

Two Period values are comparable if their element types are of same DateTime data type. The
DateTime data types are DATE, TIME and TIMESTAMP. The PERIOD(DATE) date type is
comparable with the PERIOD(DATE) data type, a PERIOD(TIME(n)[WITH TIME ZONE])
data type is comparable with a PERIOD(TIME(m)[WITH TIME ZONE]) data type, and a
PERIOD(TIMESTAMP(n)[WITH TIME ZONE]) data type is comparable with a
PERIOD(TIMESTAMP(m)[WITH TIME ZONE]) data type.

Teradata extends this to allow a CHARACTER and VARCHAR value to be implicitly cast as a
Period data type for some operators and, therefore, have a Period data type. Since the Period
data type is the data type of the other Period value expression, these Period value expressions
will be comparable.

DateTime and Period data are saved internally with the maximum precision of 6 although the
specified precision may be less than this and is padded with zeroes. Thus, the comparison
operations with differing precisions work without any additional logic. Additionally, the
internal value is saved in UTC for a Time or Timestamp value, or for a Period value with an
element type of TIME or TIMESTAMP. All comparable Period value expressions can be
compared directly due to this internal representation irrespective of whether they contain a
time zone value, or whether they have the same precision.

Note: The time zone values are ignored when comparing values.

All comparison operations involving UNTIL_CLOSED in a temporal table transaction-time
column use the internal value of UNTIL_CLOSED (TIMESTAMP '9999-12-
31 23:59:59:999999+00:00') to evaluate the result. For more information abut temporal tables,
see Temporal Table Support.

The following table describes the comparison operators.

Operator Purpose

EQ or = Assume p1 and p2 are Period value expressions and have comparable Period data
types. If BEGIN(p1) = BEGIN(p2) AND END(p1) = END(p2), the result of the
comparison is TRUE; otherwise, the result is FALSE. If either Period value
expression is NULL, the result is UNKNOWN. If the Period value expressions
have different element types, one of them must be explicitly CAST as the other.

If one Period value expression has a Period data type and the other Period value
expression has CHARACTER or VARCHAR data type, the CHARACTER or
VARCHAR expression is implicitly converted, before comparison, to the data
type of the Period value expression based on the format of the Period value
expression.

Chapter 9: Period Functions and Operators
Comparison of Period Types

290 SQL Functions, Operators, Expressions, and Predicates

LT or < Assume p1 and p2 are Period value expressions and have comparable Period
data types. If BEGIN(p1) < BEGIN(p2) OR (BEGIN(p1) = BEGIN(p2) AND
END(p1) < END(p2)), the result of the comparison is TRUE; otherwise, the
result is FALSE. If either Period value expression is NULL, the result is
UNKNOWN. If the Period value expressions have different element types, one of
them must be explicitly CAST as the other.

If one Period value expression has a Period data type and the other Period value
expression has CHARACTER or VARCHAR data type, the CHARACTER or
VARCHAR operand is implicitly converted, before comparison, to the data type
of the Period value expression based on the format of the Period value
expression.

If the ending bound value of a temporal table transaction-time column is
UNTIL_CLOSED, the ending bound value is only less than a TIMESTAMP
column value or TIMESTAMP literal if the column value or literal is the
maximum TIMESTAMP value with leap seconds. This can be possible only if the
ending bound of the transaction-time column is used in a comparison with the
timestamp value. For more information about temporal tables, see Temporal
Table Support.

GT or > Assume p1 and p2 are Period value expressions and have comparable Period data
types. If BEGIN(p1) > BEGIN(p2) OR (BEGIN(p1) = BEGIN(p2) AND
END(p1) > END(p2)), the result of the comparison is TRUE; otherwise, it is
FALSE. If either Period expression is NULL, the result is UNKNOWN.

If one Period expression has a Period data type and the other Period expression
has CHARACTER or VARCHAR data type, the CHARACTER or VARCHAR
Period value expression is implicitly converted, before comparison, to the data
type of the Period value expression based on the format of the Period value
expression.

NE or <> or
NOT= or ^= or
LE or <= or
GE or >=

These comparison operators are supported for comparable Period value
expressions. Also, if one Period value expression has a Period data type and the
other Period value expression has CHARACTER or VARCHAR data type, the
CHARACTER or VARCHAR Period value expression is implicitly converted,
before comparison, to the data type of the Period value expression based on the
format of the Period value expression.

Their behavior should be easily understandable from a reading of the previous
operators.

Note: NE, NOT=, ^=, GT, GE, LT, and LE are non-ANSI operators.

Operator Purpose

Chapter 9: Period Functions and Operators
BEGIN

SQL Functions, Operators, Expressions, and Predicates 291

BEGIN

Purpose
Bound function that returns the beginning bound of the Period argument.

Syntax

where:

Return Value

The result data type of the BEGIN function is same as the element type of the Period value
expression. If the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the element type of the Period value expression.

The title is BEGIN(period_value_expression).

Error Conditions

If the argument does not have a Period data type, an error is reported.

Example

In the following example, BEGIN is used in the WHERE clause.

SELECT * FROM employee WHERE BEGIN(period1) = DATE '2004-06-19';

Assume the query is executed on the following table employee where period1 is a
PERIOD(DATE) column:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-01-05')
Adams Marketing ('2004-06-19', '2005-02-09')
Mary Development ('2004-06-19', '2005-01-05')
Simon Sales ('2004-06-22', '2005-01-07')

Syntax element ... Specifies ...

period_value_expression any expression that evaluates to a Period data type.

BEGIN(period_value_expression)

1101A595

Chapter 9: Period Functions and Operators
BEGIN

292 SQL Functions, Operators, Expressions, and Predicates

The result is as follows:

ename dept period1
----- ----------- ----------------------------
Adams Marketing ('2004-06-19', '2005-02-09')
Mary Development ('2004-06-19', '2005-01-05')

Chapter 9: Period Functions and Operators
CONTAINS

SQL Functions, Operators, Expressions, and Predicates 293

CONTAINS

Purpose
Predicate that operates on two Period expressions or one Period expression and one DateTime
expression and evaluates to TRUE, FALSE, or UNKNOWN.

If both expressions have a Period data type, returns TRUE if the beginning bound of the first
expression is less than or equal to the beginning bound of the second expression and the
ending bound of the first expression is greater than or equal to the ending bound of the
second expression; otherwise, returns FALSE. If the first expression is a Period expression and
the second expression is a DateTime expression, returns TRUE if the beginning bound of the
Period expression is less than or equal to the DateTime expression and the ending bound of
the Period expression is greater than the DateTime expression; otherwise, returns FALSE. If
the first expression is a DateTime expression and the second expression is a Period expression,
returns TRUE if the DateTime expression is less than or equal to beginning bound of the
Period expression and the DateTime expression plus one granule is greater than or equal to
the ending bound of the Period expression; otherwise, returns FALSE. If either expression is
NULL, the operator returns UNKNOWN.

Syntax

where:

Error Conditions

If either expression evaluates to a data type that is other than a Period or DateTime, an error is
reported.

Syntax element... Specifies...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP
data type.

period_expression any expression that evaluates to a Period data type.

Note: The Period expression specified must be comparable with
the other expression. Implicit casting to a Period data type is not
supported.

period_expression period_expression

datetime_expression

 CONTAINS

 NOT

1101A582

datetime_expression period_expression CONTAINS

 NOT

Chapter 9: Period Functions and Operators
CONTAINS

294 SQL Functions, Operators, Expressions, and Predicates

If the expressions do not have comparable data types, an error is reported.

Example

In the following example, the CONTAINS operator is used in the WHERE clause.

SELECT * FROM employee WHERE period2 CONTAINS period1;

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Chapter 9: Period Functions and Operators
END

SQL Functions, Operators, Expressions, and Predicates 295

END

Purpose
Bound function that returns the ending bound of the Period argument.

Syntax

where:

Return Value

The result type of the END function is same as the element type of the Period value
expression. If the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the element type of the Period value expression.

The title is END(period_value_expression).

Error Conditions

If an argument of any data type other than a Period data type is passed, an error is reported.

Example

In the following example, END is used in the WHERE clause.

SELECT * FROM employee WHERE END(period1) = DATE '2005-01-07';

Assume the query is executed on the following table employee with PERIOD(DATE) column
period1:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-01-05')
Adams Marketing ('2004-06-19', '2005-02-09')
Mary Development ('2004-06-19', '2005-01-05')
Simon Sales ('2004-06-22', '2005-01-07')

Syntax element ... Specifies ...

period_value_expression any expression that evaluates to a Period data type.

END(period_value_expression)

1101A596

Chapter 9: Period Functions and Operators
END

296 SQL Functions, Operators, Expressions, and Predicates

The result is as follows:

ename dept period1
----- ----------- ----------------------------
Simon Sales ('2004-06-22', '2005-01-07')

Chapter 9: Period Functions and Operators
IS UNTIL_CHANGED/IS NOT UNTIL_CHANGED

SQL Functions, Operators, Expressions, and Predicates 297

IS UNTIL_CHANGED/IS NOT UNTIL_CHANGED

Purpose
Predicate that tests whether the ending bound of a Period value expression is (or is not)
UNTIL_CHANGED.

Syntax

where:

Usage Notes

You can only compare UNTIL_CHANGED to the ending bound of a Period value with an
element type of DATE or TIMESTAMP [WITH TIME ZONE]. Therefore, the result type of
the END function must be DATE or TIMESTAMP [WITH TIME ZONE]. For information
about the END function, see “END” on page 295.

In comparisons, the precision of the UNTIL_CHANGED value is truncated to the precision of
the ending bound value being compared. That is, the number of digits after the decimal point
for UNTIL_CHANGED depends upon the precision of the ending bound to which it is
compared. The time zone is omitted if the ending bound value has no time zone.

If the ending bound value is NULL, IS [NOT] UNTIL_CHANGED returns UNKNOWN.

You cannot use IS [NOT] UNTIL_CHANGED on the ending bound of a transaction-time
column.

Example

Consider the following employee table, where the column eduration is defined as a
PERIOD(DATE) type:

ename eid eduration
---------- ----------- ------------------------
Adams 210677 ('05/03/01', '06/05/21')
Gunther 199347 ('04/06/06', '99/12/31')

Syntax element … Specifies …

period_value_expression any expression that evaluates to a PERIOD(TIMESTAMP WITH
TIME ZONE), PERIOD(TIMESTAMP), or PERIOD(DATE) type.

END (period_value_expression) IS UNTIL_CHANGED

NOT
1101A639

Chapter 9: Period Functions and Operators
IS UNTIL_CHANGED/IS NOT UNTIL_CHANGED

298 SQL Functions, Operators, Expressions, and Predicates

Montoya 199340 ('04/06/02', '99/12/31')
Chan 210427 ('04/09/24', '99/12/31')
Fuller 197899 ('03/05/27', '03/11/30')

The following query uses IS UNTIL_CHANGED to compare the ending bound value of the
eduration column to UNTIL_CHANGED:

SELECT ename, eid
FROM employee
WHERE END(eduration) IS UNTIL_CHANGED;

The result is the following:

ename eid
---------- -----------
Gunther 199347
Montoya 199340
Chan 210427

Chapter 9: Period Functions and Operators
IS UNTIL_CLOSED/IS NOT UNTIL_CLOSED

SQL Functions, Operators, Expressions, and Predicates 299

IS UNTIL_CLOSED/IS NOT UNTIL_CLOSED

Purpose
Predicate that tests the ending bound value of a temporal table transaction-time column to see
whether the row is open (the ending bound value is UNTIL_CLOSED) or closed (the ending
bound value is not UNTIL_CLOSED).

For more information about temporal tables, see Temporal Table Support.

Syntax

where:

Usage Notes

When a row is created in a temporal table that has a transaction-time dimension (column),
Teradata Database sets the ending bound of the column to UNTIL_CLOSED and the row is
considered open. When the row is closed, Teradata Database sets the ending bound value to
the closing timestamp.

Use IS [NOT] UNTIL_CLOSED to test whether a row in a temporal table that has transaction
time is open or closed.

IS UNTIL_CLOSED evaluates to true if the ending bound of the specified transaction-time
column is the maximum timestamp value, 9999-12-31 23:59:59.999999+00:00.

Syntax element … Specifies …

period_value_expression a reference to a transaction-time column.

1182A013

END (period_value_expression) IS UNTIL_CLOSED
NOT

Chapter 9: Period Functions and Operators
INTERVAL

300 SQL Functions, Operators, Expressions, and Predicates

INTERVAL

Purpose
Finds the difference between the ending and beginning bounds of a Period argument and
returns this difference as the duration of the argument in terms of a specified interval
qualifier.

Syntax

where:

Return Value

The result type is the interval data type corresponding to the specified interval qualifier.

The result of the INTERVAL (p) IQ function is the value of (END(p) - BEGIN(p)) IQ, where
argument p is a Period expression and IQ is an interval qualifier. The function finds the
difference between the argument's ending bound and the beginning bound and returns the
resulting difference as an interval value based on the specified interval qualifier.

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

Note: Implicit casting to a Period data type is not supported.

interval_qualifier any interval qualifier appropriate for the argument's element type.
The interval qualifiers are as follows:

Year-Month intervals:

• YEAR

• YEAR TO MONTH

• MONTH

Day-Time Intervals:

• DAY

• DAY TO HOUR, MINUTE or SECOND

• HOUR

• HOUR TO MINUTE or SECOND

• MINUTE

• MINUTE to SECOND

• SECOND

 INTERVAL (period_expression) interval_qualifier

1101A577

Chapter 9: Period Functions and Operators
INTERVAL

SQL Functions, Operators, Expressions, and Predicates 301

If the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the interval data type corresponding to the specified
interval qualifier.

The title is INTERVAL(period _expression) interval_qualifier.

Error Conditions

An error may be reported:

• If the argument of the INTERVAL function does not have a Period data type.

• If the argument has a PERIOD(DATE) data type and the interval qualifier is not YEAR,
YEAR TO MONTH, MONTH, or DAY.

• If the argument has a PERIOD(TIME(n) [WITH TIME ZONE]) data type and the interval
qualifier is not HOUR, HOUR TO MINUTE, HOUR TO SECOND, MINUTE, MINUTE
TO SECOND or SECOND.

• If the result of an INTERVAL expression violates the rules specified for the precision of an
interval qualifier, an existing error is reported. For example, assume p1 is a
PERIOD(TIMESTAMP(0)) expression that has a value of PERIOD '(2006-01-01 12:12:12,
2007-01-01 12:12:12)'. If INTERVAL(p1) DAY is specified, the default precision for the
DAY interval qualifier is 2, and, since the result is 365 days which is a three digit value that
cannot fit into a DAY(2) interval qualifier, an error is reported.

• If the argument of the INTERVAL function is a period of element type DATE or
TIMESTAMP(n) [WITH TIME ZONE] and the ending bound value is
UNTIL_CHANGED.

Example

In the following example, INTERVAL is used in a selection list.

SELECT INTERVAL (period1) MONTH FROM employee;

Assume the query is executed on the following table employee with PERIOD(DATE) column
period1:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-03-05')

The result is as follows:

INTERVAL(eduration) MONTH

2

Chapter 9: Period Functions and Operators
LAST

302 SQL Functions, Operators, Expressions, and Predicates

LAST

Purpose
Bound function that returns the last value of the Period argument (that is, the ending bound
minus one granule of the element type of the argument).

Syntax

where:

Return Value

The result type of the LAST function is same as the element type of the Period value
expression. If the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the element type of the Period value expression.

The title is LAST(period_value_expression).

Error Conditions

If an argument has a data type other than a Period data type, an error is reported.

Example

In the following example, LAST is used in the WHERE clause.

SELECT * FROM employee WHERE LAST(period1) = DATE '2004-01-04';

Assume the query is executed on the following table employee with PERIOD(DATE) column
period1:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-01-05')
Adams Marketing ('2004-06-19', '2005-02-09')
Mary Development ('2004-06-19', '2005-01-05')
Simon Sales ('2004-06-22', '2005-01-07')

Syntax element ... Specifies ...

period_value_expression any expression that evaluates to a Period data type.

LAST(period_value_expression)

1101A597

Chapter 9: Period Functions and Operators
LAST

SQL Functions, Operators, Expressions, and Predicates 303

The result is as follows:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-01-05')

Chapter 9: Period Functions and Operators
MEETS

304 SQL Functions, Operators, Expressions, and Predicates

MEETS

Purpose
Predicate that operates on two Period expressions or one Period expression and one DateTime
expression and evaluates to TRUE, FALSE, or UNKNOWN.

If both expressions have a Period data type, returns TRUE if the ending bound of the first
expression is equal to the beginning bound of the expression or the ending bound of the
second expression is equal to the beginning bound of the first expression; otherwise, returns
FALSE. If one expression is a Period expression and the other expression is a DateTime
expression, returns TRUE if the ending bound of the Period expression is equal to the
DateTime expression or if the DateTime expression plus one granule is equal to the beginning
bound of the Period expression; otherwise, returns FALSE. If either expression is NULL, the
operator returns UNKNOWN.

Syntax

where:

Error Conditions

If either expression evaluates to a data type other than a Period or DateTime, an error is
reported.

If the expressions are not comparable, an error is reported.

Example

In the following example, the MEETS operator is used in the WHERE clause.

SELECT * FROM employee WHERE period2 MEETS period1;

Syntax element... Specifies...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data type.

period_expression any expression that evaluates to a Period data type.

Note: The Period expression specified must be comparable with the other
expression. Implicit casting to a Period data type is not supported.

period_expression period_expression

datetime_expression

 MEETS

 NOT

1101A581

datetime_expression period_expression MEETS

 NOT

Chapter 9: Period Functions and Operators
MEETS

SQL Functions, Operators, Expressions, and Predicates 305

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

ename period1 period2

Jones ('2004-01-02','2004-03-05') ('2004-03-05', '2004-10-07')

Chapter 9: Period Functions and Operators
NEXT

306 SQL Functions, Operators, Expressions, and Predicates

NEXT

Purpose
Proximity function that returns the succeeding value of the argument such that there is one
granule of the argument type between the argument and the returned value.

Syntax

where:

Return Value

The return data type is the same as that of the argument (that is, a DateTime data type). If the
value of the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the proximity argument's data type.

The title is NEXT(datetime_expression).

Error Conditions

If the argument does not have a DateTime data type, an error is reported.

If the result is outside the permissible range of a value for the argument's data type, an error is
reported. For example, if NEXT(DATE '9999-12-31') is specified, an error is reported.

Example

In the following example, NEXT is used in the WHERE clause.

SELECT *
FROM employee
WHERE NEXT(END(period1)) = DATE '2004-03-06';

Assume the query is executed on the following table employee where period1 is a
PERIOD(DATE) column:

Syntax element ... Specifies ...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data type.

 NEXT (datetime_expression)

1101A579

Chapter 9: Period Functions and Operators
NEXT

SQL Functions, Operators, Expressions, and Predicates 307

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-03-05')
Simon Sales ?

The result is as follows:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-03-05')

Chapter 9: Period Functions and Operators
OVERLAPS

308 SQL Functions, Operators, Expressions, and Predicates

OVERLAPS

Purpose
Predicate that tests whether two time periods overlap one another.

Syntax

where:

ANSI Compliance

OVERLAPS is ANSI SQL:2008 compliant.

Time Periods

Each time period to the left and right of the OVERLAPS keyword is one of the following
expression types:

• DateTime, DateTime

• DateTime, Interval

• Row subquery

• Period

Each time period represents a start and end DateTime, using an explicit Period value,
DateTime values or a DateTime and an Interval.

1101A612

datetime_expression, datetime_expression datetime_expression, datetime_expression(OVERLAPS

datetime_expression, interval_expression

) ()

period_expression period_expression

row_subquery

datetime_expression, interval_expression

row_subquery

Syntax element … Specifies …

datetime_expression a start and end DateTime.

interval_expression an end DateTime.

row_subquery an element of a row subquery in a SELECT statement.

The subquery cannot specify a SELECT AND CONSUME statement.

period_expression any expression that evaluates to a Period data type.

Chapter 9: Period Functions and Operators
OVERLAPS

SQL Functions, Operators, Expressions, and Predicates 309

If the start and end DateTime values in a time period are not ordered chronologically, they are
manipulated to make them so prior to making the comparison, using the rule that
end_DateTime >= start_DateTime for all cases.

If a time period contains a null start_DateTime and a non-null end_DateTime, then the values
are switched to indicate a non-null start_DateTime and a null end_DateTime.

If both time periods have a Period data type, the data types must be comparable. If only one
time period is a Period type, the other time period must evaluate to a DateTime type that is
comparable to the element type of the Period.

Note: Implicit casting to a Period data type is not supported.

Results

Consider the general case of an OVERLAPS comparison, stated as follows.

(S1, E1) OVERLAPS (S2, E2)

The result of OVERLAPS is as follows.

(S1 > S2 AND NOT (S1 >= E2 AND E1 >= E2))
OR
(S2 > S1 AND NOT (S2 >= E1 AND E2 >= E1))
OR
(S1 = S2 AND (E1 = E2 OR E1 <> E2))

For Period data types, where p1 is the first Period expression and p2 is the second Period
expression, the values of S1, E1, S2, and E2 are as follows:

S1 = BEGIN(p1)
E1 = END(p1)
S2 = BEGIN(p2)
E2 = END(p2)

Rules

The following rules apply to the OVERLAPS comparison.

• When you specify two DateTime types, they must be comparable.

• When you specify two Period types, they must be comparable.

• If you specify a Period type for either one or both time periods, the period expression must
not include an explicit NULL.

• If the first columns of each left and right time periods are DateTime types, they must have
the same data type: both DATE, both TIME, or both TIMESTAMP.

• If only one time period is a Period type, the first column of the other time period must
have the same data type as the element type of the Period.

• If neither time period is a Period type, then the second column of each left and right time
period must either be the same DateTime type as its corresponding first column (that is,
the two types must be compatible) or it must be an Interval type that involves only
DateTime fields where the precision is such that its value can be added to that of the
corresponding DateTime type.

Chapter 9: Period Functions and Operators
OVERLAPS

310 SQL Functions, Operators, Expressions, and Predicates

Example 1

The following example compares two time spans that share a single common point,
CURRENT_TIME.

The result returned is FALSE because when two time spans share a single point, they do not
overlap by definition.

SELECT 'OVERLAPS'
WHERE (CURRENT_TIME(0), INTERVAL '1' HOUR)
OVERLAPS (CURRENT_TIME(0), INTERVAL -'1' HOUR);

Example 2

The following example is nearly identical to the previous one, except that the arguments have
been adjusted to overlap by one second. The result is TRUE and the value ‘OVERLAPS’ is
returned.

SELECT 'OVERLAPS'
WHERE (CURRENT_TIME(0), INTERVAL '1' HOUR)
OVERLAPS (CURRENT_TIME(0) + INTERVAL '1' SECOND,INTERVAL -'1' HOUR);

Example 3

Here is an example that uses the datetime_expression, datetime_expression form of
OVERLAPS. The two DATE periods overlap each other, so the result is TRUE.

SELECT 'OVERLAPS'
WHERE (DATE '2000-01-15',DATE '2002-12-15')
OVERLAPS (DATE '2001-06-15',DATE '2005-06-15');

Example 4

The following example is the same as the previous one, but in row_subquery form:

SELECT 'OVERLAPS'
WHERE (SELECT DATE '2000-01-15', DATE '2002-12-15')
OVERLAPS (SELECT DATE '2001-06-15', DATE '2005-06-15');

Example 5

The null value in the following example means the second datetime_expression has a start time
of 2001-06-13 15:00:00 and a null end time.

SELECT 'OVERLAPS'
WHERE (TIMESTAMP '2001-06-12 10:00:00', TIMESTAMP '2001-06-15

08:00:00')
OVERLAPS (TIMESTAMP '2001-06-13 15:00:00', NULL);

Because the start time for the second expression falls within the TIMESTAMP interval defined
by the first expression, the result is TRUE.

Example 6

In the following example, the OVERLAPS predicate operates on PERIOD(DATE) columns.

SELECT * FROM employee WHERE period2 OVERLAPS period1;

Chapter 9: Period Functions and Operators
OVERLAPS

SQL Functions, Operators, Expressions, and Predicates 311

Assume the query is executed on the following table employee; where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

Example 7

Consider the following table and query:

CREATE TABLE project
(id INTEGER,
analysis_phase PERIOD(DATE))

UNIQUE PRIMARY INDEX (id);

INSERT project (1, PERIOD(DATE'2010-06-21',DATE'2010-06-25'));

SELECT 'OVERLAPS'
FROM project
WHERE analysis_phase OVERLAPS

PERIOD(DATE'2010-06-24',NULL);

The SELECT statement returns an error because one of the operands of OVERLAP is a Period
type with a period expression specifying an explicit NULL.

Ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

Ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Chapter 9: Period Functions and Operators
P_INTERSECT

312 SQL Functions, Operators, Expressions, and Predicates

P_INTERSECT

Purpose
Operator that returns the portion of the Period expressions that is common between the
Period expressions if they overlap. If the Period expressions do not overlap, or if either Period
expression is NULL, P_INTERSECT returns NULL.

Syntax

where:

Return Value

If the Period expressions do not overlap, the result is NULL. If either Period expression is
NULL, the result is NULL. Otherwise, the result has a Period data type that is comparable to
the Period expressions.

If the Period expressions have PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) or
PERIOD(TIME(n) [WITH TIME ZONE]) data types but different precisions, the result is a
Period value of the higher precision data type. If neither Period expression has a time zone, the
resulting period does not have a time zone; otherwise, the resulting period has a time zone and
the value of the time zone in the result is determined using the following rules:

• If both Period expressions have a time zone, the time zone displacement of a result bound
is obtained from the corresponding bound of the Period expression as defined by the
Period value constructor that follows.

• If only one of the Period expressions has a time zone, the other Period expression is
considered to be at the current session time zone and the result is computed as follows.

Assuming p1 and p2 are Period expressions and the result element type as determined above is
rt, the result of p1 P_INTERSECT p2 is as follows if p1 OVERLAPS p2 is TRUE:

PERIOD(
 CASE WHEN CAST(BEGIN(p1) AS rt) >= CAST(BEGIN(p2) AS rt)
 THEN CAST(BEGIN(p1) AS rt)

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

Note: The Period expressions specified must be comparable. Implicit
casting to a Period data type is not supported.

period_expression period_expressionP_INTERSECT

1101A584

Chapter 9: Period Functions and Operators
P_INTERSECT

SQL Functions, Operators, Expressions, and Predicates 313

 ELSE CAST(BEGIN(p2) AS rt) END,
 CASE WHEN CAST(END(p1) AS rt) <= CAST(END(p2) AS rt)
 THEN CAST(END(p1) AS rt)
 ELSE CAST(END(p2) AS rt) END)

Internally, Period values are saved in UTC and the OVERLAPS operator is evaluated using
these UTC represented formats and the P_INTERSECT operation is performed if they
overlap.

Format and Title

The format is the default format for the resulting Period data type.

The title is period_expression P-INTERSECT period_expression.

Error Conditions

If either expression is not a Period expression, an error is reported.

If the Period expressions are not comparable, an error is reported.

Example

In the following example, the P_INTERSECT operator is used in the selection list.

SELECT period2 P_INTERSECT period1
FROM product_tests
WHERE pid = 11804;

Assume the query is executed on the following table product_tests where period1 is a
PERIOD(TIME(1)) column and period2 is a PERIOD(TIME(0)) column:

pid period1 period2
----- ---------------------------- ------------------------
11804 ('10:10:10.1', '11:10:10.1') ('10:10:10', '10:10:11')
10996 ('11:10:10.1', '11:40:40.1') ('10:10:10', '10:10:11')

The result is as follows:

(period2 P_INTERSECT period1)

('10:10:10.1', '10:10:11.0')

Chapter 9: Period Functions and Operators
P_NORMALIZE

314 SQL Functions, Operators, Expressions, and Predicates

P_NORMALIZE

Purpose
Operator that returns a Period value that is the combination of the two Period expressions if
the Period expressions overlap or meet. If the Period expressions neither meet nor overlap,
P_NORMALIZE returns NULL. If either Period expression is NULL, P_NORMALIZE returns
NULL.

Syntax

where:

Return Value

Assuming p1 and p2 are comparable Period expressions and ((BEGIN(p1) >= BEGIN(p2)
AND BEGIN(p1) <= END(p2)) OR (BEGIN(p2) >= BEGIN(p1) AND BEGIN(p2) <=
END(p1))) is TRUE, p1 P_NORMALIZE p2 returns PERIOD(minimum(BEGIN(p1),
BEGIN(p2)), maximum(END(p1), END(p2))). If either Period expression is NULL or
((BEGIN(p1) >= BEGIN(p2) AND BEGIN(p1) <= END(p2)) OR (BEGIN(p2) >=
BEGIN(p1) AND BEGIN(p2) <= END(p1))) is FALSE, the result is NULL. Note that the
P_NORMALIZE operator returns a Period value if the Period expressions satisfy the MEETS
or OVERLAPS condition.

If the Period expressions have PERIOD(TIME(n) [WITH TIME ZONE]) or
PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) data type but have different precisions, the
result has the higher of the two precisions. If one of the Period expressions contains a time
zone, the result contains a time zone for each element. The result time zones are determined
using the following rules:

• If both Period expressions have a time zone, the time zone displacement of a result bound
is obtained from the corresponding bound of the Period expressions as defined by the
Period value constructor that follows.

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

Note: The Period expressions specified must be comparable. Implicit
casting to a Period data type is not supported.

period_expression period_expressionP_NORMALIZE

1101A594

Chapter 9: Period Functions and Operators
P_NORMALIZE

SQL Functions, Operators, Expressions, and Predicates 315

• If only one of the Period expressions has a time zone, the other Period expression is
considered to be at the current session time zone and the result is computed as follows.

Assuming p1 and p2 are Period expressions and the result element type as determined above is
rt, the result of p1 P_NORMALIZE p2 is as follows if p1 OVERLAPS p2 OR p1 MEETS p2 is
TRUE:

PERIOD(
 CASE WHEN CAST(BEGIN(p1) AS rt) <= CAST(BEGIN(p2) AS rt)
 THEN CAST(BEGIN(p1) AS rt)
 ELSE CAST(BEGIN(p2) AS rt) END,
 CASE WHEN CAST(END(p1) AS rt) >= CAST(END(p2) AS rt)
 THEN CAST(END(p1) AS rt)
 ELSE CAST(END(p2) AS rt) END)

Internally, Period values are saved in UTC and the OVERLAPS or MEETS operator is
evaluated using these UTC represented formats and the P_NORMALIZE operation is
performed if they overlap or meet.

Format and Title

The format is the default format for the resulting Period data type.

The title is period_expression P-NORMALIZE period_expression.

Error Conditions

If either expression is not a Period expression, an error is reported.

If the Period expressions are not comparable, an error is reported.

Example

In the following example, the P_NORMALIZE operator is used to collapse two Period
columns.

SELECT period2 P_NORMALIZE period1
FROM product_tests
WHERE pid = 11215;

Assume the query is executed on the following table product_tests where period1 is
PERIOD(TIME(1)) column and period2 is PERIOD(TIME(0)) column:

pid period1 period2
----- ---------------------------- ------------------------
11804 ('10:10:10.1', '11:10:10.1') ('10:10:10', '10:10:11')
10996 ('11:10:10.1', '11:40:40.1') ('10:10:10', '10:10:11')
11215 ('10:40:10.1', '11:20:20.1') ('11:10:10', '11:50:10')

The result is as follows:

(period2 P_NORMALIZE period1)

('10:40:10.1', '11:50:10.0')

Chapter 9: Period Functions and Operators
PRECEDES

316 SQL Functions, Operators, Expressions, and Predicates

PRECEDES

Purpose
Predicate that operates on two Period expressions or one Period expression and one DateTime
expression and evaluates to TRUE, FALSE, or UNKNOWN.

If both expressions have a Period data type, returns TRUE if the ending bound of the first
expression is less than or equal to the beginning bound of the second expression; otherwise,
returns FALSE. If the first expression is a Period expression and the second expression is a
DateTime expression, returns TRUE if the ending bound of the first expression is less than or
equal to the second expression; otherwise, returns FALSE. If the first expression is a DateTime
value expression and the second expression has a Period data type, returns TRUE if the first
expression is less than the beginning bound of the second expression; otherwise, returns
FALSE. If either expression is NULL, the operator returns UNKNOWN.

Syntax

where:

Error Conditions

If either expression is other than a Period data type or a DateTime value expression, an error is
reported.

If the Period expressions are not comparable, an error is reported.

Example

In the following example, the PRECEDES operator is used in the WHERE clause.

Syntax element... Specifies...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data
type.

period_expression any expression that evaluates to a Period data type.

Note: The Period expression specified must be comparable with the
other expression. Implicit casting to a Period data type is not supported.

period_expression period_expression

datetime_expression

 PRECEDES

 NOT

1101A580

datetime_expression period_expression PRECEDES

 NOT

Chapter 9: Period Functions and Operators
PRECEDES

SQL Functions, Operators, Expressions, and Predicates 317

SELECT * FROM employee WHERE period1 PRECEDES period2;

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

ename period1 period2

Jones ('2004-01-02','2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02','2004-03-05') ('2004-03-07', '2004-10-07')

Chapter 9: Period Functions and Operators
PRIOR

318 SQL Functions, Operators, Expressions, and Predicates

PRIOR

Purpose
Proximity function that returns the preceding value of the argument such that there is one
granule of the argument type between the returned value and the argument.

Syntax

where:

Return Value

The return data type is the same as that of the argument; that is, a DateTime data type. If the
value of the argument is NULL, the result is NULL.

Format and Title

The format is the default format for the argument's data type.

The title is PRIOR(proximity_argument).

Error Conditions

If the argument does not have a DateTime data type, an error is reported.

If the result is outside the permissible range of the argument's data type, an error is reported.
For example, if PRIOR(DATE '0001-01-01') is specified, an error is reported.

Example

In the following example, PRIOR is used in the WHERE clause.

SELECT *
FROM employee
WHERE PRIOR(END(period1)) = DATE '2004-03-04';

Assume the query is executed on the following table employee where period1 is a
PERIOD(DATE) column:

ename dept period1

Syntax element ... Specifies ...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data type.

 PRIOR (datetime_expression)

1101A578

Chapter 9: Period Functions and Operators
PRIOR

SQL Functions, Operators, Expressions, and Predicates 319

----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-03-05')
Simon Sales ?

The result is as follows:

ename dept period1
----- ----------- ----------------------------
Jones Sales ('2004-01-02', '2004-03-05')

Chapter 9: Period Functions and Operators
LDIFF

320 SQL Functions, Operators, Expressions, and Predicates

LDIFF

Purpose
Operator that returns the portion of the first Period expression that exists before the
beginning of the second Period expression when the Period expressions overlap. When the
Period expressions overlap but there is no portion of the first Period expression before the
beginning of the second Period expression or the Period expressions do not overlap, LDIFF
returns NULL. If either Period expression is NULL, LDIFF returns NULL.

Syntax

where:

Return Value

Assuming p1 and p2 are comparable Period expressions, p1 LIDFF p2 returns
PERIOD(BEGIN(p1), BEGIN(p2)) if p1 OVERLAPS p2 is TRUE and BEGIN(p1) is less than
BEGIN(p2). If either Period expression is NULL, p1 OVERLAPS p2 is FALSE, or BEGIN(p1)
is not less than BEGIN(p2), the result is NULL.

If the Period expressions have PERIOD(TIME(n) [WITH TIME ZONE]) or
PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) data types but have different precisions,
the result has the higher of the two precisions. If one of the Period expressions contains time
zones and the other does not, the result contains a time zone for each element. The result time
zones are evaluated using the following rules:

• If both Period expressions have a time zone, the time zone displacement of a result bound
is obtained from the corresponding bound of the expressions as defined by the Period
value constructor that follows.

• If only one of the Period expressions has a time zone, the other Period expression is
considered to be at the current session time zone and the result is computed as follows.

Assuming p1 and p2 are Period expressions and the result element type as determined above is
rt, the result of p1 LDIFF p2 is as follows if p1 OVERLAPS p2 is TRUE:

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

Note: The Period expressions specified must be comparable. Implicit
casting to a Period data type is not supported.

period_expression period_expressionLDIFF

1101A592

Chapter 9: Period Functions and Operators
LDIFF

SQL Functions, Operators, Expressions, and Predicates 321

PERIOD(
 CASE WHEN CAST(BEGIN(p1) AS rt) < CAST(BEGIN(p2) AS rt)
 THEN CAST(BEGIN(p1) AS rt)
 ELSE NULL END,
 CASE WHEN CAST(BEGIN(p1) AS rt) < CAST(BEGIN(p2) AS rt)
 THEN CAST(BEGIN(p2) AS rt)
 ELSE NULL END)

Internally, Period values are saved in UTC and the OVERLAPS operator is evaluated using
these UTC represented formats and the LDIFF operation is performed if they overlap.

Format and Title

The format is the default format for the resulting Period data type.

The title is period_expression LDIFF period_expression.

Error Conditions

If either expression is not a Period expression, an error is reported.

If the Period expressions are not comparable, an error is reported.

Example

In the following example, the LDIFF operator is used to find the left difference of the first
Period expression with the second Period expression.

SELECT ename, period2 LDIFF period1 FROM employee;

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

ename period1 period2
----- ---------------------------- ----------------------------
Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')
Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')
Jones ('2004-01-02', '2004-03-05') ('2002-03-05', '2004-10-07')
Randy ('2006-01-02', '2007-03-05') ('2004-03-07', '2005-10-07')
Simon ? ('2005-02-03', '2005-07-27')

The result is as follows:

ename (period2 LDIFF period1)
----- ----------------------------
Adams ?
Mary ('2005-02-03', '2005-04-02')
Jones ('2002-03-05', '2004-01-02')
Randy ?
Simon ?

Chapter 9: Period Functions and Operators
RDIFF

322 SQL Functions, Operators, Expressions, and Predicates

RDIFF

Purpose
Operator that returns the portion of the first Period expression that exists from the end of the
second Period expression when the Period expressions overlap. When the Period expressions
overlap but there is no portion of the first Period expression from the end of the second Period
expression or if the Period expressions do not overlap, RDIFF returns NULL. If either Period
expression is NULL, RDIFF returns NULL.

Syntax

where:

Return Value

Assuming p1 and p2 are comparable Period expressions, p1 RDIFF p2 returns
PERIOD(END(p2), END(p1)) if p1 OVERLAPS p2 is TRUE and END(p1) is greater than
END(p2). If either Period expression is NULL, p1 OVERLAPS p2 is FALSE, or END(p1) is not
greater than END(p2), the result is NULL.

If the Period expressions have PERIOD(TIME[(n)] [WITH TIME ZONE]) or
PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]) data types but have different precisions,
the result has the higher of the two precisions. If one of the Period expressions contains time
zones and the other does not, the result contains a time zone for each element. The result time
zones are evaluated using the following rules:

• If both Period expressions have a time zone, the time zone displacement of a result bound
is obtained from the corresponding bound of the Period expressions as defined by the
Period value constructor that follows.

• If only one of the Period expressions has a time zone, the other Period expression is
considered to be at the current session time zone and the result is computed as follows.

Assuming p1 and p2 are Period expressions and the result element type as determined above is
rt, the result of p1 RDIFF p2 is as follows if p1 OVERLAPS p2 is TRUE:

Syntax element ... Specifies ...

period_expression any expression that evaluates to a Period data type.

Note: The Period expressions specified must be comparable. Implicit
casting to a Period data type is not supported.

period_expression period_expressionRDIFF

1101A593

Chapter 9: Period Functions and Operators
RDIFF

SQL Functions, Operators, Expressions, and Predicates 323

PERIOD(
 CASE WHEN CAST(END(p1) AS rt) > CAST(END(p2) AS rt)
 THEN CAST(END(p2) AS rt)
 ELSE NULL END,
 CASE WHEN CAST(END(p1) AS rt) > CAST(END(p2) AS rt)
 THEN CAST(END(p1) AS rt)
 ELSE NULL END)

Internally, Period values are saved in UTC and the OVERLAPS operator is evaluated using
these UTC represented formats and the RDIFF operation is performed if they overlap.

Format and Title

The format is the default format for the resulting Period data type.

The title is period_expression RDIFF period_expression.

Error Conditions

If either expression is not a Period expression, an error is reported.

If the Period expressions are not comparable, an error is reported.

Example

In the following example, the RDIFF operator is used to find the right difference of the first
Period expression with the second Period expression.

SELECT ename, period2 RDIFF period1 FROM employee;

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

ename period1 period2
----- ---------------------------- ----------------------------
Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')
Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')
Jones ('2001-01-02', '2003-03-05') ('2002-03-05', '2004-10-07')
Randy ('2006-01-02', '2007-03-05') ('2004-03-07', '2005-10-07')
Simon ? ('2005-02-03', '2005-07-27')

The result is as follows:

ename (period2 RDIFF period1)
----- ----------------------------
Adams ?
Mary ('2006-01-03', '2006-02-03')
Jones ('2003-03-05', '2004-10-07')
Randy ?
Simon ?

Chapter 9: Period Functions and Operators
SUCCEEDS

324 SQL Functions, Operators, Expressions, and Predicates

SUCCEEDS

Purpose
Predicate that operates on two Period expressions or one Period expression and one DateTime
expression and evaluates to TRUE, FALSE, or UNKNOWN.

If both expressions have a Period data type, returns TRUE if the beginning bound of the first
expression is greater than or equal to the ending bound of the second expression; otherwise,
returns FALSE. If the first expression is a Period expression and the second expression is a
DateTime expression, returns TRUE if the beginning bound of the first expression is greater
than the second expression; otherwise, returns FALSE. If the first expression is a DateTime
expression and the second expression is a Period expression, returns TRUE if the DateTime
expression is greater than or equal to the ending bound of the second expression; otherwise,
returns FALSE. If either expression is NULL, the operator returns UNKNOWN.

Syntax

where:

Error Conditions

If either expression is other than a Period data type or a DateTime value expression, an error is
reported.

If the expressions are not comparable types, an error is reported.

Example

In the following example, the SUCCEEDS operator is used in the WHERE clause.

SELECT * FROM employee WHERE period1 SUCCEEDS period2;

Syntax element... Specifies...

datetime_expression any expression that evaluates to a DATE, TIME, or TIMESTAMP data type.

period_expression any expression that evaluates to a Period data type.

Note: The Period expression specified must be comparable with the other
expression. Implicit casting to a Period data type is not supported.

period_expression period_expression

datetime_expression

 SUCCEEDS

 NOT

1101A583

datetime_expression period_expression SUCCEEDS

 NOT

Chapter 9: Period Functions and Operators
SUCCEEDS

SQL Functions, Operators, Expressions, and Predicates 325

Assume the query is executed on the following table employee where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

ename period1 period2

Jones ('2004-01-02','2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02','2004-03-05') ('2004-03-07', '2004-10-07')

Chapter 9: Period Functions and Operators
TD_NORMALIZE_OVERLAP

326 SQL Functions, Operators, Expressions, and Predicates

TD_NORMALIZE_OVERLAP

Purpose
Combines the rows whose Period values overlap such that the resulting normalized row
contains the earliest beginning bound and the latest ending bound from the Period values of
all the rows involved.

Syntax

where:

Invocation

TD_NORMALIZE_OVERLAP is a domain-specific function. For information on activating
and invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_NORMALIZE_OVERLAP is a table function that takes two arguments. The arguments
passed to the function are the specified columns in a subtable derived from using the WITH
Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is the Period column where you want to find the Period values that
overlap.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

1101A739

TD_SYSFNLIB.
TD_NORMALIZE_OVERLAP (grouping_column_list, period_column)

Chapter 9: Period Functions and Operators
TD_NORMALIZE_OVERLAP

SQL Functions, Operators, Expressions, and Predicates 327

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You can specify an optional INTEGER output column at the end of the RETURNS clause
to contain a count of the rows that were normalized.

Result

TD_NORMALIZE_OVERLAP returns result rows with the columns specified in the
RETURNS clause as follows:

• The grouping columns specified in the input argument.

• The Period column with normalized Period values.

• An optional INTEGER column containing the count of the rows that were normalized
because their Period values overlap.

Example

WITH subtbl(flight_id, duration) AS
(SELECT flight_id, duration FROM FlightExp)

SELECT *
FROM TABLE (TD_SYSFNLIB.TD_NORMALIZE_OVERLAP(NEW VARIANT_TYPE(subtbl.flight_id),

subtbl.duration)
RETURNS (flight_id INT, duration PERIOD(TIMESTAMP(6) WITH TIME ZONE), NrmCount INT)
HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, duration, NrmCount) ORDER BY 1,2;

Chapter 9: Period Functions and Operators
TD_NORMALIZE_MEET

328 SQL Functions, Operators, Expressions, and Predicates

TD_NORMALIZE_MEET

Purpose
Combines the rows whose Period values meet such that the resulting normalized row contains
the earliest beginning bound and the latest ending bound from the Period values of all the
rows involved.

Syntax

where:

Invocation

TD_NORMALIZE_MEET is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_NORMALIZE_MEET is a table function that takes two arguments. The arguments passed
to the function are the specified columns in a subtable derived from using the WITH Request
Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is the Period column where you want to find the Period values that
meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

1101A740

TD_SYSFNLIB.
TD_NORMALIZE_MEET (grouping_column_list, period_column)

Chapter 9: Period Functions and Operators
TD_NORMALIZE_MEET

SQL Functions, Operators, Expressions, and Predicates 329

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You can specify an optional INTEGER output column at the end of the RETURNS clause
to contain a count of the rows that were normalized.

Result

TD_NORMALIZE_MEET returns result rows with the columns specified in the RETURNS
clause as follows:

• The grouping columns specified in the input argument.

• The Period column with normalized Period values.

• An optional INTEGER column containing the count of the rows that were normalized
because their Period values meet.

Example

WITH subtbl(flight_id, duration) AS
(SELECT flight_id, duration FROM FlightExp)

SELECT *
FROM TABLE (TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(subtbl.flight_id),

subtbl.duration)
RETURNS (flight_id INT, duration PERIOD(TIMESTAMP(6) WITH TIME ZONE), NrmCount INT)
HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, duration, NrmCount) ORDER BY 1,2;

Chapter 9: Period Functions and Operators
TD_NORMALIZE_OVERLAP_MEET

330 SQL Functions, Operators, Expressions, and Predicates

TD_NORMALIZE_OVERLAP_MEET

Purpose
Combines the rows whose Period values either meet or overlap such that the resulting
normalized row contains the earliest beginning bound and the latest ending bound from the
Period values of all the rows involved.

Syntax

where:

Invocation

TD_NORMALIZE_OVERLAP_MEET is a domain-specific function. For information on
activating and invoking domain-specific functions, see “Domain-specific Functions” on
page 20.

Usage Notes

TD_NORMALIZE_OVERLAP_MEET is a table function that takes two arguments. The
arguments passed to the function are the specified columns in a subtable derived from using
the WITH Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is the Period column where you want to find the Period values that
overlap or meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

1101A741

TD_SYSFNLIB.
TD_NORMALIZE_OVERLAP_MEET (grouping_column_list, period_column)

Chapter 9: Period Functions and Operators
TD_NORMALIZE_OVERLAP_MEET

SQL Functions, Operators, Expressions, and Predicates 331

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You can specify an optional INTEGER output column at the end of the RETURNS clause
to contain a count of the rows that were normalized.

Result

TD_NORMALIZE_OVERLAP_MEET returns result rows with the columns specified in the
RETURNS clause as follows:

• The grouping columns specified in the input argument.

• The Period column with normalized Period values.

• An optional INTEGER column containing the count of the rows that were normalized
because their Period values overlap or meet.

Example

WITH subtbl(flight_id, duration) AS
(SELECT flight_id, duration FROM FlightExp)

SELECT *
FROM TABLE (TD_SYSFNLIB.TD_NORMALIZE_OVERLAP_MEET(NEW VARIANT_TYPE(subtbl.flight_id),

subtbl.duration)
RETURNS (flight_id INT, duration PERIOD(TIMESTAMP(6) WITH TIME ZONE), NrmCount INT)
HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, duration, NrmCount) ORDER BY 1,2;

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_OVERLAP

332 SQL Functions, Operators, Expressions, and Predicates

TD_SUM_NORMALIZE_OVERLAP

Purpose
Finds the sum of a column for all the rows that were normalized because their Period values
overlap.

Syntax

where:

Invocation

TD_SUM_NORMALIZE_OVERLAP is a domain-specific function. For information on
activating and invoking domain-specific functions, see “Domain-specific Functions” on
page 20.

Usage Notes

TD_SUM_NORMALIZE_OVERLAP is a table function that takes three arguments. The
arguments passed to the function are the specified columns in a subtable derived from using
the WITH Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is a numeric column on which SUM() is requested. All numeric
data types are supported. You must specify this argument as a dynamic UDT where the
column is an attribute of the UDT.

1101A742

TD_SYSFNLIB.
TD_SUM_NORMALIZE_OVERLAP (grouping_column_list, numeric_column, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

numeric_column a numeric column on which SUM() is requested. You must
specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_OVERLAP

SQL Functions, Operators, Expressions, and Predicates 333

• The third argument is the Period column where you want to find the Period values that
overlap.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You must include a numeric output column to contain the sum result value. The data type
of this column should be the same data type as the corresponding input column. To
prevent a possible overflow error, you can use the CAST function to convert the data type
of the input column to a larger numeric data type.

Result

TD_SUM_NORMALIZE_OVERLAP returns result rows with the columns specified in the
RETURNS clause as follows:

• The grouping columns specified in the input argument.

• A numeric column containing the requested sum.

• The Period column with normalized Period values.

Example

WITH subtbl(flight_id, charges, duration) AS
(SELECT flight_id, charges, duration FROM FlightExp)

SELECT *
FROM TABLE (TD_SYSFNLIB.TD_SUM_NORMALIZE_OVERLAP(NEW VARIANT_TYPE(subtbl.flight_id),

NEW VARIANT_TYPE(subtbl.charges),
subtbl.duration)

RETURNS (flight_id INT, charges FLOAT,
duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))

HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, charges, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_MEET

334 SQL Functions, Operators, Expressions, and Predicates

TD_SUM_NORMALIZE_MEET

Purpose
Finds the sum of a column for all the rows that were normalized because their Period values
meet.

Syntax

where:

Invocation

TD_SUM_NORMALIZE_MEET is a domain-specific function. For information on activating
and invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_SUM_NORMALIZE_MEET is a table function that takes three arguments. The
arguments passed to the function are the specified columns in a subtable derived from using
the WITH Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is a numeric column on which SUM() is requested. All numeric
data types are supported. You must specify this argument as a dynamic UDT where the
column is an attribute of the UDT.

1101A743

TD_SYSFNLIB.
TD_SUM_NORMALIZE_MEET (grouping_column_list, numeric_column, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

numeric_column a numeric column on which SUM() is requested. You must
specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_MEET

SQL Functions, Operators, Expressions, and Predicates 335

• The third argument is the Period column where you want to find the Period values that
meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You must include a numeric output column to contain the sum result value. The data type
of this column should be the same data type as the corresponding input column. To
prevent a possible overflow error, you can use the CAST function to convert the data type
of the input column to a larger numeric data type.

Result

TD_SUM_NORMALIZE_MEET returns result rows with the columns specified in the
RETURNS clause:

• The grouping columns specified in the input argument.

• A numeric column containing the requested sum.

• The Period column with normalized Period values.

Example

WITH subtbl(flight_id, charges, duration) AS
(SELECT flight_id, charges, duration FROM FlightExp)

SELECT *
FROM TABLE (TD_SYSFNLIB.TD_SUM_NORMALIZE_MEET(NEW VARIANT_TYPE(subtbl.flight_id),

NEW VARIANT_TYPE(subtbl.charges),
subtbl.duration)

RETURNS (flight_id INT, charges FLOAT,
duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))

HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, charges, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_OVERLAP_MEET

336 SQL Functions, Operators, Expressions, and Predicates

TD_SUM_NORMALIZE_OVERLAP_MEET

Purpose
Finds the sum of a column for all the rows that were normalized because their Period values
either overlap or meet.

Syntax

where:

Invocation

TD_SUM_NORMALIZE_OVERLAP_MEET is a domain-specific function. For information
on activating and invoking domain-specific functions, see “Domain-specific Functions” on
page 20.

Usage Notes

TD_SUM_NORMALIZE_OVERLAP_MEET is a table function that takes three arguments.
The arguments passed to the function are the specified columns in a subtable derived from
using the WITH Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is a numeric column on which SUM() is requested. All numeric
data types are supported. You must specify this argument as a dynamic UDT where the
column is an attribute of the UDT.

1101A744

TD_SYSFNLIB.
TD_SUM_NORMALIZE_OVERLAP_MEET (grouping_column_list, numeric_column, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

numeric_column a numeric column on which SUM() is requested. You must
specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SUM_NORMALIZE_OVERLAP_MEET

SQL Functions, Operators, Expressions, and Predicates 337

• The third argument is the Period column where you want to find the Period values that
overlap or meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• You must specify the output columns to be the same as the columns specified in the input
arguments, including the Period column.

• You must specify the output columns with the same data types and in the same order as
the corresponding input columns.

• You must include a numeric output column to contain the sum result value. The data type
of this column should be the same data type as the corresponding input column. To
prevent a possible overflow error, you can use the CAST function to convert the data type
of the input column to a larger numeric data type.

Result

TD_SUM_NORMALIZE_OVERLAP_MEET returns result rows with the columns specified
in the RETURNS clause:

• The grouping columns specified in the input argument.

• A numeric column containing the requested sum.

• The Period column with normalized Period values.

Example

WITH subtbl(flight_id, charges, duration) AS
(SELECT flight_id, charges, duration FROM FlightExp)

SELECT * FROM TABLE (
TD_SYSFNLIB.TD_SUM_NORMALIZE_OVERLAP_MEET(NEW VARIANT_TYPE(subtbl.flight_id),

NEW VARIANT_TYPE(subtbl.charges),
subtbl.duration)

RETURNS (flight_id INT, charges FLOAT,
duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))

HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, charges, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SEQUENCED_SUM

338 SQL Functions, Operators, Expressions, and Predicates

TD_SEQUENCED_SUM

Purpose
Finds the sum of a column for all adjacent periods in normalized rows whose Period values
either meet or overlap.

Syntax

where:

Invocation

TD_SEQUENCED_SUM is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_SEQUENCED_SUM is a table function that takes three arguments. The arguments
passed to the function are the specified columns in a subtable derived from using the WITH
Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is a numeric column on which SUM() is requested. All numeric
data types are supported. You must specify this argument as a dynamic UDT where the
column is an attribute of the UDT.

1101A745

TD_SYSFNLIB.
TD_SEQUENCED_SUM (grouping_column_list, numeric_column, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

numeric_column a numeric column on which SUM() is requested. You must
specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SEQUENCED_SUM

SQL Functions, Operators, Expressions, and Predicates 339

• The third argument is the Period column where you want to find the Period values that
overlap or meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• The output columns must include all of the grouping columns with the same data type
and in the same order as the input columns.

• You must include a numeric output column to contain the sum result value. The data type
of this column should be the same data type as the corresponding input column. To
prevent a possible overflow error, you can use the CAST function to convert the data type
of the input column to a larger numeric data type.

• A Period column with the same Period data type as the input Period column.

Result

TD_SEQUENCED_SUM returns result rows with the columns specified in the RETURNS
clause:

• The grouping columns specified in the input argument.

• A numeric column containing the requested sum result.

• A Period column with the sequenced aggregation result.

Example

WITH subtbl(flight_id, charges, duration) AS
(SELECT flight_id, charges, duration FROM FlightExp)

SELECT * FROM TABLE (
TD_SYSFNLIB.TD_SEQUENCED_SUM(NEW VARIANT_TYPE(subtbl.flight_id),

NEW VARIANT_TYPE(subtbl.charges),
subtbl.duration)

RETURNS (flight_id INT, charges FLOAT,
duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))

HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, charges, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SEQUENCED_AVG

340 SQL Functions, Operators, Expressions, and Predicates

TD_SEQUENCED_AVG

Purpose
Finds the average of a column for all adjacent periods in normalized rows whose Period values
either meet or overlap.

Syntax

where:

Invocation

TD_SEQUENCED_AVG is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_SEQUENCED_AVG is a table function that takes three arguments. The arguments passed
to the function are the specified columns in a subtable derived from using the WITH Request
Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is a numeric column on which AVG() is requested. All numeric data
types are supported. You must specify this argument as a dynamic UDT where the column
is an attribute of the UDT.

1101A746

TD_SYSFNLIB.
TD_SEQUENCED_AVG (grouping_column_list, numeric_column, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

numeric_column a numeric column on which AVG() is requested. You must
specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SEQUENCED_AVG

SQL Functions, Operators, Expressions, and Predicates 341

• The third argument is the Period column where you want to find the Period values that
overlap or meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• The output columns must include all of the grouping columns with the same data type
and in the same order as the input columns.

• You must include a numeric output column to contain the average result value. The data
type of this column can be FLOAT or the same data type as the corresponding input
column; however, to avoid possible rounding of the result value, it is recommended that
you use FLOAT. To prevent a possible overflow error, you can use the CAST function to
convert the data type of the input column to a larger numeric data type.

• A Period column with the same Period data type as the input Period column.

Result

TD_SEQUENCED_AVG returns result rows with the columns specified in the RETURNS
clause:

• The grouping columns specified in the input argument.

• A numeric column containing the average result.

• A Period column with the sequenced aggregation result.

Example

WITH subtbl(flight_id, charges, duration) AS
(SELECT flight_id, charges, duration FROM FlightExp)

SELECT * FROM TABLE (
TD_SYSFNLIB.TD_SEQUENCED_AVG(NEW VARIANT_TYPE(subtbl.flight_id),

NEW VARIANT_TYPE(subtbl.charges),
subtbl.duration)

RETURNS (flight_id INT, charges FLOAT,
duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))

HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, charges, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SEQUENCED_COUNT

342 SQL Functions, Operators, Expressions, and Predicates

TD_SEQUENCED_COUNT

Purpose
Finds the count of a column for all adjacent periods in normalized rows whose Period values
either meet or overlap.

Syntax

where:

Invocation

TD_SEQUENCED_COUNT is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Usage Notes

TD_SEQUENCED_COUNT is a table function that takes two arguments. The arguments
passed to the function are the specified columns in a subtable derived from using the WITH
Request Modifier as follows:

• The first argument is one or more grouping columns, not including the Period column.
You must specify this argument as a dynamic UDT, where each column is an attribute of
the UDT. For more information, see “NEW VARIANT_TYPE” on page 737.

• The second argument is the Period column where you want to find the Period values that
overlap or meet.

Input to the table function must be columns that are hash-redistributed on the grouping
columns and sorted by the grouping columns and the Period values as follows:

1101A747

TD_SYSFNLIB.
TD_SEQUENCED_COUNT (grouping_column_list, period_column)

Syntax element ... Specifies ...

grouping_column_list one or more grouping columns, not including the Period
column. You must specify the input as a dynamic UDT.

period_column a column with a data type of PERIOD(DATE),
PERIOD(TIMESTAMP), or PERIOD(TIMESTAMP WITH
TIME ZONE).

Chapter 9: Period Functions and Operators
TD_SEQUENCED_COUNT

SQL Functions, Operators, Expressions, and Predicates 343

• You must specify a LOCAL ORDER BY clause that includes all of the grouping columns
and the Period column in the same order that was specified in the input arguments. The
sort order must be ascending.

• You must include a HASH BY clause with at least one of the grouping columns. The
HASH BY clause cannot include the Period column or any columns that are not part of the
grouping columns.

You must invoke the function with a RETURNS clause that specifies the output columns as
follows:

• The output columns must include all of the grouping columns with the same data type
and in the same order as the input columns.

• You must include an INTEGER output column to contain the count result.

• A Period column with the same Period data type as the input Period column.

Result

TD_SEQUENCED_COUNT returns result rows with the columns specified in the RETURNS
clause:

• The grouping columns specified in the input argument.

• An INTEGER column containing the count result.

• A Period column with the sequenced aggregation result.

Example

WITH subtbl(flight_id, duration) AS
(SELECT flight_id, duration FROM FlightExp)

SELECT * FROM TABLE (
TD_SYSFNLIB.TD_SEQUENCED_COUNT(NEW VARIANT_TYPE(subtbl.flight_id),

subtbl.duration)
RETURNS (flight_id INT, cnt INT,

duration PERIOD(TIMESTAMP(6) WITH TIME ZONE))
HASH BY flight_id /* input data is redistributed on column, flight_id */
LOCAL ORDER BY flight_id, duration) /* input data is sorted on these columns */
AS DT(flight_id, cnt, duration) ORDER BY 1,3;

Chapter 9: Period Functions and Operators
TD_SEQUENCED_COUNT

344 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 345

CHAPTER 10 Aggregate Functions

This chapter describes SQL aggregate functions.

For information on:

• window aggregate functions and their Teradata-specific equivalents, see Chapter 11:
“Ordered Analytical Functions.”

• aggregate user-defined functions (UDFs), see “Aggregate UDF” on page 714.

• window aggregate UDFs, see “Window Aggregate UDF” on page 717.

Aggregate Functions

Aggregate functions are typically used in arithmetic expressions. Aggregate functions operate
on a group of rows and return a single numeric value in the result table for each group.

In the following statement, the SUM aggregate function operates on the group of rows defined
by the Sales_Table table:

SELECT SUM(Total_Sales)
FROM Sales_Table;

Sum(Total_Sales)

5192.40

You can use GROUP BY clauses to produce more complex, finer grained results in multiple
result values. In the following statement, the SUM aggregate function operates on groups of
rows defined by the Product_ID column in the Sales_Table table:

SELECT Product_ID, SUM(Total_Sales)
FROM Sales_Table
GROUP BY Product_ID;

Product_ID Sum(Total_Sales)
---------- ----------------

101 2100.00
107 1000.40
102 2092.00

Aggregates in the Select List

Aggregate functions are normally used in the expression list of a SELECT statement and in the
summary list of a WITH clause.

Chapter 10: Aggregate Functions
Aggregate Functions

346 SQL Functions, Operators, Expressions, and Predicates

Aggregates and GROUP BY

If you use an aggregate function in the select list of an SQL statement, then either all other
columns occurring in the select list must also be referenced by means of aggregate functions or
their column name must appear in a GROUP BY clause. For example, the following statement
uses an aggregate function and a column in the select list and references the column name in
the GROUP BY clause:

SELECT COUNT(*), Product_ID
FROM Sales_Table
GROUP BY Product_ID;

The reason for this is that aggregates return only one value, while a non-GROUP BY column
reference can return any number of values.

Aggregates and Date

It is valid to apply AVG, MIN, MAX, or COUNT to a date. It is not valid to specify SUM(date).

Aggregates and Constant Expressions in the Select List

Constant expressions in the select list may optionally appear in the GROUP BY clause. For
example, the following statement uses an aggregate function and a constant expression in the
select list, and does not use a GROUP BY clause:

SELECT COUNT(*),
SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14)) FROM 1 FOR 8)
FROM Sales_Table;

The results of such statements when the table has no rows depends on the type of constant
expression.

IF the constant
expression … THEN the result of the constant expression in the query result is …

does not contain a
column reference

the value of the constant expression.

Functions such as RANDOM are computed in the immediate retrieve step
of the request instead of in the aggregation step.

Here is an example:

SELECT COUNT(*),
SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14))
FROM 1 FOR 8)
FROM Sales_Table;

Count(*) Substring(Current Time(0) From 1 For 8)
-------- ---------------------------------------

0 09:01:43

is a non-deterministic
function, such as
RANDOM

Chapter 10: Aggregate Functions
Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 347

Nesting Aggregates

Aggregate operations cannot be nested. The following aggregate is not valid and returns an
error:

AVG(MAXIMUM (Salary))

But aggregates can be nested in aggregate window functions. The following statement is valid
and includes an aggregate SUM function nested in a RANK window function:

SELECT region
,product
,SUM(amount)
,RANK() OVER (PARTITION BY region ORDER by SUM (amount))

FROM table;

For details on aggregate window functions, see Chapter 11: “Ordered Analytical Functions.”

Results of Aggregation on Zero Rows

Aggregation on zero rows behaves as indicated by the following table.

Aggregates and Nulls

Aggregates (with the exception of COUNT(*)) ignore nulls1 in all computations.

This behavior can result in apparent nontransitive anomalies. For example, if there are nulls in
either column A or column B (or both), then the following expression is virtually always true.

SUM(A) + SUM(B) <> SUM(A+B)

contains a column
reference

NULL.

Here is an example:

SELECT COUNT(*), UDF_CALC(1,2)
FROM Sales_Table;

Count(*) UDF_CALC(1,2)
----------- -------------

0 ?

is a UDF

IF the constant
expression … THEN the result of the constant expression in the query result is …

This form of aggregate function …
Returns this result when there are
zero rows …

COUNT(expression) WHERE … 0

all other forms of aggregate_operator(expression) WHERE … Null

aggregate_operator(expression) … GROUP BY … No Record Found

aggregate_operator(expression) … HAVING …

1. A UDT column value is null only when you explicitly place a null value in the column, not when a UDT
instance has an attribute that is set to null.

Chapter 10: Aggregate Functions
Aggregate Functions

348 SQL Functions, Operators, Expressions, and Predicates

The only exception to this is the case in which the values for columns A and B are both null in
the same rows, because in those cases the entire row is disregarded in the aggregation. This is a
trivial case that does not violate the general rule.

More formally stated, if and only if field A and field B are both null for every occurrence of a
null in either field is the above inequality false.

For examples that illustrate this behavior, see “Example 2” on page 358 and “Example 3” on
page 358. Note that the aggregates are behaving exactly as they should—the results are not
mathematically anomalous.

There are several ways to work around this apparent nontransitivity issue if it presents a
problem. Either solution provides the same consistent results.

• Always define your numeric columns as NOT NULL DEFAULT 0

• Use the ZEROIFNULL function within the aggregate function to convert any nulls to zeros
for the computation, for example SUM(ZEROIFNULL(x) + ZEROIFNULL(y)), which
produces the same result as SUM(ZEROIFNULL(x) + ZEROIFNULL(y)).

Aggregate Operations on Floating Point Data

Operations involving floating point numbers are not always associative due to approximation
and rounding errors: ((A + B) + C) is not always equal to (A + (B + C)).

Although not readily apparent, the non-associativity of floating point arithmetic can also
affect aggregate operations: you can get different results each time you use an aggregate
function on a given set of floating point data. When Teradata Database performs an
aggregation, it accumulates individual terms from each AMP involved in the computation and
evaluates the terms in order of arrival to produce the final result. Because the order of
evaluation can produce slightly different results, and because the order in which individual
AMPs finish their part of the work is unpredictable, the results of an aggregate function on the
same data on the same system can vary.

For more information on potential problems associated with floating point values in
computations, see SQL Data Types and Literals.

Aggregates and LOBs

Aggregates do not operate on CLOB or BLOB data types.

Aggregates and Period Data Types

Aggregates (with the exception of COUNT) do not operate on Period data types.

Aggregates and SELECT AND CONSUME Statements

Aggregates cannot appear in SELECT AND CONSUME statements.

Chapter 10: Aggregate Functions
Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 349

Aggregates and Recursive Queries

Aggregate functions cannot appear in a recursive statement of a recursive query. However, a
non-recursive seed statement in a recursive query can specify an aggregate function.

Aggregates in WHERE and HAVING Clauses

Aggregates can appear in the following types of clauses:

• The WHERE clause of an ABORT statement to specify an abort condition.

But an aggregate function cannot appear in the WHERE clause of a SELECT statement.

• A HAVING clause to specify a group condition.

DISTINCT Option

The DISTINCT option specifies that duplicate values are not to be used when an expression is
processed.

The following SELECT returns the number of unique job titles in a table.

SELECT COUNT(DISTINCT JobTitle) FROM Employee;

A query can have multiple aggregate functions that use DISTINCT with the same expression,
as shown by the following example.

SELECT SUM(DISTINCT x), AVG(DISTINCT x) FROM XTable;

A query can also have multiple aggregate functions that use DISTINCT with different
expressions, for example:

SELECT SUM(DISTINCT x), SUM(DISTINCT y) FROM XYTable;

Chapter 10: Aggregate Functions
AVG

350 SQL Functions, Operators, Expressions, and Predicates

AVG

Purpose
Returns the arithmetic average of all values in the specified expression for each row in the
group.

Syntax

where:

ANSI Compliance

AVG is ANSI SQL:2008 compliant.

AVERAGE and AVE are Teradata extensions to the ANSI standard.

Result Type and Attributes

The following table lists the default attributes for the result of AVG(x).

Syntax element … Specifies …

ALL that all non-null values specified by value_expression, including duplicates, are
included in the average computation for the group. This is the default.

DISTINCT that null and duplicate values specified by value_expression are eliminated from
the average computation for the group.

value_expression a constant or column expression for which an average is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B410

AVERAGE ()value_expression

AVG DISTINCT

AVE ALL

Attribute Value

Data Type REAL

Title Average(x)

Chapter 10: Aggregate Functions
AVG

SQL Functions, Operators, Expressions, and Predicates 351

For an explanation of the formatting characters in the format, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including AVG, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Computation of INTEGER or DECIMAL Values

An AVG of a DECIMAL or INTEGER value may overflow if the individual values are very
large or if there is a large number of values.

If this occurs, change the AVG call to include a CAST function that converts the DECIMAL or
INTEGER values to REAL as shown in the following example:

AVG(CAST(value AS REAL))

Casting the values as REAL before averaging causes a slight loss in precision.

The type of the result is REAL in either case, so the only effect of the CAST is to accept a slight
loss of precision where a result might not otherwise be available at all.

Format
IF the operand is … THEN the format is the …

• numeric

• date

• interval

same format as x.

character default format for FLOAT.

UDT format for the data type to which the UDT is implicitly cast.

Attribute Value

Chapter 10: Aggregate Functions
AVG

352 SQL Functions, Operators, Expressions, and Predicates

If x is an integer, AVG does not display a fractional value. A fractional value may be obtained
by casting the value as DECIMAL, for example the following CAST to DECIMAL.

CAST(AVG(value) AS DECIMAL(9,2))

Restrictions

The value_expression must not be a column reference to a view column that is derived from a
function.

AVG is valid only for numeric data.

Nulls are not included in the result computation. For more information, see SQL
Fundamentals and “Aggregates and Nulls” on page 347.

Example

This example queries the sales table for average sales by region and returns the following
results.

SELECT Region, AVG(sales)
FROM sales_tbl
GROUP BY Region
ORDER BY Region;

Region Average (sales)
------ ---------------
North 21840.17
East 55061.32
Midwest 15535.73

AVG Window Function

For the AVG window function that computes a group, cumulative, or moving average, see
“Window Aggregate Functions” on page 449.

Chapter 10: Aggregate Functions
CORR

SQL Functions, Operators, Expressions, and Predicates 353

CORR

Purpose
Returns the Pearson product moment correlation coefficient of its arguments for all non-null
data point pairs.

Syntax

where:

ANSI Compliance

CORR is ANSI SQL:2008 compliant.

Definition

The Pearson product-moment correlation coefficient is a measure of the linear association
between variables. The boundary on the computed coefficient ranges from -1.00 to +1.00.

Note that high correlation does not imply a causal relationship between the variables.

The following table indicates the meaning of four extreme values for the coefficient of
correlation between two variables.

Syntax element … Specifies …

value_expression_2 a numeric expression to be correlated with a second numeric expression.

The expressions cannot contain any ordered analytical or aggregate functions.value_expression_1

1101B217

CORR value_expression_1, value_expression_2()

IF the correlation
coefficient has this value … THEN the association between the variables …

-1.00 is perfectly linear, but inverse.

As the value for y varies, the value for x varies identically in the
opposite direction.

0 does not exist and they are said to be uncorrelated.

+1.00 is perfectly linear.

As the value for y varies, the value for x varies identically in the same
direction.

Chapter 10: Aggregate Functions
CORR

354 SQL Functions, Operators, Expressions, and Predicates

Computation

The equation for computing CORR is defined as follows:

where:

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for CORR(y, x) are as follows.

For an explanation of the formatting characters in the format, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

NULL cannot be measured because there are no non-null data point pairs in
the data used for the computation.

IF the correlation
coefficient has this value … THEN the association between the variables …

This variable … Represents …

x value_expression_2

y value_expression_1

CORR COVAR_SAMP x,y()
STDDEV_SAMP x()STDDEV_SAMP y()
--=

Data Type Format Title

REAL the default format for DECIMAL(7,6) CORR(y,x)

Chapter 10: Aggregate Functions
CORR

SQL Functions, Operators, Expressions, and Predicates 355

Implicit type conversion of UDTs for system operators and functions, including CORR, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Combination With Other Functions

CORR can be combined with ordered analytical functions in a SELECT list, QUALIFY clause,
or ORDER BY clause. For information on ordered analytical functions, see Chapter 11:
“Ordered Analytical Functions.”

CORR cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Example

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area
---------- ------- ---------

160000 126 358711030
180000 103 358711030
200000 82 358711030
220000 75 358711030
240000 82 358711030
260000 40 358711030
280000 20 358711030

Consider the following query.

SELECT CAST (CORR(NbrSold,SalesPrice) AS DECIMAL (6,4))
FROM HomeSales
WHERE area = 358711030
AND SalesPrice Between 160000 AND 280000;

CORR(NbrSold,SalesPrice)

-.9543

The result -.9543 suggests an inverse relationship between the variables. That is, for the area
and sales price range specified in the query, the value for NbrSold increases as sales price
decreases and decreases as sales price increases.

CORR Window Function

For the CORR window function that performs a group, cumulative, or moving computation,
see “Window Aggregate Functions” on page 449.

Chapter 10: Aggregate Functions
COUNT

356 SQL Functions, Operators, Expressions, and Predicates

COUNT

Purpose
Returns a column value that is the total number of qualified rows in a group.

Syntax

where:

Usage Notes

For COUNT functions that return the group, cumulative, or moving count, see “Window
Aggregate Functions” on page 449.

COUNT is valid for any data type.

With the exception of COUNT(*), the computation does not include nulls. For more
information, see SQL Fundamentals and “Aggregates and Nulls” on page 347.

Syntax element … Specifies …

ALL that all non-null values of value_expression, including duplicates, are included
in the total count. This is the default.

DISTINCT that a value_expression that evaluates to a null value or to a duplicate value does
not contribute to the total count.

value_expression a constant or column expression for which the total count is computed.

The expression cannot contain any ordered analytical or aggregate functions.

* to count all rows in the group of rows on which COUNT operates.

1101A411

COUNT ()value_expression

DISTINCT

*

ALL

THIS syntax … Counts the total number of rows …

COUNT(value_expression) in the group for which value_expression is not null.

COUNT (DISTINCT value_expression) in the group for which value_expression is unique and
not null.

COUNT(*) in the group of rows on which COUNT operates.

Chapter 10: Aggregate Functions
COUNT

SQL Functions, Operators, Expressions, and Predicates 357

For an example that uses COUNT(*) and nulls, see “Example 2” on page 358.

Result Type and Attributes

The following table lists the data type for the result of COUNT.

ANSI mode uses DECIMAL because tables frequently have a cardinality exceeding the range
of INTEGER.

Teradata mode uses INTEGER to avoid regression problems.

When in Teradata mode, if the result of COUNT overflows and reports an error, you can cast
the result to another data type, as illustrated by the following example.

SELECT CAST(COUNT(*) AS BIGINT)
FROM BIGTABLE;

The following table lists the default format and title for the result of COUNT.

For information on data type default formats, see “Data Type Formats and Format Phrases” in
SQL Data Types and Literals.

Mode Data Type

ANSI

IF MaxDecimal in DBSControl is … THEN the result type is …

0, 15, or 18 DECIMAL(15,0)

38 DECIMAL(38,0)

Teradata INTEGER

Operation Format Title

COUNT(x) Default format for result data type Count(x)

COUNT(*) Default format for result data type Count(*)

Chapter 10: Aggregate Functions
COUNT

358 SQL Functions, Operators, Expressions, and Predicates

Example 1

COUNT(*) reports the number of employees in each department because the GROUP BY
clause groups results by department number.

SELECT DeptNo, COUNT(*) FROM Employee
GROUP BY DeptNo
ORDER BY DeptNo;

Without the GROUP BY clause, only the total number of employees represented in the
Employee table is reported:

SELECT COUNT(*) FROM Employee;

Note that without the GROUP BY clause, the select list cannot include the DeptNo column
because it returns any number of values and COUNT(*) returns only one value.

Example 2

If any employees have been inserted but not yet assigned to a department, the return includes
them as nulls in the DeptNo column.

SELECT DeptNo, COUNT(*) FROM Employee
GROUP BY DeptNo
ORDER BY DeptNo;

Assuming that two new employees are unassigned, the results table is:

DeptNo Count(*)
------ --------
? 2

100 4
300 3
500 7
600 4
700 3

Example 3

If you ran the report in Example 2 using SELECT... COUNT … without grouping the results
by department number, the results table would have only registered non-null occurrences of
DeptNo and would not have included the two employees not yet assigned to a
department(nulls). The counts differ (23 in Example 2 as opposed to 21 using the statement
documented in this example).

Recall that in addition to the 21 employees in the Employee table who are assigned to a
department, there are two new employees who are not yet assigned to a department (the row
for each new employee has a null department number).

SELECT COUNT(deptno) FROM employee ;

The result of this SELECT is that COUNT returns a total of the non-null occurrences of
department number.

Chapter 10: Aggregate Functions
COUNT

SQL Functions, Operators, Expressions, and Predicates 359

Because aggregate functions ignore nulls, the two new employees are not reflected in the
figure.

Count(DeptNo)

 21

Example 4

This example uses COUNT to provide the number of male employees in the Employee table of
the database.

SELECT COUNT(sex)
FROM Employee
WHERE sex = 'M' ;

The result is as follows.

Count(Sex)

12

Example 5

In this example COUNT provides, for each department, a total of the rows that have non-null
department numbers.

SELECT deptno, COUNT(deptno)
FROM employee
GROUP BY deptno
ORDER BY deptno ;

Notice once again that the two new employees are not included in the count.

DeptNo Count(DeptNo)
------ -------------

100 4
300 3
500 7
600 4
700 3

Example 6

To get the number of employees by department, use COUNT(*) with GROUP BY and
ORDER BY clauses.

SELECT deptno, COUNT(*)
FROM employee
GROUP BY deptno
ORDER BY deptno ;

Chapter 10: Aggregate Functions
COUNT

360 SQL Functions, Operators, Expressions, and Predicates

In this case, the nulls are included, indicated by QUESTION MARK.

DeptNo Count(*)
------ --------
? 2

100 4
300 3
500 7
600 4
700 3

Example 7

To determine the number of departments in the Employee table, use COUNT (DISTINCT) as
illustrated in the following SELECT COUNT.

SELECT COUNT (DISTINCT DeptNo)
FROM Employee ;

The system responds with the following report.

Count(Distinct(DeptNo))

 5

Chapter 10: Aggregate Functions
COVAR_POP

SQL Functions, Operators, Expressions, and Predicates 361

COVAR_POP

Purpose
Returns the population covariance of its arguments for all non-null data point pairs.

Syntax

where:

ANSI Compliance

COVAR_POP is ANSI SQL:2008 compliant.

Definition

Covariance measures whether or not two random variables vary in the same way. It is the
average of the products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Combination With Other Functions

COVAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

COVAR_POP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Computation

The equation for computing COVAR_POP is defined as follows:

Syntax element … Specifies …

value_expression_2 a numeric expression to be paired with a second numeric expression to
determine their covariance.

The expressions cannot contain any ordered analytical or aggregate functions.
value_expression_1

1101B216

COVAR_POP value_expression_1, value_expression_2()

COVAR_POP SUM x AVG x()–() y AVG y()–()()
COUNT x()

---=

Chapter 10: Aggregate Functions
COVAR_POP

362 SQL Functions, Operators, Expressions, and Predicates

where:

When there are no non-null data point pairs in the data used for the computation, then
COVAR_POP returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for COVAR_POP(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

This variable … Represents …

x value_expression_2

y value_expression_1

Data Type Format Title

REAL COVAR_POP(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
COVAR_POP

SQL Functions, Operators, Expressions, and Predicates 363

Implicit type conversion of UDTs for system operators and functions, including
COVAR_POP, is a Teradata extension to the ANSI SQL standard. To disable this extension, set
the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

COVAR_POP Window Function

For the COVAR_POP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Chapter 10: Aggregate Functions
COVAR_SAMP

364 SQL Functions, Operators, Expressions, and Predicates

COVAR_SAMP

Purpose
Returns the sample covariance of its arguments for all non-null data point pairs.

Syntax

where:

ANSI Compliance

COVAR_SAMP is ANSI SQL:2008 compliant.

Definition

Covariance measures whether or not two random variables vary in the same way. It is the sum
of the products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Combination With Other Functions

COVAR_SAMP can be combined with ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

COVAR_SAMP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Computation

The equation for computing COVAR_SAMP is defined as follows:

where:

Syntax element … Specifies …

value_expression_2 a numeric expression to be paired with a second numeric expression to
determine their covariance.

The expressions cannot contain any ordered analytical or aggregate functions.
value_expression_1

1101A456

COVAR_SAMP value_expression_1, value_expression_2()

COVAR_SAMP SUM x AVG x()–() y AVG y()–()()
COUNT x() 1–

---=

Chapter 10: Aggregate Functions
COVAR_SAMP

SQL Functions, Operators, Expressions, and Predicates 365

When there are no non-null data point pairs in the data used for the computation, then
COVAR_SAMP returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for COVAR_SAMP(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
COVAR_SAMP, is a Teradata extension to the ANSI SQL standard. To disable this extension,

This variable … Represents …

x value_expression_2

y value_expression_1

Data Type Format Title

REAL COVAR_SAMP(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
COVAR_SAMP

366 SQL Functions, Operators, Expressions, and Predicates

set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

COVAR_SAMP Window Function

For the COVAR_SAMP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

The following SELECT statement returns the sample covariance of weight and height where
neither weight nor height is null.

SELECT COVAR_SAMP(weight,height)
FROM regrtbl;

Covar_Samp(weight,height)

150

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

Chapter 10: Aggregate Functions
GROUPING

SQL Functions, Operators, Expressions, and Predicates 367

GROUPING

Purpose
Returns a value that indicates whether a specified column in the result row was excluded from
the grouping set of a GROUP BY clause.

Syntax

where:

ANSI Compliance

GROUPING is ANSI SQL:2008 compliant.

Usage Notes

A null in the result row of a grouped query containing CUBE, ROLLUP, or GROUPING SET
can mean one of the following:

• The actual data for the column is null.

• The extended grouping specification aggregated over the column and excluded it from the
particular grouping. A null in this case really represents all values for this column.

Use GROUPING to distinguish between rows with nulls in actual data from rows with nulls
generated from grouping sets.

Result Type and Attributes

The data type, format, and title for GROUPING(x) are as follows.

Syntax element … Specifies …

expression a column in the result row that might have been excluded from a
grouped query containing CUBE, ROLLUP, or GROUPING SET.

The argument must be an item of a GROUP BY clause.

1101A461

GROUPING expression((

Data Type Format Title

INTEGER Default format of the INTEGER data type Grouping(x)

Chapter 10: Aggregate Functions
GROUPING

368 SQL Functions, Operators, Expressions, and Predicates

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Result Value

Example

Suppose you have the following data in the sales_view table.

To look at sales summaries by county and by city, use the following SELECT statement:

SELECT county, city, sum(margin)
FROM sale_view
GROUP BY GROUPING SETS ((county),(city));

The query reports the following data:

County City Sum(margin)
----------- ---------- -----------
Los Angeles ? 38700
San Diego ? 19500
? Long Beach 24300
? San Diego 19500
? Avalon 14400

Notice that in this example, a null represents all values for a column because the column was
excluded from the grouping set represented.

To distinguish between rows with nulls in actual data from rows with nulls generated from
grouping sets, use the GROUPING function:

SELECT county, city, sum(margin),
GROUPING(county) AS County_Grouping,
GROUPING(city) AS City_Grouping

FROM sale_view
GROUP BY GROUPING SETS ((county),(city));

IF the value of the specified column in the result row is … THEN GROUPING returns …

a null value generated when the extended grouping specification
aggregated over the column and excluded it from the particular
grouping

1

anything else 0

PID Cost Sale Margin State County City

1 38350 50150 11800 CA Los Angeles Long Beach

1 63375 82875 19500 CA San Diego San Diego

1 46800 61200 14400 CA Los Angeles Avalon

2 40625 53125 12500 CA Los Angeles Long Beach

Chapter 10: Aggregate Functions
GROUPING

SQL Functions, Operators, Expressions, and Predicates 369

The results are:

County City Sum(margin) County_Grouping City_Grouping
----------- ---------- ----------- --------------- -------------
Los Angeles ? 38700 0 1
San Diego ? 19500 0 1
? Long Beach 24300 1 0
? San Diego 19500 1 0
? Avalon 14400 1 0

You can also use GROUPING to replace the nulls that appear in a result row because the
extended grouping specification aggregated over a column and excluded it from the particular
grouping. For example:

SELECT CASE
WHEN GROUPING(county) = 1
THEN '-All Counties-'
ELSE county

END AS County,
CASE

WHEN GROUPING(city) = 1
THEN '-All Cities-'
ELSE city

END AS City,
SUM(margin)

FROM sale_view
GROUP BY GROUPING SETS (county,city);

The query reports the following data:

County City Sum(margin)
-------------- ------------ -----------
Los Angeles -All Cities- 38700
San Diego -All Cities- 19500
-All Counties- Long Beach 24300
-All Counties- San Diego 19500
-All Counties- Avalon 14400

Related Topics

For more information on GROUP BY, GROUPING SETS, ROLLUP, and CUBE, see SQL Data
Manipulation Language.

Chapter 10: Aggregate Functions
KURTOSIS

370 SQL Functions, Operators, Expressions, and Predicates

KURTOSIS

Purpose
Returns the kurtosis of the distribution of value_expression.

Syntax

where:

ANSI Compliance

KURTOSIS is a Teradata extension to the ANSI SQL:2008 standard.

Definition

Kurtosis is the fourth moment of a distribution. It is a measure of the relative peakedness or
flatness compared with the normal, Gaussian distribution.

The normal distribution has a kurtosis of 0.

Positive kurtosis indicates a relative peakedness of the distribution, while negative kurtosis
indicates a relative flatness.

Result Type and Attributes

The data type, format, and title for KURTOSIS(x) are as follows.

Syntax element … Specifies …

ALL to include all non-null values specified by value_expression, including
duplicates, in the computation. This is the default.

DISTINCT to exclude duplicates specified by value_expression from the computation.

value_expression a constant or column expression for which the kurtosis of the distribution of
its values is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B215

KURTOSIS value_expression()

DISTINCT
ALL

Data Type Format Title

REAL Default format of the REAL data type Kurtosis(x)

Chapter 10: Aggregate Functions
KURTOSIS

SQL Functions, Operators, Expressions, and Predicates 371

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including KURTOSIS,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Computation

The equation for computing KURTOSIS is defined as follows:

where:

Conditions That Produce a NULL Return Value

The following conditions produce a null return value:

• Fewer than four non-null data points in the data used for the computation

• STDDEV_SAMP(x) = 0

• Division by zero

Kurtosis COUNT x()() COUNT x() 1+()
COUNT x() 1–() COUNT x() 2–() COUNT x() 3–()

---⎝ ⎠
⎛ ⎞ SUM x AVG x()–

STDEV_SAMP x()
---**4()⎝ ⎠

⎛ ⎞ 3() COUNT x() 1–() **2()()
COUNT x() 2–() COUNT x() 3–()

---⎝ ⎠
⎛ ⎞–=

This variable … Represents …

x value_expression

Chapter 10: Aggregate Functions
MAX

372 SQL Functions, Operators, Expressions, and Predicates

MAX

Purpose
Returns a column value that is the maximum value for value_expression for a group.

Syntax

where:

ANSI Compliance

MAX is ANSI SQL:2008 compliant.

MAXIMUM is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The following table lists the default attributes for the result of MAX(x).

Syntax element … Specifies …

ALL that all non-null values specified by value_expression, including duplicates, are
included in the maximum value computation for the group. This is the default.

DISTINCT that duplicate and non-null values specified by value_expression are eliminated
from the maximum value computation for the group.

value_expression a constant or column expression for which the maximum value is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B412

MAXIMUM ()value_expression

DISTINCT
ALL

MAX

Attribute Value

Data Type
IF operand x is … THEN the result data type is the data type …

not a UDT of operand x.

a UDT to which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
MAX

SQL Functions, Operators, Expressions, and Predicates 373

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• Byte

• DATE

• TIME or TIMESTAMP

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including MAX, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Usage Notes

MAX is valid for character data as well as numeric data. When used with a character
expression, MAX returns the highest sort order.

Nulls are not included in the result computation. For more information, see SQL
Fundamentals and “Aggregates and Nulls” on page 347.

If value_expression is a column expression, the column must refer to at least one column in the
table from which data is selected.

The value_expression must not specify a column reference to a view column that is derived
from a function.

Format
IF operand x is … THEN the result format is the format of …

not a UDT operand x.

a UDT the type to which the UDT is implicitly cast.

Title Maximum(x)

Attribute Value

Chapter 10: Aggregate Functions
MAX

374 SQL Functions, Operators, Expressions, and Predicates

MAX Window Function

For the MAX window function that computes a group, cumulative, or moving maximum
value, see “Window Aggregate Functions” on page 449.

Example 1: CHARACTER Data

The following SELECT returns the immediately following result.

SELECT MAX(Name)
FROM Employee;

Maximum(Name)

Zorn J

Example 2: Column Expressions

You want to know which item in your warehouse stock has the maximum cost of sales.

SELECT MAX(CostOfSales) AS m, ProdID
FROM Inventory
GROUP BY ProdID
ORDER BY m DESC;

Maximum(CostOfSales) ProdID
-------------------- ------

1295 3815
975 4400
950 4120

Chapter 10: Aggregate Functions
MIN

SQL Functions, Operators, Expressions, and Predicates 375

MIN

Purpose
Returns a column value that is the minimum value for value_expression for a group.

Syntax

where:

ANSI Compliance

MIN is ANSI SQL:2008 compliant.

MINIMUM is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The following table lists the default attributes for the result of MIN(x).

Syntax element … Specifies …

ALL that all non-null values specified by value_expression, including duplicates, are
included in the minimum value computation for the group. This is the default.

DISTINCT that duplicate and non-null values specified by value_expression are eliminated
from the minimum value computation for the group.

value_expression a constant or column expression for which the minimum value is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B413

MINIMUM ()value_expression

MIN DISTINCT
ALL

Attribute Value

Data Type
IF operand x is … THEN the result data type is the data type …

not a UDT of operand x.

a UDT to which the UDT is implicitly cast.

Title Minimum(x)

Chapter 10: Aggregate Functions
MIN

376 SQL Functions, Operators, Expressions, and Predicates

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• Byte

• DATE

• TIME or TIMESTAMP

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including MIN, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Usage Notes

MINIMUM is valid for character data as well as numeric data. MINIMUM returns the lowest
sort order of a character expression.

The computation does not include nulls. For more information, see “Manipulating Nulls” in
SQL Fundamentals and “Aggregates and Nulls” on page 347.

If value_expression specifies a column expression, the expression must refer to at least one
column in the table from which data is selected.

If value_expression specifies a column reference, the column must not be a view column that is
derived from a function.

Format
IF operand x is … THEN the result format is the format of …

not a UDT operand x.

a UDT the type to which the UDT is implicitly cast.

Attribute Value

Chapter 10: Aggregate Functions
MIN

SQL Functions, Operators, Expressions, and Predicates 377

MIN Window Function

For the MIN window function that computes a group, cumulative, or moving minimum
value, see “Window Aggregate Functions” on page 449.

Example 1: MINIMUM Used With CHARACTER Data

The following SELECT returns the immediately following result.

SELECT MINIMUM(Name)
FROM Employee;

Minimum(Name)

Aarons A

Example 2: JIT Inventory

Your manufacturing shop has recently changed vendors and you know that you have no
quantity of parts from that vendor that exceeds 20 items for the ProdID. You need to know
how many of your other inventory items are low enough that you need to schedule a new
shipment, where “low enough” is defined as fewer than 30 items in the QUANTITY column
for the part.

SELECT ProdID, MINIMUM(QUANTITY)
FROM Inventory
WHERE QUANTITY BETWEEN 20 AND 30
GROUP BY ProdID
ORDER BY ProdID;

The report is as follows:

ProdID Minimum(Quantity)
----------- -----------------

1124 24
1355 21
3215 25
4391 22

Chapter 10: Aggregate Functions
REGR_AVGX

378 SQL Functions, Operators, Expressions, and Predicates

REGR_AVGX

Purpose
Returns the mean of the independent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_AVGX is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_AVGX can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

REGR_AVGX cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B414

REGR_AVGX dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_AVGX

SQL Functions, Operators, Expressions, and Predicates 379

Computation

The equation for computing REGR_AVGX is:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_AVGX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_AVGX(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

This variable … Represents …

x independent_variable_expression

x is the independent, or predictor, variable expression.

n COUNT(x)

REGR_AVGX SUM x()
n

--------------------=

Data Type Format Title

REAL REGR_AVGX(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_AVGX

380 SQL Functions, Operators, Expressions, and Predicates

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
REGR_AVGX, is a Teradata extension to the ANSI SQL standard. To disable this extension, set
the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_AVGX Window Function

For the REGR_AVGX window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean height for regrtbl where neither weight
nor height is null.

SELECT REGR_AVGX(weight,height)
FROM regrtbl;

Regr_Avgx(weight,height)

68

Chapter 10: Aggregate Functions
REGR_AVGY

SQL Functions, Operators, Expressions, and Predicates 381

REGR_AVGY

Purpose
Returns the mean of the dependent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_AVGY is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_AVGY can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

REGR_AVGY cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B415

REGR_AVGY dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_AVGY

382 SQL Functions, Operators, Expressions, and Predicates

Computation

The equation for computing REGR_AVGY is:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_AVGY returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_AVGY(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

This variable … Represents …

y dependent_variable_expression

y is the dependent, or response, variable expression.

n COUNT(y)

REGR_AVGY SUM y()
n

--------------------=

Data Type Format Title

REAL REGR_AVGY(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_AVGY

SQL Functions, Operators, Expressions, and Predicates 383

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGY,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_AVGY Window Function

For the REGR_AVGY window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean weight from regrtbl where neither height
nor weight is null.

SELECT REGR_AVGY(weight,height)
FROM regrtbl;

Regr_Avgy(weight,height)

140

Chapter 10: Aggregate Functions
REGR_COUNT

384 SQL Functions, Operators, Expressions, and Predicates

REGR_COUNT

Purpose
Returns the count of all non-null data pairs of the dependent and independent variable
arguments.

Syntax

where:

ANSI Compliance

REGR_COUNT is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_COUNT can be combined with ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_COUNT cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B416

REGR_COUNT dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_COUNT

SQL Functions, Operators, Expressions, and Predicates 385

Result Type and Attributes

The following table lists the result type of REGR_COUNT(y,x).

The result type of REGR_COUNT is consistent with the result type of COUNT for ANSI
transaction mode and Teradata transaction mode.

When in Teradata mode, if the result of REGR_COUNT overflows and reports an error, you
can cast the result to another data type, as illustrated by the following example.

SELECT CAST(REGR_COUNT(weight,height) AS BIGINT)
FROM regrtbl;

The following table lists the default format and title for the result of REGR_COUNT(y, x).

For information on data type default formats, see “Data Type Formats and Format Phrases” in
SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

Mode Data Type

ANSI

IF MaxDecimal in DBSControl is … THEN the result type is …

0, 15, or 18 DECIMAL(15,0)

38 DECIMAL(38,0)

Teradata INTEGER

Format Title

REGR_COUNT(y,x)

IF operand y is … THEN the format is …

character the default format for FLOAT.

numeric the same format as y.

UDT the format for the data type to which the UDT
is implicitly cast.

Chapter 10: Aggregate Functions
REGR_COUNT

386 SQL Functions, Operators, Expressions, and Predicates

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
REGR_COUNT, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_COUNT Window Function

For the REGR_COUNT window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

The following SELECT statement returns the number of rows in regrtbl where neither height
nor weight is null.

SELECT REG_COUNT(weight,height)
FROM regrtbl;

Regr_Count(weight,height)

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

Chapter 10: Aggregate Functions
REGR_COUNT

SQL Functions, Operators, Expressions, and Predicates 387

9

Chapter 10: Aggregate Functions
REGR_INTERCEPT

388 SQL Functions, Operators, Expressions, and Predicates

REGR_INTERCEPT

Purpose
Returns the intercept of the univariate linear regression line through all non-null data pairs of
the dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_INTERCEPT is ANSI SQL:2008 compliant.

Definition

The intercept is the point at which the regression line through the non-null data pairs in the
sample intersects the ordinate, or y-axis, of the graph.

The plot of the linear regression on the variables is used to predict the behavior of the
dependent variable from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables,
and the computation of the simple linear regression between such variable pairs does not
reflect such a relationship.

Independent and Dependent Variables

An independent variable is a treatment: something that is varied under your control to test the
behavior of another variable.

A dependent variable is something that is measured in response to a treatment.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B417

REGR_INTERCEPT dependent_variable_expression, independent_variable_expression ()

Chapter 10: Aggregate Functions
REGR_INTERCEPT

SQL Functions, Operators, Expressions, and Predicates 389

For example, you might want to test the ability of various promotions to enhance sales of a
particular item.

In this case, the promotion is the independent variable and the sales of the item made as a
result of the individual promotion is the dependent variable.

The value of the linear regression intercept tells you the predicted value for sales when there is
no promotion for the item selected for analysis.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_INTERCEPT can be combined with any of the ordered analytical functions in a
SELECT list, QUALIFY clause, or ORDER BY clause. For more information on ordered
analytical functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_INTERCEPT cannot be combined with aggregate functions within the same SELECT
list, QUALIFY clause, or ORDER BY clause.

Computation

The equation for computing REGR_INTERCEPT is defined as follows:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_INTERCEPT(y, x) are as follows.

This variable … Represents …

x independent_variable_expression

y dependent_variable_expression

REGR_INTERCEPT AVG y() REGR_SLOPE y,x()AVG x()–=

Data Type Format Title

REAL Default format of the REAL data type REGR_INTERCEPT(y,x)

Chapter 10: Aggregate Functions
REGR_INTERCEPT

390 SQL Functions, Operators, Expressions, and Predicates

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
REGR_INTERCEPT, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

For details on implicit type conversion of UDTs, see Chapter 20: “Data Type Conversions.”

REGR_INTERCEPT Window Function

For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example uses the data from the HomeSales table.

The following query returns the intercept of the regression line for NbrSold and SalesPrice in
the range of 160000 to 280000 in the 358711030 area.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

Chapter 10: Aggregate Functions
REGR_INTERCEPT

SQL Functions, Operators, Expressions, and Predicates 391

SELECT CAST (REGR_INTERCEPT(NbrSold,SalesPrice) AS DECIMAL (5,1))
FROM HomeSales
WHERE area = 358711030
AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

REGR_INTERCEPT(NbrSold,SalesPrice)

249.9

Chapter 10: Aggregate Functions
REGR_R2

392 SQL Functions, Operators, Expressions, and Predicates

REGR_R2

Purpose
Returns the coefficient of determination for all non-null data pairs of the dependent and
independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_R2 is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_R2 can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_R2 cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B418

REGR_R2 dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_R2

SQL Functions, Operators, Expressions, and Predicates 393

Computation

The coefficient of determination for two variables is the square of their Pearson product-
moment correlation.

The equation for computing REGR_R2 is defined as follows:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_R2 returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_R2(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

REGR_R2 POWER COUNT xy() SUM xy() SUM x() SUM y() , 2•–•()
COUNT xy() SUM x**2() SUM x() SUM x()) COUNT xy() SUM y**2() SUM y() SUM y()•–•()••–•()(

---=

This variable … Represents …

x independent_variable_expression

x is the independent, or predictor, variable expression.

y dependent_variable_expression

y is the dependent, or response, variable expression.

Data Type Format Title

REAL REGR_R2(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

numeric the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_R2

394 SQL Functions, Operators, Expressions, and Predicates

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including REGR_R2, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_R2 Window Function

For the REGR_R2 window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the coefficient of determination for height and
weight where neither height nor weight is null.

SELECT CAST(REGR_R2(weight,height) AS DECIMAL(4,2))
FROM regrtbl;

REGR_R2(weight,height)

Chapter 10: Aggregate Functions
REGR_R2

SQL Functions, Operators, Expressions, and Predicates 395

.58

Chapter 10: Aggregate Functions
REGR_SLOPE

396 SQL Functions, Operators, Expressions, and Predicates

REGR_SLOPE

Purpose
Returns the slope of the univariate linear regression line through all non-null data pairs of the
dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_SLOPE is ANSI SQL:2008 compliant.

Definition

The slope of the best fit linear regression is a measure of the rate of change of the regression of
one independent variable on the dependent variable.

The plot of the linear regression on the variables is used to predict the behavior of the
dependent variable from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables,
and the computation of the simple linear regression between such variable pairs does not
reflect such a relationship.

Independent and Dependent Variables

An independent variable is a treatment: something that is varied under your control to test the
behavior of another variable.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B419

REGR_SLOPE dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_SLOPE

SQL Functions, Operators, Expressions, and Predicates 397

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a
particular item.

In this case, the promotion is the independent variable and the sales of the item made as a
result of the individual promotion is the dependent variable.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_SLOPE can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

REGR_SLOPE cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Computation

The equation for computing REGR_SLOPE is defined as follows:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_SLOPE returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_SLOPE(y, x) are as follows.

This variable … Represents …

x independent_variable_expression

y dependent_variable_expression

REGR_SLOPE COUNT x()SUM x*y()() SUM x()SUM y()()–
COUNT x()SUM x**2()() SUM x()**2()–

--=

Data Type Format Title

REAL Default format of the REAL data type REGR_SLOPE(y,x)

Chapter 10: Aggregate Functions
REGR_SLOPE

398 SQL Functions, Operators, Expressions, and Predicates

For information on the default format of data types and the formatting characters in the
format, see “Data Type Formats and Format Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
REGR_SLOPE, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_SLOPE Window Function

For the REGR_SLOPE window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

Chapter 10: Aggregate Functions
REGR_SLOPE

SQL Functions, Operators, Expressions, and Predicates 399

The following query returns the slope of the regression line for NbrSold and SalesPrice in the
range of 160000 to 280000 in the 358711030 area.

SELECT CAST (REGR_SLOPE(NbrSold,SalesPrice) AS FLOAT)
FROM HomeSales
WHERE area = 358711030
AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

REGR_SLOPE(NbrSold,SalesPrice)

-7.92857142857143E-004

Chapter 10: Aggregate Functions
REGR_SXX

400 SQL Functions, Operators, Expressions, and Predicates

REGR_SXX

Purpose
Returns the sum of the squares of the independent_variable_expression for all non-null data
pairs of the dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_SXX is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_SXX can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_SXX cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B420

REGR_SXX dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_SXX

SQL Functions, Operators, Expressions, and Predicates 401

Computation

The equation for computing REGR_SXX is defined as follows:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_SXX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_SXX(y, x) are as follows.

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

This variable … Represents …

x independent_variable_expression

x is the independent, or predictor, variable expression.

n COUNT(x)

REGR_SXX SUM x**2()() SUM x()
SUM x()

n
--------------------⎝

⎛
⎠
⎞•⎝

⎛
⎠
⎞–=

Data Type Format Title

REAL REGR_SXX(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_SXX

402 SQL Functions, Operators, Expressions, and Predicates

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_SXX Window Function

For the REGR_SXX window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for height where neither height
nor weight is null.

SELECT REGR_SXX(weight,height)
FROM regrtbl;

Regr_Sxx(weight,height)

 240

Chapter 10: Aggregate Functions
REGR_SXY

SQL Functions, Operators, Expressions, and Predicates 403

REGR_SXY

Purpose
Returns the sum of the products of the independent_variable_expression and the
dependent_variable_expression for all non-null data pairs of the dependent and independent
variable arguments.

Syntax

where:

ANSI Compliance

REGR_SXY is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_SXY can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_SXY cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B421

REGR_SXY dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_SXY

404 SQL Functions, Operators, Expressions, and Predicates

Computation

The equation for computing REGR_SXY is defined as follows:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_SXY returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_SXY(y, x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

This variable … Represents …

x independent_variable_expression

x is the independent, or predictor, variable expression.

y dependent_variable_expression

y is the dependent, or response, variable expression.

n COUNT(x,y)

REGR_SXY SUM x*y()() SUM x()() SUM y()
n

--------------------⎝ ⎠
⎛ ⎞•⎝ ⎠

⎛ ⎞–=

Data Type Format Title

REAL REGR_SXY(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_SXY

SQL Functions, Operators, Expressions, and Predicates 405

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXY,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_SXY Window Function

For the REGR_SXY window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of products of height and weight where
neither height nor weight is null.

SELECT REGR_SXY(weight,height)
FROM regrtbl;

Regr_Sxy(weight,height)

1200

Chapter 10: Aggregate Functions
REGR_SYY

406 SQL Functions, Operators, Expressions, and Predicates

REGR_SYY

Purpose
Returns the sum of the squares of the dependent_variable_expression for all non-null data pairs
of the dependent and independent variable arguments.

Syntax

where:

ANSI Compliance

REGR_SYY is ANSI SQL:2008 compliant.

Setting Up Axes for Plotting

If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and
the x-axis (abscissa) as the independent variable.

Combination With Other Functions

REGR_SYY can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

REGR_SYY cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

dependent_variable_expression the dependent variable for the regression.

A dependent variable is something that is measured in response
to a treatment.

The expression cannot contain any ordered analytical or
aggregate functions.

independent_variable_expression the independent variable for the regression.

An independent variable is a treatment: something that is varied
under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or
aggregate functions.

1101B422

REGR_SYY dependent_variable_expression, independent_variable_expression()

Chapter 10: Aggregate Functions
REGR_SYY

SQL Functions, Operators, Expressions, and Predicates 407

Computation

The equation for computing REGR_SYY is defined as follows:

where:

When there are fewer than two non-null data point pairs in the data used for the computation,
then REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for REGR_SYY(y, x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts that cast between the UDTs and any of the following predefined types:

• Numeric

• Character

This variable … Represents …

y dependent_variable_expression

y is the dependent, or response, variable expression.

n COUNT(y)

REGR_SYY SUM y**2()() SUM y()
SUM y()

n
--------------------⎝ ⎠

⎛ ⎞•⎝ ⎠
⎛ ⎞–=

Data Type Format Title

REAL REGR_SYY(y,x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
REGR_SYY

408 SQL Functions, Operators, Expressions, and Predicates

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including REGR_SYY, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

REGR_SYY Window Function

For the REGR_SYY window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Example

This example is based the following regrtbl data. Nulls are indicated by the QUESTION
MARK character.

c1 height weight
-- ------ ------
1 60 84
2 62 95
3 64 140
4 66 155
5 68 119
6 70 175
7 72 145
8 74 197
9 76 150

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for weight where neither height
nor weight is null.

SELECT REGR_SYY(weight,height)
FROM regrtbl;

Regr_Syy(weight,height)

10426

Chapter 10: Aggregate Functions
SKEW

SQL Functions, Operators, Expressions, and Predicates 409

SKEW

Purpose
Returns the skewness of the distribution of value_expression.

Syntax

where:

ANSI Compliance

SKEW is ANSI SQL:2008 compliant.

Definition

Skewness is the third moment of a distribution. It is a measure of the asymmetry of the
distribution about its mean compared with the normal, Gaussian, distribution.

The normal distribution has a skewness of 0.

Positive skewness indicates a distribution having an asymmetric tail extending toward more
positive values, while negative skewness indicates an asymmetric tail extending toward more
negative values.

Syntax element … Specifies …

ALL that all non-null values specified by value_expression, including duplicates, are
included in the computation for the group. This is the default.

DISTINCT that null and duplicate values specified by value_expression are eliminated from
the computation for the group.

value_expression a constant or column expression for which the skewness of the distribution of
its values is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B428

SKEW value_expression()

DISTINCT
ALL

Chapter 10: Aggregate Functions
SKEW

410 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

The data type, format, and title for SKEW(x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including SKEW, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Computation

The equation for computing SKEW is defined as follows:

where:

Data Type Format Title

REAL Default format of the REAL data type SKEW(x)

This variable … Represents …

x value_expression

SKEW COUNT x()
COUNT x() 1–() COUNT x() 2–()

--- SUM x AVG x()–
STDDEV_SAMP x()**3()

--⎝ ⎠
⎛ ⎞•=

Chapter 10: Aggregate Functions
SKEW

SQL Functions, Operators, Expressions, and Predicates 411

Conditions That Produce a Null Result

The following conditions product a null result:

• Fewer than three non-null data points in the data used for the computation

• STDDEV_SAMP(x) = 0

• Division by zero

Chapter 10: Aggregate Functions
STDDEV_POP

412 SQL Functions, Operators, Expressions, and Predicates

STDDEV_POP

Purpose
Returns the population standard deviation for the non-null data points in value_expression.

Syntax

where:

ANSI Compliance

STDDEV_POP is ANSI SQL:2008 compliant.

Definition

The standard deviation is the second moment of a population. For a population, it is a
measure of dispersion from the mean of that population.

Do not use STDDEV_POP unless the data points you are processing are the complete
population.

Combination With Other Functions

STDDEV_POP can be combined with ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

STDDEV_POP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Syntax element … Specifies …

ALL to include all non-null values specified by value_expression, including
duplicates, in the computation. This is the default.

DISTINCT to exclude duplicates of value_expression from the computation.

value_expression a numeric constant or column expression whose population standard
deviation is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B424

STDDEV_POP value_expression()

DISTINCT
ALL

Chapter 10: Aggregate Functions
STDDEV_POP

SQL Functions, Operators, Expressions, and Predicates 413

How GROUP BY Affects Report Breaks

STDDEV_POP operates differently depending on whether there is a GROUP BY clause in the
SELECT statement.

Measuring the Standard Deviation of a Population

If your data represents only a sample of the entire population for the variable, then use the
STDDEV_SAMP function. For information, see “STDDEV_SAMP” on page 415.

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the
same number, but you should always use the more conservative STDDEV_SAMP calculation
unless you are absolutely certain that your data constitutes the entire population for the
variable.

Computation

The equation for computing STDDEV_POP is as follows:

where:

When there are no non-null data points in the population, then STDDEV_POP returns
NULL.

Division by zero results in NULL rather than an error.

IF the query … THEN STDDEV_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

This variable … Represents …

x value_expression

STDDEV_POP SQRT COUNT x()SUM x**2() SUM x()**2()–
COUNT x()**2()

---()=

Chapter 10: Aggregate Functions
STDDEV_POP

414 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

The data type, format, and title for STDDEV_POP(x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
STDDEV_POP, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

STDDEV_POP Window Function

For the STDDEV_POP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Data Type Format Title

REAL STDDEV_POP(x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
STDDEV_SAMP

SQL Functions, Operators, Expressions, and Predicates 415

STDDEV_SAMP

Purpose
Returns the sample standard deviation for the non-null data points in value_expression.

Syntax

where:

ANSI Compliance

STDDEV_SAMP is ANSI SQL:2008 compliant.

Definition

The standard deviation is the second moment of a distribution. For a sample, it is a measure
of dispersion from the mean of that sample. The computation is more conservative for the
population standard deviation to minimize the effect of outliers on the computed value.

Computation

The equation for computing STDDEV_SAMP is as follows:

where:

Syntax element … Specifies …

ALL to include all non-null values specified by value_expression, including
duplicates, in the computation. This is the default.

DISTINCT to exclude duplicates of value_expression from the computation.

value_expression a numeric constant or column expression whose sample standard deviation is
to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B425

STDDEV_SAMP value_expression()

DISTINCT
ALL

STDDEV_SAMP SQRT COUNT x()SUM x**2() SUM x()**2()–
COUNT x() COUNT x() 1–()

---()=

Chapter 10: Aggregate Functions
STDDEV_SAMP

416 SQL Functions, Operators, Expressions, and Predicates

Division by zero results in NULL rather than an error.

When there are fewer than two non-null data points in the sample used for the computation,
then STDDEV_SAMP returns NULL.

Result Type and Attributes

The data type, format, and title for STDDEV_SAMP(x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
STDDEV_SAMP, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

This variable … Represents …

x value_expression

Data Type Format Title

REAL STDDEV_SAMP(x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
STDDEV_SAMP

SQL Functions, Operators, Expressions, and Predicates 417

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Combination With Other Functions

STDDEV_SAMP can be combined with ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical
functions, see Chapter 11: “Ordered Analytical Functions.”

STDDEV_SAMP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

How GROUP BY Affects Report Breaks

The GROUP BY clause affects the STDDEV_SAMP operation.

Measuring the Standard Deviation of a Population

If your data represents the entire population for the variable, then use the STDDEV_POP
function. For information, see “STDDEV_POP” on page 412.

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the
same number, but you should use the more conservative STDDEV_SAMP calculation unless
you are absolutely certain that your data constitutes the entire population for the variable.

STDDEV_SAMP Window Function

For the STDDEV_SAMP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

IF the query … THEN STDDEV_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Chapter 10: Aggregate Functions
SUM

418 SQL Functions, Operators, Expressions, and Predicates

SUM

Purpose
Returns a column value that is the arithmetic sum for a specified expression for a group.

Syntax

where:

ANSI Compliance

SUM is ANSI SQL:2008 compliant.

Result Type and Attributes

The following table lists the default attributes for the result of SUM(x).

Syntax element … Specifies …

ALL that all non-null values specified by value_expression, including duplicates,
are included in the sum computation for the group. This is the default.

DISTINCT that duplicate and non-null values specified by value_expression are
eliminated from the sum computation for the group.

value_expression a constant or column expression for which the sum is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B423

SUM ()value_expression

DISTINCT
ALL

Data Type of
Operand Data Type of Result Format Title

BYTEINT or
SMALLINT

Same as the operand Default format of
the INTEGER
data type

Sum(x)

character Same as the operand Default format
for FLOAT

UDT Same as the operand Format for the
data type to
which the UDT is
implicitly cast

Chapter 10: Aggregate Functions
SUM

SQL Functions, Operators, Expressions, and Predicates 419

For an explanation of the formatting characters in the format, and information on data type
default formats, see “Data Type Formats and Format Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and either of the following predefined types:

• Numeric

• Character

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including SUM, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

DECIMAL(n,m) DECIMAL(p,m), where p is determined by
the rules in the following table.

Default format
for the data type
of the operand

Sum(x)

IF MaxDecimal in
DBSControl is …

AND … THEN
p is …

0 or 15 n ≤15 15.

15 < n ≤18 18.

n > 18 38.

18 n ≤18 18.

n > 18 38.

38 n = any value 38.

Other than UDT,
SMALLINT,
BYTEINT,
DECIMAL, or
character

Same as the operand Default format
for the data type
of the operand

Data Type of
Operand Data Type of Result Format Title

Chapter 10: Aggregate Functions
SUM

420 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

If value_expression is a column reference, the column must not be to a view column that is
derived from a function.

SUM is valid only for numeric data.

Nulls are not included in the result computation. For details, see “Manipulating Nulls” in SQL
Fundamentals and “Aggregates and Nulls” on page 347.

The SUM function can result in a numeric overflow or the loss of data because of the default
output format. If this occurs, a data type declaration may be used to override the default.

For example, if QUANTITY comprises many rows of INTEGER values, it may be necessary to
specify a data type declaration like the following for the SUM function:

SUM(QUANTITY(FLOAT))

SUM Window Function

For the SUM function that returns the cumulative, group, or moving sum, see “Window
Aggregate Functions” on page 449.

Example 1: Accounts Receivable

You need to know how much cash you need to pay all vendors who billed you 30 or more days
ago.

SELECT SUM(Invoice)
FROM AcctsRec
WHERE (CURRENT_DATE - InvDate) >= 30;

Example 2: Face Value of Inventory

You need to know the total face value for all items in your inventory.

SELECT SUM(QUANTITY * Price)
FROM Inventory;

Sum((QUANTITY * Price))

38,525,151.91

Chapter 10: Aggregate Functions
VAR_POP

SQL Functions, Operators, Expressions, and Predicates 421

VAR_POP

Purpose
Returns the population variance for the data points in value_expression.

Syntax

where:

ANSI Compliance

VAR_POP is ANSI SQL:2008 compliant.

Definition

The variance of a population is a measure of dispersion from the mean of that population.

Do not use VAR_POP unless the data points you are processing are the complete population.

Computation

The equation for computing VAR_POP is as follows:

where:

Syntax element … Specifies …

ALL to include all non-null values specified by value_expression, including
duplicates, in the computation. This is the default.

DISTINCT to exclude duplicates of value_expression from the computation.

value_expression a numeric constant or column expression whose population variance is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

1101B426

VAR_POP value_expression()

DISTINCT
ALL

This variable … Represents …

x value_expression

VAR_POP COUNT x()SUM x**2() SUM x()**2()–
COUNT x()**2()

---=

Chapter 10: Aggregate Functions
VAR_POP

422 SQL Functions, Operators, Expressions, and Predicates

When the population has no non-null data points, VAR_POP returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes

The data type, format, and title for VAR_POP(x) are as follows.

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including VAR_POP, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Data Type Format Title

REAL VAR_POP(x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

Chapter 10: Aggregate Functions
VAR_POP

SQL Functions, Operators, Expressions, and Predicates 423

Combination With Other Functions

VAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

VAR_POP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

GROUP BY Affects Report Breaks

The GROUP BY clause affects the VAR_POP operation.

Measuring the Standard Deviation of a Population

If your data represents the only a sample of the entire population for the variable, then use the
VAR_SAMP function. For information, see “VAR_SAMP” on page 424.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same
number, but you should always use the more conservative STDDEV_SAMP calculation unless
you are absolutely certain that your data constitutes the entire population for the variable.

VAR_POP Window Function

For the VAR_POP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

IF the query … THEN VAR_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Chapter 10: Aggregate Functions
VAR_SAMP

424 SQL Functions, Operators, Expressions, and Predicates

VAR_SAMP

Purpose
Returns the sample variance for the data points in value_expression.

Syntax

where:

ANSI Compliance

VAR_SAMP is ANSI SQL:2008 compliant.

Definition

The variance of a sample is a measure of dispersion from the mean of that sample. It is the
square of the sample standard deviation.

The computation is more conservative than that for the population standard deviation to
minimize the effect of outliers on the computed value.

Computation

The equation for computing VAR_SAMP is as follows:

where:

Syntax element … Specifies …

ALL to include all non-null values specified by value_expression, including
duplicates, in the computation. This is the default.

DISTINCT to exclude duplicates of value_expression from the computation.

value_expression a numeric constant or column expression whose sample variance is to be
computed.

The expression cannot contain ordered analytical or aggregate functions.

1101B427

VAR_SAMP value_expression()

DISTINCT
ALL

VAR_SAMP COUNT x()SUM x**2() SUM x()**2()–
COUNT x()() COUNT x() 1–()

---=

Chapter 10: Aggregate Functions
VAR_SAMP

SQL Functions, Operators, Expressions, and Predicates 425

When the sample used for the computation has fewer than two non-null data points,
VAR_SAMP returns NULL.

Division by zero results in NULL rather than an error.

Combination With Other Functions

VAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see
Chapter 11: “Ordered Analytical Functions.”

VAR_SAMP cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

GROUP BY Affects Report Breaks

VAR_SAMP operates differently depending on whether or not there is a GROUP BY clause in
the SELECT statement.

Measuring the Variance of a Population

If your data represents the entire population for the variable, then use the VAR_POP function.
For information, see “VAR_POP” on page 421.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same
number, but you should always use the more conservative VAR_SAMP calculation unless you
are absolutely certain that your data constitutes the entire population for the variable.

This variable … Represents …

x value_expression

IF the query … THEN VAR_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Chapter 10: Aggregate Functions
VAR_SAMP

426 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

The data type, format, and title for VAR_SAMP(x) are as follows.

Support for UDTs

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and any of the following predefined types:

• Numeric

• Character

• DATE

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including VAR_SAMP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

VAR_SAMP Window Function

For the VAR_SAMP window function that performs a group, cumulative, or moving
computation, see “Window Aggregate Functions” on page 449.

Data Type Format Title

REAL VAR_SAMP(x)

IF the operand is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

UDT the format for the data type to
which the UDT is implicitly cast.

For details on the default format of data types, see SQL Data Types
and Literals.

SQL Functions, Operators, Expressions, and Predicates 427

CHAPTER 11 Ordered Analytical Functions

This chapter describes ordered analytical functions that enable and expedite the processing of
queries containing On Line Analytical Processing (OLAP) style decision support requests.

Ordered analytical functions include ANSI SQL:2008 compliant window functions, as well as
Teradata SQL-specific functions.

Chapter 11: Ordered Analytical Functions
Ordered Analytical Functions

428 SQL Functions, Operators, Expressions, and Predicates

Ordered Analytical Functions

Ordered analytical functions provide support for many common operations in analytical
processing and data mining environments that require an ordered set of results rows or
depend on values in a previous row.

For example, computing a seven-day running sum requires:

• First, that rows be ordered by date.

• Then, the value for the running sum must be computed,

• Adding the current row value to the value of the sum from the previous row, and

• Subtracting the value from the row eight days ago.

Ordered Analytical Functions Benefits

Ordered analytical functions extend the Teradata Database query execution engine with the
concept of an ordered set and with the ability to use the values from multiple rows in
computing a new value.

The result of an ordered analytical function is handled the same as any other SQL expression.
It can be a result column or part of a more complex arithmetic expression within its SELECT.

Each of the ordered analytical functions permit you to specify the sort ordering column or
columns on which to sort the rows retrieved by the SELECT statement. The sort order and any
other input parameters to the functions are specified the same as arguments to other SQL
functions and can be any normal SQL expression.

Ordered Analytical Calculations at the SQL Level

Performing ordered analytical computations at the SQL level rather than through a higher-
level OLAP calculation engine provides four distinct advantages.

• Reduced programming effort.

• Elimination of the need for external sort routines.

• Elimination of the need to export large data sets to external tools because ordered
analytical functions enable you to target the specific data for analysis within the warehouse
itself by specifying conditions in the query.

• Marked enhancement of analysis performance over the slow, single-threaded operations
that external tools perform on large data sets.

Teradata Warehouse Miner

You need not directly code SQL queries to take advantage of ordered analytical functions.

Both Teradata Database and many third-party query management and analytical tools have
full access to the Teradata SQL ordered analytical functions. Teradata Warehouse Miner, for

Chapter 11: Ordered Analytical Functions
Syntax Alternatives for Ordered Analytical Functions

SQL Functions, Operators, Expressions, and Predicates 429

example, a tool that performs data mining preprocessing inside the database engine, relies on
these features to perform functions in the database itself rather than requiring data extraction.

Teradata Warehouse Miner includes approximately 40 predefined data mining functions in
SQL based on the Teradata SQL-specific functions. For example, the Teradata Warehouse
Miner FREQ function uses the Teradata SQL-specific functions CSUM, RANK, and QUALIFY
to determine frequencies.

Example

The following example shows how the SQL query to calculate a frequency of gender to marital
status would appear using Teradata Warehouse Miner.

SELECT gender, marital_status, xcnt,xpct
,CSUM(xcnt, xcnt DESC, gender, marital_status) AS xcum_cnt
,CSUM(xpct, xcnt DESC, gender, marital_status) AS xcum_pct
,RANK(xcnt DESC, gender ASC, marital_status ASC) AS xrank

FROM
(SELECT gender, marital_status, COUNT(*) AS xcnt

,100.000 * xcnt / xall (FORMAT 'ZZ9.99') AS xpct
FROM customer_table A,

(SELECT COUNT(*) AS xall
FROM customer_table) B

GROUP BY gender, marital_status, xall
HAVING xpct >= 1) T1
QUALIFY xrank <= 8
ORDER BY xcnt DESC, gender, marital_status

The result for this query looks like the following table.

Syntax Alternatives for Ordered Analytical
Functions

Teradata SQL supports two syntax alternatives for ordered analytical functions:

• ANSI SQL:2008 compliant

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

F Married 3910093 36.71 3910093 36.71 1

M Married 2419511 22.71 6329604 59.42 2

F Divorced 1612130 15.13 7941734 74.55 3

M Divorced 1412624 3.26 9354358 87.81 4

F Single 491224 4.61 9845582 92.42 5

F Widowed 319881 3.01 10165463 95.43 6

M Single 319794 3.00 10485257 98.43 7

M Widowed 197131 1.57 10652388 100.00 8

Chapter 11: Ordered Analytical Functions
Window Feature

430 SQL Functions, Operators, Expressions, and Predicates

• Teradata

Window aggregate, rank, distribution, and row number functions are ANSI SQL:2008
compliant, while Teradata-specific functions are not.

The use of the Teradata-specific functions listed in the following table is strongly discouraged.
These functions are retained only for backward compatibility with existing applications. Be
sure to use the ANSI-compliant window functions for any new applications you develop.

Relationship Between Teradata-Specific Functions and Window Functions

The following table identifies equivalent ANSI SQL:2008 window functions for Teradata-
specific functions:

Window Feature

The ANSI SQL:2008 window feature provides a way to dynamically define a subset of data, or
window, in an ordered relational database table. A window is specified by the OVER() phrase,
which can include the following clauses inside the parentheses:

• PARTITION BY

• ORDER BY

• RESET WHEN

• ROWS

To see the syntax for the OVER() phrase and the associated clauses, refer to “Window
Aggregate Functions” on page 449.

The window feature can be applied to the following functions:

Teradata-Specific Functions Equivalent ANSI SQL:2008 Window Functions

CSUM SUM

MAVG AVG

MDIFF(x, w, y) composable from SUM

MLINREG composable from SUM and COUNT

QUANTILE composable from RANK and COUNT

RANK RANK

MSUM SUM

Chapter 11: Ordered Analytical Functions
Window Feature

SQL Functions, Operators, Expressions, and Predicates 431

The window feature can also be applied to a user-defined aggregate function. For details, see
“Window Aggregate UDF” on page 717.

PARTITION BY Phrase

PARTITION BY takes a column reference list and groups the rows based on the specified
column reference list over which the ordered analytical function executes. Such a grouping is
static. To define a group or partition based on a condition, use the RESET WHEN phrase. See
“RESET WHEN Phrase” on page 433 for details.

If there is no PARTITION BY phrase or RESET WHEN phrase, then the entire result set,
delivered by the FROM clause, constitutes a single partition, over which the ordered analytical
function executes.

Consider the following table named sales_tbl.

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• MAX

• MIN

• PERCENT_RANK

• RANK

• REGR_AVGX

• REGR_AVGY

• REGR_COUNT

• REGR_INTERCEPT

• REGR_R2

• REGR_SLOPE

• REGR_SXX

• REGR_SXY

• REGR_SYY

• ROW_NUMBER

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

StoreID SMonth ProdID Sales

1001 1 C 35000.00

1001 2 C 25000.00

1001 3 C 40000.00

1001 4 C 25000.00

1001 5 C 30000.00

1001 6 C 30000.00

1002 1 C 40000.00

1002 2 C 35000.00

1002 3 C 110000.00

1002 4 C 60000.00

1002 5 C 35000.00

1002 6 C 100000.00

Chapter 11: Ordered Analytical Functions
Window Feature

432 SQL Functions, Operators, Expressions, and Predicates

The following SELECT statement, which does not include PARTITION BY, computes the
average sales for all the stores in the table:

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER ()
FROM sales_tbl;

StoreID SMonth ProdID Sales Group Avg(Sales)
------- ------ ------ --------- ----------------

1001 1 C 35000.00 47083.33
1001 2 C 25000.00 47083.33
1001 3 C 40000.00 47083.33
1001 4 C 25000.00 47083.33
1001 5 C 30000.00 47083.33
1001 6 C 30000.00 47083.33
1002 1 C 40000.00 47083.33
1002 2 C 35000.00 47083.33
1002 3 C 110000.00 47083.33
1002 4 C 60000.00 47083.33
1002 5 C 35000.00 47083.33
1002 6 C 100000.00 47083.33

To compute the average sales for each store, partition the data in sales_tbl by StoreID:

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER (PARTITION BY StoreID)
FROM sales_tbl;

StoreID SMonth ProdID Sales Group Avg(Sales)
------- ------ ------ --------- ----------------

1001 3 C 40000.00 30833.33
1001 5 C 30000.00 30833.33
1001 6 C 30000.00 30833.33
1001 4 C 25000.00 30833.33
1001 2 C 25000.00 30833.33
1001 1 C 35000.00 30833.33
1002 3 C 110000.00 63333.33
1002 5 C 35000.00 63333.33
1002 6 C 100000.00 63333.33
1002 4 C 60000.00 63333.33
1002 2 C 35000.00 63333.33
1002 1 C 40000.00 63333.33

ORDER BY Phrase

ORDER BY specifies how the rows are ordered in a partition, which determines the sort order
of the rows over which the function is applied.

To add the monthly sales for a store in the sales_tbl table to the sales for previous months,
compute the cumulative sales sum and order the rows in each partition by SMonth:

SELECT StoreID, SMonth, ProdID, Sales,
SUM(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
FROM sales_tbl;

StoreID SMonth ProdID Sales Cumulative Sum(Sales)

Chapter 11: Ordered Analytical Functions
Window Feature

SQL Functions, Operators, Expressions, and Predicates 433

------- ------ ------ --------- ---------------------
1001 1 C 35000.00 35000.00
1001 2 C 25000.00 60000.00
1001 3 C 40000.00 100000.00
1001 4 C 25000.00 125000.00
1001 5 C 30000.00 155000.00
1001 6 C 30000.00 185000.00
1002 1 C 40000.00 40000.00
1002 2 C 35000.00 75000.00
1002 3 C 110000.00 185000.00
1002 4 C 60000.00 245000.00
1002 5 C 35000.00 280000.00
1002 6 C 100000.00 380000.00

RESET WHEN Phrase

RESET WHEN is a Teradata extension to the ANSI SQL standard.

Depending on the evaluation of the specified condition, RESET WHEN determines the group
or partition, over which the ordered analytical function operates. If the condition evaluates to
TRUE, a new dynamic partition is created inside the specified window partition. To define a
partition based on a column reference list, use the PARTITION BY phrase. See “PARTITION
BY Phrase” on page 431 for details.

If there is no RESET WHEN phrase or PARTITION BY phrase, then the entire result set,
delivered by the FROM clause, constitutes a single partition, over which the ordered analytical
function executes.

You can have different RESET WHEN clauses in the same SELECT list.

Note: A window specification that specifies a RESET WHEN clause must also specify an
ORDER BY clause.

RESET WHEN Condition Rules

The condition in the RESET WHEN clause is equivalent in scope to the condition in a
QUALIFY clause with the additional constraint that nested ordered analytical functions
cannot specify conditional partitioning.

The condition is applied to the rows in all designated window partitions to create sub-
partitions within the particular window partitions.

The following rules apply for RESET WHEN conditions.

A RESET WHEN condition can contain the following:

• Ordered analytical functions that do not include the RESET WHEN clause

• Scalar subqueries

• Aggregate operators

• DEFAULT functions

However, DEFAULT without an explicit column specification is valid only if it is specified
as a standalone condition in the predicate. See “Rules For Using a DEFAULT Function As
Part of a RESET WHEN Condition” on page 434 for details.

Chapter 11: Ordered Analytical Functions
Window Feature

434 SQL Functions, Operators, Expressions, and Predicates

A RESET WHEN condition cannot contain the following:

• Ordered analytical functions that include the RESET WHEN clause

• The SELECT statement

• LOB columns

• UDT expressions, including UDFs that return a UDT value

However, a RESET WHEN condition can include an expression that contains UDTs as
long as that expression returns a result that has a predefined data type.

Rules For Using a DEFAULT Function As Part of a RESET WHEN
Condition

The following rules apply to the use of the DEFAULT function as part of a RESET WHEN
condition:

• You can specify a DEFAULT function with a column name argument within a predicate.
The system evaluates the DEFAULT function to the default value of the column specified
as its argument. Once the system has evaluated the DEFAULT function, it treats it like a
constant in the predicate.

• You can specify a DEFAULT function without a column name argument within a predicate
only if there is one column specification and one DEFAULT function as the terms on each
side of the comparison operator within the expression.

• Following existing comparison rules, a condition with a DEFAULT function used with
comparison operators other than IS [NOT] NULL is unknown if the DEFAULT function
evaluates to null.

A condition other than IS [NOT]NULL with a DEFAULT function compared with a null
evaluates to unknown.

See “DEFAULT” on page 621 for more information about the DEFAULT function.

Example 1

This example finds cumulative sales for all periods of increasing sales for each region.

SUM(sales) OVER (
PARTITION BY region
ORDER BY day_of_calendar
RESET WHEN sales < /* preceding row */ SUM(sales) OVER (

PARTITION BY region
ORDER BY day_of_calendar
ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)

ROWS UNBOUNDED PRECEDING

IF a DEFAULT function is used with... THEN the comparison is...

IS NULL TRUE if the default is null,

else it is FALSE.

IS NOT NULL FALSE if the default is null,

else it is TRUE.

Chapter 11: Ordered Analytical Functions
Window Feature

SQL Functions, Operators, Expressions, and Predicates 435

)

Example 2

This example finds sequences of increasing balances. This implies that we reset whenever the
current balance is less than or equal to the preceding balance.

SELECT account_key, month, balance,
ROW_NUMBER() over

(PARTITION BY account_key
ORDER BY month
RESET WHEN balance /* current row balance */ <=
SUM(balance) over (PARTITION BY account_key ORDER BY month
ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) /* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase

FROM accounts;

The possible results of the preceding SELECT appear in the table below:

account_key month balance balance_increase
----------- ----- ------- ----------------

 1 1 60 0
 1 2 99 1
 1 3 94 0
 1 4 90 0
 1 5 80 0
 1 6 88 1
 1 7 90 2
 1 8 92 3
 1 9 10 0
 1 10 60 1
 1 11 80 2
 1 12 10 0

Example 3

The following example illustrates a window function with a nested aggregate. The query is
processed as follows:

1 We use the SUM(balance) aggregate function to calculate the sum of all the balances for a
given account in a given quarter.

2 We check to see if a balance in a given quarter (for a given account) is greater than the
balance of the previous quarter.

3 If the balance increased, we track a cumulative count value. As long as the RESET WHEN
condition evaluates to false, the balance is increasing over successive quarters, and we
continue to increase the count.

4 We use the ROW_NUMBER() ordered analytical function to calculate the count value.
When we reach a quarter whose balance is less than or equal to that of the previous
quarter, the RESET WHEN condition evaluates to true, and we start a new partition and
ROW_NUMBER() restarts the count from 1. We specify ROWS BETWEEN 1
PRECEDING AND 1 PRECEDING to access the previous value.

5 Finally, we subtract 1 to ensure that the count values start with 0.

The balance_increase column shows the number of successive quarters where the balance was
increasing. In this example, we only have one quarter (1->2) where the balance has increased.

Chapter 11: Ordered Analytical Functions
Window Feature

436 SQL Functions, Operators, Expressions, and Predicates

SELECT account_key, quarter, sum(balance),
ROW_NUMBER() over

(PARTITION BY account_key
ORDER BY quarter
RESET WHEN sum(balance) /* current row balance */ <=
SUM(sum(balance)) over (PARTITION BY account_key ORDER BY

quarter
ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)/* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase

FROM accounts
GROUP BY account_key, quarter;

The possible results of the preceding SELECT appear in the table below:

account_key quarter balance balance_increase
----------- ------- ------- ----------------

1 1 253 0
1 2 258 1
1 3 192 0
1 4 150 0

Example 4

In the following example, the condition in the RESET WHEN clause contains SELECT as a
nested subquery. This is not allowed and results in an error.

SELECT SUM(a1) OVER
(ORDER BY 1
RESET WHEN 1 in (SELECT 1))

FROM t1;
$
*** Failure 3706 Syntax error: SELECT clause not supported in
RESET...WHEN clause.

ROWS Phrase

ROWS defines the rows over which the aggregate function is computed for each row in the
partition.

If ROWS is specified, the computation of the aggregate function for each row in the partition
includes only the subset of rows in the ROWS phrase.

If there is no ROWS phrase, then the computation includes all the rows in the partition.

ROWS can be specified with the ANSI SQL:2008 compliant window aggregate functions:

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• MAX

• MIN

• REGR_AVGX

• REGR_AVGY

• REGR_COUNT

• REGR_INTERCEPT

• REGR_R2

• REGR_SLOPE

• REGR_SXX

• REGR_SXY

• REGR_SYY

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

Chapter 11: Ordered Analytical Functions
Applying Windows to Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 437

To compute the three-month moving average sales for each store in the sales_tbl table,
partition by StoreID, order by SMonth, and perform the computation over the current row
and the two preceding rows:

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER (PARTITION BY StoreID

ORDER BY SMonth
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)

FROM sales_tbl;

StoreID SMonth ProdID Sales Moving Avg(Sales)
------- ------ ------ --------- -----------------

1001 1 C 35000.00 35000.00
1001 2 C 25000.00 30000.00
1001 3 C 40000.00 33333.33
1001 4 C 25000.00 30000.00
1001 5 C 30000.00 31666.67
1001 6 C 30000.00 28333.33
1002 1 C 40000.00 40000.00
1002 2 C 35000.00 37500.00
1002 3 C 110000.00 61666.67
1002 4 C 60000.00 68333.33
1002 5 C 35000.00 68333.33
1002 6 C 100000.00 65000.00

Multiple Window Specifications

In an SQL statement using more than one window function, each window function can have a
unique window specification.

For example,

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER (PARTITION BY StoreID

ORDER BY SMonth
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW),

RANK() OVER (PARTITION BY StoreID ORDER BY Sales DESC)
FROM sales_tbl;

Applying Windows to Aggregate Functions

A window specification can be applied to the following ANSI SQL:2008 compliant aggregate
functions:

Chapter 11: Ordered Analytical Functions
Applying Windows to Aggregate Functions

438 SQL Functions, Operators, Expressions, and Predicates

A window specification can also be applied to a user-defined aggregate function. For details,
see “Window Aggregate UDF” on page 717.

An aggregate function on which a window specification is applied is called a window
aggregate function. Without a window specification, aggregate functions return one value for
all qualified rows examined. Window aggregate functions return a new value for each of the
qualifying rows participating in the query.

Thus, the following SELECT statement, which includes the aggregate AVG, returns one value
only: the average of sales.

SELECT AVG(sale)
FROM monthly_sales;

Average(sale)

1368

The AVG window function retains each qualifying row.

The following SELECT statement might return the results that follow.

SELECT territory, smonth, sales,
AVG(sales) OVER (PARTITION BY territory

ORDER BY smonth ROWS 2 PRECEDING)
FROM sales_history;

territory smonth sales Moving Avg(sales)
--------- ------- ----- -----------------
East 199810 10 10
East 199811 4 7
East 199812 10 8
East 199901 7 7
East 199902 10 9
West 199810 8 8
West 199811 12 10
West 199812 7 9
West 199901 11 10
West 199902 6 8

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• MAX

• MIN

• REGR_AVGX

• REGR_AVGY

• REGR_COUNT

• REGR_INTERCEPT

• REGR_R2

• REGR_SLOPE

• REGR_SXX

• REGR_SXY

• REGR_SYY

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

Chapter 11: Ordered Analytical Functions
Characteristics of Ordered Analytical Functions

SQL Functions, Operators, Expressions, and Predicates 439

Characteristics of Ordered Analytical Functions

The Function Value

The function value for a column in a row considers that row (and a subset of all other rows in
the group) and produces a new value.

The generic function describing this operation is as follows:

new_column_value = FUNCTION(column_value,rows_defined_by_window)

Use of QUALIFY Clause

Rows can be eliminated by applying conditions on the new column value. The QUALIFY
clause is analogous to the HAVING clause of aggregate functions. The QUALIFY clause
eliminates rows based on the function value, returning a new value for each of the
participating rows. For example:

SELECT StoreID, SUM(profit) OVER (PARTITION BY StoreID)
FROM facts
QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

An SQL query that contains both ordered analytical functions and aggregate functions can
have both a QUALIFY clause and a HAVING clause, as in the following example:

SELECT StoreID, SUM(sale),
SUM(profit) OVER (PARTITION BY StoreID)
FROM facts
GROUP BY StoreID, sale, profit
HAVING SUM(sale) > 15
QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

For details on the QUALIFY clause, see SQL Data Manipulation Language.

DISTINCT Clause Restriction

The DISTINCT clause is not permitted in window aggregate functions.

Permitted Query Objects

Ordered analytical functions are permitted in the following database query objects:

• Views

• Macros

• Derived tables

• INSERT ... SELECT

Where Ordered Analytical Functions are Not Permitted

Ordered analytical functions are not permitted in:

• Subqueries

• WHERE clauses

Chapter 11: Ordered Analytical Functions
Characteristics of Ordered Analytical Functions

440 SQL Functions, Operators, Expressions, and Predicates

• SELECT AND CONSUME statements

Use of Standard SQL Features

You can use standard SQL features within the same query to make your statements more
sophisticated.

For example, you can use ordered analytical functions in the following ways:

Ordered analytical functions having different sort expressions are evaluated one after another,
reusing the same spool file. Different functions having the same sort expression are evaluated
simultaneously.

Unsupported Data Types

Ordered analytical functions do not operate on the following data types:

• CLOB or BLOB data types

• UDT data types

Ordered Analytical Functions and Period Data Types

Expressions that evaluate to Period data types can be specified for any expression within the
following ordered analytical functions: QUANTILE, RANK (Teradata-specific function), and
RANK(ANSI SQL Window function).

Ordered Analytical Functions and Recursive Queries

Ordered analytical functions cannot appear in a recursive statement of a recursive query.
However, a non-recursive seed statement in a recursive query can specify an ordered analytical
function.

Ordered Analytical Functions and Hash or Join Indexes

When a single table query specifies an ordered analytical function on columns that are also
defined for a single table compressed hash or join index, the Optimizer does not select the
hash or join index to process the query.

Computation Sort Order and Result Order

The sort order that you specify in the window specification defines the sort order of the rows
over which the function is applied; it does not define the ordering of the results.

Use an analytical function in this operation … To …

INSERT … SELECT populate a new column.

derived table create a new table to participate in a complex query.

Chapter 11: Ordered Analytical Functions
Characteristics of Ordered Analytical Functions

SQL Functions, Operators, Expressions, and Predicates 441

For example, to compute the average sales for the months following the current month, order
the rows by month:

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth

ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM sales_tbl;

StoreID SMonth ProdID Sales Remaining Avg(Sales)
------- ------ ------ --------- --------------------

1001 6 C 30000.00 ?
1001 5 C 30000.00 30000.00
1001 4 C 25000.00 30000.00
1001 3 C 40000.00 28333.33
1001 2 C 25000.00 31250.00
1001 1 C 35000.00 30000.00

The default sort order is ASC for the computation. However, the results are returned in the
reverse order.

To order the results, use an ORDER BY phrase in the SELECT statement. For example:

SELECT StoreID, SMonth, ProdID, Sales,
AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth

ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM sales_tbl
ORDER BY SMonth;

StoreID SMonth ProdID Sales Remaining Avg(Sales)
------- ------ ------ --------- --------------------

1001 1 C 35000.00 30000.00
1001 2 C 25000.00 31250.00
1001 3 C 40000.00 28333.33
1001 4 C 25000.00 30000.00
1001 5 C 30000.00 30000.00
1001 6 C 30000.00 ?

Data in Partitioning Column of Window Specification and Resource Impact

The columns specified in the PARTITION BY clause of a window specification determine the
partitions over which the ordered analytical function executes. For example, the following
query specifies the StoreID column in the PARTITION BY clause to compute the group sales
sum for each store:

SELECT StoreID, SMonth, ProdID, Sales,
SUM(Sales) OVER (PARTITION BY StoreID)
FROM sales_tbl;

At execution time, Teradata Database moves all of the rows that fall into a partition to the
same AMP. If a very large number of rows fall into the same partition, the AMP can run out of
spool space. For example, if the sales_tbl table in the preceding query has millions or billions
of rows, and the StoreID column contains only a few distinct values, an enormous number of
rows are going to fall into the same partition, potentially resulting in out-of-spool errors.

Chapter 11: Ordered Analytical Functions
Nesting Aggregates in Ordered Analytical Functions

442 SQL Functions, Operators, Expressions, and Predicates

To avoid this problem, examine the data in the columns of the PARTITION BY clause. If
necessary, rewrite the query to include additional columns in the PARTITION BY clause to
create smaller partitions that Teradata Database can distribute more evenly among the AMPs.
For example, the preceding query can be rewritten to compute the group sales sum for each
store for each month:

SELECT StoreID, SMonth, ProdID, Sales,
SUM(Sales) OVER (PARTITION BY StoreID, SMonth)
FROM sales_tbl;

Nesting Aggregates in Ordered Analytical
Functions

You can nest aggregates in window functions, including the select list, HAVING, QUALIFY,
and ORDER BY clauses. However, the HAVING clause can only contain aggregate function
references because HAVING cannot contain nested syntax like RANK() OVER (ORDER BY
SUM(x)).

Aggregate functions cannot be specified with Teradata-specific functions.

Example

The following query nests the SUM aggregate function within the RANK ordered analytical
function in the select list:

SELECT state, city, SUM(sale),
RANK() OVER (PARTITION BY state ORDER BY SUM(sale))
FROM T1
WHERE T1.cityID = T2.cityID
GROUP BY state, city
HAVING MAX(sale) > 10;

Alternative: Using Derived Tables

Although only window functions allow aggregates specified together in the same SELECT list,
window functions and Teradata-specific functions can be combined with aggregates using
derived tables or views. Using derived tables or views also clarifies the semantics of the
computation.

Example

The following example shows the sales rank of a particular product in a store and its percent
contribution to the store sales for the top three products in each store.

SELECT RT.storeid, RT.prodid, RT.sales,
RT.rank_sales, RT.sales * 100.0/ST.sum_store_sales
FROM (SELECT storeid, prodid, sales, RANK(sales) AS rank_sales
FROM sales_tbl
GROUP BY storeID
QUALIFY RANK(sales) <=3) AS RT,
(SELECT storeID, SUM(sales) AS sum_store_sales

Chapter 11: Ordered Analytical Functions
GROUP BY Clause

SQL Functions, Operators, Expressions, and Predicates 443

FROM sales_tbl
GROUP BY storeID) AS ST
WHERE RT.storeID = ST.storeID
ORDER BY RT.storeID, RT.sales;

The results table might look something like the following:

GROUP BY Clause

GROUP BY and Window Functions

For window functions, the GROUP BY clause must include all the columns specified in the:

• Select list of the SELECT clause

• Window functions in the select list of a SELECT clause

• Window functions in the search condition of a QUALIFY clause

• The condition in the RESET WHEN clause

For example, the following SELECT statement specifies the column City in the select list and
the column StoreID in the COUNT window function in the select list and QUALIFY clause.
Both columns must also appear in the GROUP BY clause:

SELECT City, StoreID, COUNT(StoreID) OVER ()
FROM sales_tbl
GROUP BY City, StoreID
QUALIFY COUNT(StoreID) >=3;

For window functions, GROUP BY collapses all rows with the same value for the group-by
columns into a single row.

For example, the following statement uses the GROUP BY clause to collapse all rows with the
same value for City and StoreID into a single row:

storeID prodID sales rank_sales sales*100.0/sum_store_sales

1001 D 35000.00 3 17.949

1001 C 60000.00 2 30.769

1001 A 100000.00 1 51.282

1002 D 25000.00 3 25.000

1002 C 35000.00 2 35.000

1002 A 40000.00 1 40.000

1003 C 20000.00 3 20.000

1003 A 30000.00 2 30.000

1003 D 50000.00 1 50.000

...

Chapter 11: Ordered Analytical Functions
GROUP BY Clause

444 SQL Functions, Operators, Expressions, and Predicates

SELECT City, StoreID, COUNT(StoreID) OVER ()
FROM sales_tbl
GROUP BY City, StoreID;

The results look like this:

City StoreID Group Count(StoreID)
----- ------- --------------------
Pecos 1001 3
Pecos 1002 3
Ozona 1003 3

Without the GROUP BY, the results look like this:

City StoreID Group Count(StoreID)
----- ------- --------------------
Pecos 1001 9
Pecos 1001 9
Pecos 1001 9
Pecos 1001 9
Pecos 1002 9
Pecos 1002 9
Pecos 1002 9
Ozona 1003 9
Ozona 1003 9

GROUP BY and Teradata-Specific Functions

For Teradata-specific functions, GROUP BY determines the partitions over which the
function executes. The clause does not collapse all rows with the same value for the group-by
columns into a single row. Thus, the GROUP BY clause in these cases need only specify the
partitioning column for the function.

For example, the following statement computes the running sales for each store by using the
GROUP BY clause to partition the data in sales_tbl by StoreID:

SELECT StoreID, Sales, CSUM(Sales, StoreID)
FROM sales_tbl
GROUP BY StoreID;

The results look like this:

StoreID Sales CSum(Sales,StoreID)
------- -------- -------------------

1001 1100.00 1100.00
1001 400.00 1500.00
1001 1000.00 2500.00
1001 2000.00 4500.00
1002 500.00 500.00
1002 1500.00 2000.00
1002 2500.00 4500.00
1003 1000.00 1000.00
1003 3000.00 4000.00

Combining Window Functions, Teradata-Specific Functions, and GROUP BY

The following table provides the semantics of the allowable combinations of window
functions, Teradata-specific functions, aggregate functions, and the GROUP BY clause.

Chapter 11: Ordered Analytical Functions
GROUP BY Clause

SQL Functions, Operators, Expressions, and Predicates 445

Combination Semantics

Window
Function

Teradata-Specific
Function

Aggregate
Function

GROUP BY
Clause

X A value is computed for each row.

X A value is computed for each row.
The entire table constitutes a single
group, or partition, over which the
Teradata-specific function executes.

X One aggregate value is computed for
the entire table.

X X GROUP BY collapses all rows with
the same value for the group-by
columns into a single row, and a
value is computed for each resulting
row.

X X GROUP BY determines the
partitions over which the Teradata-
specific function executes. The
clause does not collapse all rows with
the same value for the group-by
columns into a single row.

X X An aggregation is performed for
each group.

X X Teradata-specific functions do not
have partitions. The whole table is
one partition.

X X X GROUP BY determines partitions
for Teradata-specific functions.
GROUP BY does not collapse all
rows with the same value for the
group-by columns into a single row,
and does not affect window function
computation.

X X X GROUP BY collapses all rows with
the same value for the group-by
columns into a single row. For
window functions, a value is
computed for each resulting row; for
aggregate functions, an aggregation
is performed for each group.

Chapter 11: Ordered Analytical Functions
Using Ordered Analytical Functions Examples

446 SQL Functions, Operators, Expressions, and Predicates

Using Ordered Analytical Functions Examples

Example 1: Using RANK and AVG

Consider the result of the following SELECT statement using the following ordered analytical
functions, RANK and AVG.

SELECT item, smonth, sales,
RANK() OVER (PARTITION BY item ORDER BY sales DESC),
AVG(sales) OVER (PARTITION BY item

ORDER BY smonth
ROWS 3 PRECEDING)

FROM sales_tbl
ORDER BY item, smonth;

The results table might look like the following:

Example 2: Using QUALIFY With RANK

Adding a QUALIFY clause to a query eliminates rows from an unqualified table.

For example, if you wanted to see whether the high sales months were unusual, you could add
a QUALIFY clause to the previous query.

SELECT item, smonth, sales,
RANK() OVER (PARTITION BY item ORDER BY sales DESC),

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-01 110 13 110

A 1996-02 130 10 120

A 1996-03 170 6 137

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

A 1996-09 160 7 195

A 1996-10 140 9 168

A 1996-11 150 8 158

A 1996-12 120 11 142

A 1997-01 120 11 132

B 1996-02 30 5 30

...

Chapter 11: Ordered Analytical Functions
Using Ordered Analytical Functions Examples

SQL Functions, Operators, Expressions, and Predicates 447

AVG(sales) OVER (PARTITION BY item ORDER BY smonth ROWS 3 PRECEDING)
FROM sales_tbl
ORDER BY item, smonth
QUALIFY RANK() OVER(PARTITION BY item ORDER BY sales DESC) <=5;

This additional qualifier produces a results table that might look like the following:

The result indicates that sales had probably been fairly low prior to the start of the current
sales season.

Example 3: Using QUALIFY With RANK

Consider the following sales table named sales_tbl.

Now perform the following simple SELECT statement against this table, qualifying answer
rows by rank.

SELECT store, prodID, sales,

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

B 1996-02 30 1 30

...

Store ProdID Sales

1003 C 20000.00

1003 D 50000.00

1003 A 30000.00

1002 C 35000.00

1002 D 25000.00

1002 A 40000.00

1001 C 60000.00

1001 D 35000.00

1001 A 100000.00

1001 B 10000.00

Chapter 11: Ordered Analytical Functions
Using Ordered Analytical Functions Examples

448 SQL Functions, Operators, Expressions, and Predicates

RANK() OVER (PARTITION BY store ORDER BY sales DESC)
FROM sales_tbl
QUALIFY RANK() OVER (PARTITION BY store ORDER BY sales DESC) <=3;

The result appears in the following typical output table.

Note that every row in the table is returned with the computed value for RANK except those
that do not meet the QUALIFY clause (sales rank is less than third within the store).

Store ProdID Sales Rank(Sales)

1001 A 100000.00 1

1001 C 60000.00 2

1001 D 35000.00 3

1002 A 40000.00 1

1002 C 35000.00 2

1002 D 25000.00 3

1003 D 50000.00 1

1003 A 30000.00 2

1003 C 20000.00 3

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 449

Window Aggregate Functions

Purpose
Cumulative, group, moving, or remaining computation of an aggregate function.

A window specification can be applied to the following ANSI SQL:2008 compliant aggregate
functions:

A window specification can also be applied to a user-defined aggregate function. For details,
see “Window Aggregate UDF” on page 717.

Type

ANSI SQL:2008 window aggregate function.

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• MAX

• MIN

• REGR_AVGX

• REGR_AVGY

• REGR_COUNT

• REGR_INTERCEPT

• REGR_R2

• REGR_SLOPE

• REGR_SXX

• REGR_SXY

• REGR_SYY

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

450 SQL Functions, Operators, Expressions, and Predicates

Syntax

1101A465

window

AAVG

*

value_expression()

COUNT value_expression()

COVAR_POP value_expression_1, value_expression_2()

COVAR_SAMP value_expression_1, value_expression_2()

CORR value_expression_1, value_expression_2()

MAX value_expression()

MIN value_expression()

REGR_AVGX dependent_variable_expression, independent_variable_expression()

REGR_AVGY dependent_variable_expression, independent_variable_expression()

REGR_COUNT dependent_variable_expression, independent_variable_expression()

REGR_INTERCEPT dependent_variable_expression, independent_variable_expression()

REGR_R2 dependent_variable_expression, independent_variable_expression()

REGR_SLOPE dependent_variable_expression, independent_variable_expression()

REGR_SXX dependent_variable_expression, independent_variable_expression()

REGR_SXY dependent_variable_expression, independent_variable_expression()

REGR_SYY dependent_variable_expression, independent_variable_expression()

STDDEV_POP value_expression()

STDDEV_SAMP value_expression()

SUM value_expression()

VAR_POP value_expression()

VAR_SAMP value_expression()

A

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 451

where:

window

OVER (

ROWS UNBOUNDED PRECEDING

CURRENT ROW

UNBOUNDED FOLLOWINGROWS BETWEEN

CURRENT ROW

B

A

column_referencePARTITION BY

,

value PRECEDING

UNBOUNDED PRECEDING AND

value PRECEDING

value FOLLOWING

UNBOUNDED FOLLOWING

CURRENT ROW

value PRECEDING

value FOLLOWING

value FOLLOWING

value PRECEDING AND

value FOLLOWING AND

UNBOUNDED FOLLOWINGCURRENT ROW AND

CURRENT ROW

value FOLLOWING

UNBOUNDED FOLLOWING

value_expressionORDER BY

,

ASC

DESC

BA

1101B464

RESET WHEN condition

)

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

452 SQL Functions, Operators, Expressions, and Predicates

Syntax element … Specifies …

AVG
CORR
COUNT
COVAR_POP
COVAR_SAMP
MAX
MIN
REGR_AVGX
REGR_AVGY
REGR_COUNT
REGR_INTERCEPT
REGR_R2
REGR_SLOPE
REGR_SXX
REGR_SXY
REGR_SYY
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP

the aggregate function and arguments on which the window specification is
applied.

For descriptions of aggregate functions and arguments, see Chapter 10:
“Aggregate Functions.”

OVER how values are grouped, ordered, and considered when computing the
cumulative, group, or moving function.

Values are grouped according to the PARTITION BY and RESET WHEN
clauses, sorted according to the ORDER BY clause, and considered
according to the aggregation group within the partition.

PARTITION BY in its column_reference, or comma-separated list of column references, the
group, or groups, over which the function operates.

PARTITION BY is optional. If there is no PARTITION BY or RESET
WHEN clauses, then the entire result set, delivered by the FROM clause,
constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY in its value_expression the order in which the values in a group, or partition,
are sorted.

ASC ascending sort order.

The default is ASC.

DESC descending sort order.

RESET WHEN the group or partition, over which the function operates, depending on the
evaluation of the specified condition. If the condition evaluates to TRUE, a
new dynamic partition is created inside the specified window partition.

RESET WHEN is optional. If there is no RESET WHEN or PARTITION BY
clauses, then the entire result set, delivered by the FROM clause, constitutes
a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified
also.

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 453

ANSI Compliance

Window aggregate functions are partially ANSI SQL:2008 compliant.

condition a conditional expression used to determine conditional partitioning. The
condition in the RESET WHEN clause is equivalent in scope to the
condition in a QUALIFY clause with the additional constraint that nested
ordered analytical functions cannot specify a RESET WHEN clause. In
addition, you cannot specify SELECT as a nested subquery within the
condition.

The condition is applied to the rows in all designated window partitions to
create sub-partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” on page 433
and the “QUALIFY Clause” in SQL Data Manipulation Language.

ROWS the starting point for the aggregation group within the partition. The
aggregation group end is the current row.

The aggregation group of a row R is a set of rows, defined relative to R in the
ordering of the rows within the partition.

If there is no ROWS or ROWS BETWEEN clause, the default aggregation
group is ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

ROWS BETWEEN the aggregation group start and end, which defines a set of rows relative to
the current row in the ordering of the rows within the partition.

The row specified by the group start must precede the row specified by the
group end.

If there is no ROWS or ROWS BETWEEN clause, the default aggregation
group is ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

UNBOUNDED
PRECEDING

the entire partition preceding the current row.

UNBOUNDED
FOLLOWING

the entire partition following the current row.

CURRENT ROW the start or end of the aggregation group as the current row.

value PRECEDING the number of rows preceding the current row.

The value for value is always a positive integer constant.

The maximum number of rows in an aggregation group is 4096 when value
PRECEDING appears as the group start or group end.

value FOLLOWING the number of rows following the current row.

The value for value is always a positive integer constant.

The maximum number of rows in an aggregation group is 4096 when value
FOLLOWING appears as the group start or group end.

Syntax element … Specifies …

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

454 SQL Functions, Operators, Expressions, and Predicates

In the presence of an ORDER BY clause and the absence of a ROWS or ROWS BETWEEN
clause, ANSI SQL:2008 window aggregate functions use ROWS UNBOUNDED PRECEDING
as the default aggregation group, whereas Teradata SQL window aggregate functions use
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Type of Computation

Arguments to Window Aggregate Functions

Window aggregate functions can take constants, constant expressions, column names (sales,
for example), or column expressions (sales + profit) as arguments.

Window aggregates can also take regular aggregates as input parameters to the PARTITION
BY and ORDER BY clauses. The RESET WHEN clause can take an aggregate as part of the
RESET WHEN condition clause.

COUNT can take “*” as an input argument, as in the following SQL query:

SELECT city, kind, sales, profit,
COUNT(*) OVER (PARTITION BY city, kind

ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING)

To compute this
type of function … Use this aggregation group …

Cumulative • ROWS UNBOUNDED PRECEDING

• ROWS BETWEEN UNBOUNDED PRECEDING AND value PRECEDING

• ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

• ROWS BETWEEN UNBOUNDED PRECEDING AND value
FOLLOWING

Group ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING

Moving • ROWS value PRECEDING

• ROWS CURRENT ROW

• ROWS BETWEEN value PRECEDING AND value PRECEDING

• ROWS BETWEEN value PRECEDING AND CURRENT ROW

• ROWS BETWEEN value PRECEDING AND value FOLLOWING

• ROWS BETWEEN CURRENT ROW AND CURRENT ROW

• ROWS BETWEEN CURRENT ROW AND value FOLLOWING

• ROWS BETWEEN value FOLLOWING AND value FOLLOWING

Remaining • ROWS BETWEEN value PRECEDING AND UNBOUNDED
FOLLOWING

• ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

• ROWS BETWEEN value FOLLOWING AND UNBOUNDED
FOLLOWING

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 455

FROM activity_month;

Result Type and Format

The result data type and format for window aggregate functions are as follows.

Function Result Type Format

AVG(x)

where x is a character type

FLOAT Default format for
FLOAT

AVG(x)

where x is a numeric,
DATE, or INTERVAL type

FLOAT Same format as
operand x

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX(x,y)
REGR_AVGY(x,y)
REGR_COUNT(x,y)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x)
STDDEV_SAMP(x)
VAR_POP(x)
VAR_SAMP(x)

where x is a character type

FLOAT Default format for
FLOAT

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

456 SQL Functions, Operators, Expressions, and Predicates

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX(x,y)
REGR_AVGY(x,y)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x)
STDDEV_SAMP(x)
VAR_POP(x)
VAR_SAMP(x)

where x is one of the
following types:

• Numeric

• DATE

• Interval

Same data type as operand x. Default format for
the data type of
operand x

COUNT(x)
COUNT(*)
REGR_COUNT(x,y)

where the transaction
mode is ANSI

DECIMAL(p,0) Default format for
resulting data type

IF MaxDecimal in DBSControl is … THEN p
is …

0, 15, or 18 15.

38 38.

ANSI transaction mode uses DECIMAL
because tables frequently have a cardinality
exceeding the range of INTEGER.

COUNT(x)
COUNT(*)
REGR_COUNT(x,y)

where the transaction
mode is Teradata

INTEGER

Teradata transaction mode uses INTEGER to
avoid regression problems.

Default format for
resulting data type

MAX(x), MIN(x) Same data type as operand x. Same format as
operand x

SUM(x)

where x is a character type

Same as the operand x. Default format for
FLOAT

Function Result Type Format

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 457

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Result Title

The default title that appears in the heading for displayed or printed results depends on the
type of computation performed.

SUM(x)

where x is a
DECIMAL(n,m) type

DECIMAL(p,m), where p is determined by the
rules in the following table.

Default format for
DECIMAL

IF MaxDecimal in
DBSControl is …

AND … THEN p
is …

0 or 15 n ≤15 15.

15 < n ≤18 18.

n > 18 38.

18 n ≤18 18.

n > 18 38.

38 n = any value 38.

SUM(x)

where x is any numeric
type other than DECIMAL

Same as the operand x. Default format for
the data type of the
operand

Function Result Type Format

IF the type of computation is … THEN the result title is …

cumulative Cumulative Function_name (argument_list)

For example, consider the following computation:

SELECT AVG(sales) OVER (PARTITION BY region
ORDER BY smonth ROWS UNBOUNDED PRECEDING)

FROM sales_history;

The title that appears in the result heading is:

Cumulative Avg(sales)

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

458 SQL Functions, Operators, Expressions, and Predicates

Problems With Missing Data

Ensure that data you analyze has no missing data points. Computing a moving function over
data with missing points produces unexpected and incorrect results because the computation
considers n physical rows of data rather than n logical data points.

Using Window Aggregate Functions Instead of Teradata Functions

Be sure to use the ANSI-compliant window functions for any new applications you develop.
Avoid using Teradata-specific functions such as MAVG, CSUM, and MSUM for applications
intended to be ANSI-compliant and portable.

group Group Function_name (argument_list)

For example, consider the following computation:

SELECT AVG(sales) OVER (PARTITION BY region
ORDER BY smonth ROWS BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING)

FROM sales_history;

The title that appears in the result heading is:

Group Avg(sales)

moving Moving Function_name (argument_list)

For example, consider the following computation:

SELECT AVG(sales) OVER (PARTITION BY region
ORDER BY smonth ROWS 2 PRECEDING)

FROM sales_history;

The title that appears in the result heading is:

Moving Avg(sales)

remaining Remaining Function_name (argument_list)

For example, consider the following computation:

SELECT AVG(sales) OVER (PARTITION BY region
ORDER BY smonth ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING)

FROM sales_history;

The title that appears in the result heading is:

Remaining Avg(sales)

IF the type of computation is … THEN the result title is …

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 459

ANSI
Function

Teradata
Function Relationship

AVG MAVG The form of the AVG window function that specifies an aggregation group of
ROWS value PRECEDING is the ANSI equivalent of the MAVG Teradata-
specific function.

Note that the ROWS value PRECEDING phrase specifies the number of rows
preceding the current row that are used, together with the current row, to
compute the moving average. The total number of rows in the aggregation
group is value + 1. For the MAVG function, the total number of rows in the
aggregation group is the value of width.

For AVG window function, an aggregation group of ROWS 5 PRECEDING,
for example, means that the 5 rows preceding the current row, plus the
current row, are used to compute the moving average. Thus the moving
average for the 6th row of a partition would have considered row 6, plus rows
5, 4, 3, 2, and 1 (that is, 6 rows in all).

For the MAVG function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving average. The moving
average for the 6th row would have considered row 6, plus rows 4, 5, 3, and 2
(that is, 5 rows in all).

SUM CSUM
MSUM

Be sure to use the ANSI-compliant SUM window function for any new
applications you develop. Avoid using CSUM and MSUM for applications
intended to be ANSI-compliant and portable.

The following defines the relationship between the SUM window function
and the CSUM and MSUM Teradata-specific functions, respectively:

• The SUM window function that uses the ORDER BY clause and specifies
ROWS UNBOUNDED PRECEDING is the ANSI equivalent of CSUM.

• The SUM window function that uses the ORDER BY clause and specifies
ROWS value PRECEDING is the ANSI equivalent of MSUM.

Note that the ROWS value PRECEDING phrase specifies the number of
rows preceding the current row that are used, together with the current
row, to compute the moving average. The total number of rows in the
aggregation group is value + 1. For the MSUM function, the total number
of rows in the aggregation group is the value of width.

Thus for the SUM window function that computes a moving sum, an
aggregation group of ROWS 5 PRECEDING means that the 5 rows
preceding the current row, plus the current row, are used to compute the
moving sum. The moving sum for the 6th row of a partition, for example,
would have considered row 6, plus rows 5, 4, 3, 2, and 1 (that is, 6 rows in
all).

For the MSUM function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving sum. The moving sum
for the 6th row, for example, would have considered row 6, plus rows 5, 4,
3, and 2 (that is, 5 rows in all).

Moreover, for data having fewer than width rows, MSUM computes the
sum using all the preceding rows. MSUM returns the current sum rather
than nulls when the number of rows in the sample is fewer than width.

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

460 SQL Functions, Operators, Expressions, and Predicates

Example 1: Moving Average

Determine, for a business with several sales territories, the sales in each territory averaged over
the current month and the preceding 2 months.

The following query might return the results found in the table that follows it.

SELECT territory, smonth, sales,
AVG(sales) OVER (PARTITION BY territory

ORDER BY smonth
ROWS 2 PRECEDING)

FROM sales_history;

territory smonth sales Moving Avg(sales)
--------- ------ ----- -----------------
East 199810 10 10
East 199811 4 7
East 199812 10 8
East 199901 7 7
East 199902 10 9
West 199810 8 8
West 199811 12 10
West 199812 7 9
West 199901 11 10
West 199902 6 8

The meanings of the phrases in the example query are as follows:

Thus, the moving average for the first row of the partition East (199810), which has no
preceding rows, is 10. That is, the value of the first row, the current row (10)/ the number of
rows (1) = 10.

The moving average for the second row of the partition East (199811), which has only 1
preceding row, is 7. That is, the value of the second row, the current row, and the preceding
row (10 + 4) / the number of rows (2) = 7.

The moving average for the third row of the partition East (199812), which has 2 preceding
rows, is 8. That is, the value of the third row, the current row, and the 2 preceding rows (10 + 4
+ 10) / the number of rows (3) = 8. And so on.

Month is specified as a six-digit numeric in the YYYYMM format.

Phrase Meaning

PARTITION BY Indicates that the rows delivered by the FROM clause, the rows of
sales_history, should be assigned to groups, or partitions, based on their
territory. If no PARTITION clause is specified, then the entire result set
constitutes a single group, or partition.

ORDER BY Indicates that rows are sorted in ascending order of month within each
group, or partition. Ascending is the default sort order.

ROWS 2 PRECEDING Defines the number of rows used to compute the moving average. In this
case, the computation uses the current row and the 2 preceding rows of
the group, or partition, as available.

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 461

Example 2: Group Count

The following SQL query might yield the results that follow it, where the group count for sales
is returned for each of the four partitions defined by city and kind. Notice that rows that have
no sales are not counted.

SELECT city, kind, sales, profit,
COUNT(sales) OVER (PARTITION BY city, kind

ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING)

FROM activity_month;

city kind sales profit Group Count(sales)
------- -------- ----- ------ ------------------
LA Canvas 45 320 4
LA Canvas 125 190 4
LA Canvas 125 400 4
LA Canvas 20 120 4
LA Leather 20 40 1
LA Leather ? ? 1
Seattle Canvas 15 30 3
Seattle Canvas 20 30 3
Seattle Canvas 20 100 3
Seattle Leather 35 50 1
Seattle Leather ? ? 1

Example 3: Remaining Count

To count all the rows, including rows that have no sales, use COUNT(*). Here is an example
that counts the number of rows remaining in the partition after the current row:

SELECT city, kind, sales, profit,
COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC

ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM activity_month;

city kind sales profit Remaining Count(*)
------- -------- ----- ------ ------------------
LA Canvas 20 120 ?
LA Canvas 125 190 1
LA Canvas 45 320 2
LA Canvas 125 400 3
LA Leather ? ? ?
LA Leather 20 40 1
Seattle Canvas 15 30 ?
Seattle Canvas 20 30 1
Seattle Canvas 20 100 2
Seattle Leather ? ? ?
Seattle Leather 35 50 1

Note that the sort order that you specify in the window specification defines the sort order of
the rows over which the function is applied; it does not define the ordering of the results.

In the example, the DESC sort order is specified for the computation, but the results are
returned in the reverse order.

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

462 SQL Functions, Operators, Expressions, and Predicates

To order the results, use the ORDER BY phrase in the SELECT statement:

SELECT city, kind, sales, profit,
COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC

ROWS BETWEEN 1 FOLLOWING AND
UNBOUNDED FOLLOWING)

FROM activity_month
ORDER BY city, kind, profit DESC;

city kind sales profit Remaining Count(*)
------- -------- ----- ------ ------------------
LA Canvas 125 400 3
LA Canvas 45 320 2
LA Canvas 125 190 1
LA Canvas 20 120 ?
LA Leather 20 40 1
LA Leather ? ? ?
Seattle Canvas 20 100 2
Seattle Canvas 20 30 1
Seattle Canvas 15 30 ?
Seattle Leather 35 50 1
Seattle Leather ? ? ?

Example 4: Cumulative Maximum

The following SQL query might yield the results that follow it, where the cumulative
maximum value for sales is returned for each partition defined by city and kind.

SELECT city, kind, sales, week,
MAX(sales) OVER (PARTITION BY city, kind

ORDER BY week ROWS UNBOUNDED PRECEDING)
FROM activity_month;

city kind sales week Cumulative Max(sales)
------- -------- ----- ---- ---------------------
LA Canvas 263 16 263
LA Canvas 294 17 294
LA Canvas 321 18 321
LA Canvas 274 20 321
LA Leather 144 16 144
LA Leather 826 17 826
LA Leather 489 20 826
LA Leather 555 21 826
Seattle Canvas 100 16 100
Seattle Canvas 182 17 182
Seattle Canvas 94 18 182
Seattle Leather 933 16 933
Seattle Leather 840 17 933
Seattle Leather 899 18 933
Seattle Leather 915 19 933
Seattle Leather 462 20 933

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 463

Example 5: Cumulative Minimum

The following SQL query might yield the results that follow it, where the cumulative
minimum value for sales is returned for each partition defined by city and kind.

SELECT city, kind, sales, week,
MIN(sales) OVER (PARTITION BY city, kind

ORDER BY week
ROWS UNBOUNDED PRECEDING)

FROM activity_month;

city kind sales week Cumulative Min(sales)
------- -------- ----- ---- ---------------------
LA Canvas 263 16 263
LA Canvas 294 17 263
LA Canvas 321 18 263
LA Canvas 274 20 263
LA Leather 144 16 144
LA Leather 826 17 144
LA Leather 489 20 144
LA Leather 555 21 144
Seattle Canvas 100 16 100
Seattle Canvas 182 17 100
Seattle Canvas 94 18 94
Seattle Leather 933 16 933
Seattle Leather 840 17 840
Seattle Leather 899 18 840
Seattle Leather 915 19 840
Seattle Leather 462 20 462

Example 6: Cumulative Sum

The following query returns the cumulative balance per account ordered by transaction date:

SELECT acct_number, trans_date, trans_amount,
SUM(trans_amount) OVER (PARTITION BY acct_number

ORDER BY trans_date
ROWS UNBOUNDED PRECEDING) as balance

FROM ledger
ORDER BY acct_number, trans_date;

Here are the possible results of the preceding SELECT:

acct_number trans_date trans_amount balance

73829 1998-11-01 113.45 113.45

73829 1988-11-05 -52.01 61.44

73929 1998-11-13 36.25 97.69

82930 1998-11-01 10.56 10.56

82930 1998-11-21 32.55 43.11

82930 1998-11-29 -5.02 38.09

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

464 SQL Functions, Operators, Expressions, and Predicates

Example 7: Group Sum

The query below finds the total sum of meat sales for each city.

SELECT city, kind, sales,
SUM(sales) OVER (PARTITION BY city ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) FROM monthly;

The possible results of the preceding SELECT appear in the following table:

Example 8: Group Sum

The following query returns the total sum of meat sales for all cities. Note there is no
PARTITION BY clause in the SUM function, so all cities are included in the group sum.

SELECT city, kind, sales,
SUM(sales) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND

UNBOUNDED FOLLOWING)
FROM monthly;

The possible results of the preceding SELECT appear in the table below:

city kind sales Group Sum (sales)

Omaha pure pork 45 220

Omaha pure pork 125 220

Omaha pure pork 25 220

Omaha variety pack 25 220

Chicago variety pack 55 175

Chicago variety pack 45 175

Chicago pure pork 50 175

Chicago variety pack 25 175

city kind sales Group Sum (sales)

Omaha pure pork 45 395

Omaha pure pork 125 395

Omaha pure pork 25 395

Omaha variety pack 25 395

Chicago variety pack 55 395

Chicago variety pack 45 395

Chicago pure pork 50 395

Chicago variety pack 25 395

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

SQL Functions, Operators, Expressions, and Predicates 465

Example 9: Moving Sum

The following query returns the moving sum of meat sales by city. Notice that the query
returns the moving sum of sales by city (the partition) for the current row (of the partition)
and three preceding rows where possible.

The order in which each meat variety is returned is the default ascending order according to
profit.

Where no sales figures are available, no moving sum of sales is possible. In this case, there is a
null in the sum(sales) column.

SELECT city, kind, sales, profit,
SUM(sales) OVER (PARTITION BY city, kind

ORDER BY profit ROWS 3 PRECEDING)
FROM monthly;

city kind sales profit Moving sum (sales)

Omaha pure pork 25 40 25

Omaha pure pork 25 120 50

Omaha pure pork 45 140 95

Omaha pure pork 125 190 220

Omaha pure pork 45 320 240

Omaha pure pork 1255 400 340

Omaha variety pack ? ? ?

Omaha variety pack 25 40 25

Omaha variety pack 25 120 50

Chicago pure pork ? ? ?

Chicago pure pork 15 10 15

Chicago pure pork 54 12 69

Chicago pure pork 14 20 83

Chicago pure pork 54 24 137

Chicago pure pork 14 34 136

Chicago pure pork 95 80 177

Chicago pure pork 95 140 258

Chicago pure pork 15 220 219

Chicago variety pack 23 39 23

Chicago variety pack 25 40 48

Chicago variety pack 125 70 173

Chicago variety pack 125 100 298

Chicago variety pack 23 100 298

Chicago variety pack 25 120 298

Chapter 11: Ordered Analytical Functions
Window Aggregate Functions

466 SQL Functions, Operators, Expressions, and Predicates

Example 10: Remaining Sum

The following query returns the remaining sum of meat sales for all cities. Note there is no
PARTITION BY clause in the SUM function, so all cities are included in the remaining sum.

SELECT city, kind, sales,
SUM(sales) OVER (ORDER BY city, kind

ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM monthly;

The possible results of the preceding SELECT appear in the table below:

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Omaha variety pack 25 ?
Omaha pure pork 125 25
Omaha pure pork 25 150
Omaha pure pork 45 175
Chicago variety pack 55 220
Chicago variety pack 25 275
Chicago variety pack 45 300
Chicago pure pork 50 345

Note that the sort order for the computation is alphabetical by city, and then by kind. The
results, however, appear in the reverse order.

The sort order that you specify in the window specification defines the sort order of the rows
over which the function is applied; it does not define the ordering of the results. To order the
results, use an ORDER BY phrase in the SELECT statement.

For example:

SELECT city, kind, sales,
SUM(sales) OVER (ORDER BY city, kind

ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM monthly
ORDER BY city, kind;

The possible results of the preceding SELECT appear in the table below:

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Chicago pure pork 50 345
Chicago variety pack 55 265
Chicago variety pack 25 320
Chicago variety pack 45 220
Omaha pure pork 25 70
Omaha pure pork 125 95
Omaha pure pork 45 25
Omaha variety pack 25 ?

Chapter 11: Ordered Analytical Functions
CSUM

SQL Functions, Operators, Expressions, and Predicates 467

CSUM

Purpose
Returns the cumulative (or running) sum of a value expression for each row in a partition,
assuming the rows in the partition are sorted by the sort_expression list.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

CSUM is a Teradata extension to the ANSI SQL:2008 standard.

Syntax element … Specifies …

value_expression a numeric constant or column expression for which a running sum is to be
computed.

By default, CSUM uses the default data type of value_expression. Larger
numeric values are supported by casting it to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, CSUM(Sale, Region ASC, Store DESC), where Sale is the
value_expression, and Region ASC, Store DESC is the sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC ascending sort order.

The default sort direction is ASC.

DESC descending sort order.

1101A398

CSUM
,

ASC

DESC

((value_expression, sort_expression

Chapter 11: Ordered Analytical Functions
CSUM

468 SQL Functions, Operators, Expressions, and Predicates

Using SUM Instead of CSUM

The use of CSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2008
standard, and is equivalent to the ANSI-compliant SUM window function that specifies
ROWS UNBOUNDED PRECEDING as its aggregation group. CSUM is retained only for
backward compatibility with existing applications.

For more information on the SUM window function, see “Window Aggregate Functions” on
page 449.

Meaning of Cumulative Sums

CSUM accumulates a sum over an ordered set of rows, providing the current value of the
SUM on each row.

Result Type and Attributes

The data type, format, and title for CSUM(x, y direction) are as follows:

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Example 1

Report the daily running sales total for product code 10 for each month of 1998.

SELECT cmonth, CSUM(sumPrice, cdate)
FROM
(SELECT a2.month_of_year,
a2.calendar_date,a1.itemID, SUM(a1.price)
FROM Sales a1, SYS_CALENDAR.Calendar a2
WHERE a1.calendar_date=a2.calendar_date
AND a2.calendar_date=1998
AND a1.itemID=10
GROUP BY a2.month_of_year, a1.calendar_date,
a1.itemID) AS T1(cmonth, cdate, sumPrice)
GROUP BY cmonth;

Grouping by month allows the total to accumulate until the end of each month, when it is
then set to zero for the next month. This permits the calculation of cumulative totals for each
item in the same query.

Data Type Format Title

Same as
operand x

CSum(x, y direction)

IF operand x is … THEN the format is …

character the default format for FLOAT.

numeric the same format as x.

Chapter 11: Ordered Analytical Functions
CSUM

SQL Functions, Operators, Expressions, and Predicates 469

Example 2

Provide a running total for sales of each item in store 5 in January and generate output that is
ready to export into a graphing program.

SELECT Item, SalesDate, CSUM(Revenue,Item,SalesDate) AS
CumulativeSales

FROM
(SELECT Item, SalesDate, SUM(Sales) AS Revenue
FROM DailySales
WHERE StoreId=5 AND SalesDate BETWEEN
'1/1/1999' AND '1/31/1999'
GROUP BY Item, SalesDate) AS ItemSales
ORDER BY SalesDate;

The result might like something like the following table:

Item SalesDate CumulativeSales

InstaWoof dog food 01/01/1999 972.99

InstaWoof dog food 01/02/1999 2361.99

InstaWoof dog food 01/03/1999 5110.97

InstaWoof dog food 01/04/1999 7793.91

Chapter 11: Ordered Analytical Functions
MAVG

470 SQL Functions, Operators, Expressions, and Predicates

MAVG

Purpose
Computes the moving average of a value expression for each row in a partition using the
specified value expression for the current row and the preceding width-1 rows.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

MAVG is a Teradata extension to the ANSI SQL:2008 standard.

Syntax element … Specifies …

value_expression a numeric constant or column expression for which a moving average is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

width number of previous rows to be used in computing the moving average.

The value is always a positive integer constant.

The maximum is 4096.

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, MAVG(Sale, 6, Region ASC, Store DESC), where Sale is the
value_expression, 6 is the width, and Region ASC, Store DESC is the
sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC ascending sort order.

The default sort direction is ASC.

DESC descending sort order.

1101A399

MAVG
,

ASC

DESC

((value_expression, width, sort_expression

Chapter 11: Ordered Analytical Functions
MAVG

SQL Functions, Operators, Expressions, and Predicates 471

Using AVG Instead of MAVG

The use of MAVG is strongly discouraged. It is a Teradata extension to the ANSI SQL:2008
standard, and is equivalent to the ANSI-compliant AVG window function that specifies ROWS
value PRECEDING as its aggregation group. MAVG is retained only for backward
compatibility with existing applications.

For more information on the AVG window function, see “Window Aggregate Functions” on
page 449.

Result Type and Attributes

The data type, format, and title for MAVG(x, w, y direction) are as follows:

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Problems With Missing Data

Ensure that data you analyze using MAVG has no missing data points. Computing a moving
average over data with missing points produces unexpected and incorrect results because the
computation considers n physical rows of data rather than n logical data points.

Computing the Moving Average When Number of Rows < width

For the (possibly grouped) resulting relation, the moving average considering width rows is
computed where the rows are sorted by the sort_expression list.

When there are fewer than width rows, the average is computed using the current row and all
preceding rows.

Example 1

Compute the 7-day moving average of sales for product code 10 for each day in the month of
October, 1996.

SELECT cdate, itemID, MAVG(sumPrice, 7, date)
FROM (SELECT a1.calendar_date, a1.itemID,
SUM(a1.price)
FROM Sales a1

Data Type Format Title

Same as
operand x

MAvg(x, w, y direction)

IF operand x is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

Chapter 11: Ordered Analytical Functions
MAVG

472 SQL Functions, Operators, Expressions, and Predicates

WHERE a1.itemID=10 AND a1.calendar_date
BETWEEN 96-10-01 AND 96-10-31
GROUP BY a1.calendar_date, a1.itemID) AS T1(cdate,
itemID, sumPrice);

Example 2

The following example calculates the 50-day moving average of the closing price of the stock
for Zemlinsky Bros. Corporation. The ticker name for the company is ZBC.

SELECT MarketDay, ClosingPrice,
MAVG(ClosingPrice,50, MarketDay) AS ZBCAverage

FROM MarketDailyClosing
WHERE Ticker = 'ZBC'
ORDER BY MarketDay;

The results for the query might look something like the following table:

MarketDay ClosingPrice ZBCAverage

12/27/1999 89 1/16 85 1/2

12/28/1999 91 1/8 86 1/16

12/29/1999 92 3/4 86 1/2

12/30/1999 94 1/2 87

Chapter 11: Ordered Analytical Functions
MDIFF

SQL Functions, Operators, Expressions, and Predicates 473

MDIFF

Purpose
Returns the moving difference between the specified value expression for the current row and
the preceding width rows for each row in the partition.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

MDIFF is a Teradata extension to the ANSI SQL:2008 standard.

Syntax element … Specifies …

value_expression a numeric column or constant expression for which a moving difference is to
be computed.

The expression cannot contain any ordered analytical or aggregate functions.

width the number of previous rows to be used in computing the moving difference.

The value is always a positive integer constant.

The maximum is 4096.

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, MDIFF(Sale, 6, Region ASC, Store DESC), where Sale is the
value_expression, 6 is the width, and Region ASC, Store DESC is the
sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC ascending sort order.

The default sort direction is ASC.

DESC descending sort order.

1101A400

MDIFF
,

ASC

DESC

((value_expression, width, sort_expression

Chapter 11: Ordered Analytical Functions
MDIFF

474 SQL Functions, Operators, Expressions, and Predicates

Meaning of Moving Difference

A common business metric is to compare activity for some variable in a current time period to
the activity for the same variable in another time period a fixed distance in the past. For
example, you might want to compare current sales volume against sales volume for preceding
quarters. This is a moving difference calculation where value_expression would be the
quarterly sales volume, width is 4, and sort_expression might be the quarter_of_calendar
column from the SYS_CALENDAR.Calendar system view.

Using SUM Instead of MDIFF

The use of MDIFF is strongly discouraged. It is a Teradata extension to the ANSI SQL:2008
standard, and is retained only for backward compatibility with existing applications.
MDIFF(x, w, y) is equivalent to:

x - SUM(x) OVER (ORDER BY y
ROWS BETWEEN w PRECEDING AND w PRECEDING)

For more information on the SUM window function, see “Window Aggregate Functions” on
page 449.

Result Type and Attributes

The data type, format, and title for MDIFF(x, w, y direction) are as follows:

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Problems With Missing Data

Ensure that rows you analyze using MDIFF have no missing data points. Computing a moving
difference over data with missing points produces unexpected and incorrect results because
the computation considers n physical rows of data rather than n logical data points.

Data Type and Format Title

MDiff(x, w, y direction)

IF operand x is … THEN the data type
is …

AND the format is …

character the same as x. the default format for
FLOAT.

numeric the same as x. the same format as x.

date INTEGER the default format for
INTEGER.

Chapter 11: Ordered Analytical Functions
MDIFF

SQL Functions, Operators, Expressions, and Predicates 475

Computing the Moving Difference When No Preceding Row Exists

When the number of preceding rows to use in a moving difference computation is fewer than
the specified width, the result is null.

Example 1

Display the difference between each quarter and the same quarter sales for last year for
product code 10.

SELECT year_of_calendar, quarter_of_calendar,
MDIFF(sumPrice, 4, year_of_calendar, quarter_of_calendar)
FROM (SELECT a2.year_of_calendar,
a2.quarter_of_calendar, SUM(a2.Price) AS sumPrice
FROM Sales a1, SYS_CALENDAR.Calendar a2
WHERE a1.itemID=10 and a1.calendar_date=a2.calendar_date
GROUP BY a2.year_of_calendar, a2.quarter_of_calendar) AS T1
ORDER BY year_of_calendar, quarter_of_year;

Example 2

The following example computes the changing market volume week over week for the stock of
company Horatio Parker Imports. The ticker name for the company is HPI.

SELECT MarketWeek, WeekVolume,
MDIFF(WeekVolume,1,MarketWeek) AS HPIVolumeDiff

FROM
(SELECT MarketWeek, SUM(Volume) AS WeekVolume
FROM MarketDailyClosing
WHERE Ticker = 'HPI'
GROUP BY MarketWeek)
ORDER BY MarketWeek;

The result might look like the following table. Note that the first row is null for column
HPIVolume Diff, indicating no previous row from which to compute a difference.

MarketWeek WeekVolume HPIVolumeDiff

11/29/1999 9817671 ?

12/06/1999 9945671 128000

12/13/1999 10099459 153788

12/20/1999 10490732 391273

12/27/1999 11045331 554599

Chapter 11: Ordered Analytical Functions
MLINREG

476 SQL Functions, Operators, Expressions, and Predicates

MLINREG

Purpose
Returns a predicted value for an expression based on a least squares moving linear regression
of the previous width-1 (based on sort_expression) column values.

Type

Teradata-specific function.

Syntax

where:

Syntax element … Specifies …

value_expression a numeric constant or column expression for which a predicted value is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

The data type of the expression must be numeric or a data type that Teradata
Database can successfully convert implicitly to numeric.

width the number of rows to use to compute the function.

width-1 previous rows are used to compute the linear regression and the row
value itself is used for calculating the predicted value.

The value is always a positive integer constant greater than 2.

The maximum is 4096.

sort_expression a column expression that defines the independent variable for calculating the
linear regression.

For example, MLINREG(Sales, 6, Fiscal_Year_Month ASC), where Sales is the
value_expression, 6 is the width, and Fiscal_Year_Month ASC is the
sort_expression.

The data type of the column reference must be numeric or a data type that
Teradata Database can successfully convert implicitly to numeric.

ASC ascending sort order.

The default sort direction is ASC.

DESC descending sort order.

1101A401

MLINREG
ASC

DESC

((value_expression, width, sort_expression

Chapter 11: Ordered Analytical Functions
MLINREG

SQL Functions, Operators, Expressions, and Predicates 477

ANSI Compliance

MLINREG is Teradata extension to the ANSI SQL:2008 standard.

Using ANSI-Compliant Window Functions Instead of MLINREG

Using ANSI-compliant window functions instead of MLINREG is strongly encouraged.
MLINREG is a Teradata extension to the ANSI SQL:2008 standard, and is retained only for
backward compatibility with existing applications.

Result Type and Attributes

The data type, format, and title for MLINREG(x, w, y direction) are as follows:

For information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Default Independent Variable

MLINREG assumes that the independent variable is described by sort_expression.

Computing MLINREG When Preceding Rows < width - 1

When there are fewer than width-1 preceding rows, MLINREG computes the regression using
all the preceding rows.

MLINREG Report Structure

All rows in the results table except the first two, which are always null, display the predicted
value.

Data Type Format Title

Same as
operand x

MLinReg(x, w, y direction)

IF operand x is … THEN the format is …

character the default format for FLOAT.

• numeric

• date

• interval

the same format as x.

Chapter 11: Ordered Analytical Functions
MLINREG

478 SQL Functions, Operators, Expressions, and Predicates

Example

Consider the itemID, smonth, and sales columns from sales_table:

SELECT itemID, smonth, sales
FROM fiscal_year_sales_table
ORDER BY itemID, smonth;

itemID smonth sales
------ -------- -----
A 1 100
A 2 110
A 3 120
A 4 130
A 5 140
A 6 150
A 7 170
A 8 190
A 9 210
A 10 230
A 11 250
A 12 ?
B 1 20
B 2 30
...

Assume that the null value in the sales column is because in this example the month of
December (month 12) is a future date and the value is unknown.

The following statement uses MLINREG to display the expected sales using past trends for
each month for each product using the sales data for the previous six months.

SELECT itemID, smonth, sales, MLINREG(sales,7,smonth)
FROM fiscal_year_sales_table;
GROUP BY itemID;

itemID smonth sales MLinReg(sales,7,smonth)
------ -------- ----- -----------------------
A 1 100 ?
A 2 110 ?
A 3 120 120
A 4 130 130
A 5 140 140
A 6 150 150
A 7 170 160
A 8 190 177
A 9 210 198
A 10 230 222
A 11 250 247
A 12 ? 270
B 1 20 ?
B 2 30 ?
...

Chapter 11: Ordered Analytical Functions
MSUM

SQL Functions, Operators, Expressions, and Predicates 479

MSUM

Purpose
Computes the moving sum specified by a value expression for the current row and the
preceding n-1 rows. This function is very similar to the MAVG function.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

MSUM is a Teradata extension to the ANSI SQL:2008 standard.

Syntax element … Specifies …

value_expression a numeric constant or column expression for which a moving sum is to be
computed.

The expression cannot contain any ordered analytical or aggregate functions.

width the number of previous rows to be used in computing the moving sum.

The value is always a positive integer constant.

The maximum is 4096.

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, MSUM(Sale, 6, Region ASC, Store DESC), where Sale is the
value_expression, 6 is the width, and Region ASC, Store DESC is the
sort_expression list.

ASC ascending sort order.

The default sort direction is ASC.

DESC descending sort order.

1101A402

MSUM
,

ASC

DESC

((value_expression, width, sort_expression

Chapter 11: Ordered Analytical Functions
MSUM

480 SQL Functions, Operators, Expressions, and Predicates

Using SUM Instead of MSUM

The use of MSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2008
standard, and is equivalent to the ANSI-compliant SUM window function. MSUM is retained
only for backward compatibility with existing applications.

For more information on the SUM window function, see “Window Aggregate Functions” on
page 449.

Result Type and Attributes

The data type, format, and title for MSUM(x, w, y direction) are as follows:

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Problems With Missing Data

Ensure that data you analyze using MSUM has no missing data points. Computing a moving
average over data with missing points produces unexpected and incorrect results because the
computation considers n physical rows of data rather than n logical data points.

Computing MSUM When Number of Rows < width

For data having fewer than width rows, MSUM computes the sum using all the preceding
rows.

MSUM returns the current sum rather than nulls when the number of rows in the sample is
fewer than width.

Data Type Format Title

Same as
operand x

MSum(x, w, y direction)

IF operand x is … THEN the format is …

character the default format for FLOAT.

numeric the same format as x.

Chapter 11: Ordered Analytical Functions
PERCENT_RANK

SQL Functions, Operators, Expressions, and Predicates 481

PERCENT_RANK

Purpose
Returns the relative rank of rows for a value_expression.

Type

ANSI SQL:2008 window function.

Syntax

where:

Syntax element … Specifies …

OVER how the values, grouped according to the PARTITION BY and RESET WHEN
clauses and named by value_expression in the ORDER BY clause, are ranked.

PARTITION BY in its column_reference the column, or columns, according to which ranking
resets.

PARTITION BY is optional. If there is no PARTITION BY or RESET WHEN
clauses, then the entire result set, specified by the ORDER BY clause,
constitutes a single group or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY in its value_expression the column, or columns, being ranked.

ASC ascending sort order.

The default order is ASC.

DESC descending sort order.

1101A567

PERCENT_RANK()

PARTITION BY column_reference

,
OVER (

ASC

value_expressionORDER BY)A

A

DESC

,

RESET WHEN condition

Chapter 11: Ordered Analytical Functions
PERCENT_RANK

482 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

The PERCENT_RANK window function, which uses ANSI-specific syntax, is ANSI SQL:2008
compliant.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Computation

The formula for PERCENT_RANK is:

where:

The assigned rank of a row is defined as 1 (one) plus the number of rows that precede the row
and are not peers of it.

PERCENT_RANK is expressed as an approximate numeric ratio between 0.0 and 1.0.

RESET WHEN the group or partition, over which the function operates, depending on the
evaluation of the specified condition. If the condition evaluates to TRUE, a new
dynamic partition is created inside the specified window partition.

RESET WHEN is optional. If there is no RESET WHEN or PARTITION BY
clauses, then the entire result set constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified
also.

condition a conditional expression used to determine conditional partitioning. The
condition in the RESET WHEN clause is equivalent in scope to the condition in
a QUALIFY clause with the additional constraint that nested ordered analytical
functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to
create sub-partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” on page 433and
the “QUALIFY Clause” in SQL Data Manipulation Language.

Syntax element … Specifies …

This variable … Represents the …

RK rank of the row

NR number of rows in the window partition

PERCENT_RANK has this value … FOR the result row assigned this rank …

0.0 1.

PERCENT_RANK RK - 1()
NR - 1()

---------------------=

Chapter 11: Ordered Analytical Functions
PERCENT_RANK

SQL Functions, Operators, Expressions, and Predicates 483

Result Type and Attributes

For PERCENT_RANK() OVER (PARTITION BY x ORDER BY y direction), the data type,
format, and title are as follows:

For an explanation of the formatting characters in the format, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Example 1

Determine the relative rank, called the percent_rank, of Christmas sales.

The following query:

SELECT sales_amt,
PERCENT_RANK() OVER (ORDER BY sales_amt)
FROM xsales;

might return the following results. Note that the relative rank is returned in ascending order,
the default when no sort order is specified and that the currency is not reported explicitly.

Example 2

Determine the rank and the relative rank of Christmas sales.

1.0 highest in the result.

PERCENT_RANK has this value … FOR the result row assigned this rank …

Data Type Format Title

REAL the default format for DECIMAL(7,6). Percent_Rank(y direction)

sales_amt Percent_Rank

100.00 0.000000

120.00 0.125000

130.00 0.250000

140.00 0.375000

143.00 0.500000

147.00 0.625000

150.00 0.750000

155.00 0.875000

160.00 1.000000

Chapter 11: Ordered Analytical Functions
PERCENT_RANK

484 SQL Functions, Operators, Expressions, and Predicates

SELECT sales_amt,
RANK() OVER (ORDER BY sales_amt),
PERCENT_RANK () OVER (ORDER BY sales_amt)
FROM xsales;

sales_amt Rank Percent_Rank

100.00 1 0.000000

120.00 2 0.125000

130.00 3 0.250000

140.00 4 0.375000

143.00 5 0.500000

147.00 6 0.625000

150.00 7 0.750000

155.00 8 0.875000

160.00 9 1.000000

Chapter 11: Ordered Analytical Functions
QUANTILE

SQL Functions, Operators, Expressions, and Predicates 485

QUANTILE

Purpose
Computes the quantile scores for the values in a group.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

QUANTILE is a Teradata extension to the ANSI SQL:2008 standard.

Definition

A quantile is a generic interval of user-defined width. For example, percentiles divide data
among 100 evenly spaced intervals, deciles among 10 evenly spaced intervals, quartiles among
4, and so on. A quantile score indicates the fraction of rows having a sort_expression value
lower than the current value. For example, a percentile score of 98 means that 98 percent of
the rows in the list have a sort_expression value lower than the current value.

Syntax element … Specifies …

quantile_constant a positive integer constant used to define the number of quantile partitions to
be used.

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, QUANTILE(10, Region ASC, Store DESC), where 10 is the
quantile_constant and Region ASC, Store DESC is the sort_expression list.

ASC ascending sort order.

DESC descending sort order.

The default sort direction is DESC.

1101A403

QUANTILE
,

ASC

DESC

((quantile_constant, sort_expression

Chapter 11: Ordered Analytical Functions
QUANTILE

486 SQL Functions, Operators, Expressions, and Predicates

Using ANSI Window Functions Instead of QUANTILE

The use of QUANTILE is strongly discouraged. It is a Teradata extension to the ANSI
SQL:2008 standard and is retained only for backward compatibility with existing applications.

To compute QUANTILE(q, s) using ANSI window functions, use the following:

(RANK() OVER (ORDER BY s) - 1) * q / COUNT(*) OVER()

QUANTILE Report

For each row in the group, QUANTILE returns an integer value that represents the quantile of
the sort_expression value for that row relative to the sort_expression value for all the rows in the
group.

Quantile Value Range

Quantile values range from 0 through (Q-1), where Q is the number of quantile partitions
specified by quantile_constant.

Result Type and Attributes

The data type, format, and title for QUANTILE(Q, list) are as follows:

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Example 1

Display each item and its total sales in the ninth (top) decile according to the total sales.

SELECT itemID, sumPrice
FROM (SELECT a1.itemID, SUM(price)
FROM Sales a1
GROUP BY a1.itemID) AS T1(itemID, sumPrice)
QUALIFY QUANTILE(10,sumPrice)=9;

Example 2

The following example groups all items into deciles by profitability.

SELECT Item, Profit, QUANTILE(10, Profit) AS Decile
FROM

(SELECT Item, Sum(Sales) — (Count(Sales) * ItemCost) AS Profit
FROM DailySales, Items
WHERE DailySales.Item = Items.Item
GROUP BY Item) AS Item;

Data Type Format Title

INTEGER the default format for the INTEGER data type Quantile(Q, list)

Chapter 11: Ordered Analytical Functions
QUANTILE

SQL Functions, Operators, Expressions, and Predicates 487

The result might look like the following table:

Example 3

Because QUANTILE uses equal-width histograms to partition the specified data, it does not
partition the data equally using equal-height histograms. In other words, do not expect equal
row counts per specified quantile. Expect empty quantile histograms when, for example,
duplicate values for sort_expression are found in the data.

For example, consider the following simple SELECT statement.

SELECT itemNo, quantity, QUANTILE(10,quantity) FROM inventory;

The report might look like this.

Because the quantile sort is on quantity, and there are only two quantity scores in the
inventory table, there are no scores in the report for deciles 1 through 8.

Item Profit Decile

High Tops 97112 9

Low Tops 74699 7

Running 69712 6

Casual 28912 3

Xtrain 100129 9

itemNo quantity Quantile(10, quantity)

13 1 0

9 1 0

7 1 0

2 1 0

5 1 0

3 1 0

1 1 0

6 1 0

4 1 0

10 1 0

8 1 0

11 1 0

12 9 9

Chapter 11: Ordered Analytical Functions
RANK

488 SQL Functions, Operators, Expressions, and Predicates

RANK

Purpose
Returns the rank (1 … n) of all the rows in the group by the value of sort_expression list, with
the same sort_expression values receiving the same rank.

Type

Teradata-specific function.

Syntax

where:

ANSI Compliance

RANK is a Teradata extension to the ANSI SQL:2008 standard.

Using ANSI RANK Instead of Teradata RANK

The use of Teradata RANK is strongly discouraged. It is a Teradata extension to the ANSI
SQL:2008 standard, and is equivalent to the ANSI-compliant RANK window function.
Teradata RANK is retained only for backward compatibility with existing applications.

For more information on the RANK window function, see “RANK” on page 491.

Syntax element … Specifies …

sort_expression a constant or column expression or comma-separated list of constant or
column expressions to be used to sort the values.

For example, RANK(Region ASC, Store DESC), where Region ASC, Store
DESC is the sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC ascending sort order.

DESC descending sort order.

The default sort direction is DESC.

1101A404

RANK
,

ASC

DESC

((sort_expression

Chapter 11: Ordered Analytical Functions
RANK

SQL Functions, Operators, Expressions, and Predicates 489

Meaning of Rank

A rank r implies the existence of exactly r-1 rows with sort_expression value preceding it. All
rows having the same sort_expression value are assigned the same rank.

For example, if n rows have the same sort_expression values, then they are assigned the same
rank—call it rank r. The next distinct value receives rank r+n.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the
result. The only argument for RANK is the sort column or columns, and the function returns
an integer that represents the rank of each row in the result.

Computing Top and Bottom Values

You can use RANK to compute top and bottom values as shown in the following examples.

Top(n, column) is computed as QUALIFY RANK(column DESC) <=n.

Bottom(n, column) is computed as QUALIFY RANK(column ASC) <=n.

Result Type and Attributes

The data type, format, and title for RANK(x) are as follows:

For information on the default format of data types, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Example 1

Display each item, its total sales, and its sales rank for the top 100 selling items.

SELECT itemID, sumPrice, RANK(sumPrice)
FROM

(SELECT a1.itemID, SUM(a1.Price)
FROM Sales a1
GROUP BY a1.itemID AS T1(itemID, sumPrice)
QUALIFY RANK(sumPrice) <=100;

Example 2

Sort employees alphabetically and identify their level of seniority in the company.

SELECT EmployeeName, (HireDate - CURRENT_DATE) AS ServiceDays,
RANK(ServiceDays) AS Seniority
FROM Employee
ORDER BY EmployeeName;

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(x)

Chapter 11: Ordered Analytical Functions
RANK

490 SQL Functions, Operators, Expressions, and Predicates

The result might look like the following table:

Example 3

Sort items by category and report them in order of descending revenue rank.

SELECT Category, Item, Revenue, RANK(Revenue) AS ItemRank
FROM ItemCategory,

(SELECT Item, SUM(sales) AS Revenue
FROM DailySales
GROUP BY Item) AS ItemSales

WHERE ItemCategory.Item = ItemSales.Item
ORDER BY Category, ItemRank DESC;

The result might look like the following table.

EmployeeName Service Days Seniority

Ferneyhough 9931 2

Lucier 9409 4

Revueltas 9408 5

Ung 9931 2

Wagner 10248 1

Category Item Revenue ItemRank

Hot Cereal Regular Oatmeal 39112.00 4

Hot Cereal Instant Oatmeal 44918.00 3

Hot Cereal Regular COW 59813.00 2

Hot Cereal Instant COW 75411.00 1

Chapter 11: Ordered Analytical Functions
RANK

SQL Functions, Operators, Expressions, and Predicates 491

RANK

Purpose
Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

Type

ANSI SQL:2008 window function.

Syntax

where:

Syntax element … Specifies …

OVER how the values, grouped according to the PARTITION BY and RESET WHEN
clauses and named by value_expression in the ORDER BY clause, are ranked.

PARTITION BY in its column_reference the column, or columns, according to which ranking
resets.

PARTITION BY is optional. If there is no PARTITION BY or RESET WHEN
clauses, then the entire result set, specified by the ORDER BY clause,
constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY in its value_expression the column, or columns, being ranked.

ASC ascending rank, or sort order.

The default order is ASC.

DESC descending rank, or sort order.

1101A566

RANK()

PARTITION BY column_reference

,
OVER (

ASC

value_expressionORDER BY)A

A

DESC

,

RESET WHEN condition

Chapter 11: Ordered Analytical Functions
RANK

492 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

The RANK window function is ANSI SQL:2008 compliant.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Meaning of Rank

RANK returns an ordered ranking of rows based on the value_expression in the ORDER BY
clause. All rows having the same value_expression value are assigned the same rank.

If n rows have the same value_expression values, then they are assigned the same rank—call it
rank r. The next distinct value receives rank r+n. And so on.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the
result. RANK returns an integer that represents the rank of each row in the result.

Result Type and Attributes

For RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and
title are as follows:

For an explanation of the formatting characters in the format, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

RESET WHEN the group or partition, over which the function operates, depending on the
evaluation of the specified condition. If the condition evaluates to TRUE, a
new dynamic partition is created inside the specified window partition.

RESET WHEN is optional. If there is no RESET WHEN or PARTITION BY
clauses, then the entire result set constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified
also.

condition a conditional expression used to determine conditional partitioning. The
condition in the RESET WHEN clause is equivalent in scope to the condition
in a QUALIFY clause with the additional constraint that nested ordered
analytical functions cannot specify a RESET WHEN clause. In addition, you
cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to
create sub-partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” on page 433 and
the “QUALIFY Clause” in SQL Data Manipulation Language.

Syntax element … Specifies …

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(y direction)

Chapter 11: Ordered Analytical Functions
RANK

SQL Functions, Operators, Expressions, and Predicates 493

Example

This example ranks salespersons by sales region based on their sales.

SELECT sales_person, sales_region, sales_amount,
RANK() OVER (PARTITION BY sales_region ORDER BY sales_amount DESC)

FROM sales_table;

Notice that the rank column in the preceding table lists salespersons in declining sales order
according to the column specified in the PARTITION BY clause (sales_region) and that the
rank of their sales (sales_amount) is reset when the sales_region changes.

sales_person sales_region sales_amount Rank(sales_amount)

Garabaldi East 100 1

Baker East 99 2

Fine East 89 3

Adams East 75 4

Edwards West 100 1

Connors West 99 2

Davis West 99 2

Chapter 11: Ordered Analytical Functions
ROW_NUMBER

494 SQL Functions, Operators, Expressions, and Predicates

ROW_NUMBER

Purpose
Returns the sequential row number, where the first row is number one, of the row within its
window partition according to the window ordering of the window.

Type

ANSI SQL:2008 window function.

Syntax

where:

Syntax element … Specifies …

OVER the window partition and ordering.

PARTITION BY the column, or columns, according to which the result set is partitioned.

PARTITION BY is optional. If there is no PARTITION BY or RESET WHEN
clauses, then the entire result set, specified by the ORDER BY clause,
constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY in its value_expression the order in which to sort the values in the partition.

ASC ascending sort order.

The default order is ASC.

DESC descending sort order.

1101C108

ROW_NUMBER()

PARTITION BY column_reference

,
OVER (

ASC

value_expressionORDER BY)A

A

DESC

,

RESET WHEN condition

Chapter 11: Ordered Analytical Functions
ROW_NUMBER

SQL Functions, Operators, Expressions, and Predicates 495

ANSI Compliance

The ROW_NUMBER window function is ANSI SQL:2008 compliant.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Window Aggregate Equivalent

ROW_NUMBER() OVER (PARTITION BY column ORDER BY value)

is equivalent to

COUNT(*) OVER (PARTITION BY column ORDER BY value
ROWS UNBOUNDED PRECEDING).

For more information on COUNT, see “Window Aggregate Functions” on page 449.

Example

To order salespersons based on sales within a sales region, the following SQL query might
yield the following results.

SELECT ROW_NUMBER() OVER (PARTITION BY sales_region
ORDER BY sales_amount DESC),

sales_person, sales_region, sales_amount
FROM sales_table;

Row_Number() sales_person sales_region sales_amount
------------ ------------ ------------ ------------

1 Baker East 100
2 Edwards East 99
3 Davis East 89
4 Adams East 75
1 Garabaldi West 100
2 Connors West 99

RESET WHEN the group or partition, over which the function operates, depending on the
evaluation of the specified condition. If the condition evaluates to TRUE, a
new dynamic partition is created inside the specified window partition.

RESET WHEN is optional. If there is no RESET WHEN or PARTITION BY
clauses, then the entire result set constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified
also.

condition a conditional expression used to determine conditional partitioning. The
condition in the RESET WHEN clause is equivalent in scope to the condition
in a QUALIFY clause with the additional constraint that nested ordered
analytical functions cannot specify a RESET WHEN clause. In addition, you
cannot specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to
create sub-partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” on page 433 and
the “QUALIFY Clause” in SQL Data Manipulation Language.

Syntax element … Specifies …

Chapter 11: Ordered Analytical Functions
ROW_NUMBER

496 SQL Functions, Operators, Expressions, and Predicates

3 Fine West 99

SQL Functions, Operators, Expressions, and Predicates 497

CHAPTER 12 String Operator and Functions

This chapter describes the concatenation operator and functions that operate on character,
byte, and numeric strings.

String Functions

SQL provides a concatenation operator and string functions to translate, concatenate, and
perform other operations on strings.

String Definition

The functions documented in this chapter are designed primarily to work with strings of
characters. Because many of them can also process byte and numeric constant and literal data
strings, the term string is frequently used here to refer to all three of these data type families.

IF you want to … THEN use …

concatenate strings concatenation operator

convert a character string to hexadecimal
representation

CHAR2HEXINT

get the starting position of a substring within
another string

• INDEX

• POSITION

convert a character string to lowercase LOWER

get the Soundex code for a character string SOUNDEX

extract a substring from another string • SUBSTRING

• SUBSTR

translate a character string to another server
character set

TRANSLATE

determine if TRANSLATE can successfully
translate a character string to a specified server
character set

TRANSLATE_CHK

trim specified pad characters or bytes from a
character or byte string

TRIM

convert a character string to uppercase UPPER

convert a character string to VARGRAPHIC
representation

VARGRAPHIC

Chapter 12: String Operator and Functions
String Functions

498 SQL Functions, Operators, Expressions, and Predicates

Data Types on Which String Functions can Operate

The following table lists all the data types that can be processed as strings. Note that not all
types are acceptable to all functions. See the individual functions for the types they can
process.

ANSI Equivalence of Teradata SQL String Functions

Several of the Teradata SQL string functions are extensions to the ANSI SQL:2008 standard.

To maintain ANSI compatibility, use the ANSI equivalent functions instead of Teradata SQL
string functions, when available.

The following Teradata functions have no ANSI equivalents:

• CHAR2HEXINT

• SOUNDEX

• TRANSLATE_CHK

• UPPER

• VARGRAPHIC

Additional Functions That Operate on Strings

SQL provides other string functions and operators that are not discussed in this chapter.

Data Type Grouping

Character Byte Numeric

• CHARACTER

• VARCHAR

• CLOB

• BYTE

• VARBYTE

• BLOB

• BYTEINT

• DECIMAL

• FLOAT

• INTEGER

• NUMERIC

• SMALLINT

Change this Teradata string function … To this ANSI string function in new applications …

INDEX POSITION

MINDEX†

SUBSTR SUBSTRING

MSUBSTR†

† These functions are no longer documented because their use is deprecated and they will no longer
be supported after support for KANJI1 is dropped.

Chapter 12: String Operator and Functions
String Functions

SQL Functions, Operators, Expressions, and Predicates 499

FOR more information on … SEE …

attribute functions that return descriptive
information about strings, such as:

• BYTE

• CHARACTER_LENGTH/
CHAR_LENGTH

• OCTET_LENGTH

Chapter 14: “Attribute Functions.”

comparison operators Chapter 5: “Comparison Operators.”

the LIKE predicate Chapter 13: “Logical Predicates.”

Chapter 12: String Operator and Functions
Effects of Server Character Sets on Character String Functions

500 SQL Functions, Operators, Expressions, and Predicates

Effects of Server Character Sets on Character
String Functions

String functions that operate on character data follow the rules listed below.

Uppercase Character Conversion for LATIN

For the LATIN server character set, the method of converting to uppercase characters is based
on ISO 8859 Latin1.

Logical Characters vs. Physical Characters

For UNICODE, GRAPHIC and KANJISJIS server character sets, the functions operate on a
logical character basis, except for the functions that are sensitive to the ANSI mode vs.
Teradata mode switch.

Although the storage space for KANJISJIS is allocated on a physical basis and is not ANSI
compatible, all string operations on this type operate on a character basis as dictated by ANSI.

Untranslatable KANJI1 Characters

Character string functions do not work on all characters in the KANJI1 server character set
when the session character set is UTF8 or UTF16, because the KANJI1 server character set is
ambiguous with regards to multibyte characters and some single-byte characters.

Recommendation: Unless the KANJI1 server character set is required, use the UNICODE
server character set with the UTF8 and UTF16 session character sets for best results.

The following single-byte characters in KanjiEBCDIC to KANJI1 translations are mapped to
the following Unicode character names.

However, with a KanjiSJIS character set, these hexadecimal values map to control characters.

Implicit Server Character Set Translation

For functions that operate on more than one argument, if the arguments have different server
character sets, implicit translation rules take effect.

Hexadecimal Value Character Unicode Character Name

0x10 ¢ CENT SIGN

0x11 £ POUND SIGN

0x12 ¬ NOT SIGN

0x13 \ REVERSE SOLIDUS

0x14 ~ TILDE

Chapter 12: String Operator and Functions
Effects of Server Character Sets on Character String Functions

SQL Functions, Operators, Expressions, and Predicates 501

For details, see “Implicit Character-to-Character Translation” on page 765.

Chapter 12: String Operator and Functions
Concatenation Operator

502 SQL Functions, Operators, Expressions, and Predicates

Concatenation Operator

Purpose
Concatenates string expressions.

Syntax

where:

ANSI Compliance

EXCLAMATION POINT character pairs (!!) are Teradata extensions to the ANSI SQL:2008
standard. Do not use them as concatenation operators.

Solid and broken VERTICAL LINE character pairs (||) are ANSI SQL:2008 compliant forms of
the concatenation operator.

Argument Types and Rules

Use the concatenation operator on strings and string expressions of type:

• Byte

If any argument is a byte type, all other arguments must also be byte types.

• Numeric

A numeric argument is converted to a character string using the format for the numeric
value. For details about implicit numeric to character data type conversion, see “Implicit
Numeric-to-Character Conversion” on page 828

• Character

When the arguments are both character types, but have different server character sets, then
implicit string conversion occurs. For details, see “Implicit Character-to-Character
Translation” on page 765.

Syntax element … Specifies …

string_expression_1 a byte, numeric, or character string or string expression.

string_expression_2

string_expression_n

FF07D195

string_expression_1 string_expression_2

string_expression_n

Chapter 12: String Operator and Functions
Concatenation Operator

SQL Functions, Operators, Expressions, and Predicates 503

• UDTs that have implicit casts to a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including the
concatenation operator, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type

Conversions.”

Result Type and Attributes

The result of a concatenation operation is a string formed by concatenating the arguments in a
left-to-right direction.

Here are the default result type and attributes for arg1 || arg2:

If either argument is null, the result is null.

The data types and attributes of the arguments determine whether the result type of a
concatenation operation is a fixed length or varying length string. Result types appear in the
following table, where n is the sum of the lengths of all arguments:

Data Type Heading

(arg1||arg2)

IF the arguments are … THEN the result is a …

byte strings byte string.

numeric or character strings or
UDTs that are implicitly cast to
character strings

character string.

IF this argument … Is this data type or attribute …
THEN the result is this
data type or attribute …

either VARBYTE VARBYTE(n)

VARCHAR VARCHAR(n)

numeric

UDT that is implicitly cast to VARCHAR

CLOB CLOB(n)

BLOB BLOB(n)

Chapter 12: String Operator and Functions
Concatenation Operator

504 SQL Functions, Operators, Expressions, and Predicates

When either argument is a character string that specifies the CASESPECIFIC attribute, the
result also specifies the CASESPECIFIC attribute.

Example 1: Using Concatenation to Create More Readable Results

Constants, spaces, and the TITLE phrase can be included in the operation definition to format
the result heading and improve readability.

For example, the following definition returns side titles, evenly spaced result strings, and a
blank heading.

SELECT ('Sex ' || sex ||', Marital Status ' || mstat)(TITLE ' ')
FROM Employee ;

Sex M, Marital Status S
Sex F, Marital Status M
Sex M, Marital Status M
Sex F, Marital Status M
Sex F, Marital Status M
Sex M, Marital Status M
Sex F, Marital Status W

...

Example 2: Concatenating First Name With Last Name

Consider a table called names that contains last and first names columns, defined as
VARCHAR, as listed here:

lname fname
------------ ------------
Ryan Loretta
Villegas Arnando
Kanieski Carol
Brown Alan

Use string concatenation and a space separator to combine first and last names:

SELECT fname ||' '|| lname
FROM names
ORDER BY lname ;

both BYTE BYTE(n)

CHARACTER (with same server character set) CHARACTER(n)

UDT that is implicitly cast to CHARACTER (with
the same server character set)

CHARACTER (with different server character sets) VARCHAR(n)

UDT that is implicitly cast to CHARACTER (with
different server character sets)

numeric

IF this argument … Is this data type or attribute …
THEN the result is this
data type or attribute …

Chapter 12: String Operator and Functions
Concatenation Operator

SQL Functions, Operators, Expressions, and Predicates 505

The result is:

((fname||' ')||lname)

Alan Brown
Carol Kanieski
Loretta Ryan
Arnando Villegas

Example 3: Concatenating Last Name With First Name

Change the SELECT and the separator to obtain last and first names:

SELECT lname||', '||fname
FROM names
ORDER BY lname;

The result is:

((lname||', ')||fname)

Brown, Alan
Kanieski, Carol
Ryan, Loretta
Villegas, Arnando

Example 4: Concatenating Byte Strings

This example shows how to concatenate byte strings. Consider the following table definition:

CREATE TABLE tsttbla
(column_1 BYTE(2)
,column_2 VARBYTE(10)
,column_3 BLOB(128K));

The following values are inserted into table tsttbla:

INSERT tsttbla ('4142'XB, '7A7B7C'XB, '1A1B1C2B2C'XB);

The following SELECT statement concatenates column_2 and column_1 and column_3:

SELECT (column_2 || column_1 || column_3) (FORMAT 'X(20)')
FROM tsttbla ;

The result is:

((column_2||column_1)||column_3)

7A7B7C41421A1B1C2B2C

The resulting data type is BLOB.

Concatenating Character Strings Having Different Server Character Sets

There are special considerations for the concatenation of character strings that specify
different server character sets in the CHARACTER SET attribute.

Implicit translation rules apply. For details, see “Implicit Character-to-Character Translation”
on page 765.

Chapter 12: String Operator and Functions
Concatenation Operator

506 SQL Functions, Operators, Expressions, and Predicates

If the strings are fixed strings, then the result is varying with length equal to the sum of the
lengths of the strings being concatenated.

This is true regardless of whether the string lengths are defined in terms of bytes or characters.
So, a fixed n-byte KANJISJIS character string concatenated with a fixed m-character
UNICODE string produces a VARCHAR(m+n) CHARACTER SET UNICODE result.

Consider the following table definition:

CREATE TABLE tab1
(cunicode CHARACTER(4) CHARACTER SET UNICODE
,clatin CHARACTER(3) CHARACTER SET LATIN
,csjis CHARACTER(3) CHARACTER SET KANJISJIS);

The following values are inserted into table tab1:

INSERT tab1 ('abc', 'abc', 'abc');

The following table illustrates these concatenation properties.

With the exception of KanjiEBCDIC, concatenation of KANJI1 character strings acts as
described above. Under KanjiEBCDIC, any adjacent shift-out (<) and shift-in (>) characters
within the resulting expression are removed. In this case, the result string is padded as
necessary with trailing <single-byte space> characters.

Examples for Japanese Character Sets

The following tables show the results of concatenating string expressions under each of the
Kanji character sets supported by Teradata Database.

These examples assume that the string expressions follow the rules defined in the chapter
“SQL Data Definition” in SQL Data Types and Literals.

For an explanation of symbols and other notation in the examples, see “Character Shorthand
Notation Used In This Book” on page 954.

Example 1: KanjiEBCDIC

string_expression_1 || string_expression_2

Concatenation Result Type of Result

cunicode || clatin 'abc∆abc' VARCHAR(7) CHARACTER SET UNICODE

clatin || csjis 'abcabc' VARCHAR(6) CHARACTER SET UNICODE

cunicode || csjis 'abc∆abc' VARCHAR(7) CHARACTER SET UNICODE

string_expression_1 string_expression_2 Result

<ABC> <DEF>G <ABCDEF>G

<ABC> <> <ABC>

Chapter 12: String Operator and Functions
Concatenation Operator

SQL Functions, Operators, Expressions, and Predicates 507

Example 2: KanjiEUC

string_expression_1 || string_expression_2

Example 3: KanjiShift-JIS

string_expression_1 || string_expression_2

<ABC>a <DEF> <ABC>a<DEF>

string_expression_1 string_expression_2 Result

string_expression_1 string_expression_2 Result

ABCm DEFg ABCmDEFg

ss3A ss2B m ss3C ss3A ss2B m ss3C

string_expression_1 string_expression_2 Result

mnABCX B mnABCXB

mnABCX g mnABCXg

Chapter 12: String Operator and Functions
CHAR2HEXINT

508 SQL Functions, Operators, Expressions, and Predicates

CHAR2HEXINT

Purpose
Returns the hexadecimal representation for a character string.

Syntax

where:

ANSI Compliance

CHAR2HEXINT is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

Use CHAR2HEXINT on character strings or character string expressions.

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
CHAR2HEXINT, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

CHAR2HEXINT is not supported for CLOBs.

Syntax element … Specifies …

character_string_expression a character string or character string expression for which the
hexadecimal representation is to be returned.

1101E173

CHAR2HEXINT (character_string_expression)

Chapter 12: String Operator and Functions
CHAR2HEXINT

SQL Functions, Operators, Expressions, and Predicates 509

Result Type and Attributes

Here are the default attributes for CHAR2HEXINT(character_string_expression):

The length of the result is twice the length of character_string_expression.

The server character set of the result depends on whether Japanese language support was
enabled during sysinit.

CHAR2HEXINT and Constant Strings

You can apply CHAR2HEXINT to a string literal to determine its hexadecimal equivalent.

Character constants are treated as VARCHAR(n) CHARACTER SET UNICODE, where n is
the length of the constant.

The following statement and results illustrate how CHAR2HEXINT operates on constant
strings:

SELECT CHAR2HEXINT('123');

Char2HexInt('123')

003100320033

Example 1

Assume that the system was enabled with Japanese language support during sysinit.

CREATE TABLE tab1
(clatin CHAR(3) CHARACTER SET LATIN
,cunicode CHAR(3) CHARACTER SET UNICODE
,csjis CHAR(3) CHARACTER SET KANJISJIS
,cgraphic CHAR(3) CHARACTER SET GRAPHIC
,ckanji1 CHAR(3) CHARACTER SET KANJI1);

INSERT INTO tab1('abc','abc','abc',_GRAPHIC 'ABC','abc');

The bold uppercase LATIN characters in the example represent full width LATIN characters.

Data Type Heading

CHARACTER Char2HexInt(character_string_expression)

IF the system uses this type of language
support …

THEN the result specifies this server character
set …

standard LATIN

Japanese KANJI1

Chapter 12: String Operator and Functions
CHAR2HEXINT

510 SQL Functions, Operators, Expressions, and Predicates

CHAR2HEXINT returns the following results for the character strings inserted into tab1.

Example 2

To find the internal hexadecimal representation of all table names, submit the following
SELECT statement using CHAR2HEXINT.

SELECT CHAR2HEXINT(TRIM(t.tablename))(FORMAT 'X(30)')
(TITLE 'Internal Hex Representation of TableName')
,t.tablename (TITLE 'TableName')
FROM dbc.tables T
WHERE t.tablekind = 'T'
ORDER BY t.tablename;

Partial output from this SELECT statement is similar to the following report:

Internal Hex Representation of TableName TableName
-- ----------------
416363657373526967687473 AccessRights
4163634C6F6752756C6554626C AccLogRuleTbl
4163634C6F6754626C AccLogTbl
4163636F756E7473 Accounts
4163637467 Acctg
416C6C All
436F70496E666F54626C CopInfoTbl

This function … Returns this result …

CHAR2HEXINT(clatin) 616263

CHAR2HEXINT(cunicode) 006100620063'

CHAR2HEXINT(csjis) 616263

CHAR2HEXINT(cgraphic) FF41FF42FF43

CHAR2HEXINT(ckanji1) 616263

Chapter 12: String Operator and Functions
INDEX

SQL Functions, Operators, Expressions, and Predicates 511

INDEX

Purpose
Returns the position in string_expression_1 where string_expression_2 starts.

Syntax

where:

ANSI Compliance

INDEX is a Teradata extension to the ANSI SQL:2008 standard.

Use POSITION instead of INDEX for ANSI SQL:2008 compliance.

Argument Types and Rules

INDEX operates on the following types of arguments:

• Character

• Byte

If one string expression is of type BYTE, then both string expressions must be of type
BYTE.

• Numeric

If any string expression is numeric, then it is converted implicitly to CHARACTER type.

• UDTs that have implicit casts that cast between the UDT and any of the following
predefined types:

• Numeric

• Character

• DATE

• Byte

To define an implicit cast for a UDT, use CREATE CAST and specify AS ASSIGNMENT.
For details on CREATE CAST, see SQL Data Definition Language.

Syntax element … Specifies …

string_expression_1 a full string to be searched.

string_expression_2 a substring to be searched for its position within the full string.

FF07D253

INDEX string_expression_1(),string_expression_2

Chapter 12: String Operator and Functions
INDEX

512 SQL Functions, Operators, Expressions, and Predicates

Implicit type conversion of UDTs for system operators and functions, including INDEX, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

INDEX does not support CLOBs or BLOBs.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Result Type and Attributes

Here are the default result type and attributes for INDEX(arg1, arg2):

Expected Values

The following rules apply to the value that INDEX returns:

• If string_expression_2 is not found in string_expression_1, then the result is zero.

• If string_expression_2 is null, then the result is null.

• If the arguments are character types, INDEX returns a logical character position, not a
byte position, except when the server character set of the arguments is KANJI1 and the
session client character set is KanjiEBCDIC.

For details, see “Rules for KANJI1 Server Character Set” on page 513.

Rules for Character Type Arguments

If the arguments are character types, matching is in terms of logical characters. Single byte
characters are matched against single byte characters, and multibyte characters are matched
against multibyte characters. For a match to occur, representation of the logical character
must be identical in both expressions.

If the server character sets of the arguments are not the same, INDEX performs an implicit
character translation. For a description of implicit character translation rules, see “Implicit
Character-to-Character Translation” on page 765.

The CASESPECIFIC attribute affects whether characters are considered to be a match.

Data Type Heading

INTEGER Index(arg1, arg2)

IF the session
mode is … THEN the default case specification for character columns and literals is …

ANSI CASESPECIFIC.

Teradata NOT CASESPECIFIC.

The exception is character data of type GRAPHIC, which is always CASESPECIFIC.

Chapter 12: String Operator and Functions
INDEX

SQL Functions, Operators, Expressions, and Predicates 513

To override the default case specification, you can apply the CASESPECIFIC or NOT
CASESPECIFIC phrase to a character column in CREATE TABLE or ALTER TABLE.

Or, you can apply the CASESPECIFIC or NOT CASESPECIFIC phrase to the INDEX
character string arguments.

Using the rules for character type arguments, if you want INDEX to match letters only if they
are the same letters in the same case, specify the CASESPECIFIC phrase with at least one of
the arguments. For example:

SELECT Name
FROM Employee
WHERE INDEX(Name, 'X' (CASESPECIFIC)) = 1;

If you want INDEX to match letters without considering the case, specify the NOT
CASESPECIFIC phrase with both of the arguments.

Rules for KANJI1 Server Character Set

When the server character set is KANJI1 and the client character set is KanjiEBCDIC, the
offset count includes Shift-Out/Shift-In characters, but they are not matched. They are treated
only as an indication of a transition from a single byte character and an multibyte character.

The nonzero position of the result is reported as follows:

IF … THEN …

either argument has a
CASESPECIFIC
attribute (either by
default or specified
explicitly)

simple Latin letters are considered to be matching only if they are the same
letters and the same case.

both arguments have
a NOT
CASESPECIFIC
attribute (either by
default or specified
explicitly)

before the operation begins, some characters are converted to uppercase.

IF the character is a … THEN the character is …

lowercase simple Latin letter converted to uppercase
before the operation begins.

non-Latin single byte character not converted to uppercase.

multibyte character

byte indicating a transition between
single-byte and multibyte character data

IF the character set is … THEN the result is the …

KanjiEBCDIC position of the first byte of the logical character offset (including Shift-
Out/Shift-In in the offset count) within string_expression_1.

other than KanjiEBCDIC logical character offset within string_expression_1.

Chapter 12: String Operator and Functions
INDEX

514 SQL Functions, Operators, Expressions, and Predicates

Relationship Between INDEX and POSITION

INDEX and POSITION behave identically, except on character type arguments when the
client character set is KanjiEBCDIC, the server character set is KANJI1, and an argument
contains a multibyte character.

For an example of when the two functions return different results for the same data, see “How
POSITION and INDEX Differ” on page 521.

Example 1

The following table shows examples of simple INDEX expressions and their results.

Example 2

The following examples show how INDEX(string_1, string_2) operates when the server
character set for string_1 and the server character set for string_2 differ. In these cases, both
arguments are converted to UNICODE (if needed) and the characters are matched logically.

Example 3

The following examples show how INDEX(string_1, string_2) operates when the server
character set for both arguments is KANJI1 and the client character set is KanjiEBCDIC.

Note that for KanjiEBCDIC, results are returned in terms of physical units, making INDEX
DB2-compliant in that environment.

Expression Result

INDEX('catalog','log') 5

INDEX('catalog','dog') 0

INDEX('41424344'XB,'43'XB) 3

IF string_1 is … AND string_2 is … THEN the result is …

Character Set Data Character Set Data

UNICODE 92 abc LATIN abc 4

UNICODE abc UNICODE c 3

KANJISJIS 92 04 UNICODE 0 4

IF string_1 contains … AND string_2 contains … THEN the result is …

MN<AB> 6

MN<AB> <A> 4

Chapter 12: String Operator and Functions
INDEX

SQL Functions, Operators, Expressions, and Predicates 515

Example 4

The following examples show how INDEX(string_1, string_2) operates when the server
character set for both arguments is KANJI1 and the client character set is KanjiEUC.

Example 5

The following examples show how INDEX(string_1, string_2) operates when the server
character set for both arguments is KANJI1 and the client character set is KanjiShift-JIS.

Example 6

In this example, INDEX is applied to ’ ’ (the SPACE character) in the value strings in the
Name column of the Employee table.

SELECT name
FROM employee
WHERE INDEX(name, ' ') > 6 ;

INDEX examines the Name field and returns all names where a space appears in a character
position beyond the sixth (character position seven or higher).

MN<AB>P P 9

MXN<AB>P 7

IF string_1 contains … AND string_2 contains … THEN the result is …

IF string_1 contains … AND string_2 contains … THEN the result is …

a b ss3A ss3A 3

a b ss2B ss2B 3

CS1_DATA A 6

a b ss2D ss3E ss2F ss2F 5

a b C ss2D ss3E ss2F ss2F 6

CS1_DmATA A 7

IF string_1 contains … AND string_2 contains … THEN the result is …

mnABCX B 4

mnABCX X 6

Chapter 12: String Operator and Functions
INDEX

516 SQL Functions, Operators, Expressions, and Predicates

Example 7

The following example displays a list of projects in which the word Batch appears in the
project description, and lists the starting position of the word.

SELECT proj_id, INDEX(description, 'Batch')
FROM project
WHERE INDEX(description, 'Batch') > 0 ;

The system returns the following report.

proj_id Index (description, 'Batch')
------------- ----------------------------
OE2-0003 5
AP2-0003 13
OE1-0003 5
AP1-0003 13
AR1-0003 10
AR2-0003 10

Example 8

A somewhat more complex construction employing concatenation, SUBSTRING, and
INDEX might be more instructive. Suppose the employee table contains the following values.

empno name
---------- -----------
10021 Smith T
10007 Aguilar J
10018 Russell S
10011 Chin M
10019 Newman P

You can transpose the form of the names from the name column selected from the employee
table and change the punctuation in the report using the following query:

SELECT empno,
SUBSTRING(name FROM INDEX(name,' ')+1 FOR 1)| | '. '| |
SUBSTRING(name FROM 1 FOR INDEX(name, ' ')-1)
(TITLE 'Emp Name')
FROM employee ;

The system returns the following report.

empno Emp Name
---------- --------------
10021 T. Smith
10007 J. Aguilar
10018 S. Russell
10011 M. Chin
10019 P. Newman

Chapter 12: String Operator and Functions
LOWER

SQL Functions, Operators, Expressions, and Predicates 517

LOWER

Purpose
Returns a character string identical to character_string_expression, except that all uppercase
letters are replaced by their lowercase equivalents.

Syntax

where:

ANSI Compliance

LOWER is ANSI SQL:2008 compliant.

Argument Types

Use LOWER on character strings or character string expressions, except for CLOBs.

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and a predefined character type, except for CLOB.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including LOWER, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Syntax element … Specifies …

character_string_expression a character string or character string expression for which all
uppercase characters are to be replaced by their lowercase
equivalents.

FF07D091

LOWER (character_string_expression)

Chapter 12: String Operator and Functions
LOWER

518 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

Here are the default result type and attributes for LOWER(arg):

Usage Notes

The LOWER function allows users who want ANSI portability to have case blind comparisons
with ANSI-compliant syntax.

You can also replace characters with uppercase equivalents. For more information, see
“UPPER” on page 553.

Restrictions

The LOWER function operates with the LATIN server character set. If the type of argument
for LOWER is anything other than LATIN, LOWER attempts to translate the non-LATIN
string to LATIN before evaluation. If the string cannot be converted successfully, an error is
returned.

Note that a constant string is an acceptable argument because it is implicitly converted from
UNICODE to LATIN before it is evaluated.

Examples

In the following examples, columns charfield_1 and charfield_2 have CASESPECIFIC
comparison attributes.

Teradata SQL has the type attribute NOT CASESPECIFIC that allows case blind comparisons,
but the type attributes CASESPECIFIC and NOT CASESPECIFIC are Teradata extensions to
the ANSI standard.

Example 1

The following example compares the strings on a case blind basis.

SELECT id
FROM names
WHERE LOWER(charfield_1) = LOWER(charfield_2);

Example 2

The use of LOWER to return and store values is shown in the following example.

SELECT LOWER (last_name)
FROM names;

INSERT INTO names
SELECT LOWER(last_name),LOWER(first_name)
FROM newnames;

Data Type Heading

Same type as arg Lower(arg)

Chapter 12: String Operator and Functions
LOWER

SQL Functions, Operators, Expressions, and Predicates 519

The identical result is achieved with a USING phrase.

USING (last_name CHAR(20),first_name CHAR(20))
INSERT INTO names (LOWER(:last_name), LOWER(:first_name));

Chapter 12: String Operator and Functions
POSITION

520 SQL Functions, Operators, Expressions, and Predicates

POSITION

Purpose
Returns the position in string_expression_2 where string_expression_1 starts.

Syntax

where:

ANSI Compliance

POSITION is ANSI SQL:2008 compliant.

Use POSITION instead of INDEX for ANSI SQL:2008 conformance. POSITION and INDEX
behave identically except when the client character set is KanjiEBCDIC and the server
character for an argument is KANJI1 and contains multibyte characters.

Use POSITION in place of MINDEX. (MINDEX no longer appears in this book because its
use is deprecated and it will not be supported after support for KANJI1 is dropped.)

Argument Types and Rules

POSITION operates on the following types of arguments:

• Character, except for CLOB

• Byte, except for BLOB

If one string expression is of type BYTE, then both expressions must be of type BYTE.

• Numeric

Numeric string expressions are converted implicitly to CHARACTER type.

• UDTs that have implicit casts that cast between the UDT and any of the following
predefined types:

• Numeric

• Character

Syntax element … Specifies …

string_expression_1 a substring to be searched for its position within the full string.

string_expression_2 a full string to be searched.

FF07D090

POSITION (string_expression_1 string_expression_2)IN

Chapter 12: String Operator and Functions
POSITION

SQL Functions, Operators, Expressions, and Predicates 521

• DATE

• Byte

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
POSITION, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Result Type and Attributes

Here are the default result type and attributes for POSITION(arg1 IN arg2):

Expected Values

POSITION returns a value according to the following rules.

If the arguments are character types, then regardless of the server character set, the value for
POSITION represents the position of a logical character, not a byte position.

How POSITION and INDEX Differ

INDEX and POSITION behave identically except when the session client character set is
KanjiEBCDIC, the server character set is KANJI1, and the parent string contains a multibyte
character.

This is the only case for which the results of these two functions differ when performed on the
same data.

Data Type Heading

INTEGER Position(arg1 in arg2)

IF … THEN the result is …

either argument is null null.

string_expression_1 has length zero one.

string_expression_1 is a substring within
string_expression_2

the position in string_expression_2 where
string_expression_1 starts.

none of the preceding is true zero.

Chapter 12: String Operator and Functions
POSITION

522 SQL Functions, Operators, Expressions, and Predicates

Suppose we create the following table.

CREATE TABLE iptest (
column_1 VARCHAR(30) CHARACTER SET Kanji1
column_2 VARCHAR(30) CHARACTER SET Kanji1);

We then insert the following set of values for the columns.

The client session character set is KanjiEBCDIC5026_0I. Now we perform a query that
demonstrates how INDEX and POSITION return different results in this condition.

SELECT column_1, column_2, INDEX(column_1,column_2)
FROM iptest;

The result of this query looks like the following:

column_1 column_2 Index(column_1,column_2)
----------- ----------- ------------------------
MN<AC> <C> 6
MN<AC>P <A> 4
MN<AB>P P 9
MN<AB>P 6

With the same session characteristics in place, perform the semantically identical query on the
table using POSITION instead of INDEX.

SELECT column_1, column_2, POSITION(column_2 IN column_1)
FROM iptest;

The result of this query looks like the following:

column_1 column_2 Position(column_2 in column_1)
----------- ----------- ------------------------------
MN<AC> <C> 4
MN<AC>P <A> 3
MN<AB>P P 5
MN<AB>P 4

The different results are accounted for by the following differences in how INDEX and
POSITION operate in this particular case.

• INDEX counts Shift-Out and Shift-In characters; POSITION does not.

• INDEX counts bytes; POSITION counts logical characters. As a result, an A, for example,
counts as two bytes (two physical characters) for INDEX, but only one logical character for
POSITION.

column_1 column_2

MN<AC> <C>

MN<AC>P <A>

MN<AB>P P

MN<AB>P

Chapter 12: String Operator and Functions
SOUNDEX

SQL Functions, Operators, Expressions, and Predicates 523

SOUNDEX

Purpose
Returns a character string that represents the Soundex code for string_expression.

Syntax

where:

ANSI Compliance

SOUNDEX is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

Use SOUNDEX on character strings or character string expressions that use the LATIN or
UNICODE server character set.

SOUNDEX does not accept CLOB types.

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts to predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including SOUNDEX,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Syntax element … Specifies …

string_expression a character string or expression that contains a surname to be evaluated in
simple Latin characters.

Soundex is case insensitive.

Embedded or trailing pad characters within character_string return an error to
the requestor.

KO01A060

SOUNDEX string_expression()

Chapter 12: String Operator and Functions
SOUNDEX

524 SQL Functions, Operators, Expressions, and Predicates

Definition: Simple Latin Characters

A simple Latin character is one that does not have diacritical marks such as tilde (~) or acute
accent (´).

There are 26 uppercase simple Latin characters and 26 lowercase simple Latin characters.

Definition: Soundex

Soundex is a system that codes surnames having the same or similar sounds, but variant
spellings. The Soundex system was first used by the National Archives in 1880 to index the
United States census.

Soundex codes begin with the first letter of the surname followed by a three-digit code. Zeros
are added to names that do not have enough letters.

Soundex Coding Guide

The following process outlines the Soundex coding guide:

1 Retain the first letter of the name.

2 Drop all occurrences of the following letters:

A, E, I, O, U, Y, H, W

in other positions.

3 Assign the following number to the remaining letters after the first letter:

1 = B, F, P, V

2 = C, G, J, K, Q, S X, Z

3 = D, T

4 = L

5 = M, N

6 = R

4 If two or more letters with the same code are adjacent in the original name or adjacent
except for any intervening H or W, omit all but the first.

5 Convert the form “letter, digit, digit, digit,” by adding trailing zeros if less than three digits.

6 Drop the rightmost digits if more than three digits.

7 Names with adjacent letters having the same equivalent number are coded as one letter
with a single number

Surname prefixes are generally not used.

Chapter 12: String Operator and Functions
SOUNDEX

SQL Functions, Operators, Expressions, and Predicates 525

Example 1

The following SELECT statement returns the result that follows.

SELECT SOUNDEX ('ashcraft');

Soundex('ashcraft')

a261

The surname “ashcraft” initially evaluates to “a2h2613,” but the following Soundex rules
convert the result to a261.

• “h” is dropped because it occurs in the third position. Soundex drops all occurrences of
the following characters in any position other than the first.

A, E, I, O, U, Y, H, W

• “2” is dropped because it represents the second occurrence of one of the following
characters:

C, G, J, K, Q, S X, Z

If two or more characters with the same code are adjacent in the original name, or adjacent
except for any intervening H or W, Soundex omits all but the code for the first occurrence
of the character in the returned code.

• “3” is dropped because Soundex drops the rightmost digits if character_string evaluates to
more than three digits following the initial simple Latin character.

Example 2

“Example 2” and “Example 3” on page 526 use the following table data:

SELECT family_name FROM family;

family_name

John
Joan
Joey
joanne
michael
Bob

Here are the results of the SOUNDEX function on the data in the family_name column:

SELECT SOUNDEX(TRIM(family.family_name));

Soundex(TRIM(BOTH FROM family_name))

J500
J500
B100
J000
m240
j500

Chapter 12: String Operator and Functions
SOUNDEX

526 SQL Functions, Operators, Expressions, and Predicates

Example 3

Find all family names in Family that sound like “Joan”.

SELECT family_name
FROM family
WHERE SOUNDEX(TRIM(family.family_name)) = SOUNDEX('Joan');

family_name

John
Joan
Joanne

Examples of Invalid Usage

The following SOUNDEX examples are not valid for the reasons given in the table.

Statement Why the Statement is Not Valid

SELECT SOUNDEX(12345); 12345 is a numeric string, not a character string.

SELECT SOUNDEX('ábç'); The characters á and ç are not simple Latin characters.

Chapter 12: String Operator and Functions
STRING_CS

SQL Functions, Operators, Expressions, and Predicates 527

STRING_CS

Purpose
Returns a heuristically derived integer value that you can use to help determine which
KANJI1-compatible client character set was used to encode string_expression.

The result is not guaranteed correct, but should work for most strings likely to be
encountered.

Syntax

where:

ANSI Compliance

STRING_CS is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

Use STRING_CS on character strings or character string expressions that use the KANJI1
server character set. (Non-KANJI1 character strings will be coerced to KANJI1, but the results
are unlikely to be useful.)

STRING_CS does not accept CLOB or UDT types.

Result Value

STRING_CS returns a heuristically derived INTEGER value that you can use to help
determine the client character set that was used to encode the KANJI1 character string or
expression. The result value can also help determine which client character set to use to
interpret the character data.

Syntax element … Specifies …

string_expression a CHAR or VARCHAR character string or expression.

1101A515

STRING_CS string_expression()

IF the result
value is … THEN the heuristic found that string_expression…

-1 most likely uses a single-byte client character set encoding, but it may also
contain a mix of encodings.

Chapter 12: String Operator and Functions
STRING_CS

528 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

STRING_CS helps determine which encoding to use when using the TRANSLATE function to
translate a string from the KANJI1 server character set to the UNICODE server character set.

For more information on TRANSLATE, see “TRANSLATE” on page 536.

0 does not contain anything distinguishable from any particular character set, so
any character set that you use to interpret string_expression provides the same
result.

Not all translations use the same interpretation for the characters represented
by 0x5C and 0x7E, however.

IF string_expression
contains …

AND you want it to be
interpreted as …

THEN use …

0x5C REVERSE SOLIDUS a single-byte character set.

0x7E TILDE

0x5C YEN SIGN any of the following:

• KANJISJIS_0S

• KANJIEBCDIC5026_0I

• KANJIEBCDIC5035_0I

• KATAKANAEBCDIC

• KANJIEUC_0U

0x7E OVERLINE

1 uses the encoding of one of the following:

• KANJIEBCDIC5026_0I

• KANJIEBCDIC5035_0I

• KATAKANAEBCDIC

2 uses the encoding of KANJIEUC_0U.

3 uses the encoding of KANJISJIS_0S.

IF the result
value is … THEN the heuristic found that string_expression…

IF the result value is …
THEN substitute the following value for source_TO_target in
TRANSLATE(string_expression USING source_to_target) …

-1 KANJI1_SBC_TO_UNICODE.

0 KANJI1_SBC_TO_UNICODE.

1 KANJI1_KANJIEBCDIC_TO_UNICODE.

2 KANJI1_KANJIEUC_TO_UNICODE.

3 KANJI1_KANJISJIS_TO_UNICODE.

Chapter 12: String Operator and Functions
STRING_CS

SQL Functions, Operators, Expressions, and Predicates 529

Example 1: Using STRING_CS to Determine the Client Character Set

Consider the following table definition:

CREATE TABLE SysNames
(SysID INTEGER
,SysName VARCHAR(30) CHARACTER SET KANJI1);

Suppose the session character set is KANJIEBCDIC5026_0I. The following statement inserts
the mixed single-byte/multibyte character string '<TEST>Q' into the SysName column of the
SysNames table:

INSERT SysNames (101, '0E42E342C542E242E30FD8'XC);

Using STRING_CS to determine the client character set that was used to encode the string
produces the results that follow:

SELECT STRING_CS(SysName) FROM SysNames WHERE SysID = 101;

String_CS(SysName)

1

Example 2: Using STRING_CS to Translate a KANJI1 String to UNICODE

Consider the SysNames table from the preceding example, “Example 1: Using STRING_CS to
Determine the Client Character Set.”

The following statement uses STRING_CS to determine which encoding to use to translate
strings in the SysName column from the KANJI1 server character set to the UNICODE server
character set:

SELECT CASE STRING_CS(SysName)
WHEN 0 THEN TRANSLATE(SysName USING KANJI1_SBC_TO_UNICODE)
WHEN 1 THEN TRANSLATE(SysName USING KANJI1_KANJIEBCDIC_TO_UNICODE)
WHEN 2 THEN TRANSLATE(SysName USING KANJI1_KANJIEUC_TO_UNICODE)
WHEN 3 THEN TRANSLATE(SysName USING KANJI1_KANJISJIS_TO_UNICODE)
ELSE TRANSLATE(SysName USING KANJI1_SBC_TO_UNICODE)
END

FROM SysNames;

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

530 SQL Functions, Operators, Expressions, and Predicates

SUBSTRING/SUBSTR

Purpose
Extracts a substring from a named string based on position.

ANSI Syntax

where:

Teradata Syntax

where:

Syntax Element … Specifies …

string_expression a string expression from which the substring is to be extracted.

n1 the starting position of the substring to extract from string_expression.

FOR a keyword indicating that the searched substring is bounded on the right by
the value n2.

If you omit FOR n2, then you extract the entire right hand portion of the
named string or string expression, beginning at the position named by n1.

If string_expression is a BYTE or CHAR type and you omit FOR n2, trailing
binary zeros or pad characters are trimmed.

n2 the length of the substring to extract from string_expression.

If n2 < 0, the function returns an error.

SUBSTRING

FOR n2

(string_expression)FROM n1

FF07D256

Syntax Element … Specifies …

string_expression a string expression from which the substring is to be extracted.

n1 the starting position of the substring to extract from string_expression.

n2 the length of the substring to be extracted from string_expression.

If string_expression is a BYTE or CHAR type and you omit n2, trailing binary
zeros or pad characters are trimmed.

If n2 < 0, the function returns an error.

FF07D257

SUBSTR (string_expression,n1)

,n2

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

SQL Functions, Operators, Expressions, and Predicates 531

ANSI Compliance

SUBSTRING is ANSI SQL:2008 compliant.

SUBSTR is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types and Rules

SUBSTRING and SUBSTR operate on the following types of arguments:

• Character

• Byte

• Numeric

If the string_expression argument is numeric, it is implicitly converted to CHARACTER
type.

• UDTs that have implicit casts to any of the following predefined types:

• Character

• Numeric

• Byte

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
SUBSTRING and SUBSTR, is a Teradata extension to the ANSI SQL standard. To disable
this extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control
Record to TRUE. For details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Result Type and Attributes

Here are the default result type and attributes for SUBSTR(string, n1, n2) and
SUBSTRING(string FROM n1 FOR n2):

Data Type Heading

Substring(string From n1 For n2)

Substr(string, n1, n2)IF the string argument is a … THEN the result type is …

BLOB BLOB(n).

byte string other than BLOB VARBYTE(n).

CLOB CLOB(n).

numeric, or character string
other than CLOB

VARCHAR(n).

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

532 SQL Functions, Operators, Expressions, and Predicates

In ANSI mode, the value of n for the resulting BLOB(n), VARBYTE(n), CLOB(n), or
VARCHAR(n) is the same as the original string. In Teradata mode, the value of n for the result
type depends on the number of characters or bytes in the resulting string. To get the data type
of the resulting string, use the TYPE function.

Result Value

SUBSTRING/SUBSTR extracts n2 characters or bytes from string_expression starting at
position n1.

To get the number of characters or bytes in the resulting string, use the BYTE function for byte
strings and the CHARACTER_LENGTH function for character strings.

If either of the following conditions are true, SUBSTRING/SUBSTR returns a zero length
string:

• (n1 > string_length) AND (0 ≤ n2)

• (n1 < 1) AND (0 ≤ n2) AND ((n2 + n1 - 1) ≤ 0)

Usage Rules for SUBSTRING and SUBSTR

SUBSTRING is the ANSI SQL:2008 syntax. Teradata syntax using SUBSTR is supported for
backward compatibility. Use SUBSTRING in place of SUBSTR for ANSI compliance.

Use SUBSTRING in place of MSUBSTR. (MSUBSTR no longer appears in this book because
its use is deprecated and it will not be supported after support for KANJI1 is dropped.)

Difference Between SUBSTRING and SUBSTR

SUBSTRING and SUBSTR perform identically except when they operate on character strings
in Teradata mode where the server character set is KANJI1 and the client character set is
KanjiEBCDIC.

In this case, SUBSTR interprets n1 and n2 as physical units, making the DB2-compliant
SUBSTR operate on a byte-by-byte basis. Shift-Out and Shift-In bytes are significant because
the result might be formatted incorrectly. For example, the result string might not contain
either the opening Shift-Out character or the closing Shift-In character.

Otherwise, if string_expression is character data, then SUBSTRING expects mixed single byte
and multibyte character strings and operates on logical characters that are valid for the
character set of the session. In this case, n1 is a positive integer pointing to the first character
of the result and n2 is in terms of logical characters.

Example 1

Suppose sn is a CHARACTER(15) field of Serial IDs for Automobiles and positions 3 to 5
represent the country of origin as three letters.

For example:

12JAP3764-35421
37USA9873-26189
11KOR1221-13145

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

SQL Functions, Operators, Expressions, and Predicates 533

To search for serial IDs of cars made in the USA:

SELECT make, sn
FROM autos
WHERE SUBSTRING (sn FROM 3 FOR 3) = 'USA';

Example 2

If we want the last five characters of the serial ID, which represent manufacturing sequence
number, another substring can be accessed.

SELECT make, SUBSTRING (sn FROM 11) AS sequence
FROM autos
WHERE SUBSTRING (sn FROM 3 FOR 3) = 'USA';

Example 3

Suppose nameaddress is a VARCHAR(120) field, and the application used positions 1 to 30
for name, starting address at position 31. To return address only, but limit the number of
characters returned to 50 use:

...
SUBSTRING (nameaddress FROM 31 FOR 50)

This returns an address of up to 50 characters.

Example 4

The following example shows a SELECT statement requesting substrings from a character
field in positions 1 through 4 for every row:

SELECT SUBSTRING (jobtitle FROM 1 FOR 4)
FROM employee ;

The result is as follows.

Substring(jobtitle From 1 For 4)

Tech
Cont
Sale
Secr
Test
...

Example 5

Consider the following table:

CREATE TABLE cstr
(c1 CHAR(3) CHARACTER SET LATIN
,c2 CHAR(10) CHARACTER SET KANJI1);

INSERT cstr ('abc', '92 abc');

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

534 SQL Functions, Operators, Expressions, and Predicates

Here are some examples of how to use SUBSTR to extract substrings from the KanjiEUC
client character set.

Example 6

Consider the following table:

CREATE TABLE ctable1
(c1 VARCHAR(11) CHARACTER SET KANJI1);

The following table shows the difference between SUBSTR and SUBSTRING in Teradata
mode for KANJI1 strings from KanjiEBCDIC client character set.

Example 7

The following table shows examples for the KanjiEUC client character set, where ctable1 is the
table defined in Example 6.

Function Result

SELECT SUBSTR(c2, 2, 3) FROM cstr; '2 a'

SELECT SUBSTR(c1, 2, 2) FROM cstr; 'bc'

IF c1 contains … THEN this query … Returns …

MN<ABC>P SELECT SUBSTR(c1,2) FROM ctable1; N<ABC>P

SELECT SUBSTR(c1,3,8) FROM ctable1; <ABC>

SELECT SUBSTR(c1,4) FROM ctable1; ABC>P

Note: The client application
might not be able to properly
interpret the resulting
multibyte characters because
the shift out (<) is missing.

SELECT SUBSTRING(c1 FROM 2)
FROM ctable1;

N<ABC>P

SELECT SUBSTRING(c1 FROM 3 FOR 8)
FROM ctable1;

<ABC>P

SELECT SUBSTRING(c1 FROM 4)
FROM ctable1;

<BC>P

IF c1 contains … THEN this query … Returns …

A ss2B CD SELECT SUBSTR(c1,2) FROM ctable1; ss2B CD

ss3A ss2B ss3C ss2D SELECT SUBSTR(c1,2,2) FROM ctable1; ss2B ss3C

Chapter 12: String Operator and Functions
SUBSTRING/SUBSTR

SQL Functions, Operators, Expressions, and Predicates 535

Example 8

The following table shows examples for KanjiShift-JIS client character set, where ctable1 is the
table defined in Example 6.

Example 9

The following statement applies the SUBSTRING function to a CLOB column in table
full_text and stores the result in a CLOB column in table sub_text.

INSERT sub_text (text)
SELECT SUBSTRING (text FROM 9 FOR 128000)
FROM full_text;

IF c1 contains … THEN this query … Returns …

mnABCX SELECT SUBSTR(c1, 6, 1) FROM ctable1; X

SELECT SUBSTR(c1,4) FROM ctable1; BCX

Chapter 12: String Operator and Functions
TRANSLATE

536 SQL Functions, Operators, Expressions, and Predicates

TRANSLATE

Purpose
Converts a character string or character string expression from one server character set to
another server character set.

Syntax

where:

Syntax element … Specifies …

character_string_expression a character string to translate to another server character set.

If the string or string expression is not a character type, an error is
returned.

source_repertoire_name the source character set of the string to translate. For supported
values, see “Supported Translations Between Character Sets” on
page 539.

A value of LOCALE can be specified for source_repertoire_name to
translate a character string from LATIN or KANJI1 to UNICODE
using a source repertoire determined by the language support mode
of the system and the client character set of the session. For details,
see “Supported Translations Between Character Sets” on page 539.

_encoding an optional literal for translating from KANJI1 to UNICODE that
indicates a specific encoding of KANJI1.

The _encoding option is not allowed if LOCALE is specified for
source_repertoire_name or target_repertoire_name.

1101E198

TRANSLATE character_string_expression

_encoding

(USING source_repertoire_name

_TO _target_repertoire_nameA

A

_suffix WITH ERROR

)

Chapter 12: String Operator and Functions
TRANSLATE

SQL Functions, Operators, Expressions, and Predicates 537

ANSI Compliance

TRANSLATE is ANSI SQL:2008 compliant.

_encoding

(continued) IF the translation is from this
character set …

THEN use this value for
_encoding …

• KatakanaEBCDIC

• KanjiEBCDIC5026_0I

• KanjiEBCDIC5038_0I

_KanjiEBCDIC

KanjiEUC_0U _KanjiEUC

KanjiShiftJIS_0S _KANJISJIS

ASCII or EBCDIC _SBC

target_repertoire_name the target character set of the string to translate. For supported values,
see “Supported Translations Between Character Sets” on page 539.

A value of LOCALE can be specified for target_repertoire_name to
translate a character string from UNICODE to LATIN or KANJI1
using a target repertoire determined by the language support mode of
the system and the client character set of the session. For details, see
“Supported Translations Between Character Sets” on page 539.

_suffix that the translation maps some source characters to semantically
different characters.

For example, a translation that specifies the _Halfwidth suffix maps
any character with a halfwidth variant to that variant, and all
fullwidth variants to their non-fullwidth counterparts.

The _suffix option also indicates the form of character data translated
from UNICODE to the KANJI1 server character set, for example,
_KanjiEUC.

Valid values are:

• _KanjiEBCDIC

• _KanjiEUC

• _KANJISJIS

• _SBC

• _PadSpace

• _PadGraphic

• _Fullwidth

• _Halfwidth

• _FoldSpace

• _VarGraphic

The _suffix option is not allowed if LOCALE is specified for
source_repertoire_name or target_repertoire_name.

WITH ERROR that the translation replaces offending characters in the string with a
designated error character, instead of reporting an error.

For details, see “Error Characters Assigned by the WITH ERROR
Option” on page 542).

Syntax element … Specifies …

Chapter 12: String Operator and Functions
TRANSLATE

538 SQL Functions, Operators, Expressions, and Predicates

Argument Types

Use TRANSLATE on character strings or character string expressions.

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts to predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including TRANSLATE,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Result Type and Attributes

The default attributes for TRANSLATE (string USING source_TO_target) are as follows.

Supported Translations for CLOB Strings

The following translations are supported for CLOB strings:

• LATIN_TO_UNICODE

• UNICODE_TO_LATIN

Data Type Heading

Translate(string USING source_to_target)

IF the argument is … THEN the result is …

• CHAR

• VARCHAR

VARCHAR(n)
CHARACTER SET target

CLOB CLOB(n)
CHARACTER SET target

where source_TO_target determines the character set
value of target, according to the supported translations
in “Supported Translations Between Character Sets” on
page 539.

Chapter 12: String Operator and Functions
TRANSLATE

SQL Functions, Operators, Expressions, and Predicates 539

Supported Translations Between Character Sets

The following table lists the supported values that you can use for
source_repertoire_name_TO_target_repertoire_name to translate between server character sets.

Value of source_TO_target Source Character Set Target Character Set

GRAPHIC_TO_KANJISJIS GRAPHIC KANJISJIS

GRAPHIC_TO_LATIN GRAPHIC LATIN

GRAPHIC_TO_UNICODE GRAPHIC UNICODE

GRAPHIC_TO_UNICODE_PadSpace GRAPHIC UNICODE

KANJI1_KanjiEBCDIC_TO_UNICODE KANJI1 UNICODE

KANJI1_KanjiEUC_TO_UNICODE KANJI1 UNICODE

KANJI1_KANJISJIS_TO_UNICODE KANJI1 UNICODE

KANJI1_SBC_TO_UNICODE KANJI1 UNICODE

KANJISJIS_TO_GRAPHIC KANJISJIS GRAPHIC

KANJISJIS_TO_LATIN KANJISJIS LATIN

KANJISJIS_TO_UNICODE KANJISJIS UNICODE

LATIN_TO_GRAPHIC LATIN GRAPHIC

LATIN_TO_KANJISJIS LATIN KANJISJIS

LATIN_TO_UNICODE LATIN UNICODE

LOCALE_TO_UNICODE KANJI1 UNICODE

LATIN

UNICODE_TO_GRAPHIC UNICODE GRAPHIC

UNICODE_TO_GRAPHIC_PadGraphic UNICODE GRAPHIC

UNICODE_TO_GRAPHIC_VarGraphic UNICODE GRAPHIC

UNICODE_TO_KANJI1_KanjiEBCDIC UNICODE KANJI1

UNICODE_TO_KANJI1_KanjiEUC UNICODE KANJI1

UNICODE_TO_KANJI1_KANJISJIS UNICODE KANJI1

UNICODE_TO_KANJI1_SBC UNICODE KANJI1

UNICODE_TO_KANJISJIS UNICODE KANJISJIS

UNICODE_TO_LATIN UNICODE LATIN

UNICODE_TO_LOCALE UNICODE KANJI1

LATIN

UNICODE_TO_UNICODE_FoldSpace UNICODE UNICODE

Chapter 12: String Operator and Functions
TRANSLATE

540 SQL Functions, Operators, Expressions, and Predicates

If the value specified for source_repertoire_name_TO_target_repertoire_name is
UNICODE_TO_LOCALE or LOCALE_TO_UNICODE, the repertoire that the translation
uses for LOCALE is determined by the language support mode for the system and the client
character set for the session.

UNICODE_TO_UNICODE_Fullwidth UNICODE UNICODE

UNICODE_TO_UNICODE_Halfwidth UNICODE UNICODE

IF the language
support mode is … AND the session character set is …

THEN the repertoire that the
translation uses for LOCALE is …

standard any LATIN

Japanese • ASCII

• LATIN1252_0A

• LATIN1_0A

• LATIN9_0A

• EBCDIC

• EBCDIC037_0E

• EBCDIC273_0E

• EBCDIC277_0E

KANJI1_SBC

• any other client character set with a
name that has a suffix of _0A or _0E

• a single-byte, extended site-defined
client character set

• KANJIEBCDIC5026_0I

• KANJIEBCDIC5035_0I

• KATAKANAEBCDIC

• any other client character set with a
name that has a suffix of _0I

KANJI1_KANJIEBCDIC

• UTF8

• UTF16

• KanjiShiftJIS_0S

• any other client character set with a
name that has a suffix of _0S

• a multibyte extended site-defined
client character set

KANJI1_KANJISJIS

• KanjiEUC_0U

• any other client character set with a
name that has a suffix of _0U

KANJI1_KanjiEUC

Value of source_TO_target Source Character Set Target Character Set

Chapter 12: String Operator and Functions
TRANSLATE

SQL Functions, Operators, Expressions, and Predicates 541

Source Characters That Generate Errors

The following table lists the characters that generate errors for specific
source_repertoire_name_TO_target_repertoire_name translations. For supported translations
that do not appear in the table, only the error character generates errors.

Value of source_TO_target Source Characters That Generate Errors

• LATIN_TO_GRAPHIC

• KANJISJIS_TO_GRAPHIC

• UNICODE_TO_GRAPHIC

non-GRAPHIC

• LATIN_TO_KANJISJIS

• KANJI1_KANJISJIS_TO_UNICODE

• GRAPHIC_TO_KANJISJIS

• UNICODE_TO_KANJI1_KANJISJIS

• UNICODE_TO_KANJISJIS

• LOCALE_TO_UNICODE or
UNICODE_TO_LOCALE
where the repertoire that the translation uses
for LOCALE is KANJI1_KANJISJIS

non-KANJISJIS

• KANJI1_KanjiEBCDIC_TO_UNICODE

• UNICODE_TO_KANJI1_KanjiEBCDIC

• LOCALE_TO_UNICODE or
UNICODE_TO_LOCALE
where the repertoire that the translation uses
for LOCALE is KANJI1_KanjiEBCDIC

non-KanjiEBCDIC

KANJI1 is very permissive, so there may be
characters outside the defined region of the
encoding as well as illegal form-of-use errors.

• KANJI1_KanjiEUC_TO_UNICODE

• UNICODE_TO_KANJI1_KanjiEUC

• LOCALE_TO_UNICODE or
UNICODE_TO_LOCALE
where the repertoire that the translation uses
for LOCALE is KANJI1_KanjiEUC

non-KanjiEUC

• KANJISJIS_TO_LATIN

• GRAPHIC_TO_LATIN

• UNICODE_TO_LATIN

• UNICODE_TO_KANJI1_SBC

• UNICODE_TO_LOCALE
where the repertoire that the translation uses
for LOCALE is LATIN or KANJI1_SBC

non-LATIN

Chapter 12: String Operator and Functions
TRANSLATE

542 SQL Functions, Operators, Expressions, and Predicates

Error Characters Assigned by the WITH ERROR Option

The error characters substituted for offending characters that cannot be translated to a
designated target character set are defined in the following table.

Suffixes

The _suffix variable is used for translations that map source characters to semantically
different characters. They indicate the nature of the semantic transformation.

The translations perform minor, yet essential, semantic changes to the data, such as halfwidth/
fullwidth conversions, and Space folding modification.

The _suffix variable also indicates the form of character data translated from UNICODE to the
KANJI1 server character set in one of the four possible encodings, for example
Unicode_TO_Kanji1_KanjiEBCDIC. For a list of the encodings, see the definition of
_encoding in “Syntax” on page 536.

This form of translation is also useful for migrating object names. For information, see
“Migration” on page 544.

Translations Between Fullwidth and Halfwidth Character Data

UNICODE has an area known as the compatibility zone. Among other things, this zone
includes halfwidth and fullwidth variants of characters that exist elsewhere in the standard.

Translations between fullwidth and halfwidth are provided by the following
source_repertoire_name_TO_target_repertoire_name values.

Target Character Set Error Character

LATIN 0x1A

KANJI1 0x1A

KANJISJIS 0x1A

UNICODE U+FFFD

GRAPHIC U+FFFD

source_TO_target Meaning

UNICODE_TO_UNICODE_Fullwidth This translation maps any character with a fullwidth
variant to that variant. At the same time, it maps any
character defined by the standard as a halfwidth variant
to its non-halfwidth counterpart outside the
compatibility zone.

Other characters remain unchanged by the translation.

Chapter 12: String Operator and Functions
TRANSLATE

SQL Functions, Operators, Expressions, and Predicates 543

Note that these translations are useful for maintaining more information as a step in
translating GRAPHIC to LATIN and vice versa.

For details on the mappings, see International Character Set Support.

Space Folding

Space folding is performed via UNICODE_TO_UNICODE_FoldSpace. All characters defined
as space are converted to U+0020.

All other characters are left unchanged.

For details on which characters are converted to U+0020, see International Character Set
Support.

Pad Character Translation

The following translations do not translate the pad character.

If you require pad character translation, use one of the following translations.

Other characters are not affected. Note that the position of a character does not affect the
translation, so not only trailing pad characters are modified.

UNICODE_TO_UNICODE_Halfwidth This translation maps any character with a halfwidth
variant to that variant, and all fullwidth variants to their
non-fullwidth counterparts. Other characters remain
unchanged by the translation.

UNICODE_TO_GRAPHIC_VarGraphic This translation is an ANSI equivalent to the
VARGRAPHIC function.

source_TO_target Meaning

source_TO_target Pad Character Translation

GRAPHIC_TO_UNICODE A GRAPHIC string that includes an Ideographic Space is
translated to a UNICODE string with an Ideographic Space.

UNICODE_TO_GRAPHIC A UNICODE string with a Space character generates an
error when translated to GRAPHIC.

source_TO_target Pad Character Translation

GRAPHIC_TO_UNICODE_PadSpace Converts all occurrences of Ideographic Space
(U+3000) to Space (U+0020).

UNICODE_TO_GRAPHIC_PadGraphic Converts all occurrences of Space to Ideographic Space.

Chapter 12: String Operator and Functions
TRANSLATE

544 SQL Functions, Operators, Expressions, and Predicates

Migration

During the migration process, any GRAPHIC data in the old form must be translated to the
new canonical form. Note that this involves converting the pad characters from Null
(U+0000) to Ideographic Space (U+3000).

Implicit Character Data Type Conversion

TRANSLATE performs implicit conversion if the string server character set does not match the
type implied by source_repertoire_name.

An implicit conversion generates an error if a character from character_string_expression has
no corresponding character in the source_repertoire_name type. This holds regardless of
whether you specify the WITH ERROR option.

For example, the following function first translates the string from UNICODE to LATIN,
because Teradata Database treats constants as UNICODE, and then translates the string from
LATIN to KANJISJIS. However, the translation generates an error because the last character is
not in the LATIN repertoire.

...

TRANSLATE('abc ' USING LATIN_TO_KanjiSJIS WITH ERROR)
...

To circumvent the problem if error character substitution is acceptable, specify two levels of
translation, as used in the following example.

...

TRANSLATE((TRANSLATE(_UNICODE 'abc ' USING UNICODE_TO_LATIN WITH
ERROR)) USING LATIN_TO_KanjiSJIS WITH ERROR)

...

Examples

Related Topics

For details on the mappings that Teradata Database uses for the TRANSLATE function, see
International Character Set Support.

Function Result Type of the Result

TRANSLATE('abc' USING UNICODE_TO_LATIN) 'abc' VARCHAR(3)
CHARACTER SET LATIN

TRANSLATE('abc' USING UNICODE_TO_UNICODE_Fullwidth) 'abc' VARCHAR(3)
CHARACTER SET UNICODE

TRANSLATE('abc ' USING UNICODE_TO_LATIN WITH ERROR)

where ε represents the designated error character for LATIN (0x1A).

'abcε ' VARCHAR(4)
CHARACTER SET LATIN

Chapter 12: String Operator and Functions
TRANSLATE_CHK

SQL Functions, Operators, Expressions, and Predicates 545

TRANSLATE_CHK

Purpose
Determines if a TRANSLATE conversion can be performed without producing errors; returns
an integer test result. Use TRANSLATE_CHK to filter untranslatable strings. You can choose
to select translatable strings only, or untranslatable strings only, depending on how you form
your SELECT statement.

Syntax

where:

Syntax element … Specifies …

character_string_expression a character string to be translated to another server character set.

If the string or string expression is not a character type, an error is
returned.

source_repertoire_name the source character set of the string to be translated. For supported
values, see “Supported Translations Between Character Sets” on
page 539.

A value of LOCALE can be specified for source_repertoire_name to
translate a character string from LATIN or KANJI1 to UNICODE
using a source repertoire determined by the language support mode
of the system and the client character set of the session. For details,
see “Supported Translations Between Character Sets” on page 539.

_encoding an optional literal for translating from KANJI1 to UNICODE that
indicates a specific encoding of KANJI1.

The _encoding option is not allowed if LOCALE is specified for
source_repertoire_name or target_repertoire_name.

1101E199

TRANSLATE_CHK character_string_expression

_encoding

(USING source_repertoire_name

_TO _target_repertoire_nameA

A

_suffix

)

Chapter 12: String Operator and Functions
TRANSLATE_CHK

546 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

TRANSLATE_CHK is a Teradata extension to the ANSI SQL:2008 standard.

_encoding

(continued) IF the translation is from this
character set …

THEN use this value for
_encoding …

• KatakanaEBCDIC

• KanjiEBCDIC5026_0I

• KanjiEBCDIC5038_0I

_KanjiEBCDIC

KanjiEUC_0U _KanjiEUC

KanjiShiftJIS_0S _KANJISJIS

ASCII or EBCDIC _SBC

target_repertoire_name the target character set of the string to translate. For supported
values, see “Supported Translations Between Character Sets” on
page 539.

A value of LOCALE can be specified for target_repertoire_name to
translate a character string from UNICODE to LATIN or KANJI1
using a target repertoire determined by the language support mode
of the system and the client character set of the session. For details,
see “Supported Translations Between Character Sets” on page 539.

_suffix that the translation maps some source characters to semantically
different characters. For example, a translation that specifies the
_Halfwidth suffix maps any character with a halfwidth variant to
that variant, and all fullwidth variants to their non-fullwidth
counterparts.

The _suffix option also indicates the form of character data
translated from UNICODE to the KANJI1 server character set, for
example, _KanjiEUC.

Valid values are:

• _KanjiEBCDIC

• _KanjiEUC

• _KANJISJIS

• _SBC

• _PadSpace

• _PadGraphic

• _Fullwidth

• _Halfwidth

• _FoldSpace

• _VarGraphic

The _suffix option is not allowed if LOCALE is specified for
source_repertoire_name or target_repertoire_name.

Syntax element … Specifies …

Chapter 12: String Operator and Functions
TRANSLATE_CHK

SQL Functions, Operators, Expressions, and Predicates 547

Argument Types

Use TRANSLATE_CHK on character strings and character string expressions.

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts to predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
TRANSLATE_CHK, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Result Type and Attributes

Default attributes for TRANSLATE_CHK (string USING source_TO_target) are:

Result Values

Example 1

Data Type Heading

INTEGER Translate_Chk(string using source_to_target)

Value Meaning

0 The string can be translated without error.

anything else The position of the first character in the string causing a translation error.

The value is a logical position for arguments of type LATIN, UNICODE,
KANJISJIS, and GRAPHIC. The value is a physical position for arguments of type
KANJI1.

Function Result

TRANSLATE_CHK(‘abc’ USING UNICODE_TO_LATIN) 0

TRANSLATE_CHK(‘abc ’ USING UNICODE_TO_LATIN) 4

Chapter 12: String Operator and Functions
TRANSLATE_CHK

548 SQL Functions, Operators, Expressions, and Predicates

Example 2

Consider the following table definition:

CREATE TABLE table_1
(cunicode CHARACTER(64) CHARACTER SET UNICODE);

To find all values in cunicode that can be translated to LATIN, use the following statement:

SELECT cunicode
FROM table_1
WHERE TRANSLATE_CHK(cunicode USING Unicode_TO_Latin) = 0;

Example 3

Consider the following table definitions:

CREATE TABLE table_1
(ckanji1 VARCHAR(20) CHARACTER SET KANJI1);

CREATE TABLE table_2
(cunicode CHARACTER(20) CHARACTER SET UNICODE);

Assume table_1 is populated from the KanjiEUC client character set.

To translate the data in ckanji1 in table_1 to UNICODE, and populate table_2 with
translations that have no errors, use the following statement:

INSERT INTO table_2
SELECT TRANSLATE(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode)
FROM table_1
WHERE TRANSLATE_CHK(ckanji1 USING Kanji_KanjiEUC_TO_Unicode) = 0;

Example 4

After converting column ckanji1 in table_1 to column cunicode in table_2, you want to find
all the fields in table_1 that could not be translated.

SELECT ckanji1
FROM table_1
WHERE TRANSLATE_CHK(ckanji1 USING Kanji1_KanjiEUC_TO_Unicode) <> 0;

Chapter 12: String Operator and Functions
TRIM

SQL Functions, Operators, Expressions, and Predicates 549

TRIM

Purpose
Takes a character or byte string_expression argument, trims the specified pad characters or
bytes, and returns the trimmed string_expression.

Syntax

where:

Syntax Element … Specifies …

BOTH
TRAILING
LEADING

how to trim the specified trim character or byte from string_expression.

The keywords and their meanings appear in the following table.

Keyword Meaning

BOTH Trim both trailing and leading characters or bytes.

TRAILING Trim only trailing characters or bytes.

LEADING Trim only leading characters or bytes.

If you omit this option, the default is BOTH, and the default trim character is a
null byte for byte types and a pad character for character types.

trim_expression the character or byte to trim from the head, tail, or both, of string_expression.

The expression must evaluate to a single character.

You cannot specify trim_expression without also specifying BOTH, TRAILING,
or LEADING.

You cannot specify a trim_expression of type KANJI1, nor can you apply a
trim_expression to a string_expression of type KANJI1.

FROM a keyword required when BOTH, TRAILING, or LEADING are specified.

character_set the name of the server character set to associate with the string expression.

1101F200

TRIM string_expression()

FROM

trim_expression

character_setBOTH

TRAILING

LEADING

Chapter 12: String Operator and Functions
TRIM

550 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

TRIM is ANSI SQL:2008 compliant.

Argument Types and Rules

The trim_expression argument must evaluate to a single byte that has a byte data type or single
character that has a character data type.

TRIM operates on the following types of string_expression arguments:

• Character, except for CLOB

• Byte, except for BLOB

• Numeric

If a numeric expression is used as the string_expression argument, it is converted implicitly
to CHARACTER type.

• UDTs that have implicit casts to any of the following predefined types:

• Character

• Numeric

• Byte

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including TRIM, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

character_set
(continued)

Possible values appear in the following table.

Value Server Character Set

_Latin LATIN

_Unicode UNICODE

_KanjiSJIS KANJISJIS

_Graphic GRAPHIC

string_expression a byte or character string or string expression to be trimmed.

Syntax Element … Specifies …

Chapter 12: String Operator and Functions
TRIM

SQL Functions, Operators, Expressions, and Predicates 551

Result Type and Attributes

Here are the default result type and attributes for TRIM(string_expression):

It is possible for the length of the result to be zero.

The server character set of the result is the same as the argument.

If the string_expression argument is null, the result is null.

Concatenation With TRIM

The TRIM function is typically used with the concatenation operator to remove trailing pad
characters or trailing bytes containing binary 00 from the concatenated string.

If the TRIM function is specified for character data types, leading, trailing, or leading and
trailing pad characters are suppressed in the concatenated string, according to which syntax is
used.

Example 1

If the Names table includes the columns first_name and last_name, which contain the
following information:

first_name (CHAR(12)) has a value of 'Mary '
last_name (CHAR(12)) has a value of 'Jones '

then this statement:

SELECT TRIM (BOTH FROM last_name) || ', ' || TRIM(BOTH FROM
first_name)

FROM names ;

returns the following string (note that the seven trailing blanks at the end of string Jones, and
the eight trailing blanks at the end of string Mary are not included in the result):

'Jones, Mary'

If the TRIM function is removed, the statement:

SELECT last_name || ', ' || first_name
FROM names;

returns trailing blanks in the string:

'Jones , Mary '

Data Type Heading

Trim(BOTH FROM string_expression)

IF string_expression is … THEN the result type is …

a byte string VARBYTE.

a numeric expression or
character string

VARCHAR.

Chapter 12: String Operator and Functions
TRIM

552 SQL Functions, Operators, Expressions, and Predicates

Example 2

Assume column a is BYTE(4) and column b is VARBYTE(10).

If these columns contained the following values:

a b
------------ ---------
78790000 43440000
68690000 3200
12550000 332200

then this function:

SELECT TRIM (TRAILING FROM a) || TRIM (TRAILING FROM b) FROM ...

returns:

78794344
686932
12553322

Example 3

The following statement trims trailing SEMICOLON characters from the specified string.

SELECT TRIM(TRAILING ';' FROM textfield) FROM texttable;

Example 4

The following table illustrates several more complicated TRIM functions:

Function Result

SELECT TRIM(LEADING 'a' FROM 'aaabcd'); 'bcd'

CREATE TABLE t2
(i1 INTEGER, c1 CHAR(6), c2 CHAR(1));

INSERT t2 (1, 'aaabcd', 'a');

SELECT TRIM(LEADING c2 FROM c1) FROM t2;

'bcd'

CREATE TABLE t3
(i1 INTEGER, c1 CHAR(6) CHAR SET UNICODE);

INSERT t3 (1, _Unicode '006100610061006200630064'XC);

SELECT TRIM(LEADING _Unicode '0061'XC FROM t3.c1);

'bcd'

SELECT TRIM(_Unicode '∆∆abc ∆∆∆'); 'abc '

SELECT TRIM(_Unicode '∆∆abc ∆∆∆'); 'abc ∆∆'

∆ (GRAPHIC pad) is not removed.

CREATE TABLE t1
(c1 CHARACTER(6) CHARACTER SET GRAPHIC);

INSERT t1 (_Graphic 'abc ∆∆');

SELECT TRIM(c1) from t1;

'abc '

∆ (GRAPHIC pad) is removed
because the operand of the TRIM
function is of type GRAPHIC.

Chapter 12: String Operator and Functions
UPPER

SQL Functions, Operators, Expressions, and Predicates 553

UPPER

Purpose
Returns a character string identical to character_string_expression, except that all lowercase
letters are replaced by their uppercase equivalents.

Syntax

where:

ANSI Compliance

UPPER is ANSI SQL:2008 compliant.

Argument Types

UPPER is valid only for character strings and character string expressions, except for CLOBs.

By default, Teradata Database performs implicit type conversion on UDT arguments that have
implicit casts to predefined character types.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including UPPER, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Syntax element … Specifies …

character_string_expression a character string or character string expression for which all
lowercase characters are to be replaced by their uppercase equivalents.

FF07D258

UPPER character_string_expression()

Chapter 12: String Operator and Functions
UPPER

554 SQL Functions, Operators, Expressions, and Predicates

Result Type and Attributes

Here are the default result type and attributes for UPPER(arg):

Usage Notes

The UPPER function allows users who want ANSI portability to have case blind comparisons
with ANSI-compliant syntax.

This function is treated the same as the following obsolete form:

expression (UPPERCASE)

You can also replace characters with lowercase equivalents. For more information, see
“LOWER” on page 517.

Restrictions

UPPER does not convert multibyte characters to uppercase in the KANJI1 server character set.

Example 1

Consider the following table definition where the character columns have CASESPECIFIC
attributes:

CREATE TABLE employee
(last_name CHAR(32) CASESPECIFIC
,city CHAR(32) CASESPECIFIC
,emp_id CHAR(9) CASESPECIFIC
,emp_ssn CHAR(9) CASESPECIFIC);

To compare on a case blind basis:

SELECT emp_id
FROM employee
WHERE UPPER(emp_id) = UPPER(emp_ssn);

To compare with a string literal:

SELECT emp_id
FROM employee
WHERE UPPER(city) = 'MINNEAPOLIS';

Teradata SQL also has the data type attribute NOT CASESPECIFIC, which allows case blind
comparisons. Note that the data type attributes CASESPECIFIC and NOT CASESPECIFIC are
Teradata extensions to the ANSI standard.

Data Type Heading

Same type as arg Upper(arg)

Chapter 12: String Operator and Functions
UPPER

SQL Functions, Operators, Expressions, and Predicates 555

Example 2

The use of UPPER to store values is shown in the following examples:

INSERT INTO names
SELECT UPPER(last_name),UPPER(first_name)

FROM newnames;

or

USING (last_name CHAR(20),first_name CHAR(20))
INSERT INTO names
(UPPER(:last_name), UPPER(:first_name));

Example 3

This example shows that in the KANJI1 server character set, only single byte characters are
converted to uppercase.

SELECT UPPER('abcd ');

The result is 'ABCD '.

Chapter 12: String Operator and Functions
VARGRAPHIC

556 SQL Functions, Operators, Expressions, and Predicates

VARGRAPHIC

Purpose
Returns the VARGRAPHIC representation of the character data in character_string_expression.

Syntax

where:

ANSI Compliance

VARGRAPHIC is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

VARGRAPHIC operates on the following types of arguments:

• Character, except for CLOB

• Numeric

If the argument is numeric, it is implicitly converted to a character type.

• UDTs that have implicit casts to any of the following predefined types:

• Character

• Numeric

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
VARGRAPHIC, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Syntax element … Specifies …

character_string_expression a character string or character string expression for which the
VARGRAPHIC representation is to be returned.

1101E197

VARGRAPHIC character_string_expression()

Chapter 12: String Operator and Functions
VARGRAPHIC

SQL Functions, Operators, Expressions, and Predicates 557

Result Type and Attributes

Here are the default result type and attributes for VARGRAPHIC(arg):

Rules

VARGRAPHIC reports an error if the session character set is UTF8 or a single-byte character
set, such as ASCII. If the argument is of type KANJI1, the only valid session character set is
KanjiEBCDIC.

All characters in the string are converted into one or more graphics that are valid for the
character set of the current session. For details, see “VARGRAPHIC Function Conversion
Tables” on page 559.

The argument cannot be of type GRAPHIC.

A result that exceeds the maximum length of a VARCHAR CHARACTER SET GRAPHIC data
type generates an error.

VARGRAPHIC cannot appear as the first argument in a user-defined method invocation.

Specific rules apply to the server character set of character_string_expression.

Data Type Heading

VARCHAR(n) CHARACTER SET GRAPHIC Vargraphic(arg)

IF the string specifies this
server character set … THEN VARGRAPHIC operates as follows …

KANJI1 Shift-Out/Shift-In characters in the character_string_expression do
not appear in the result string. They are required only to indicate the
transition between single byte characters and multibyte characters.

Improperly placed Shift-Out/Shift-Ins are replaced by the illegal
character for the character set of the session.

The SPACE CHARACTER translates to the IDEOGRAPHIC SPACE
CHARACTER.

UNICODE • Characters with fullwidth representation in the UNICODE
compatibility zone translate to that fullwidth representation.

• Halfwidth characters from the compatibility zone translate to the
corresponding characters outside the compatibility zone.

• The SPACE CHARACTER translates to the IDEOGRAPHIC
SPACE CHARACTER.

• The control characters U+0000 - U+001F and character U+007F
are converted to the VARGRAPHIC error character.

• Other characters are left untranslated.

anything else The result is as if string were first converted to UNICODE and then
translated according to the rules listed for UNICODE above.

Chapter 12: String Operator and Functions
VARGRAPHIC

558 SQL Functions, Operators, Expressions, and Predicates

Example 1

The following table shows examples of converting strings that use the UNICODE and LATIN
server character sets to GRAPHIC data:

Example 2

Consider the following table definition with two character columns that use the KANJI1
server character set:

CREATE TABLE t1
(c1 VARCHAR(12) CHARACTER SET KANJI1
,c2 VARCHAR(12) CHARACTER SET KANJI1);

Use the KanjiEBCDIC client character set and insert the following strings:

INSERT t1 ('def', 'gH<ABC>X');

Convert the strings to GRAPHIC data:

Function Result

VARGRAPHIC('92 abc∆') '92 abc∆'

VARGRAPHIC('abc') 'abc'

Function Result

SELECT VARGRAPHIC (c1) FROM t1; 'def'

SELECT VARGRAPHIC (c2) FROM t1; 'gHABCX'

(The single byte Hankaku Katakana X is converted
to double byte X.)

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

SQL Functions, Operators, Expressions, and Predicates 559

VARGRAPHIC Function Conversion Tables

The following table shows the translation of a single byte character to its double byte
equivalent by the VARGRAPHIC function. Values in columns 2, 3, and 4 are hexadecimal.
(Also see the notes following the table.)

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

00 FEFE FEFE

01 FEFE FEFE

02 FEFE FEFE

03 FEFE FEFE

04 FEFE FEFE

05 FEFE FEFE

06 FEFE FEFE

07 FEFE FEFE

08 FEFE FEFE

09 FEFE FEFE

0A FEFE FEFE

0B FEFE FEFE

0C FEFE FEFE

0D FEFE FEFE

0Ea N/A N/A

0Fb FEFE FEFE

10 FEFE FEFE

11c £ 424A 424A

12d ¬ 425F FEFE

13 \ 43E0 FEFE

14 ~ 43A1 FEFE

15 FEFE FEFE

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

560 SQL Functions, Operators, Expressions, and Predicates

16 FEFE FEFE

17 FEFE FEFE

18 FEFE FEFE

19 FEFE FEFE

1A FEFE FEFE

1B FEFE FEFE

1C FEFE FEFE

1D FEFE FEFE

1E FEFE FEFE

1F FEFE FEFE

20 4040 4040

21 ! 425A 425A

22 " 4472 4472

23 # 427B 427B

24 $ 42E0 42E0

25 % 426C 426C

26 & 4250 4250

27 ' 4471 4471

28 (424D 424D

29) 425D 425D

2A * 425C 425C

2B + 424E 424E

2C , 426B 426B

2D - 4260 4260

2E . 424B 424B

2F / 4261 4261

30 0 42F0 42F0

31 1 42F1 42F1

32 2 42F2 42F2

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

SQL Functions, Operators, Expressions, and Predicates 561

33 3 42F3 43F3

34 4 42F4 42F4

35 5 42F5 42F5

36 6 42F6 42F6

37 7 42F7 42F7

38 8 42F8 42F8

39 9 42F9 42F9

3A : 427A 427A

3B ; 425E 425E

3C < 424C 424C

3D = 427E 427E

3E > 426E 426E

3F ? 426F 426F

40 @ 427C 427C

41 A 42C1 42C1

42 B 42C2 42C2

43 C 42C3 42C3

44 D 42C4 42C4

45 E 42C5 42C5

46 F 42C6 42C6

47 G 42C7 42C7

48 H 42C8 42C8

49 I 42C9 42C9

4A J 42D1 42D1

4B K 42D2 42D2

4C L 42D3 42D3

4D M 42D4 42D4

4E N 42D5 42D5

4F O 42D6 42D6

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

562 SQL Functions, Operators, Expressions, and Predicates

50 P 42D7 42D7

51 Q 42D8 42D8

52 R 42D9 42D9

53 S 42E2 42E2

54 T 42E3 42E3

55 U 42E4 42E4

56 V 42E5 42E5

57 W 42E6 42E6

58 X 42E7 42E7

59 Y 42E8 42E8

5A Z 42E9 42E9

5B [4444 FEFE

5C \ 425B 425B

5D] 4445 FEFE

5E ^ 4470 425F

5F _ 426D 426D

60 ` 4279 FEFE

61 a 4281 FEFE

62 b 4282 FEFE

63 c 4283 FEFE

64 d 4284 FEFE

65 e 4285 FEFE

66 f 4286 FEFE

67 g 4287 FEFE

68 h 4288 FEFE

69 i 4289 FEFE

6A j 4291 FEFE

6B k 4292 FEFE

6C l 4293 FEFE

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

SQL Functions, Operators, Expressions, and Predicates 563

6D m 4294 FEFE

6E n 4295 FEFE

6F o 4296 FEFE

70 p 4297 FEFE

71 q 4298 FEFE

72 r 4299 FEFE

73 s 42A2 FEFE

74 t 42A3 FEFE

75 u 42A4 FEFE

76 v 42A5 FEFE

77 w 42A6 FEFE

78 x 42A7 FEFE

79 y 42A8 FEFE

7A z 42A9 FEFE

7B { 42C0 FEFE

7C | 424F 424F

7D } 42D0 FEFE

7E -e 42A1 42A1

7F FEFE FEFE

80 FEFE FEFE

81 FEFE FEFE

82 FEFE FEFE

83 FEFE FEFE

84 FEFE FEFE

85 FEFE FEFE

86 FEFE FEFE

87 FEFE FEFE

88 FEFE FEFE

89 FEFE FEFE

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

564 SQL Functions, Operators, Expressions, and Predicates

8A FEFE FEFE

8B FEFE FEFE

8C FEFE FEFE

8D FEFE FEFE

8E FEFE FEFE

8F FEFE FEFE

90 FEFE FEFE

91 FEFE FEFE

92 FEFE FEFE

93 FEFE FEFE

94 FEFE FEFE

95 FEFE FEFE

96 FEFE FEFE

97 FEFE FEFE

98 FEFE FEFE

99 FEFE FEFE

9A FEFE FEFE

9B FEFE FEFE

9C FEFE FEFE

9D FEFE FEFE

9E FEFE FEFE

9F FEFE FEFE

A0 FEFE FEFE

A1 f 4341 4341

A2 g 4342 4342

A3 h 4343 4343

A4 i 4344 4344

A5 j 4345 4345

A6 k 4346 4346

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

SQL Functions, Operators, Expressions, and Predicates 565

A7 l 4347 4347

A8 m 4348 4348

A9 n 4349 4349

AA o 4351 4351

AB p 4352 4352

AC q 4353 4353

AD r 5454 4354

AE s 4355 4355

AF t 4356 4356

B0 u 4358 4358

B1 A 4381 4381

B2 I 4382 4382

B3 U 4383 4383

B4 E 4384 4384

B5 O 4385 4385

B6 KA 4386 4386

B7 KI 4387 4387

B8 KU 4388 4388

B9 KE 4389 4389

BA KO 438A 438A

BB SA 438C 438C

BC SHI 438D 438D

BD SU 438E 438E

BE SEE 438F 438F

BF SO 4390 4390

C0 TAI 4391 4391

C1 CHI 4392 4392

C2 TSU 4393 4393

C3 TE 4394 4394

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

566 SQL Functions, Operators, Expressions, and Predicates

C4 TO 4395 4395

C5 NA 4396 4396

C6 NI 4397 4397

C7 NU 4398 4398

C8 NE 4399 4399

C9 NO 439A 439A

CA HA 439D 439D

CB HI 439E 439E

CC FU 439F 439F

CD HE 43A2 43A2

CE HO 43A3 43A3

CF MA 43A4 43A4

D0 MI 43A5 43A5

D1 MU 43A6 43A6

D2 ME 43A7 43A7

D3 MO 43A8 43A8

D4 YA 43A9 43A9

D5 YU 43AA 43AA

D6 YO 43AC 43AC

D7 RA 43AD 43AD

D8 RI 43AE 43AE

D9 RU 43AF 43AF

DA RE 43BA 43BA

DB RO 43BB 43BB

DC WA 43BC 43BC

DD N 43BD 43BD

DE v 43BE 43BE

DF w 43BF 43BF

E0 FEFE FEFE

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

SQL Functions, Operators, Expressions, and Predicates 567

E1 FEFE FEFE

E2 FEFE FEFE

E3 FEFE FEFE

E4 FEFE FEFE

E5 FEFE FEFE

E6 FEFE FEFE

E7 FEFE FEFE

E8 FEFE FEFE

E9 FEFE FEFE

EA FEFE FEFE

EB FEFE FEFE

EC FEFE FEFE

ED FEFE FEFE

EE FEFE FEFE

EF FEFE FEFE

F0 FEFE FEFE

F1 FEFE FEFE

F2 FEFE FEFE

F3 FEFE FEFE

F4 FEFE FEFE

F5 FEFE FEFE

F6 FEFE FEFE

F7 FEFE FEFE

F8 FEFE FEFE

F9 FEFE FEFE

FA FEFE FEFE

FB FEFE FEFE

BC FEFE FEFE

FD FEFE FEFE

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

Chapter 12: String Operator and Functions
VARGRAPHIC Function Conversion Tables

568 SQL Functions, Operators, Expressions, and Predicates

FE FEFE FEFE

FF FEFE FEFE

a. For KanjiEBCDIC, the SO/SI is not placed in the output of vargraphic function. In particular, a
single SO character will not generate any output, or strictly speaking will generate a string with 0
length

b. For KanjiEBCDIC, the SO/SI is not placed in the output of vargraphic function. However, if the
SI character appears in the input without matching SO, we will generate FEFE for that SI.

c. Pound Sterling sign

d. Logical NOT

e. Overline

f. Ideographic period

g. Left corner bracket

h. Right corner bracket

i. Ideographic comma

j. Katakana middle dot

k. Katakana letter WO

l. Katakana letter A

m. Katakana letter small I

n. Katakana letter small U

o. Katakana letter small E

p. Katakana letter small O

q. Katakana letter small YA

r. Katakana letter small YU

s. Katakana letter small YO

t. Katakana letter small WO

u. Katakana-Hiragana prolonged sound mark

v. Katakana-Hiragana voiced sound mark

w. Katakana-Hiragana semi-voice sound mark

Single Byte Character Double Byte Equivalent

JIS Internal Code
JIS X 0201 Printable
Character

KanjiEBCDIC 5026/
5035 Katakana EBCDIC

SQL Functions, Operators, Expressions, and Predicates 569

CHAPTER 13 Logical Predicates

This chapter describes SQL logical predicates.

For information on comparison operators, see Chapter 5: “Comparison Operators.”

Logical Predicates

A logical predicate tests an operand against one or more other operands to evaluate to a
logical (Boolean TRUE, FALSE, or UNKNOWN) result.

The tested operand can be one of the following:

• A column name

• A constant

• An arithmetic expression

• A Period value expression

• The DEFAULT function

• A built-in function such as CURRENT_DATE or USER that evaluates to a system variable

Logical predicates are also referred to as conditional expressions. The ANSI SQL standard
refers to them as search conditions.

Where Logical Predicates Are Used

Logical predicates are typically used in a WHERE, ON, or HAVING clause to qualify or
disqualify rows as a table expression is evaluated in a SELECT statement.

Logical predicates can be used in a WHEN clause search condition in a searched CASE
expression.

The type of test performed is a function of the predicate.

Conditional Expressions as a Collection of Logical Primitives

You can think of a conditional expression as a collection of logical predicate primitives where
the order of evaluation is controlled by the use of the logical operators AND, OR, and NOT
and by the placement of parentheses.

Superficially similar conditional expressions can produce radically different results depending
on how you group their component primitives, so use caution in planning the logic of any
conditional expressions.

Chapter 13: Logical Predicates
Logical Predicates

570 SQL Functions, Operators, Expressions, and Predicates

SQL supports the logical predicate primitives listed in the following table. Note that Match
and Unique conditions are not supported.

Restrictions on the Data Types Involved in Predicates

The restrictions in the following table apply to operations involving predicates and CLOB,
BLOB, Period, and UDT types.

Logical Predicate
Primitive Condition SQL Logical Predicate Function

Comparison For a complete list of SQL
comparison operators, see
“Supported Comparison
Operators” on page 162.

Tests for equality, inequality, or magnitude
difference between two data values.

Range BETWEEN
NOT BETWEEN

Tests whether a data value is included within
(or excluded from) a specified range of
column data values.

Like LIKE Tests for a pattern match between a specified
character string and a column data value.

In IN
NOT IN

Tests whether a data value is (or is not) a
member of a specified set of column values.

IN is equivalent to = ANY.

NOT IN is equivalent to <> ALL.

All ALL Tests whether a data value compares TRUE
to all column values in a specified set.

Any ANY
SOME

Tests whether a data value compares TRUE
to any column value in a specified set.

Exists EXISTS
NOT EXISTS

Tests whether a specified table contains at
least one row.

Overlaps OVERLAPS Tests whether two time periods overlap.

Period predicates CONTAINS
MEETS
PRECEDES
SUCCEEDS

Operates on two Period expressions or one
Period expression and one DateTime
expression and evaluates to TRUE, FALSE, or
UNKNOWN.

IS UNTIL_CHANGED
IS NOT UNTIL_CHANGED

Tests whether the ending bound of a Period
value expression is (or is not)
UNTIL_CHANGED.

Data Type Restrictions

BLOB Predicates do not support BLOB or CLOB data types.

You can explicitly cast BLOBs to BYTE and VARBYTE types and CLOBs to
CHARACTER and VARCHAR types, and use the results in a predicate.

CLOB

Chapter 13: Logical Predicates
Logical Predicates

SQL Functions, Operators, Expressions, and Predicates 571

PERIOD Predicates are only supported for CONTAINS, MEETS, PRECEDES, SUCCEEDS, and
IS [NOT] UNTIL_CHANGED.

UDT

Predicate Restrictions

LIKE The LIKE and OVERLAPS logical predicates do not support
UDTs.

OVERLAPS

EXISTS/
NOT EXISTS

Multiple UDTs involved as predicate operands must be identical
types because Teradata Database does not perform implicit type
conversion on UDTs involved as predicate operands.

A workaround for this restriction is to use CREATE CAST to
define casts that cast between the UDTs and then explicitly
invoke the CAST function within the operation involving
predicates.

For more information on CREATE CAST, see SQL Data
Definition Language.

BETWEEN/
NOT BETWEEN

• Multiple UDTs involved as predicate operands must be
identical types because Teradata Database does not perform
implicit type conversion on UDTs involved as predicate
operands.

A workaround for this restriction is to use CREATE CAST to
define casts that cast between the UDTs and then explicitly
invoke the CAST function within the operation involving
predicates.

• UDTs involved as predicate operands must have ordering
definitions.

Teradata Database generates ordering functionality for
distinct UDTs where the source types are not LOBs. To create
an ordering definition for structured UDTs or distinct UDTs
where the source types are LOBs, or to replace system-
generated ordering functionality, use CREATE ORDERING.

For more information on CREATE CAST and CREATE
ORDERING, see SQL Data Definition Language.

IN/NOT IN

Data Type Restrictions

Chapter 13: Logical Predicates
Logical Predicates

572 SQL Functions, Operators, Expressions, and Predicates

Restrictions on the DEFAULT Function in a Predicate

The DEFAULT function returns the default value of a column. It has two forms: one that
specifies a column name and one that omits the column name. Predicates support both forms
of the DEFAULT function, but the following conditions must be true when the DEFAULT
function omits the column name:

• The predicate uses a comparison operator

• The comparison involves a single column reference

• The DEFAULT function is not part of an expression

For example, the following statement uses DEFAULT to compare the values of the Dept_No
column with the default value of the Dept_No column. Because the comparison operation
involves a single column reference, Teradata Database can derive the column context of the
DEFAULT function even though the column name is omitted.

SELECT * FROM Employee WHERE Dept_No < DEFAULT;

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the
WHERE condition is false.

Chapter 13: Logical Predicates
ANY/ALL/SOME Quantifiers

SQL Functions, Operators, Expressions, and Predicates 573

ANY/ALL/SOME Quantifiers

Purpose
Enables quantification in a comparison operation or IN/NOT IN predicate.

Syntax

where:

Syntax element … Specifies …

expression an expression that specifies a value.

comparison_operator a comparison operator that compares the expression or list of expressions
and the constants in the list (Constants syntax) or the subquery (Subquery
syntax) to produce a TRUE, FALSE or UNKNOWN result.

For more information on comparison operators, see Chapter 5:
“Comparison Operators.”

[NOT] IN a predicate that tests the existence of the expression or list of expressions in
the list of constants (Constants syntax) or the subquery (Subquery syntax)
to produce a TRUE, FALSE, or UNKNOWN result.

For more information on IN/NOT IN, see “IN/NOT IN” on page 585.

constant a literal value.

subquery a subquery that selects the same number of expressions as are specified in
the expression or list of expressions.

The subquery cannot specify a SELECT AND CONSUME statement.

1101B090

comparison_operator constantexpression ()ALL

IN

OR

NOT

ANY
SOME

,

,

Constants
syntax

Subquery
syntax

comparison_operator subqueryexpression ()ALL

IN

NOT

ANY
SOME

() comparison_operator subqueryexpression ()ALL

IN

NOT

ANY
SOME

Chapter 13: Logical Predicates
ANY/ALL/SOME Quantifiers

574 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

ANY, SOME, and ALL are ANSI SQL:2008 compliant quantifiers.

ANY/ALL/SOME Quantifiers and Constant Syntax

When a list of constants is used with quantifiers and comparison operations or IN/NOT IN
predicates, the results are determined as follows.

For comparison operations, implicit conversion rules are the same as for the comparison
operators.

If expression evaluates to NULL, the result is considered to be unknown.

ANY/ALL/SOME Quantifiers and Subquery Syntax

When subqueries are used with quantifiers and comparison operations or IN/NOT IN
predicates, the results are determined as follows.

IF the predicate is … AND specifies … THEN the result is true when …

a comparison operation ALL the comparison of expression and every constant in
the list produces true results.

ANY the comparison of expression and any constant in the
list is true.

SOME

IN ALL expression is equal to every constant in the list.

ANY expression is equal to any constant in the list.

SOME

NOT IN ALL expression is not equal to any constant in the list.

ANY expression is not equal to every constant in the list.

SOME

IF this quantifier
is specified …

AND the
predicate is …

THEN the
result is … WHEN …

ALL a comparison
operation

TRUE the comparison of expression and every value in
the set of values returned by subquery produces
true results.

IN TRUE expression is equal to every value in the set of
values returned by subquery.

NOT IN TRUE expression is not equal to any value in the set of
values returned by subquery.

Chapter 13: Logical Predicates
ANY/ALL/SOME Quantifiers

SQL Functions, Operators, Expressions, and Predicates 575

Equivalences Using ANY/ALL/SOME and Comparison Operators

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is a
comparison operator:

Here are some examples:

ALL a comparison
operation

TRUE subquery returns no values.

IN

NOT IN

ANY

SOME

a comparison
operation

TRUE the comparison of expression and at least one
value in the set of values returned by subquery is
true.

IN TRUE expression is equal to at least one value in the set
of values returned by subquery.

NOT IN TRUE expression is not equal to at least one value in the
set of values returned by subquery.

a comparison
operation

FALSE subquery returns no values.

IN

NOT IN

IF this quantifier
is specified …

AND the
predicate is …

THEN the
result is … WHEN …

This … Is equivalent to …

x op ALL (:a, :b, :c) (x op :a) AND (x op :b) AND (x op :c)

x op ANY (:a, :b, :c) (x op :a) OR (x op :b) OR (x op :c)

x op SOME (:a, :b, :c)

This expression … Is equivalent to …

x < ALL (:a, :b, :c) (x < :a) AND (x < :b) AND (x < :c)

x > ANY (:a, :b, :c) (x > :a) OR (x > :b) OR (x > :c)

x > SOME (:a, :b, :c)

Chapter 13: Logical Predicates
ANY/ALL/SOME Quantifiers

576 SQL Functions, Operators, Expressions, and Predicates

Equivalences Using ANY/ALL/SOME and IN/NOT IN

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is IN
or NOT IN:

Here are some examples:

Example 1

The following statement uses a comparison operator with the ANY quantifier to select the
employee number, name, and department number of anyone in departments 100, 300, and
500:

This … Is equivalent to …a

a. If op is NOT IN, then NOT op is IN, not NOT NOT IN.

NOT (x op ALL (:a, :b, :c)) x NOT op ANY (:a, :b, :c)

x NOT op SOME (:a, :b, :c)

NOT (x op ANY (:a, :b, :c)) x NOT op ALL (:a, :b, :c)

NOT (x op SOME (:a, :b, :c))

This expression … Is equivalent to …

NOT (x IN ANY (:a, :b, :c)) x NOT IN ALL (:a, :b, :c)

NOT (x IN ALL (:a, :b, :c)) x NOT IN ANY (:a, :b, :c)

NOT (x NOT IN ANY (:a, :b, :c)) x IN ALL (:a, :b, :c)

NOT (x NOT IN ALL (:a, :b, :c)) x IN ANY (:a, :b, :c)

This Expression … Is Equivalent to this expression…

SELECT EmpNo, Name, DeptNo
FROM Employee
WHERE DeptNo = ANY (100,300,500) ;

SELECT EmpNo, Name, DeptNo
FROM Employee
WHERE (DeptNo = 100)
OR (DeptNo = 300)
OR (DeptNo = 500) ;

and

SELECT EmpNo, Name, DeptNo
FROM Employee
WHERE DeptNo IN (100,300,500) ;

Chapter 13: Logical Predicates
ANY/ALL/SOME Quantifiers

SQL Functions, Operators, Expressions, and Predicates 577

Example 2

Here is an example that uses a subquery in a comparison operation that specifies the ALL
quantifier:

SELECT EmpNo, Name, JobTitle, Salary, YrsExp
FROM Employee
WHERE (Salary, YrsExp) >= ALL
(SELECT Salary, YrsExp FROM Employee) ;

Example 3

This example shows the behavior of ANY/ALL/SOME.

Consider the following table definition and contents:

CREATE TABLE t (x INTEGER);
INSERT t (1);
INSERT t (2);
INSERT t (3);
INSERT t (4);
INSERT t (5);

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x IN ANY (1,2) 1, 2

SELECT * FROM t WHERE x = SOME (1,2) 1, 2

SELECT * FROM t WHERE x NOT IN ALL (1,2) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN ANY (1,2)) 3, 4, 5

SELECT * FROM t WHERE NOT (x = SOME (1,2)) 3, 4, 5

SELECT * FROM t WHERE x NOT IN SOME (1, 2) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x NOT = ANY (1, 2) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2)) no rows

SELECT * FROM t WHERE x = ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT = ANY (1,2)) no rows

Chapter 13: Logical Predicates
BETWEEN/NOT BETWEEN

578 SQL Functions, Operators, Expressions, and Predicates

BETWEEN/NOT BETWEEN

Purpose
Tests whether an expression value is between two other expression values.

Syntax

ANSI Compliance

BETWEEN and NOT BETWEEN are ANSI SQL:2008 compliant.

Usage Notes

The BETWEEN test is satisfied if the following condition is true.

expression_2 <= expression_1 <= expression_3

If the BETWEEN test fails, no rows are returned.

The BETWEEN test is treated as two separate logical comparisons.

expression_1 >= expression_2 AND expression_1 <= expression_3.

Note that because expression_1 is actually evaluated twice, using a nondeterministic function,
such as RANDOM, can produce unexpected results.

Example

The following example uses a search condition in a HAVING clause to select from the
Employee table those departments with the number 100, 300, 500, or 600, and with a salary
average of at least $35,000 but not more than $55,000:

SELECT AVG(Salary)
FROM Employee
WHERE DeptNo IN (100,300,500,600)
GROUP BY DeptNo
HAVING AVG(Salary) BETWEEN 35000 AND 55000 ;

HH01A038

NOT

expr1 BETWEEN expr2 AND expr3

This expression … Is equivalent to …

x BETWEEN y AND z ((x >= y) AND (x <=z))

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

SQL Functions, Operators, Expressions, and Predicates 579

EXISTS/NOT EXISTS

Purpose
Tests a specified table (normally a derived table) for the existence of at least one row (that is, it
tests whether the table in question is non-empty).

EXISTS is supported as the predicate of the search condition in a WHERE clause.

Syntax

ANSI Compliance

EXISTS and NOT EXISTS are ANSI SQL:2008 compliant.

Usage Notes

The function of the EXISTS predicate is to test the result of subquery.

If execution of the subquery returns response rows then the where condition is considered
satisfied.

Note that use of the NOT qualifier for the EXISTS predicate reverses the sense of the test.
Execution of the subquery does not, in fact, return any response rows. Instead, it returns a
boolean result to indicate whether responses would or would not have been returned had they
been requested.

Subquery Restrictions

The subquery cannot specify a SELECT AND CONSUME statement.

Relationship Between EXISTS/NOT EXISTS and IN/NOT IN

EXISTS predicate tests the existence of specified rows of a subquery. In general, EXISTS can be
used to replace comparisons with IN and NOT EXISTS can be used to replace comparisons
with NOT IN. However, the reverse is not true. Some problems can be solved only by using
EXISTS and/or NOT EXISTS predicate. For an example, see “For ALL” on page 581.

For information on IN and NOT IN, see “IN/NOT IN” on page 585.

HH01A047

subquery

NOT

EXISTS

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

580 SQL Functions, Operators, Expressions, and Predicates

Example

To select rows of t1 whose values in column x1 are equal to the value in column x2 of t2, one of
the following queries can be used:

SELECT *
FROM t1
WHERE x1 IN
(SELECT x2
FROM t2);

SELECT *
FROM t1
WHERE EXISTS
(SELECT *
FROM t2
WHERE t1.x1=t2.x2);

To select rows of t1 whose values in column x1 are not equal to any value in column x2 of t2,
you can use any one of the following queries:

SELECT *
FROM t1
WHERE x1 NOT IN
(SELECT x2
FROM t2);

SELECT *
FROM t1
WHERE NOT EXISTS
(SELECT *
FROM t2
WHERE t1.x1=t2.x2);

SELECT 'T1 is not empty'
WHERE EXISTS
(SELECT *
FROM t1);

SELECT 'T1 is empty'
WHERE NOT EXISTS
(SELECT *
FROM t1);

EXISTS Predicate Versus NOT IN and Nulls

Use the NOT EXISTS predicate instead of NOT IN if the following conditions are true:

• Some column of the NOT IN condition is defined as nullable.

• Any rows from the main query with a null in any column of the NOT IN condition should
always be returned.

• Any nulls returned in the select list of the subquery should not prevent any rows from the
main query from being returned.

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

SQL Functions, Operators, Expressions, and Predicates 581

For example, if all of the previous conditions are true for the following query, use NOT
EXISTS instead of NOT IN:

SELECT dept, DeptName
FROM Department
WHERE Dept NOT IN
(SELECT Dept
FROM Course);

The NOT EXISTS version looks like this:

SELECT dept, DeptName
FROM Department
WHERE NOT EXISTS
(SELECT Dept
FROM Course
WHERE Course.Dept=Department.Dept);

That is, either Course.Dept or Department.Dept is nullable and a row from Department with
a null for Dept should be returned and a null in Course.Dept should not prevent rows from
Department from being returned.

For ALL

Two nested NOT EXISTS can be used to express a SELECT statement that embodies the
notion of “for all (logical ∀) the values in a column, there exists (logical ∃) …”

For example the query to select a ‘true’ value if the library has at least one book for all the
publishers can be expressed as follows:

SELECT 'TRUE'
WHERE NOT EXISTS
(SELECT *
FROM publisher pb
WHERE NOT EXISTS
(SELECT *
FROM book bk
WHERE pb.PubNum=bk.PubNum);

[NOT] EXISTS Clauses and Stored Procedures

You cannot specify a [NOT] EXISTS clause in a stored procedure conditional expression if
that expression also references an alias for a local variable, parameter, or cursor.

NOT EXISTS and Recursive Queries

NOT EXISTS cannot appear in a recursive statement of a recursive query. However, a non-
recursive seed statement in a recursive query can specify the NOT EXISTS predicate.

Example 1: EXISTS with Correlated Subqueries

Select all student names who have registered in at least one class offered by some department.

SELECT SName, SNo
FROM student s
WHERE EXISTS
(SELECT *

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

582 SQL Functions, Operators, Expressions, and Predicates

FROM department d
WHERE EXISTS
(SELECT *
FROM course c, registration r, class cl
WHERE c.Dept=d.Dept
AND c.CNo=r.CNo
AND s.SNo=r.SNo
AND r.CNo=cl.CNo
AND r.Sec=cl.Sec));

The content of the student table is as follows:

The content of the department table is as follows:

The content of course table is as follows:

Sname SNo

Helen Chu 1

Alice Clark 2

Kathy Kim 3

Tom Brown 4

Dept DeptName

100 Computer Science

200 Physic

300 Math

400 Science

CNo Dept

10 100

11 100

12 200

13 200

14 300

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

SQL Functions, Operators, Expressions, and Predicates 583

The content of the class table is as follows:

The content of the registration table is as follows:

The following rows are returned:

SName SNo
----------- ---
Helen Chu1 *
Alice Clark 2
Kathy Kim 3

For a full explanation of correlated subqueries, see “Correlated Subqueries” in SQL Data
Manipulation Language.

Example 2: NOT EXISTS with Correlated Subqueries

Select the names of all students who have registered in at least one class offered by each
department that offers a course.

SELECT SName, SNo
FROM student s
WHERE NOT EXISTS
(SELECT *
FROM department d
WHERE d.Dept IN
(SELECT Dept
FROM course) AND NOT EXISTS
(SELECT *

CNo Sec

10 1

11 1

12 1

13 1

14 1

CNo SNo Sec

10 1 1

10 2 1

11 3 1

12 1 1

13 2 1

14 1 1

Chapter 13: Logical Predicates
EXISTS/NOT EXISTS

584 SQL Functions, Operators, Expressions, and Predicates

FROM course c, registration r, class cl
WHERE c.Dept=d.Dept
AND c.CNo=r.CNo
AND s.SNo=r.SNo
AND r.CNo=cl.CNo
AND r.Sec=cl.Sec)));

With the contents of the tables as in “Example 1: EXISTS with Correlated Subqueries” on
page 581, the following rows are returned:

SName SNo
----- ---
Helen Chu 1

Chapter 13: Logical Predicates
IN/NOT IN

SQL Functions, Operators, Expressions, and Predicates 585

IN/NOT IN

Purpose
Tests the existence of the value of an expression or expression list in a comparable set in one of
two ways:

• Compares the value of an expression with values in an explicit list of constants.

• Compares values in a list of expressions with values and in a set of corresponding
expressions in a subquery.

ANSI Compliance

IN and NOT IN are ANSI SQL:2008 compliant.

Using TO in a list of constants is a Teradata extension to the ANSI standard.

Syntax 1: expression IN and NOT IN expression or constants

where:

Syntax element … Specifies …

expression_1 the value of the expression whose existence is to be tested in
expression_2 or in an explicit list of constants named by constant,
signed_constant TO signed_constant, or datetime_literal.

1101A309

NOT

expression_1 IN

OR

,
expression_2

(constant

signed_constant_1 TO signed_constant_2

)

datetime_literal

Chapter 13: Logical Predicates
IN/NOT IN

586 SQL Functions, Operators, Expressions, and Predicates

Result

If IN is used with a list of constants, the result is true if the value of expression_1 is:

• equal to any constant in the list,

• between signed_constant_1 and signed_constant_2, inclusively, when signed_constant_1 is
less than or equal to signed_constant_2, or

• between signed_constant_2 and signed_constant_1, inclusively, when signed_constant_2 is
less than signed_constant_1

If the value of expression_1 is null, then the result is considered to be unknown.

If the value of expression_1 is not null, and none of the conditions are satisfied for the result to
be true, then the result is false.

Using this form, the IN search condition is satisfied if the expression is equal to any of the
values in the list of constants; the NOT IN condition is satisfied if none of the values in the list
of constants are equal to the expression.

IN

NOT IN

whether the test is inclusive or exclusive.

You can substitute … FOR …

• IN ANY

• IN SOME

• = ANY

• = SOME

IN, unless a list of constants is specified and
includes signed_constant_1 TO
signed_constant_2

• <> ALL

• NOT IN ALL

NOT IN, unless a list of constants is
specified and includes signed_constant_1
TO signed_constant_2

expression_2 the value in which the existence of expression_1 is to be tested.

constant • constant

• macro parameter

• built-in value such as TIME or DATE

signed_constant_1 TO
signed_constant_2

a range of constants.

datetime_literal an ANSI DateTime literal.

Syntax element … Specifies …

THE condition is true for this form … WHEN …

expression_1 IN expression_2 expression_1 = expression_2

expression_1 NOT IN expression_2 expression_1 <> expression_2

Chapter 13: Logical Predicates
IN/NOT IN

SQL Functions, Operators, Expressions, and Predicates 587

Here are some examples:

Usage Notes

If IN is used with a single-term operator, that operator can be a constant or an expression. If a
multiple-term operator is used, that operator must consist of constants; expressions are not
allowed.

The expression_1 data type and the constant values must be compatible. Implicit conversion
rules are the same as for the comparison operators.

Relationship Between IN/NOT IN and EXISTS/NOT EXISTS

In general, you can use EXISTS to replace comparisons with IN, and NOT EXISTS to replace
comparisons with NOT IN. However, the reverse is not true. The solutions to some problems
require using the EXISTS or NOT EXISTS predicate. For information on EXISTS and NOT
EXISTS, see “EXISTS/NOT EXISTS” on page 579.

expression_1 IN (const_1, const_2) (expression_1 = const_1) OR (expression_1 = const_2)

expression_1 NOT IN (const_1, const_2) (expression_1 <> const_1) AND (expression_1 <>
const_2)

expression_1 IN (signed_const_1 TO
signed_const_2)

where signed_const_1 <= signed_const_2

(signed_const_1 <= expression_1) AND (expression_1 <=
signed_const_2)

expression_1 IN (signed_const_1 TO
signed_const_2)

where signed_const_2 < signed_const_1

(signed_const_2 <= expression_1) AND (expression_1 <=
signed_const_1)

expression_1 NOT IN (signed_const_1
TO signed_const_2)

where signed_const_1 <= signed_const_2

(expression_1 < signed_const_1) OR (expression_1 >
signed_const_2)

expression_1 NOT IN (signed_const_1
TO signed_const_2)

where signed_const_2 < signed_const_1

(expression_1 < signed_const_2) OR (expression_1 >
signed_const_1)

This statement … Is equivalent to this statement …

SELECT DeptNo
FROM Department
WHERE DeptNo IN (500, 600);

SELECT DeptNo
FROM Department
WHERE (DeptNo = 500)
OR (DeptNo = 600);

UPDATE Employee
SET Salary=Salary + 200
WHERE DeptNo NOT IN (100, 700);

UPDATE Employee
SET Salary=Salary + 200
WHERE (DeptNo ^= 100)
AND (DeptNo ^= 700);

THE condition is true for this form … WHEN …

Chapter 13: Logical Predicates
IN/NOT IN

588 SQL Functions, Operators, Expressions, and Predicates

Equivalences Using IN/NOT IN, NOT, and ANY/ALL/SOME

The following table provides equivalences for the ANY/ALL/SOME quantifiers, where op is IN
or NOT IN:

Here are some examples:

Syntax 2: expression IN and NOT IN subquery

This syntax for IN and NOT IN is correct in either of the following two forms:

where:

This usage … Is equivalent to …a

a. In the equivalences, if op is NOT IN, then NOT op is IN, not NOT NOT IN.

NOT (x op ALL (:a, :b, :c)) x NOT op ANY (:a, :b, :c)

x NOT op SOME (:a, :b, :c)

NOT (x op ANY (:a, :b, :c)) x NOT op ALL (:a, :b, :c)

NOT (x op SOME (:a, :b, :c))

NOT (x op (:a, :b, :c)) x NOT op (:a, :b, :c)

This expression … Is equivalent to …

NOT (x IN ANY (:a, :b, :c)) x NOT IN ALL (:a, :b, :c)

NOT (x IN ALL (:a, :b, :c)) x NOT IN ANY (:a, :b, :c)

NOT (x NOT IN ANY (:a, :b, :c)) x IN ALL (:a, :b, :c)

NOT (x NOT IN ALL (:a, :b, :c)) x IN ANY (:a, :b, :c)

NOT (x IN (:a, :b, :c)) x NOT IN (:a, :b, :c)

NOT (x NOT IN (:a, :b, :c)) x IN (:a, :b, :c)

Syntax element … Specifies …

expression the value of the expression whose existence is to be tested in subquery.

HH01B002
NOT

IN subquery

,

()())expression)

NOT

expression IN subquery())

Chapter 13: Logical Predicates
IN/NOT IN

SQL Functions, Operators, Expressions, and Predicates 589

Behavior of Nulls for IN

A statement result does not include column nulls when IN is used with a subquery.

Behavior of Nulls for NOT IN

The following table explains the behavior of nulls for NOT IN for queries of various forms:

[NOT] IN Clauses and Stored Procedures

You cannot specify a [NOT] IN clause in a stored procedure conditional expression if that
expression also references an alias for a local variable, parameter, or cursor.

subquery a SELECT statement that returns values that satisfy the stated search
criterion.

The subquery must:

• Be enclosed in parentheses.

• Not end with a semicolon.

• Select the same number of expressions as are defined in the
expression list.

• Not specify a SELECT AND CONSUME statement.

Syntax element … Specifies …

FOR a query of the following form … IF … THEN …

SELECT ... FROM T1
WHERE x NOT IN
(SELECT y FROM T2);

one of the y values is
null

no T1 rows are returned
for the entire query.

some rows are returned
by the subquery, and if
x contains some nulls

those T1 rows that contain
a null in x are not
returned.

SELECT ... FROM T1
WHERE expression_list_1 NOT IN
(SELECT expression_list_2
FROM T2);

a null is the first field in
expression_list_2

no rows from T1 are
returned.

a null is in a field other
than the first field of
expression_list_2

some rows may be
returned

the subquery returns
some rows, and if a
null is in the first field
in expression_list_1

the T1 rows containing a
null in the first field of
expression_list_1 are not
returned.

SELECT ... FROM T1
WHERE expression_list_1 NOT IN
(SELECT expression_list_2
FROM T2
WHERE search_condition);

the search_condition on
T2 returns no rows

all T1 rows, including
those containing a null
value in the first field of
expression_list_1, are
returned.

Chapter 13: Logical Predicates
IN/NOT IN

590 SQL Functions, Operators, Expressions, and Predicates

NOT IN and Recursive Queries

NOT IN cannot appear in a recursive statement of a recursive query. However, a non-recursive
seed statement in a recursive query can specify the NOT IN predicate.

Queries With Large [NOT] IN Clauses Can Fail

Queries that contain thousands of arguments within an IN or NOT IN clause sometimes fail.

For example, suppose you ran the following query with 16000 IN clause arguments, and it
failed.

SELECT MAX(emp_num)
FROM employee
WHERE emp_num IN(1,2,7,8,...,121347);

A workaround when this problem occurs is to rewrite the query using a temporary or volatile
table to contain the arguments within the IN clause.

The following statements allow you to make the same selection, but without failure.

CREATE VOLATILE TABLE temp_IN_values (
in_value INTEGER) ON COMMIT PRESERVE ROWS;

INSERT INTO temp_IN_values
SELECT emp_num
FROM table_with_emp_num_values;

The new query is as follows:

SELECT MAX(emp_num)
FROM employee AS e JOIN temp_IN_values AS en
ON (e.emp_num = en.in_value);

Example 1

The following statement searches for the names of all employees who work in Atlanta.

SELECT Name
FROM Employee
WHERE DeptNo IN
(SELECT DeptNo
FROM Department
WHERE Loc = 'ATL');

Example 2

Using a similar example but assuming that the DeptNo is divided into two columns, the
following statement could be used:

SELECT Name
FROM Employee
WHERE (DeptNoA, DeptNoB) IN
(SELECT DeptNoA, DeptNoB
FROM Department
WHERE Loc = 'LAX') ;

Chapter 13: Logical Predicates
IN/NOT IN

SQL Functions, Operators, Expressions, and Predicates 591

Example 3

This example shows the behavior of IN/NOT IN with a list of constants.

Consider the following table definition and contents:

CREATE TABLE t (x INTEGER);
INSERT t (1);
INSERT t (2);
INSERT t (3);
INSERT t (4);
INSERT t (5);

IF you use this query … THEN the result is …

SELECT * FROM t WHERE x IN (1,2) 1, 2

SELECT * FROM t WHERE x IN ANY (1,2) 1, 2

SELECT * FROM t WHERE NOT (x NOT IN (1,2)) 1, 2

SELECT * FROM t WHERE x NOT IN (1,2) 3, 4, 5

SELECT * FROM t WHERE x NOT IN ALL (1,2) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN (1, 2)) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN ANY (1,2)) 3, 4, 5

SELECT * FROM t WHERE x IN (3 TO 5) 3, 4, 5

SELECT * FROM t WHERE x NOT IN SOME (1, 2) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN (1, 2 TO 4, 5) 1, 2, 3, 4, 5

SELECT * FROM t WHERE x IN ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2)) no rows

SELECT * FROM t WHERE x NOT IN (1 TO 5) no rows

Chapter 13: Logical Predicates
IS NULL/IS NOT NULL

592 SQL Functions, Operators, Expressions, and Predicates

IS NULL/IS NOT NULL

Purpose
Searches for or excludes nulls in an expression.

Syntax

where:

ANSI Compliance

IS NULL and IS NOT NULL are ANSI SQL:2008 compliant.

Example 1

To search for the names of all employees who have not been assigned to a department, enter
the following statement:

SELECT Name
FROM Employee
WHERE DeptNo IS NULL;

The result of this query is the names of all employees with a null in the DeptNo field.

Example 2

Conversely, to search for the names of all employees who have been assigned to a department,
you could enter the following statement:

SELECT Name
FROM Employee
WHERE DeptNo IS NOT NULL;

This query returns the names of all employees with a non-null value in the DeptNo field.

Example 3: Searching for NULL and NOT-NULL in the Same Statement

If you are searching for nulls and non-null values in the same statement, the search condition
for null values must appear separately.

Syntax element … Specifies …

expression an expression that specifies a value that is tested for nulls.

HH01A042

NOT

expression IS NULL

Chapter 13: Logical Predicates
IS NULL/IS NOT NULL

SQL Functions, Operators, Expressions, and Predicates 593

For example, to select the names of all employees without the job title of “Manager” or “Vice
Pres”, plus the names of all employees with a null in the JobTitle column, you must enter the
statement as follows:

SELECT Name, JobTitle
FROM Employee
WHERE (JobTitle NOT IN ('Manager' OR 'Vice Pres'))
OR (JobTitle IS NULL) ;

Example 4: Searching a Table That Might Contain Nulls

You must be careful when searching a table that might contain nulls. For example, if the EdLev
column contains nulls and you submit the following query, the result contains only the names
of employees with an education level of less than 16 years.

SELECT Name, EdLev
FROM Employee
WHERE (EdLev < 16) ;

To ensure that the result of a statement contains nulls, you must structure it as follows.

SELECT Name, EdLev
FROM Employee
WHERE (EdLev < 16)
OR (EdLev IS NULL) ;

Chapter 13: Logical Predicates
LIKE

594 SQL Functions, Operators, Expressions, and Predicates

LIKE

Purpose
Searches for a character string pattern within another character string or character string
expression.

Syntax

where:

Syntax Element … Specifies …

expression a character string or character string expression argument to be
searched for the substring pattern_expression.

pattern_expression a character expression for which expression is to be searched.

ANY
ALL
SOME

a quantifier that allows one or more expressions to be searched for one
or more patterns or for one or more values returned by a subquery.

SOME is a synonym for ANY.

subquery a SELECT statement argument.

A subquery cannot specify a SELECT AND CONSUME statement.

ESCAPE escape_character keyword/variable combination specifying a single escape character
(single or multibyte).

FF07D196

NOT

LIKE

ESCAPE escape_character

(pattern_expression)

,

NOT

expression LIKE

ESCAPE escape_character

(subquery)

,

NOT

expression LIKE

ESCAPE escape_character

(subquery)()

NOT

expression LIKE pattern_expression

ESCAPE escape_character

,

expression()

ALL

ANY

SOME

ALL

ANY

SOME

ALL

ANY

SOME

Chapter 13: Logical Predicates
LIKE

SQL Functions, Operators, Expressions, and Predicates 595

ANSI Compliance

LIKE is ANSI SQL:2008 compliant.

Optimized Performance Using a NUSI

If it is cost-effective, the Optimizer may choose to evaluate a LIKE expression by scanning a
NUSI with or without accessing the base table. The cost of using a NUSI depends on the
selectivity of the LIKE expression, the size of the NUSI subtable, and if the NUSI is a covering
index or a partially covering index. For a partially covering index, the cost of sorting the
RowID spool is also included. For details on NUSIs and query covering, see Database Design.

The Optimizer can perform a better cost comparison between using a NUSI and using an all-
rows scan if the following are true:

• There are statistics collected for both the base table primary index and for the NUSI
columns against which the expression string is evaluated.

• The expression string is either the mode or max value in at least one interval in the base
table statistics histogram.

You cannot use a NUSI with a VARCHAR field for processing a LIKE expression when:

• the NUSI contains a VARCHAR field, and the VARCHAR field is used in a NOT LIKE
operation.

• the NUSI contains a VARCHAR field, and the VARCHAR field is used in a string function.
For example, the following is not allowed if d1 is a NUSI column of VARCHAR type.

d1||‘ab’ LIKE ‘b ab’

In addition, a NUSI with a VARCHAR field cannot be used as a partially covering index for an
unconstrained aggregate query.

Null Expressions

If any expression in a comparison is null, the result of the comparison is unknown.

For a LIKE operation to provide a true result when searching fields that may contain nulls, the
statement must include the IS [NOT] NULL operator.

Case Specification

If neither pattern_expression nor expression has been designated CASESPECIFIC, any
lowercase letters in pattern_expression and expression are converted to uppercase before the
comparison operation occurs. If ESCAPE is specified and the escape character is a lowercase
character, it is also converted to uppercase before the comparison operation occurs.

If either expression or pattern_expression has been designated CASESPECIFIC, two letters
match only if they are the same letters and the same case.

Wildcard Characters

The % and _ characters may be used in any combination in pattern_expression.

Chapter 13: Logical Predicates
LIKE

596 SQL Functions, Operators, Expressions, and Predicates

The underscore and percent characters cannot be used in a pattern. To get around this, specify
a single escape character in addition to pattern_expression. For details, see “ESCAPE Feature of
LIKE” on page 597.

The following table describes how the metacharacters % and _ (and their fullwidth
equivalents) behave when matching strings for various server character sets. Note that ANSI
only defines the single byte spacing underscore and percent sign metacharacters.

Teradata SQL extends the permissible metacharacter set for the LIKE predicate to include the
fullwidth underscore and the fullwidth percent sign.

Character Description

% (PERCENT SIGN) Represents any string of zero or more arbitrary characters.

Any string of characters is acceptable as a replacement for the percent.

_ (LOW LINE) Represents exactly one arbitrary character.

Any single character is acceptable in the position in which the
underscore character appears.

FOR this server
character set … USE this metacharacter …

TO match this character or characters …

ANSI Mode Teradata Mode

KANJI1 spacing underscore any one single- or
multibyte character.

any one single byte
character.

fullwidth spacing underscore any one single byte
character or multibyte
character.

any one single byte
character or multibyte
character.

percent sign any sequence of single
or multibyte
characters.

any sequence of single
byte characters or
multibyte characters.

fullwidth percent sign any sequence of single
or multibyte
characters.

any sequence of single
byte characters or
multibyte characters.

UNICODE
LATIN
KANJISJIS

fullwidth spacing underscore none.

These characters are not treated as
metacharacters in order to maintain compliance
with the ANSI SQL standard.

fullwidth percent

GRAPHIC fullwidth spacing underscore any one single GRAPHIC character.

fullwidth percent sign any sequence of GRAPHIC characters.

Chapter 13: Logical Predicates
LIKE

SQL Functions, Operators, Expressions, and Predicates 597

ESCAPE Feature of LIKE

When the defined ESCAPE character is in the pattern string, it must be immediately followed
by an underscore, percent sign, or another ESCAPE character.

In a left-to-right scan of the pattern string the following rules apply when ESCAPE is
specified:

• Until an instance of the ESCAPE character occurs, characters in the pattern are interpreted
at face value.

• When an ESCAPE character immediately follows another ESCAPE character, the two
character sequence is treated as though it were a single instance of the ESCAPE character,
considered as a normal character.

• When an underscore metacharacter immediately follows an ESCAPE character, the
sequence is treated as a single underscore character (not a wildcard character).

• When a percent metacharacter immediately follows an ESCAPE character, the sequence is
treated as a single percent character (not a wildcard character).

• When an ESCAPE character is not immediately followed by an underscore metacharacter,
a percent metacharacter, or another instance of itself, the scan stops and an error is
reported.

Example

The following example illustrates the use of ESCAPE:

To look for the pattern ‘95%’ in a string such as ‘Result is 95% effective’, if Result is the field to
be checked, use:

WHERE Result LIKE '%95Z%%' ESCAPE 'Z'

This clause finds the value ‘95%’.

Pad Characters

The following notes apply to pad characters and how they are treated in strings:

• Pad characters are significant in both the character expression, and in the pattern string.

• When using pattern matching, be aware that both leading and trailing pad characters in
the field or expression must match exactly with the pattern.

For example, ‘A%BC’ matches ‘AxxBC’, but not ‘AxxBC∆’, and ‘A%BC∆’ matches
‘AxxBC∆’, but not ‘AxxBC’ or ‘AxxBC∆∆’ (∆ indicates a pad character).

• To retrieve the row in all cases, consider using the TRIM function, which removes both
leading and trailing pad characters from the source string before doing the pattern match.

For example, to remove trailing pad characters:

TRIM (TRAILING FROM expression) LIKE pattern-string

To remove leading and trailing pad characters:

TRIM (BOTH FROM expression) LIKE pattern-string

Chapter 13: Logical Predicates
LIKE

598 SQL Functions, Operators, Expressions, and Predicates

• If pattern_expression is forced to a fixed length, trailing pad characters might be appended.
In such cases, the field must contain the same number of trailing pad characters in order to
match.

For example, the following statement appends trailing pad characters to pattern strings
shorter than 5 characters long.

CREATE MACRO (pattern (CHAR(5)) AS
field LIKE :pattern…

• To retrieve the row in all cases, apply the TRIM function to the pattern string (TRIM
(TRAILING FROM :pattern)), or the macro parameter can be defined as VARCHAR.

These two methods do not always return the same results.TRIM removes pad characters,
while the VARCHAR method maintains the data pattern exactly as entered.

Example 1

The following example uses the LIKE predicate to select a list of employees whose job title
contains the string “Pres”:

SELECT Name, DeptNo, JobTitle
FROM Employee
WHERE JobTitle LIKE '%Pres%' ;

The form %string% requires Teradata Database to examine much of each string x. If x is long
and there are many rows in the table, the search for qualifying rows may take a long time.

The result returned is:

Example 2

This example selects a list of all employees whose last name begins with the letter P.

SELECT Name
FROM Employee
WHERE Name LIKE 'P%';

The result returned is:

Name

Phan A
Peterson J

Example 3

This example uses the % and _ characters to select a list of employees with the letter A as the
second letter in the last name. The length of the return string may be two or more characters.

Name DeptNo JobTitle

Watson L 500 Vice President

Phan A 300 Vice President

Russel S 300 President

Chapter 13: Logical Predicates
LIKE

SQL Functions, Operators, Expressions, and Predicates 599

SELECT Name
FROM Employee
WHERE Name LIKE '_a%';

returns the result:

Name

Marston A
Watson L
Carter J

Replacing _a% with _a_ changes the search to a three-character string with the letter a as the
second character. Because none of the names in the Employee table fit this description, the
query returns no rows.

Both leading and trailing pad characters in a pattern are significant to the matching rules.

Example 4

LIKE ’∆∆Z%’ locates only those fields that start with two pad characters followed by Z.

ANY/ALL/SOME Quantifiers

SQL recognizes the quantifiers ANY (or SOME) and ALL. A quantifier allows one or more
expressions to be compared with one or more values such as shown by the following generic
example.

The ALL quantifier is the logical statement FOR ∀.

The ANY quantifier is the logical statement FOR ∃ .

The following table restates this.

IF you specify this quantifier …
THEN the search condition is satisfied if expression LIKE
pattern_string … is true for …

ALL every string in the list.

ANY any string in the list.

THIS expression … IS equivalent to this expression …

x LIKE ALL ('A%','%B','%C%') x LIKE 'A%'
AND x LIKE '%B'
AND x LIKE '%C%'

x LIKE ANY ('A%','%B','%C%') x LIKE 'A%'
OR x LIKE '%B'
OR x LIKE '%C%'

FF07D273

expression LIKE quantifier (pattern_string)

,

Chapter 13: Logical Predicates
LIKE

600 SQL Functions, Operators, Expressions, and Predicates

The following statement selects from the employee table the row of any employee whose job
title includes the characters “Pres” or begins with the characters “Man”:

SELECT *
FROM Employee
WHERE JobTitle LIKE ANY ('%Pres%', 'Man%');

The result of this statement is:

For the following forms, if you specify the ALL or ANY/SOME quantifier, then the subquery
may return none, one, or several rows.

If, however, a quantifier is not used, then the subquery must return either no value or a single
value as described in the following table.

Example

The following statement uses the ANY quantifier to retrieve every row from the Project table,
which contains either the Accounts Payable or the Accounts Receivable project code:

SELECT * FROM Project
WHERE Proj_Id LIKE ANY
(SELECT Proj_Id
FROM Charges
WHERE Proj_Id LIKE ANY ('A%')) ;

EmpNo Name DeptNo JobTitle Salary

10021 Smith T 700 Manager 45, 000.00

10008 Phan A 300 Vice Pres 55, 000.00

10007 Aguilar J 600 Manager 45, 000.00

10018 Russell S 300 President 65, 000.00

10012 Watson L 500 Vice Pres 56, 000.00

This expression … Is TRUE when expression matches …

expression LIKE (subquery) the single value returned by subquery.

expression LIKE ANY (subquery) at least one value of the set of values returned by
subquery; is false if subquery returns no values.

expression LIKE ALL (subquery) each individual value in the set of values returned by
subquery, and is true if subquery returns no values.

FF07D274

NOT

expression LIKE (subquery)

quantifier

,

NOT

expression LIKE (subquery)()

quantifier

Chapter 13: Logical Predicates
LIKE

SQL Functions, Operators, Expressions, and Predicates 601

subquery

If the following form is used, the subquery might return none, one, or several values.

The following example shows how you can match using patterns selected from another table.

There are two base tables.

Department_Proj has two columns: Proj_pattern and Department. The rows in this table look
like the following.

The following query uses LIKE to match patterns selected from the Department_Proj table to
select all rows in the Project table that have a Proj_Id that matches project patterns associated
with the Finance department as defined in the Department_Proj table.

SELECT *
FROM Project
WHERE Proj_Id LIKE ANY
(SELECT Proj_Pattern
FROM Department_Proj
WHERE Department = 'Finance');

When this syntax is used, the subquery must select the same number of expressions as are in
the expression list.

This table … Defines these things …

Project • Unique project ID

• Project description

Department_Proj The association between project ID patterns and departments.

Proj_pattern Department

AP% Finance

AR% Finance

Nut% R&D

Screw% R&D

HH01A045

NOT

expr LIKE quantifier (subquery)

HH01A046

NOT

expr LIKE (subquery)()

,

quantifier

Chapter 13: Logical Predicates
LIKE

602 SQL Functions, Operators, Expressions, and Predicates

For example:

(x,y) LIKE ALL (SELECT a,b FROM c)

is equivalent to:

(x LIKE c.a) AND (y LIKE c.b)

Behavior of the ESCAPE Character

When escape_character is used in (generic) string_2, it must be followed immediately by a
metacharacter of the appropriate server character set or another escape_character.

The resultant two-character sequence matches a single character in string_1 if and only if the
character in string_1 collates identically to the character following the escape_character in
string_2.

In other words, escape_character is ignored for matching purposes and the character following
escape_character is matched for a single occurrence of itself.

When string_1 and string_2 do not share a common server character set, then the valid
metacharacters are SPACING UNDERSCORE and PERCENT SIGN because the arguments
are translated to UNICODE automatically when mismatched. Their behavior then follows the
rules described in “Implicit Character-to-Character Translation” on page 765.

Miscellaneous Examples

KanjiEBCDIC Examples

The following examples indicate the behavior of LIKE with KanjiEBCDIC strings using the
function (expression LIKE pattern_expression).

Function Result

_KanjiSJIS ‘92 abc’ LIKE _Unicode ‘%abc’ TRUE

_KanjiSJIS ‘92 abc’ LIKE _Unicode ‘%abc’ FALSEa

a. % (FULLWIDTH PERCENT SIGN) is not a metacharacter in either KanjiSJIS or Unicode.

‘c%’ LIKE ‘c%%’ ESCAPE ‘%’ TRUE

‘c%’ LIKE ‘c%%’ ESCAPE ‘%’ FALSEb

b. % (FULLWIDTH PERCENT SIGN) does not match % (PERCENT SIGN).

expression pattern_expression Server Character Set Result

MN<AB> % KANJI1 TRUE

MN<AB>P <%B>% KANJI1 TRUE

MN<AB>P %P KANJI1 TRUE

Chapter 13: Logical Predicates
LIKE

SQL Functions, Operators, Expressions, and Predicates 603

KanjiEUC Examples

The following examples indicate the behavior of LIKE with KanjiEUC strings using the
function (expression LIKE pattern_expression).

KanjiShift-JIS Examples

The following examples indicate the behavior of LIKE with KanjiShift-JIS strings using the
function (expression LIKE pattern_expression).

MN<AB>P %<__C>% KANJI1 FALSE

__ represents a FULLWIDTH UNDERSCORE.

expression pattern_expression Server Character Set Result

expression pattern_expression Server Character Set Result

ss3A ss2B ss3C ss2D % ss2B% UNICODE TRUE

M ss2B N ss2D M __% GRAPHIC TRUE

ss3A ss2B ss3C ss2D __% KANJISJIS TRUE

ss3A ss2B ss3C ss2D _ % KANJISJIS TRUE

__ represents a FULLWIDTH UNDERSCORE.

_ represents a SPACING UNDERSCORE.

expression pattern_expression
Server
Character Set ANSI Mode Result

Teradata Mode
Result

ABCD __B% GRAPHIC TRUE TRUE

mnABCI %B% UNICODE TRUE TRUE

mnABCI %I UNICODE TRUE TRUE

mnABCI mn_%I KANJI1 TRUE

The underscore in
pattern_expression
matches a single byte-
or multibyte character
in ANSI mode.

FALSE

The underscore in
pattern_expression
matches a single
byte character in
Teradata mode.

mnABCI mn__%I KANJI1 TRUE TRUE

__ represents a FULLWIDTH UNDERSCORE.

_ represents a SPACING UNDERSCORE.

Chapter 13: Logical Predicates
OVERLAPS

604 SQL Functions, Operators, Expressions, and Predicates

OVERLAPS

Purpose
Tests whether two time periods overlap one another.

Syntax

where:

ANSI Compliance

OVERLAPS is ANSI SQL:2008 compliant.

Time Periods

Each time period to the left and right of the OVERLAPS keyword is one of the following
expression types:

• DateTime, DateTime

• DateTime, Interval

• Row subquery

• Period

Each time period represents a start and end DateTime, using an explicit Period value,
DateTime values or a DateTime and an Interval.

Syntax element … Specifies …

datetime_expression a start and end DateTime.

interval_expression an end DateTime.

row_subquery an element of a row subquery in a SELECT statement.

The subquery cannot specify a SELECT AND CONSUME statement.

period_expression any expression that evaluates to a Period data type.

1101A612

datetime_expression, datetime_expression datetime_expression, datetime_expression(OVERLAPS

datetime_expression, interval_expression

) ()

period_expression period_expression

row_subquery

datetime_expression, interval_expression

row_subquery

Chapter 13: Logical Predicates
OVERLAPS

SQL Functions, Operators, Expressions, and Predicates 605

If the start and end DateTime values in a time period are not ordered chronologically, they are
manipulated to make them so prior to making the comparison, using the rule that
end_DateTime >= start_DateTime for all cases.

If a time period contains a null start_DateTime and a non-null end_DateTime, then the values
are switched to indicate a non-null start_DateTime and a null end_DateTime.

If both time periods have a Period data type, the data types must be comparable. If only one
time period is a Period type, the other time period must evaluate to a DateTime type that is
comparable to the element type of the Period.

Note: Implicit casting to a Period data type is not supported.

Results

Consider the general case of an OVERLAPS comparison, stated as follows.

(S1, E1) OVERLAPS (S2, E2)

The result of OVERLAPS is as follows.

(S1 > S2 AND NOT (S1 >= E2 AND E1 >= E2))
OR
(S2 > S1 AND NOT (S2 >= E1 AND E2 >= E1))
OR
(S1 = S2 AND (E1 = E2 OR E1 <> E2))

For Period data types, where p1 is the first Period expression and p2 is the second Period
expression, the values of S1, E1, S2, and E2 are as follows:

S1 = BEGIN(p1)
E1 = END(p1)
S2 = BEGIN(p2)
E2 = END(p2)

Rules

The following rules apply to the OVERLAPS comparison.

• When you specify two DateTime types, they must be comparable.

• When you specify two Period types, they must be comparable.

• If the first columns of each left and right time periods are DateTime types, they must have
the same data type: both DATE, both TIME, or both TIMESTAMP.

• If only one time period is a Period type, the first column of the other time period must
have the same data type as the element type of the Period.

• If neither time period is a Period type, then the second column of each left and right time
period must either be the same DateTime type as its corresponding first column (that is,
the two types must be compatible) or it must be an Interval type that involves only
DateTime fields where the precision is such that its value can be added to that of the
corresponding DateTime type.

Chapter 13: Logical Predicates
OVERLAPS

606 SQL Functions, Operators, Expressions, and Predicates

Example 1

The following example compares two time spans that share a single common point,
CURRENT_TIME.

The result returned is FALSE because when two time spans share a single point, they do not
overlap by definition.

SELECT 'OVERLAPS'
WHERE (CURRENT_TIME(0), INTERVAL '1' HOUR)
OVERLAPS (CURRENT_TIME(0), INTERVAL -'1' HOUR);

Example 2

The following example is nearly identical to the previous one, except that the arguments have
been adjusted to overlap by one second. The result is TRUE and the value ‘OVERLAPS’ is
returned.

SELECT 'OVERLAPS'
WHERE (CURRENT_TIME(0), INTERVAL '1' HOUR)
OVERLAPS (CURRENT_TIME(0) + INTERVAL '1' SECOND,INTERVAL -'1' HOUR);

Example 3

Here is an example that uses the datetime_expression, datetime_expression form of
OVERLAPS. The two DATE periods overlap each other, so the result is TRUE.

SELECT 'OVERLAPS'
WHERE (DATE '2000-01-15',DATE '2002-12-15')
OVERLAPS (DATE '2001-06-15',DATE '2005-06-15');

Example 4

The following example is the same as the previous one, but in row_subquery form:

SELECT 'OVERLAPS'
WHERE (SELECT DATE '2000-01-15', DATE '2002-12-15')
OVERLAPS (SELECT DATE '2001-06-15', DATE '2005-06-15');

Example 5

The null value in the following example means the second datetime_expression has a start time
of 2001-06-13 15:00:00 and a null end time.

SELECT 'OVERLAPS'
WHERE (TIMESTAMP '2001-06-12 10:00:00', TIMESTAMP '2001-06-15

08:00:00')
OVERLAPS (TIMESTAMP '2001-06-13 15:00:00', NULL);

Because the start time for the second expression falls within the TIMESTAMP interval defined
by the first expression, the result is TRUE.

Example 6

In the following example, the OVERLAPS predicate operates on PERIOD(DATE) columns.

SELECT * FROM employee WHERE period2 OVERLAPS period1;

Chapter 13: Logical Predicates
OVERLAPS

SQL Functions, Operators, Expressions, and Predicates 607

Assume the query is executed on the following table employee; where period1 and period2 are
PERIOD(DATE) columns:

The result is as follows:

Ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Jones ('2004-01-02', '2004-03-05') ('2004-03-05', '2004-10-07')

Randy ('2004-01-02', '2004-03-05') ('2004-03-07', '2004-10-07')

Simon ? ('2005-02-03', '2005-07-27')

Ename period1 period2

Adams ('2005-02-03', '2006-02-03') ('2005-02-03', '2006-02-03')

Mary ('2005-04-02', '2006-01-03') ('2005-02-03', '2006-02-03')

Chapter 13: Logical Predicates
Logical Operators and Search Conditions

608 SQL Functions, Operators, Expressions, and Predicates

Logical Operators and Search Conditions

Purpose

Specify the criteria for logically producing the result of a search condition.

Definition: Logical Operator

An operator applied to the result of a predicate to determine the result of a search condition.

The logical operators are:

• AND

• NOT

• OR

For example:

Use NOT to negate an expression, for example:

Definition: Search Condition

A search condition, or conditional expression, consists of one or more conditional terms
connected by one or more of the following logical predicates:

• Comparison operators

• [NOT] BETWEEN

• LIKE

• [NOT] IN

• ALL or ANY/SOME

• [NOT] EXISTS

• OVERLAPS

• IS [NOT] NULL

Where To Use Search Conditions

A search condition can be used in various SQL clauses such as WHERE, ON, QUALIFY,
RESET WHEN, or HAVING.

FF07D220

ORexpression_1 ORexpression_2 expression_3

FF07D221

AND NOTexpression_1 expression_2

Chapter 13: Logical Predicates
Logical Operators and Search Conditions

SQL Functions, Operators, Expressions, and Predicates 609

When used in a HAVING clause, a logical expression can be used with an aggregate operator.

For example, the following query uses a search condition in a HAVING clause to select from
the Employee table those departments with the number 100, 300, 500, or 600, and with a
salary average of at least $35,000 but not more than $55,000:

SELECT AVG(Salary)
FROM Employee
WHERE DeptNo IN (100,300,500,600)
GROUP BY DeptNo
HAVING AVG(Salary) BETWEEN 35000 AND 55000 ;

Rules for Order of Evaluation

The following rules apply to evaluation order for conditional expressions:

• If an expression contains more than one of the same operator, the evaluation precedence is
left to right.

• If an expression contains a combination of logical operators, the order of evaluation is as
follows:

• Parentheses can be used to establish the desired evaluation precedence.

• The logical expressions in a conditional expression are not always evaluated left to right.

Avoid using a conditional expression if its accuracy depends on the order in which its
logical expressions are evaluated.

For example, compare the following two expressions:

F2/(NULLIF(F1,0)) > 500
F1 <> 0 AND F2/F1 > 500

The first expression guarantees exclusion of division by zero.

The second allows the possibility of error, because the order of its evaluation determines
the exclusion of zeros.

Evaluation Results

Each logical expression in a conditional expression evaluates to one of three results:

• TRUE

• FALSE

• UNKNOWN

1 NOT

2 AND

3 OR

Chapter 13: Logical Predicates
Logical Operators and Search Conditions

610 SQL Functions, Operators, Expressions, and Predicates

AND Truth Table

The following table illustrates the AND logic used in evaluating search conditions.

OR Truth Table

The following table illustrates the OR logic used in evaluating search conditions.

NOT Truth Table

The following table illustrates the NOT logic used in evaluating search conditions.

Subquery Restrictions

Predicates in search conditions cannot specify SELECT AND CONSUME statements in
subqueries.

Examples of Logical Operators in Search Conditions

The following examples illustrate the use of logical operators in search conditions.

x FALSE x UNKNOWN x TRUE

y FALSE FALSE FALSE FALSE

y UNKNOWN FALSE UNKNOWN UNKNOWN

y TRUE FALSE UNKNOWN TRUE

x FALSE x UNKNOWN x TRUE

y FALSE FALSE UNKNOWN TRUE

y UNKNOWN UNKNOWN UNKNOWN TRUE

y TRUE TRUE TRUE TRUE

Result

x FALSE TRUE

x UNKNOWN UNKNOWN

x TRUE FALSE

Chapter 13: Logical Predicates
Logical Operators and Search Conditions

SQL Functions, Operators, Expressions, and Predicates 611

Example 1

The following example uses a search condition to select from a user table named Profile the
names of applicants who have either more than two years of experience or at least twelve years
of schooling with a high school diploma:

SELECT Name
FROM Profile
WHERE YrsExp > 2
OR (EdLev >= 12 AND Grad = 'Y') ;

Example 2

The following statement requests a list of all the employees who report to manager number
10007 or manager number 10012. The manager information is contained in the Department
table, while the employee information is contained in the Employee table. The request is
processed by joining the tables on DeptNo, their common column.

DeptNo must be fully qualified in every reference to avoid ambiguity and an extra set of
parentheses is needed to group the ORed IN conditions. Without them, the result is a
Cartesian product.

SELECT EmpNo,Name,JobTitle,Employee.DeptNo,Loc
FROM Employee,Department
WHERE (Employee.DeptNo=Department.DeptNo)
AND ((Employee.DeptNo IN
(SELECT Department.DeptNo
FROM Department
WHERE MgrNo=10007))
OR (Employee.DeptNo IN
(SELECT Department.DeptNo
FROM Department
WHERE MgrNo=10012))) ;

Assuming that the Department table contains the following rows:

DeptNo Department Loc MgrNo

100 Administration NYC 10005

600 Manufacturing CHI 10007

500 Engineering ATL 10012

300 Exec Office NYC 10018

700 Marketing NYC 10021

Chapter 13: Logical Predicates
Logical Operators and Search Conditions

612 SQL Functions, Operators, Expressions, and Predicates

The join statement returns:

EmpNo Name JobTitle DeptNo Loc

10012 Watson L Vice Pres 500 ATL

10004 Smith T Engineer 500 ATL

10014 Inglis C Tech Writer 500 ATL

10009 Marston A Secretary 500 ATL

10006 Kemper R Assembler 600 CHI

10015 Omura H Programmer 500 ATL

10007 Aguilar J Manager 600 CHI

10010 Reed C Technician 500 ATL

10013 Regan R Purchaser 600 CHI

10016 Carter J Engineer 500 ATL

10019 Newman P Test Tech 600 CHI

SQL Functions, Operators, Expressions, and Predicates 613

CHAPTER 14 Attribute Functions

This chapter describes SQL attribute functions.

Attribute Functions

Attribute functions return descriptive information about their operand. Except for the
DEFAULT function, the operand need not be a column reference; it can be a general
expression that is not evaluated mathematically.

When an attribute function is used in a request, the response returns one row for every data
row that meets the search condition.

Some of these functions are extensions to ANSI SQL.

For a list of data type attributes, see “Data Type Phrases” in SQL Data Types and Literals.

Each attribute function is described individually in the following topics.

ANSI Equivalence of Teradata Attribute Functions

Several of the Teradata attribute functions are extensions to the ANSI SQL:2008 standard.

To maintain ANSI compatibility, use the ANSI equivalent functions instead of Teradata
attribute functions, when available.

The following Teradata functions have no ANSI equivalents:

• BYTES

• FORMAT

• TYPE

Change this Teradata function … To this ANSI function in new applications …

CHARACTERS
CHARS
CHAR

CHARACTER_LENGTH

MCHARACTERS†

† This function is no longer documented because its use is deprecated and it will no longer be
supported after support for KANJI1 is dropped.

Chapter 14: Attribute Functions
BYTES

614 SQL Functions, Operators, Expressions, and Predicates

BYTES

Purpose
Returns the number of bytes contained in the specified byte string.

Syntax

where:

ANSI Compliance

BYTES is a Teradata extension to the ANSI SQL:2008 standard.

Argument Types

The data types of byte_expression are restricted to the following:

• BYTE, VARBYTE and BLOB

• UDT that has an implicit cast to a predefined byte type

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including BYTES, is
a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Length Includes Trailing Zeros

Because trailing double zero bytes are considered bytes, the length of the value in a fixed length
column is always equal to the length defined for the column.

The length of the value in a variable length column is always equal to the number of bytes,
including any trailing double zero bytes, contained in that value.

Syntax element … Specifies …

byte_expression the byte string for which the number of bytes is to be returned.

1101F174

BYTE (byte_expression

BYTES

(

Chapter 14: Attribute Functions
BYTES

SQL Functions, Operators, Expressions, and Predicates 615

If you do not want trailing blanks included in the byte count for a data value, use the TRIM
function on the argument to BYTES. For example:

SELECT BYTES(TRIM(TRAILING FROM byte_col)) FROM table1;

For more information on TRIM, see “TRIM” on page 549.

Example

The following statement applies the BYTES function to the BadgePic column, which is type
VARBYTE(32000), to obtain the number of bytes in each badge picture.

SELECT BadgePic, BYTES(BadgePic)
FROM Employee;

The result is as follows:

BadgePic Bytes(BadgePic)
-------------- ---------------
20003BA0 4
9A3243F805 5
EEFF08C3441900 7

Chapter 14: Attribute Functions
CHARACTER_LENGTH

616 SQL Functions, Operators, Expressions, and Predicates

CHARACTER_LENGTH

Purpose
Returns the length of a string either in logical characters or in bytes.

Syntax

where:

ANSI Compliance

CHARACTER_LENGTH is ANSI SQL:2008 compliant.

Usage Notes

CHARACTER_LENGTH is the ANSI form of the Teradata CHARACTERS function. Use
CHARACTER_LENGTH instead of CHARACTERS for ANSI SQL:2008 conformance.

Use CHARACTER_LENGTH in place of MCHARACTERS. (MCHARACTERS no longer
appears in this book because its use is deprecated and it will not be supported after support for
KANJI1 is dropped.)

Argument Types

The type of string_expression must be CHARACTER, VARCHAR, or CLOB. For non-
character data types, the function returns an error.

By default, Teradata Database performs implicit type conversion on a UDT argument that has
an implicit cast that casts between the UDT and a predefined character type.

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
CHARACTER_LENGTH, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

Syntax element … Specifies …

string_expression the string expression for which the length is to be returned.

FF07D088

CHARACTER_LENGTH (string_expression)
CHAR_LENGTH

Chapter 14: Attribute Functions
CHARACTER_LENGTH

SQL Functions, Operators, Expressions, and Predicates 617

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Result

For all server character sets except KANJI1, CHARACTER_LENGTH returns the length of
string_expression in characters.

For KANJI1, the following results are obtained.

Because trailing pad characters are considered characters, the length of the value in a
CHARACTER column is always equal to the length defined for the column.

The length of the value in a VARCHAR or CLOB column is always equal to the number of
characters, including any trailing pad characters, contained in that value.

Suppressing Trailing Pad Characters

To suppress trailing pad characters from the character count for a data value, use the TRIM
function on the argument to CHARACTER_LENGTH. For example:

SELECT CHARACTER_LENGTH(TRIM(TRAILING FROM Name))
FROM Employee;

Example

The following statement applies the CHARACTER_LENGTH function to the Name column,
which is type VARCHAR(30) CHARACTER SET LATIN, to obtain the number of characters
in each employee name:

SELECT Name, CHARACTER_LENGTH(Name)
FROM Employee;

FOR this client character set … CHARACTER_LENGTH returns …

KanjiEBCDIC the length of string_expression as the number of bytes.

A mix of single and multibyte characters is expected.

If any Shift-Out/Shift-In characters are present, they are included
in the result count.

KanjiEUC
KanjiShift-JIS

the length of string_expression as the number of logical
characters, based on the client session character set.

A mix of single and multibyte characters is expected.

ASCII
EBCDIC

the length of string_expression as the number of bytes.

Chapter 14: Attribute Functions
CHARACTER_LENGTH

618 SQL Functions, Operators, Expressions, and Predicates

The result is as follows (note that separator blanks are considered characters):

Name Character_Length(Name)
-------- ----------------------
Smith T 7
Newman P 8
Omura H 7

. .

Example Set 1: KanjiEBCDIC

Example Set 2: KanjiShift-JIS

Example Set 3: KanjiEUC

FOR this server character set … AND example … CHARACTER_LENGTH returns …

GRAPHIC ABC 3

KANJI1 De<MNP> 10

<><> 4

FOR this server character set … AND example … CHARACTER_LENGTH returns …

KANJI1 <><> 10

DeF 3

UNICODE ABC 3

GRAPHIC ABC 3

FOR this server character set … AND example … CHARACTER_LENGTH returns …

KANJI1 ss3Css3D 2

GRAPHIC 2

UNICODE <><> 0

dA ss2B ss3E 4

LATIN ABC 3

Chapter 14: Attribute Functions
CHARACTERS

SQL Functions, Operators, Expressions, and Predicates 619

CHARACTERS

Purpose
Returns an integer value representing the number of logical characters or bytes contained in
the specified operand string.

Syntax

where:

ANSI Compliance

CHARACTERS is a Teradata extension to the ANSI SQL-99standard.

Value Returned by CHARACTERS and Server Character Set

Because CHARACTERS returns the number of logical characters or bytes in string_expression,
the value differs depending on the server character set of string_expression. The following table
illustrates the differences among the various character sets for a CHARACTER(12) column.

Syntax element … Specifies …

string_expression a character (single byte, multibyte, mixed single byte and multibyte) string
for which the number of characters is to be returned.

The data types for string_expression are restricted to CHARACTER,
VARCHAR, and CLOB.

1101A488

string_expressionCHARACTERS ()

CHARS

CHAR

FOR this server character set … The length of string_expression …

• UNICODE

• LATIN

• GRAPHIC

is always 12.

Unicode, Latin, and Graphic are fixed width character types.

• KANJISJIS

• KANJI1

varies depending on the mix of characters (multibyte and single
byte) in the string.

KanjiSJIS and KANJI1 are variable width character sets.

Chapter 14: Attribute Functions
CHARACTERS

620 SQL Functions, Operators, Expressions, and Predicates

CHARACTER_LENGTH versus CHARACTERS

Use of the CHARACTERS function is deprecated. Instead, use the ANSI-equivalent
“CHARACTER_LENGTH.”

Chapter 14: Attribute Functions
DEFAULT

SQL Functions, Operators, Expressions, and Predicates 621

DEFAULT

Purpose
Returns the current default value for the specified or derived column.

Syntax

where:

ANSI Compliance

DEFAULT is partially ANSI SQL:2008 compliant.

The form of DEFAULT that specifies a column name is a Teradata extension. Using DEFAULT
in a predicate is also a Teradata extension.

Result Type and Attributes

The result type, format, and title for DEFAULT(x) appear in the following table.

For information on data type default formats, see “Data Type Formats and Format Phrases” in
SQL Data Types and Literals.

Result Value

The DEFAULT function returns the default value of the specified column or derived column
(if the column name is omitted).

If the specified or derived column is a view column or derived table column, the DEFAULT
function returns the default value of the underlying table column.

Syntax element … Specifies …

column_name the name of a column in a base table, view, queue table, or derived table.

The column name can be qualified or unqualified.

1101A394

DEFAULT
(column_name)

Data Type Format Title

Data type of the specified column Format of the specified column Default(x)

Chapter 14: Attribute Functions
DEFAULT

622 SQL Functions, Operators, Expressions, and Predicates

If the default value of a column evaluates to a system variable, for example when the default
value is CURRENT_TIME or USER, the DEFAULT function returns the value of the system
variable at the time the statement is executed.

DEFAULT returns null when any of the following conditions are true:

• The specified or derived column was defined with a DEFAULT NULL phrase

• The specified or derived column has no explicit default value

• The data type of the specified or derived column is UDT

• The specified or derived column is the name of a view column that is derived from a single
underlying table column that has no explicit default value

For an example, see “Example 3: Specifying a View Column Name” on page 624.

• The specified or derived column is the name of a view column that is not derived from a
single underlying table column, for example, the view column is derived from a constant
expression

Omitting the Column Name

You can use the form of DEFAULT that omits the column name under certain conditions in an
INSERT, UPDATE, or MERGE statement or in a predicate clause that involves a comparison
operation. The form of DEFAULT that omits the column name cannot be part of an
expression.

When the DEFAULT function does not specify a column name, Teradata Database derives the
column based on context. For example, consider the following table definition:

CREATE TABLE Manager
(Emp_ID INTEGER
,Dept_No INTEGER DEFAULT 99

);

The following INSERT statement uses DEFAULT without a column name to insert the default
value into the Dept_No column:

INSERT INTO Manager VALUES (103499, DEFAULT);

Using the DEFAULT function without specifying a column name can produce an error if
Teradata Database cannot derive the column context.

For an example that omits the column name when using the DEFAULT function in a predicate
clause that involves a comparison operation, see “Example 2: Using DEFAULT in a Predicate”
on page 623.

For details on using the DEFAULT function in INSERT, UPDATE, and MERGE statements, see
SQL Data Manipulation Language.

Using a Qualified Column Name

If you specify a qualified column name that includes the name of the table, you can use
DEFAULT in a SELECT statement that has no FROM clause. For example, you can use the
following statement to get the default value of the Dept_No column in the Manager table:

SELECT DEFAULT(Manager.Dept_No);

Chapter 14: Attribute Functions
DEFAULT

SQL Functions, Operators, Expressions, and Predicates 623

Restrictions

The DEFAULT function cannot be used as a partitioning expression for defining PPIs.

Error Conditions

Using the DEFAULT function can result in an error when any of the following conditions are
true:

• The column name is omitted and Teradata Database cannot derive the column context

• The DEFAULT function appears in a partitioning expression for defining PPIs

• The column name is omitted and the DEFAULT function appears in an expression that
does not support the DEFAULT function without a column name

• The DEFAULT function appears in an expression for which the result type is incompatible

For example, consider the following table definition:

CREATE TABLE Parts_Table
(Part_Code INTEGER DEFAULT 9999
,Part_Name CHAR(20)

);

The following statement results in an error because the result type of the DEFAULT
function is not compatible with the column to which the result is being compared:

SELECT * FROM Parts_Table WHERE Part_Name = DEFAULT(Part_Code);

Example 1: Inserting the Default Value Under Certain Conditions

Consider the following Employee table definition:

CREATE TABLE Employee
(Emp_ID INTEGER
,Last_Name VARCHAR(30)
,First_Name VARCHAR(30)
,Dept_No INTEGER DEFAULT 99

);

The following statement uses DEFAULT to insert the default value of the Dept_No column
when the supplied value is negative.

USING (id INTEGER, n1 VARCHAR(30), n2 VARCHAR(30), dept INTEGER)
INSERT INTO Employee VALUES

(:id
,:n1
,:n2
,CASE WHEN (:dept < 0) THEN DEFAULT(Dept_No) ELSE :dept END

);

Example 2: Using DEFAULT in a Predicate

The following statement uses DEFAULT to compare the values of the Dept_No column with
the default value of the Dept_No column. Because the comparison operation involves a single
column reference, Teradata Database can derive the column context of the DEFAULT function
even though the column name is omitted.

SELECT * FROM Employee WHERE Dept_No < DEFAULT;

Chapter 14: Attribute Functions
DEFAULT

624 SQL Functions, Operators, Expressions, and Predicates

Note that if the DEFAULT function evaluates to null, the predicate is unknown and the
WHERE condition is false.

Example 3: Specifying a View Column Name

Consider the DBC.HostsInfo system view, which has the following definition:

REPLACE VIEW DBC.HostsInfo (LogicalHostId, HostName, DefaultCharSet)
AS SELECT

LogicalHostId
,HostName
,DefaultCharSet

FROM DBC.Hosts WITH CHECK OPTION;

The underlying table, DBC.Hosts, has the following definition:

CREATE SET TABLE DBC.Hosts, FALLBACK, NO BEFORE JOURNAL,
NO AFTER JOURNAL, CHECKSUM = DEFAULT

(LogicalHostId SMALLINT FORMAT 'ZZZ9' NOT NULL
,HostName VARCHAR(128) CHARACTER SET UNICODE NOT CASESPECIFIC NOT

NULL
,DefaultCharSet VARCHAR(128) CHARACTER SET UNICODE NOT

CASESPECIFIC
NOT NULL)

UNIQUE PRIMARY INDEX (LogicalHostId)
UNIQUE INDEX (HostName);

The following statement uses the DEFAULT function with the DBC.HostsInfo.HostName
view column name:

SELECT DISTINCT DEFAULT(HostName) FROM DBC.HostsInfo;

The result of the DEFAULT function is null because the HostName view column is derived
from a table column that has no explicit default value.

Related Topics

For information on … See …

using predicates Chapter 13: “Logical Predicates.”

comparison operations in predicates Chapter 5: “Comparison Operators.”

the DEFAULT value control phrase SQL Data Types and Literals.

INSERT, UPDATE, and MERGE statements SQL Data Manipulation Language.

Chapter 14: Attribute Functions
FORMAT

SQL Functions, Operators, Expressions, and Predicates 625

FORMAT

Purpose
Returns the declared format for the named expression.

Syntax

where:

ANSI Compliance

FORMAT is a Teradata extension to the ANSI SQL:2008 standard.

Result Type

FORMAT returns a CHAR(n) character string of up to 30 characters.

Example

The following statement requests the format of the Salary column in the Employee table.

SELECT FORMAT(Employee.Salary);

The result is the following.

Format(Salary)

ZZZ,ZZ9.99

Syntax element … Specifies …

expression the expression for which the FORMAT is to be reported.

1101A489

column_nameFORMAT ()

Chapter 14: Attribute Functions
OCTET_LENGTH

626 SQL Functions, Operators, Expressions, and Predicates

OCTET_LENGTH

Purpose
Returns the length of string_expression in octets when it is converted to the named character
set (taking the export width value into consideration).

Syntax

where:

ANSI Compliance

OCTET_LENGTH is ANSI SQL:2008 compliant.

Argument Types

The data type of string_expression must be one of the following:

• CHARACTER or VARCHAR

• UDT that has an implicit cast to a predefined character type

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
OCTET_LENGTH, is a Teradata extension to the ANSI SQL standard. To disable this
extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to
TRUE. For details, see Utilities.

For more information on implicit type conversion of UDTs, see Chapter 20: “Data Type
Conversions.”

Syntax element … Specifies …

string_expression the character string for which the number of octets is required.

character_set_name the character set in which the result is to be returned. If character_set_name is
not provided, the session character set is assumed.

See the list of Teradata-provided character sets in the table on “Usage Notes”
on page 627.

1101A513

OCTET_LENGTH string_expression()

, character_set_name

Chapter 14: Attribute Functions
OCTET_LENGTH

SQL Functions, Operators, Expressions, and Predicates 627

Usage Notes

Any Shift-Out/Shift-In and trailing GRAPHIC pad characters are included in the result count.

OCTET_LENGTH operates in the same manner in both Teradata and ANSI modes.

The following table lists the client character sets shipped with Teradata. Although these
character sets are shipped with the system, your system administrator must install them
individually to become available for use.

Your site might also have site-defined character sets. Check with your system administrator for
a complete list of character sets available at your site.

IF string_expression is … THEN …

of type KANJI1 the result is independent of character_set_name.

not CHARACTER data an error is generated.

Character Sets Where Found

• ASCII

• EBCDIC

• UTF8

• UTF16

Built-in

• ARABIC1256_6A0 a

• CYRILLIC1251_2A0 a

• EBCDIC037_0E

• EBCDIC273_0E

• EBCDIC277_0E

• HANGUL949_7R0 a

• HANGULEBCDIC933_1II

• HANGULKSC5601_2R4

• HEBREW1255_5A0 a

• KANJI932_1S0 a

• KANJIEBCDIC5026_0I

• KANJIEBCDIC5035_0I

• KANJIEUC_0U

• KANJISJIS_0S

• KATAKANAEBCDIC

a. Windows code page compatible session character set

• LATIN1250_1A0 a

• LATIN1252_0A

• LATIN1252_3A0 a

• LATIN1254_7A0 a

• LATIN1258_8A0 a

• LATIN1_0A

• LATIN9_0A

• SCHEBCDIC935_2IJ

• SCHGB2312_1T0

• SCHINESE936_6R0 a

• TCHBIG5_1R0

• TCHEBCDIC937_3IB

• TCHINESE950_8R0 a

• THAI874_4A0 a

DBC.CharTranslationsV

Chapter 14: Attribute Functions
OCTET_LENGTH

628 SQL Functions, Operators, Expressions, and Predicates

Examples

Examples of output from OCTET_LENGTH appear in the following table.

Client Character Set Server Character Set string_expression Result

EBCDIC LATIN abcdefgh 8

ASCII KANJI1 abcdefgh 8

KanjiEBCDIC KANJI1 AB<CDE>P 11

KanjiEBCDIC GRAPHIC MNOP 8 (record mode)

10 (field mode)

KanjiEUC KANJISJIS dA ss2B ss3E 8

KanjiShift-JIS KANJISJIS DeF 5

KanjiShift-JIS UNICODE ABC 6

Chapter 14: Attribute Functions
TITLE

SQL Functions, Operators, Expressions, and Predicates 629

TITLE

Purpose
Returns the title of an expression as it would appear in the heading for displayed or printed
results.

Syntax

where:

ANSI Compliance

TITLE is a Teradata extension to the ANSI SQL:2008 standard.

Result Type

TITLE returns a CHAR(n) character string of up to 60 characters.

Usage Notes

Use the TITLE phrase to change the heading for displayed or printed results that is different
from the column name, which is the default heading.

For more information, see SQL Data Types and Literals.

Example

The following statement requests the title of the Salary column in the Employee table.

SELECT TITLE(Employee.Salary);

The result is the following.

Title(Salary)
--
Salary

Syntax element … Specifies …

expression the expression for which the title is to be returned.

 1101B039

TITLE)expression(

Chapter 14: Attribute Functions
TYPE

630 SQL Functions, Operators, Expressions, and Predicates

TYPE

Purpose
Returns the data type defined for an expression.

Syntax

where:

ANSI Compliance

TYPE is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Value

TYPE returns a CHAR(n) character string that contains the name of the data type of the
expression.

For a list of the supported data types, see SQL Data Types and Literals. For information on
geospatial types, see SQL Geospatial Types.

When the argument is a function or operation, TYPE returns a character string that contains
the result type of the function or operation. For rules on the result type for an operation or
function, refer to the documentation for the specific function or operation.

Character Type Arguments

If the server character set for a character type argument is different from the user default
server character set, then the resulting character string also contains the CHARACTER SET
phrase and the name of the server character set for the argument.

For examples, see “Example 1” and “Example 2” on page 631.

Example 1

Consider the Name column in the following table definition:

CREATE TABLE Employee
(EmployeeID INTEGER
,Name CHARACTER(30) CHARACTER SET LATIN

Syntax element … Specifies …

expression the expression for which the data type is to be returned.

1101A491

expressionTYPE ()

Chapter 14: Attribute Functions
TYPE

SQL Functions, Operators, Expressions, and Predicates 631

,Salary DECIMAL(8,2));

If the user default server character set is LATIN, then the character string that TYPE returns
for the Name column does not contain the CHARACTER SET phrase.

SELECT TYPE(Employee.Name);

Type(Name)

CHAR(30)

Example 2

If the user default server character set is LATIN, but the server character set for the Name
column is UNICODE, then the result string contains the CHARACTER SET phrase.

CREATE TABLE Employee
(EmployeeID INTEGER
,Name VARCHAR(30) CHARACTER SET UNICODE
,Salary DECIMAL(8,2));

SELECT TYPE(Employee.Name);

Type(Name)

VARCHAR(30) CHARACTER SET UNICODE

Example 3

The following statement returns the types of the Name and Salary columns:

SELECT TYPE(Employee.Name), TYPE(Employee.Salary);

Type(Name) Type(Salary)
----------- ------------
VARCHAR(30) DECIMAL(8,2)

Example 4

If TYPE is used to request the data type of two columns, defined as GRAPHIC and LONG
VARGRAPHIC, respectively, the result is as follows.

TYPE(GColName) TYPE(LVGColName)
----------------------------- ------------------------------------
CHAR(4) CHARACTER SET GRAPHIC VARCHAR(32000) CHARACTER SET GRAPHIC

In the case of a LONG VARGRAPHIC column, the length returned is the maximum length of
32000.

Example 5

Consider the following TYPE function.

SELECT TYPE(SUBSTR(Employee.Name,3,2));

The result type of SUBSTR depends on the session mode.

Chapter 14: Attribute Functions
TYPE

632 SQL Functions, Operators, Expressions, and Predicates

If the session is set to ANSI mode, the returned result is as follows:

Type(Substr(Name,3,2))

VARCHAR(30)

If the session is set to Teradata mode, the returned result is as follows:

Type(Substr(Name,3,2))

VARCHAR(2)

Example 6

Consider the following table definition:

CREATE TABLE images
(imageid INTEGER
,imagedesc VARCHAR(50)
,image BLOB(2K))

UNIQUE PRIMARY INDEX (imageid);

The following statement applies the TYPE function to the BLOB column:

SELECT TYPE(images.image) FROM images;

The result is:

Type(image)

BLOB(2048)

Note that the result is a normal integer length, and does not use the K option that was used to
define the BLOB column the CREATE TABLE statement.

SQL Functions, Operators, Expressions, and Predicates 633

CHAPTER 15 Hash-Related Functions

Hash-related functions return information about the:

• Primary or fallback AMP that corresponds to a given hash bucket number

• Hash bucket number that corresponds to a given row hash value

• Row hash value for the primary index of a row

• Highest AMP number

• Highest hash bucket number

• Maximum value that can be generated by applying the hash function to an unsigned
integer

Features

Use the hash-related functions to identify the statistical properties of the current primary
index or secondary index, or to evaluate these properties for other columns to determine their
suitability as a future primary index or secondary index. The statistics can help you to
minimize hash synonyms and enhance the uniformity of data distribution.

Chapter 15: Hash-Related Functions
HASHAMP

634 SQL Functions, Operators, Expressions, and Predicates

HASHAMP

Purpose
Returns the identification number of the primary AMP corresponding to the specified hash
bucket number. If no hash bucket number is specified, HASHAMP returns one less than the
maximum number of AMPs in the system.

Syntax

where:

ANSI Compliance

HASHAMP is a Teradata extension to the ANSI SQL:2008 standard.

Argument Type and Value

The expression argument must evaluate to INTEGER data type where the valid range of values
depends on the system setting for the hash bucket size.

For information on how to specify the system setting for the hash bucket size, see “DBS
Control utility” in Utilities.

If expression cannot be implicitly converted to an INTEGER, an error is reported.

Syntax element … Specifies …

expression an optional expression that evaluates to a valid hash bucket number.

For information on obtaining a hash bucket number that you can use for
expression, see “HASHBUCKET” on page 640.

HH01A027

HASHAMP (

expression

)

IF the hash bucket size is … THEN the range of values for expression is …

16 bits 0 to 65535.

20 bits 0 to 1048575.

Chapter 15: Hash-Related Functions
HASHAMP

SQL Functions, Operators, Expressions, and Predicates 635

If expression results in a UDT, Teradata Database performs implicit type conversion on the
UDT, provided that the UDT has an implicit cast that casts between the UDT and any of the
following predefined types:

• Numeric

• Character

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including HASHAMP,
is a Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details,
see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Result

For information on the hash map that defines the relationship between hash buckets and
primary AMPs, see “Reconfiguration utility” in the Utilities book.

Examples

The following examples assume a table T with columns column_1, column_2, and an
INTEGER column B populated with integer numbers from zero to the maximum number of
hash buckets on the system.

CREATE TABLE T
(column_1 INTEGER
,column_2 INTEGER
,B INTEGER)

UNIQUE PRIMARY INDEX (column_1, column_2);

IF expression … THEN …

evaluates to a valid
hash bucket number

HASHAMP determines the primary AMP corresponding to the hash
bucket and returns the AMP identification number.

The result is an INTEGER value that is greater than or equal to zero and
less than the maximum number of AMPs in the configuration.

does not appear in the
argument list

HASHAMP returns an INTEGER value that is one less than the
maximum number of AMPs in the system.

evaluates to NULL HASHAMP returns NULL.

Chapter 15: Hash-Related Functions
HASHAMP

636 SQL Functions, Operators, Expressions, and Predicates

Example 1

If you call HASHAMP without an argument, it returns one less than the maximum number of
AMPs on the system.

SELECT HASHAMP();

Example 2

If you call HASHAMP with an argument of NULL, it returns NULL.

SELECT HASHAMP(NULL);

Example 3

The following query returns the distribution of the hash buckets among the primary AMPs.

SELECT B, HASHAMP (B)
FROM T
ORDER BY 1;

Example 4

The following query returns the number of rows on each primary AMP where column_1 and
column_2 are to be the primary index of table T.

SELECT HASHAMP (HASHBUCKET (HASHROW (column_1,column_2))), COUNT (*)
FROM T
GROUP BY 1
ORDER BY 1;

Chapter 15: Hash-Related Functions
HASHBAKAMP

SQL Functions, Operators, Expressions, and Predicates 637

HASHBAKAMP

Purpose
Returns the identification number of the fallback AMP corresponding to the specified hash
bucket. If no hash bucket is specified, HASHBAKAMP returns one less than the maximum
number of AMPs in the system.

Syntax

where:

ANSI Compliance

HASHBAKAMP is a Teradata extension to the ANSI SQL:2008 standard.

Argument Type and Value

The expression argument must evaluate to INTEGER data type where the valid range of values
depends on the system setting for the hash bucket size.

For information on how to specify the system setting for the hash bucket size, see “DBS
Control utility” in Utilities.

If expression cannot be implicitly converted to an INTEGER, an error is reported.

Syntax element … Specifies …

expression an optional expression that evaluates to a valid hash bucket number.

For information on obtaining a hash bucket number that you can use for
expression, see “HASHBUCKET” on page 640.

HH01A028

HASHBAKAMP (

expression

)

IF the hash bucket size is … THEN the range of values for expression is …

16 bits 0 to 65535.

20 bits 0 to 1048575.

Chapter 15: Hash-Related Functions
HASHBAKAMP

638 SQL Functions, Operators, Expressions, and Predicates

If expression results in a UDT, Teradata Database performs implicit type conversion on the
UDT, provided that the UDT has an implicit cast that casts between the UDT and any of the
following predefined types:

• Numeric

• Character

• DATE

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition
Language.

Implicit type conversion of UDTs for system operators and functions, including
HASHBAKAMP, is a Teradata extension to the ANSI SQL standard. To disable this extension,
set the DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For
details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data Type Conversions.”

Result

For information on the hash map that defines the relationship between hash buckets and
fallback AMPs, see “Reconfiguration utility” in the Utilities book.

Examples

The following examples assume a table T with an INTEGER column B populated with integer
numbers from zero to the maximum number of hash buckets on the system.

Example 1

If you call HASHBAKAMP without an argument, it returns one less than the maximum
number of AMPs on the system.

SELECT HASHBAKAMP();

IF expression … THEN …

does not appear in the
argument list

HASHBAKAMP returns an INTEGER value that is one less than the
maximum number of AMPs in the system.

evaluates to NULL HASHBAKAMP returns NULL.

evaluates to a valid
hash bucket number

HASHBAKAMP determines the fallback AMP corresponding to the hash
bucket and returns the identification number of the AMP.

The result is an INTEGER value that is greater than or equal to zero and
less than the maximum number of AMPs in the configuration.

Chapter 15: Hash-Related Functions
HASHBAKAMP

SQL Functions, Operators, Expressions, and Predicates 639

Example 2

If you call a HASHBAKAMP function with an argument of NULL, the function returns
NULL.

SELECT HASHBAKAMP(NULL);

Example 3

This query returns the distribution of the hash buckets among the fallback AMPs.

SELECT B, HASHBAKAMP (B)
FROM T
ORDER BY 1;

Chapter 15: Hash-Related Functions
HASHBUCKET

640 SQL Functions, Operators, Expressions, and Predicates

HASHBUCKET

Purpose

Returns the hash bucket number that corresponds to a specified row hash value. If no row
hash value is specified, HASHBUCKET returns the highest hash bucket number.

Syntax

where:

ANSI Compliance

HASHBUCKET is a Teradata extension to the ANSI SQL:2008 standard.

Result

HASHBUCKET returns an INTEGER data type.

Syntax element … Specifies …

expression an optional expression that evaluates to a valid BYTE(4) row hash value.

If expression results in a UDT, Teradata Database performs implicit type
conversion on the UDT, provided that the UDT has an implicit cast to a
predefined byte type.

To define an implicit cast for a UDT, use the CREATE CAST statement and
specify the AS ASSIGNMENT clause. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit type conversion of UDTs for system operators and functions,
including HASHBUCKET, is a Teradata extension to the ANSI SQL standard.
To disable this extension, set the DisableUDTImplCastForSysFuncOp field of
the DBS Control Record to TRUE. For details, see Utilities.

For more information on implicit type conversion, see Chapter 20: “Data
Type Conversions.”

For information on obtaining a row hash value that you can use for expression,
see “HASHROW” on page 643.

HH01A026

HASHBUCKET (

expression

)

Chapter 15: Hash-Related Functions
HASHBUCKET

SQL Functions, Operators, Expressions, and Predicates 641

Using HASHBUCKET to Convert a BYTE Type to an INTEGER Type

When a byte data type is the source type of a conversion using CAST syntax or Teradata
Conversion syntax, the target data type must also be a byte type.

To convert a BYTE(1) or BYTE(2) data type to INTEGER, you can use the HASHBUCKET
function.

Consider the following table definition:

CREATE TABLE ByteData(b1 BYTE(1), b2 BYTE(2));

To convert column b1 to INTEGER regardless of the system setting of the hash bucket size, use
the following:

SELECT HASHBUCKET('00'XB || b1 (BYTE(4))) / ((HASHBUCKET()+1)/65536)
FROM ByteData;

To convert column b2 to INTEGER regardless of the system setting of the hash bucket size, use
the following:

SELECT HASHBUCKET(b2 (BYTE(4))) / ((HASHBUCKET()+1)/65536)
FROM ByteData;

Examples

The following examples assume a table T with columns C1 and C2 and possibly other
columns.

Example 1

If you call HASHBUCKET without an argument, it returns the maximum hash bucket.

SELECT HASHBUCKET();

IF expression … THEN …

does not appear in the
argument list

HASHBUCKET returns an INTEGER value that is the highest hash
bucket number.

evaluates to NULL HASHBUCKET returns NULL.

evaluates to a valid
BYTE(4) row hash value

HASHBUCKET returns the hash bucket number corresponding to the
row hash value.

The range of values for hash bucket numbers depends on the system
setting of the hash bucket size.

IF the hash bucket size is … THEN hash bucket numbers can have
a value from …

16 bits 0 to 65535.

20 bits 0 to 1048575.

Chapter 15: Hash-Related Functions
HASHBUCKET

642 SQL Functions, Operators, Expressions, and Predicates

Example 2

If you call a HASHBUCKET function with an argument of NULL, the function returns NULL.

SELECT HASHBUCKET(NULL);

Example 3

Building on the previous example, you can nest a call to HASHROW within a HASHBUCKET
call.

Calling HASHBUCKET (HASHROW (NULL)) returns the 0 hash bucket.

SELECT HASHBUCKET(HASHROW(NULL));

Example 4

The following example returns the number of rows in each hash bucket where C1 and C2 are
to be the primary index of T.

SELECT HASHBUCKET (HASHROW (C1,C2)), COUNT (*)
FROM T
GROUP BY 1
ORDER BY 1;

Example 5

The results of the following example lists each hash bucket that has one or more rows and its
corresponding primary AMP.

SELECT HASHAMP (HASHBUCKET (HASHROW (C1, C2))),
HASHBUCKET (HASHROW (C1,C2))
FROM T
GROUP BY 1,2
ORDER BY 1,2 ;

Chapter 15: Hash-Related Functions
HASHROW

SQL Functions, Operators, Expressions, and Predicates 643

HASHROW

Purpose
Returns the hexadecimal row hash value for an expression or sequence of expressions. If no
expression is specified, HASHROW returns the maximum hash code value.

Syntax

where:

ANSI Compliance

HASHROW is a Teradata extension to the ANSI SQL:2008 standard.

Result

The resulting row hash value is typed BYTE(4).

Syntax element … Specifies …

expression an optional expression or comma-separated list of expressions that can appear
in the expression list of the select clause of a SELECT statement; typically a
comma-separated list of column names that make up a (potential) index.

HASHROW does not support expressions that result in UDT data types.

1101B026

HASHROW
,

(

expression

)

IF the argument list is … THEN HASHROW …

empty returns the maximum hash code value.

an expression that evaluates to NULL returns '00000000'XB.

a list of expressions where all the expressions evaluate to
NULL

an expression that evaluates to 0, '', ' ', or a similar value

a valid, non-NULL expression that can appear in the
select list of a SELECT statement

evaluates expression or the list of
expressions and applies the hash function
on the result. HASHROW returns the
resulting row hash value.a list of expressions that can appear in the select list of a

SELECT statement, where some expressions can
evaluate to NULL

Chapter 15: Hash-Related Functions
HASHROW

644 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

HASHROW is particularly useful for identifying the statistical properties of the current
primary index, or to evaluate these properties for other columns to determine their suitability
as a future primary index. You can also use these statistics to help minimize hash synonyms
and enhance the uniformity of data distribution.

There are a maximum of 4,294,967,295 hash codes available in the system, ranging from
'00000000'XB to 'FFFFFFFF'XB.

You can embed a HASHROW call within a HASHBUCKET call. For information on
HASHBUCKET, see “HASHBUCKET” on page 640.

Example 1

If you call HASHROW without an argument, it returns 'FFFFFFFF'XB, which is the maximum
hash code in the system.

SELECT HASHROW();

Example 2

The following example returns the average number of rows per row hash, where columns
date_field and time_field constitute the primary index of the table eventlog.

SELECT COUNT(*) / COUNT(DISTINCT HASHROW (date_field,time_field))
FROM eventlog;

If columns date_field and time_field qualify for a unique index, this example returns the
average number of rows with the same hash synonym.

Example 3

The following example evaluates the efficiency of changing the decimal format of a numeric
field to eliminate synonyms.

Assume that column_1 and column_2 are declared as DECIMAL(2,2).

You can determine the effect of reformatting the columns to DECIMAL(8,6) and
DECIMAL(8,4) on hash collisions by submitting these two queries.

SELECT COUNT (DISTINCT column_1(DECIMAL(8,6)) ||
column_2(DECIMAL(8,4))
FROM T;

SELECT COUNT (DISTINCT HASHROW (column_1(DECIMAL(8,6)),
column_2 (DECIMAL(8,4)))
FROM T;

If the result of the second query is significantly less than the result of the first query, there are a
significant number of hash collisions. That is, the closer the second result is to the first value
indicates elimination of more hash synonyms.

SQL Functions, Operators, Expressions, and Predicates 645

CHAPTER 16 Compression/Decompression
Functions

This chapter describes the functions that you can use with Algorithmic Compression (ALC) to
compress and decompress column data of character or byte type. Compression of data
reduces space usage and may improve performance by reducing the amount of I/O required.

For a detailed comparison between the compression functions and guidelines for choosing a
compression function, see “Reducing Space Usage with Data Compression” in Database
Administration.

If the compression and decompression functions described in this chapter are not optimal for
your data, you can write your own user-defined functions (UDFs) to compress and
decompress table columns.

Prerequisites
The functions in this chapter are domain-specific functions; therefore, before you can use
these functions, you must run the Database Initialization Program (DIP) utility and execute
the DIPALL or DIPUDT script. For details, see “Activating Domain-specific Functions” on
page 20.

Related Topics

FOR more information on... SEE...

ALC • “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

• “CREATE TABLE” in SQL Data Definition
Language.

writing UDFs for ALC • “Defining Functions for Algorithmic Compression”
in SQL External Routine Programming.

• “CREATE TABLE” in SQL Data Definition
Language.

compression methods supported by
Teradata Database and a comparison of
the various methods

“Reducing Space Usage with Data Compression” in
Database Administration.

Chapter 16: Compression/Decompression Functions
CAMSET

646 SQL Functions, Operators, Expressions, and Predicates

CAMSET

Purpose
Compresses the specified Unicode character data into the following possible values using a
proprietary Teradata algorithm:

• partial byte values (for example, 4-bit digits or 5-bit alphabetic letters)

• one byte values (for example, other Latin characters)

• two byte values (for example, other Unicode characters)

Syntax

where:

ANSI Compliance

CAMSET is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

CAMSET is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARCHAR(n) CHARACTER SET

UNICODE, where the maximum supported size (n) is 32000. You can also pass arguments with
data types that can be converted to VARCHAR(32000) CHARACTER SET UNICODE using
the implicit data type conversion rules that apply to UDFs. For example, CAMSET(CHAR) is
allowed because it can be implicitly converted to CAMSET(VARCHAR).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
VARCHAR following the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in SQL External Routine Programming.

Syntax element… Specifies…

Unicode_string a Unicode character string or string expression.

1101A781

TD_SYSFNLIB.
CAMSET (Unicode_string)

Chapter 16: Compression/Decompression Functions
CAMSET

SQL Functions, Operators, Expressions, and Predicates 647

The input to this function must be Unicode character data.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARBYTE(64000).

Usage Notes

Uncompressed character data in Teradata Database requires two bytes per character when
storing Unicode data. CAMSET takes Unicode character input, compresses it into partial byte,
one byte, or two byte values, and returns the compressed result.

CAMSET provides best results for short or medium Unicode strings that:

• contain mainly digits and English alphabet letters.

• do not frequently switch between:

• lowercase and uppercase letters.

• digits and letters.

• Latin and non-Latin characters.

For a detailed comparison between the Teradata-supplied compression functions and
guidelines for choosing a compression function, see Database Administration.

Although you can call the function directly, CAMSET is normally used with Algorithmic
Compression (ALC) to compress table columns. If CAMSET is used with ALC, nulls are also
compressed if those columns are nullable.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Restrictions

CAMSET currently can only compress Unicode characters from U+0000 to U+00FF.

Decompressing Data Compressed with CAMSET

To decompress Unicode data that was compressed using CAMSET, use the DECAMSET
function. See “DECAMSET” on page 652.

Example 1

In this example, the Unicode values in the Description column are compressed using the
CAMSET function with ALC. The DECAMSET function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET UNICODE,
Description VARCHAR(1000) CHARACTER SET UNICODE

COMPRESS USING TD_SYSFNLIB.CAMSET

Chapter 16: Compression/Decompression Functions
CAMSET

648 SQL Functions, Operators, Expressions, and Predicates

DECOMPRESS USING TD_SYSFNLIB.DECAMSET);

Example 2

Given the following table definition:

CREATE TABLE Pendants
(ItemNo INTEGER,
Description VARCHAR(100) CHARACTER SET UNICODE);

The following query returns the compressed values of the Description column.

SELECT TD_SYSFNLIB.CAMSET(Pendants.Description);

Chapter 16: Compression/Decompression Functions
CAMSET_L

SQL Functions, Operators, Expressions, and Predicates 649

CAMSET_L

Purpose
Compresses the specified Latin character data into the following possible values using a
proprietary Teradata algorithm:

• partial byte values (for example, 4-bit digits or 5-bit alphabetic letters)

• one byte values (for example, other Latin characters)

Syntax

where:

ANSI Compliance

CAMSET_L is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

CAMSET_L is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARCHAR(n) CHARACTER SET

LATIN, where the maximum supported size (n) is 64000. You can also pass arguments with
data types that can be converted to VARCHAR(64000) CHARACTER SET LATIN using the
implicit data type conversion rules that apply to UDFs. For example, CAMSET_L(CHAR) is
allowed because it can be implicitly converted to CAMSET_L(VARCHAR).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
VARCHAR following the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in SQL External Routine Programming.

Syntax element… Specifies…

Latin_string a Latin character string or string expression.

1101A782

TD_SYSFNLIB.
CAMSET_L (Latin_string)

Chapter 16: Compression/Decompression Functions
CAMSET_L

650 SQL Functions, Operators, Expressions, and Predicates

The input to this function must be Latin character data.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARBYTE(64000).

Usage Notes

Uncompressed character data in Teradata Database requires one byte per character when
storing Latin character data. CAMSET_L takes Latin character input, compresses it into
partial byte or one byte values, and returns the compressed result.

CAMSET_L provides best results for short or medium Latin strings that:

• contain mainly digits and English alphabet letters.

• do not frequently switch between:

• lowercase and uppercase letters.

• digits and letters.

For a detailed comparison between the Teradata-supplied compression functions and
guidelines for choosing a compression function, see Database Administration.

Although you can call the function directly, CAMSET_L is normally used with Algorithmic
Compression (ALC) to compress table columns. If CAMSET_L is used with ALC, nulls are
also compressed if those columns are nullable.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Decompressing Data Compressed with CAMSET_L

To decompress Latin character data that was compressed using CAMSET_L, use the
DECAMSET_L function. See “DECAMSET_L” on page 654.

Example 1

In this example, the Latin values in the Description column are compressed using the
CAMSET_L function with ALC. The DECAMSET_L function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET LATIN,
Description VARCHAR(1000) CHARACTER SET LATIN

COMPRESS USING TD_SYSFNLIB.CAMSET_L
DECOMPRESS USING TD_SYSFNLIB.DECAMSET_L);

Example 2

Given the following table definition:

Chapter 16: Compression/Decompression Functions
CAMSET_L

SQL Functions, Operators, Expressions, and Predicates 651

CREATE TABLE Pendants
(ItemNo INTEGER,
Description VARCHAR(100) CHARACTER SET LATIN);

The following query returns the compressed values of the Description column.

SELECT TD_SYSFNLIB.CAMSET_L(Pendants.Description);

Chapter 16: Compression/Decompression Functions
DECAMSET

652 SQL Functions, Operators, Expressions, and Predicates

DECAMSET

Purpose
Decompresses the Unicode data that was compressed using the CAMSET function.

Syntax

where:

ANSI Compliance

DECAMSET is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

DECAMSET is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARBYTE(n), where the maximum
supported size (n) is 64000.

The input to this function must be the output result of the CAMSET function.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARCHAR(32000) CHARACTER SET UNICODE.

Usage Notes

DECAMSET takes Unicode data that was compressed using the CAMSET function,
decompresses it, and returns an uncompressed Unicode character string as the result.

Syntax element… Specifies…

compressed_string Unicode character data that was compressed using the CAMSET
function.

1101A784

TD_SYSFNLIB.
DECAMSET (compressed_string)

Chapter 16: Compression/Decompression Functions
DECAMSET

SQL Functions, Operators, Expressions, and Predicates 653

Although you can call the function directly, DECAMSET is normally used with Algorithmic
Compression (ALC) to decompress table columns previously compressed with CAMSET.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Example

In this example, the Unicode values in the Description column are compressed using the
CAMSET function with ALC. The DECAMSET function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET UNICODE,
Description VARCHAR(1000) CHARACTER SET UNICODE

COMPRESS USING TD_SYSFNLIB.CAMSET
DECOMPRESS USING TD_SYSFNLIB.DECAMSET);

Chapter 16: Compression/Decompression Functions
DECAMSET_L

654 SQL Functions, Operators, Expressions, and Predicates

DECAMSET_L

Purpose
Decompresses the Latin data that was compressed using the CAMSET_L function.

Syntax

where:

ANSI Compliance

DECAMSET_L is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

DECAMSET_L is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARBYTE(n), where the maximum
supported size (n) is 64000.

The input to this function must be the output result of the CAMSET_L function.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARCHAR(64000) CHARACTER SET LATIN.

Usage Notes

DECAMSET_L takes Latin data that was compressed using the CAMSET_L function,
decompresses it, and returns an uncompressed Latin character string as the result.

Syntax element… Specifies…

compressed_string Latin character data that was compressed using the CAMSET_L
function.

1101A783

TD_SYSFNLIB.
DECAMSET_L (compressed_string)

Chapter 16: Compression/Decompression Functions
DECAMSET_L

SQL Functions, Operators, Expressions, and Predicates 655

Although you can call the function directly, DECAMSET_L is normally used with Algorithmic
Compression (ALC) to decompress table columns previously compressed with CAMSET_L.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Example

In this example, the Latin values in the Description column are compressed using the
CAMSET_L function with ALC. The DECAMSET_L function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET LATIN,
Description VARCHAR(1000) CHARACTER SET LATIN

COMPRESS USING TD_SYSFNLIB.CAMSET_L
DECOMPRESS USING TD_SYSFNLIB.DECAMSET_L);

Chapter 16: Compression/Decompression Functions
LZCOMP

656 SQL Functions, Operators, Expressions, and Predicates

LZCOMP

Purpose
Compresses the specified Unicode character data using the Lempel-Ziv algorithm.

Syntax

where:

ANSI Compliance

LZCOMP is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

LZCOMP is a domain-specific function. For information on activating and invoking domain-
specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARCHAR(n) CHARACTER SET

UNICODE, where the maximum supported size (n) is 32000. You can also pass arguments with
data types that can be converted to VARCHAR(32000) CHARACTER SET UNICODE using the
implicit data type conversion rules that apply to UDFs. For example, LZCOMP(CHAR) is
allowed because it can be implicitly converted to LZCOMP(VARCHAR).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
VARCHAR following the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in SQL External Routine Programming.

The input to this function must be Unicode character data.

If you specify NULL as input, the function returns NULL.

Syntax element… Specifies…

Unicode_string a Unicode character string or string expression.

1101A766

TD_SYSFNLIB.
LZCOMP (Unicode_string)

Chapter 16: Compression/Decompression Functions
LZCOMP

SQL Functions, Operators, Expressions, and Predicates 657

Result Type

The result data type is VARBYTE(64000).

Usage Notes

Uncompressed character data in Teradata Database requires two bytes per character when
storing Unicode data. LZCOMP takes Unicode character input, compresses it using the
Lempel-Ziv algorithm, and returns the compressed result.

See http://zlib.net for information about the compression algorithm used by LZCOMP.

LZCOMP provides good compression results for long Unicode strings, but might not be as
effective for short strings. It can also provide good results for medium strings that have many
repeating characters.

For a detailed comparison between the Teradata-supplied compression functions and
guidelines for choosing a compression function, see Database Administration.

Although you can call the function directly, LZCOMP is normally used with Algorithmic
Compression (ALC) to compress table columns. If LZCOMP is used with ALC, nulls are also
compressed if those columns are nullable.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Decompressing Data Compressed with LZCOMP

To decompress Unicode data that was compressed using LZCOMP, use the LZDECOMP
function. See “LZDECOMP” on page 660.

Example 1

In this example, the Unicode values in the Description column are compressed using the
LZCOMP function with ALC. The LZDECOMP function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET UNICODE,
Description VARCHAR(1000) CHARACTER SET UNICODE

COMPRESS USING TD_SYSFNLIB.LZCOMP
DECOMPRESS USING TD_SYSFNLIB.LZDECOMP);

Example 2

Given the following table definition:

CREATE TABLE Pendants
(ItemNo INTEGER,
Description VARCHAR(100) CHARACTER SET UNICODE);

The following query returns the compressed values of the Description column.

SELECT TD_SYSFNLIB.LZCOMP(Pendants.Description);

http://zlib.net

Chapter 16: Compression/Decompression Functions
LZCOMP_L

658 SQL Functions, Operators, Expressions, and Predicates

LZCOMP_L

Purpose
Compresses the specified Latin character data using the Lempel-Ziv algorithm.

Syntax

where:

ANSI Compliance

LZCOMP_L is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

LZCOMP_L is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARCHAR(n) CHARACTER SET

LATIN, where the maximum supported size (n) is 64000. You can also pass arguments with
data types that can be converted to VARCHAR(64000) CHARACTER SET LATIN using the
implicit data type conversion rules that apply to UDFs. For example, LZCOMP_L(CHAR) is
allowed because it can be implicitly converted to LZCOMP_L(VARCHAR).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
VARCHAR following the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in SQL External Routine Programming.

The input to this function must be Latin character data.

If you specify NULL as input, the function returns NULL.

Syntax element… Specifies…

Latin_string a Latin character string or string expression.

1101A765

TD_SYSFNLIB.
LZCOMP_L (Latin_string)

Chapter 16: Compression/Decompression Functions
LZCOMP_L

SQL Functions, Operators, Expressions, and Predicates 659

Result Type

The result data type is VARBYTE(64000).

Usage Notes

Uncompressed character data in Teradata Database requires one byte per character when
storing Latin character data. LZCOMP_L takes Latin character input, compresses it using the
Lempel-Ziv algorithm, and returns the compressed result.

See http://zlib.net for information about the compression algorithm used by LZCOMP_L.

LZCOMP_L provides good compression results for long Latin character strings, but might
not be as effective for short strings. It can also provide good results for medium strings that
have many repeating characters.

For a detailed comparison between the Teradata-supplied compression functions and
guidelines for choosing a compression function, see Database Administration.

Although you can call the function directly, LZCOMP_L is normally used with Algorithmic
Compression (ALC) to compress table columns. If LZCOMP_L is used with ALC, nulls are
also compressed if those columns are nullable.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Decompressing Data Compressed with LZCOMP_L

To decompress Latin data that was compressed using LZCOMP_L, use the LZDECOMP_L
function. See “LZDECOMP_L” on page 662.

Example 1

In this example, the Latin values in the Description column are compressed using the
LZCOMP_L function with ALC. The LZDECOMP_L function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET LATIN,
Description VARCHAR(1000) CHARACTER SET LATIN

COMPRESS USING TD_SYSFNLIB.LZCOMP_L
DECOMPRESS USING TD_SYSFNLIB.LZDECOMP_L);

Example 2

Given the following table definition:

CREATE TABLE Pendants
(ItemNo INTEGER,
Description VARCHAR(100) CHARACTER SET LATIN);

The following query returns the compressed values of the Description column.

SELECT TD_SYSFNLIB.LZCOMP_L(Pendants.Description);

http://zlib.net

Chapter 16: Compression/Decompression Functions
LZDECOMP

660 SQL Functions, Operators, Expressions, and Predicates

LZDECOMP

Purpose
Decompresses the Unicode data that was compressed using the LZCOMP function.

Syntax

where:

ANSI Compliance

LZDECOMP is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

LZDECOMP is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARBYTE(n), where the maximum
supported size (n) is 64000.

The input to this function must be the output result of the LZCOMP function.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARCHAR(32000) CHARACTER SET UNICODE.

Usage Notes

LZDECOMP takes Unicode data that was compressed using the LZCOMP function,
decompresses it, and returns an uncompressed Unicode character string as the result.

See http://zlib.net for information about the decompression algorithm used by LZDECOMP.

Syntax element… Specifies…

compressed_string Unicode character data that was compressed using the LZCOMP
function.

1101A763

TD_SYSFNLIB.
LZDECOMP (compressed_string)

http://zlib.net

Chapter 16: Compression/Decompression Functions
LZDECOMP

SQL Functions, Operators, Expressions, and Predicates 661

Although you can call the function directly, LZDECOMP is normally used with Algorithmic
Compression (ALC) to decompress table columns previously compressed with LZCOMP.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Example

In this example, the Unicode values in the Description column are compressed using the
LZCOMP function with ALC. The LZDECOMP function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET UNICODE,
Description VARCHAR(1000) CHARACTER SET UNICODE

COMPRESS USING TD_SYSFNLIB.LZCOMP
DECOMPRESS USING TD_SYSFNLIB.LZDECOMP);

Chapter 16: Compression/Decompression Functions
LZDECOMP_L

662 SQL Functions, Operators, Expressions, and Predicates

LZDECOMP_L

Purpose
Decompresses the Latin data that was compressed using the LZCOMP_L function.

Syntax

where:

ANSI Compliance

LZDECOMP_L is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

LZDECOMP_L is a domain-specific function. For information on activating and invoking
domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARBYTE(n), where the maximum
supported size (n) is 64000.

The input to this function must be the output result of the LZCOMP_L function.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARCHAR(64000) CHARACTER SET LATIN.

Usage Notes

LZDECOMP_L takes Latin data that was compressed using the LZCOMP_L function,
decompresses it, and returns an uncompressed Latin character string as the result.

Syntax element… Specifies…

compressed_string Latin character data that was compressed using the LZCOMP_L
function.

1101A764

TD_SYSFNLIB.
LZDECOMP_L (compressed_string)

Chapter 16: Compression/Decompression Functions
LZDECOMP_L

SQL Functions, Operators, Expressions, and Predicates 663

See http://zlib.net for information about the decompression algorithm used by
LZDECOMP_L.

Although you can call the function directly, LZDECOMP_L is normally used with
Algorithmic Compression (ALC) to decompress table columns previously compressed with
LZCOMP_L.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Example

In this example, the Latin values in the Description column are compressed using the
LZCOMP_L function with ALC. The LZDECOMP_L function decompresses the previously
compressed values.

CREATE MULTISET TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE CHARACTER SET LATIN,
Description VARCHAR(1000) CHARACTER SET LATIN

COMPRESS USING TD_SYSFNLIB.LZCOMP_L
DECOMPRESS USING TD_SYSFNLIB.LZDECOMP_L);

http://zlib.net

Chapter 16: Compression/Decompression Functions
TransUnicodeToUTF8

664 SQL Functions, Operators, Expressions, and Predicates

TransUnicodeToUTF8

Purpose
Compresses the specified Unicode character data into UTF8 format.

Syntax

where:

ANSI Compliance

TransUnicodeToUTF8 is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

TransUnicodeToUTF8 is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARCHAR(n) CHARACTER SET

UNICODE, where the maximum supported size (n) is 32000. You can also pass arguments with
data types that can be converted to VARCHAR(32000) CHARACTER SET UNICODE using the
implicit data type conversion rules that apply to UDFs. For example,
TransUnicodeToUTF8(CHAR) is allowed because it can be implicitly converted to
TransUnicodeToUTF8(VARCHAR).

Note: The UDF implicit type conversion rules are more restrictive than the implicit type
conversion rules normally used by Teradata Database. If an argument cannot be converted to
VARCHAR following the UDF implicit conversion rules, it must be explicitly cast.

For details, see “Compatible Types” in SQL External Routine Programming.

The input to this function must be Unicode character data.

If you specify NULL as input, the function returns NULL.

Syntax element… Specifies…

Unicode_string a Unicode character string or string expression.

1101A771

TD_SYSFNLIB.
TransUnicodeToUTF8 (Unicode_string)

Chapter 16: Compression/Decompression Functions
TransUnicodeToUTF8

SQL Functions, Operators, Expressions, and Predicates 665

Result Type

The result data type is VARBYTE(64000).

Usage Notes

TransUnicodeToUTF8 compresses the specified Unicode character data into UTF8 format,
and returns the compressed result. This is useful when the input data is predominantly Latin
characters because UTF8 uses one byte to represent Latin characters and Unicode uses two
bytes.

TransUnicodeToUTF8 provides good compression for Unicode strings of any length and is
best used:

• On a Unicode column that contains mostly US-ASCII characters

• When the data frequently switches between:

• Uppercase and lowercase letters

• Digits and letters

• Latin and non-Latin characters

• When the data is very dynamic (under frequent update)

For a detailed comparison between the Teradata-supplied compression functions and
guidelines for choosing a compression function, see Database Administration.

Although you can call the function directly, TransUnicodeToUTF8 is normally used with
Algorithmic Compression (ALC) to compress table columns. If TransUnicodeToUTF8 is used
with ALC, nulls are also compressed if those columns are nullable.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Restrictions

TransUnicodeToUTF8 can only compress character values in the 7-bit ASCII character range,
from U+0000 to U+007F, also known as US-ASCII.

Decompressing Data Compressed with TransUnicodeToUTF8

To decompress Unicode data that was compressed using TransUnicodeToUTF8, use the
TransUTF8ToUnicode function. See “TransUTF8ToUnicode” on page 667.

Example

In this example, assume that the default server character set is UNICODE. The values of the
Description column are compressed using the TransUnicodeToUTF8 function with ALC,
which stores the Unicode input in UTF8 format. The TransUTF8ToUnicode function
decompresses the previously compressed values.

CREATE TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE,

Chapter 16: Compression/Decompression Functions
TransUnicodeToUTF8

666 SQL Functions, Operators, Expressions, and Predicates

Description VARCHAR(1000)
COMPRESS USING TD_SYSFNLIB.TransUnicodeToUTF8
DECOMPRESS USING TD_SYSFNLIB.TransUTF8ToUnicode);

Chapter 16: Compression/Decompression Functions
TransUTF8ToUnicode

SQL Functions, Operators, Expressions, and Predicates 667

TransUTF8ToUnicode

Purpose
Decompresses the Unicode data that was compressed using the TransUnicodeToUTF8
function.

Syntax

where:

ANSI Compliance

TransUTF8ToUnicode is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

TransUTF8ToUnicode is a domain-specific function. For information on activating and
invoking domain-specific functions, see “Domain-specific Functions” on page 20.

Argument Type and Rules

Expressions passed to this function must have a data type of VARBYTE(n), where the maximum
supported size (n) is 64000.

The input to this function must be the output result of the TransUnicodeToUTF8 function.

If you specify NULL as input, the function returns NULL.

Result Type

The result data type is VARCHAR(32000) CHARACTER SET UNICODE

Usage Notes

TransUTF8ToUnicode takes Unicode data that was compressed using the
TransUnicodeToUTF8 function, decompresses it, and returns an uncompressed Unicode
character string as the result.

Syntax element… Specifies…

compressed_string Unicode character data that was compressed using the
TransUnicodeToUTF8 function.

1101A770

TD_SYSFNLIB.
TransUTF8ToUnicode (compressed_string)

Chapter 16: Compression/Decompression Functions
TransUTF8ToUnicode

668 SQL Functions, Operators, Expressions, and Predicates

Although you can call the function directly, TransUTF8ToUnicode is normally used with
Algorithmic Compression (ALC) to decompress table columns previously compressed with
TransUnicodeToUTF8.

For more information about ALC, see “COMPRESS and DECOMPRESS Phrases” in SQL
Data Types and Literals.

Example

In this example, assume that the default server character set is UNICODE. The values of the
Description column are compressed using the TransUnicodeToUTF8 function with ALC,
which stores the Unicode input in UTF8 format. The TransUTF8ToUnicode function
decompresses the previously compressed values.

CREATE TABLE Pendants
(ItemNo INTEGER,
Gem CHAR(10) UPPERCASE,
Description VARCHAR(1000)

COMPRESS USING TD_SYSFNLIB.TransUnicodeToUTF8
DECOMPRESS USING TD_SYSFNLIB.TransUTF8ToUnicode);

SQL Functions, Operators, Expressions, and Predicates 669

CHAPTER 17 Built-In Functions

Built-in functions, which are niladic (have no arguments), return various information about
the system. Built-in functions are sometimes referred to as special registers.

The built-in functions can be used anywhere that a constant can appear.

If a SELECT statement that contains a built-in function references a table name, then the
result of the query contains one row for every row of the table that satisfies the search
condition.

Chapter 17: Built-In Functions
ACCOUNT

670 SQL Functions, Operators, Expressions, and Predicates

ACCOUNT

Purpose
Returns the account string for the current user.

Syntax

ANSI Compliance

ACCOUNT is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type and format for ACCOUNT are as follows:

Usage Notes

If a SET SESSION ACCOUNT statement has changed the current account string, then the
ACCOUNT function returns the new account string based on the request level: whether for an
entire session or for an individual request.

Example

The following statement requests the account string for the current user:

SELECT ACCOUNT;

The system responds with something like the following:

Account

$M_D2102

FF07R001

ACCOUNT

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

Chapter 17: Built-In Functions
CURRENT_DATE

SQL Functions, Operators, Expressions, and Predicates 671

CURRENT_DATE

Purpose
Returns the current date.

Syntax

where:

ANSI Compliance

CURRENT_DATE and the AT clause are ANSI SQL:2008 compliant.

As an extension to ANSI, you can specify an AT clause after the CURRENT_DATE function,
and you can specify the time zone displacement using additional expressions besides an
INTERVAL expression.

Syntax element … Specifies …

AT LOCAL that the value returned is constructed from the session time and session
time zone if the DBS Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from
the time value local to the Teradata Database server and the session time
zone.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement. For
details, see “AT LOCAL and AT TIME ZONE Time Zone Specifiers” on
page 215.

1101A682

CURRENT_DATE

expression

time_zone_string

AT LOCAL

TIME ZONE

Chapter 17: Built-In Functions
CURRENT_DATE

672 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

CURRENT_DATE returns the current date at the time when the request started. If
CURRENT_DATE is invoked more than once during the request, the same date is returned.
The date returned does not change during the duration of the request.

If you specify CURRENT_DATE without the AT clause or CURRENT_DATE AT LOCAL,
then the value returned depends on the setting of the DBS Control flag TimeDateWZControl
as follows:

• If the TimeDateWZControl flag is enabled, CURRENT_DATE returns a date constructed
from the session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_DATE returns a date constructed
from the time value local to the Teradata Database server and the session time zone.

For more information, see “DBS Control (dbscontrol)” in Utilities.

CURRENT_DATE returns a value that is adjusted to account for the start and end of daylight
saving time (DST) only in the following cases:

• CURRENT_DATE is specified with AT [TIME ZONE] time_zone_string, where
time_zone_string follows different DST and standard time zone displacements.

• CURRENT_DATE is specified with AT LOCAL or without an AT clause and the session
time zone was defined with a time zone string that follows different DST and standard
time zone displacements.

For more information about time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

Result Type and Attributes

The result data type and format for CURRENT_DATE are:

To convert CURRENT_DATE, use Teradata explicit conversion syntax or ANSI CAST syntax.
For an example that uses Teradata explicit conversion syntax to change the default output
format, see “Example 3: Changing the Default Output Format” on page 679.

CURRENT_DATE versus DATE

CURRENT_DATE provides similar functionality to the Teradata function DATE using ANSI-
compliant syntax. For information on the Teradata DATE function, see “DATE” on page 687.

Data Type Format

DATE Default format for the DATE data type when the Dateform mode is set to
IntegerDate.

For more information on the default formats, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_DATE

SQL Functions, Operators, Expressions, and Predicates 673

Example 1

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CURRENT_DATE AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;
SELECT CURRENT_DATE AT INTERVAL -'08:00' HOUR TO MINUTE;
SELECT CURRENT_DATE AT TIME ZONE INTERVAL -'08' HOUR;
SELECT CURRENT_DATE AT INTERVAL -'08' HOUR;
SELECT CURRENT_DATE AT TIME ZONE '-08:00';
SELECT CURRENT_DATE AT '-08:00';
SELECT CURRENT_DATE AT TIME ZONE '-8';
SELECT CURRENT_DATE AT '-8';
SELECT CURRENT_DATE AT TIME ZONE -8;
SELECT CURRENT_DATE AT -8;
SELECT CURRENT_DATE AT -8.0;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP
'2008-06-01 06:30:00.000000+00:00', these SELECT statements would return '08/05/31' as the
date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and
the DBS Control flag TimeDateWZControl is enabled, the statement would return
'08/06/01' as the current date based on the current session time and time zone displacement,
INTERVAL '01:00' HOUR TO MINUTE. For example:

SELECT CURRENT_DATE;
SELECT CURRENT_DATE AT LOCAL;

The date returned is not adjusted to account for the start or end of daylight saving time.

Example 2

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;
SELECT CURRENT_DATE AT INTERVAL '09:00' HOUR TO MINUTE;

The above SELECT statement returns the current date based on the time zone displacement,
INTERVAL '09:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP
'2008-06-01 19:30:00.000000+00:00', the SELECT statement would return '08/06/02' as the
date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and
the DBS Control flag TimeDateWZControl is enabled, the statement would return
'08/06/01' as the current date based on the current session time and time zone displacement,
INTERVAL '01:00' HOUR TO MINUTE.

The date returned is not adjusted to account for the start or end of daylight saving time.

Chapter 17: Built-In Functions
CURRENT_DATE

674 SQL Functions, Operators, Expressions, and Predicates

Example 3

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

SET TIME ZONE INTERVAL '10:00' HOUR TO MINUTE;

SELECT CURRENT_DATE AT '05:45';
SELECT CURRENT_DATE AT 5.75;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL '05:45' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP
'2008-06-01 17:30:00.000000+00:00', the SELECT statements would return '08/06/01' as the
date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and
the DBS Control flag TimeDateWZControl is enabled, the statement would return
'08/06/02' as the current date based on the current session time and time zone displacement,
INTERVAL '10:00' HOUR TO MINUTE.

The date returned is not adjusted to account for the start or end of daylight saving time.

Example 4

The following queries return the current date at the time zone displacement based on the time
zone string, 'America Pacific'. Teradata Database determines the time zone displacement
based on the time zone string and the CURRENT_TIMESTAMP AT '00:00' (that is, at UTC).
The date returned is automatically adjusted to account for the start and end of daylight saving
time.

SELECT CURRENT_DATE AT TIME ZONE 'America Pacific';
SELECT CURRENT_DATE AT 'America Pacific';

Example 5: Changing the Default Output Format

To change the default output format of the CURRENT_DATE result, use Teradata explicit
conversion syntax and specify the FORMAT phrase. For example, the following statement
requests the current date and specifies a format that is different from the default:

SELECT CURRENT_DATE (FORMAT 'MMMBDD,BYYYY');

The result is similar to:

Date

May 31, 2007

For more information on Teradata explicit conversion syntax, see “Teradata Conversion
Syntax in Explicit Data Type Conversions” on page 755. For more information on default data
type formats and the FORMAT phrase, see “Data Type Formats and Format Phrases” in SQL
Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_ROLE

SQL Functions, Operators, Expressions, and Predicates 675

CURRENT_ROLE

Purpose
Returns the current role of the current authorized user.

Syntax

ANSI Compliance

CURRENT_ROLE is consistent with ANSI SQL:2008 usage.

Result Type and Attributes

The data type and format for CURRENT_ROLE are as follows:

Result Value

If you are not accessing the Teradata Database through a proxy connection, CURRENT_ROLE
functions exactly like the ROLE built-in function and returns the session current role, which is
the current role of the session user. For details, see “ROLE” on page 692.

If you are accessing the Teradata Database through a proxy connection, then
CURRENT_ROLE returns the current role of the proxy user as shown in the following table.

1101A565

CURRENT_ROLE

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

IF the current role for the session is … THEN the result value is …

a role set by PROXYROLE the name of the role.

the default If there is one proxy role in the CONNECT
THROUGH privilege of the proxy user, the
result value is the name of the role.

If there are multiple proxy roles in the
CONNECT THROUGH privilege of the proxy
user, the result value is ALL.

PROXYROLE=ALL ALL

PROXYROLE=NONE or NULL NULL

Chapter 17: Built-In Functions
CURRENT_ROLE

676 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

CURRENT_ROLE is not supported in the FastLoad and MultiLoad utilities.

Example

You can identify the current role for the current authorized user with the following statement:

SELECT CURRENT_ROLE;

The system responds with something like the following:

Current_Role

Buyers_role

Chapter 17: Built-In Functions
CURRENT_TIME

SQL Functions, Operators, Expressions, and Predicates 677

CURRENT_TIME

Purpose
Returns the current time.

Syntax

where:

ANSI Compliance

CURRENT_TIME and the AT clause are ANSI SQL:2008 compliant.

As an extension to ANSI, you can specify the time zone displacement using additional
expressions besides an INTERVAL expression.

1101A714

CURRENT_TIME

()fractional_precision

expression

time_zone_string

AT LOCAL

TIME ZONE

Syntax element … Specifies …

fractional_precision an optional precision range for the returned time value.

The valid range is 0 through 6, inclusive.

The default is 0.

AT LOCAL that the value returned is constructed from the session time and session
time zone if the DBS Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed
from the time value local to the Teradata Database server and the
session time zone.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME
ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement.
For details, see “AT LOCAL and AT TIME ZONE Time Zone Specifiers”
on page 215.

Chapter 17: Built-In Functions
CURRENT_TIME

678 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

CURRENT_TIME returns the current time when the request started. If CURRENT_TIME is
invoked more than once during the request, the same time is returned. The time returned
does not change during the duration of the request.

If you specify CURRENT_TIME without the AT clause or CURRENT_TIME AT LOCAL, then
the value returned depends on the setting of the DBS Control flag TimeDateWZControl as
follows:

• If the TimeDateWZControl flag is enabled, CURRENT_TIME returns a time constructed
from the session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_TIME returns a time constructed
from the time value local to the Teradata Database server and the session time zone.

For more information, see “DBS Control (dbscontrol)” in Utilities.

CURRENT_TIME returns a value that is adjusted to account for the start and end of daylight
saving time (DST) only in the following cases:

• CURRENT_TIME is specified with AT [TIME ZONE] time_zone_string, where
time_zone_string follows different DST and standard time zone displacements.

• CURRENT_TIME is specified with AT LOCAL or without an AT clause and the session
time zone was defined with a time zone string that follows different DST and standard
time zone displacements.

For more information about time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

Result Type and Attributes

The result data type and format for CURRENT_TIME are:

To convert CURRENT_TIME, use Teradata explicit conversion syntax or ANSI CAST syntax.
For an example that uses Teradata explicit conversion syntax to change the default output
format, see “Example 3: Changing the Default Output Format” on page 679.

Precision

The seconds precision of the result of CURRENT_TIME is limited to hundredths of a second.
CURRENT_TIME returns zeros for any digits to the right of the two most significant digits in
the fractional portion of seconds.

Data Type Format

TIME WITH TIME ZONE Default format for the TIME WITH TIME ZONE data type.

For more information on the default formats, see “Data Type Formats
and Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_TIME

SQL Functions, Operators, Expressions, and Predicates 679

CURRENT_TIME Fields

The fields in CURRENT_TIME are:

• HOUR

• MINUTE

• SECOND

• TIMEZONE_HOUR

• TIMEZONE_MINUTE

CURRENT_TIME versus TIME

CURRENT_TIME provides similar functionality to the Teradata function TIME using ANSI-
compliant syntax. For information on the Teradata TIME function, see “TIME” on page 699.

Example 1: Requesting the Current Time

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the
current time based on the current session time and time zone.

SELECT CURRENT_TIME;
SELECT CURRENT_TIME AT LOCAL;

The result is similar to:

Current Time(0)

15:53:34+00:00

If the session time zone was defined with a time zone string that follows different DST and
standard time zone displacements, then the time returned is automatically adjusted to account
for the start and end of daylight saving time. Otherwise, no adjustment for daylight saving
time is done.

Example 2: Requesting the Current Time with a Time Zone String

The following queries return the current time at the time zone displacement based on the time
zone string, 'America Pacific'. The time returned is automatically adjusted to account for the
start and end of daylight saving time.

SELECT CURRENT_TIME AT TIME ZONE 'America Pacific';
SELECT CURRENT_TIME AT 'America Pacific';

Example 3: Changing the Default Output Format

To change the default output format of the CURRENT_TIME result, use Teradata explicit
conversion syntax and specify the FORMAT phrase. For example, the following statement
requests the current time and specifies a format that is different from the default:

SELECT CURRENT_TIME (FORMAT 'HH:MIBT');

The result looks like this:

Current Time(0)

Chapter 17: Built-In Functions
CURRENT_TIME

680 SQL Functions, Operators, Expressions, and Predicates

02:29 PM

For more information on Teradata explicit conversion syntax, see “Teradata Conversion
Syntax in Explicit Data Type Conversions” on page 755. For more information on default data
type formats and the FORMAT phrase, see “Data Type Formats and Format Phrases” in SQL
Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_TIMESTAMP

SQL Functions, Operators, Expressions, and Predicates 681

CURRENT_TIMESTAMP

Purpose
Returns the current timestamp.

Syntax

where:

ANSI Compliance

CURRENT_TIMESTAMP and the AT clause are ANSI SQL:2008 compliant.

As an extension to ANSI, you can specify the time zone displacement using additional
expressions besides an INTERVAL expression.

1101A715

CURRENT_TIMESTAMP

()fractional_precision

expression

time_zone_string

AT LOCAL

TIME ZONE

Syntax element … Specifies …

fractional_precision an optional precision range for the returned timestamp value.

The valid range is 0 through 6, inclusive.

The default is 6.

AT LOCAL that the value returned is constructed from the session time and session
time zone if the DBS Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed
from the time value local to the Teradata Database server and the
session time zone.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME
ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215.

Chapter 17: Built-In Functions
CURRENT_TIMESTAMP

682 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

CURRENT_TIMESTAMP returns the current timestamp when the request started. If
CURRENT_TIMESTAMP is invoked more than once during the request, the same timestamp
is returned. The timestamp returned does not change during the duration of the request.

If you specify CURRENT_TIMESTAMP without the AT clause or CURRENT_TIMESTAMP
AT LOCAL, then the value returned depends on the setting of the DBS Control flag
TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, CURRENT_TIMESTAMP returns a
timestamp constructed from the session time and session time zone.

• If the TimeDateWZControl flag is disabled, CURRENT_TIMESTAMP returns a
timestamp constructed from the time value local to the Teradata Database server and the
session time zone.

For more information, see “DBS Control (dbscontrol)” in Utilities.

CURRENT_TIMESTAMP returns a value that is adjusted to account for the start and end of
daylight saving time (DST) only in the following cases:

• CURRENT_TIMESTAMP is specified with AT [TIME ZONE] time_zone_string, where
time_zone_string follows different DST and standard time zone displacements.

• CURRENT_TIMESTAMP is specified with AT LOCAL or without an AT clause and the
session time zone was defined with a time zone string that follows different DST and
standard time zone displacements.

For more information about time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

Result Type and Attributes

The result data type and format for CURRENT_TIMESTAMP are:

To convert CURRENT_TIMESTAMP, use Teradata explicit conversion syntax or ANSI CAST
syntax. For an example that uses Teradata explicit conversion syntax to change the default
output format, see “Example 4: Changing the Default Output Format” on page 684.

Precision

The seconds precision of the result of CURRENT_TIMESTAMP is limited to hundredths of a
second. CURRENT_TIMESTAMP returns zeros for any digits to the right of the two most
significant digits in the fractional portion of seconds.

Data Type Format

TIMESTAMP WITH
TIME ZONE

Default format for the TIMESTAMP WITH TIME ZONE data type.

For more information on the default formats, see “Data Type Formats
and Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_TIMESTAMP

SQL Functions, Operators, Expressions, and Predicates 683

CURRENT_TIMESTAMP Fields

The fields in CURRENT_TIMESTAMP are:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

• TIMEZONE_HOUR

• TIMEZONE_MINUTE

Example 1: Requesting the Current Timestamp

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the
current timestamp based on the current session time and time zone.

SELECT CURRENT_TIMESTAMP;
SELECT CURRENT_TIMESTAMP AT LOCAL;

The result is similar to:

Current TimeStamp(6)

2001-11-27 15:53:34.910000+00:00

If the session time zone was defined with a time zone string that follows different DST and
standard time zone displacements, then the timestamp returned is automatically adjusted to
account for the start and end of daylight saving time. Otherwise, no adjustment for daylight
saving time is done.

Example 2: CURRENT_TIMESTAMP and the TimeDateWZControl Flag

This example shows the effect of the DBS Control flag TimeDateWZControl on the results
returned by CURRENT_TIMESTAMP when the function is specified without an AT clause or
with an AT LOCAL clause.

Assume the following:

• The time local to the Teradata Database server is 11:59:00 Coordinated Universal Time
(UTC), January 31, 2010.

• User TK lives in Tokyo, and has a time zone defined as +9 hours offset from UTC.

• User LA lives in Los Angeles, and has a time zone defined as -8 hours offset from UTC.

• User TK and User LA run the CURRENT_TIMESTAMP function at exactly the same time.

If the TimeDateWZControl flag is enabled:

For User TK, the CURRENT_TIMESTAMP function returns:

2010-02-01 10:59:00.000000+09:00

For User LA, the CURRENT_TIMESTAMP function returns:

Chapter 17: Built-In Functions
CURRENT_TIMESTAMP

684 SQL Functions, Operators, Expressions, and Predicates

2010-01-31 16:59:00.000000-08:00

If the TimeDateWZControl flag is disabled:

For User TK, the CURRENT_TIMESTAMP function returns:

2010-01-31 11:59:00.000000+09:00

For User LA, the CURRENT_TIMESTAMP function returns:

2010-01-31 11:59:00.000000-08:00

Example 3: Requesting the Current Timestamp with a Time Zone String

The following queries return the current timestamp at the time zone displacement based on
the time zone string, 'America Pacific'. The timestamp returned is automatically adjusted to
account for the start and end of daylight saving time.

SELECT CURRENT_TIMESTAMP AT TIME ZONE 'America Pacific';
SELECT CURRENT_TIMESTAMP AT 'America Pacific';

Example 4: Changing the Default Output Format

To change the default output format of the CURRENT_TIMESTAMP result, use Teradata
explicit conversion syntax and specify the FORMAT phrase. For example, the following
statement requests the current timestamp and specifies a format that is different from the
default:

SELECT CURRENT_TIMESTAMP (FORMAT 'MMMBDD,BYYYYBHH:MIBT');

The result looks like this:

Current TimeStamp(6)

Feb 19, 2002 07:45 am

For more information on Teradata explicit conversion syntax, see “Teradata Conversion
Syntax in Explicit Data Type Conversions” on page 755. For more information on default data
type formats and the FORMAT phrase, see “Data Type Formats and Format Phrases” in SQL
Data Types and Literals.

Chapter 17: Built-In Functions
CURRENT_USER

SQL Functions, Operators, Expressions, and Predicates 685

CURRENT_USER

Purpose
Provides the user name of the current authorized user.

Syntax

ANSI Compliance

CURRENT_USER is consistent with ANSI SQL:2008 usage.

Result Type and Attributes

The data type and format for CURRENT_USER are as follows:

Result Value

If you are accessing the Teradata Database through a proxy connection, CURRENT_USER
returns the proxy user name. Otherwise, it functions exactly like the USER built-in function
and returns the session user name. For details, see “USER” on page 702.

Example 1

You can identify the current authorized user with the following statement:

SELECT CURRENT_USER;

The system responds with something like the following:

Current_User

BO-JSMITH

Example 2

The following example selects the job title for the current authorized user:

SELECT JobTitle FROM Employee WHERE Name = CURRENT_USER;

1101A564

CURRENT_USER

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

Chapter 17: Built-In Functions
DATABASE

686 SQL Functions, Operators, Expressions, and Predicates

DATABASE

Purpose
Returns the name of the default database for the current user.

Syntax

ANSI Compliance

DATABASE is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type and format for DATABASE are as follows:

Usage Notes

If a DATABASE request has changed the current default database, then the DATABASE
function returns the new name of the default.

Example

The following statement requests the name of the default database:

SELECT DATABASE;

The system responds with something like the following:

Database

Customer_Service

FF07R002

DATABASE

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

Chapter 17: Built-In Functions
DATE

SQL Functions, Operators, Expressions, and Predicates 687

DATE

Purpose
Returns the current date.

Syntax

where:

ANSI Compliance

DATE is a Teradata extension to the ANSI SQL:2008 standard.

For the ANSI-compliant syntax and behavior for the equivalent function, see
“CURRENT_DATE” on page 671.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, you can specify an AT clause after the DATE function, and you can
specify the time zone displacement using additional expressions besides an INTERVAL
expression.

Syntax element … Specifies …

AT LOCAL that the value returned is constructed from the session time and session
time zone if the DBS Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed from
the time value local to the Teradata Database server and the session time
zone.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement. For
details, see “AT LOCAL and AT TIME ZONE Time Zone Specifiers” on
page 215.

1101A683

DATE

expression

time_zone_string

AT LOCAL

TIME ZONE

Chapter 17: Built-In Functions
DATE

688 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

DATE returns the current date at the time when the request started. If DATE is invoked more
than once during the request, the same date is returned. The date returned does not change
during the duration of the request.

If you specify DATE without the AT clause or DATE AT LOCAL, then the value returned
depends on the setting of the DBS Control flag TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, DATE returns a date constructed from the
session time and session time zone.

• If the TimeDateWZControl flag is disabled, DATE returns a date constructed from the
time value local to the Teradata Database server and the session time zone.

For more information, see “DBS Control (dbscontrol)” in Utilities.

DATE returns a value that is adjusted to account for the start and end of daylight saving time
(DST) only in the following cases:

• DATE is specified with AT [TIME ZONE] time_zone_string, where time_zone_string
follows different DST and standard time zone displacements.

• DATE is specified with AT LOCAL or without an AT clause and the session time zone was
defined with a time zone string that follows different DST and standard time zone
displacements.

For more information about time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

DATE cannot appear as the first argument in a user-defined method invocation.

Result Type and Attributes

DATE versus CURRENT_DATE

DATE is deprecated. Use the ANSI SQL:2008 compliant CURRENT_DATE function instead.
See “CURRENT_DATE” on page 671.

Data Type FORMAT

DATE The default format of DATE depends on the value of the Dateform mode.

IF the value of the Dateform mode is … THEN the format of the DATE function is …

INTEGERDATE the default format for DATE data types as
specified in the SDF.

ANSIDATE 'YYYY-MM-DD'

For more information on default data type formats, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
DATE

SQL Functions, Operators, Expressions, and Predicates 689

Example 1

This example assumes that the default format for DATE values is 'yy/mm/dd'. Consider the
following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT DATE AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;
SELECT DATE AT INTERVAL -'08:00' HOUR TO MINUTE;
SELECT DATE AT TIME ZONE INTERVAL -'08' HOUR;
SELECT DATE AT INTERVAL -'08' HOUR;
SELECT DATE AT TIME ZONE '-08:00';
SELECT DATE AT '-08:00';
SELECT DATE AT TIME ZONE '-8';
SELECT DATE AT '-8';
SELECT DATE AT TIME ZONE -8;
SELECT DATE AT -8;
SELECT DATE AT -8.0;

The above SELECT statements return the current date based on the time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE. If the current timestamp at UTC is TIMESTAMP
'2008-06-01 06:30:00.000000+00:00', these SELECT statements would return '08/05/31' as the
date.

If the SELECT statement was specified without an AT clause or with an AT LOCAL clause, and
the DBS Control flag TimeDateWZControl is enabled, the statement would return
'08/06/01' as the current date based on the current session time and time zone displacement,
INTERVAL '01:00' HOUR TO MINUTE. For example:

SELECT DATE;
SELECT DATE AT LOCAL;

The date returned is not adjusted to account for the start or end of daylight saving time.

Example 2

The following queries return the current date at the time zone displacement based on the time
zone string, 'America Pacific'. Teradata Database determines the time zone displacement
based on the time zone string and the CURRENT_TIMESTAMP AT '00:00' (that is, at UTC).
The date returned is automatically adjusted to account for the start and end of daylight saving
time.

SELECT DATE AT TIME ZONE 'America Pacific';
SELECT DATE AT 'America Pacific';

Example 3

Use the FORMAT phrase to change the presentation:

SELECT DATE (FORMAT 'mm-dd-yy');
 Date

03-30-96

Chapter 17: Built-In Functions
DATE

690 SQL Functions, Operators, Expressions, and Predicates

Example 4

Another form gives:

SELECT DATE (FORMAT 'mmmbdd,byyyy');
Date

Mar 30, 1996

Chapter 17: Built-In Functions
PROFILE

SQL Functions, Operators, Expressions, and Predicates 691

PROFILE

Purpose
Returns the current profile for the session or NULL if none.

Syntax

ANSI Compliance

PROFILE is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type and format for PROFILE are as follows:

Example

You can identify the current profile for the session with the following statement:

SELECT PROFILE ;

PROFILE

KZ01A006

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

Chapter 17: Built-In Functions
ROLE

692 SQL Functions, Operators, Expressions, and Predicates

ROLE

Purpose
Returns the session current role.

Syntax

ANSI Compliance

ROLE is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type and format for ROLE are as follows:

Result Value

ROLE

KZ01A007

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

IF the session
logon is … THEN …

not
directory-
based

IF the current role for the session is … THEN the result
value is …

an existing role the name of the
role.

ALL 'ALL'.

NONE or NULL NULL.

Chapter 17: Built-In Functions
ROLE

SQL Functions, Operators, Expressions, and Predicates 693

If you are accessing the Teradata Database through a proxy connection, and you want to get
the current role of the proxy user, use the CURRENT_ROLE built-in function. For details, see
“CURRENT_ROLE” on page 675.

Usage Notes

ROLE is not supported in the FastLoad and MultiLoad utilities.

Example

You can identify the session current role with the following statement:

SELECT ROLE;

The system responds with something like the following:

Role

directory-
based IF the session … THEN the result

value is …

is assigned a set of directory-managed roles and does not
change the current role

'EXTERNAL'.

uses a SET ROLE EXTERNAL statement

• does not have an assigned set of directory-managed
roles,

• maps to a permanent user that has a default database-
managed role, and

• does not change the current role

the name of the
default role of the
permanent user.

uses a SET ROLE role_name statement, where
role_name is either a directory-managed or database-
managed role

the name of the
specified role.

uses a SET ROLE ALL statement 'ALL'.

• is not assigned a set of directory-managed roles,

• does not change the current role, and

• one of the following conditions is true:

• the directory-based logon does not map to a
permanent user

• the permanent user that the directory-based logon
maps to does not have a default database-managed
role

NULL.

uses a SET ROLE NONE statement

uses a SET ROLE NULL statement

IF the session
logon is … THEN …

Chapter 17: Built-In Functions
ROLE

694 SQL Functions, Operators, Expressions, and Predicates

EXTERNAL

Chapter 17: Built-In Functions
SESSION

SQL Functions, Operators, Expressions, and Predicates 695

SESSION

Purpose
Returns the number of the session for the current user.

Syntax

ANSI Compliance

SESSION is a Teradata extension to the ANSI SQL:2008 standard.

Result Type and Attributes

The data type and format for SESSION are as follows:

Example

The following statement identifies the number of the session for the current user:

SELECT SESSION;

The system responds with something like the following:

Session

1048

FF07R003

SESSION

Data Type Format

INTEGER Default format for the INTEGER data type.

For more information on the default formats, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
TEMPORAL_DATE

696 SQL Functions, Operators, Expressions, and Predicates

TEMPORAL_DATE

Purpose
Returns the current transaction date where the evaluation is based on the session time zone.

Syntax

Result Type and Attributes

The result data type and format for TEMPORAL_DATE are as follows:

Usage Notes

The value of TEMPORAL_DATE is the same for all requests submitted in a single transaction.

The system uses the session time zone to evaluate TEMPORAL_DATE.

When TEMPORAL_DATE appears in a CHECK constraint or DEFAULT clause, the result
value is evaluated when the request applies the CHECK constraint (during an insert or
update) or when the request uses the DEFAULT value for a given column.

For information on using TEMPORAL_DATE with temporal tables, see Temporal Table
Support.

Restrictions

TEMPORAL_DATE is not supported in a partitioning expression for the PARTITION BY
clause that defines a partitioned primary index.

1182A008

TEMPORAL_DATE

Data Type Format

DATE Default format for the DATE data type when the Dateform mode is
set to IntegerDate.

For details on default formats, see “Data Type Formats and Format
Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
TEMPORAL_TIMESTAMP

SQL Functions, Operators, Expressions, and Predicates 697

TEMPORAL_TIMESTAMP

Purpose
Returns the current transaction timestamp where the evaluation is based on the session time
zone.

Syntax

where:

Result Type and Attributes

The result data type and format for TEMPORAL_TIMESTAMP are as follows:

Usage Notes

The value of TEMPORAL_TIMESTAMP is the same for all requests submitted in a single
transaction.

The system uses the session time zone to evaluate TEMPORAL_TIMESTAMP.

When TEMPORAL_TIMESTAMP appears in a CHECK constraint or DEFAULT clause, the
result value is evaluated when the request applies the CHECK constraint (during an insert or
update) or when the request uses the DEFAULT value for a given column.

Syntax element … Specifies …

precision an optional precision range for the returned timestamp value.

The valid range is 0 through 6, inclusive.

The default is 6.

1182A009

TEMPORAL_TIMESTAMP

(precision)

Data Type Format

TIMESTAMP(n) WITH TIME
ZONE, where n is the same as the
precision argument or 6 if omitted

Default format for the TIMESTAMP WITH TIME ZONE
type.

For details on default formats, see “Data Type Formats and
Format Phrases” in SQL Data Types and Literals.

Chapter 17: Built-In Functions
TEMPORAL_TIMESTAMP

698 SQL Functions, Operators, Expressions, and Predicates

For information on using TEMPORAL_TIMESTAMP with temporal tables, see Temporal
Table Support.

Precision

The seconds precision of the result of TEMPORAL_TIMESTAMP is limited to hundredths of
a second. TEMPORAL_TIMESTAMP returns zeros for any digits to the right of the two most
significant digits in the fractional portion of seconds.

Chapter 17: Built-In Functions
TIME

SQL Functions, Operators, Expressions, and Predicates 699

TIME

Purpose
Returns the current time.

Syntax

where:

ANSI Compliance

TIME is a Teradata extension to the ANSI SQL:2008 standard.

For the ANSI-compliant syntax and behavior for the equivalent function, see
“CURRENT_TIME” on page 677.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, you can specify the time zone displacement using additional
expressions besides an INTERVAL expression.

Syntax element … Specifies …

AT LOCAL that the value returned is constructed from the session time and session
time zone if the DBS Control flag TimeDateWZControl is enabled.

If TimeDateWZControl is disabled, the value returned is constructed
from the time value local to the Teradata Database server and the
session time zone.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME
ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement.
For details, see “AT LOCAL and AT TIME ZONE Time Zone Specifiers”
on page 215.

1101A716

TIME

expression

time_zone_string

AT LOCAL

TIME ZONE

Chapter 17: Built-In Functions
TIME

700 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

TIME returns the current time when the request started. If TIME is invoked more than once
during the request, the same time is returned. The time returned does not change during the
duration of the request.

If you specify TIME without the AT clause or TIME AT LOCAL, then the value returned
depends on the setting of the DBS Control flag TimeDateWZControl as follows:

• If the TimeDateWZControl flag is enabled, TIME returns a time constructed from the
session time and session time zone.

• If the TimeDateWZControl flag is disabled, TIME returns a time constructed from the
time value local to the Teradata Database server and the session time zone.

For more information, see “DBS Control (dbscontrol)” in Utilities.

TIME returns a value that is adjusted to account for the start and end of daylight saving time
(DST) only in the following cases:

• TIME is specified with AT [TIME ZONE] time_zone_string, where time_zone_string
follows different DST and standard time zone displacements.

• TIME is specified with AT LOCAL or without an AT clause and the session time zone was
defined with a time zone string that follows different DST and standard time zone
displacements.

For more information about time zone strings, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

TIME cannot appear as the first argument in a user-defined method invocation.

Result Type and Attributes

The data type and format for TIME are as follows:

TIME versus CURRENT_TIME

TIME is deprecated. Use the ANSI SQL:2008 compliant CURRENT_TIME function instead.
See “CURRENT_TIME” on page 677.

Example 1

If the DBS Control flag TimeDateWZControl is enabled, the following statements request the
current time based on the current session time and time zone.

SELECT TIME;
SELECT TIME AT LOCAL;

The result is similar to:

Data Type Format

FLOAT HHMMSS.CC (hours, minutes, seconds, hundredths of a second)

Chapter 17: Built-In Functions
TIME

SQL Functions, Operators, Expressions, and Predicates 701

Time

16:20:20

If the session time zone was defined with a time zone string that follows different DST and
standard time zone displacements, then the time returned is automatically adjusted to account
for the start and end of daylight saving time. Otherwise, no adjustment for daylight saving
time is done.

Example 2

The following queries return the current time at the time zone displacement based on the time
zone string, 'America Pacific'. The time returned is automatically adjusted to account for the
start and end of daylight saving time.

SELECT TIME AT TIME ZONE 'America Pacific';
SELECT TIME AT 'America Pacific';

Example 3

The hundredths of a second are not displayed by the default format, but you can use the
FORMAT phrase to display it:

SELECT TIME (FORMAT '99:99:99.99');

The system responds with something like the following:

Time

16:26:30.19

Example 4

The following example inserts a row in a hypothetical table in which the column InsertTime
has data type FLOAT and records the time that the row was inserted:

INSERT INTO HypoTable (ColumnA, ColumnB, InsertTime)
VALUES ('Abcde', 12345, TIME);

Chapter 17: Built-In Functions
USER

702 SQL Functions, Operators, Expressions, and Predicates

USER

Purpose
Provides the session user name.

Syntax

ANSI Compliance

USER is ANSI SQL:2008 compliant.

Result Type and Attributes

The data type and format for USER are as follows:

Result Value

If you are accessing the Teradata Database through a proxy connection, and you want to get
the name of the proxy user, use the CURRENT_USER built-in function. For details, see
“CURRENT_USER” on page 685.

FF07D272

USER

Data Type Format

VARCHAR(30) CHARACTER SET UNICODE X(30)

IF the session logon
is … THEN …

not directory-based the result value is the session user name.

directory-based

IF the session … THEN the result value …

maps to a permanent user is the name of the permanent user.

does not map to a permanent user is the authcid of the external user.

Chapter 17: Built-In Functions
USER

SQL Functions, Operators, Expressions, and Predicates 703

Example 1

You can identify the session user name with the following statement:

SELECT USER;

The system responds with something like the following.

User

JJ43901

Example 2

The following example selects the job title for the session user.

SELECT JobTitle FROM Employee WHERE Name = USER;

Chapter 17: Built-In Functions
USER

704 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 705

CHAPTER 18 User-Defined Functions

SQL provides a set of useful functions, but they might not satisfy all of the particular
requirements you have to process your data.

Teradata Database supports two types of user-defined functions (UDFs) that allow you to
extend SQL by writing your own functions:

• SQL UDFs

• External UDFs

SQL UDFs allow you to encapsulate regular SQL expressions in functions and then use them
like standard SQL functions.

External UDFs allow you to write your own functions in the C, C++, or Java programming
language, install them on the database, and then use them like standard SQL functions. For
details on external UDFs, see SQL External Routine Programming.

UDFs can be of the following types:

• Scalar

• Aggregate or Window Aggregate

• Table

A scalar UDF can appear almost anywhere a standard SQL scalar function can appear, and an
aggregate UDF can appear almost anywhere a standard SQL aggregate function can appear. A
table UDF can only appear in the FROM clause of an SQL SELECT statement. A window
aggregate UDF is an aggregate UDF with a window specification applied to it.

Chapter 18: User-Defined Functions
SQL UDF

706 SQL Functions, Operators, Expressions, and Predicates

SQL UDF

Purpose
A user-defined function written using regular SQL expressions and used like a standard SQL
function.

Syntax

where:

ANSI Compliance

SQL UDFs are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Restrictions

Self-referencing, forward-referencing, and circular-referencing SQL UDFs are not allowed.

Authorization

You must have EXECUTE FUNCTION privilege on the function or on the database
containing the function.

You can specify an SQL SECURITY clause with the DEFINER option in the CREATE/
REPLACE FUNCTION statement. This option is the default for an SQL UDF. SQL
SECURITY DEFINER means that when an SQL UDF is invoked, Teradata Database verifies
that the immediate owner and the creator of the UDF have the appropriate privileges on the
underlying database objects referenced in the UDF. If the creator does not exist when the
privileges are checked, an error is returned.

Syntax element … Specifies …

udf_name the name of the SQL UDF.

argument a valid SQL expression. See Usage Notes for rules that apply to SQL UDF
arguments.

1101A640

udf_name
,

(

argument

(

Chapter 18: User-Defined Functions
SQL UDF

SQL Functions, Operators, Expressions, and Predicates 707

To invoke a UDF that takes a UDT argument or returns a UDT, you must have the
UDTUSAGE privilege on the SYSUDTLIB database or on the specified UDT.

Usage Notes

An SQL UDF is a function that is defined by a user and is written using SQL expressions.
When Teradata Database evaluates an SQL UDF expression, it invokes the function with the
arguments passed to it. The following rules apply to the arguments in the function call:

• The arguments must be comma-separated expressions in the same order as the parameters
declared in the function.

• The number of arguments passed to the SQL UDF must be the same as the number of
parameters declared in the function.

• The data types of the arguments must be compatible with the corresponding parameter
declarations in the function and follow the precedence rules that apply to compatible
types. For details, see SQL Data Definition Language.

To pass an argument that is not compatible with the corresponding parameter type, use
CAST to explicitly convert the argument to the proper type. For information, see “CAST
in Explicit Data Type Conversions” on page 752.

• A NULL argument is compatible with a parameter of any data type. You can pass a NULL
argument explicitly or by omitting the argument.

• Any form of SQL expression can be used as an argument with three important rules:

• The SQL expression must not be a Boolean value expression (that is, a conditional
expression).

• If the expression is a nondeterministic SQL expression (expressions involving random
functions and/or nondeterministic UDFs), it must not correspond to a parameter that
is used more than once in the RETURN statement.

• The SQL expression must not be a scalar subquery.

When an SQL UDF is invoked, Teradata Database searches for the UDF in the following
locations:

• In the database specified if the function call is qualified by a database name.

• In the current database.

• In the SYSLIB database.

For details regarding UDF search resolution, see SQL Data Definition Language.

The result type of an SQL UDF is based on the return type of the SQL UDF, which is specified
in the RETURNS clause of the CREATE FUNCTION statement.

The default title of an SQL UDF appears as:

UDF_name(argument_list)

Example 1

Consider the following function definition and query:

CREATE FUNCTION Test.MyUDF (a INT, b INT, c INT)

Chapter 18: User-Defined Functions
SQL UDF

708 SQL Functions, Operators, Expressions, and Predicates

RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
SQL SECURITY DEFINER
COLLATION INVOKER
INLINE TYPE 1
RETURN a + b - c;

SELECT Test.MyUDF(t1.a1, t2.a2, t3.a3) FROM t1, t2, t3;

The user executing the SELECT statement must have the following privileges:

• SELECT privilege on tables t1, t2, and t3, their containing databases, or on the columns
t1.a1, t2.a2, and t3.a3.

• EXECUTE FUNCTION privilege on MyUDF or on the database named Test.

The privileges of the creator or owner are not checked since the UDF does not reference any
database objects in its definition.

Example 2

In this example, the SQL UDF named MySQLUDF references an external UDF named
MyExtUDF in the RETURN statement.

Consider the following function definition and query:

CREATE FUNCTION Test.MySQLUDF (a INT, b INT, c INT)
RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
SQL SECURITY DEFINER
COLLATION INVOKER
INLINE TYPE 1
RETURN a + b * MyExtUDF(a, b) - c;

SELECT Test.MySQLUDF(t1.a1, t2.a2, t3.a3) FROM t1, t2, t3;

The user executing the SELECT statement must have the following privileges:

• SELECT privilege on tables t1, t2, and t3, their containing databases, or on the columns
t1.a1, t2.a2, and t3.a3.

• EXECUTE FUNCTION privilege on MySQLUDF or on the database named Test.

Because the SQL UDF references MyExtUDF, the following privileges are also checked:

• The creator of MySQLUDF must exist and have the EXECUTE FUNCTION privilege on
MyExtUDF or its containing database.

• The database named Test (the immediate owner of MySQLUDF) must have the EXECUTE
FUNCTION privilege on MyExtUDF or its containing database.

Chapter 18: User-Defined Functions
SQL UDF

SQL Functions, Operators, Expressions, and Predicates 709

Example 3

In this example, invocations of the SQL UDF named MyUDF2 are passed as arguments to the
SQL UDF named MyUDF1.

CREATE FUNCTION test.MyUDF1 (a INT, b INT, c INT)
RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
COLLATION INVOKER
INLINE TYPE 1
RETURN a * b * c;

CREATE FUNCTION test.MyUDF2 (d INT, e INT, f INT)
RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
COLLATION INVOKER
INLINE TYPE 1
RETURN d + e + f;

SELECT test.MyUDF1(test.MyUDF2(t1.a1, 1, 2),
test.MyUDF2(t1.b1, 2, 3), 5) FROM t1;

Example 4

In this example, the UDF invocation argument data type (BYTEINT) is not the same as that of
the corresponding UDF parameter data type (INTEGER) since the size of the argument data
type is less than the UDF parameter data type. However, because the two data types are
compatible and a BYTEINT argument can fit inside an INTEGER parameter, this is allowed.

CREATE FUNCTION test.MyUDF (a INT, b INT, c INT)
RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
COLLATION INVOKER
INLINE TYPE 1
RETURN a * b * c;

CREATE TABLE t1 (a1 BYTEINT, b1 INT);

SELECT test.MyUDF(t1.a1, t1.b1, 2) FROM t1;

Example 5

In this example, the UDF invocation argument data type (INTEGER) is not the same as that
of the corresponding UDF parameter data type (BYTEINT) since the size of the argument
data type is greater than the UDF parameter data type. Although the two data types are
compatible, an INTEGER argument cannot fit inside a BYTEINT parameter, so an error is
returned.

Chapter 18: User-Defined Functions
SQL UDF

710 SQL Functions, Operators, Expressions, and Predicates

CREATE FUNCTION test.MyUDF (a BYTEINT, b INT, c INT)
RETURNS INT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
COLLATION INVOKER
INLINE TYPE 1
RETURN a * b * c;

CREATE TABLE t1 (a1 INT, b1 INT);

SELECT test.MyUDF(t1.a1, t1.b1, 2) FROM t1;

The following error is returned:

Failure 5589: Function "test.MyUDF" does not exist.

To avoid the error, the caller must explicitly cast the value of t1.a1 to BYTEINT as follows:

SELECT test.MyUDF(CAST(t1.a1 AS BYTEINT), t1.b1, 2) FROM t1;

Related Topics

FOR more information on … SEE …

• CREATE FUNCTION

• REPLACE FUNCTION

• SQL Data Definition Language.

• Database Administration.

EXECUTE FUNCTION and
UDTUSAGE privileges

SQL Data Control Language.

Chapter 18: User-Defined Functions
Scalar UDF

SQL Functions, Operators, Expressions, and Predicates 711

Scalar UDF

Purpose
A user-defined function that takes input arguments and returns a single value result.

Syntax

where:

ANSI Compliance

Scalar UDFs are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Restrictions

• Any restrictions that apply to standard SQL scalar functions also apply to scalar UDFs.

• Scalar UDF expressions cannot be used in a partitioning expression of the CREATE
TABLE statement.

Authorization

You must have EXECUTE FUNCTION privileges on the function or on the database
containing the function.

To invoke a scalar UDF that takes a UDT argument or returns a UDT, you must have the
UDTUSAGE privilege on the SYSUDTLIB database or on the specified UDT.

Syntax element … Specifies …

udf_name the name of the scalar UDF.

argument a valid SQL expression. See Usage Notes for rules that apply to scalar UDF
arguments.

1101A640

udf_name
,

(

argument

(

Chapter 18: User-Defined Functions
Scalar UDF

712 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

When Teradata Database evaluates a scalar UDF expression, it invokes the scalar function with
the arguments passed to it. The following rules apply to the arguments in the function call:

• The arguments must be comma-separated expressions in the same order as the parameters
declared in the function.

• The number of arguments passed to the scalar UDF must be the same as the number of
parameters declared in the function.

• The data types of the arguments must be compatible with the corresponding parameter
declarations in the function and follow the precedence rules that apply to compatible
types. For details, see SQL External Routine Programming.

To pass an argument that is not compatible with the corresponding parameter type, use
CAST to explicitly convert the argument to the proper type. For information, see “CAST
in Explicit Data Type Conversions” on page 752.

• A NULL argument is compatible with a parameter of any data type. You can pass a NULL
argument explicitly or by omitting the argument.

The result type of a scalar UDF is based on the return type of the scalar UDF, which is
specified in the RETURNS clause of the CREATE FUNCTION statement.

The default title of a scalar UDF appears as:

UDF_name(argument_list)

Example

Consider the following table definition and data:

CREATE TABLE pRecords (pname CHAR(30),
pkey INTEGER);

SELECT * FROM pRecords;

The output from the SELECT statement is:

pname pkey
------------------------------ -----------
Tom 6
Bob 5
Jane 4

The following is the SQL definition of a scalar UDF that calculates the factorial of an integer
argument:

CREATE FUNCTION factorial (i INTEGER)
RETURNS INTEGER
SPECIFIC factorial
LANGUAGE C
NO SQL
PARAMETER STYLE TD_GENERAL
NOT DETERMINISTIC
RETURNS NULL ON NULL INPUT
EXTERNAL NAME 'ss!factorial!factorial.c!F!fact'

Chapter 18: User-Defined Functions
Scalar UDF

SQL Functions, Operators, Expressions, and Predicates 713

The following query uses the scalar UDF expression to calculate the factorial of the pkey
column + 1.

SELECT pname, factorial(pkey)+1
FROM pRecords;

The output from the SELECT statement is:

pname (factorial(pkey)+1)
------------------------------ -------------------
Tom 721
Bob 121
Jane 25

Related Topics

FOR more information on … SEE …

Implementing external UDFs SQL External Routine Programming.

• CREATE FUNCTION

• REPLACE FUNCTION

• SQL Data Definition Language.

• Database Administration.

EXECUTE FUNCTION and
UDTUSAGE privileges

SQL Data Control Language.

Chapter 18: User-Defined Functions
Aggregate UDF

714 SQL Functions, Operators, Expressions, and Predicates

Aggregate UDF

Purpose
A user-defined function that takes grouped sets of relational data, makes a pass over each
group, and returns one result for the group.

Syntax

where:

ANSI Compliance

Aggregate UDFs are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Restrictions

• Any restrictions that apply to standard SQL aggregate functions also apply to aggregate
UDFs.

• Aggregate UDF expressions cannot appear in a recursive statement of a recursive query.
However, a non-recursive seed statement in a recursive query can specify an aggregate
UDF.

Authorization

You must have EXECUTE FUNCTION privileges on the function or on the database
containing the function.

To invoke an aggregate UDF that takes a UDT argument or returns a UDT, you must have the
UDTUSAGE privilege on the SYSUDTLIB database or on the specified UDT.

Syntax element … Specifies …

udf_name the name of the aggregate UDF.

argument a valid SQL expression. See Usage Notes for rules that apply to aggregate UDF
arguments.

1101A640

udf_name
,

(

argument

(

Chapter 18: User-Defined Functions
Aggregate UDF

SQL Functions, Operators, Expressions, and Predicates 715

Usage Notes

When Teradata Database evaluates an aggregate UDF expression, it invokes the aggregate
function once for each item in an aggregation group, passing the detail values of a group
through the input arguments. To accumulate summary information, the context is retained
each time the aggregate function is called.

The following rules apply to the arguments in the function call:

• The arguments must be comma-separated expressions in the same order as the parameters
declared in the function.

• The number of arguments passed to the aggregate UDF must be the same as the number of
parameters declared in the function.

• The data types of the arguments must be compatible with the corresponding parameter
declarations in the function and follow the precedence rules that apply to compatible
types. For details, see SQL External Routine Programming.

To pass an argument that is not compatible with the corresponding parameter type, use
CAST to explicitly convert the argument to the proper type. For information, see “CAST
in Explicit Data Type Conversions” on page 752.

• A NULL argument is compatible with a parameter of any data type. You can pass a NULL
argument explicitly or by omitting the argument.

The result type of an aggregate UDF is based on the return type of the aggregate UDF, which is
specified in the RETURNS clause of the CREATE FUNCTION statement.

The default title of an aggregate UDF appears as:

UDF_name(argument_list)

Example

Consider the following table definition and data:

CREATE TABLE Product_Life
 (Product_ID INTEGER,
 Product_class VARCHAR(30),
 Hours INTEGER);

SELECT * FROM Product_Life;

The output from the SELECT statement is:

Product_ID Product_class Hours
----------- ------------------------------ -----------
 100 Bulbs 100
 100 Bulbs 200
 100 Bulbs 300

The following is the SQL definition of an aggregate UDF that calculates the standard deviation
of the input arguments:

CREATE FUNCTION STD_DEV (i INTEGER)
RETURNS FLOAT
CLASS AGGREGATE (64)
SPECIFIC std_dev

Chapter 18: User-Defined Functions
Aggregate UDF

716 SQL Functions, Operators, Expressions, and Predicates

LANGUAGE C
NO SQL
PARAMETER STYLE SQL
NOT DETERMINISTIC
CALLED ON NULL INPUT
EXTERNAL NAME 'ss!stddev!stddev.c!f!STD_DEV'

The following query uses the aggregate UDF expression to calculate the standard deviation for
the life of a light bulb.

SELECT Product_ID, SUM(Hours), STD_DEV(Hours)
FROM Product_Life
WHERE Product_class = 'Bulbs'
GROUP BY Product_ID;

The output from the SELECT statement is:

Product_ID Sum(hours) std_dev(hours)
----------- ----------- ----------------------
 100 600 8.16496580927726E 001

Related Topics

FOR more information on … SEE …

SQL aggregate functions “Chapter 10 Aggregate Functions” on page 345.

window aggregate UDFs “Window Aggregate UDF” on page 717.

implementing aggregate UDFs SQL External Routine Programming.

• CREATE FUNCTION

• REPLACE FUNCTION

• SQL Data Definition Language.

• Database Administration.

EXECUTE FUNCTION and
UDTUSAGE privileges

SQL Data Control Language.

Chapter 18: User-Defined Functions
Window Aggregate UDF

SQL Functions, Operators, Expressions, and Predicates 717

Window Aggregate UDF

Purpose
An aggregate UDF with a window specification applied to it, which allows the function to
operate on a specified window of rows.

Syntax

udf_name
,

(

argument

(

1101A786

windowA

A

Chapter 18: User-Defined Functions
Window Aggregate UDF

718 SQL Functions, Operators, Expressions, and Predicates

where:

Syntax element … Specifies …

udf_name the name of the aggregate UDF on which the window specification is
applied.

argument a valid SQL expression. For rules that apply to aggregate UDF arguments,
see “Aggregate UDF” on page 714.

window

OVER (

ROWS UNBOUNDED PRECEDING

CURRENT ROW

UNBOUNDED FOLLOWINGROWS BETWEEN

CURRENT ROW

B

A

column_referencePARTITION BY

,

value PRECEDING

UNBOUNDED PRECEDING AND

value PRECEDING

value FOLLOWING

UNBOUNDED FOLLOWING

CURRENT ROW

value PRECEDING

value FOLLOWING

value FOLLOWING

value PRECEDING AND

value FOLLOWING AND

UNBOUNDED FOLLOWINGCURRENT ROW AND

CURRENT ROW

value FOLLOWING

UNBOUNDED FOLLOWING

value_expressionORDER BY

,

ASC

DESC

BA

1101B464

RESET WHEN condition

)

Chapter 18: User-Defined Functions
Window Aggregate UDF

SQL Functions, Operators, Expressions, and Predicates 719

OVER how values are grouped, ordered, and considered when computing the
cumulative, group, or moving function.

Values are grouped according to the PARTITION BY and RESET WHEN
clauses, sorted according to the ORDER BY clause, and considered
according to the aggregation group within the partition.

PARTITION BY in its column_reference, or comma-separated list of column references, the
group, or groups, over which the function operates.

PARTITION BY is optional. If there is no PARTITION BY or RESET
WHEN clauses, then the entire result set, delivered by the FROM clause,
constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY in its value_expression the order in which the values in a group, or partition,
are sorted.

ASC ascending sort order.

The default is ASC.

DESC descending sort order.

RESET WHEN the group or partition, over which the function operates, depending on the
evaluation of the specified condition. If the condition evaluates to TRUE, a
new dynamic partition is created inside the specified window partition.

RESET WHEN is optional. If there is no RESET WHEN or PARTITION BY
clauses, then the entire result set, delivered by the FROM clause, constitutes
a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified
also.

condition a conditional expression used to determine conditional partitioning. The
condition in the RESET WHEN clause is equivalent in scope to the
condition in a QUALIFY clause with the additional constraint that nested
ordered analytical functions cannot specify a RESET WHEN clause. In
addition, you cannot specify SELECT as a nested subquery within the
condition.

The condition is applied to the rows in all designated window partitions to
create sub-partitions within the particular window partitions.

For more information, see “RESET WHEN Condition Rules” on page 433
and the “QUALIFY Clause” in SQL Data Manipulation Language.

ROWS the starting point for the aggregation group within the partition. The
aggregation group end is the current row.

The aggregation group of a row R is a set of rows, defined relative to R in the
ordering of the rows within the partition.

If there is no ROWS or ROWS BETWEEN clause, the default aggregation
group is ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

Syntax element … Specifies …

Chapter 18: User-Defined Functions
Window Aggregate UDF

720 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Window aggregate UDFs are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list of an aggregate UDF is
empty is a Teradata extension to preserve compatibility with existing applications.

In the presence of an ORDER BY clause and the absence of a ROWS or ROWS BETWEEN
clause, ANSI SQL:2008 window aggregate functions use ROWS UNBOUNDED PRECEDING
as the default aggregation group, whereas Teradata SQL window aggregate functions use
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Authorization

You must have EXECUTE FUNCTION privileges on the function or on the database
containing the function.

To invoke an aggregate UDF that takes a UDT argument or returns a UDT, you must have the
UDTUSAGE privilege on the SYSUDTLIB database or on the specified UDT.

ROWS BETWEEN the aggregation group start and end, which defines a set of rows relative to
the current row in the ordering of the rows within the partition.

The row specified by the group start must precede the row specified by the
group end.

If there is no ROWS or ROWS BETWEEN clause, the default aggregation
group is ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

UNBOUNDED
PRECEDING

the entire partition preceding the current row.

UNBOUNDED
FOLLOWING

the entire partition following the current row.

CURRENT ROW the start or end of the aggregation group as the current row.

value PRECEDING the number of rows preceding the current row.

The value for value is always a positive integer constant.

The maximum number of rows in an aggregation group is 4096 when value
PRECEDING appears as the group start or group end.

value FOLLOWING the number of rows following the current row.

The value for value is always a positive integer constant.

The maximum number of rows in an aggregation group is 4096 when value
FOLLOWING appears as the group start or group end.

Syntax element … Specifies …

Chapter 18: User-Defined Functions
Window Aggregate UDF

SQL Functions, Operators, Expressions, and Predicates 721

Arguments to Window Aggregate UDFs

Window aggregate UDFs can take constants, constant expressions, column names (sales, for
example), or column expressions (sales + profit) as arguments.

Window aggregates can also take regular aggregates as input parameters to the PARTITION
BY and ORDER BY clauses. The RESET WHEN clause can take an aggregate as part of the
RESET WHEN condition clause.

The rules that apply to the arguments of the window aggregate UDF are the same as those that
apply to aggregate UDF arguments, see “Aggregate UDF” on page 714.

Supported Window Types for Aggregate UDFs

Consider the following table definition:

CREATE TABLE t (id INTEGER, v INTEGER);

The following query specifies a reporting window of rows which the window aggregate UDF
MYSUM operates on:

SELECT id, v, MYSUM(v) OVER (PARTITION BY id ORDER BY v)
FROM t;

The following query specifies a cumulative window of rows which the window aggregate UDF
MYSUM operates on:

SELECT id, v, MYSUM(v) OVER (PARTITION BY id ORDER BY v
ROWS UNBOUNDED PRECEDING)

FROM t;

Window Type Aggregation Group
Supported Partitioning
Strategy

Reporting
window

ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING

Hash partitioning

Cumulative
window

• ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW

• ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING

Hash partitioning

Moving window • ROWS BETWEEN value PRECEDING AND
CURRENT ROW

• ROWS BETWEEN CURRENT ROW AND value
FOLLOWING

• ROWS BETWEEN value PRECEDING AND
value FOLLOWING

• ROWS BETWEEN value PRECEDING AND
value PRECEDING

• ROWS BETWEEN value FOLLOWING AND
value FOLLOWING

Hash partitioning and
range partitioning

Chapter 18: User-Defined Functions
Window Aggregate UDF

722 SQL Functions, Operators, Expressions, and Predicates

The following query specifies a moving window of rows which the window aggregate UDF
MYSUM operates on:

SELECT id, v, MYSUM(v) OVER (PARTITION BY id ORDER BY v
ROWS BETWEEN 2 PRECEDING AND 3 FOLLOWING)

FROM t;

Unsupported Window Types for Aggregate UDFs

Partitioning

The range partitioning strategy helps to avoid hot AMP situations where the values of the
columns of the PARTITION BY clause result in the distribution of too many rows to the same
partition or AMP.

Range and hash partitioning is supported for moving window types. Only hash partitioning is
supported for the reporting and cumulative window types because of potential ambiguities
that can occur when a user tries to reference previous values assuming a specific ordering
within window types like reporting and cumulative, which are semantically not order
dependant.

You should use an appropriate set of column values for the PARTITION BY clause to avoid
potential skew situations for the reporting or cumulative aggregate cases. For more
information, see “Data in Partitioning Column of Window Specification and Resource
Impact” on page 441.

Result Type and Format

The result data type of a window aggregate UDF is based on the return type of the aggregate
UDF, which is specified in the RETURNS clause of the CREATE FUNCTION statement.

The default format of a window aggregate UDF is the default format for the return type. For
information on the default format of data types and an explanation of the formatting
characters in the format, see “Data Type Formats and Format Phrases” in SQL Data Types and
Literals.

Usage Notes

You can apply a window specification to an aggregate UDF. The window feature provides a
way to dynamically define a subset of data, or window, and allows the aggregate function to
operate on that window of rows. Without a window specification, aggregate functions return
one value for all qualified rows examined, but window aggregate functions return a new value
for each of the qualifying rows participating in the query.

Window Type Aggregation Group

Moving window • ROWS BETWEEN UNBOUNDED PRECEDING AND value
FOLLOWING

• ROWS BETWEEN value PRECEDING AND UNBOUNDED
FOLLOWING

Chapter 18: User-Defined Functions
Window Aggregate UDF

SQL Functions, Operators, Expressions, and Predicates 723

Problems With Missing Data

Ensure that data you analyze has no missing data points. Computing a moving function over
data with missing points produces unexpected and incorrect results because the computation
considers n physical rows of data rather than n logical data points.

Restrictions

• The window feature is supported only for aggregate UDFs written in C or C++. The
window feature is not supported for aggregate UDFs written in Java.

• Range partitioning for the reporting or cumulative window types is not supported.

• Any restrictions that apply to aggregate UDFs also apply to window aggregate UDFs.

• Any restrictions that apply to the window specification of a standard SQL aggregate
function also apply to the window specification of an aggregate UDF.

Example

Consider the following table definition and inserted data:

CREATE MULTISET TABLE t
(id INTEGER,
v INTEGER);

INSERT INTO t VALUES (1,1);
INSERT INTO t VALUES (1,2);
INSERT INTO t VALUES (1,2);
INSERT INTO t VALUES (1,4);
INSERT INTO t VALUES (1,5);
INSERT INTO t VALUES (1,5);
INSERT INTO t VALUES (1,5);
INSERT INTO t VALUES (1,8);
INSERT INTO t VALUES (1,);

The following is the SQL definition of a window aggregate UDF that performs the dense rank
operation:

REPLACE FUNCTION dense_rank (x INTEGER)
RETURNS INTEGER
CLASS AGGREGATE (1000)
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
DETERMINISTIC
CALLED ON NULL INPUT
EXTERNAL;

The dense_rank UDF evaluates dense rank over the set of values passed as arguments to the
UDF. With dense ranking, items that compare equal receive the same ranking number, and
the next item(s) receive the immediately following ranking number. In the following query
and result, note the difference in the rank and dense rank value for v=4. The dense rank value
is 4 whereas the rank of 4 is 5.

SELECT v, dense_rank(v) OVER (PARTITION BY id ORDER BY v
ROWS UNBOUNDED PRECEDING) as dr,
rank() OVER (PARTITION BY id ORDER BY v) as r

Chapter 18: User-Defined Functions
Window Aggregate UDF

724 SQL Functions, Operators, Expressions, and Predicates

FROM t ORDER BY dr;

The output from the SELECT statement is:

v dr r
----------- ----------- -----------
 ? 1 1
 1 2 2
 2 3 3
 2 3 3
 4 4 5
 5 5 6
 5 5 6
 5 5 6
 8 6 9

For a C code example of the dense_rank UDF, see “C Window Aggregate Function” in SQL
External Routine Programming.

Related Topics

FOR more information on … SEE …

aggregate UDFs “Aggregate UDF” on page 714.

ordered analytical functions and the
window feature

“Window Feature” on page 430.

implementing window aggregate UDFs SQL External Routine Programming.

• CREATE FUNCTION

• REPLACE FUNCTION

• SQL Data Definition Language.

• Database Administration.

EXECUTE FUNCTION and
UDTUSAGE privileges

SQL Data Control Language.

Chapter 18: User-Defined Functions
Table UDF

SQL Functions, Operators, Expressions, and Predicates 725

Table UDF

Purpose
A user-defined function that is invoked in the FROM clause of a SELECT statement and
returns a table to the statement.

Syntax

See the TABLE option of the FROM clause in SQL Data Manipulation Language.

ANSI Compliance

Table UDFs are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Restrictions

A table UDF can only appear in the FROM clause of an SQL SELECT statement. The SELECT
statement containing the table function can appear as a subquery.

Authorization

You must have EXECUTE FUNCTION privileges on the function or on the database
containing the function.

To invoke a table UDF that takes a UDT argument or returns a UDT, you must have the
UDTUSAGE privilege on the SYSUDTLIB database or on the specified UDT.

Usage Notes

When Teradata Database evaluates a table UDF expression, it invokes the table function which
returns a table a row at a time in a loop to the SELECT statement. The function can produce
the rows of a table from the input arguments passed to it or by reading an external file or
message queue.

A table function can have 128 input parameters. The following rules apply to the arguments in
the function call:

• The arguments must be comma-separated expressions in the same order as the parameters
declared in the function.

• The number of arguments passed to the table UDF must be the same as the number of
parameters declared in the function.

Chapter 18: User-Defined Functions
Table UDF

726 SQL Functions, Operators, Expressions, and Predicates

• The data types of the arguments must be compatible with the corresponding parameter
declarations in the function and follow the precedence rules that apply to compatible
types. For details, see SQL External Routine Programming.

To pass an argument that is not compatible with the corresponding parameter type, use
CAST to explicitly convert the argument to the proper type. For information, see “CAST
in Explicit Data Type Conversions” on page 752.

• A NULL argument is compatible with a parameter of any data type. You can pass a NULL
argument explicitly or by omitting the argument.

Table UDFs do not have return values. The columns in the result rows that they produce are
returned as output parameters.

The output parameters of a table function are defined by the RETURNS TABLE clause of the
CREATE FUNCTION statement. The number of output parameters is limited by the
maximum number of columns that can be defined for a regular table.

The number and data types of the output parameters can be specified statically in the
CREATE FUNCTION statement or dynamically at runtime in the SELECT statement that
invokes the table function.

Example

In this example, the extract_field table UDF is used to extract the customer ID, store number,
and item ID from the pending_data column of the raw_cust table.

The raw_cust table is defined as:

CREATE SET TABLE raw_cust ,NO FALLBACK ,
NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT
(
region INTEGER,
pending_data VARCHAR(32000) CHARACTER SET LATIN NOT CASESPECIFIC)

PRIMARY INDEX (region);

The pending_data text field is a string of numbers with the format:

store number, entries:customer ID, item ID, ...; repeat;

where:

• store number is the store that sold these items to customers.

• entries is the number of items that were sold.

• customer ID, item ID represent the item each customer bought. customer ID, item ID is
repeated entries times ending with a semi-colon ';'.

• The above sequence can be repeated.

The following shows sample data from the raw_cust table:

region pending_data
-------- ---

 2 7,2:879,3788,879,4500;08,2:500,9056,390,9004;

Chapter 18: User-Defined Functions
Table UDF

SQL Functions, Operators, Expressions, and Predicates 727

 1 25,3:9005,3789,9004,4907,398,9004;36,2:738,9387,738,9550;
 1 25,2:9005,7896,9004,7839;36,1:737,9387;

The following shows the SQL definition of the extract_field table UDF:

CREATE FUNCTION extract_field (Text VARCHAR(32000),
 From_Store INTEGER)

RETURNS TABLE (Customer_ID INTEGER,
 Store_ID INTEGER,
 Item_ID INTEGER)

LANGUAGE C
NO SQL
PARAMETER STYLE SQL
EXTERNAL NAME extract_field;

The following query extracts and displays the customers and the items they bought from store
25 in region 1.

SELECT DISTINCT cust.Customer_ID, cust.Item_ID
FROM raw_cust,
TABLE (extract_field(raw_cust.pending_data, 25))
AS cust
WHERE raw_cust.region = 1;

The output from the SELECT statement is similar to:

Customer_ID Item_ID
------------ -----------

9005 3789
9004 4907
398 9004

9005 7896
9004 7839

Related Topics

FOR more information on … SEE …

Implementing external UDFs SQL External Routine Programming.

• CREATE FUNCTION

• REPLACE FUNCTION

• SQL Data Definition Language.

• Database Administration.

EXECUTE FUNCTION and
UDTUSAGE privileges

SQL Data Control Language.

the TABLE option in the FROM clause of
an SQL SELECT statement

SQL Data Manipulation Language.

Chapter 18: User-Defined Functions
Table UDF

728 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 729

CHAPTER 19 UDT Expressions and Methods

This chapter describes expressions related to user-defined types (UDTs).

Chapter 19: UDT Expressions and Methods
UDT Expression

730 SQL Functions, Operators, Expressions, and Predicates

UDT Expression

Purpose
Returns a distinct or structured UDT data type.

Syntax

where:

Syntax element … Specifies …

database_name an optional qualifier for the column_name.

table_name an optional qualifier for the column_name.

column_name the name of a distinct or structured UDT column.

udf_name the name of a UDF that returns a distinct or structured UDT.

argument an argument to the UDF.

CAST a CAST expression that converts a source data type to a distinct or structured
UDT.

Data type conversions involving UDTs require appropriate cast definitions for
the UDTs. To define a cast for a UDT, use the CREATE CAST statement. For
more information on CREATE CAST, see SQL Data Definition Language.

CAST

constructor_name

udf_name

NEW

SYSUDTLIB.

1101B363

A

table_name.

expression udt_nameAS

column_name

,
(

database_name.

argument

A

(

,
(

argument

(

((

method_name
,

(

argument

(.

.

Chapter 19: UDT Expressions and Methods
UDT Expression

SQL Functions, Operators, Expressions, and Predicates 731

ANSI Compliance

UDT expressions are partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Authorization

To use a UDT expression, you must have the UDTTYPE, UDTMETHOD, or UDTUSAGE on
the SYSUDTLIB database or the UDTUSAGE privilege on all of the specified UDTs.

Usage Notes

You can use UDT expressions as input arguments to UDFs written in C or C++. You cannot
use UDT expressions as input arguments to UDFs written in Java.

You can also use UDT expressions as IN and INOUT parameters of stored procedures and
external stored procedures written in C or C++. However, you cannot use UDT expressions as
IN and INOUT parameters of external stored procedures written in Java.

You can use UDT expressions with most SQL functions and operators, with the exception of
ordered analytical functions, provided that a cast definition exists that casts the UDT to a

expression an expression that results in a data type that is compatible as the source type of
a cast definition for the target UDT.

udt_name the name of a distinct or structured UDT data type.

NEW an expression that constructs a new instance of a structured type and initializes
it using the specified constructor method.

For details on NEW, see “NEW” on page 734.

SYSUDTLIB. the database in which the constructor exists.

Teradata Database only searches the SYSUDTLIB database for UDT
constructors, regardless of whether the database name appears in the
expression.

constructor_name the name of a constructor method associated with a UDT.

Constructor methods have the same name as the UDT with which they are
associated.

argument an argument to pass to the constructor.

Parentheses must appear even though the argument list may be empty.

method_name the name of an instance method that returns a UDT.

For details on method invocation, see “Method Invocation” on page 740.

argument an argument to pass to the method.

Parentheses must appear even though the argument list may be empty.

Syntax element … Specifies …

Chapter 19: UDT Expressions and Methods
UDT Expression

732 SQL Functions, Operators, Expressions, and Predicates

predefined type that is accepted by the function or operator. For details, see other chapters in
this book.

Examples

Consider the following statements that create a distinct UDT named euro and a structured
UDT named address:

CREATE TYPE euro
AS DECIMAL(8,2)
FINAL;

CREATE TYPE address
AS (street VARCHAR(20)

,zip CHAR(5))
NOT FINAL;

The following statement creates a table that defines an address column named location:

CREATE TABLE european_sales
(region INTEGER
,location address
,sales DECIMAL(8,2));

Example 1: Column Name

The following statement creates a table that defines an address column named location:

CREATE TABLE italian_sales
(location address
,sales DECIMAL(8,2));

The location column reference in the following statement returns an address UDT expression.

INSERT INTO italian_sales
SELECT location, sales
FROM european_sales
WHERE region = 1151;

Example 2: CAST

The following statement creates a table that defines a euro column named sales:

CREATE TABLE swiss_sales
(location address
,sales euro);

The following statement uses CAST to return a euro UDT expression. Using CAST requires a
cast definition that converts the DECIMAL(8,2) predefined type to a euro type.

INSERT INTO swiss_sales
SELECT location, CAST (sales AS euro)
FROM european_sales
WHERE region = 1038;

Chapter 19: UDT Expressions and Methods
UDT Expression

SQL Functions, Operators, Expressions, and Predicates 733

Example 3: NEW

The following INSERT statement uses NEW to return an address UDT expression and insert it
into the european_sales table.

INSERT european_sales (1001, NEW address(), 0);

Example 4: Methods and Functions

The following statement uses the built-in constructor function and mutator methods to
return a new instance of the address UDT and insert it into the european_sales table:

INSERT INTO european_sales
VALUES (101, address().street('210 Stanton').zip('76543'), 500);

Teradata Database executes the UDT expression in the following order:

The final result of the UDT expression is an instance of the address UDT with the street
attribute set to '210 Stanton' and the zip attribute set to '76543'.

Related Topics

Step Invocation Result

1 address() constructor function Default UDT instance

2 mutator method for street UDT instance with street attribute set to '210 Stanton'

3 mutator method for zip UDT instance with zip attribute set to '76543'

FOR more information on … SEE …

creating a UDT CREATE TYPE in SQL Data Definition Language.

creating cast definitions for a UDT CREATE CAST in SQL Data Definition Language.

using UDT expressions in DML
statements such as SELECT and INSERT

CREATE TYPE in SQL Data Manipulation Language.

Chapter 19: UDT Expressions and Methods
NEW

734 SQL Functions, Operators, Expressions, and Predicates

NEW

Purpose
Constructs a new instance of a structured type and initializes it using the specified constructor
method or function.

Syntax

where

ANSI Compliance

NEW is partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Usage Notes

You can also construct a new instance of a structured type by calling the constructor method
or function. For an example, see “Example” on page 735.

To construct a new instance of a dynamic UDT and define the run time composition of the
UDT, you must use the NEW VARIANT_TYPE expression. For details, see “NEW
VARIANT_TYPE” on page 737.

constructor_nameNEW

SYSUDTLIB.
1101B364

,
(

argument

(

Syntax element … Specifies …

SYSUDTLIB. the database in which the constructor exists.

Teradata Database only searches the SYSUDTLIB database for UDT
constructors, regardless of whether the database name appears in the NEW
expression.

constructor_name the name of the constructor, which is the same as the name of the structured
type.

argument an argument to pass to the constructor.

Parentheses must appear even for constructors that take no arguments.

Chapter 19: UDT Expressions and Methods
NEW

SQL Functions, Operators, Expressions, and Predicates 735

Default Constructor

When a structured UDT is created, Teradata Database automatically generates a constructor
function with an empty argument list that you can use to construct a new instance of the
structured UDT and initialize the attributes to NULL.

Determining Which Constructor is Invoked

Teradata Database uses the rules in the following table to select a UDT constructor:

Example

Consider the following statement that creates a structured UDT named address:

CREATE TYPE address
AS (street VARCHAR(20)

,zip CHAR(5))
NOT FINAL;

The following statement creates a table that defines an address column named location:

CREATE TABLE european_sales
(region INTEGER
,location address
,sales DECIMAL(8,2));

The following statement uses NEW to insert an address value into the european_sales table:

INSERT european_sales (1001, NEW address(), 0);

Teradata Database selects the default constructor function that was automatically generated
for the address UDT because the argument list is empty and the address UDT was created with
no constructor method. The default address constructor function initializes the street and zip
attributes to NULL.

IF the NEW expression
specifies a constructor with
an argument list that is … THEN …

empty

IF a constructor method that
takes no parameters and has the
same name as the UDT …

THEN Teradata Database
selects …

exists in the SYSUDTLIB
database

that constructor method.

does not exist in the
SYSUDTLIB database

the constructor function that is
automatically generated when
the structured UDT is created.

not empty Teradata Database selects the constructor method in SYSUDTLIB
with a parameter list that matches the arguments passed to the
constructor in the NEW expression.

Chapter 19: UDT Expressions and Methods
NEW

736 SQL Functions, Operators, Expressions, and Predicates

The following statement is equivalent to the preceding INSERT statement but calls the
constructor function instead of using NEW:

INSERT european_sales (1001, address(), 0);

Related Topics

FOR more information on … SEE …

creating constructor methods CREATE METHOD in SQL Data Definition Language.

the constructor function that Teradata
Database automatically generates when
the structured type is created

CREATE TYPE (Structured Form) in SQL Data
Definition Language.

constructing a new instance of a
dynamic UDT and defining the run time
composition of the UDT

“NEW VARIANT_TYPE” on page 737

Chapter 19: UDT Expressions and Methods
NEW VARIANT_TYPE

SQL Functions, Operators, Expressions, and Predicates 737

NEW VARIANT_TYPE

Purpose
Constructs a new instance of a dynamic or VARIANT_TYPE UDT and defines the run time
composition of the UDT.

Syntax

where

ANSI Compliance

NEW VARIANT_TYPE is a Teradata extension to the ANSI SQL standard.

Syntax element … Specifies …

expression any valid SQL expression; however, the following restrictions apply:

• expression cannot contain a dynamic UDT expression. Nesting of dynamic
UDT expressions is not allowed.

• the first expression (that is, the first attribute of the dynamic UDT) cannot
be a LOB, UDT, or LOB-UDT expression.

alias_name a name representing the expression or column reference which corresponds to
an attribute of the dynamic UDT. When provided, alias_name is used as the
name of the attribute.

You must provide an alias name for any expression that is not a column
reference. You cannot assign the same alias name to more than one attribute of
the dynamic UDT. Also, you cannot specify an alias name that is the same as a
column name if that column name is already used as an attribute name in the
dynamic UDT.

table_name the name of the table in which the column being referenced is stored.

column_name the name of the column being referenced. If you do not provide an alias name,
the column name is used as the name of the corresponding attribute in the
dynamic UDT.

The same column name cannot be used as an attribute name for more than
one attribute of the dynamic UDT. If a column has the same name as an alias
name, the column name cannot be used as an attribute name.

 NEW VARIANT_TYPE expression AS alias_name

 AS alias_name

 ,

table_name.column_name

 ()

1101A576

Chapter 19: UDT Expressions and Methods
NEW VARIANT_TYPE

738 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

You can use the NEW VARIANT_TYPE expression to define the run time composition or
internal attributes of a dynamic UDT. Each expression you pass into the NEW
VARIANT_TYPE constructor corresponds to one attribute of the dynamic UDT. You can
assign an alias name to represent each NEW VARIANT_TYPE expression parameter. The
name of the attribute will be the alias name provided or the column name associated with the
column reference if no alias is provided. This is summarized in the following table:

Note that you must provide an alias name for all expressions that are not column references.
In addition, the attribute names must be unique. Therefore, you must provide unique alias
names and/or column references.

The data type of the attribute will be the result data type of the expression. The resultant value
of the expression will become the value of the corresponding attribute.

Restrictions

• You can use the NEW VARIANT_TYPE expression only to construct dynamic UDTs for
use as input parameters to UDFs. To construct a new instance of other structured UDTs,
use the NEW expression. For details, see “NEW” on page 734.

• UDFs support a maximum of 128 parameters. Therefore, you cannot use NEW
VARIANT_TYPE to construct a dynamic UDT with more than 128 attributes.

• The sum of the maximum sizes for all the attributes of the dynamic UDT must not exceed
the maximum permissible column size as configured for the Teradata Database.
Exceeding the maximum column size results in the following SQL error:
“ERR_TEQRWOVRFLW _T("Row size or Sort Key size overflow.")”.

Example 1

The following NEW VARIANT_TYPE expression creates a dynamic UDT with a single
attribute named weight:

NEW VARIANT_TYPE (Table1.a AS weight)

In the next example, the NEW VARIANT_TYPE expression creates a dynamic UDT with a
single attribute named height. In this example, no alias name is specified; therefore, the
column name is used as the attribute name.

NEW VARIANT_TYPE (Table1.height)

IF... THEN the attribute name is...

alias_name is provided alias_name

table_name.column_name is provided, but

alias_name is not provided

column_name

an expression is provided that is not a column
reference and alias_name is not provided

an error is returned.

Chapter 19: UDT Expressions and Methods
NEW VARIANT_TYPE

SQL Functions, Operators, Expressions, and Predicates 739

In the next example, the first attribute is named height based on the column name. However,
the second attribute is also named height based on the specified alias name. This is not allowed
since attribute names must be unique; therefore, the Teradata Database returns the error,
“ERRTEQDUPLATTRNAME - "Duplicate attribute names in the attribute list. %VSTR",
being returned to the user.”

NEW VARIANT_TYPE (Table1.height, Table1.a AS height)

Example 2

This example shows a user-defined aggregate function with an input parameter named
parameter_1 declared as VARIANT_TYPE data type. The SELECT statement calls the new
function using the NEW VARIANT_TYPE expression to create a dynamic UDT with two
attributes named a and b.

CREATE TYPE INTEGERUDT AS INTEGER FINAL;

CREATE FUNCTION udf_agch002002dynudt (parameter_1 VARIANT_TYPE)
RETURNS INTEGERUDT CLASS AGGREGATE (4) LANGUAGE C NO SQL
EXTERNAL NAME 'CS!udf_agch002002dynudt!udf_agch002002dynudt.c'
PARAMETER STYLE SQL;

SELECT udf_agch002002dynudt(NEW VARIANT_TYPE (Tbl1.a AS a,
(Tbl1.b + Tbl1.c) AS b))

FROM Tbl1;

Related Topics

FOR more information on … SEE …

dynamic UDTs “VARIANT_TYPE UDT” in SQL Data Types and
Literals.

constructing a new instance of a
structured UDT that is not a dynamic
UDT

“NEW” on page 734.

writing UDFs which use input
parameters of VARIANT_TYPE data
type

SQL External Routine Programming

Chapter 19: UDT Expressions and Methods
Method Invocation

740 SQL Functions, Operators, Expressions, and Predicates

Method Invocation

Purpose
Invokes a method associated with a UDT.

Syntax

where:

1101B365

A

A method_name
,

(

argument

(

CAST

constructor_name

udf_name

NEW

.

.

SYSUDTLIB.

table_name.

expression udt_nameAS

column_name

,
(

database_name.

argument

(

,
(

argument

(

((

Syntax element … Specifies …

database_name an optional qualifier for the column_name.

table_name an optional qualifier for the column_name.

column_name the name of a distinct or structured UDT column.

udf_name the name of a UDF that returns a distinct or structured UDT.

argument an argument to the UDF.

CAST a CAST expression that converts a source data type to a distinct or structured
UDT.

Data type conversions involving UDTs require appropriate cast definitions for
the UDTs. To define a cast for a UDT, use the CREATE CAST statement. For
more information on CREATE CAST, see SQL Data Definition Language.

Chapter 19: UDT Expressions and Methods
Method Invocation

SQL Functions, Operators, Expressions, and Predicates 741

ANSI Compliance

Invocation of UDT methods is partially ANSI SQL:2008 compliant.

The requirement that parentheses appear when the argument list is empty is a Teradata
extension to preserve compatibility with existing applications.

Additionally, when a statement specifies an ambiguous expression that can be interpreted as a
UDF invocation or a method invocation, Teradata Database gives UDF invocation higher
precedence over method invocation. ANSI SQL:2008 gives method invocation higher
precedence over UDF invocation.

Observer and Mutator Methods

Teradata Database automatically generates observer and mutator methods for each attribute of
a structured UDT. Observer and mutator methods have the same name as the attribute for
which they are generated.

expression an expression that results in a data type that is compatible as the source type of
a cast definition for the target UDT.

udt_name the name of a distinct or structured UDT.

NEW an expression that constructs a new instance of a structured type and initializes
it using the specified constructor method.

For details on NEW, see “NEW” on page 734.

SYSUDTLIB. the database in which the constructor exists.

Teradata Database only searches the SYSUDTLIB database for UDT
constructors, regardless of whether the database name appears in the
expression.

constructor_name the name of a constructor method associated with a UDT.

Constructor methods have the same name as the UDT with which they are
associated.

argument an argument to pass to the constructor.

Parentheses must appear even though the argument list may be empty.

method_name the name of an observer, mutator, or user-defined method (UDM).

You must precede each method name with a period.

argument an argument to pass to the method.

Parentheses must appear even though the argument list may be empty.

Syntax element … Specifies …

Method Description Invocation Example

Observer Takes no arguments and returns the current value of the
attribute.

“Example” on page 742

Chapter 19: UDT Expressions and Methods
Method Invocation

742 SQL Functions, Operators, Expressions, and Predicates

Usage Notes

When you invoke a UDM on a UDT, Teradata Database searches the SYSUDTLIB database for
a UDM that has the UDT as its first parameter followed by the same number of parameters as
the method invocation.

If several UDMs have the same name, Teradata Database must determine which UDM to
invoke. For details on the steps that Teradata Database uses, see SQL External Routine
Programming.

Restrictions

To use any of the following functions as the first argument of a method invocation, you must
enclose the function in parentheses:

• DATE

• TIME

• VARGRAPHIC

For example, consider a structured UDT called datetime_record that has a DATE type attribute
called start_date. The following statement invokes the start_date mutator method, passing in
the result of the DATE function:

SELECT datetime_record_column.start_date((DATE)) FROM table1;

Example

Consider the following statement that creates a structured UDT named address:

CREATE TYPE address
AS (street VARCHAR(20)

,zip CHAR(5))
NOT FINAL;

The following statement creates a table that defines an address column named location:

CREATE TABLE european_sales
(region INTEGER
,location address
,sales DECIMAL(8,2));

The following statement invokes the zip observer method to retrieve the value of each zip
attribute in the location column:

SELECT location.zip() FROM european_sales;

Mutator Takes one argument and returns a new UDT instance with
the specified attribute set to the value of the argument.

“Example 4: Methods and
Functions” on page 733

Method Description Invocation Example

Chapter 19: UDT Expressions and Methods
Method Invocation

SQL Functions, Operators, Expressions, and Predicates 743

Related Topics

FOR more information on … SEE …

creating methods CREATE METHOD in SQL Data Definition Language.

creating UDTs CREATE TYPE in SQL Data Definition Language.

UDM programming SQL External Routine Programming.

Chapter 19: UDT Expressions and Methods
Method Invocation

744 SQL Functions, Operators, Expressions, and Predicates

SQL Functions, Operators, Expressions, and Predicates 745

CHAPTER 20 Data Type Conversions

This chapter describes the SQL CAST function and the rules for converting data from one
type to another, both explicitly and implicitly.

A data type conversion modifies the data definition (data type, data attributes, or both) of an
expression and can be either implicit or explicit. Explicit conversions can be made using the
CAST function or Teradata conversion syntax.

For details on data types and data attributes, see SQL Data Types and Literals.

Forms of Data Type Conversions

Teradata Database supports the following forms of data conversion:

• Implicit

See “Implicit Type Conversions” on page 745.

• Explicit using the CAST function

See “CAST in Explicit Data Type Conversions” on page 752.

• Explicit using Teradata conversion syntax

See “Teradata Conversion Syntax in Explicit Data Type Conversions” on page 755.

Implicit Type Conversions

Teradata Database permits the assignment and comparison of some types without requiring
the types to be explicitly converted. Teradata Database also performs implicit type conversions
in the following cases:

• On some argument types passed to macros, stored procedures, and SQL functions such as
SQRT.

• On the expression that defines a time zone displacement in an AT clause. For details, see
“AT LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

ANSI Compliance

Implicit conversions are Teradata extensions to the ANSI standard.

Example 1: Implicit Type Conversion During Assignment

Consider the following tables:

Chapter 20: Data Type Conversions
Implicit Type Conversions

746 SQL Functions, Operators, Expressions, and Predicates

CREATE TABLE T1
(Fname VARCHAR(25)
,Fid INTEGER
,Yrs CHARACTER(2));

CREATE TABLE T2
(Wname VARCHAR(25)
,Wid INTEGER
,Age SMALLINT);

In the following statement, Teradata Database implicitly converts the character string in
T1.Yrs to a numeric value:

UPDATE T2 SET Age = T1.Yrs + 5;

This is not evident in the syntax of the source statement, but becomes evident when the
dictionary information for tables T1 and T2 is accessed.

Example 2: Implicit Type Conversion During Comparison

Consider the table T1 in “Example 1: Implicit Type Conversion During Assignment.”

In the following statement, Teradata Database implicitly converts both operands of the
comparison operation to FLOAT values before performing the comparison:

SELECT Fname, Fid
FROM T1
WHERE T1.Yrs < 55;

For details on implicit type conversion of operands for comparison operations, see “Implicit
Type Conversion of Comparison Operands” on page 168.

Example 3: Implicit Type Conversion in Parameter Passing Operations

Consider the SQRT system function that computes the square root of an argument.

In the following statement, Teradata Database implicitly converts the character argument to a
FLOAT type:

SELECT SQRT('13147688');

Supported Data Types

Teradata Database performs implicit conversion on the following types:

FROM … TO … For further details, see …

Byte Byte

Byte types include BYTE,
VARBYTE, and BLOB.

“Byte Conversion” on page 758.

UDTa

Chapter 20: Data Type Conversions
Implicit Type Conversions

SQL Functions, Operators, Expressions, and Predicates 747

Numeric Numeric “Numeric-to-Numeric Conversion” on page 837.

DATE “Numeric-to-DATE Conversion” on page 832.

Character “Numeric-to-Character Conversion” on page 827.

UDTa “Numeric-to-UDT Conversion” on page 841.

DATE Numeric “DATE-to-Numeric Conversion” on page 804.

DATE “DATE-to-DATE Conversion” on page 802.

Character “DATE-to-Character Conversion” on page 798.

UDTa “DATE-to-UDT Conversion” on page 815.

Character Numeric “Character-to-Numeric Conversion” on page 775.

DATE “Character-to-DATE Conversion” on page 767.

Character

Character types include
CHAR, VARCHAR, and
CLOB.

“Character-to-Character Conversion” on page 762.

Period “Character-to-Period Conversion” on page 781.

TIME “Character-to-TIME Conversion” on page 784.

TIMESTAMP “Character-to-TIMESTAMP Conversion” on
page 790.

UDTa “Character-to-UDT Conversion” on page 795.

TIME UDTa “TIME-to-UDT Conversion” on page 888.

TIMESTAMP UDTa “TIMESTAMP-to-UDT Conversion” on page 923.

Interval UDTa “INTERVAL-to-UDT Conversion” on page 825.

UDT Predefined data types that
are the target of implicit
casts defined for the UDTb

• “UDT-to-Character Conversion” on page 928.

• “UDT-to-DATE Conversion” on page 932.

• “UDT-to-INTERVAL Conversion” on page 935.

• “UDT-to-Numeric Conversion” on page 938.

• “UDT-to-TIME Conversion” on page 941.

• “UDT-to-TIMESTAMP Conversion” on
page 944.

Other UDTs that are the
target of implicit casts
defined for the UDTb

“UDT-to-UDT Conversion” on page 947.

a. The UDT must have an implicit cast that casts the predefined type to a UDT. To define an implicit
cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT clause. For more
information on CREATE CAST, see SQL Data Definition Language.

FROM … TO … For further details, see …

Chapter 20: Data Type Conversions
Implicit Type Conversions

748 SQL Functions, Operators, Expressions, and Predicates

For details on data types, see SQL Data Types and Literals.

Implicit Conversion of DateTime types

Teradata Database performs implicit conversion on DateTime data types in the following
cases:

• When passing data using dynamic parameter markers, or the question mark (?)
placeholder.

• With INSERT, INSERT...SELECT, and UPDATE statements.

• With MERGE INTO statements.

• When handling default values for the CREATE/ALTER TABLE statements. For details, see
“DEFAULT Phrase” in SQL Data Types and Literals.

• During stored procedure execution, including the execution of the following statements:
DECLARE, SELECT...INTO, and SET. See SQL Stored Procedures and Embedded SQL.

Implicit conversion is dependent on client-side support. For information about the client
products which support implicit conversion of DateTime types, see the Teradata Tools and
Utilities user documentation.

The following conversions are supported:

Teradata Database performs implicit conversion on DateTime data types during assignment
in the following cases:

b. To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS
ASSIGNMENT clause. For more information on CREATE CAST, see SQL Data Definition Language.

FROM... TO... For further details, see...

DATE TIMESTAMP “Implicit DATE-to-TIMESTAMP Conversion” on
page 812.

TIME TIMESTAMP “Implicit TIME-to-TIMESTAMP Conversion” on
page 880.

TIMESTAMP DATE “Implicit TIMESTAMP-to-DATE Conversion” on
page 897.

TIMESTAMP TIME “Implicit TIMESTAMP-to-TIME Conversion” on
page 911.

INTERVAL INTERVAL “Implicit INTERVAL-to-INTERVAL Conversion” on
page 821.

FROM... TO... For further details, see...

DATE TIMESTAMP “Implicit DATE-to-TIMESTAMP Conversion” on
page 812.

Chapter 20: Data Type Conversions
Implicit Type Conversions

SQL Functions, Operators, Expressions, and Predicates 749

Note: There is a general restriction that in Numeric-to-Interval conversions, the INTERVAL
type must have only one DateTime field. However, this restriction is not an issue when
implicitly converting the expression of an AT clause because the conversion is done with two
CAST statements. See “AT LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

For more information, see “ANSI DateTime and Interval Data Type Assignment Rules” on
page 210.

Teradata Database performs implicit conversion on DateTime data types in single table
predicates and join predicates in the following cases:

For more information, see “Implicit Type Conversion of Comparison Operands” on page 168.

The following are not supported:

• Implicit conversion from TIME to TIMESTAMP and from TIMESTAMP to TIME are not
supported in comparisons.

• Implicit conversion of DateTime types in set operations.

For details on data types, see SQL Data Types and Literals.

TIME TIMESTAMP “Implicit TIME-to-TIMESTAMP Conversion” on
page 880.

TIMESTAMP DATE “Implicit TIMESTAMP-to-DATE Conversion” on
page 897.

TIMESTAMP TIME “Implicit TIMESTAMP-to-TIME Conversion” on
page 911.

Intervala Exact Numeric “Implicit INTERVAL-to-Numeric Conversion” on
page 824.

Exact Numeric Intervala “Implicit Numeric-to-INTERVAL Conversion” on
page 836.

a. The INTERVAL type must have only one field, e.g. INTERVAL YEAR.

FROM... TO... For further details, see...

TIMESTAMP DATE “Implicit TIMESTAMP-to-DATE Conversion” on
page 897.

Intervala

a. The INTERVAL type must have only one field, e.g. INTERVAL YEAR.

Exact Numeric “Implicit INTERVAL-to-Numeric Conversion” on
page 824.

Exact Numeric Intervala “Implicit Numeric-to-INTERVAL Conversion” on
page 836.

FROM... TO... For further details, see...

Chapter 20: Data Type Conversions
Implicit Type Conversions

750 SQL Functions, Operators, Expressions, and Predicates

Implicit Conversion Rules

Teradata SQL performs implicit type conversions on expressions before any operation is
performed.

The implementation of implicit type conversion follows the same rules as the implementation
of explicit type conversion using Teradata conversion syntax. For details, see “Teradata
Conversion Syntax in Explicit Data Type Conversions” on page 755.

For details on implicit type conversion of operands for comparison operations, see “Implicit
Type Conversion of Comparison Operands” on page 168.

Truncation During Conversion

In some cases, implicit conversion can result in truncation of values without an error.

Recommendation: As a best practice, use an explicit CAST instead of relying on implicit
conversions when possible.

Example 1

Consider the following table definition:

CREATE TABLE Test1 (c1 INT, c2 VARCHAR(1));

The following two INSERT statements complete without any errors.

INSERT INTO Test1 VALUES (1, '1');
INSERT INTO Test1 VALUES (2, 2);

The following query returns two rows.

SELECT * FROM Test1;

c1 c2

1 1
2 <<<< Note that the value inserted in c2 is a blank

In the second INSERT statement, the number 2 was implicitly converted to CHAR using
Teradata conversion syntax (that is, not using CAST). The process is as follows:

1 Convert the numeric value to a character string using the default or specified FORMAT for
the numeric value. Leading and trailing pad characters are not trimmed.

2 Extend to the right with pad characters if required, or truncate from the right if required,
to conform to the target length specification.

If non-pad characters are truncated, no string truncation error is reported.

The conversion right-justifies the number, but takes the first byte of the result which is a single
blank character. For more information about numeric to character conversions, see
“Numeric-to-Character Conversion” on page 827.

Restrictions

Teradata Database does not perform implicit conversion on input arguments to UDFs,
UDMs, or external stored procedures (external routines). Arguments do not necessarily have

Chapter 20: Data Type Conversions
Implicit Type Conversions

SQL Functions, Operators, Expressions, and Predicates 751

to be exact matches to the parameter types, but they must be compatible. For example, you
can pass a SMALLINT argument to an external routine that expects an INTEGER argument
because SMALLINT and INTEGER are compatible. To pass a DATE type argument to an
external routine that expects an INTEGER argument, you must explicitly cast the DATE type
to an INTEGER type. For details, see SQL External Routine Programming.

Some SQL functions and operators require arguments that are exact matches to the parameter
types. For details, refer to the documentation for the specific function or operator.

Chapter 20: Data Type Conversions
CAST in Explicit Data Type Conversions

752 SQL Functions, Operators, Expressions, and Predicates

CAST in Explicit Data Type Conversions

Purpose

Converts an expression of a given data type to a different data type or the same data type with
different attributes.

Teradata SQL supports two different syntaxes for CAST functionality, only one of which is
ANSI SQL:2008 compliant.

Syntax

where:

ANSI Compliance

The form of CAST syntax that specifies ansi_sql_data_type is ANSI SQL:2008 compliant.

The form of CAST syntax that specifies data_definition_list is a Teradata extension to the
ANSI SQL:2008 standard. Note that when data_definition_list consists solely of an ANSI data
type declaration, then this form of the syntax is also ANSI-compliant.

Usage Notes

The ANSI SQL:2008 compliant form can be used to convert data types in either
ANSI-compliant SQL statements or Teradata SQL statements.

The Teradata extended syntax is more general. It allows a type declaration or data attributes or
both. For more information on data types and attributes, see SQL Data Types and Literals.

Avoid using the extended form of CAST for any application intended to be ANSI-compliant
and portable.

CAST functions identically in both ANSI and Teradata modes.

Syntax element … Specifies …

expression an expression with known data type to be cast as a different data type.

ansi_sql_data_type the new data type for expression.

data_definition_list the new data type or data attributes or both for expression.

1101A627

CAST AS ansi_sql_data_type

data_definition_list

expression()

Chapter 20: Data Type Conversions
CAST in Explicit Data Type Conversions

SQL Functions, Operators, Expressions, and Predicates 753

When converting DateTime data types, you can use the AT clause to specify the time zone
used for the CAST. You can specify the source time zone, a specific time zone displacement, or
the current session time zone. For more information, see the section on converting the specific
data type, for example, TIMESTAMP-to-DATE Conversion.

CAST does not convert the following data type pairs:

• Numeric to character, if the server character set is GRAPHIC.

• Character expressions having different server character sets.

To make such a conversion, use the TRANSLATE function (see “TRANSLATE” on
page 536).

• Byte (BYTE, VARBYTE, and BLOB) to any data type other than UDT or byte, and data
types other than byte or UDT to byte.

• CLOB to any data type other than UDT or character, and data types other than character
or UDT to CLOB.

For information on casting to and from geospatial types, see SQL Geospatial Types.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Character Truncation Rules

The following rules apply to character strings:

Server Character Set Rules

When data_definition_list specifies a data type of CHARACTER (CHAR) or CHARACTER
VARYING (VARCHAR) and does not specify a CHARACTER SET clause to indicate which
server character set to use, then the resulting server character set is as follows:

IF the string is cast in this mode … THEN it is truncated of …

ANSI trailing pad character spaces to achieve the desired length.
Truncation of other characters, or part of a multibyte character,
returns an error.

Teradata trailing characters to achieve the desired length.

Truncation on Kanji1 character data types containing
multibyte characters might result in truncating one byte of the
multibyte character.

IF the data type of expression is … THEN the server character set of the resulting characters is …

non-character the user default server character set.

character the server character set of expression.

Chapter 20: Data Type Conversions
CAST in Explicit Data Type Conversions

754 SQL Functions, Operators, Expressions, and Predicates

Numeric Overflow, Field Mode, and CAST

Numeric overflows are handled differently depending on whether you are running ANSI or
Teradata mode, and whether you are running in Field Mode or not.

Field Mode is not ANSI SQL:2008 compatible. In Field Mode, conversion to a numeric or
decimal data type that results in a numeric overflow is returned as asterisks (‘***’) rather than
an error message.

Record and Indicator Modes do not behave in this manner and return an error message.

Related Topics

For further rules that apply to the conversion between specific data types, for example,
numeric-to numeric or character-to-numeric, see the appropriate succeeding topic in this
chapter.

Examples

The following examples illustrate how to perform data type conversions using CAST.

Example 1

Using ANSI CAST syntax:

SELECT ID_Col, Name_Col
FROM T1
WHERE Int_Col = CAST(SUBSTRING(Char_Col FROM 3 FOR 3) AS INTEGER);

Example 2

Using ANSI CAST syntax:

SELECT CAST(SUBSTRING(Char_Col FROM 1 FOR 2) AS INTEGER),
CAST(SUBSTRING (Char_Col FROM 3 FOR 3) AS INTEGER)

FROM T1;

Example 3

Using Teradata extensions to the ANSI CAST syntax:

CREATE TABLE t2 (f1 TIME(0) FORMAT 'HHhMIm');

INSERT t2 (CAST('15h33m' AS TIME(0) FORMAT 'HHhMIm'));

SELECT f1 FROM t2;

The result from the SELECT statement is:

f1

15h33m

Chapter 20: Data Type Conversions
Teradata Conversion Syntax in Explicit Data Type Conversions

SQL Functions, Operators, Expressions, and Predicates 755

Teradata Conversion Syntax in Explicit Data
Type Conversions

Teradata conversion syntax is defined as follows:

Syntax

where:

ANSI Compliance

This syntax is a Teradata extension to the ANSI SQL:2008 standard.

Using CAST Instead of Teradata Conversion Syntax

Using Teradata conversion syntax is strongly discouraged. It is an extension to the ANSI
SQL:2008 standard and is retained only for backward compatibility with existing applications.
Instead, use CAST to explicitly convert data types.

Usage Notes

When the conversion specifies data_type, then the data is converted at run time. At that time,
a data conversion or range check error may occur.

For any kind of data type conversion using Teradata conversion syntax, where the item that
includes a data type declaration is an operand of a complex expression, you must either
enclose the appropriate entities in parentheses or use the CAST syntax.

Syntax element … Specifies …

expression the data expression to be converted to the new definition specified by
data_type and data_attributes.

data_type a data type declaration such as INTEGER or DATE.

data_attribute a data attribute such as FORMAT or TITLE.

1101A626

expression (data_type

, data_attribute

, data_type

)

, data_attribute

,
data_attribute

Chapter 20: Data Type Conversions
Teradata Conversion Syntax in Explicit Data Type Conversions

756 SQL Functions, Operators, Expressions, and Predicates

You should always use the CAST function to perform conversions in new applications to
ensure ANSI compatibility.

Related Topics

For further rules that apply to the conversion between specific data types, for example,
numeric-to numeric or character-to-numeric, see the appropriate succeeding topic in this
chapter.

Example 1

To evaluate an expression of the following form correctly:

column_name (INTEGER) + variable

You could enter the expression as follows:

(column_name (INTEGER)) + variable

or, preferably, as:

CAST (column_name AS INTEGER) + variable

For more information on using CAST, see “CAST in Explicit Data Type Conversions” on
page 752.

Example 2

Here is an example that uses the Teradata conversion syntax, and specifies the FORMAT data
attribute to convert the format of a DATE data type.

CREATE TABLE date1 (d1 DATE FORMAT 'E4,BM4BDD,BY4');
CREATE TABLE char1 (c1 CHAR(10));

INSERT date1 ('Saturday, March 16, 2002');

INSERT INTO char1 (c1)
SELECT ((d1 (FORMAT 'YYYY/MM/DD')))
FROM date1;

SELECT * FROM char1;

The result from the SELECT statement is:

c1

2002/03/16

If the second INSERT statement did not convert the DATE format to 'YYYY/MM/DD', the
result from the SELECT statement is:

c1

Saturday,

Chapter 20: Data Type Conversions
Data Conversions in Field Mode

SQL Functions, Operators, Expressions, and Predicates 757

Data Conversions in Field Mode

Field Mode: User Response Data

In Field Mode, a report format used in BTEQ, all data is returned in character form. The
alignment and spacing of columns is controlled by data formats and title information. Each
row returned is essentially a character string ready for display.

In Field Mode, it is unnecessary to explicitly convert numeric data to character format.

Conversions to Numeric Types

When in Field Mode, a numeric overflow returned for character to numeric data type
conversion is not treated as an error. If the result exceeds the number of digits normally
reserved for the numeric data type, the result appears as a set of asterisks in the report.

For example, the character to SMALLINT conversion in the following statement results in
numeric overflow because the number of digits normally reserved for a SMALLINT is five:

SELECT '100000' (SMALLINT);

The result is:

'100000'

Additionally, when in Field Mode, asterisks appear in the report for conversions to numeric
types involving results that do not fit the specified output format.

For example, the DATE to INTEGER conversion in the following statement results in a value
that does not fit the format specified by the FORMAT phrase:

SELECT CAST (CURRENT_DATE as integer format '9999');

The result is:

Date

The same query executed in Record or Indicator Variable Mode reports an error.

Chapter 20: Data Type Conversions
Byte Conversion

758 SQL Functions, Operators, Expressions, and Predicates

Byte Conversion

Purpose

Converts a byte expression to a different data definition.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant, provided the syntax does not specify data attributes.

Teradata Conversion Syntax

Syntax element … Specifies …

byte_expression an expression in byte format to be cast to a different data definition.

byte_data_type the new byte type to which byte_expression is to be converted.

UDT_data_type a UDT that has a cast definition that casts the byte type to the UDT.

To define a cast for a UDT, use the CREATE CAST statement. For details
on CREATE CAST, see SQL Data Definition Language.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST ASbyte_expression byte_data_type

data_attribute

UDT_data_type

((

1101B335

data_attribute

1101A623

byte_expression (byte_data_type

, data_attribute

, byte_data_type

)

, data_attribute

,
data_attribute

Chapter 20: Data Type Conversions
Byte Conversion

SQL Functions, Operators, Expressions, and Predicates 759

where:

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Conversions Where Source and Target Types Differ in Length

If the length specified by byte_data_type is less than the length of byte_expression, bytes
beyond the specified length are truncated. No error is reported.

If byte_data_type is fixed-length and the length is greater than that of byte_expression, bytes of
value binary zero are appended as required.

Supported Source and Target Data Types

Teradata Database supports byte data type conversions according to the following table.

Syntax element … Specifies …

byte_expression an expression in byte format to be cast to a different byte data definition.

byte_data_type an optional byte type to which byte_expression is to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Source Data Type Target Data Type Allowable Conversions

BYTE • BYTE

• VARBYTE

• BLOB

• Implicit

• Explicit using CAST and Teradata conversion syntax
VARBYTE

BLOB

BYTE UDTa

a. Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To define a
cast for a UDT, use the CREATE CAST statement. For more information on CREATE CAST, see SQL
Data Definition Language.

• Implicit

• Explicit using CAST
VARBYTE

BLOB

UDTa • BYTE

• VARBYTE

• BLOB

• Implicit

• Explicit using CAST and Teradata conversion syntax

Chapter 20: Data Type Conversions
Byte Conversion

760 SQL Functions, Operators, Expressions, and Predicates

Rules for Implicit Byte-to-UDT Conversions

Teradata Database performs implicit Byte-to-UDT conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit Byte-to-UDT data type conversion requires a cast definition (see
“Usage Notes”) that specifies the following:

• the AS ASSIGNMENT clause

• a BYTE, VARBYTE, or BLOB source data type

The source data type of the cast definition does not have to be an exact match to the source
of the implicit type conversion.

If multiple implicit cast definitions exist for converting different byte types to the UDT,
Teradata Database uses the implicit cast definition for the byte type with the highest
precedence. The following list shows the precedence of byte types in order from lowest to
highest precedence:

• BYTE

• VARBYTE

• BLOB

Using HASHBUCKET to Convert a BYTE Type to an INTEGER Type

You can use the HASHBUCKET function to convert a BYTE(1) or BYTE(2) type to an
INTEGER type. For details, see “Using HASHBUCKET to Convert a BYTE Type to an
INTEGER Type” on page 641.

Example 1: Explicit Conversion of BLOB to VARBYTE

Consider the following table definition:

CREATE TABLE large_images
(id INTEGER
,image BLOB);

The following statement casts the BLOB column to a VARBYTE type, and uses the result as an
argument to the POSITION function:

SELECT POSITION('FFF1'xb IN (CAST(image AS VARBYTE(64000))))
FROM large_images
WHERE id = 5;

Chapter 20: Data Type Conversions
Byte Conversion

SQL Functions, Operators, Expressions, and Predicates 761

Example 2: Implicit Conversion of VARBYTE to BLOB

Consider the following table definitions:

CREATE TABLE small_images
(id INTEGER
,image1 VARBYTE(30000)
,image2 VARBYTE(30000));

CREATE TABLE large_images
(id INTEGER
,image BLOB);

Teradata Database performs a VARBYTE to BLOB implicit conversion for the following
INSERT statement:

INSERT large_images
SELECT id, image1 || image2
FROM small_images;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Character-to-Character Conversion

762 SQL Functions, Operators, Expressions, and Predicates

Character-to-Character Conversion

Purpose

Shortens or expands output character strings.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant, provided the syntax does not specify any data attributes.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

character_expression a character expression to be cast to a different character data
definition.

character_data_type the new data type to which character_expression is to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

• CHARACTER SET

CAST AScharacter_expression character_data_type

data_attribute

((

1101A625

data_attribute

1101A624

character_expression (character_data_type

, data_attribute

, character_data_type

)

, data_attribute

,
data_attribute

Chapter 20: Data Type Conversions
Character-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 763

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Character-to-Character Conversion

CLOB types can only be converted to or from CHAR or VARCHAR types. For example,
implicit conversion is performed on CLOB data that is inserted into a CHAR or VARCHAR
column.

Comparisons of strings (both fixed- and variable-length) require operands of equal length.
The following table shows that the shorter string is converted by being padded on the right.

where ∆ is a pad character.

If a character is not in the repertoire of the target character set, an error is reported.

For rules on the effect of server character sets on character conversion, see “Implicit
Character-to-Character Translation” on page 765.

CAST Syntax Usage Notes

The server character set of character_expression must have the same server character set as the
target data type.

If CAST is used to convert data to a character string and non-pad characters would be
truncated, an error is reported.

Syntax element … Specifies …

character_expression a character expression to be cast to a different character data
definition.

character_data_type an optional character type to which character_expression is to be
converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

• CHARACTER SET

If the syntax specifies character_data_type, CHARACTER SET can
only appear after character_data_type.

THIS expression … IS converted to … AND the result is …

'x'='x ' 'x∆'='x ' TRUE

'x'='xx' 'x∆'='xx' FALSE

Chapter 20: Data Type Conversions
Character-to-Character Conversion

764 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax Usage Notes

The server character set of character_expression can be changed to a different server character
set specified as data_attribute, where data_attribute is the CHARACTER SET phrase.

This is not the recommended way to perform this translation. Instead, use the TRANSLATE
function. For information, see “TRANSLATE” on page 536.

General Usage Notes

If the source string (CHAR, VARCHAR, or CLOB) is longer than the target data type (CHAR,
VARCHAR, or CLOB), excess characters are truncated.

Pad characters are trimmed or appended, according to the following rules:

Examples

Following are examples of character to character conversions:

IF the session doing an INSERT or UPDATE
is in this mode …

AND non-pad characters would be truncated to store
character values in a table, THEN …

ANSI an error is reported.

Teradata no error is reported.

IF the source string
data type is … AND it is …

AND the target data
type is … THEN …

CHAR longer than the target CLOB or
VARCHAR

any trailing pad characters
are trimmed.

CHAR, VARCHAR,
or CLOB

shorter than the
target

CHAR trailing pad characters are
appended to the target.

CHAR all pad characters CLOB or
VARCHAR

the field is truncated to zero
length.

Character
String

String
Length

Character
Description Conversion Result

Converted
Length

'HELLO' 5 CHAR(3) 'HEL', if session is in Teradata mode 3

Error, if session is in ANSI mode

'HELLO' 5 CHAR(7) 'HELLO ' 7

'HELLO' 5 VARCHAR(7) 'HELLO' 5

'HELLO ' 7 VARCHAR(6) 'HELLO ' 6

Chapter 20: Data Type Conversions
Implicit Character-to-Character Translation

SQL Functions, Operators, Expressions, and Predicates 765

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Implicit Character-to-Character Translation

Implicit string translation occurs when two character strings are incompatible within a given
operation. For example,

SELECT *
FROM string_table
WHERE clatin < csjis;

where clatin represents a character column defined as CHARACTER SET LATIN and csjis
represents a character column defined as CHARACTER SET KANJISJIS.

If an implicit translation of character string ‘string’ to a UNICODE character string is
required, it is equivalent to executing the TRANSLATE(string USING
source_repertoire_name_TO_Unicode) function, where source-repertoire-name is the server
character set of string.

More specifically, if as in the above example, string is of KANJISJIS type, then the translation is
equivalent to executing the TRANSLATE(string USING KanjiSJIS_TO_Unicode) function.

ANSI Compliance

Implicit translations are Teradata extensions to the ANSI standard.

Character Constants

The following rules apply to implicit character-to-character translation involving character
constants.

'HELLO ' 7 VARCHAR(3) 'HEL', if session is in Teradata mode 3

Error, if session is in ANSI mode

Character
String

String
Length

Character
Description Conversion Result

Converted
Length

IF one operand is
a …

AND the other
operand is a … THEN …

constant constant both operands are translated to UNICODE.

non-constant the constant is translated to the type of the non-
constant. If that fails, both are translated to UNICODE.

constant expression the constant is translated to the type of the constant
expression. If that fails, both are translated to
UNICODE.

Chapter 20: Data Type Conversions
Implicit Character-to-Character Translation

766 SQL Functions, Operators, Expressions, and Predicates

KANJISJIS Server Character Set

Implicit character-to-character translation always converts a character string argument that
has the KANJISJIS server character set to UNICODE.

SQL Rules for Implicit Translation for Expression and Function Arguments

The following are the rules for implicit translation between types of expressions and function
arguments.

For string functions that produce a character result, the results are summarized by this table.

Note that the other string functions either do not involve conversion or the type of the result is
based on the function and not the server character set of the argument.

For example, in the following TRIM function, <unicode-constant> is first translated to Latin,
and then the trim operation is performed.

...
TRIM(<unicode-constant> FROM <latin-value>)

The result is Latin.

constant
expression

constant expression both operands are translated to UNICODE.

non-constant the constant expression is translated to the type of the
non-constant. If that fails, both are translated to
UNICODE.

non-constant non-constant both operands are translated to UNICODE.

IF one operand is
a …

AND the other
operand is a … THEN …

FOR this function … The result is …

TRIM converted back to the type of the main string argument (last argument).

|| (concatenation) not translated and remains with the character data type of the arguments
after any implicit translation.

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 767

Character-to-DATE Conversion

Purpose

Converts a character string to a date value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attributes, such as the FORMAT
phrase that enables alternative formatting for the date data.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

character_expression a character expression to be cast to a DATE value.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101B244

CAST AS)character_expression DATE(

data_attribute

Syntax element … Specifies …

character_expression a character expression to be cast to a DATE value.

1101B255

character_expression

data_attribute ,

DATE)(

, data_attribute

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

768 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Character-to-DATE Conversion

If the string does not represent a valid date, an error is reported.

In record or indicator mode, when the DateForm mode of the session is set to ANSIDate, the
string must use the ANSI DATE format.

Usage Notes

The character expression is trimmed of leading and trailing pad characters and handled as if it
was a string literal in the declaration of a DATE literal.

Character-to-DATE conversion is supported for CHAR and VARCHAR types only. The source
character type cannot be CLOB.

If the string can be converted to a valid DATE, then it is. Otherwise, an error is returned.

Character String Format

If the dateform of the current session is INTEGERDATE, the date representation in the
character string must match the DATE output format according to the rules in the following
table:

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

IF the
statement … THEN …

specifies a
FORMAT phrase
for the DATE

the character string must match that DATE format.

does not specify a
FORMAT phrase IF the DATE column

definition …
THEN the character string must match …

specifies a FORMAT phrase that DATE format.

does not specify a FORMAT
phrase

‘YY/MM/DD’, or the current setting of the
default date format in the specification for
data formatting (SDF) file

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 769

For an example, see “Example 1: IntegerDate Dateform Mode” on page 770.

If the dateform of the current session is ANSIDATE, the date representation in the character
string must match the DATE output format according to the rules in the following table:

For an example, see “Example 2: ANSIDate Dateform Mode” on page 771.

Forcing a FORMAT on CAST for Converting Character to DATE

You can use a FORMAT phrase to convert a character string that does not match the format of
the target DATE data type. A character string in a conversion that does not specify a FORMAT
phrase uses the output format for the DATE data type.

For example, suppose the session dateform is INTEGERDATE and the default DATE format of
the system is set to 'yyyymmdd' through the tdlocaledef utility. The following statement fails,
because the character string contains separators, which does not match the default DATE
format:

SELECT CAST ('2005-01-01' AS DATE);

To override the default DATE format, and convert a character string that contains separators,
specify a FORMAT phrase for the DATE target type:

SELECT CAST ('2005-01-01' AS DATE FORMAT 'YYYY-MM-DD');

In character-to-DATE conversions, the FORMAT phrase must not consist solely of the
following formatting characters:

IF the statement … THEN …

specifies a FORMAT
phrase for the DATE

the character string must match that DATE format.

does not specify a
FORMAT phrase IF in … THEN …

field mode

IF the DATE column
definition …

THEN the character
string must match …

specifies a FORMAT
phrase

 that DATE format.

does not specify a
FORMAT phrase

the ANSI format
('YYYY-MM-DD')

record or
indicator mode

the character string must match the ANSI format
('YYYY-MM-DD')

• EEEE

• E4

• EEE

• E3

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

770 SQL Functions, Operators, Expressions, and Predicates

For more information on default formats and the FORMAT phrase, see “Data Type Formats
and Format Phrases” in SQL Data Types and Literals.

Character Strings That Omit Day, Month, or Year

If the character string and the format for a character-to-DATE conversion omits the day,
month, or year, the system uses default values for the target DATE value.

Consider the following table:

CREATE TABLE date_log
(id INTEGER
,start_date DATE
,end_date DATE
,log_date DATE);

The following INSERT statement converts three character strings to DATE values. The first
character string omits the day, the second character string omits the month, and the third
character string omits the year. Assume the current year is 1992.

INSERT date_log
(1001
,CAST ('January 1992' AS DATE FORMAT 'MMMMBYYYY')
,CAST ('1992-01' AS DATE FORMAT 'YYYY-DD')
,CAST ('01/01' AS DATE FORMAT 'MM/DD'));

The result of the INSERT statement is as follows:

SELECT * FROM date_log;

id start_date end_date log_date
----------- ---------- -------- --------

1001 92/01/01 92/01/01 92/01/01

Example 1: IntegerDate Dateform Mode

For example, suppose the session dateform is INTEGERDATE, and the default DATE format
of the system is set to 'yyyymmdd' through the tdlocaledef utility.

Consider the following table, where the start_date column uses the default DATE format and
the end_date column uses the format 'YYYY/MM/DD':

CREATE TABLE date_log
(id INTEGER
,start_date DATE
,end_date DATE FORMAT 'YYYY/MM/DD');

IF the character string omits the … THEN the system uses the …

day value of 1 (the first day of the month).

month value of 1 (the month of January).

year current year (at the current session time zone).

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 771

The following INSERT statement works because the character strings match the formats of the
corresponding DATE columns and Teradata Database can successfully perform implicit
character-to-DATE conversion:

INSERT INTO date_log (1099, '20030122', '2003/01/23');

To perform character-to-DATE conversion on character strings that do not match the formats
of the corresponding DATE columns, you must use a FORMAT phrase:

INSERT INTO date_log
(1047
,CAST ('Jan 12, 2003' AS DATE FORMAT 'MMMBDD,BYYYY')
,CAST ('Jan 13, 2003' AS DATE FORMAT 'MMMBDD,BYYYY'));

Example 2: ANSIDate Dateform Mode

Suppose the session dateform is ANSIDATE. The default DATE format of the system is
'YYYY-MM-DD'.

Consider the following table, where the start_date column uses the default DATE format and
the end_date column uses the format 'YYYY/MM/DD':

CREATE TABLE date_log
(id INTEGER
,start_date DATE
,end_date DATE FORMAT 'YYYY/MM/DD');

The following INSERT statement works because the character strings match the formats of the
corresponding DATE columns and Teradata Database can successfully perform implicit
character-to-DATE conversion:

INSERT INTO date_log (1099, '2003-01-22', '2003/01/23');

To perform character-to-DATE conversion on character strings that do not match the formats
of the corresponding DATE columns, you must use a FORMAT phrase:

INSERT INTO date_log
(1047
,CAST ('Jan 12, 2003' AS DATE FORMAT 'MMMBDD,BYYYY')
,CAST ('Jan 13, 2003' AS DATE FORMAT 'MMMBDD,BYYYY'));

Example 3: Implicit Character-to-DATE Conversion

Assume that the DateForm mode of the session is set to ANSIDate.

The following CREATE TABLE statement specifies a FORMAT phrase for the DATE data type
column:

CREATE SET TABLE datetab (f1 DATE FORMAT 'MMM-DD-YYYY');

In field mode, the following INSERT statement successfully performs the character to DATE
implicit conversion because the format of the string conforms to the format of the DATE
column in the datetab table:

INSERT INTO datetab ('JAN-10-1999');

Chapter 20: Data Type Conversions
Character-to-DATE Conversion

772 SQL Functions, Operators, Expressions, and Predicates

In record or indicator mode, when the DateForm mode of the session is set to ANSIDate, the
following INSERT statement successfully performs the character to DATE implicit conversion
because the format of the string is in the ANSI DATE format:

INSERT INTO datetab ('2002-05-10');

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Character-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 773

Character-to-INTERVAL Conversion

Purpose

Converts a character string to an interval value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI SQL, Teradata supports the specification of data attributes.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

character_expression a character expression to be cast to an INTERVAL value.

interval_data_type an INTERVAL data type to which character_expression is to be converted.

data_attribute one of the following optional data attributes:

• NAMED

• TITLE

1101B245

CAST AS)character_expression interval_data_type(

data_attribute

Syntax element … Specifies …

character_expression a character expression to be cast to an INTERVAL value.

data_attribute one of the following optional data attributes:

• NAMED

• TITLE

1101B256

character_expression interval_data_type)(

data_attribute , , data_attribute

Chapter 20: Data Type Conversions
Character-to-INTERVAL Conversion

774 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

The character value is trimmed of leading and trailing pad characters and handled as if it was
a string literal in the declaration of an INTERVAL string literal.

Character-to-INTERVAL conversion is supported for CHAR and VARCHAR types only. The
source character type cannot be CLOB.

If the contents of the character string can be converted to a valid INTERVAL, then they are;
otherwise, an error is returned.

You cannot convert a character data type of GRAPHIC to an INTERVAL string literal.

Example 1

The following query returns ' -265-11'.

SELECT CAST('-265-11' AS INTERVAL YEAR(4) TO MONTH);

Example 2

If the source character string contains values not normalized in the INTERVAL form, but
which nevertheless can be converted to a proper INTERVAL, the conversion is made.

For example, the following query returns '-267-06'

SELECT CAST('265-30' AS INTERVAL YEAR(4) TO MONTH);

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

interval_data_type an INTERVAL data type to which character_expression is to be
converted.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 775

Character-to-Numeric Conversion

Purpose

Converts a character data string to a numeric value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attributes, such as the FORMAT
phrase that enables alternative formatting for the numeric data.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

character_expression a character expression to be cast to a numeric type.

numeric_data_definition the numeric type to which character_expression is to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A628

(character_expression numeric_data_type

data_attribute

)CAST AS

Syntax element … Specifies …

character_expression a character expression to be cast to a numeric type.

1101A629
data_attribute , , data_attribute

character_expression (numeric_data_type)

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

776 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Character-to-Numeric Conversion

Implicit character to numeric conversion produces a valid result only if the character string
represents a numeric value.

If a CHAR or VARCHAR character string is present in an expression that requires a numeric
operand, it is read as a formatted numeric and is converted to a FLOAT value, using the
default format for FLOAT.

To override the implicit format, use a FORMAT phrase.

Or, to change the default format for FLOAT, you can change the setting of the REAL element
in the specification for data formatting (SDF) file. For information on default data type
formats, the SDF file, and the FORMAT phrase, see “Data Type Formats and Format Phrases”
in SQL Data Types and Literals.

To use a CLOB type in an expression that requires a numeric operand, you must first explicitly
convert the CLOB to CHAR or VARCHAR.

An empty character string (zero length) or a character string consisting only of pad characters
is interpreted as having a numeric value of zero.

If the default format for FLOAT is -9.99E-99, then:

If a column or parameter of numeric data type is specified with a string value, the string is
again assumed to be a formatted numeric. For example, the following INSERT statement
specifies the Salary as a numeric string:

INSERT INTO Employee (EmpNo, Name, Salary)
VALUES (10022, 'Clements D', '$38,000.00');

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

numeric_data_type the numeric type to which character_expression is to be converted.

Syntax element … Specifies …

THIS expression … IS converted to … AND the result is …

1.1*’$20.00’ 1.10E 00*2.00E1 2.20E 01

’2’+’2’ 2.00E 00+2.00E 00 4.00E 00

’A’ + 2 ---------- error

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 777

The conversion to numeric type removes editing symbols. When selected, the salary data
contains only the special characters allowed by the FORMAT phrase for Salary in the CREATE
TABLE statement. If the FORMAT phrase is ’G-(9)D9(2)’, then the output looks like this:

Salary

38,000.00

If the FORMAT phrase is ’G-L(9)D9(2)’, then the output looks like this:

Salary

$38,000.00

Supported Character Types

The character expression to be converted must be CHAR or VARCHAR. CLOBs cannot be
explicitly converted to numeric types.

Usage Notes

Before processing begins, the numeric description is scanned for a FORMAT phrase, which is
used to determine the radix separator, group separator, currency sign or string, signzone (S),
or implied decimal point (V) formatting.

Conversion is performed positionally, character by character, from left to right, until the end
of the number.

Only all-numeric character strings can be converted from character to numeric formats. For
example, you can convert the character strings ’US Dollars 123456’ or ‘123456’ to the integer
value 123456, but you cannot convert the string ‘EX1AM2PL3E’ to a numeric value.

The following list shows the steps for converting character type data to numeric. Note that you
cannot convert a character_expression of GRAPHIC character type to numeric.

Conversion is performed stage by stage, without returning to a previous stage; however, stages
can be skipped.

1 Leading pad characters are ignored. Trailing pad characters are ignored, except for signed
zoned decimal input.

Embedded spaces are only allowed according to the following rules:

• If the current SDF file defines the group separator as a space, then the character string
can include spaces to separate groups of digits to the left of the radix separator,
according to the grouping rule defined by GroupingRule or CurrencyGroupingRule.

• If the current SDF file defines the radix separator as a space, then the character string
can include one space as the radix character.

• If the FORMAT phrase contains a currency formatting character, such as N, and the
matching currency string in the SDF file, such as CurrencyName, contains a space, the
character string can include spaces as part of that currency string.

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

778 SQL Functions, Operators, Expressions, and Predicates

2 The sign (+ or -) is saved as part of the number. A mantissa sign may appear before the
first digit in the string, or after the last digit in the string. An exponent sign may appear
with a preceding mantissa sign.

3 The currency sign is ignored if it matches the FORMAT. A currency string is ignored if it
matches the FORMAT. Only one currency is allowed in the string.

4 Digits are saved as the integral, fractional, or exponent part of the number, depending on
whether the radix or the letter E has been parsed.

5 Separators are ignored, unless they match the radix specified in the FORMAT.

If a separator matches the radix specified in the FORMAT, the location is saved as the
beginning of the fractional part of the number. V marks the fractional component for
implied decimals.

The allowance of currency and separators is a non-ANSI Teradata extension of character to
numeric conversion.

6 Embedded dashes (between digits) are allowed, unless the number is signed or includes a
radix, currency, or exponent.

7 The letter E is saved as the beginning of the exponent part of the number. One space is
allowed following an E.

8 The exponent sign (+ or -) is saved.

9 The exponent digits are saved. A sign character cannot appear after any exponent digit.

Numeric Overflow

In Field Mode, numeric overflow in character to numeric conversion is not treated as an error.
If the result exceeds the number of digits normally reserved for the data type, asterisks are
displayed.

In Record and Indicator Variable Modes, numeric overflow is reported as an error. This
behavior applies to both the CAST and Teradata conversion syntax.

FORMAT Phrase Controls Parsing of the Data

A FORMAT phrase, by itself, cannot convert a character type value to a numeric type value.
The phrase controls partially how the resultant value is parsed.

Some examples of character to numeric conversion appear in the following table. For
FORMAT phrases that contain G, D, C, and N formatting characters, assume that the related
entries in the specification for data formatting file (SDF) are:

RadixSeparator {"."}
GroupSeparator {","}
GroupingRule {"3"}
Currency {"$"}
ISOCurrency {"USD"}
CurrencyName {"US Dollars"}

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 779

A conversion that does not specify a FORMAT phrase uses the corresponding data type
default format as defined in the SDF.

For more information on default data type formats, the SDF file, and the meaning of
formatting characters in a FORMAT phrase, see “Data Type Formats and Format Phrases” in
SQL Data Types and Literals.

Character String Converted To
Resultant
Numeric Value Field Mode Display Result

'$20,000.00' DECIMAL(10,2) 20000.00 20000.00

'$$$.50' DECIMAL(10,2) errora

a. Only one currency is allowed in the character string.

error

'$.50' DECIMAL(8,2) .50 .50

'.345' DECIMAL(8,3) .345 .345

'-1.234E-02' FLOAT -.01234 -.01234

'-1E.-2' FLOAT errorb

b. The radix must precede the exponent part of the number.

error

'00000000-.93' DECIMAL(12,4) errorc

c. Embedded dashes cannot appear in a string containing a radix.

error

'- 55' INTEGER -55 -55

'E67' FLOAT 0.0 0.00000000000000E 000

'9876' DECIMAL(4,2)
FORMAT '99V99'

98.76 9876

'-123' INTEGER -123 -123

'9876' DECIMAL(4,2)
FORMAT '9(2)V9(2)'

98.76 9876

'1-2-3' INTEGER 123 123

'123-' INTEGER -123 -123

'123- ' INTEGER -123 -123

'-1.234E 02' FLOAT -123.4 -1.23400000000000E 002

'111,222,333' INTEGER
FORMAT 'G9(I)'

111222333 0,111,222,333

'2.49US Dollars' DECIMAL(10,2)
FORMAT 'GZ(I)D9(F)BN'

2.49 2.49 US Dollars

'25000USD' INTEGER
FORMAT '9(I)C'

25000 0000025000USD

Chapter 20: Data Type Conversions
Character-to-Numeric Conversion

780 SQL Functions, Operators, Expressions, and Predicates

Example: Implicit Conversion of Character to Numeric

The INSERT statement in the following example implicitly converts the character data type to
the target numeric data type:

CREATE TABLE t1
(f1 DECIMAL(10,2) FORMAT 'G-U(9)D9(2)');

INSERT t1 ('USD12,345,678.90');

If a column definition in a CREATE TABLE statement does not specify a FORMAT phrase for
the data type, the column uses the corresponding data type default format as defined in the
specification for data formatting (SDF) file. For more information on the default format of
data types and the definition of formatting characters in a FORMAT phrase, see “Data Type
Formats and Format Phrases” in SQL Data Types and Literals.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Character-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 781

Character-to-Period Conversion

Purpose

Converts a character string to a Period value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

Usage Notes

A character value expression can be cast as PERIOD(DATE), PERIOD(TIME), or
PERIOD(TIMESTAMP) using the CAST function or implicit casting. A character input value
can also be implicitly cast as a Period type.

After any leading and trailing pad characters in the source character value are trimmed, the
resulting character string must conform to the format of the target type. Conversion of the
beginning and ending portions of the character value expression to corresponding DateTime
values follow the existing rules of CHARACTER/VARCHAR to DateTime data type
conversions.

The existing rules include conversion of the source value with a TIME or TIMESTAMP format
to UTC based on the specified time zone in the source or, if not specified, the current session
time zone. The exception to conversion to UTC for Period data types is when the ending

Syntax element … Specifies …

character_expression a character expression to be cast to a Period value.

period_data_type Period data type to which character_expression is to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST AScharacter_expression period_data_type

data_attribute

()

1101A587

Chapter 20: Data Type Conversions
Character-to-Period Conversion

782 SQL Functions, Operators, Expressions, and Predicates

portion of the source character is a TIMESTAMP value without a time zone and the value is
equal to the maximum value that is used to represent UNTIL_CHANGED; in this case, the
value is not changed to UTC.

If the target type has a TIME or TIMESTAMP element type and the beginning or ending
bound portions of the character value expression contains leap seconds, the seconds portion
gets adjusted to 59.999999 with the precision truncated to the target precision.

If target type has a TIME or TIMESTAMP element type and the target precision is lower than
either precision specified in the source character string, an error is reported. If the target
precision is higher than a precision specified for a bound in the source character string,
trailing zeros are added to the fractional seconds of the corresponding bound of the Period
value resulting from the cast.

The target elements are set to the corresponding resulting values.

If the result beginning bound is not less than the result ending bound in their UTC forms, an
error is reported.

If an ANSI DateTime format is used to interpret the character data during conversion, then
enclosing the beginning and ending values inside apostrophes is optional. For details, see
“Character Strings that Use ANSI DateTime Format” on page 783.

Implicit Character-to-Period Conversion

A CHARACTER or VARCHAR value is implicitly cast as a Period data type for an assignment,
update, insert, merge, or parameter passing operation when the target site has a Period data
type and for a comparison operation if the other operand has a Period data type. If any other
non-Period value is directly assigned to a Period target site, an error is reported. In the same
manner, if any other non-Period value is directly compared to a Period value, an error is
reported.

Note: In some cases, a value may be explicitly cast as a Period data type in order to avoid this
error.

During implicit conversion from CHARACTER or VARCHAR to Period data type, the ANSI
DateTime format string is used to interpret the beginning and ending element values in the
character string, if the response mode is other than the Field mode or if the character string
data is parameterized. If the response mode is Field mode and if the character string data is
not parameterized, then the target period format is used to interpret the beginning and
ending element values in the character string. The following table describes this in detail.

Mode Parameterized Data Present Format for Implicit Cast Interpretation

Field No Target format

Field Yes ANSI format

Non-field Yes ANSI format

Non-field No ANSI format

Chapter 20: Data Type Conversions
Character-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 783

When the ANSI DateTime format string is used to interpret the beginning and ending
element values in the character string, enclosing the beginning and ending values inside the
apostrophes is optional. This relaxation applies even during an explicit cast. For details, see
“Character Strings that Use ANSI DateTime Format” on page 783.

Character Strings that Use ANSI DateTime Format

Here is a list of valid character string representations when the implicit or explicit character-
to-period conversion uses the ANSI DateTime format to interpret the beginning and ending
bound elements.

• '(''beginning_element_value'',∆''ending_element_value'')'
• '(beginning_element_value,∆ending_element_value)'
• '(''beginning_element_value'',∆ending_element_value)'
• '(beginning_element_value,∆''ending_element_value'')'

where formats of beginning_element_value and ending_element_value depend on the target
data type.

For the meanings of the format characters, see the description of the FORMAT phrase in SQL
Data Types and Literals.

Example

In the following example, two concatenated character literals are cast as
PERIOD(TIMESTAMP(2)). The output is adjusted according to the current session time zone
during display. Assume the current session time zone displacement is INTERVAL -'08:00'
HOUR TO MINUTE and the format derived from SDF is 'YYYY-MM-DDBHH:MI:SS.S(2)Z'.

SELECT CAST('(''2005-02-02 12:12:12.34+08:00'', ' ||
 '''2006-02-03 12:12:12.34+08:00'')'
 AS PERIOD(TIMESTAMP(2)));

The following PERIOD(TIMESTAMP(2)) value is returned:

('2005-02-01 20:12:12.34', '2006-02-02 20:12:12.34')

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Target Data Type Format

PERIOD(DATE) YYYY-MM-DD

PERIOD(TIME[(n)]) HH:MI:SS.S(F)

PERIOD(TIMESTAMP[(n)]) YYYY-MM-DDBHH:MI:SS.S(F)

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

784 SQL Functions, Operators, Expressions, and Predicates

Character-to-TIME Conversion

Purpose

Converts a character data string to a TIME or TIME WITH TIME ZONE value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attributes, such as the FORMAT
phrase that enables alternative output formatting for the time data.

Note: TIME (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIME value to UTC based on the current session time zone or on a
specified time zone.

Syntax element … Specifies …

character_expression a character expression to be cast to a TIME type.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

time_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A246

CAST AScharacter_expression

)

(A

time_data_attributeWITH TIME ZONE

TIME

(fractional_seconds_precision)

A

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 785

Teradata Conversion Syntax

where:

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Character-to-TIME Conversion

In field mode, the string must conform to the format of the target TIME type.

In record or indicator mode, the string must use the ANSI TIME format.

Usage Notes

The character value is trimmed of leading and trailing pad characters and handled as if it were
a string literal in the declaration of a TIME string literal.

If the contents of the string can be converted to a valid TIME, the conversion is made;
otherwise, an error is returned to the application.

Character-to-TIME conversion is supported for CHAR and VARCHAR types only. You
cannot convert a character data type of CLOB or GRAPHIC to TIME.

Syntax element … Specifies …

character_expression a character expression to be cast to a TIME type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

1101B257

character_expression

(fractional_seconds_precision)

TIME(

)

A

WITH TIME ZONE

, data_attribute

A

data_attribute ,

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

786 SQL Functions, Operators, Expressions, and Predicates

You can use a FORMAT phrase to specify an explicit format for the TIME target data type. A
conversion that does not specify a FORMAT phrase uses the default format for the TIME data
type.

For more information on default formats and the FORMAT phrase, see “Data Type Formats
and Format Phrases” in SQL Data Types and Literals.

Conversions That Include Time Zone

The following rules apply to character-to-TIME conversions that include time zone
information:

• If the target data type does not specify a time zone, for example, TIME(0), the source
character string may contain a time zone of the format +hh:mi or -hh:mi, but only if it
appears immediately before or immediately after the time.

For example, the following conversion is successful:

SELECT CAST ('-02:0011:23:44'
AS TIME(0));

The following conversion is not successful because of the blank separator character
between the time zone and the time:

SELECT CAST ('+02:00 11:23:44.56'
AS TIME(2));

• If the source character string contains a time zone, and the target data type does not
specify a time zone, for example, TIME(0), the conversion uses the time zone in the
character string to convert the character string to Universal Coordinated Time (UTC).
This is done regardless of whether the FORMAT phrase contains the time zone formatting
character.

SELECT CAST ('10:15:12+12:30'
AS TIME(0));

• If the source character string does not contain a time zone, and the target data type
specifies a time zone and a target FORMAT phrase that includes time zone formatting
characters, the output includes the session time zone.

SELECT CAST ('10:15:12'
AS TIME(0) WITH TIME ZONE FORMAT 'HH:MI:SSBZ');

• If both the source character string and the target data type do not specify a time zone, the
source character string is internally converted to UTC based on the current session time
zone.

IF the character string is
converted to … THEN the default format …

TIME does not use the time zone formatting character and does not
display a time zone.

TIME WITH TIME ZONE uses the time zone formatting character to display the time zone.

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 787

Conversions That Include Fractional Seconds

The following rules apply to conversions that include fractional seconds:

• The fractional seconds precision in the source character string must be less than or equal
to the fractional seconds precision specified by the target type.

SELECT CAST('12:30:25.44' AS TIME(3));

If no fractional seconds appear in the source character string, then the fractional seconds
precision is always less than or equal to the target data type fractional seconds precision,
because the valid range for the precision is zero to six, where the default is six.

SELECT CAST('12:30:25' AS TIME(3));

• If the target data type is defined by a FORMAT phrase, the fractional seconds precision
formatting characters must be greater than or equal to the precision specified by the data
type.

SELECT CAST('12h:15.12s:30m'
AS TIME(4) FORMAT 'HHh:SSDS(4)s:MIm');

A FORMAT phrase must specify a fractional seconds precision of six if the target data type
does not specify a fractional seconds precision, because the default precision is six.

SELECT CAST ('12:30:25' AS TIME FORMAT 'HH:MI:SSDS(6)');

Character Strings That Omit Hour, Minute, or Second

If the character string in a character-to-TIME conversion omits the hour, minute, or second,
the system uses default values for the target TIME value.

Consider the following table:

CREATE TABLE time_log
(id INTEGER
,start_time TIME
,end_time TIME
,log_time TIME);

The following INSERT statement converts three character strings to TIME values. The first
character string omits the hour, the second character string omits the minute, and the third
character string omits the second.

INSERT time_log
(1001
,CAST ('01:02.030405' AS TIME FORMAT 'MI:SS.S(6)')
,CAST ('01:02.030405' AS TIME FORMAT 'HH:SS.S(6)')
,CAST ('01:02' AS TIME FORMAT 'HH:MI'));

IF the character string omits the … THEN the system uses the …

hour value of 0.

minute

second

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

788 SQL Functions, Operators, Expressions, and Predicates

The result of the INSERT statement is as follows:

SELECT * FROM time_log;

id start_time end_time log_time
----------- --------------- --------------- ---------------

1001 00:01:02.030405 01:00:02.030405 01:02:00.000000

FORMAT Phrase Restrictions

In character-to-TIME conversions, the FORMAT phrase must not consist solely of the
following formatting characters:

• Z

• T

Example 1: Fractional Seconds

This query returns the value ‘12:23:39.999900’ (with the fractional seconds extended to 6
places as requested by CASTing to a TIME(6) type).

SELECT CAST(' 12:23:39.9999 '
AS TIME(6));

Example 2: Truncation of Non-pad Character Data

This query returns an error because the requested conversion requires truncation of non-pad
character data.

SELECT CAST(' 12:23:39.9999 '
AS TIME(3));

Example 3: Invalid MINUTE Value

This query returns an error because the MINUTE value of 63 is not valid.

SELECT CAST(' 12:63:39.9999 '
AS TIME(6));

Example 4: FORMAT Phrase

This query returns the value '15h33m'.

SELECT CAST('15h33m'
AS TIME(0) FORMAT 'HHhMIm');

Example 5: Implicit Conversion of Character to TIME

The following CREATE TABLE statement specifies a FORMAT phrase for the TIME data type
column:

CREATE SET TABLE timetab (f1 TIME(0) FORMAT 'TBHHhMImSSs');

In field mode, the following INSERT statement successfully performs the character to TIME
implicit conversion because the format of the string conforms to the format of the TIME
column in the timetab table:

Chapter 20: Data Type Conversions
Character-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 789

INSERT INTO timetab ('AM 10h20m30s');

In record or indicator mode, the following INSERT statement successfully performs the
character to TIME implicit conversion because the format of the string is in the ANSI TIME
format:

INSERT timetab ('11:23:34');

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Character-to-TIMESTAMP Conversion

790 SQL Functions, Operators, Expressions, and Predicates

Character-to-TIMESTAMP Conversion

Purpose

Converts a character data string to a TIMESTAMP or TIMESTAMP WITH TIME ZONE
value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attributes, such as the FORMAT
phrase that enables alternative formatting for the time data.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Syntax element … Specifies …

character_expression a character expression to be cast to a TIMESTAMP type.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

timestamp_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A247

CAST AS TIMESTAMPcharacter_expression

)

(A

timestamp_data_attributeWITH TIME ZONE

(fractional_seconds_precision)

A

Chapter 20: Data Type Conversions
Character-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 791

Teradata Conversion Syntax

where:

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Character-to-TIMESTAMP Conversion

In field mode, the string must conform to the format of the target TIMESTAMP type.

In record or indicator mode, the string must use the ANSI TIMESTAMP format.

Usage Notes

The source expression is trimmed of leading and trailing pad characters and then handled as if
it were a string literal in the declaration of a TIMESTAMP string literal.

Character-to-TIMESTAMP conversion is supported for CHAR and VARCHAR types only.
You cannot convert a character data type of CLOB or GRAPHIC to TIMESTAMP.

If the contents of the string can be converted to a valid TIMESTAMP value, then the
conversion is performed; otherwise an error is returned.

Syntax element … Specifies …

character_expression a character expression to be cast to a TIMESTAMP type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

1101B258

character_expression

(fractional_seconds_precision)

TIMESTAMP

)

(A

A

data_attribute ,

WITH TIME ZONE

, data_attribute

Chapter 20: Data Type Conversions
Character-to-TIMESTAMP Conversion

792 SQL Functions, Operators, Expressions, and Predicates

You can use a FORMAT phrase to specify an explicit format for the TIMESTAMP target data
type. A conversion that does not specify a FORMAT phrase uses the default format for the
TIMESTAMP data type.

For more information on default formats and the FORMAT phrase, see “Data Type Formats
and Format Phrases” in SQL Data Types and Literals.

Example

The following query returns ‘2007-12-31 23:59:59.999999-08:00’.

SELECT CAST('2007-12-31 23:59:59.999999'
AS TIMESTAMP(6) WITH TIME ZONE);

Notice that the source character string did not need to have explicit Time Zone fields for this
conversion to work properly.

Conversions That Include Time Zone

The following rules apply to character-to-TIMESTAMP conversions that include time zone
information:

• If the target data type does not specify a time zone, for example, TIMESTAMP(0), the
source character string may contain a time zone of the format +hh:mi or -hh:mi, but only
if it appears immediately before or immediately after the time.

For example, the following conversion is successful:

SELECT CAST ('2008-09-19 11:23:44-02:00'
AS TIMESTAMP(0) FORMAT 'Y4-MM-DDBHH:MI:SSBZ');

The following conversion is not successful because of the blank separator character
between the time zone and the time:

SELECT CAST ('2008-01-19 +02:00 11:23:44'
AS TIMESTAMP(0) FORMAT 'Y4-MM-DDBZBHH:MI:SS');

• If the source character string contains a time zone, and the target data type does not
specify a time zone, the conversion uses the time zone in the character string to convert the
character string to Universal Coordinated Time (UTC). This is done whether or not the
FORMAT phrase contains the time zone formatting character.

SELECT CAST ('2002-02-20 10:15:12+12:30' AS TIMESTAMP(0));

IF the character string is converted to … THEN the default format …

TIMESTAMP does not use the time zone formatting character
and does not display a time zone.

TIMESTAMP WITH TIME ZONE uses the time zone formatting character to
display the time zone.

Chapter 20: Data Type Conversions
Character-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 793

• If the target FORMAT phrase includes time zone formatting characters, and the source
character string does not contain a time zone, the output includes the session time zone.
This is done whether or not the target data type specifies a time zone.

SELECT CAST ('2002-02-20 10:15:12'
AS TIMESTAMP(0) WITH TIME ZONE FORMAT 'Y4-MM-DDBHH:MI:SSBZ');

• If both the source character string and the target data type do not specify a time zone, the
source character string is internally converted to UTC based on the current session time
zone.

Conversions That Include Fractional Seconds

The following rules apply to conversions that include fractional seconds:

• The fractional seconds precision in the source character string must be less than or equal
to the fractional seconds precision specified by the target type.

SELECT CAST('2002-01-01 12:30:25.44' AS TIMESTAMP(3));

If no fractional seconds appear in the source character string, then the fractional seconds
precision is always less than or equal to the target data type fractional seconds precision,
because the valid range for the precision is zero to six, where the default is six.

SELECT CAST('2002-01-01 12:30:25' AS TIMESTAMP(3));

• If the target data type is defined by a FORMAT phrase, the fractional seconds precision
formatting characters must be greater than or equal to the precision specified by the data
type.

SELECT CAST('12-02-07 12:30:25' AS TIMESTAMP(3)
FORMAT 'DD-MM-YYBHH:MI:SSDS(3)');

A FORMAT phrase must specify a fractional seconds precision of six if the target data type
does not specify a fractional seconds precision, because the default precision is six.

SELECT CAST('12-02-07 12h:15.12s:30m'
AS TIMESTAMP FORMAT 'DD-MM-YYBHHh:SSDS(6)s:MIm');

Character Strings That Omit Day, Month, Year, Hour, Minute, or Second

If the character string in a character-to-TIMESTAMP conversion omits the day, month, year,
hour, minute, or second, the system uses default values for the target TIMESTAMP value.

IF the character string omits the … THEN the system uses the …

day value of 1 (the first day of the month).

month value of 1 (the month of January).

year current year.

hour value of 0.

minute

second

Chapter 20: Data Type Conversions
Character-to-TIMESTAMP Conversion

794 SQL Functions, Operators, Expressions, and Predicates

Consider the following table:

CREATE TABLE timestamp_log
(id INTEGER, start_ts TIMESTAMP, end_ts TIMESTAMP);

The following INSERT statement converts two character strings to TIMESTAMP values. Both
strings omit the hour, minute, and second. Additionally, the first character string omits the
day and the second character string omits the month.

INSERT timestamp_log
(1001
,CAST ('January 2006' AS TIMESTAMP FORMAT 'MMMMBYYYY')
,CAST ('2006-01' AS TIMESTAMP FORMAT 'YYYY-DD'));

The result of the INSERT statement is as follows:

SELECT * FROM timestamp_log;

id start_ts end_ts
----------- -------------------------- --------------------------

1001 2006-01-01 00:00:00.000000 2006-01-01 00:00:00.000000

Here is an INSERT statement where both character strings omit the year. Additionally, the first
character string omits the hour and the second character string omits the minute. Assume the
current year is 2003.

INSERT timestamp_log
(1002
,CAST ('January 23 04:05' AS TIMESTAMP FORMAT 'MMMMBDDBMI:SS')
,CAST ('01-23 04:05' AS TIMESTAMP FORMAT 'MM-DDBHH:SS'));

The result of the INSERT statement is as follows:

SELECT * FROM timestamp_log WHERE id = 1002;

id start_ts end_ts
----------- -------------------------- --------------------------

1001 2003-01-23 00:04:05.000000 2003-01-23 04:00:05.000000

Restrictions on FORMAT Phrase

In character-to-TIMESTAMP conversions, the FORMAT phrase must not consist solely of the
following formatting characters:

• EEEE

• E4

• EEE

• E3

• T

• Z

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Character-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 795

Character-to-UDT Conversion

Purpose

Converts a character data string to a UDT.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit character-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Character-to-UDT Conversion

Teradata Database performs implicit Character-to-UDT conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

Syntax element … Specifies …

character_expression a character expression to be cast to a UDT.

UDT_data_definition the UDT type to which character_expression is to be converted.

CAST AScharacter_expression UDT_data_definition((

1101A336

Chapter 20: Data Type Conversions
Character-to-UDT Conversion

796 SQL Functions, Operators, Expressions, and Predicates

The source character type of the cast definition does not have to be an exact match to the
source character type of the implicit conversion. Teradata Database can use an implicit cast
definition that specifies a CHAR, VARCHAR, or CLOB source type.

If multiple implicit cast definitions exist for converting different character types to the UDT,
Teradata Database uses the implicit cast definition for the character type with the highest
precedence. The following list shows the precedence of character types in order from lowest to
highest precedence:

• CHAR

• VARCHAR

• CLOB

For non-CLOB character types, if no Character-to-UDT implicit cast definitions exist,
Teradata Database looks for other cast definitions that can substitute:

IF the following combination of implicit cast
definitions exists … THEN Teradata Database …

Numeric-
to-UDT

DATE-
to-UDT

TIME-
to-UDT

TIMESTAMP-
to-UDT

X uses the numeric-to-UDT implicit cast definition.

If multiple numeric-to-UDT implicit cast
definitions exist, then Teradata Database returns an
SQL error.

X uses the DATE-to-UDT implicit cast definition.

X uses the TIME-to-UDT implicit cast definition.

X uses the TIMESTAMP-to-UDT implicit cast
definition.

X X reports an error.

X X

X X

X X

X X

X X

X X X

X X X

X X X

X X X

X X X X

Chapter 20: Data Type Conversions
Character Data Type Assignment Rules

SQL Functions, Operators, Expressions, and Predicates 797

Substitutions are valid because Teradata Database can implicitly cast the non-CLOB character
type to the substitute data type, and then use the implicit cast definition to cast from the
substitute data type to the UDT.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Character Data Type Assignment Rules

Server Character Sets

LATIN, UNICODE, KANJISJIS, KANJI1, and GRAPHIC server character sets are generally
mutually assignable.

Consider an assignment of an expression to a character string column. The assignment may be
the result of the SQL UPDATE or INSERT statement, or it may be the result of a Load utility
assignment.

The expression is converted to the server character set of the character column.

Exceptions to GRAPHIC Data

The following exceptions apply to GRAPHIC data:

• When you import GRAPHIC data and assign it to a character column, that column must
be defined as GRAPHIC.

• When you import character data that is not GRAPHIC, you cannot assign it to a column
defined as GRAPHIC.

For more information, see the documentation on the USING row descriptor in SQL Data
Manipulation Language.

• You cannot assign non-GRAPHIC data to a GRAPHIC column from BTEQ or load
utilities.

For more information, see the documentation on the USING row descriptor in SQL Data
Manipulation Language.

• You cannot assign or export GRAPHIC data from a single byte character set like ASCII or
EBCDIC.

Chapter 20: Data Type Conversions
DATE-to-Character Conversion

798 SQL Functions, Operators, Expressions, and Predicates

DATE-to-Character Conversion

Purpose

Converts a DATE value to a character string.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of character data attribute phrases.

Teradata Conversion Syntax

Syntax element … Specifies …

date_expression a date expression to be cast to a character string.

character_data_type the character data type to which date_expression is to be converted.

character_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A248

CAST AS character_data_typedate_expression

)

(A

character_data_attributeCHARACTER SET server_character_set

A

1101B259

data_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

Chapter 20: Data Type Conversions
DATE-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 799

where:

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

When converting DATE to CHAR(n) or VARCHAR(n), then n must be equal to or greater
than the length of the DATE value as represented by a character string literal.

Restrictions

DATE types cannot be implicitly or explicitly converted to character types if the server
character set is GRAPHIC.

DATE to CLOB conversion is not supported.

Forcing a FORMAT on CAST for Converting DATE to Character

The default format for DATE to character conversion uses the format in effect for the DATE
value.

Syntax element … Specifies …

date_expression a date expression to be cast to a character string.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the character data type to which date_expression is to be converted.

server_character_set the server character set to use for the conversion.

If the CHARACTER SET clause is omitted, the user default character
set is used for the conversion.

IF the target data
type is … AND n is … THEN …

CHAR(n) greater than the length of the DATE
value as represented by a character
string literal

trailing pad characters are added to
pad the representation.

too small a string truncation error is returned.

VARCHAR(n) greater than the length of the DATE
value as represented by a character
string literal

no blank padding is added to the
character representation.

too small a string truncation error is returned.

Chapter 20: Data Type Conversions
DATE-to-Character Conversion

800 SQL Functions, Operators, Expressions, and Predicates

To override the default format, you can convert a DATE value to a string using a FORMAT
phrase. The resulting format, however, is the same as the DATE value. If you want a different
format for the string value, you need to also use CAST as described here.

You must use nested CAST operations in order to convert values from DATE to CHAR and
force an explicit FORMAT on the result regardless of the format associated with the DATE
value. This is because of the rules for matching FORMAT phrases to data types.

Example 1

The dateform mode of the session is INTEGERDATE and column F1 in the table INTDAT is a
DATE value with the explicit format 'YYYY,MMM,DD'.

SELECT F1 FROM INTDAT ;

The result (without a type change) is the following report:

F1

1900,Dec,31

Assume that you want to convert this to a value of CHAR(12), and an explicit output format
of 'MMMBDD,BYYYY'. Use nested CAST phrases and a FORMAT to obtain the desired
result: a report in character format.

SELECT
CAST((CAST (F1 AS FORMAT 'MMMBDD,BYYYY')) AS CHAR(12))
FROM INTDAT;

The result after the nested CASTs is the following report.

F1

Dec 31, 1900

The inner CAST establishes the display format for the DATE value and the outer CAST
indicates the data type of the desired result.

Example 2

Suppose you need to create a script to convert date values to the ANSI DATE format,
regardless of the source of the DATE value or the DATEFORM mode of the session.

You can use nested CASTs and a FORMAT to do this as demonstrated by the example that
follows.

SELECT
CAST((CAST (F1 AS FORMAT 'YYYY-MM-DD')) AS CHAR(10))
FROM INTDAT;

The result after the nested CASTs is the following report.

F1

1900-12-31

Chapter 20: Data Type Conversions
DATE-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 801

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
DATE-to-DATE Conversion

802 SQL Functions, Operators, Expressions, and Predicates

DATE-to-DATE Conversion

Use DATE-to-DATE conversion to convert the format or title of a DATE type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

The following are Teradata extensions to CAST:

• CAST permits the use of data attributes, such as the FORMAT phrase that enables
alternative output formatting of date data.

• A DATE-to-DATE conversion involving a DATE type with a dateform of INTEGERDATE
is a Teradata extension to the ANSI SQL:2008 standard.

Teradata Conversion Syntax

Syntax element … Specifies …

date_expression a date expression to be converted.

date_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A249

date_expression

date_data_attribute

DATEASCAST)(

date_data_attribute

1101B260

date_expression

data_attribute

DATE

, DATE

)(

,

, data_attribute

, data_attribute

Chapter 20: Data Type Conversions
DATE-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 803

where:

ANSI Compliance

 This is a Teradata extension to the ANSI SQL:2008 standard.

Example

Consider a table named employee that was created with a session dateform mode of
INTEGERDATE where dob is a DATE column with a format of M3BDDBY4. To list
employees who were born between January 30, 1938, and March 30, 1943, you could specify
the date information as follows:

SELECT name, dob
FROM employee
WHERE dob BETWEEN 'Jan 30 1938' AND 'Mar 30 1943'
ORDER BY dob;

The result returns the date of birth information as specified for the Employee table:

Name DOB
---------- -----------
Inglis C Mar 07 1938
Peterson J Mar 27 1942

To change the date format to an alternate form, change the SELECT to:

SELECT name, dob (FORMAT 'yy-mm-dd')
FROM employee
WHERE dob BETWEEN 'Jan 30 1938' AND 'Mar 30 1943'
ORDER BY dob ;

The format specification changes the display to the following:

Name DOB
---------- --------
Inglis C 38-03-07
Peterson J 42-03-27

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Syntax element … Specifies …

date_expression a date expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Chapter 20: Data Type Conversions
DATE-to-Numeric Conversion

804 SQL Functions, Operators, Expressions, and Predicates

DATE-to-Numeric Conversion

Introduction

DATE data may be converted to the following numeric types:

• SMALLINT

• BYTEINT

• INTEGER

• BIGINT

• DECIMAL(n,m)

• FLOAT

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of numeric data attribute phrases.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

date_expression a date expression to be converted.

numeric_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A250

CAST AS)date_expression numeric_data_type

numeric_data_attribute

(

1101B261

date_expression numeric_data_type)(

, data_attributedata_attribute ,

Chapter 20: Data Type Conversions
DATE-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 805

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

When a date is converted to a numeric, the value returned is the integer value for the internal
stored date, which is encoded using the following formula:

(year - 1900) * 10000 + (month * 100) + day

Allowable date values range from AD January 1, 0001 to AD December 31, 9999.

For example, December 31, 1985 would be stored as the integer 851231; July 4, 1776 stored as
-1239296; and March 30, 2041 stored as 1410330.

Conversion of DATE to DECIMAL(n,m) where the number of digits (n) is too small generates
a numeric overflow error. Conversion of DATE to BYTEINT or SMALLINT generates a
numeric overflow error if the value returned is outside the range of values that the data type
can represent.

No error is generated on conversion of DATE to INTEGER or FLOAT.

FORMAT Phrase

A FORMAT phrase in DATE to numeric conversion may only contain the 9 or Z formatting
character. For example:

SELECT CAST (DATE '2007-12-31' AS INTEGER FORMAT '9999999');

Implicit DATE-to-Numeric Conversion

Teradata Database performs implicit DATE-to-numeric type conversion when you assign a
DATE type to a numeric type, compare a DATE type and numeric type, or pass a DATE type
to a system function that takes a numeric type.

Syntax element … Specifies …

date_expression a date expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

numeric_data_type the target numeric type to which the date expression is to be converted.

Chapter 20: Data Type Conversions
DATE-to-Numeric Conversion

806 SQL Functions, Operators, Expressions, and Predicates

Example

The following example converts DATE data in the dob column of the employee table to a
numeric format.

Note that the best practice is to define date data as a DATE type; do not define date data as a
numeric type.

To change the display from date format to integer format, change the statement to:

SELECT name, dob (INTEGER)
FROM employee
WHERE dob BETWEEN 380307 AND 420825
ORDER BY dob ;

or

SELECT name, CAST (dob AS INTEGER)
FROM employee
WHERE dob BETWEEN 380307 AND 420825
ORDER BY dob ;

and the display becomes:

Name DOB
---------- ------
Inglis C 380307
Peterson J 420327

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
DATE-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 807

DATE-to-Period Conversion

Casts as PERIOD(DATE) or PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]).

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Usage Notes

A DATE value can be cast as PERIOD(DATE) or PERIOD(TIMESTAMP[(n)] [WITH TIME
ZONE]) using the CAST function. If an attempt is made to cast a DATE value as
PERIOD(TIME[(n)] [WITH TIME ZONE]), an error is reported.

If the target type is PERIOD(DATE), the result beginning element is set to the source value.
The result ending element is set to the result beginning bound plus one granule of the target
type (that is, INTERVAL '1' DAY). If the result ending bound exceeds the maximum DATE
value (that is, the source value is equal to the maximum DATE value), or the result ending
bound equal to maximum DATE value (that is, the resulting ending bound value equal to
value of UNTIL_CHANGED) an error is reported.

If the target type is PERIOD(TIMESTAMP[(n)]), the result beginning element is set to the
UTC value obtained using the current session time zone and a timestamp value formed from

Syntax element … Specifies …

date_expression a date expression to be converted.

period_data_type the target Period type to which the date expression is to be converted.

period_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST ASdate_expression period_data_type()

1101A589
period_data_attribute

Chapter 20: Data Type Conversions
DATE-to-Period Conversion

808 SQL Functions, Operators, Expressions, and Predicates

the source DATE value and a time portion of zero. The result ending element is set to the
result beginning bound plus one granule of the target type (note that this cannot cause an
error).

If the target type is PERIOD(TIMESTAMP[(n)] WITH TIME ZONE), the time portion of the
result beginning element is set to the UTC value obtained using the current session time zone
and a timestamp value formed from the source DATE value and a time portion of zero. The
time zone of the result beginning element is set to the current session time zone displacement.
The result ending element is set to the result beginning bound plus one granule of the target
type (note that this cannot cause an error).

Note: The result has the same value for the beginning bound and last value.

Example 1

In the following example, a DATE literal is cast as PERIOD(DATE). The result beginning
bound is obtained from the source. The result ending element is set to the result beginning
bound plus INTERVAL '1' DAY.

SELECT CAST(DATE '2005-02-03' AS PERIOD(DATE));

The following PERIOD(DATE) value is returned:

('2005-02-03', '2005-02-04')

Example 2

In the following example, a DATE literal is cast as PERIOD(TIMESTAMP(4)). The result
beginning bound is formed from the DATE literal and a time portion of zero. The result
ending element is set to the result beginning bound plus INTERVAL '0.0001' SECOND.

SELECT CAST(DATE '2005-02-03' AS PERIOD(TIMESTAMP(4)));

The following PERIOD(TIMESTAMP(4)) value is returned:

('2005-02-03 00:00:00.0000', '2005-02-03 00:00:00.0001')

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 809

DATE-to-TIMESTAMP Conversion

Purpose

Converts a DATE value to a TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

CAST Syntax

where:

Syntax element … Specifies …

date_expression a date expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

This is the default.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

date_expression

expression

time_zone_string

(fractional_seconds_precision)

TIMESTAMPASCAST (A

WITH TIME ZONE AT LOCAL

TIME ZONE

A B

1101C251

)

timestamp_data_attribute

B

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

810 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting of timestamp data.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when converting from DATE to
TIMESTAMP using CAST. In addition, you can specify the time zone displacement using
additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Teradata Conversion Syntax

where:

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the CAST. For details, see “AT LOCAL and AT
TIME ZONE Time Zone Specifiers” on page 215.

timestamp_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

1101D262

date_expression

(fractional_seconds_precision)

TIMESTAMP(A

data_attribute ,

expression

time_zone_string

, WITH TIME ZONE AT LOCAL

TIME ZONE

A B

)

, data_attribute

B

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 811

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when converting from DATE to
TIMESTAMP using Teradata Conversion Syntax. In addition, you can specify the time zone
displacement using additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Usage Notes

The following table shows the result of the CAST function or Teradata conversion based on
the various options specified. If the target precision is higher than zero, trailing zeros are
added in the result to adjust the precision.

Syntax element … Specifies …

date_expression a date expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

This is the default.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the conversion. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

812 SQL Functions, Operators, Expressions, and Predicates

Implicit DATE-to-TIMESTAMP Conversion

Teradata Database performs implicit conversion from DATE to TIMESTAMP types in some
cases. See “Implicit Conversion of DateTime types” on page 748.

The following conversions are supported:

The TIMESTAMP value is always converted to DATE in case of comparison. See
“TIMESTAMP-to-DATE Conversion” on page 894.

Example 1

In this example, the result of the CAST is the timestamp formed from the source expression
value '2008-05-14' and the default time '00:00:00' adjusted to UTC by the current session time
zone displacement, INTERVAL '01:00' HOUR TO MINUTE. Thus, the value of the CAST is
'2008-05-13 23:00:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '01:00' HOUR TO MINUTE, so the result of the SELECT
statements is: TIMESTAMP '2008-05-14 00:00:00'.

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0));
SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0) AT LOCAL);

IF you specify... THEN...

AT LOCAL a local timestamp value is formed from the source date_expression with the time
portion set to '00:00:00'. Then, the result is formed from this local timestamp
value adjusted to UTC by subtracting the time zone displacement based on the
current session time zone.

This is the same as not specifying the AT clause.

AT expression
or
AT TIME ZONE expression

a local timestamp value is formed from the source date_expression with the time
portion set to '00:00:00'. Then, the result is formed from this local timestamp
value adjusted to UTC by subtracting the time zone displacement defined by
expression.

AT time_zone_string
or
AT TIME ZONE time_zone_string

a local timestamp value is formed from the source date_expression with the time
portion set to '00:00:00'. The time zone displacement is determined based on
time_zone_string and the local timestamp value. Then, the result is formed from
the local timestamp value adjusted to UTC by subtracting the time zone
displacement.

From source type... To target type...

DATEa

a. ANSIDate dateform mode or IntegerDate dateform mode

TIMESTAMP

TIMESTAMP WITH TIME ZONE

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 813

Example 2

In this example, the result of the CAST is the timestamp formed from the source expression
value '2008-05-14' and the default time '00:00:00' adjusted to UTC by the current session time
zone displacement, INTERVAL '06:00' HOUR TO MINUTE. Thus, the value of the CAST is
'2008-05-13 18:00:00' at UTC with the current session time zone displacement INTERVAL
'06:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to its time zone displacement, INTERVAL
'06:00' HOUR TO MINUTE, so the result of the SELECT statements is: TIMESTAMP '2008-
05-14 00:00:00+06:00'.

SET TIME ZONE INTERVAL '06:00' HOUR TO MINUTE;

SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0) WITH TIME ZONE);
SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0) WITH TIME ZONE

AT LOCAL);

Example 3

In the following SELECT statement, the result of the CAST is the timestamp formed from the
date '2008-05-14' and the default time '00:00:00' adjusted to UTC by the specified time zone
displacement, INTERVAL -'08:00' HOUR TO MINUTE. Thus, the value of the CAST is '2008-
05-14 08:00:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '05:00' HOUR TO MINUTE, so the result of the SELECT statement
is: TIMESTAMP '2008-05-14 13:00:00'.

SET TIME ZONE INTERVAL '05:00' HOUR TO MINUTE;

SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0) AT -8);

Consider the following SELECT statement:

SELECT CAST(DATE '2008-05-14' AS TIMESTAMP(0) WITH TIME ZONE AT -8);

In this case, the result of the CAST is the timestamp formed from the source expression value
'2008-05-14' and the default time '00:00:00' adjusted to UTC by the specified time zone
displacement, INTERVAL -'08:00' HOUR TO MINUTE. Thus, the value of the CAST is '2008-
05-14 08:00:00' at UTC with the specified time zone displacement INTERVAL -'08:00' HOUR
TO MINUTE.

The result value of the CAST at UTC is adjusted to its time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-
05-14 00:00:00-08:00'. The current session time zone has no effect.

Example 4

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

Chapter 20: Data Type Conversions
DATE-to-TIMESTAMP Conversion

814 SQL Functions, Operators, Expressions, and Predicates

The following statement converts the DATE value '2010-03-09' to a TIMESTAMP value, where
the time zone displacement is based on the time zone string, 'America Pacific'.

SELECT CAST(DATE '2010-03-09' AS TIMESTAMP(0) AT 'America Pacific');

The result of the query is:

2010-03-09

2010-03-09 08:00:00

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
DATE-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 815

DATE-to-UDT Conversion

Purpose

Converts DATE data to UDT data.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit DATE-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit DATE-to-UDT Conversion

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

Teradata Database performs implicit DATE-to-UDT conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Syntax element … Specifies …

date_expression a DATE expression to be cast to a UDT.

UDT_data_definition the UDT type to which date_expression is to be converted.

CAST ASdate_expression UDT_data_definition((

1101A337

Chapter 20: Data Type Conversions
DATE-to-UDT Conversion

816 SQL Functions, Operators, Expressions, and Predicates

If no DATE-to-UDT implicit cast definition exists, Teradata Database looks for other cast
definitions that can substitute:

Substitutions are valid because Teradata Database can implicitly cast a DATE type to the
substitute data type, and then use the implicit cast definition to cast from the substitute data
type to the UDT.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

IF the following combination of implicit
cast definitions exists … THEN Teradata Database …

Numeric-to-UDT Charactera-to-UDT

a. a non-CLOB character type

X uses the Numeric-to-UDT implicit cast definition.

If multiple Numeric-to-UDT implicit cast definitions
exist, then Teradata Database returns an SQL error.

X uses the Character-to-UDT implicit cast definition.

If multiple Character-to-UDT implicit cast definitions
exist, then Teradata Database returns an SQL error.

X X reports an error.

Chapter 20: Data Type Conversions
INTERVAL-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 817

INTERVAL-to-Character Conversion

Purpose

Use CAST syntax or Teradata explicit conversion syntax to convert an INTERVAL type to its
canonical character string representation.

INTERVAL-to-Character conversion is supported for CHAR and VARCHAR types only. The
target type cannot be CLOB.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of character data attribute phrases.

Teradata Conversion Syntax

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

character_data_type the target character type to which the interval expression is to be
converted.

character_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A252

CAST interval_expression character_data_typeAS

)

(A

character_data_attributeserver_character_setCHARACTER SET

A

1101B263

interval_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

Chapter 20: Data Type Conversions
INTERVAL-to-Character Conversion

818 SQL Functions, Operators, Expressions, and Predicates

where:

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

INTERVAL-to-Fixed CHARACTER Conversion

When the target data type is CHAR(n), then n must be equal to or greater than the length of
the canonical form of the value as represented by a character string literal.

If n is greater than that length, trailing pad characters are added to pad the canonical
representation.

If n is too small, then a string truncation error is returned.

INTERVAL-to-VARCHAR Conversion

When the target data type is VARCHAR(n), then n must be equal to or greater than the length
of the canonical form of the value as represented by a varying character string literal.

If n is too small, then a string truncation error is returned.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the target character type to which the interval expression is to be
converted.

server_character_set which server character set to use for the conversion.

If the CHARACTER SET clause is omitted, the user default
character set is used to convert the INTERVAL expression.

Chapter 20: Data Type Conversions
INTERVAL-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 819

INTERVAL-to-INTERVAL Conversion

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

interval_data_type the target INTERVAL type to which the interval expression is to be
converted.

interval_data_attribute one of the following optional data attributes:

• NAMED

• TITLE

1101A253

CAST AS)interval_expression interval_data_type

interval_data_attribute

(

interval_data_attribute

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

1101B264

interval_expression

, data_attribute

, interval_data_type

interval_data_type)(

data_attribute

,

, data_attribute

Chapter 20: Data Type Conversions
INTERVAL-to-INTERVAL Conversion

820 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Compatible Types

Both data types must be from the same INTERVAL family: either Year-Month or Day-Time.
Types cannot be mixed.

Conversion of INTERVAL types is performed only when the fields and precisions are different.

Precision of Source and Target Types

A conversion can result in an overflow error if the precision of the target data type is smaller
than the corresponding precision for the source data type.

If the least significant value of the source is lower than that of the target, then those source
values having lower precision than the least significant field of the target are ignored. The
result is truncation. Recovery from this action is installation-dependent.

If the most significant field in the source value has higher significance than the most
significant field in the target value, then the higher order fields of the source are converted into

interval_data_type the optional target INTERVAL type to which the interval expression
is to be converted.

data_attribute one of the following optional data attributes:

• NAMED

• TITLE

Syntax element … Specifies …

This INTERVAL data type … Belongs to this INTERVAL family …

• INTERVAL YEAR

• INTERVAL YEAR TO MONTH

• INTERVAL MONTH

Year-Month

• INTERVAL DAY

• INTERVAL DAY TO HOUR

• INTERVAL DAY TO MINUTE

• INTERVAL DAY TO SECOND

• INTERVAL HOUR

• INTERVAL HOUR TO MINUTE

• INTERVAL HOUR TO SECOND

• INTERVAL MINUTE

• INTERVAL MINUTE TO SECOND

• INTERVAL SECOND

Day-Time

Chapter 20: Data Type Conversions
INTERVAL-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 821

a scalar value of the precision of the most significant field in the target, using the factors of 12
months per year, 24 hours per day and so on.

If the compared scalar value overflows the defined precision for the target field, an error is
returned.

Implicit INTERVAL-to-INTERVAL Conversion

Teradata Database performs implicit conversion from INTERVAL to INTERVAL data types in
some cases. See “Implicit Conversion of DateTime types” on page 748.

Conversion of INTERVAL types is performed only when both data types are from the same
INTERVAL family: either Year-Month or Day-Time. See “Compatible Types” on page 820.

Example 1: Least Significant Field in Source Lower Than Target

The following query converts ‘ 3-11’ to ‘ 3’. Source is INTERVAL YEAR(2). The truncation
completes the conversion.

SELECT CAST(INTERVAL '3-11' YEAR TO MONTH AS INTERVAL YEAR(2));

Example 2: Least Significant Field in Source Lower Than Target

The following query converts ‘ 135 12:37:25.26’ to ‘3252’. Source is DAY(3) TO SECOND(2)

SELECT CAST(INTERVAL '135 12:37:25.26' DAY(3) TO SECOND(2) AS INTERVAL
HOUR(4));

Example 3: Least Significant Field in Source Higher Than Target

The following query converts ‘3’ to ‘3-00’. Source is INTERVAL YEAR. The insertion of zeros
completes the conversion.

SELECT CAST(INTERVAL '3' YEAR AS INTERVAL YEAR TO MONTH);

Example 4: Least Significant Field in Source Higher Than Target

The following query converts ‘ 135 00:00:00.0’ to ‘ 3240:00:00.00’ after you perform the
additional conversion of multiplying 135 * 24 to obtain 3240, which is the final HOUR value.
The source had a data type of DAY.

SELECT CAST(INTERVAL ' 135 00:00:00.0' DAY AS INTERVAL HOUR TO SECOND);

Example 5: Most Significant Field in Source Higher Than Target

The following query first treats the source INTERVAL value as ‘135 12’ and then computes
HOURS as (135*24)+12=3252. The result of the query is INTERVAL ‘3252’ HOUR unless the
precision for the target value is less than 4, in which case an error is returned. The source had
a data type of DAY TO SECOND.

SELECT CAST(INTERVAL '135 12:37:25.26' DAY TO SECOND AS INTERVAL HOUR);

Chapter 20: Data Type Conversions
INTERVAL-to-INTERVAL Conversion

822 SQL Functions, Operators, Expressions, and Predicates

Example 6: Implicit Type Conversion During Assignment

Consider the following table which has an INTERVAL YEAR TO MONTH column:

CREATE TABLE TimeInfo
(YrToMon INTERVAL YEAR TO MONTH);

If you insert data into the column using the following parameterized request, and you pass an
INTERVAL YEAR or INTERVAL MONTH value to the request, Teradata Database implicitly
converts the value to an INTERVAL YEAR TO MONTH value before inserting the value.

INSERT INTO TimeInfo
VALUES (?);

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
INTERVAL-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 823

INTERVAL-to-Numeric Conversion

Purpose

Convert an INTERVAL with only one field to an exact numeric data type.

This numeric value is the value of the single numeric field in the INTERVAL record.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

numeric_data_type the target numeric type to which the interval expression is to be
converted.

numeric_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A254

CAST AS)interval_expression numeric_data_type

numeric_data_attribute

(

Syntax element … Specifies …

interval_expression an INTERVAL expression to be converted.

1101B265

interval_expression

data_attribute ,

numeric_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
INTERVAL-to-Numeric Conversion

824 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Implicit INTERVAL-to-Numeric Conversion

Teradata Database performs implicit conversion of an Interval data type to an exact numeric
data type in some cases. See“Implicit Conversion of DateTime types” on page 748.

Example

Consider the following table definition:

CREATE TABLE sales_intervals
(sdate DATE
, sinterval INTERVAL MONTH
, stotals DECIMAL(5,0));

The following query uses CAST to convert INTERVAL MONTH values in the sinterval
column to INTEGER.

SELECT stotals,
(EXTRACT (MONTH FROM sdate)) + (CAST(sinterval AS INTEGER))

FROM sales_intervals;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

numeric_data_type the target numeric type to which the interval expression is to be
converted.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
INTERVAL-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 825

INTERVAL-to-UDT Conversion

Purpose

Converts interval data to UDT data.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit INTERVAL-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit INTERVAL-to-UDT Conversion

Performing an implicit data type conversion requires a cast definition (see “Usage Notes” on
page 825) that specifies the following:

• the AS ASSIGNMENT clause

• a source data type that is in the same INTERVAL family as the source of the implicit cast:

Syntax element … Specifies …

interval_expression an interval expression to be cast to a UDT.

UDT_data_definition the UDT type to which interval_expression is to be converted.

CAST ASinterval_expression UDT_data_definition((

1101A338

Chapter 20: Data Type Conversions
INTERVAL-to-UDT Conversion

826 SQL Functions, Operators, Expressions, and Predicates

The source data type of the cast definition does not have to be an exact match to the source
of the implicit type conversion.

Teradata Database performs implicit INTERVAL-to-UDT conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

This INTERVAL data type … Belongs to this INTERVAL family …

• INTERVAL YEAR

• INTERVAL YEAR TO MONTH

• INTERVAL MONTH

Year-Month

• INTERVAL DAY

• INTERVAL DAY TO HOUR

• INTERVAL DAY TO MINUTE

• INTERVAL DAY TO SECOND

• INTERVAL HOUR

• INTERVAL HOUR TO MINUTE

• INTERVAL HOUR TO SECOND

• INTERVAL MINUTE

• INTERVAL MINUTE TO SECOND

• INTERVAL SECOND

Day-Time

Chapter 20: Data Type Conversions
Numeric-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 827

Numeric-to-Character Conversion

Purpose

Converts a numeric data type to a character data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

numeric_expression the numeric data expression to be cast to a character type.

character_data_type the character type to which the numeric data expression is to be
converted.

data_attribute one of the following optional data attributes:

• CHARACTER SET

• FORMAT

• NAMED

• TITLE

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

1101A630data_attribute

(numeric_expression character_data_type)CAST AS

1101A631

numeric_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

Chapter 20: Data Type Conversions
Numeric-to-Character Conversion

828 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Numeric-to-Character Conversion

How CAST Differs from Teradata Conversion Syntax

The process for the CAST function is as follows:

1 Convert the numeric value to a character string using the default or specified format for
the numeric value.

2 Trim leading and trailing pad characters.

3 Extend to the right as required by the target string length.

Syntax element … Specifies …

numeric_expression the numeric data expression to be cast to a character type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the character type to which the numeric data expression is to be
converted.

If character_data_definition does not specify a CHARACTER SET
clause to indicate which server character set to use, the user default
server character set is used.

server_character_set which server character set to use.

If the CHARACTER SET clause is not specified, the user default server
character set is used.

If a numeric argument in an SQL string function is implicitly converted to a CHAR or VARCHAR
character type, and the format of the numeric argument includes any of the following formatting
characters, the server character set of the character type is UNICODE:

• G

• F

• O

• A

• D

• L

• U

• I

• C

• N

For all other formats, the server character set is LATIN.

Numeric items cannot be converted to CLOB types or GRAPHIC characters.

For information on data type formats, formatting characters, and the FORMAT phrase, see “Data Type
Formats and Format Phrases” in SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Numeric-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 829

4 If truncation of non-pad characters is required to conform to the target string length,
report string truncation error.

The CAST operation differs from the Teradata SQL conversion as follows:

• Results are left justified. Column displays are not aligned.

• Truncation of significant data generates a string truncation error.

Using Teradata conversion syntax (that is, not using CAST) for explicit conversion of numeric-
to-character data requires caution.

The process is as follows:

1 Convert the numeric value to a character string using the default or specified FORMAT for
the numeric value.

Leading and trailing pad characters are not trimmed.

2 Extend to the right with pad characters if required, or truncate from the right if required,
to conform to the target length specification.

If non-pad characters are truncated, no string truncation error is reported.

For an example of numeric to character conversion that results in truncation of significant
data, see “Example 1” on page 830.

Supported Character Types

Numeric to character conversion is supported for CHAR and VARCHAR types only. Numeric
types cannot be converted to CLOB types.

Usage Notes

To convert a numeric type value to a character string, the character description must contain a
data type declaration. A FORMAT phrase, by itself, cannot be used to convert a numeric type
value to a character type value. The phrase only controls how to display the resultant value.

If the character description does not include a FORMAT phrase, then the format of the
original numeric value determines how to display the data.

The Teradata conversion syntax form of numeric-to-character conversion uses explicit or
default FORMATs to convert to a character representation. It then truncates or extends with
pad characters, depending what length the character string dictates. This can lead to a loss of
significance.

Attempting to convert from a numeric type to a character type that uses a GRAPHIC server
character set generates an error.

As a general rule, you should store numbers as numeric data, not as character data. For
example, a table is created with the following code:

CREATE TABLE job AS
(job_code CHAR(6) PRIMARY KEY
,description CHAR(70));

Subsequently, the following query is made:

Chapter 20: Data Type Conversions
Numeric-to-Character Conversion

830 SQL Functions, Operators, Expressions, and Predicates

SELECT job_code, description
FROM job
WHERE job_code = 1234;

The problem here is that ‘1234’, ‘ 1234’, ‘01234’, ‘001234’, ‘+1234’, and so on, are all valid
character representations of the numeric literal value, and the system cannot tell which value
to use for hashing. Therefore, the system must do a full table scan to convert all job_code
values to their numeric equivalents so that it can do the comparisons.

Example 1

T1.Field1 has a numeric INTEGER data type with the default format ‘-(10)9’. The user has
values such as 123456, with no values of over 999999. The values, defined as being in
INTEGER format, are to be converted to CHAR(8).

The following example illustrates the Teradata syntax for performing this numeric-to-
character conversion.

SELECT Field1(CHAR(8)) FROM T1;

returns ‘ 123’ for the value 123456, where the result includes 5 leading pad characters and
truncates significant digits.

Example 2

Based on the following description of Salary, data is converted as illustrated in the following
table (∆ = pad character):

Salary (DECIMAL(8,2), FORMAT '$$$,$$9.99')

The resultant character string is either extended with pad characters or truncated to conform
to the given character description.

Example 3

Suppose EmpNo was defined as SMALLINT with the default format of ‘9(6)’. Suppose a value
in EmpNo is 12501. The statement:

SELECT EmpNo(CHAR(5)) FROM Employee;

returns the ‘1250’, with a leading pad character and the low order digit missing. The CAST
function used for the same conversion, converts to the character representation of the
numeric value, trims leading pad characters, and finally truncates or pads on the right. For
example, the following SELECT statement returns ‘12501’.

Data Conversion Result

20000.00 Salary (CHAR(10)) '$20,000.00'

9000.00 Salary (CHAR(10)) '∆$9,000.00'

20000.00 Salary (FORMAT'9(5)') (CHAR (5)) '20000'

9000.00 CAST (Salary AS CHAR(10)) '$9,000.00∆'

Chapter 20: Data Type Conversions
Numeric-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 831

SELECT CAST (EmpNo AS CHAR(5)) FROM Employee;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Numeric-to-DATE Conversion

832 SQL Functions, Operators, Expressions, and Predicates

Numeric-to-DATE Conversion

Purpose

Converts a numeric expression to a DATE data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant; however, converting a numeric type to a date type is a
Teradata extension to the ANSI SQL:2008 standard.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

data_attribute any of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

A date_data_definition that specifies a FORMAT clause enables an
alternative format.

Specifying data attributes in CAST is a non-ANSI Teradata extension.

1101B077

numeric_expressionCAST AS DATE()

data_attribute

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

1101B385

numeric_expression

data_attribute ,

DATE)(

, data_attribute

Chapter 20: Data Type Conversions
Numeric-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 833

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Translation of Numbers to Dates

Although not recommended, you can explicitly convert numbers to dates.

Teradata Database stores each DATE value as a four-byte integer using the following formula:

(year - 1900) * 10000 + (month * 100) + day

For example, December 31, 1985 would be stored as the integer 851231; July 4, 1776 stored as
-1239296; and March 30, 2041 stored as 1410330.

The following table demonstrates how numeric dates are interpreted when inserted into a
column. Note the translation of the third date, which was probably intended to be 1990-12-01.

Notice that this formula best fits two-digit dates in the 1900s. Because of the difficulty of using
this format outside of the 1900s, dates are best specified as ANSI date literals instead.

Range of Allowable Values

Allowable date values range from AD January 1, 0001 (-18989899) to AD December 31, 9999
(80991231).

If the numeric value does not represent a valid date, an error is reported.

Numeric-to-DATE Implicit Type Conversion

Although not recommended, you can specify a numeric type in the assignment of a DATE
type. Teradata Database performs implicit numeric-to-DATE type conversion prior to the
assignment. The value of the numeric type must represent a valid date.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Specifying a FORMAT clause enables an alternative format.

Syntax element … Specifies …

This numeric value … Translates to this date value …

901201 1990-12-01

1001201 2000-12-01

19901201 3890-12-01

Chapter 20: Data Type Conversions
Numeric-to-DATE Conversion

834 SQL Functions, Operators, Expressions, and Predicates

However, for comparison operations involving a numeric type operand and a DATE type
operand, Teradata Database converts the DATE type to a numeric type. If you compare a
numeric type and a DATE type and expect the comparison to be between two DATE types,
you must explicitly convert the numeric type to a DATE type.

Example

This example casts the numeric integer expression to a date format.

SELECT CAST (1071201 AS DATE);

The result looks like this when the DateForm mode of the session is set to ANSIDate:

1071201

2007-12-01

Related Topics

FOR information on … SEE …

implicit type conversion of operands for
comparison operations

“Implicit Type Conversion of Comparison
Operands” on page 168.

data type compatibility rules for assignments
involving DateTime types

“ANSI DateTime and Interval Data Type
Assignment Rules” on page 210.

data type compatibility rules for arithmetic
operations involving DateTime types

“Arithmetic Operators” on page 229.

data types and data attributes SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Numeric-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 835

Numeric-to-INTERVAL Conversion

Purpose

Convert numeric data to an INTERVAL value with a single DateTime field.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of interval data attribute phrases.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

interval_data_type the target INTERVAL data type to which the numeric expression is being
converted.

interval_data_attribute one of the following optional data attributes:

• NAMED

• TITLE

1101A281

CAST AS)numeric_expression interval_data_type

interval_data_attribute

(

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

1101B273

numeric_expression

data_attribute ,

interval_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
Numeric-to-INTERVAL Conversion

836 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Numeric data is converted to an INTERVAL value with a single DateTime field.

If the numeric value is in the value range allowed for the INTERVAL, the value is used as the
single field of the INTERVAL. Otherwise, an overflow error is returned.

Implicit Numeric-to-INTERVAL Conversion

Teradata Database performs implicit conversion of an exact numeric data type to an Interval
data type in some cases. See “Implicit Conversion of DateTime types” on page 748.

Example

The following query returns ' -5' (with three leading pad characters).

SELECT CAST(-5 AS INTERVAL YEAR(4));

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

data_attribute one of the following optional data attributes:

• NAMED

• TITLE

interval_data_type the target INTERVAL data type to which the numeric expression is being
converted.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
Numeric-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 837

Numeric-to-Numeric Conversion

Purpose

Converts a numeric expression defined with one data type to a different numeric data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI SQL, CAST permits data attributes such as the FORMAT phrase that
enables an alternative format for numeric_expression.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

numeric_data_type the optional numeric data type to which numeric_expression is to be
converted.

numeric_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A632

(numeric_expression numeric_data_type
numeric_data_attribute

)CAST AS

numeric_data_attribute

1101A633

numeric_expression

, data_attribute

, numeric_data_type

numeric_data_type)(

data_attribute

,

, data_attribute

Chapter 20: Data Type Conversions
Numeric-to-Numeric Conversion

838 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Implicit Numeric-to-Numeric Conversion

Numeric items are converted to the same numeric type before any arithmetic or comparison
operation is performed. The result returned is of this same underlying type.

For example, before an INTEGER value is added to a FLOAT value, the INTEGER value is
converted to FLOAT, the data type of the result.

For details on implicit type conversions for binary arithmetic expressions, see “Binary
Arithmetic Result Data Types” on page 49.

For details on implicit type conversions for comparison operations, see “Implicit Type
Conversion of Comparison Operands” on page 168.

Conversion to FLOAT/REAL/DOUBLE PRECISION

Because floating point numbers are not exact values, conversion of DECIMAL and integer
values to FLOAT values might result in a loss of precision or produce a number that cannot be
represented exactly. For example, a value like 0.1, when cast to FLOAT, no longer exactly
equals to 0.1.

Truncation and Rounding During Conversion

Conversion of DECIMAL/NUMERIC to BIGINT, INTEGER, BYTEINT, or SMALLINT
truncates any decimal portion. Conversion to DECIMAL produces a rounded result. If a range
violation occurs, the operation may fail.

Conversion to FLOAT/REAL/DOUBLE PRECISION rounds to the nearest value available.
Neither decimal fractions nor numbers greater than 9,007,199,254,740,992 can be guaranteed
to be represented exactly, so the nearest representable value is chosen. If there are two
representable values that qualify as the nearest value, then the representation with a '0' in the
least significant bit is chosen. For example, 0.1, when stored in a FLOAT column, is rounded to
a value slightly higher: 0.1000000000000000055511151231257827021181583404541015625.

For details on rounding, see “Decimal/Numeric Data Types" in SQL Data Types and Literals.

Syntax element … Specifies …

numeric_expression an expression or existing field having a numeric data type.

numeric_data_type the optional numeric data type to which numeric_expression is to be
converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Chapter 20: Data Type Conversions
Numeric-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 839

Some examples of numeric conversions are:

Using CAST in Applications With DECIMAL Type Size Restrictions

Some applications require DECIMAL types to have 15 digits or less.

Applications with this requirement may need to access DECIMAL columns that have more
than 15 digits or use expressions that may produce DECIMAL results with more than 15
digits. To help with DECIMAL type size requirements, you can use CAST to convert
DECIMAL types to a size of 15 or fewer digits.

For example, consider the following expression where A, B, and C are columns defined as
DECIMAL(8,2):

SELECT (A*B)/C FROM table1;

The resulting value may be less than 15 digits, but A*B could be up to 18.

To ensure a result of less than 16 digits, use CAST:

SELECT CAST ((A*B)/C AS DECIMAL(15,2)) FROM table1;

Using CAST To Avoid Numeric Overflow

Because of the way the Teradata SQL compiler works, it is essential that you CAST the
arguments of your expressions whenever large values are expected.

For example, suppose f1 is defined as DECIMAL(14,2) and you are going to multiply by an
integer or get SUM(f1).

In this case, the following operations:

CAST(f1 AS DECIMAL(18,2))*100

or

SUM(CAST(f1 AS DECIMAL(18,2)))

are proper techniques for ensuring correct answer sets.

On the other hand, if you were to cast the results of the expressions, such as the following:

CAST(f1*100 AS DECIMAL(18,2))

or

CAST(SUM(f1) AS DECIMAL(18,2)

Value Converted To Result

20000.99 INTEGER 20000

20000.99 DECIMAL(6,1) 20001.0

20000.99 DECIMAL(4, 1) error

200000 SMALLINT error

Chapter 20: Data Type Conversions
Numeric-to-Numeric Conversion

840 SQL Functions, Operators, Expressions, and Predicates

then you will likely experience overflow during the computations (and before the CAST is
made)—not the desired result.

Example 1

This example casts the numeric integer expression named IntegerField to DECIMAL(7,2).

CAST (IntegerField AS DECIMAL (7,2))

Example 2

Although the FORMAT phrase cannot be used to change the underlying data type defined for
a column, the phrase may be used to change the display for a numeric value.

For example, if the field values for columns Wholesale and Retail, both defined as
DECIMAL(7,2), are 12467.75 and 21500.50, respectively, the result of the expression:

CAST (Wholesale - Retail AS FORMAT '-99999')

is:

-09033

A FORMAT phrase does not affect data that is returned to the client system in Record Mode
(client system internal format).

In the previous example, the value returned to the client system is still in packed decimal
format (for example, -9032.75).

The use of FORMAT in CAST is a Teradata extension to the ANSI standard.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Numeric-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 841

Numeric-to-UDT Conversion

Purpose

Converts numeric data to UDT data.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit numeric-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Numeric-to-UDT Conversion

Teradata Database performs implicit Numeric-to-UDT conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Syntax element … Specifies …

numeric_expression a numeric expression to be cast to a UDT.

UDT_data_definition the UDT type, followed by any optional FORMAT, NAMED or TITLE
data attribute phrases, to which numeric_expression is to be converted.

CAST ASnumeric_expression UDT_data_definition((

1101A334

Chapter 20: Data Type Conversions
Numeric-to-UDT Conversion

842 SQL Functions, Operators, Expressions, and Predicates

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

The source numeric type of the cast definition does not have to be an exact match to the
source numeric type of the implicit conversion. Teradata Database can use an implicit cast
definition that specifies a BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/
NUMERIC, or REAL/FLOAT/DOUBLE target type.

If multiple implicit cast definitions exist for converting different numeric types to the UDT,
Teradata Database uses the implicit cast definition for the numeric type with the highest
precedence. The following list shows the precedence of numeric types in order from lowest to
highest precedence:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL/NUMERIC

• REAL/FLOAT/DOUBLE

If no numeric-to-UDT implicit cast definitions exist, Teradata Database looks for other cast
definitions that can substitute:

Substitutions are valid because Teradata Database can implicitly cast a numeric type to the
substitute data type, and then use the implicit cast definition to cast from the substitute data
type to the UDT.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

IF the following combination of
implicit cast definitions exists … THEN Teradata Database …

DATE-to-
UDT

Charactera-to-
UDT

a. a non-CLOB character type

X uses the DATE-to-UDT implicit cast definition.

 X uses the character-to-UDT implicit cast definition.

If multiple character-to-UDT implicit cast definitions exist, then
Teradata Database returns an SQL error.

X X reports an error.

Chapter 20: Data Type Conversions
Period-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 843

Period-to-Character Conversion

Purpose

Converts a Period data type to its canonical character string representation.

Period-to-Character conversion is supported for CHAR and VARCHAR types only. The target
type cannot be CLOB.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of character data attribute phrases.

Syntax element … Specifies …

period_expression the Period data expression to be cast to a character type.

character_data_type the character type to which the Period data expression is to be converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

character_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST ASperiod_expression character_data_type(

1101A598

CHARACTER SET server_character_set

)

A

A

character_data_attribute

Chapter 20: Data Type Conversions
Period-to-Character Conversion

844 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax

where:

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

A period value expression can be cast as a character string representation using the CAST
function or the Teradata cast syntax, or when forming the output for field mode. Assume L is
the maximum length of the formatted character string for the format associated with the
period value expression being cast. The resulting character string contains two strings
representing the beginning and ending bounds of the period value expression, each up to
length L, and each enclosed in apostrophes (' '), separated by comma and a
space (,), and then enclosed within a left parenthesis and a right parenthesis [()]. Thus, the
maximum length of the resulting character string is 2*L+8. Assume the actual length is K
(which may be less than 2*L+8, for example, if the format includes the full names of months
and the specific month for a bound is July) and the target type is CHARACTER(n) or
VARCHAR(n):

• If n is equal to K, the period is cast into the resulting character string of length K.

• If n is greater than K and the target is VARCHAR(n), the period is cast into the resulting
character string with length K.

Syntax element … Specifies …

period_expression the Period data expression to be cast to a character type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the character type to which the Period data expression is to be converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

1101A599

period_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

Chapter 20: Data Type Conversions
Period-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 845

• If n is greater than K and the target is CHARACTER(n), the period is cast into the resulting
character string and trailing pad characters are added to extend to length n.

• If n less than K and the session is in ANSI mode, a truncation error is reported.

• If n less than K and the session is in Teradata mode, a truncated string of length n is
returned.

For data of Period data types with TIME and TIMESTAMP element types, the UTC value of
the Period value expression is adjusted to the time zone of the value or the current session
time zone if the value does not have a time zone. The exception to conversion from UTC is for
an ending bound of a PERIOD(TIMESTAMP(n)) value equal to the maximum value that is
used to represent UNTIL_CHANGED; in this case, the value is not changed. Due to such
adjustments, the ending bound may appear less than the beginning bound in the result,
although in UTC the ending bound is greater than the beginning bound. This happens since
the hour value for the TIME data type wraps over every 24 hours (that is, the hour value is
obtained using 'module 24').

Example

Assume pts is a PERIOD(TIMESTAMP(2)) column in table t with a value of PERIOD
'(2005-02-02 12:12:12.34, 2006-02-03 12:12:12.34)'.

In the following example, a PERIOD(TIMESTAMP(2)) column is cast as CHARACTER(52)
using the CAST function.

SELECT CAST(pts AS CHARACTER(52)) FROM t;

The following is returned:

('2005-02-02 12:12:12.34', '2006-02-03 12:12:12.34')

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Period-to-DATE Conversion

846 SQL Functions, Operators, Expressions, and Predicates

Period-to-DATE Conversion

Purpose

Converts Period data to a DATE value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of DATE data attribute phrases.

Usage Notes

A PERIOD(DATE) or PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) value can be cast as
DATE using the CAST function. The source last value must be equal to the source beginning
bound; otherwise, an error is reported.

If the source type is PERIOD(DATE), the result is the source beginning bound.

If the source type is PERIOD(TIMESTAMP(n) [WITH TIME ZONE]), the result is the date
portion of the source beginning bound after adjusting to the current session time zone.

If the source type is PERIOD(TIME(n) [WITH TIME ZONE]), an error is reported.

Example

Assume pd is a PERIOD(DATE) column in table t with a value of
PERIOD '(2005-02-02, 2005-02-03)'.

Syntax element … Specifies …

period_expression the Period data expression to be cast to a DATE type.

date_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST AS DATEperiod_expression()

1101A600date_data_attribute

Chapter 20: Data Type Conversions
Period-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 847

In the following example, a PERIOD(DATE) column is cast as DATE. The result is the
beginning bound of the column.

SELECT CAST(pd AS DATE) FROM t;

The following is returned:

2005-02-02

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Period-to-Period Conversion

848 SQL Functions, Operators, Expressions, and Predicates

Period-to-Period Conversion

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Compatible Types

The following table describes the allowed combinations of source and target types when both
the source and the target types are Period data types.

CAST period_expression period_data_type

period_data_attribute

AS)(

1101A568

period_data_attribute

Syntax element … Specifies …

period_expression the Period data expression to be converted.

period_data_type the optional Period type to which period_expression is to be converted.

period_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Source Type Target Type

PERIOD(DATE) PERIOD(DATE)

PERIOD(TIMESTAMP[(m)] [WITH TIME ZONE])

Chapter 20: Data Type Conversions
Period-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 849

PERIOD(DATE) to PERIOD(TIMESTAMP)

A PERIOD(DATE) value can be cast as PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE])
using the CAST function.

The UTC value of the result elements are obtained after adjustment with respect to the current
session time zone from the timestamps created by setting the date portion to the
corresponding source elements and the time portions to 0. If the target type is
PERIOD(TIMESTAMP[(n)] WITH TIME ZONE), both result time zone fields are set to the
current session time zone displacement. An exception to this is if the source ending bound is
the maximum DATE value; in that case, the result ending bound is set to the maximum
TIMESTAMP value.

PERIOD(TIME) to PERIOD(TIME)

A PERIOD(TIME(n) [WITH TIME ZONE]) value can be cast as PERIOD(TIME[(n)]
[WITH TIME ZONE]) using the CAST function.

The UTC value of the source is copied to the UTC value in the result. If the target type
specifies WITH TIME ZONE and the source contains time zones, the time zone displacements
from the source are copied to the corresponding result elements. If the source does not
contain time zones, the current session time zone displacement is copied to both result
elements. For example, assume the current session time zone displacement is
INTERVAL - "08:00" HOUR TO MINUTE and the source PERIOD(TIME(0) WITH TIME
ZONE) has the value PERIOD '(12:12:12+08:00, 12:12:13+08:00)'. The UTC value of this
source is ('04:12:12', '04:12:13'). The UTC value of the result is set to this value. On output of
this result, the UTC value is adjusted to the current session time zone and the result is
('20:12:12', '20:12:13').

PERIOD(TIME[(n)] [WITH
TIME ZONE])

PERIOD(TIME[(m)] [WITH TIME ZONE])

where m is the target precision, m must be greater than or equal to
the source precision n. The default for m is 6.

PERIOD(TIMESTAMP[(m)] [WITH TIME ZONE])

where m is the target precision, m must be greater than or equal to
the source precision n. The default for m is 6.

PERIOD(TIMESTAMP[(n)]
WITH TIME ZONE)

PERIOD(DATE)

PERIOD(TIME[(m)] [WITH TIME ZONE])

where m is the target precision, m must be greater than or equal to
the source precision n. The default for m is 6.

PERIOD(TIMESTAMP[(m)] [WITH TIME ZONE])

where m is the target precision, m must be greater than or equal to
the source precision n. The default for m is 6.

Source Type Target Type

Chapter 20: Data Type Conversions
Period-to-Period Conversion

850 SQL Functions, Operators, Expressions, and Predicates

Note: This value is actually for a previous day and, assuming that the CURRENT_DATE at
UTC is DATE '2006-07-28', the output beginning bound would be '2006-07-27 20:12:12' if it
was a timestamp element.

If the target precision is higher than the source precision, trailing zeros are appended to the
fractional seconds. If the target precision is lower than the source precision, an error is
reported.

PERIOD(TIME) to PERIOD(TIMESTAMP)

A PERIOD(TIME(n) [WITH TIME ZONE]) value can be cast as PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE]) using the CAST function.

The source time values get adjusted with respect to the session time zone displacement from
the corresponding UTC value. The date portion of each result element is set to
CURRENT_DATE. The hour, minute, and, second are copied from the source after the above
adjustment and the timestamp value is converted to corresponding UTC value.

If the target type specifies WITH TIME ZONE and the source contains time zones, the time
zone displacements from the source are copied to the corresponding result elements. If the
source does not contain time zones, the current session time zone displacement is copied to
both result elements.

If the target precision is higher than the source precision, trailing zeros are appended to the
fractional seconds. If the target precision is lower than the source precision, an error is
reported.

PERIOD(TIMESTAMP) to PERIOD(DATE)

A PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) value can be cast as PERIOD(DATE)
using the CAST function.

The result elements are each set to the date portion of the corresponding source bound after
the source bound is adjusted according to the current session time zone (the adjustment is not
done for the source ending bound if it is the maximum value). If the adjustment for time zone
changes the date, the changed value is used. If the result date portions are the same, an error is
reported.

PERIOD(TIMESTAMP) to PERIOD(TIME)

A PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) value can be cast as PERIOD(TIME[(n)]
[WITH TIME ZONE]) using the CAST function.

The date portion in the beginning and ending UTC values of the source must have the same
DATE value. Otherwise, an error is reported. The time portions of the result elements are
copied from the corresponding source time portions. If the target type specifies WITH TIME
ZONE and the source also contains time zones, the source time zone displacements are copied
to the corresponding result elements. If the source does not contain time zones, the current
session time zone displacement is copied to both result elements.

Chapter 20: Data Type Conversions
Period-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 851

If the target precision is higher than the source precision, trailing zeros are added to the
fractional seconds. If the target precision is lower than the source precision, an error is
reported.

PERIOD(TIMESTAMP) to PERIOD(TIMESTAMP)

A PERIOD(TIMESTAMP(n) [WITH TIME ZONE]) value can be cast as
PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]) using the CAST function.

The result date and time portions are set to the corresponding source date and time portions.
If the target type specifies WITH TIME ZONE and the source also contains time zones, the
time zone displacements in the source are copied to the corresponding result elements. If the
source does not contain time zones, the current session time zone displacement is copied to
both result elements except if the source ending bound is the maximum value, the time zone
for the result ending bound is +00:00.

If the target precision is higher than the source precision, trailing zeros are added in the
fractional seconds. If the target precision is lower than the source precision, an error is
reported.

Example 1: PERIOD(DATE) to PERIOD(TIMESTAMP)

Assume p is a PERIOD(DATE) column in table t1 with a value of PERIOD '(2005-02-02,
2006-02-03)' and the current session time zone displacement is INTERVAL -'08:00' HOUR
TO MINUTE.

In the following example, a PERIOD(DATE) column is cast as PERIOD(TIMESTAMP(6)).
The date portion is obtained from the source for the corresponding result element and the
time portions are set to zero.

SELECT CAST(p AS PERIOD(TIMESTAMP(6))) FROM t1;

The following is returned:

('2005-02-02 00:00:00.000000', '2006-02-03 00:00:00.000000')

Example 2: Least Significant Field in Source Lower Than Target

Assume p is a PERIOD(TIME(2)) column in table t with a value of PERIOD '(12:12:12.45,
13:12:12.67)' and the current session time zone displacement is INTERVAL -'08:00' HOUR
TO MINUTE.

In the following example, a PERIOD(TIME(2)) column is cast as PERIOD(TIME(6) WITH
TIME ZONE). The time portion is obtained from the source with trailing zeros added to the
fractional seconds to make the precision 6 for the corresponding result element and both
result time zone fields are set to the current session time zone displacement.

SELECT CAST(p AS PERIOD(TIME(6)WITH TIME ZONE)) FROM t;

The following is returned:

('12:12:12.450000-08:00', '13:12:12.670000-08:00')

Chapter 20: Data Type Conversions
Period-to-Period Conversion

852 SQL Functions, Operators, Expressions, and Predicates

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Period-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 853

Period-to-TIME Conversion

Purpose

Converts Period data to a TIME value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of TIME data attribute phrases.

Usage Notes

A PERIOD(TIME(n) [WITH TIME ZONE]) or PERIOD(TIMESTAMP(n) [WITH TIME
ZONE]) value can be cast as TIME[(n)] [WITH TIME ZONE] using the CAST function. The
source last value must be equal to the source beginning bound; otherwise, an error is reported.

CAST ASperiod_expression

(fractional_seconds_precision) time_data_attributeWITH TIME ZONE

(

)

1101A604

TIME

A

A

Syntax element … Specifies …

period_expression the Period data expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

time_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Chapter 20: Data Type Conversions
Period-to-TIME Conversion

854 SQL Functions, Operators, Expressions, and Predicates

If the target precision is higher than the source precision, trailing zeros are added in the result
to adjust the precision. If the target precision is lower than the source precision, an error is
reported.

If the source type is PERIOD(TIME(n) [WITH TIME ZONE]) or PERIOD(TIMESTAMP(n)
[WITH TIME ZONE]), the result time portion is obtained from time portion of the source
beginning bound. If both the source and target type are WITH TIME ZONE, the result time
zone field is set to the time zone displacement of the source beginning bound. If only the
target type is WITH TIME ZONE, the result time zone field is set to the current session time
zone displacement.

If the source type is PERIOD(DATE), an error is reported.

Example

Assume pt is a PERIOD(TIME(2)) column in table t with a value of PERIOD '(12:12:12.34,
12:12:12.35)'.

In the following example, a PERIOD(TIME(2)) column is cast as TIME(6). The TIME(6)
result is obtained from the source beginning element with trailing zeros added to the
fractional seconds to make the precision 6.

SELECT CAST(pt AS TIME(6)) FROM t;

The following is returned:

12:12:12.340000

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Period-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 855

Period-to-TIMESTAMP Conversion

Purpose

Converts Period data to a TIMESTAMP value.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting of DateTime data.

Usage Notes

A PERIOD(DATE), PERIOD(TIME(n) [WITH TIME ZONE]), or PERIOD(TIMESTAMP(n)
[WITH TIME ZONE]) value can be cast as TIMESTAMP[(n)] [WITH TIME ZONE] using

Syntax element … Specifies …

period_expression the Period data expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

timestamp_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST AS TIMESTAMPperiod_expression

(fractional_seconds_precision)

timestamp_data_attributeWITH TIME ZONE

(

)

1101A605

A

A

Chapter 20: Data Type Conversions
Period-to-TIMESTAMP Conversion

856 SQL Functions, Operators, Expressions, and Predicates

the CAST function. The source last value must be equal to the source beginning bound;
otherwise, an error is reported.

If the source type is PERIOD(TIME(n) [WITH TIME ZONE]) or
PERIOD(TIMESTAMP(n) [WITH TIME ZONE]):

• If the target precision is higher than the source precision, trailing zeros are added in the
result to adjust the precision.

• If the target precision is lower than the source precision, an error is reported.

If the source type is PERIOD(DATE), the result is formed from the source beginning bound
and a time portion of 0 adjusted with respect to the current session time zone, and, if the
target type is WITH TIME ZONE, the current session time zone displacement.

If the source type is PERIOD(TIME(n) [WITH TIME ZONE]), the source beginning bound
(in UTC) is adjusted with respect to the current session time zone displacement. The
timestamp portion of the result is formed from CURRENT_DATE and the time portion of the
source beginning bound obtained after the above adjustment. The resulting timestamp value
is converted to UTC. If both the source and target type are WITH TIME ZONE, the result
time zone field is set to the time zone displacement of the source beginning bound. If only the
target type is WITH TIME ZONE, the result time zone field is set to the current session time
zone displacement.

If the source type is PERIOD(TIMESTAMP(n) [WITH TIME ZONE]), the result timestamp
portion is the timestamp portion of the source beginning bound. If both the source and target
type are WITH TIME ZONE, the result time zone field is set to the time zone displacement of
the source beginning bound. If only the target type is WITH TIME ZONE, the result time
zone field is set to the current session time zone displacement.

Example

Assume pts is a PERIOD(TIMESTAMP(2)) column in table t with a value of PERIOD
'(2005-02-03 12:12:12.34, 2005-02-03 12:12:12.35)'.

In the following example, column pts is cast as TIMESTAMP(6). The result is the source
beginning bound with trailing zeros added to the fractional seconds to make the precision 6.

SELECT CAST(pts AS TIMESTAMP(6)) FROM t;

The following is returned:

2005-02-03 12:12:12.340000

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
Signed Zone DECIMAL Conversion

SQL Functions, Operators, Expressions, and Predicates 857

Signed Zone DECIMAL Conversion

Introduction

Teradata SQL can convert input data that is in signed zone (external) DECIMAL format to a
NUMERIC data type, thus allowing numeric operations to be performed on row values. The
column in which the signed zone decimal data is to be stored may be any numeric data type.

A FORMAT phrase incorporating the S sign character filters the data as it passes in and out of
Teradata Database.

The rightmost character of the input data string is assumed to contain the zone (overpunch)
bit.

The following table shows the characters representing zone-numeric combinations.

The sign FORMAT phrase can be included in a CREATE TABLE or ALTER TABLE statement
when the column is defined, or in the INSERT statement when the data is loaded. The chosen
method depends on how the stored value is to be used.

When a sign FORMAT phrase is specified at column creation time, it is considered attached to
the column because it translates data at the column level; that is, both when the data is loaded
and when it is retrieved.

Using FORMAT in CREATE TABLE

When the FORMAT phrase is used in the CREATE TABLE statement, as follows:

CREATE TABLE Test1 (Col1 DECIMAL(4) FORMAT '9999S');

Last Character
(Input String)

Numeric
Conversion

Last Character
(Input String)

Numeric
Conversion

Last Character
(Input String)

Numeric
Conversion

{

A

B

C

D

E

F

G

H

I

n … 0

n … 1

n … 2

n … 3

n … 4

n … 5

n … 6

n … 7

n … 8

n … 9

}

J

K

L

M

N

O

P

Q

R

-n … 0

-n … 1

-n … 2

-n … 3

-n … 4

-n … 5

-n … 6

-n … 7

-n … 8

-n … 9

0

1

2

3

4

5

6

7

8

9

n … 0

n … 1

n … 2

n … 3

n … 4

n … 5

n … 6

n … 7

n … 8

n … 9

Chapter 20: Data Type Conversions
Signed Zone DECIMAL Conversion

858 SQL Functions, Operators, Expressions, and Predicates

then zoned input character strings can be loaded with standard INSERT statements, whether
the data is defined:

INSERT INTO Test1 (Col1) VALUES ('123J');

or read from a client system data record via the USING modifier:

USING Ext1 (CHAR(4))
INSERT INTO Test1 (Col1)
VALUES (:Ext1);

The data record contains the string ’123J’.

Subsequently, a simple select, such as:

SELECT Col1 FROM Test1;

returns:

Col1

123J

Using Another FORMAT in the SELECT Statement

To override an attached format, another FORMAT phrase is needed in the retrieval statement.
Using the preceding table, one of the two following statements must be used to retrieve the
numeric value:

SELECT Col1 (FORMAT '+9999') FROM Test1;

or

SELECT CAST (Col1 AS INTEGER) FROM Test1;

The result is as follows.

Col1

-1231

If FORMAT is Not Attached to the Column

If the format is not attached to the column, the sign FORMAT phrase must be used each time
signed zoned decimal data is loaded and each time the row value is to be retrieved in signed
zoned decimal format.

For example, if a table is defined using a CREATE TABLE statement like this:

CREATE TABLE Test2 (Col2 DECIMAL(5));

then the sign FORMAT phrase must be included whenever signed zoned decimal strings are
inserted.

This is true whether the definition is explicitly defined, as it is in Examples 1 and 2, or defined
implicitly by being read from a client system data record as it is in Examples 3 and 4.

Chapter 20: Data Type Conversions
Signed Zone DECIMAL Conversion

SQL Functions, Operators, Expressions, and Predicates 859

Example 1

INSERT INTO Test2 (Col2)
VALUES ('5678B' (DECIMAL(5), FORMAT '99999S'));

Example 2

INSERT INTO Test2 (Col2)
VALUES ('9012L' (DECIMAL(5), FORMAT '99999S'));

Example 3

USING Ext2 (CHAR(5))
INSERT INTO Test2 (Col2)
VALUES (:Ext2 (DECIMAL(5), FORMAT '99999S'));

Example 4

USING Ext2 (CHAR(5))
INSERT INTO Test2 (Col2)
VALUES (:Ext2 (DECIMAL(5), FORMAT '99999S'));

where Ext2 contains the strings ’5678B’ and ’9012L’.

Because Col2 does not have an attached FORMAT phrase, a simple SELECT, such as the
following example, returns the results as seen immediately following.

SELECT Col2 FROM Test2;

Col2

56782.
-90123.

A sign FORMAT phrase must be included in the SELECT statement in order to retrieve the
values ’5678B’ and ’9012L’.

It is important to remember this rule when manipulating signed zoned decimal values,
especially when using sophisticated facilities like subqueries.

Example 5

This example is based on the data from Example 4.

Consider a column created with a CHARACTER data type.

CREATE TABLE Test3 (Col3 CHAR(5));

The column is loaded by selecting, without a sign FORMAT phrase, values from an
“unattached” column, as follows.

INSERT INTO Test3 (Col3)
SELECT Col2 FROM Test2 ;

Chapter 20: Data Type Conversions
Signed Zone DECIMAL Conversion

860 SQL Functions, Operators, Expressions, and Predicates

The values that are inserted are the following:

Col3

5678
-9012

The sign FORMAT phrase must be included in the query specification in order to insert the
values ’5678B’ and ’9012L’.

Related Topics

For information on data types, data type formats, formatting characters, and the FORMAT
phrase, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIME-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 861

TIME-to-Character Conversion

Purpose

Convert TIME data to a character string.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting for the character representations of DateTime data.

Syntax element … Specifies …

time_expression the TIME expression to be cast to a character type.

character_data_type the character type to which the TIME expression is to be converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

character_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A266

CAST AS character_data_typetime_expression

)

(A

character_data_attributeCHARACTER SET server_character_set

A

Chapter 20: Data Type Conversions
TIME-to-Character Conversion

862 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax

where:

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

When converting TIME to CHAR(n) or VARCHAR(n), then n must be equal to or greater
than the length of the TIME value as represented by a character string literal.

Syntax element … Specifies …

time_expression the TIME expression to be cast to a character type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the character type to which the TIME expression is to be converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

1101B274

time_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

IF the target data type is … AND n is … THEN …

CHAR(n) greater than the length of the
TIME value as represented by
a character string literal

trailing pad characters are added to
pad the representation

too small a string truncation error is returned

VARCHAR(n) greater than the length of the
TIME value as represented by
a character string literal

no blank padding is added to the
character representation

too small a string truncation error is returned

Chapter 20: Data Type Conversions
TIME-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 863

TIME to CLOB conversion is not supported.

You cannot convert a TIME value to a character string when the server character set is
GRAPHIC.

Forcing a FORMAT on CAST for Converting TIME to Character

The default format for TIME to character conversion is the format in effect for the TIME
value.

You can convert a TIME value to a character string using a FORMAT phrase. The resulting
format, however, is the same as the TIME value. If you want a different format for the string
value, you need to also use CAST as described here.

You must use nested CAST operations in order to convert values from TIME to CHAR and
force an explicit FORMAT on the result regardless of the format associated with the TIME
value. This is because of the rules for matching FORMAT phrases to data types.

Example

Field T1 in the table INTTIME is a TIME(6) value with the explicit format 'HH:MI:SSDS(6)'.
Assume that you want to convert this to a value of CHAR(6), and an explicit output format of
'HHhMIm'.

SELECT T1 FROM INTTIME ;

The result (without a type change) is the following report:

T1

05:57:11.362271

Now use nested CAST phrases and a FORMAT to obtain the desired result: a report in
character format.

SELECT
CAST((CAST (T1 AS FORMAT 'HHhMim'))
AS CHAR(6))
FROM INTTIME;

The result after the nested CASTs is the following report.

T1

05h57m

The inner CAST establishes the display format for the TIME value and the outer CAST
indicates the data type of the desired result.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIME-to-Period Conversion

864 SQL Functions, Operators, Expressions, and Predicates

TIME-to-Period Conversion

Purpose
Converts TIME data as PERIOD(TIME[(n)] [WITH TIME ZONE]) or
PERIOD(TIMESTAMP[(n)][WITH TIME ZONE]).

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Usage Notes

A TIME(n) [WITH TIME ZONE] value can be cast as PERIOD(TIME[(n)]
[WITH TIME ZONE]) or PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]) using the
CAST function.

If the target precision is higher than the source precision, trailing zeros are added in the result
bounds to adjust the precision. If the target precision is lower than the source precision, an
error is reported.

Syntax element … Specifies …

time_expression the TIME data expression to be converted.

period_data_type the target Period type to which time_expression is to be converted.

period_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

CAST AStime_expression period_data_type

period_data_attribute

()

1101A610

Chapter 20: Data Type Conversions
TIME-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 865

If the TIME source value contains leap seconds, the seconds portion gets adjusted to
59.999999 with the precision truncated to the target precision.

If the target type is PERIOD(TIME[(n)] [WITH TIME ZONE]), the result beginning element
is set to the source value (in UTC). If the target type is PERIOD(TIMESTAMP[(n)] [WITH
TIME ZONE]), the source time value get adjusted with respect to the current session time
zone displacement from the corresponding UTC value; the date portion in the result
beginning element is set to CURRENT_DATE, the time portion is set to the source value
obtained after the above adjustment, and the resulting timestamp value is converted to UTC.
If both the source and target are WITH TIME ZONE, the time zone field of the result
beginning element is set to the source time zone field. If only the target has WITH TIME
ZONE, the time zone field of the result beginning element is set to the current session time
zone displacement. The result ending element is set to the result beginning bound plus one
granule of the target type. If the result ending bound has a lower value than the result
beginning bound for a target type of PERIOD(TIME[(n)] [WITH TIME ZONE) or the result
ending element value exceeds the maximum corresponding TIMESTAMP value for a target
type of PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE), an error is reported.

Note: If the target type is WITH TIME ZONE, the result beginning and ending bounds have
the same time zones.

Also, note that the result has the same value for the beginning bound and last value.

Example

Assume pt is a TIME(0) column in table t with a value of TIME '12:12:12' and the current
session time zone displacement is INTERVAL -'08:00' HOUR TO MINUTE.

In the following example, a TIME(0) column is cast as PERIOD(TIME(4) WITH TIME
ZONE). The result beginning bound is formed form the source (in UTC) with trailing zeros
added to make the precision 4 and the current session time zone displacement. The result
ending element is set to the result beginning bound plus INTERVAL '0.0001' SECOND.

Note: The time zones of the result beginning and ending elements are the same.

SELECT CAST(pt AS PERIOD(TIME(4) WITH TIME ZONE)) FROM t;

Returns a PERIOD(TIME(4) WITH TIME ZONE) value as follows:

('12:12:12.0000-08:00', '12:12:12.0001-08:00')

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

866 SQL Functions, Operators, Expressions, and Predicates

TIME-to-TIME Conversion

Purpose

Converts TIME or TIME WITH TIME ZONE to TIME or TIME WITH TIME ZONE using
optional data attributes.

CAST Syntax

where:

Syntax element … Specifies …

time_expression the TIME expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101B267

time_expression

expression

time_zone_string

(fractional_seconds_precision)

TIMEASCAST (A

WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

time_data_attribute

B

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 867

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting for DateTime data.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using CAST to convert from TIME
(with or without time zone) to TIME WITH TIME ZONE. In addition, you can specify the
time zone displacement using additional expressions besides an INTERVAL expression.

Note: TIME (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIME value to UTC based on the current session time zone or on a
specified time zone.

AT SOURCE [TIME ZONE] that the time zone associated with time_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement for the CAST. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the CAST. For details, see “AT LOCAL and
AT TIME ZONE Time Zone Specifiers” on page 215.

time_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

868 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax

where:

Syntax element … Specifies …

time_expression the TIME expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101C275

time_expression

(fractional_seconds_precision)

TIME(A

data_attribute ,

expression

time_zone_string

, WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

, data_attribute

B

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 869

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using Teradata Conversion Syntax
to convert from TIME (with or without time zone) to TIME WITH TIME ZONE. In addition,
you can specify the time zone displacement using additional expressions besides an
INTERVAL expression.

Note: TIME (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIME value to UTC based on the current session time zone or on a
specified time zone.

Usage Notes

If you specify an AT clause for a TIME[(n)] without time zone target data type, an error is
returned.

If you specify an AT clause for a TIME[(n)] WITH TIME ZONE target data type, the
following table shows the result of the CAST function or Teradata conversion based on the
various options specified. If the target precision is higher than the source precision, trailing
zeros are added in the result to adjust the precision. If the target precision is lower than the
source precision, an error is returned.

AT SOURCE [TIME ZONE] that the time zone associated with time_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement in the conversion. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used in the conversion. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

870 SQL Functions, Operators, Expressions, and Predicates

Example 1

In this example, the current session time zone displacement, INTERVAL '01:00' HOUR TO
MINUTE, is used to determine the UTC value, '07:30:00' of the TIME literal.

The result of the CAST is the time formed from the time portion of the source expression
value '07:30:00' at UTC and the current time zone displacement, INTERVAL '01:00' HOUR
TO MINUTE.

The result value of the CAST '07:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL '01:00' HOUR TO MINUTE, and the result of the SELECT statements is: TIME
'08:30:00+01:00'.

The result of the SELECT statements is equal to TIME '07:30:00+00:00' since values are
compared based on their UTC values.

IF you specify...
AND the data type of
time_expression is... THEN...

AT LOCAL with or without TIME
ZONE

the result is formed from the source time_expression (in
UTC) and the time zone displacement based on the
current session time zone.

If the data type of time_expression is without time zone,
this is the same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the result is formed from the time portion of the source
time_expression (in UTC) and the time zone
displacement associated with time_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

AT SOURCE TIME ZONE WITH TIME ZONE the result is formed from the time portion of the source
time_expression (in UTC) and the time zone
displacement associated with time_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the result is formed from the time portion of the source
time_expression (in UTC) and the time zone
displacement defined by expression.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the result is formed from the time portion of the source
time_expression (in UTC) and the time zone
displacement based on time_zone_string. The time zone
displacement is determined based on time_zone_string,
CURRENT_TIMESTAMP AT '00:00', and the TIME
value of time_expression at UTC.

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 871

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00' AS TIME(0) WITH TIME ZONE);
SELECT CAST(TIME '08:30:00' AS TIME(0) WITH TIME ZONE AT LOCAL);

Example 2

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '04:30:00' for the TIME literal.

The result of the CAST is the time formed from the time portion of the source expression
value '04:30:00' at UTC and the current session time zone displacement, INTERVAL -'08:00'
HOUR TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'20:30:00-08:00'.

The result of the SELECT statement is equal to TIME '04:30:00+00:00'.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00+04:00' AS TIME(0)
WITH TIME ZONE AT LOCAL);

Example 3

The following SELECT statement returns an error because the source expression does not
have a time zone displacement.

SELECT CAST(TIME '08:30:00' AS TIME(0)
WITH TIME ZONE AT SOURCE TIME ZONE);

Example 4

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '04:30:00' for the TIME literal.

The result of the CAST is the time formed from the time portion of the source expression
value '04:30:00' at UTC, and the time zone displacement of the source expression, INTERVAL
'04:00' HOUR TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL '04:00' HOUR TO MINUTE, and the result of the SELECT statements is: TIME
'08:30:00+04:00'.

The result of the SELECT statements is equal to TIME '04:30:00+00:00'. The current session
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, has no effect.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00+04:00' AS TIME(0) WITH TIME ZONE);
SELECT CAST(TIME '08:30:00+04:00' AS TIME(0)

WITH TIME ZONE AT SOURCE);

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

872 SQL Functions, Operators, Expressions, and Predicates

Example 5

In this example, the current session time zone displacement, INTERVAL -'04:00' HOUR TO
MINUTE, is used to determine the UTC value '12:30:00' for the TIME literal.

The result of the CAST is the time formed from the time portion of the source expression
value '12:30:00' at UTC, and the specified time zone displacement, INTERVAL -'08:00' HOUR
TO MINUTE.

The result value of the CAST '12:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'04:30:00-08:00'.

The result of the SELECT statement is equal to TIME '12:30:00+00:00'.

SET TIME ZONE INTERVAL -'04:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00' AS TIME(0) WITH TIME ZONE AT -8);

Example 6

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '04:30:00' for the TIME literal.

The result of the CAST is the time formed from the time portion of the source expression
value '04:30:00' at UTC, and the specified time zone displacement, INTERVAL -'08:00' HOUR
TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'20:30:00-08:00'.

This result of the SELECT statement is equal to TIME '04:30:00+00:00'. The current session
time zone displacement, INTERVAL '08:00' HOUR TO MINUTE, has no effect.

SET TIME ZONE INTERVAL '08:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00+04:00' AS TIME(0)
WITH TIME ZONE AT -8);

Example 7

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIME value '08:30:00' to a TIME WITH TIME ZONE
value, where the time zone displacement is based on the time zone string, 'America Pacific'.

SELECT CAST(TIME '08:30:00' AS TIME(0) WITH TIME ZONE
AT 'America Pacific');

The result of the query is:

08:30:00

Chapter 20: Data Type Conversions
TIME-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 873

00:30:00-08:00

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

874 SQL Functions, Operators, Expressions, and Predicates

TIME-to-TIMESTAMP Conversion

Purpose

Converts TIME or TIME WITH TIME ZONE to TIMESTAMP or TIMESTAMP WITH TIME
ZONE using optional data attributes.

CAST Syntax

where:

Syntax element … Specifies …

time_expression the TIME expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101B268

time_expression

expression

time_zone_string

(fractional_seconds_precision)

TIMESTAMPASCAST (A

WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

timestamp_data_attribute

B

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 875

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting of DateTime data.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using CAST to convert from TIME
to TIMESTAMP. In addition, you can specify the time zone displacement using additional
expressions besides an INTERVAL expression.

Note: TIME (without time zone) and TIMESTAMP (without time zone) are not ANSI
SQL:2008 compliant. Teradata Database internally converts a TIME or TIMESTAMP value to
UTC based on the current session time zone or on a specified time zone.

AT SOURCE [TIME ZONE] that the time zone associated with time_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement for the CAST. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the CAST. For details, see “AT LOCAL and
AT TIME ZONE Time Zone Specifiers” on page 215.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

876 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax

where:

Syntax element … Specifies …

time_expression the TIME expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101C276

time_expression

(fractional_seconds_precision)

TIMESTAMP(A

data_attribute ,

expression

time_zone_string

, WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

, data_attribute

B

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 877

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using Teradata Conversion Syntax
to convert from TIME to TIMESTAMP. In addition, you can specify the time zone
displacement using additional expressions besides an INTERVAL expression.

Note: TIME (without time zone) and TIMESTAMP (without time zone) are not ANSI
SQL:2008 compliant. Teradata Database internally converts a TIME or TIMESTAMP value to
UTC based on the current session time zone or on a specified time zone.

Usage Notes

If you specify the AT clause for a TIMESTAMP[(n)] without time zone target data type, the
following table shows the result of the CAST function or Teradata conversion based on the
various options specified. If the target precision is higher than the source precision, trailing
zeros are added in the result to adjust the precision. If the target precision is lower than the
source precision, an error is returned.

AT SOURCE [TIME ZONE] that the time zone associated with time_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement in the conversion. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used in the conversion. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

878 SQL Functions, Operators, Expressions, and Predicates

IF you specify...
AND the data type of
time_expression is... THEN...

AT LOCAL with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement based on the current
session time zone. A local timestamp value is formed
from CURRENT_DATE (at the above time zone
displacement) and the time portion of time_expression
obtained after the previous adjustment. The result is
this local timestamp value adjusted to UTC by
subtracting the above time zone displacement.

This is the same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the source time_expression (in UTC) is adjusted by
adding the time zone displacement of time_expression. A
local timestamp value is formed from
CURRENT_DATE (based on the time zone
displacement of time_expression) and the time portion
of time_expression obtained after the previous
adjustment. The result is this local timestamp value
adjusted to UTC by subtracting the time zone
displacement of time_expression.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

AT SOURCE TIME ZONE WITH TIME ZONE the source time_expression (in UTC) is adjusted by
adding the time zone displacement of time_expression.
A local timestamp value is formed from
CURRENT_DATE (based on the time zone
displacement of time_expression) and the time portion
of time_expression obtained after the previous
adjustment. The result is this local timestamp value
adjusted to UTC by subtracting the time zone
displacement of time_expression.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement defined by
expression.

A local timestamp value is formed from
CURRENT_DATE at the above time zone displacement
and the time portion of time_expression obtained after
the above adjustment. The result is this local timestamp
value adjusted to UTC by subtracting the above time
zone displacement.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 879

If you specify the AT clause for a TIMESTAMP[(n)] WITH TIME ZONE target data type, the
following table shows the result of the CAST function or Teradata conversion based on the
various options specified. If the target precision is higher than the source precision, trailing
zeros are added in the result to adjust the precision. If the target precision is lower than the
source precision, an error is returned.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement based on
time_zone_string. The time zone displacement is
determined based on time_zone_string,
CURRENT_TIMESTAMP AT '00:00', and the TIME
value of time_expression at UTC.

A local timestamp value is formed from
CURRENT_DATE at the above time zone displacement
and the time portion of time_expression obtained after
the above adjustment. The result is this local timestamp
value adjusted to UTC by subtracting the above time
zone displacement.

IF you specify...
AND the data type of
time_expression is... THEN...

IF you specify...
AND the data type of
time_expression is... THEN...

AT LOCAL with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement based on the current
session time zone. A local timestamp value is formed
from CURRENT_DATE (at the above time zone
displacement) and the time portion of time_expression
obtained after the above adjustment. This resulting
timestamp is adjusted to UTC, and the result value of
the CAST at UTC is adjusted to the above time zone
displacement.

If the data type of time_expression is without time zone,
this is the same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the source time_expression (in UTC) is adjusted by
adding the time zone displacement of time_expression.
A local timestamp value is formed from
CURRENT_DATE (based on the time zone
displacement of time_expression) and the time portion
of time_expression obtained after the previous
adjustment. This resulting timestamp is adjusted to
UTC, and the result value of the CAST at UTC is
adjusted to the time zone displacement of
time_expression.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

880 SQL Functions, Operators, Expressions, and Predicates

Implicit TIME-to-TIMESTAMP Conversion

Teradata Database performs implicit conversion from TIME to TIMESTAMP data types in
some cases. However, implicit conversion from TIME to TIMESTAMP is not supported for
comparisons. See “Implicit Conversion of DateTime types” on page 748.

The following conversions are supported:

AT SOURCE TIME ZONE WITH TIME ZONE the source time_expression (in UTC) is adjusted by
adding the time zone displacement of time_expression.
A local timestamp value is formed from
CURRENT_DATE (based on the time zone
displacement of time_expression) and the time portion
of time_expression obtained after the previous
adjustment. This resulting timestamp is adjusted to
UTC, and the result value of the CAST at UTC is
adjusted to the time zone displacement of
time_expression.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement defined by
expression.

A local timestamp value is formed from
CURRENT_DATE (at the above time zone
displacement) and the time portion of time_expression
obtained after the above adjustment. This resulting
timestamp is adjusted to UTC, and the result value of
the CAST at UTC is adjusted to the above time zone
displacement.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the source time_expression (in UTC) is adjusted by
adding the time zone displacement based on
time_zone_string. The time zone displacement is
determined based on time_zone_string,
CURRENT_TIMESTAMP AT '00:00', and the TIME
value of time_expression at UTC.

A local timestamp value is formed from
CURRENT_DATE (at the above time zone
displacement) and the time portion of time_expression
obtained after the above adjustment. This resulting
timestamp is adjusted to UTC, and the result value of
the CAST at UTC is adjusted to the above time zone
displacement.

IF you specify...
AND the data type of
time_expression is... THEN...

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 881

Example 1

Assuming the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, the following SELECT statements return the result:
TIMESTAMP '2008-05-14 08:30:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0));
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) AT LOCAL);

The current session time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is used
to determine the UTC value '23:30:00' of the literal.

For the CAST, the source expression value '23:30:00' at UTC is adjusted to the current session
time zone displacement, INTERVAL '09:00' TO MINUTE, to yield '08:30:00'. A timestamp is
formed from the current date '2008-05-14' at time zone displacement, INTERVAL '09:00'
HOUR TO MINUTE, and the time portion of the source expression value '08:30:00'. Then,
this timestamp, '2008-05-14 08:30:00', at time zone displacement, INTERVAL '09:00' HOUR
TO MINUTE, is adjusted to UTC so that the CAST result is '2008-05-13 23:30:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '09:00' HOUR TO MINUTE, so the result of the SELECT
statements is: TIMESTAMP '2008-05-14 08:30:00'.

Example 2

Assuming the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, the following SELECT statements return the result:
TIMESTAMP '2008-05-14 13:30:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0));
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0) AT LOCAL);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the current session time zone displacement, INTERVAL '09:00' HOUR TO
MINUTE to yield '13:30:00'.

From source type... To target type...

TIME TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIME WITH TIME ZONE TIMESTAMP

TIMESTAMP WITH TIME ZONE

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

882 SQL Functions, Operators, Expressions, and Predicates

A timestamp is formed from the current date '2008-05-14' at time zone displacement,
INTERVAL HOUR '09:00' TO MINUTE, and the time portion of the source expression value
'13:30:00'. Then this timestamp, '2008-05-14 13:30:00', at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, is adjusted to UTC so that the CAST result is '2008-05-14
04:30:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '09:00' HOUR TO MINUTE, so the result of the SELECT
statements is: TIMESTAMP '2008-05-14 13:30:00'.

Example 3

An error is returned for the following SELECT statements because the source expression does
not have a time zone.

SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) AT SOURCE TIME ZONE);
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) AT SOURCE);
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) WITH TIME ZONE

AT SOURCE TIME ZONE);
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) WITH TIME ZONE

AT SOURCE);

Example 4

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'9:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-13 13:30:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0)

AT SOURCE TIME ZONE);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the time zone displacement of the source, INTERVAL '04:00' HOUR TO
MINUTE, to yield '08:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL '04:00' HOUR TO MINUTE, and the time portion of the source expression value
'08:30:00' obtained after the above adjustment. Then this timestamp '2008-05-13 08:30:00' at
time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-13 04:30:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '09:00' HOUR TO MINUTE, so the result of the SELECT statement
is: TIMESTAMP '2008-05-13 13:30:00'.

Example 5

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone,

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 883

INTERVAL -'08:00' HOUR TO MINUTE. The following SELECT statement returns the result:
TIMESTAMP '2008-05-14 08:30:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) AT -8);

The current session time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is used
to determine the UTC value '23:30:00' of the literal. For the CAST, the source expression value
'23:30:00' at UTC is adjusted to the target time zone displacement, INTERVAL -'08:00' HOUR
TO MINUTE, to yield '15:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the time portion of the source expression value
'15:30:00' obtained after the above adjustment. Then this resulting timestamp '2008-05-13
15:30:00' at time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, is adjusted to
UTC so that the CAST result is '2008-05-13 23:30:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '09:00' HOUR TO MINUTE, so the result of the SELECT statement
is: TIMESTAMP '2008-05-14 08:30:00'.

Example 6

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone
displacement, INTERVAL -'08:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-14 13:30:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0) AT -8);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the target time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, to
yield '20:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the time portion of the source expression value
'20:30:00' obtained after the above adjustment. Then this timestamp '2008-05-13 20:30:00' at
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-14 04:30:00' at UTC.

The result value of the CAST at UTC is adjusted to the current session time zone
displacement, INTERVAL '09:00' HOUR TO MINUTE, so the result of the SELECT statement
is: TIMESTAMP '2008-05-14 13:30:00'.

Example 7

Assuming the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, the following SELECT statements return the result:
TIMESTAMP '2008-05-14 08:30:00+09:00'.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

884 SQL Functions, Operators, Expressions, and Predicates

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) WITH TIME ZONE);
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) WITH TIME ZONE AT LOCAL);

The current session time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is used
to determine the UTC value '23:30:00' of the literal. For the CAST, the source expression value
'23:30:00' at UTC is adjusted to the current session time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, to yield '08:30:00'.

A timestamp is formed from the current date '2008-05-14' at time zone displacement,
INTERVAL '09:00' HOUR TO MINUTE, and the time portion of the source expression value
'08:30:00' obtained after the above adjustment. Then this timestamp '2008-05-14 08:30:00' at
time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-13 23:30:00' at UTC with time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL '09:00'
HOUR TO MINUTE, so the result of the SELECT statements is: TIMESTAMP '2008-05-14
08:30:00+09:00'.

Example 8

Assuming the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, the following SELECT statement returns the result:
TIMESTAMP '2008-05-14 13:30:00+09:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0)

WITH TIME ZONE AT LOCAL);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00 at UTC is
adjusted to the current session time zone displacement, INTERVAL '09:00' HOUR TO
MINUTE, to yield '13:30:00'.

A timestamp is formed from the current date '2008-05-14' at time zone displacement,
INTERVAL '09:00' HOUR TO MINUTE, and the time portion of the source expression value
'13:30:00' obtained after the above adjustment. Then this timestamp '2008-05-14 13:30:00' at
time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-14 04:30:00' at UTC with time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL '09:00'
HOUR TO MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-05-14
13:30:00+09:00'.

Example 9

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 885

displacement, INTERVAL '04:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-14 08:30:00+04:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0) WITH TIME ZONE);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the current session time zone displacement, INTERVAL '09:00' HOUR TO
MINUTE, to yield '13:30:00'.

A timestamp is formed from the current date '2008-05-14' at time zone displacement,
INTERVAL '09:00' HOUR TO MINUTE, and the time portion of the source expression value
'13:30:00' obtained after the above adjustment. Then this timestamp '2008-05-14 13:30:00' at
time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-14 04:30:00' at UTC with time zone displacement, INTERVAL
'04:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL '04:00'
INTERVAL TO MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-05-14
08:30:00+04:00'.

Example 10

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-13 08:30:00+04:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0) WITH TIME ZONE

AT SOURCE);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the time zone displacement of the source expression, INTERVAL '04:00' HOUR
TO MINUTE, to yield '08:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL '04:00' HOUR TO MINUTE, and the time portion of the source expression value
'08:30:00' obtained after the above adjustment. Then this timestamp '2008-05-13 08:30:00' at
time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-13 04:30:00' at UTC with time zone displacement, INTERVAL
'04:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone, INTERVAL '04:00' HOUR TO
MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-05-13
08:30:00+04:00'. The current session time zone has no effect.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

886 SQL Functions, Operators, Expressions, and Predicates

Example 11

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone
displacement, INTERVAL -'08:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-13 15:30:00-08:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) WITH TIME ZONE AT -8);

The current session time zone displacement, INTERVAL '09:00' HOUR TO MINUTE, is used
to determine the UTC value '23:30:00' of the literal. For the CAST, the source expression value
'23:30:00' at UTC is adjusted to the target time zone displacement, INTERVAL -'08:00' HOUR
TO MINUTE, to yield '15:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the time portion of the source expression value
'15:30:00' obtained after the above adjustment. Then this timestamp '2008-05-13 15:30:00' at
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-13 23:30:00' at UTC with time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-
05-13 15:30:00-08:00'.

Example 12

Assume that the current date is DATE '2008-05-14' at time zone displacement, INTERVAL
'09:00' HOUR TO MINUTE, but the current date is DATE '2008-05-13' at time zone
displacement, INTERVAL -'08:00' HOUR TO MINUTE. The following SELECT statement
returns the result: TIMESTAMP '2008-05-13 20:30:00-08:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;
SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0) WITH TIME ZONE

AT -8);

The time zone displacement, INTERVAL '04:00' HOUR TO MINUTE, in the literal is used to
determine the UTC value '04:30:00' and time zone displacement, INTERVAL '04:00' HOUR
TO MINUTE, of the literal. For the CAST, the source expression value '04:30:00' at UTC is
adjusted to the target time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, to
yield '20:30:00'.

A timestamp is formed from the current date '2008-05-13' at time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the time portion of the source expression value
'20:30:00' obtained after the above adjustment. Then this timestamp '2008-05-13 20:30:00' at
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, is adjusted to UTC so that
the CAST result is '2008-05-14 04:30:00' at UTC with time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE, so the result of the SELECT statement is: TIMESTAMP '2008-
05-13 20:30:00-08:00'. The current session time zone has no effect.

Chapter 20: Data Type Conversions
TIME-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 887

Example 13

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIME value '08:30:00' to a TIMESTAMP value, where
the time zone displacement is based on the time zone string, 'America Pacific'.

SELECT CAST(TIME '08:30:00' AS TIMESTAMP(0) AT 'America Pacific');

The result of the query is:

08:30:00

2010-03-09 08:30:00

Example 14

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIME value '08:30:00+04:00' to a TIMESTAMP value,
where the time zone displacement is based on the time zone string, 'America Pacific'.

SELECT CAST(TIME '08:30:00+04:00' AS TIMESTAMP(0)
AT 'America Pacific');

The result of the query is:

08:30:00+04:00

2010-03-10 04:30:00

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIME-to-UDT Conversion

888 SQL Functions, Operators, Expressions, and Predicates

TIME-to-UDT Conversion

Purpose

Converts TIME data to UDT data.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit TIME-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit TIME-to-UDT Conversion

Teradata Database performs implicit TIME-to-UDT conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

Syntax element … Specifies …

time_expression a TIME expression to be cast to a UDT.

UDT_data_definition the UDT type, followed by any optional FORMAT, NAMED, or TITLE
data attribute phrases, to which time_expression is to be converted.

CAST AStime_expression UDT_data_definition((

1101A340

Chapter 20: Data Type Conversions
TIME-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 889

If no TIME-to-UDT implicit cast definition exists, Teradata Database looks for a CHAR-to-
UDT or VARCHAR-to-UDT implicit cast definition that can substitute for the TIME-to-UDT
implicit cast definition. Substitutions are valid because Teradata Database can implicitly cast a
TIME type to the character data type, and then use the implicit cast definition to cast from the
character data type to the UDT. If multiple character-to-UDT implicit cast definitions exist,
then Teradata Database returns an SQL error.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-Character Conversion

890 SQL Functions, Operators, Expressions, and Predicates

TIMESTAMP-to-Character Conversion

Purpose

Convert TIMESTAMP data to a character string.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of character data attribute phrases.

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be cast to a character type.

character_data_type the character type to which the TIMESTAMP expression is to be
converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

character_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A269

CAST AS character_data_typetimestamp_expression

)

(A

character_data_attributeCHARACTER SET server_character_set

A

Chapter 20: Data Type Conversions
TIMESTAMP-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 891

Teradata Conversion Syntax

where:

ANSI Compliance

This is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

When converting TIMESTAMP to CHAR(n) or VARCHAR(n), then n must be equal to or
greater than the length of the TIMESTAMP value as represented by a character string literal.

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be cast to a character type.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the character type to which the TIMESTAMP expression is to be
converted.

server_character_set the server character set to use for the conversion.

If no CHARACTER SET clause is specified to indicate which server
character set to use, the user default server character set is used.

1101B277

timestamp_expression character_data_type(

)

A

CHARACTER SET server_character_set

, data_attribute

A

data_attribute ,

IF the target data type is … AND n is … THEN …

CHAR(n) greater than the length of the
TIMESTAMP value as
represented by a character
string literal

trailing pad characters are added to
pad the representation.

too small a string truncation error is returned.

Chapter 20: Data Type Conversions
TIMESTAMP-to-Character Conversion

892 SQL Functions, Operators, Expressions, and Predicates

TIMESTAMP to CLOB conversion is not supported.

You cannot convert a TIME value to a character string if the server character set is GRAPHIC.

Forcing a FORMAT on CAST for Converting TIMESTAMP to Character

The default format for TIMESTAMP to character conversion is the format in effect for the
TIMESTAMP value.

To override the format, you can convert a TIMESTAMP value to a string using a FORMAT
phrase. The resulting format, however, is the same as the TIMESTAMP value. If you want a
different format for the string value, you need to also use CAST as described here.

You must use nested CAST operations in order to convert values from TIMESTAMP to CHAR
and force an explicit FORMAT on the result regardless of the format associated with the
TIMESTAMP value. This is because of the rules for matching FORMAT phrases to data types.

Example

Field TS1 in the table INTTIMESTAMP is a TIMESTAMP value with the explicit format 'Y4-
MM-DDBHH:MI:SSDS(6)'. Assume that you want to convert this to a value of CHAR(19),
and an explicit output format of 'M3BDD,BY4BHHhMIm'.

SELECT TS1 FROM INTTIMESTAMP;

The result (without a type change) is the following report:

TS1

1900-12-31 08:25:37.899231

Now use nested CAST phrases and a FORMAT to obtain the desired result: a report in
character format.

SELECT
CAST((CAST (TS1 AS FORMAT 'M3BDD,BY4BHHhMIm'))
AS CHAR(19))
FROM INTTIMESTAMP;

The result after the nested CASTs is the following report.

TS1

Dec 31, 1900 08h25m

The inner CAST establishes the display format for the TIMESTAMP value and the outer CAST
indicates the data type of the desired result.

VARCHAR(n) greater than the length of the
TIMESTAMP value as
represented by a character
string literal

no blank padding is added to the
character representation.

too small a string truncation error is returned.

IF the target data type is … AND n is … THEN …

Chapter 20: Data Type Conversions
TIMESTAMP-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 893

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

894 SQL Functions, Operators, Expressions, and Predicates

TIMESTAMP-to-DATE Conversion

Purpose

Convert TIMESTAMP data to a DATE value.

CAST Syntax

where:

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted. timestamp_expression may
include an AT clause.

AT LOCAL that the time zone displacement based on the current session time zone is
used.

This is the default.

AT SOURCE [TIME
ZONE]

that the time zone associated with timestamp_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no column
named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a column
named source exists, then SOURCE references this column, and the value
of the column is used as the time zone displacement for the CAST. If
needed, the column value is implicitly converted to type INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

1101B270

CAST AStimestamp_expression DATE(

expression

time_zone_string

AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

B

B

)

date_data_attribute

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 895

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of DATE data attribute phrases, such as
FORMAT that enables an alternative format.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using CAST to convert from
TIMESTAMP to DATE. In addition, you can specify the time zone displacement using
additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Teradata Conversion Syntax

where:

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement
used for the CAST. For details, see “AT LOCAL and AT TIME ZONE Time
Zone Specifiers” on page 215.

date_data_attribute any of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

expression

time_zone_string

AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

B

B

)

, data_attribute

1101C278

timestamp_expression

data_attribute ,

DATE(

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

896 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using Teradata Conversion Syntax
to convert from TIMESTAMP to DATE. In addition, you can specify the time zone
displacement using additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted. timestamp_expression may
include an AT clause.

data_attribute any of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

AT LOCAL that the time zone displacement based on the current session time zone is
used.

This is the default.

AT SOURCE [TIME
ZONE]

that the time zone associated with timestamp_expression is used in the
following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no column
named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a column
named source exists, then SOURCE references this column, and the value
of the column is used as the time zone displacement in the conversion. If
needed, the column value is implicitly converted to type INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE]
expression

that the time zone displacement defined by expression is used. The data
type of expression should be INTERVAL HOUR(2) TO MINUTE or it
must be a data type that can be implicitly converted to INTERVAL
HOUR(2) TO MINUTE. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone displacement
used in the conversion. For details, see “AT LOCAL and AT TIME ZONE
Time Zone Specifiers” on page 215.

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 897

Usage Notes

The following table shows the result of the CAST function or Teradata conversion based on
the various options specified. Note that the time zone adjustment may change the YEAR,
MONTH, and DAY fields of the DATE value.

Implicit TIMESTAMP-to-DATE Conversion

Teradata Database performs implicit conversion from TIMESTAMP types to DATE in some
cases. See “Implicit Conversion of DateTime types” on page 748.

The following conversions are supported:

IF you specify...

AND the data type of
timestamp_expression
is... THEN...

AT LOCAL with or without TIME
ZONE

the result is the date portion of the source
timestamp_expression after adjusting its UTC value by
adding the time zone displacement based on the current
session time zone.

This is the same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the result is the date portion of the source
timestamp_expression after adjusting its UTC value by
adding the time zone displacement associated with
timestamp_expression.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

AT SOURCE TIME ZONE WITH TIME ZONE the result is the date portion of the source
timestamp_expression after adjusting its UTC value by
adding the time zone displacement associated with
timestamp_expression.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the result is the date portion of the source
timestamp_expression after adjusting its UTC value by
adding the time zone displacement defined by
expression.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the result is the date portion of the source
timestamp_expression after adjusting its UTC value by
adding the time zone displacement based on
time_zone_string. The time zone displacement is
determined based on time_zone_string and the
TIMESTAMP value of timestamp_expression at UTC.

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

898 SQL Functions, Operators, Expressions, and Predicates

The TIMESTAMP value is always converted to DATE in case of comparison.

Example 1

A single column table has three rows of type TIMESTAMP(0) WITH TIME ZONE.

A query that requests the field values and CASTs them as DATE is performed during a session
that has its Local Time Zone defined as -’08:00’.

The results table is as follows.

TimeStampWithTimeZone CastAsDate

1997-10-07 15:43:00+08:00 1997-10-06
1997-10-07 15:47:52-08:00 1997-10-07
1997-10-07 15:43:00-00:00 1997-10-07

Notice that the difference between the stored Time Zone and the Local Time Zone is 16 hours
in the first row, but at the same time the TimeStamp value is 15:43, which is less than 16.

This puzzling result can be clarified using a similar query that casts TIMESTAMP(0) WITH
TIME ZONE as TIMESTAMP(0), omitting the Time Zone information.

The results table for this query is as follows.

TimeStampWithTimeZone CastAsTimeStamp

1997-10-07 15:43:00+08:00 1997-10-06 23:43:00
1997-10-07 15:47:52-08:00 1997-10-07 15:47:52
1997-10-07 15:43:00-00:00 1997-10-07 07:43:00

After the CAST, the values are all displayed at Local Time Zone, and the value in the first row
indicates that the 16 hour adjustment rolled the date back 1, to a time near the end of that
date.

Example 2

Consider the following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-05-31 22:30:00-08:00'
AS DATE AT SOURCE TIME ZONE);

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00' AT '-08:00'
(DATE, AT SOURCE);

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00' (DATE, AT -8);

From source type... To target type...

TIMESTAMP DATEa

a. ANSIDate dateform mode or IntegerDate dateform mode

TIMESTAMP WITH TIME ZONE

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 899

SELECT TIMESTAMP '2008-06-01 07:30:00' (DATE, AT -8);

These SELECT statements return the date for time zone displacement, INTERVAL -'08:00'
HOUR TO MINUTE; that is, the statements return '08/05/31'. If the SELECT statements were
specified without an AT clause or with an AT LOCAL clause, these statements would return
'08/06/01' for the current session time zone displacement, INTERVAL '01:00' HOUR TO
MINUTE.

The following shows the results of the SELECT statements if the AT clause was not specified:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-05-31 22:30:00-08:00' AS DATE);

2008-05-31 22:30:00-08:00

08/06/01

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00'
AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

2008-06-01 06:30:00+00:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE
--

2008-05-31 22:30:00-08:00

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00'
AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE (DATE);

2008-06-01 06:30:00+00:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE
--

08/06/01

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00' (DATE);

2008-06-01 06:30:00+00:00

08/06/01

SELECT TIMESTAMP '2008-06-01 07:30:00' (DATE);

2008-06-01 07:30:00

08/06/01

The following shows the results of the SELECT statements if the AT clause was not specified,
and the current session time zone displacement is INTERVAL -'08:00' HOUR TO MINUTE.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-05-31 22:30:00-08:00' AS DATE);

2008-05-31 22:30:00-08:00

08/05/31

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00'
AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE (DATE);

2008-06-01 06:30:00+00:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

900 SQL Functions, Operators, Expressions, and Predicates

--
08/05/31

SELECT TIMESTAMP '2008-06-01 06:30:00+00:00' (DATE);

2008-06-01 06:30:00+00:00

08/05/31

SELECT CAST(TIMESTAMP '2008-06-01 07:30:00+01:00'
AS TIMESTAMP(0)) (DATE);

2008-06-01 07:30:00+01:00

08/05/31

Example 3

Consider the following statements:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-02 04:30:00+09:00'
AS DATE AT SOURCE TIME ZONE);

SELECT TIMESTAMP '2008-06-01 20:30:00+01:00'
AT TIME ZONE INTERVAL '09' HOUR (DATE, AT SOURCE);

SELECT TIMESTAMP '2008-06-01 20:30:00' (DATE, AT +9);

These SELECT statements return the date for time zone displacement, INTERVAL '09:00'
HOUR TO MINUTE; that is, the statements return '08/06/02'. If the SELECT statements were
specified without an AT clause or with an AT LOCAL clause, these statements would return
'08/06/01' for the current session time zone displacement, INTERVAL '01:00' HOUR TO
MINUTE.

The following shows the results of the SELECT statements if the AT clause was not specified:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-02 04:30:00+09:00' AS DATE);

2008-06-02 04:30:00+09:00

08/06/01

SELECT TIMESTAMP '2008-06-01 20:30:00+01:00'
AT TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

2008-06-01 20:30:00+01:00 AT TIME ZONE INTERVAL 9:00 HOUR TO MINUTE
--

2008-06-02 04:30:00+09:00

SELECT TIMESTAMP '2008-06-01 20:30:00+01:00'
AT TIME ZONE INTERVAL '09:00' HOUR TO MINUTE (DATE);

2008-06-01 20:30:00+01:00 AT TIME ZONE INTERVAL 9:00 HOUR TO MINUTE
--

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 901

08/06/01

SELECT TIMESTAMP '2008-06-01 20:30:00' (DATE);

2008-06-01 20:30:00

08/06/01

The following shows the results of the SELECT statements if the AT clause was not specified,
and the current session time zone displacement is INTERVAL '09:00' TO MINUTE.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-02 04:30:00+09:00' AS DATE);

2008-06-02 04:30:00+09:00

08/06/02

SELECT TIMESTAMP '2008-06-01 20:30:00+01:00'
AT TIME ZONE INTERVAL '09:00' HOUR TO MINUTE (DATE);

2008-06-01 20:30:00+01:00 AT TIME ZONE INTERVAL 9:00 HOUR TO MINUTE
--

08/06/02

SELECT CAST(TIMESTAMP '2008-06-01 20:30:00+01:00'
AS TIMESTAMP(0)) (DATE);

2008-06-01 20:30:00+01:00

08/06/02

Example 4

Consider the following statements:

SET TIME ZONE INTERVAL '10:00' HOUR TO MINUTE;

SELECT CAST((TIMESTAMP '2008-06-01 18:30:00+01:00' AT '05:45')
AS DATE AT SOURCE);

SELECT CAST((TIMESTAMP '2008-06-01 18:30:00+01:00' AT 5.75)
AS DATE AT SOURCE);

SELECT TIMESTAMP '2008-06-01 23:15:00+05:45'
(DATE, AT SOURCE TIME ZONE);

SELECT TIMESTAMP '2008-06-02 03:30:00' (DATE, AT '05:45');
SELECT TIMESTAMP '2008-06-02 03:30:00' (DATE, AT 5.75);

These SELECT statements return the date for time zone displacement, INTERVAL '05:45'
HOUR TO MINUTE; that is, the statements return '08/06/01'. If the SELECT statements were
specified without an AT clause or with an AT LOCAL clause, these statements would return
'08/06/02' for the current session time zone displacement, INTERVAL '10:00' HOUR TO
MINUTE.

The following shows the results of the SELECT statements if the AT clause was not specified:

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

902 SQL Functions, Operators, Expressions, and Predicates

SET TIME ZONE INTERVAL '10:00' HOUR TO MINUTE;

SELECT TIMESTAMP '2008-06-01 18:30:00+01:00'
AT TIME ZONE INTERVAL '05:45' HOUR TO MINUTE;

2008-06-01 18:30:00+01:00 AT TIME ZONE INTERVAL 5:45 HOUR TO MINUTE
--

2008-06-01 23:15:00+05:45

SELECT CAST((TIMESTAMP '2008-06-01 18:30:00+01:00'
AT TIME ZONE INTERVAL '05:45' HOUR TO MINUTE) AS DATE);

2008-06-01 18:30:00+01:00 AT TIME ZONE INTERVAL 5:45 HOUR TO MINUTE
--

08/06/02

SELECT TIMESTAMP '2008-06-01 23:15:00+05:45' (DATE);

2008-06-01 23:15:00+05:45

08/06/02

SELECT TIMESTAMP '2008-06-02 03:30:00' (DATE);

2008-06-02 03:30:00

08/06/02

The following shows the results of the SELECT statements if the AT clause was not specified,
and the current session time zone displacement is INTERVAL '05:45' HOUR TO MINUTE.

SET TIME ZONE INTERVAL '05:45' HOUR TO MINUTE;

SELECT CAST((TIMESTAMP '2008-06-01 18:30:00+01:00'
AT TIME ZONE INTERVAL'05:45' HOUR TO MINUTE) AS DATE);

2008-06-01 18:30:00+01:00 AT TIME ZONE INTERVAL 5:45 HOUR TO MINUTE
--

08/06/01

SELECT TIMESTAMP '2008-06-01 23:15:00+05:45' (DATE);

2008-06-01 23:15:00+05:45

08/06/01

SELECT CAST(TIMESTAMP '2008-06-02 03:30:00+10:00'
AS TIMESTAMP(0)) (DATE);

2008-06-02 03:30:00+10:00

08/06/01

Example 5

Consider the following statements:

SET TIME ZONE +1;
SELECT CAST((TIMESTAMP '2008-06-01 08:30:00' AT TIME ZONE -8)

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 903

AS DATE AT SOURCE TIME ZONE);

This SELECT statement returns the date for time zone displacement, INTERVAL -'08:00'
HOUR TO MINUTE; that is, the statement returns '08/05/31'. If the SELECT statement was
specified without an AT clause or with an AT LOCAL clause, the statement would return '08/
06/01' for the current session time zone displacement, INTERVAL HOUR '01:00' MINUTE.

The following shows the result of the SELECT statement if the AT clause was not specified:

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT TIMESTAMP '2008-06-01 08:30:00'
AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

2008-06-01 08:30:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE
--

2008-05-31 23:30:00-08:00

SELECT CAST((TIMESTAMP '2008-06-01 08:30:00'
AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE) AS DATE);

2008-06-01 08:30:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE
--

08/06/01

The following shows the result of the SELECT statement if the AT clause was not specified,
and the current session time zone displacement is INTERVAL -'08:00' HOUR TO MINUTE.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST((CAST(TIMESTAMP '2008-06-01 08:30:00+01:00'
AS TIMESTAMP(0)) AT TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE)
AS DATE);

2008-06-01 08:30:00+01:00 AT TIME ZONE INTERVAL -8:00 HOUR TO MINUTE
--

08/05/31

Example 6

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIMESTAMP value '2010-03-09 22:30:00-08:00' to a
DATE value, where the time zone displacement is based on the time zone string, 'America
Pacific'.

SELECT CAST(TIMESTAMP '2010-03-09 22:30:00-08:00' AS DATE
AT 'America Pacific');

The result of the query is:

2010-03-09 22:30:00-08:00

10/03/09

Chapter 20: Data Type Conversions
TIMESTAMP-to-DATE Conversion

904 SQL Functions, Operators, Expressions, and Predicates

Example 7

The following SELECT statements return an error because the source expression does not
have a TIMESTAMP WITH TIME ZONE data type.

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS DATE AT SOURCE);
SELECT CAST(TIME '08:30:00+03:00' AS DATE AT SOURCE TIME ZONE);
SELECT CAST(TIME '08:30:00' AS DATE AT SOURCE);
SELECT CAST(DATE '2008-06-01' AS DATE AT SOURCE TIME ZONE);

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-Period Conversion

SQL Functions, Operators, Expressions, and Predicates 905

TIMESTAMP-to-Period Conversion

Purpose
Converts a TIMESTAMP value as PERIOD(DATE), PERIOD(TIME[(n)][WITH TIME
ZONE]), or PERIOD(TIMESTAMP[(n)][WITH TIME ZONE]).

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases.

Usage Notes

A TIMESTAMP(n) [WITH TIME ZONE] value can be cast as PERIOD(DATE),
PERIOD(TIME[(n)] [WITH TIME ZONE]), or PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE]) using the CAST function.

If the target type is PERIOD(TIME[(n)] [WITH TIME ZONE]) or
PERIOD(TIMESTAMP[(n)] [WITH TIME ZONE]):

• If the target precision is higher than the source precision, trailing zeros are added in the
result bounds to adjust the precision.

• If the target precision is lower than the source precision, an error is reported.

CAST AStimestamp_expression period_data_type

period_data_attribute

()

1101A608

Syntax element … Specifies …

timestamp_expression the TIMESTAMP data expression to be converted.

period_data_type the target Period type to which timestamp_expression is to be converted.

period_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Chapter 20: Data Type Conversions
TIMESTAMP-to-Period Conversion

906 SQL Functions, Operators, Expressions, and Predicates

If the target type is PERIOD(DATE), the result beginning bound is the date portion of the
source beginning bound adjusted to the current session time zone.

If the target type is PERIOD(TIME[(n)]), the result beginning bound is the time portion of
the source value (in UTC).

If the target type is PERIOD(TIME[(n)] WITH TIME ZONE), the result beginning bound is
formed from the time portion of the source value (in UTC) and, if the source type is WITH
TIME ZONE, the source time zone displacement and, if not, the current session time zone
displacement.

If the target type is PERIOD(TIMESTAMP[(n)]), the result beginning bound is the
timestamp portion of the source value (in UTC).

If the target type is PERIOD(TIMESTAMP[(n)] WITH TIME ZONE), the result beginning
bound is formed from the timestamp portion of the source value (in UTC) and, if the source
type is WITH TIME ZONE, the source time zone displacement and, if not, the current session
time zone displacement.

If the TIMESTAMP source value contains leap seconds, the seconds portion gets adjusted to
59.999999 with the precision truncated to the target precision.

The result ending element is set to the result beginning bound plus one granule of the target
type. If the result ending bound exceeds the maximum allowed DATE or TIMESTAMP value
for a target type of PERIOD(DATE) or PERIOD(TIMESTAMP[(n)]), respectively, or the
ending bound has a lower value than the result beginning bound in their UTC forms for a
target type of PERIOD(TIME[(n)]), an error is reported.

Note: If the target type is WITH TIME ZONE, the result beginning and ending bounds have
the same time zones.

Also, note that the result has the same value for the beginning bound and last value.

Example

In the following example, a TIMESTAMP(6) literal is cast as PERIOD(DATE). The result
beginning element is set to the date portion of the source value. The result ending element is
set to result beginning bound plus INTERVAL '1' DAY.

SELECT CAST(TIMESTAMP '2005-02-03 12:12:12.340000' AS PERIOD(DATE));

The following is returned:

('2005-02-03', '2005-02-04')

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 907

TIMESTAMP-to-TIME Conversion

Purpose

Convert TIMESTAMP data to a TIME value.

CAST Syntax

where:

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101B271

timestamp_expression

(fractional_seconds_precision)

AS TIMECAST (A

expression

time_zone_string

WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

time_data_attribute

B

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

908 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of TIME data attribute phrases.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using CAST to convert from
TIMESTAMP to TIME. In addition, you can specify the time zone displacement using
additional expressions besides an INTERVAL expression.

Note: TIME (without time zone) and TIMESTAMP (without time zone) are not ANSI
SQL:2008 compliant. Teradata Database internally converts a TIME or TIMESTAMP value to
UTC based on the current session time zone or on a specified time zone.

AT SOURCE [TIME ZONE] that the time zone associated with timestamp_expression is used in
the following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement for the CAST. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the CAST. For details, see “AT LOCAL and
AT TIME ZONE Time Zone Specifiers” on page 215.

time_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 909

Teradata Conversion Syntax

where:

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101C279

timestamp_expression

(fractional_seconds_precision)

TIME(A

data_attribute ,

expression

time_zone_string

, WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

, data_attribute

B

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

910 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using Teradata Conversion Syntax
to convert from TIMESTAMP to TIME. In addition, you can specify the time zone
displacement using additional expressions besides an INTERVAL expression.

Note: TIME (without time zone) and TIMESTAMP (without time zone) are not ANSI
SQL:2008 compliant. Teradata Database internally converts a TIME or TIMESTAMP value to
UTC based on the current session time zone or on a specified time zone.

Usage Notes

If you specify an AT clause for a TIME[(n)] without time zone target data type, an error is
returned.

If you specify an AT clause for a TIME[(n)] WITH TIME ZONE target data type, the
following table shows the result of the CAST function or Teradata conversion based on the
various options specified. If the target precision is higher than the source precision, trailing
zeros are added in the result to adjust the precision. If the target precision is lower than the
source precision, an error is returned.

AT SOURCE [TIME ZONE] that the time zone associated with timestamp_expression is used in
the following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement in the conversion. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used in the conversion. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 911

Implicit TIMESTAMP-to-TIME Conversion

Teradata Database performs implicit conversion from TIMESTAMP to TIME data types in
some cases. However, implicit conversion from TIMESTAMP to TIME is not supported for
comparisons. See “Implicit Conversion of DateTime types” on page 748.

The following conversions are supported:

IF you specify...

AND the data type of
timestamp_expression
is... THEN...

AT LOCAL with or without TIME
ZONE

the result is formed from the source
timestamp_expression (in UTC) and the time zone
displacement based on the current session time zone.

If the data type of timestamp_expression is without time
zone, this is the same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the result is formed from the time portion of the source
timestamp_expression (in UTC) and the time zone
displacement associated with timestamp_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

AT SOURCE TIME ZONE WITH TIME ZONE the result is formed from the time portion of the source
timestamp_expression (in UTC) and the time zone
displacement associated with timestamp_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the result is formed from the time portion of the source
timestamp_expression (in UTC) and the time zone
displacement defined by expression.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the result is formed from the time portion of the source
timestamp_expression (in UTC) and the time zone
displacement based on time_zone_string. The time zone
displacement is determined based on time_zone_string
and the TIMESTAMP value of timestamp_expression at
UTC.

From source type... To target type...

TIMESTAMP TIME

TIME WITH TIME ZONE

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

912 SQL Functions, Operators, Expressions, and Predicates

Example 1

In this example, the current session time zone displacement, INTERVAL '01:00' HOUR TO
MINUTE, is used to determine the UTC value, '2008-06-01 07:30:00', of the TIMESTAMP
literal.

The result of the CAST is the time formed from the time portion of the source expression
value '2008-06-01 07:30:00' at UTC and the current time zone displacement, INTERVAL
'01:00' HOUR TO MINUTE.

The result value of the CAST '07:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL '01:00' HOUR TO MINUTE, and the result of the SELECT statements is: TIME
'08:30:00+01:00'.

The result of the SELECT statements is equal to TIME '07:30:00+00:00' since values are
compared based on their UTC values.

SET TIME ZONE INTERVAL '01:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIME(0)
WITH TIME ZONE);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIME(0)
WITH TIME ZONE AT LOCAL);

Example 2

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' for the TIMESTAMP
literal.

The result of the CAST is the time formed from the time portion of the source expression
value '2008-06-01 04:30:00' at UTC and the current session time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'20:30:00-08:00'.

The result of the SELECT statement is equal to TIME '04:30:00+00:00'.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIME(0) WITH TIME ZONE AT LOCAL);

TIMESTAMP WITH TIME ZONE TIME

TIME WITH TIME ZONE

From source type... To target type...

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 913

Example 3

The following SELECT statement return an error because the source expression does not have
a time zone displacement.

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00'
AS TIME(0) WITH TIME ZONE AT SOURCE);

Example 4

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' for the TIMESTAMP
literal.

The result of the CAST is the time formed from the time portion of the source expression
value '2008-06-01 04:30:00' at UTC, and the time zone displacement of the source expression,
INTERVAL '04:00' HOUR TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL '04:00' HOUR TO MINUTE, and the result of the SELECT statements is: TIME
'08:30:00+04:00'.

The result of the SELECT statements is equal to TIME '04:30:00+00:00'. The current session
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE, has no effect.

SET TIME ZONE INTERVAL -'08:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIME(0) WITH TIME ZONE);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIME(0) WITH TIME ZONE AT SOURCE TIME ZONE);

Example 5

In this example, the current session time zone displacement, INTERVAL -'04:00' HOUR TO
MINUTE, is used to determine the UTC value '2008-06-01 12:30:00' for the TIMESTAMP
literal.

The result of the CAST is the time formed from the time portion of the source expression
value '2008-06-01 12:30:00' at UTC, and the specified time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE.

The result value of the CAST '12:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'04:30:00-08:00'.

The result of the SELECT statement is equal to TIME '12:30:00+00:00'.

SET TIME ZONE INTERVAL -'04:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00'
AS TIME(0) WITH TIME ZONE AT -8);

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIME Conversion

914 SQL Functions, Operators, Expressions, and Predicates

Example 6

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' for the TIMESTAMP
literal.

The result of the CAST is the time formed from the time portion of the source expression
value '2008-06-01 04:30:00' at UTC, and the specified time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE.

The result value of the CAST '04:30:00' at UTC is adjusted to its time zone displacement,
INTERVAL -'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIME
'20:30:00-08:00'.

This result of the SELECT statement is equal to TIME '04:30:00+00:00'. The current session
time zone displacement, INTERVAL '08:00' HOUR TO MINUTE, has no effect.

SET TIME ZONE INTERVAL '08:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIME(0) WITH TIME ZONE AT -8);

Example 7

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIMESTAMP value '2010-03-09 08:30:00' to a TIME
WITH TIME ZONE value, where the time zone displacement is based on the time zone string,
'America Pacific'.

SELECT CAST(TIMESTAMP '2010-03-09 08:30:00' AS TIME(0) WITH TIME ZONE
AT 'America Pacific');

The result of the query is:

2010-03-09 08:30:00

00:30:00-08:00

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 915

TIMESTAMP-to-TIMESTAMP Conversion

Purpose

Convert TIMESTAMP data to a TIMESTAMP value with different precision information or
WITH TIME ZONE definition.

CAST Syntax

where:

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101B272

timestamp_expression

(fractional_seconds_precision)

TIMESTAMP

ASCAST (A

WITH TIME ZONE

A

expression

time_zone_string

AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

B

B

)

data_attribute

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

916 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of the FORMAT phrase to enable alternative
output formatting for the character representations of DateTime and Interval data.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using CAST to convert from
TIMESTAMP to TIMESTAMP. In addition, you can specify the time zone displacement using
additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

AT SOURCE [TIME ZONE] that the time zone associated with timestamp_expression is used in
the following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement for the CAST. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used for the CAST. For details, see “AT LOCAL and
AT TIME ZONE Time Zone Specifiers” on page 215.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 917

Teradata Conversion Syntax

where:

Syntax element … Specifies …

timestamp_expression the TIMESTAMP expression to be converted.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

AT LOCAL that the time zone displacement based on the current session time
zone is used.

1101C280

timestamp_expression

(fractional_seconds_precision)

TIMESTAMP(A

data_attribute ,

expression

time_zone_string

, WITH TIME ZONE AT LOCAL

SOURCE

TIME ZONE

TIME ZONE

A B

)

, data_attribute

B

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

918 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata Conversion Syntax is a Teradata extension to the ANSI SQL:2008 standard.

The AT clause is ANSI SQL:2008 compliant.

As an extension to ANSI, the AT clause is supported when using Teradata Conversion Syntax
to convert from TIMESTAMP to TIMESTAMP. In addition, you can specify the time zone
displacement using additional expressions besides an INTERVAL expression.

Note: TIMESTAMP (without time zone) is not ANSI SQL:2008 compliant. Teradata Database
internally converts a TIMESTAMP value to UTC based on the current session time zone or on
a specified time zone.

Usage Notes

If you specify an AT clause for a TIMESTAMP[(n)] without time zone target data type, an
error is returned.

If you specify an AT clause for a TIMESTAMP[(n)] WITH TIME ZONE target data type, the
following table shows the result of the CAST function or Teradata conversion based on the
various options specified. If the target precision is higher than the source precision, trailing
zeros are added in the result to adjust the precision. If the target precision is lower than the
source precision, an error is returned.

AT SOURCE [TIME ZONE] that the time zone associated with timestamp_expression is used in
the following cases:

• AT SOURCE TIME ZONE is specified.

• AT SOURCE is specified without TIME ZONE and there is no
column named source in the scope.

Otherwise, if AT SOURCE is specified without TIME ZONE and a
column named source exists, then SOURCE references this
column, and the value of the column is used as the time zone
displacement in the conversion. If needed, the column value is
implicitly converted to type INTERVAL HOUR(2) TO MINUTE.
For details, see “AT LOCAL and AT TIME ZONE Time Zone
Specifiers” on page 215. If there are multiple columns named
source in the scope, an error is returned.

AT [TIME ZONE] expression that the time zone displacement defined by expression is used. The
data type of expression should be INTERVAL HOUR(2) TO
MINUTE or it must be a data type that can be implicitly converted
to INTERVAL HOUR(2) TO MINUTE. For details, see “AT
LOCAL and AT TIME ZONE Time Zone Specifiers” on page 215.

AT [TIME ZONE]
time_zone_string

that time_zone_string is used to determine the time zone
displacement used in the conversion. For details, see “AT LOCAL
and AT TIME ZONE Time Zone Specifiers” on page 215.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 919

Example 1

The following SELECT statements return an error because the target data type does not have a
TIMESTAMP WITH TIME ZONE data type.

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIMESTAMP(0)
AT LOCAL);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+01:00' AS TIMESTAMP(0)
AT LOCAL);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIMESTAMP(0)
AT SOURCE TIME ZONE);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+01:00' AS TIMESTAMP(0)

IF you specify...

AND the data type of
timestamp_expression
is... THEN...

AT LOCAL with or without TIME
ZONE

the result is formed from the timestamp portion of the
source timestamp_expression (in UTC) with the result
time zone displacement based on the current session
time zone.

If the source data type is without time zone, this is the
same as not specifying the AT clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

WITH TIME ZONE the result is formed from the timestamp portion of the
source timestamp_expression (in UTC) and the time
zone displacement associated with
timestamp_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE

(where SOURCE is a keyword and not
a column reference)

without TIME ZONE an error is returned.

AT SOURCE TIME ZONE WITH TIME ZONE the result is formed from the timestamp portion of the
source timestamp_expression (in UTC) and the time
zone displacement associated with
timestamp_expression.

Note that this is the same as not specifying the AT
clause.

AT SOURCE TIME ZONE without TIME ZONE an error is returned.

AT expression
or
AT TIME ZONE expression

with or without TIME
ZONE

the result is formed from the timestamp portion of the
source timestamp_expression (in UTC) and the time
zone displacement defined by expression.

AT time_zone_string
or
AT TIME ZONE time_zone_string

with or without TIME
ZONE

the result is formed from the timestamp portion of the
source timestamp_expression (in UTC) and the time
zone displacement based on time_zone_string. The time
zone displacement is determined based on
time_zone_string and the TIMESTAMP value of
timestamp_expression at UTC.

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

920 SQL Functions, Operators, Expressions, and Predicates

AT SOURCE);
SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIMESTAMP(0) AT +3);
SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+01:00' AS TIMESTAMP(0)

AT -6);

Example 2

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' and time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE, of the literal.

The CAST result is the source expression value '2008-06-01 04:30:00' at UTC with the current
session time zone displacement, INTERVAL '09:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL '09:00'
HOUR TO MINUTE, and the result of the SELECT statement is: TIMESTAMP '2008-06-01
13:30:00+09:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIMESTAMP(0) WITH TIME ZONE AT LOCAL);

Example 3

The following SELECT statements return an error because the source expression does not
have a time zone displacement.

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00'
AS TIMESTAMP(0) WITH TIME ZONE AT SOURCE TIME ZONE);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00'
AS TIMESTAMP(0) WITH TIME ZONE AT SOURCE);

Example 4

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' and time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE, of the literal.

The CAST result is source expression value '2008-06-01 04:30:00' at UTC with its time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL '04:00'
HOUR TO MINUTE, and the result of the SELECT is: TIMESTAMP '2008-06-01
08:30:00+04:00'. The current session time zone has no effect.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIMESTAMP(0) WITH TIME ZONE);

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIMESTAMP(0) WITH TIME ZONE AT SOURCE TIME ZONE);

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 921

Example 5

In this example, the current session time zone displacement, INTERVAL '09:00' HOUR TO
MINUTE, is used to determine the UTC value '2008-05-31 23:30:00' of the literal.

The CAST result is the source expression value '2008-05-31 23:30:00' at UTC with the target
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIMESTAMP '2008-
05-31 15:30:00-08:00'.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00' AS TIMESTAMP(0)
WITH TIME ZONE AT -8);

Example 6

In this example, the time zone displacement specified in the literal, INTERVAL '04:00' HOUR
TO MINUTE, is used to determine the UTC value '2008-06-01 04:30:00' and time zone
displacement, INTERVAL '04:00' HOUR TO MINUTE, of the literal.

The CAST result is the source expression value '2008-06-01 04:30:00' at UTC with the target
time zone displacement, INTERVAL -'08:00' HOUR TO MINUTE.

The result value of the CAST at UTC is adjusted to time zone displacement, INTERVAL
-'08:00' HOUR TO MINUTE, and the result of the SELECT statement is: TIMESTAMP '2008-
05-31 20:30:00-08:00'. The current session time zone has no effect.

SET TIME ZONE INTERVAL '09:00' HOUR TO MINUTE;

SELECT CAST(TIMESTAMP '2008-06-01 08:30:00+04:00'
AS TIMESTAMP(0) WITH TIME ZONE AT -8);

Example 7

In this example, the current timestamp is:

Current TimeStamp(6)

2010-03-09 19:23:27.620000+00:00

The following statement converts the TIMESTAMP value '2010-03-09 08:30:00' to a
TIMESTAMP WITH TIME ZONE value, where the time zone displacement is based on the
time zone string, 'America Pacific'.

SELECT CAST(TIMESTAMP '2010-03-09 08:30:00' AS TIMESTAMP(0)
WITH TIME ZONE AT 'America Pacific');

The result of the query is:

2010-03-09 08:30:00

2010-03-09 00:30:00-08:00

Chapter 20: Data Type Conversions
TIMESTAMP-to-TIMESTAMP Conversion

922 SQL Functions, Operators, Expressions, and Predicates

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
TIMESTAMP-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 923

TIMESTAMP-to-UDT Conversion

Purpose

Converts TIMESTAMP data to UDT data.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit TIMESTAMP-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit TIMESTAMP-to-UDT Conversion

Teradata Database performs implicit TIMESTAMP-to-UDT conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Syntax element … Specifies …

timestamp_expression a TIMESTAMP expression to be cast to a UDT.

UDT_data_definition the UDT type, followed by any optional FORMAT, NAMED, or TITLE
data attribute phrases, to which timestamp_expression is to be
converted.

CAST AStimestamp_expression UDT_data_definition((

1101A341

Chapter 20: Data Type Conversions
TIMESTAMP-to-UDT Conversion

924 SQL Functions, Operators, Expressions, and Predicates

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

If no TIMESTAMP-to-UDT implicit cast definition exists, Teradata Database looks for a
CHAR-to-UDT or VARCHAR-to-UDT implicit cast definition that can substitute.
Substitutions are valid because Teradata Database can implicitly cast a TIMESTAMP type to
the character data type, and then use the implicit cast definition to cast from the character
data type to the UDT. If multiple character-to-UDT implicit cast definitions exist, then
Teradata Database returns an SQL error.

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-Byte Conversion

SQL Functions, Operators, Expressions, and Predicates 925

UDT-to-Byte Conversion

Purpose

Converts a UDT expression to a byte data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see “SQL UDF”
on page 706.

byte_data_definition the BLOB, BYTE or VARBYTE byte type followed by optional FORMAT,
NAMED, or TITLE attribute phrases to which UDT_expression is to be
converted.

1101A344

CAST AS)byte_data_definitionUDT_expression(

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

1101B345

UDT_expression

data_attribute ,

byte_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-Byte Conversion

926 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-byte conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit UDT-to-byte data type conversion requires a cast definition (see
“Usage Notes”) that specifies the following:

• the AS ASSIGNMENT clause

• a BYTE, VARBYTE, or BLOB target data type

The target data type of the cast definition does not have to be an exact match to the target
of the implicit type conversion.

If multiple implicit cast definitions exist for converting the UDT to different byte types,
Teradata Database uses the implicit cast definition for the byte type with the highest
precedence. The following list shows the precedence of byte types in order from lowest to
highest precedence:

• BYTE

• VARBYTE

• BLOB

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

byte_data_type the BLOB, BYTE or VARBYTE byte type to which UDT_expression is
to be converted.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
UDT-to-Byte Conversion

SQL Functions, Operators, Expressions, and Predicates 927

Example

Consider the following table definition, where image is a UDT:

CREATE TABLE history
(id INTEGER
,information image);

Assuming an appropriate cast definition exists for the image UDT, the following statement
converts the values in the information column to BYTE:

SELECT CAST (information AS BYTE(20))
FROM history
WHERE id = 100121;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-Character Conversion

928 SQL Functions, Operators, Expressions, and Predicates

UDT-to-Character Conversion

Purpose

Converts a UDT expression to a character data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

character_data_definition the target character type, for example CHAR or VARCHAR, followed
by optional FORMAT, NAMED, or TITLE attribute phrases.

1101A346

CAST AS)character_data_definitionUDT_expression(

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see “SQL
UDF” on page 706.

1101B347

UDT_expression

data_attribute ,

character_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 929

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-character conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

The target character type of the cast definition does not have to be an exact match to the target
character type of the implicit conversion. Teradata Database can use an implicit cast definition
that specifies a CHAR, VARCHAR, or CLOB target type.

If multiple implicit cast definitions exist for converting the UDT to different character types,
Teradata Database uses the implicit cast definition for the character type with the highest
precedence. The following list shows the precedence of character types in order from lowest to
highest precedence:

• CHAR

• VARCHAR

• CLOB

If no UDT-to-character implicit cast definitions exist, Teradata Database looks for other cast
definitions that can substitute for the UDT-to-character implicit cast definition:

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

character_data_type the target character type, for example CHAR or VARCHAR.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
UDT-to-Character Conversion

930 SQL Functions, Operators, Expressions, and Predicates

Substitutions are valid because Teradata Database can use the implicit cast definition to cast
the UDT to the substitute data type, and then implicitly cast the substitute data type to a
character type.

Example

Consider the following table definition, where euro is a UDT:

CREATE TABLE euro_sales_table
(quarter INTEGER
,region VARCHAR(20)
,sales euro);

Assuming an appropriate cast definition exists for the euro UDT, the following statement
converts the values in the sales column to CHAR(10):

IF the following combination of implicit cast
definitions exists … THEN Teradata Database …

UDT-to-
numeric

UDT-to-
DATE

UDT-to-
TIME

UDT-to-
TIMESTAMP

X uses the UDT-to-numeric implicit cast definition.

If multiple UDT-to-numeric implicit cast
definitions exist, then Teradata Database returns an
SQL error.

X uses the UDT-to-DATE implicit cast definition.

X uses the UDT-to-TIME implicit cast definition.

X uses the UDT-to-TIMESTAMP implicit cast
definition.

X X reports an error.

X X

X X

X X

X X

X X

X X X

X X X

X X X

X X X

X X X X

Chapter 20: Data Type Conversions
UDT-to-Character Conversion

SQL Functions, Operators, Expressions, and Predicates 931

SELECT region, CAST (sales AS CHAR(10))
FROM euro_sales_table
WHERE quarter = 1;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-DATE Conversion

932 SQL Functions, Operators, Expressions, and Predicates

UDT-to-DATE Conversion

Purpose

Converts a UDT expression to a DATE data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see “SQL UDF”
on page 706.

date_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101B348

CAST AS DATE)UDT_expression(

date_data_attribute

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see “SQL UDF”
on page 706.

1101B349

UDT_expression

data_attribute ,

DATE)(

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-DATE Conversion

SQL Functions, Operators, Expressions, and Predicates 933

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

Teradata Database performs implicit UDT-to-DATE conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

If no UDT-to-DATE implicit cast definition exists, Teradata Database looks for other cast
definitions that can substitute for the UDT-to-DATE implicit cast definition:

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

Syntax element … Specifies …

IF the following combination of implicit
cast definitions exists … THEN Teradata Database …

UDT-to-Numeric
UDT-to-Character
(non-CLOB)

X uses the UDT-to-numeric implicit cast definition.

If multiple UDT-to-numeric implicit cast definitions exist,
then Teradata Database returns an SQL error.

X uses the UDT-to-character implicit cast definition.

If multiple UDT-to-character implicit cast definitions
exist, then Teradata Database returns an SQL error.

X X reports an error.

Chapter 20: Data Type Conversions
UDT-to-DATE Conversion

934 SQL Functions, Operators, Expressions, and Predicates

Substitutions are valid because Teradata Database can use the implicit cast definition to cast
the UDT to the substitute data type, and then implicitly cast the substitute data type to a
DATE type.

Example

Consider the following table definition, where datetime_record is a UDT:

CREATE TABLE support
(id INTEGER
,information datetime_record);

Assuming an appropriate cast definition exists for the datetime_record UDT, the following
statement converts the values in the information column to DATE:

SELECT id, CAST (information AS DATE) FROM support;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 935

UDT-to-INTERVAL Conversion

Purpose

Converts a UDT expression to an INTERVAL data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

interval_data_definition the target predefined interval type followed by optional NAMED or
TITLE attribute phrases.

1101A350

CAST AS)interval_data_definitionUDT_expression(

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

1101B351

UDT_expression

data_attribute ,

interval_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-INTERVAL Conversion

936 SQL Functions, Operators, Expressions, and Predicates

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Performing an implicit data type conversion requires a cast definition (see “Usage Notes”) that
specifies the following:

• the AS ASSIGNMENT clause

• a target data type that is in the same INTERVAL family as the target of the implicit cast:

The target data type of the cast definition does not have to be an exact match to the target
of the implicit type conversion.

data_attribute one of the following optional data attributes:

• NAMED

• TITLE

interval_data_type the target predefined interval type to which UDT_expression is to be
converted.

Syntax element … Specifies …

This INTERVAL data type … Belongs to this INTERVAL family …

• INTERVAL YEAR

• INTERVAL YEAR TO MONTH

• INTERVAL MONTH

Year-Month

• INTERVAL DAY

• INTERVAL DAY TO HOUR

• INTERVAL DAY TO MINUTE

• INTERVAL DAY TO SECOND

• INTERVAL HOUR

• INTERVAL HOUR TO MINUTE

• INTERVAL HOUR TO SECOND

• INTERVAL MINUTE

• INTERVAL MINUTE TO SECOND

• INTERVAL SECOND

Day-Time

Chapter 20: Data Type Conversions
UDT-to-INTERVAL Conversion

SQL Functions, Operators, Expressions, and Predicates 937

Teradata Database performs implicit UDT-to-INTERVAL conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Example

Consider the following table definition, where datetime_record is a UDT:

CREATE TABLE support
(id INTEGER
,information datetime_record);

Assuming an appropriate cast definition exists for the datetime_record UDT, the following
statement converts the values in the information column to INTERVAL MONTH:

SELECT id, CAST (information AS INTERVAL MONTH) FROM support;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-Numeric Conversion

938 SQL Functions, Operators, Expressions, and Predicates

UDT-to-Numeric Conversion

Purpose

Converts a UDT expression to a numeric data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Teradata Conversion Syntax

where:

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

numeric_data_definition the target predefined numeric type followed by any optional
FORMAT, NAMED, or TITLE attribute phrases.

1101A352

CAST AS)numeric_data_definitionUDT_expression(

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see “SQL
UDF” on page 706.

1101B353

UDT_expression

data_attribute ,

numeric_data_type)(

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-Numeric Conversion

SQL Functions, Operators, Expressions, and Predicates 939

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-numeric conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes” on page 929) exists that specifies the AS ASSIGNMENT clause.

The target numeric type of the cast definition does not have to be an exact match to the target
numeric type of the implicit conversion. Teradata Database can use an implicit cast definition
that specifies a BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, or REAL/
FLOAT/DOUBLE target type.

If multiple implicit cast definitions exist for converting the UDT to different numeric types,
Teradata Database uses the implicit cast definition for the numeric type with the highest
precedence. The following list shows the precedence of numeric types in order from lowest to
highest precedence:

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

numeric_data_type a predefined numeric type to which UDT_expression is to be converted.

Syntax element … Specifies …

Chapter 20: Data Type Conversions
UDT-to-Numeric Conversion

940 SQL Functions, Operators, Expressions, and Predicates

• DECIMAL/NUMERIC

• REAL/FLOAT/DOUBLE

If no UDT-to-numeric implicit cast definitions exist, Teradata Database looks for other cast
definitions that can substitute for the UDT-to-character implicit cast definition:

Substitutions are valid because Teradata Database can use the implicit cast definition to cast
the UDT to the substitute data type, and then implicitly cast the substitute data type to a
numeric type.

Example

Consider the following table definition, where euro is a UDT:

CREATE TABLE euro_sales_table
(quarter INTEGER
,region VARCHAR(20)
,sales euro);

Assuming an appropriate cast definition exists for the euro UDT, the following statement
converts the values in the sales column to DECIMAL(10,2):

SELECT SUM (CAST (sales AS DECIMAL(10,2))) FROM euro_sales_table;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

IF the following combination of
implicit cast definitions exists … THEN Teradata Database …

UDT-to-
DATE

UDT-to-
Charactera

a. a non-CLOB character type

X uses the UDT-to-DATE implicit cast definition.

 X uses the UDT-to-character implicit cast definition.

If multiple UDT-to-character implicit cast definitions exist, then
Teradata Database returns an SQL error.

X X reports an error.

Chapter 20: Data Type Conversions
UDT-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 941

UDT-to-TIME Conversion

Purpose

Converts a UDT expression to a TIME data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

time_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A354

CAST AS TIME

(fractional_seconds_precision)

UDT_expression(

)

A

WITH TIME ZONE time_data_attribute

A

Chapter 20: Data Type Conversions
UDT-to-TIME Conversion

942 SQL Functions, Operators, Expressions, and Predicates

Teradata Conversion Syntax

where:

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-TIME conversions for the following operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

1101B342

UDT_expression

(fractional_seconds_precision)

TIME

)

(A

A

data_attribute ,

WITH TIME ZONE

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-TIME Conversion

SQL Functions, Operators, Expressions, and Predicates 943

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

If no UDT-to-TIME implicit cast definition exists, Teradata Database looks for a UDT-to-
CHAR or UDT-to-VARCHAR cast definition that can substitute for the UDT-to-TIME
implicit cast definition. Substitutions are valid because Teradata Database can use the implicit
cast definition to cast the UDT to a character data type, and then implicitly cast the character
data type to a DATE type. If multiple UDT-to-character implicit cast definitions exist, then
Teradata Database returns an SQL error.

Example

Consider the following table definition, where datetime_record is a UDT:

CREATE TABLE support
(id INTEGER
,information datetime_record);

Assuming an appropriate cast definition exists for the datetime_record UDT, the following
statement converts the values in the information column to TIME WITH TIME ZONE:

SELECT id, CAST (information AS TIME WITH TIME ZONE) FROM support;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-TIMESTAMP Conversion

944 SQL Functions, Operators, Expressions, and Predicates

UDT-to-TIMESTAMP Conversion

Purpose

Converts a UDT expression to a TIMESTAMP data type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

timestamp_data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

1101A355

CAST AS TIMESTAMP

(fractional_seconds_precision)

UDT_expression(

)

A

WITH TIME ZONE timestamp_data_attribute

A

Chapter 20: Data Type Conversions
UDT-to-TIMESTAMP Conversion

SQL Functions, Operators, Expressions, and Predicates 945

Teradata Conversion Syntax

where:

ANSI Compliance

Teradata conversion syntax is a Teradata extension to the ANSI SQL:2008 standard.

Usage Notes

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-TIMESTAMP conversions for the following
operations:

• UPDATE

• INSERT

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

data_attribute one of the following optional data attributes:

• FORMAT

• NAMED

• TITLE

fractional_seconds_precision a single digit representing the number of significant digits in the
fractional portion of the SECOND field.

Values for fractional_seconds_precision range from 0 through 6
inclusive.

The default precision is 6.

1101B343

UDT_expression

(fractional_seconds_precision)

TIMESTAMP

)

(A

A

data_attribute ,

WITH TIME ZONE

, data_attribute

Chapter 20: Data Type Conversions
UDT-to-TIMESTAMP Conversion

946 SQL Functions, Operators, Expressions, and Predicates

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

Performing an implicit data type conversion requires that an appropriate cast definition (see
“Usage Notes”) exists that specifies the AS ASSIGNMENT clause.

If no UDT-to-TIMESTAMP implicit cast definition exists, Teradata Database looks for a
UDT-to-CHAR or UDT-to-VARCHAR cast definition that can substitute for the UDT-to-
TIMESTAMP implicit cast definition. Substitutions are valid because Teradata Database can
use the implicit cast definition to cast the UDT to a character data type, and then implicitly
cast the character data type to a TIMESTAMP type. If multiple UDT-to-character implicit cast
definitions exist, then Teradata Database returns an SQL error.

Example

Consider the following table definition, where datetime_record is a UDT:

CREATE TABLE support
(id INTEGER
,information datetime_record);

Assuming an appropriate cast definition exists for the datetime_record UDT, the following
statement converts the values in the information column to TIMESTAMP:

SELECT id, CAST (information AS TIMESTAMP) FROM support;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

Chapter 20: Data Type Conversions
UDT-to-UDT Conversion

SQL Functions, Operators, Expressions, and Predicates 947

UDT-to-UDT Conversion

Purpose

Converts a UDT expression to a different UDT type.

CAST Syntax

where:

ANSI Compliance

CAST is ANSI SQL:2008 compliant.

As an extension to ANSI, CAST permits the use of data attribute phrases such as FORMAT.

Usage Notes

Explicit UDT-to-UDT conversion using Teradata conversion syntax is not supported.

Data type conversions involving UDTs require appropriate cast definitions for the UDTs. To
define a cast for a UDT, use the CREATE CAST statement. For more information on CREATE
CAST, see SQL Data Definition Language.

Implicit Type Conversion

Teradata Database performs implicit UDT-to-UDT casts for the following operations:

• UPDATE

• INSERT

Syntax element … Specifies …

UDT_expression an expression that results in a UDT data type.

For details on expressions that can result in UDT data types, see
“SQL UDF” on page 706.

UDT_data_definition a UDT type to which UDT_expression is to be converted, followed by
any of the following optional attribute phrases:

• FORMAT

• NAMED

• TITLE

1101A356

CAST AS)UDT_data_definitionUDT_expression(

Chapter 20: Data Type Conversions
UDT-to-UDT Conversion

948 SQL Functions, Operators, Expressions, and Predicates

• Passing arguments to stored procedures, external stored procedures, UDFs, and UDMs

• Specific system operators and functions identified in other sections of this book, unless the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record is set to TRUE

An implicit data type conversion involving a UDT can only be performed if the cast definition
specifies the AS ASSIGNMENT clause. For more information, see “CREATE CAST” in SQL
Data Definition Language.

Example

Consider the following table definitions, where euro and us_dollar are UDTs:

CREATE TABLE euro_sales_table
(euro_quarter INTEGER
,euro_region VARCHAR(20)
,euro_sales euro);

CREATE TABLE us_sales_table
(us_quarter INTEGER
,us_region VARCHAR(20)
,us_sales us_dollar);

Assuming an appropriate cast definition exists for converting the euro UDT to a us_dollar
UDT, the following statement performs a us_dollar UDT to euro UDT conversion:

INSERT INTO euro_sales_table
SELECT us_quarter, us_region, CAST (us_sales AS euro)
FROM us_sales_table;

Related Topics

For details on data types and data attributes, see SQL Data Types and Literals.

SQL Functions, Operators, Expressions, and Predicates 949

APPENDIX A Notation Conventions

This appendix describes the notation conventions used in this book.

This book uses three conventions to describe the SQL syntax and code:

Symbols from the predicate calculus are also used occasionally to describe logical operations.
For details, see “Predicate Calculus Notation Used In This Book” on page 956.

Syntax Diagram Conventions

Notation Conventions

Convention Description

Syntax diagrams Describes SQL syntax form, including options.

For details, see “Syntax Diagram Conventions” on page 949.

Square braces in the
text

Represent options. The indicated parentheses are required when you specify
options.

For example:

• DECIMAL [(n[,m])] means the decimal data type can be defined
optionally:

• without specifying the precision value n or scale value m

• specifying precision (n) only

• specifying both values (n,m)

You cannot specify scale without first defining precision.

• CHARACTER [(n)] means that use of (n) is optional.

The values for n and m are integers in all cases.

Japanese character
code shorthand
notation

Represent unprintable Japanese characters.

For details, see “Character Shorthand Notation Used In This Book” on
page 954.

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when typing a number with more than 3 digits.

Appendix A: Notation Conventions
Syntax Diagram Conventions

950 SQL Functions, Operators, Expressions, and Predicates

Paths

The main path along the syntax diagram begins at the left with a keyword, and proceeds, left
to right, to the vertical bar, which marks the end of the diagram. Paths that do not have an
arrow or a vertical bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Continuation Links

Paths that are too long for one line use continuation links. Continuation links are circled
letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue reading.

Word Keywords and variables.

• UPPERCASE LETTERS represent a keyword.

Syntax diagrams show all keywords in uppercase, unless operating system
restrictions require them to be in lowercase.

• lowercase letters represent a keyword that you must type in lowercase, such as a
Linux command.

• lowercase italic letters represent a variable such as a column or table name.

Substitute the variable with a proper value.

• lowercase bold letters represent an excerpt from the diagram. The excerpt is
defined immediately following the diagram that contains it.

• UNDERLINED LETTERS represent the default value.

This applies to both uppercase and lowercase words.

Spaces Use one space between items such as keywords or variables.

Punctuation Type all punctuation exactly as it appears in the diagram.

Item Definition / Comments

FE0CA002

A

A

Appendix A: Notation Conventions
Syntax Diagram Conventions

SQL Functions, Operators, Expressions, and Predicates 951

Required Entries

Required entries appear on the main path:

If you can choose from more than one entry, the choices appear vertically, in a stack. The first
entry appears on the main path:

Optional Entries

You may choose to include or disregard optional entries. Optional entries appear below the
main path:

If you can optionally choose from more than one entry, all the choices appear below the main
path:

Some commands and statements treat one of the optional choices as a default value. This
value is UNDERLINED. It is presumed to be selected if you type the command or statement
without specifying one of the options.

Strings

String literals appear in apostrophes:

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS

JC01A010
SHARE

READ

ACCESS

JC01A004

'msgtext '

Appendix A: Notation Conventions
Syntax Diagram Conventions

952 SQL Functions, Operators, Expressions, and Predicates

Abbreviations

If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops

A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat:

Read loops from right to left.

The following conventions apply to loops:

FE0CA042

SHOW

CONTROL

CONTROLS

IF... THEN...

there is a maximum number of
entries allowed

the number appears in a circle on the return path.

In the example, you may type cname a maximum of 4 times.

there is a minimum number of
entries required

the number appears in a square on the return path.

In the example, you must type at least three groups of column
names.

a separator character is required
between entries

the character appears on the return path.

If the diagram does not show a separator character, use one
blank space.

In the example, the separator character is a comma.

JC01B012

(

, 4

cname)

, 3

Appendix A: Notation Conventions
Syntax Diagram Conventions

SQL Functions, Operators, Expressions, and Predicates 953

Excerpts

Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by (|) terminators on each side of the break. The
name for the excerpted piece appears between the terminators in boldface type.

The boldface excerpt name and the excerpted phrase appears immediately after the main
diagram. The excerpted phrase starts and ends with a plain horizontal line:

Multiple Legitimate Phrases

In a syntax diagram, it is possible for any number of phrases to be legitimate:

In this example, any of the following phrases are legitimate:

• dbname

• DATABASE dbname

• tname

a delimiter character is required
around entries

the beginning and end characters appear outside the return
path.

Generally, a space is not needed between delimiter characters
and entries.

In the example, the delimiter characters are the left and right
parentheses.

IF... THEN...

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

JC01A016

DATABASE

dbname

TABLE

tname

VIEW

vname

Appendix A: Notation Conventions
Character Shorthand Notation Used In This Book

954 SQL Functions, Operators, Expressions, and Predicates

• TABLE tname

• vname

• VIEW vname

Sample Syntax Diagram

Diagram Identifier

The alphanumeric string that appears in the lower right corner of every diagram is an internal
identifier used to catalog the diagram. The text never refers to this string.

Character Shorthand Notation Used In This
Book

Introduction

This book uses the Unicode naming convention for characters. For example, the lowercase
character ‘a’ is more formally specified as either LATIN SMALL LETTER A or U+0041. The
U+xxxx notation refers to a particular code point in the Unicode standard, where xxxx stands
for the hexadecimal representation of the 16-bit value defined in the standard.

JC01A018

viewnameCREATE VIEW AS

cname

A

C

CV

,

LOCKING

LOCK

ACCESSA

DATABASE

dbname

TABLE

tname

VIEW

vname

FOR

IN

B

SHARE

READ

WRITE

EXCLUSIVE

EXCL

MODE

FROMB SEL C

.aname

expr

,

tname

,

qual_cond

qual_cond

WHERE cond

cname

,

col_pos

,
GROUP BY

HAVING cond ;

Appendix A: Notation Conventions
Character Shorthand Notation Used In This Book

SQL Functions, Operators, Expressions, and Predicates 955

In parts of the book, it is convenient to use a symbol to represent a special character, or a
particular class of characters. This is particularly true in discussion of the following Japanese
character encodings.

• KanjiEBCDIC

• KanjiEUC

• KanjiShift-JIS

These encodings are further defined in International Character Set Support.

Character Symbols

The symbols, along with character sets with which they are used, are defined in the following
table.

Symbol Encoding Meaning

a–z

A–Z

0–9

Any Any single byte Latin letter or digit.

a–z

A–Z

0–9

Unicode
compatibility
zone

Any fullwidth Latin letter or digit.

< KanjiEBCDIC Shift Out [SO] (0x0E).

Indicates transition from single to multibyte character in
KanjiEBCDIC.

> KanjiEBCDIC Shift In [SI] (0x0F).

Indicates transition from multibyte to single byte KanjiEBCDIC.

T Any Any multibyte character.

The encoding depends on the current character set.

For KanjiEUC, code set 3 characters are sometimes preceded by
“ss3”.

I Any Any single byte Hankaku Katakana character.

In KanjiEUC, it must be preceded by “ss2”, forming an individual
multibyte character.

∆ Any Represents the graphic pad character.

∆ Any Represents a single or multibyte pad character, depending on
context.

ss2 KanjiEUC Represents the EUC code set 2 introducer (0x8E).

ss3 KanjiEUC Represents the EUC code set 3 introducer (0x8F).

Appendix A: Notation Conventions
Predicate Calculus Notation Used In This Book

956 SQL Functions, Operators, Expressions, and Predicates

For example, string “TEST”, where each letter is intended to be a fullwidth character, is written
as TEST. Occasionally, when encoding is important, hexadecimal representation is used.

For example, the following mixed single byte/multibyte character data in KanjiEBCDIC
character set

LMN<TEST>QRS

is represented as:

D3 D4 D5 0E 42E3 42C5 42E2 42E3 0F D8 D9 E2

Pad Characters

The following table lists the pad characters for the various server character sets.

Predicate Calculus Notation Used In This Book

Relational databases are based on the theory of relations as developed in set theory. Predicate
calculus is often the most unambiguous way to express certain relational concepts.

Occasionally this book uses the following predicate calculus notation to explain concepts.

Server Character Set Pad Character Name Pad Character Value

LATIN SPACE 0x20

UNICODE SPACE U+0020

GRAPHIC IDEOGRAPHIC SPACE U+3000

KANJISJIS ASCII SPACE 0x20

KANJI1 ASCII SPACE 0x20

This symbol … Represents this phrase …

iff If and only if

∀ For all

∃ There exists

SQL Functions, Operators, Expressions, and Predicates 957

Glossary

AMP Access Module Process

ANSI American National Standards Institute

BLOB Binary Large Object

BTEQ Basic Teradata Query

BYNET Banyan Network

CJK Chinese, Japanese, and Korean

CLIv2 Call Level Interface Version 2

CLOB Character Large Object

CPPI Character Partitioned Primary Index. A partitioned primary index where the
partitioning expression involves comparison of CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data types.

cs0, cs1, cs2, cs3 Four code sets (codeset 0, 1, 2, and 3) used in EUC encoding.

distinct type A UDT that is based on a single predefined data type

E2I External-to-Internal

EUC Extended UNIX Code

FK Foreign Key

HI Hash Index

I2E Internal-to-External

JI Join Index

JIS Japanese Industrial Standards

LOB Large Object

LT/ST Large Table/Small Table (join)

NPPI Nonpartitioned Primary Index

NUPI Nonunique Primary Index

NUSI Nonunique Secondary Index

OLAP OnLine Analytical Processing

OLTP OnLine Transaction Processing

Glossary

958 SQL Functions, Operators, Expressions, and Predicates

PDE Parallel Database Extensions

PE Parsing Engine vproc

PI Primary Index

PK Primary Key

PPI Partitioned Primary Index

predefined type Teradata Database system type such as INTEGER and VARCHAR

RDBMS Relational Database Management System

SDF Specification for Data Formatting

structured type A UDT that is a collection of one or more fields called attributes, each of
which is defined as a predefined data type or other UDT (which allows nesting)

UCS Universal Coded Character Set, specified by International Standard ISO/IEC 10646

UDF User-Defined Function

UDM User-Defined Method

UDT User-Defined Type

UDT expression An expression that returns a distinct or structured UDT data type

UJI Unique Join Index. A noncompressed, single-table join index where the definition
includes a unique primary index (UPI), the ROWID keyword in the select list of the SELECT
clause, and a WHERE clause that covers a query on the base table (the WHERE clause
qualifies a superset of the row set qualified by the WHERE clause of a query on the base table).

UPI Unique Primary Index

USI Unique Secondary Index

vproc Virtual Process

SQL Functions, Operators, Expressions, and Predicates 959

Index

Symbols
||, concatenation operator 502

A
ABS function 56
ACCOUNT function 670
ACOS inverse trigonometric function 110
ACOSH hyperbolic function 116
ADD_MONTHS function 236
Addition operator 48
Aggregate functions

AVG 350
constant expressions and 346
CORR 353
COUNT 356
COVAR_POP 361
COVAR_SAMP 364
date and 346
DateTime types and 231
DISTINCT option and 349
floating point data and 348
GROUP BY clause and 346
GROUPING 367
HAVING clause and 349
interval types and 231
KURTOSIS 370
LOB data types and 348
MAX 372
MIN 375
nesting 347
nulls and 347
Period data types and 348
recursive queries and 349
REGR_AVGX 378
REGR_AVGY 381
REGR_COUNT 384
REGR_INTERCEPT 388
REGR_R2 392
REGR_SLOPE 396
REGR_SXX 400
REGR_SXY 403
REGR_SYY 406
select list containing 345
SKEW 409
STDDEV_POP 412
STDDEV_SAMP 415

SUM 418
VAR_POP 421
VAR_SAMP 424
when expression evaluates to zero 347
WHERE clause and 349

Aggregate UDF 714
ALL predicate quantifier 573
AMP, identify with HASHAMP 634
AND logical operator 608

truth table 610
ANY predicate quantifier 573
Arithmetic functions

ABS 56
CEILING 68
DEGREES 113
EXP 71
FLOOR 73
LN 76
LOG 78
RADIANS 113
RANDOM 83
SQRT 101
WIDTH_BUCKET 103
ZEROIFNULL 107

Arithmetic operators 287
- 48
* 48
** 48
+ 48
/ 48
addition operator 48
division operator 48
exponentiate 48
LOB data types and 48
MOD operator 48
multiplication 48
Period data types and 48
subtraction operator 48
unary minus operator 48
unary plus operator 48

ASIN inverse trigonometric function 110
ASINH hyperbolic function 116
ATAN inverse trigonometric function 110
ATAN2 inverse trigonometric function 110
ATANH hyperbolic function 116
Attribute functions 613

BYTES 614

Index

960 SQL Functions, Operators, Expressions, and Predicates

CHARACTER_LENGTH 616
CHARACTERS 619
DEFAULT 621
FORMAT 625
MCHARACTERS 613, 616
OCTET_LENGTH 626
TITLE 629
TYPE 630

AVERAGE aggregate function. See AVG aggregate function
AVG aggregate function

DateTime types and 231
described 350
Interval types and 231

AVG window function 449

B
BEGIN function 291
BETWEEN predicate 578
BITAND function 125
BITNOT function 128
BITOR function 130
BITXOR function 133
Blank, as used in strings 597
BLOB data types

aggregate functions and 348
arithmetic operators and 48
comparison operators and 161
predicates and 570

Bound functions
BEGIN function 291
End function 295, 302

Built-in functions 669
ACCOUNT 670
CURRENT_DATE 671
CURRENT_TIME 677
CURRENT_TIMESTAMP 681
CURRENT_USER 685
DATABASE function 686
DATE function 687
PROFILE 691
ROLE 675, 692
SESSION 695
TIME 699
USER 702

Byte conversion 758
HASHBUCKET function and 641

Byte/bit manipulation functions
BITAND 125
BITNOT 128
BITOR 130
BITXOR 133
COUNTSET 136
GETBIT 138

ROTATELEFT 140
ROTATERIGHT 143
SETBIT 146
SHIFTLEFT 149
SHIFTRIGHT 152
SUBBITSTR 155
TO_BYTE 158

BYTES function 614

C
Calendar functions

day_of_calendar 260
day_of_month 256
day_of_week 254
day_of_year 258
month_of_calendar 274
month_of_quarter 270
month_of_year 272
quarter_of_calendar 278
quarter_of_year 276
week_of_calendar 268
week_of_month 264
week_of_year 266
weekday_of_month 262
year_of_calendar 280

CALENDAR system view
cumulative sum 468
moving difference 474

CAMSET function 646
CAMSET_L function 649
CASE expression and nulls 42
CASE operation

COALESCE expression 42
data type of, rules governing 34
defined 25
NULLIF expression 44
searched 29
valued 26

Case sensitivity in comparisons 173
CASE_N function 58
CAST

DECIMAL(18) with a DECIMAL(15) default 839
CAST function 752, 755

ANSI DateTime conversion and 823
DECIMAL data type conversions and 839

CEILING function 68
CHAR function. See CHARACTERS function.
CHAR2HEXINT function 508
Character

assignability rules for 797
conversion to formatted DATE conversion 769
translation 765
translation (internal to external) 500

Index

SQL Functions, Operators, Expressions, and Predicates 961

Character string functions. See String functions
CHARACTER_LENGTH function 616
CHARACTERS function 619

ANSI equivalent 616
CHARS function. See CHARACTERS function
CLOB data types

aggregate functions and 348
arithmetic operators and 48
comparison operators and 161
predicates and 570

COALESCE expression 42
Comparison evaluations by data type 166
Comparison operators

= 162
> 162
>= 162
GE 162
general rules 165
GT 162
Japanese character sets 175
LE 162
LOB data types and 161
LT 162
NE 162
Period data types 289
results 165

Comparison rules
floating point data and 166
string 172

Compression functions
CAMSET 646
CAMSET_L 649
LZCOMP 656
LZCOMP_L 658
TransUnicodeToUTF8 664

Concatenation operator 502
Conditional expressions 608
Constant expressions, aggregate functions and 346
CONTAINS predicate 293
Conversion

byte 758
byte to INTEGER using HASHBUCKET 641
CAST function and 752
character to character 762
character to DATE 767
character to formatted date 769
character to INTERVAL 773
character to numeric 775
character to Period 781
character to TIME 784
character to TIME WITH TIME ZONE 784
character to TIME, implici 747
character to TIME, implicit 785, 791
character to TIMESTAMP 790

character to TIMESTAMP, implicit 747, 785, 791
character to UDT 795
data type 745
DATE to character 798
DATE to Period 807
DATE to TIMESTAMP 809
DATE to UDT 815
field mode 757
implicit 745
interval to character 817
INTERVAL to INTERVAL 819
interval to numeric 823
interval to UDT 825
numeric 837
numeric to character 827
numeric to INTERVAL 835
numeric to UDT 841
Period to character 843
Period to DATE 846
Period to Period 848
Period to TIME 853
Period to TIMESTAMP 855
rounding rules 838
signed zone decimal 857
string functions and 500
table showing supported types 746
Teradata DATE 802
Teradata syntax and 755
TIME to character 861
TIME to Period 864
TIME to TIME 866
TIME to TIMESTAMP 874
TIME to UDT 888
TIMESTAMP to character 890
TIMESTAMP to DATE 894
TIMESTAMP to Period 905
TIMESTAMP to TIMESTAMP 907, 915
TIMESTAMP to UDT 923
truncation rules 838

CORR aggregate function 353
CORR window function 449
COS trigonometric function 110
COSH hyperbolic function 116
COUNT aggregate function 356
COUNT function

DateTime types and 231
Interval types and 232

COUNT window function 449
COUNTSET function 136
COVAR_POP aggregate function 361
COVAR_POP window function 449
COVAR_SAMP aggregate function 364
COVAR_SAMP window function 449
CSUM function 467

Index

962 SQL Functions, Operators, Expressions, and Predicates

CUBE grouping set, GROUPING aggregate function and 367
Cumulative sum

CALENDAR view 468
computing 467

CURRENT_DATE function 671
CURRENT_TIME function 677
CURRENT_TIMESTAMP function 681
CURRENT_USER function 685

D
Data conversion rules

explicit 755
implicit 745
rounding 838
truncation 838

Data definition 752
byte conversion 758
byte to INTEGER conversion, HASHBUCKET and 641
CAST, data type converion and 752
character to character conversion 762
character-to-DATE conversion 767
character-to-formatted DATE conversion 769
character-to-INTERVAL conversion 773
character-to-numeric conversion 775
character-to-Period 781
character-to-TIME conversion 784
character-to-TIMESTAMP conversion 790
character-to-UDT conversion 795
data type conversions 745
DATE conversion (Teradata) 802
DATE-to-character conversion 798
DATE-to-Period conversion 807
DATE-to-TIMESTAMP conversion 809
DATE-to-UDT conversion 815
Exact numeric-to-INTERVAL conversion 835
explicit type conversion rules 755
implicit type conversion rules 745
interval-to-character conversion 817
interval-to-exact numeric conversion 823
INTERVAL-to-INTERVAL conversion 819
interval-to-UDT conversion 825
numeric-to-character conversion 827
numeric-to-numeric conversion 837
numeric-to-UDT conversion 841
Period-to-character conversion 843
Period-to-DATE conversion 846
Period-to-Period conversion 848
Period-to-TIME conversion 853
Period-to-TIMESTAMP conversion 855
signed zone decimal conversion 857
TIMESTAMP-to-character conversion 890
TIMESTAMP-to-DATE conversion 894
TIMESTAMP-to-Period conversion 905

TIMESTAMP-to-TIMESTAMP conversion 907, 915
TIMESTAMP-to-UDT conversion 923
TIME-to-character conversion 861
TIME-to-Period conversion 864
TIME-to-TIME conversion 866
TIME-to-TIMESTAMP conversion 874
TIME-to-UDT conversion 888

Database, get default database 686
DATE

as logical predicate 171
scalar operations on 234

Date
get current date (Teradata) 687
get system date 671

Date expressions, Teradata 233
DATE to UDT conversion 815
Date, aggregate operations and 346
DateTime expressions 213

rules for, ANSI 219
DateTime functions, and scalar operations 232
DateTime scalar operations

arithmetic 229
restrictions on 213

DateTime types
aggregate functions and 231
assignment rules 210, 211

DATE-to-Period conversion 807
DATE-to-TIMESTAMP conversion 809
day_of_calendar function 260
day_of_month function 256
day_of_week function 254
day_of_year function 258
DECAMSET function 652
DECAMSET_L function 654
DECIMAL/NUMERIC types, arithmetic expression and

rounding 53
Decompression functions

DECAMSET 652
DECAMSET_L 654
LZDECOMP 660
LZDECOMP_L 662
TransUTF8ToUnicode 667

DEFAULT function 621
DEGREES function 113
DISTINCT, SELECT option 349
Division operator 48

E
End function 295, 302
ESCAPE, with LIKE predicate 597, 602
Exact numeric-to-INTERVAL conversion 835
EXCEPT operator 198
EXISTS predicate 579

Index

SQL Functions, Operators, Expressions, and Predicates 963

EXP function 71
Exponentiation operator 48
Expressions, defined 22
EXTRACT function 242

F
Fallback AMP, identify with HASHBAKAMP 637
FALSE 609
Field mode, data type conversions and 757
FLOAT data types

aggregate functions and 348
comparison operations and 166

FLOOR function 73
FORMAT phrase 625
Functions

defined 19
TEMPORAL_DATE 696
TEMPORAL_TIMESTAMP 697
types of 19

G
GETBIT function 138
GetTimeZoneDisplacement function 246
GROUP BY clause

aggregate functions and 346
rules for aggregate functions and constant expressions 346

Group count, example 461
GROUPING aggregate function

CUBE and 367
described 367
GROUPING SET and 367
ROLLUP and 367

H
Hash index, ordered analytical functions and 440
HASHAMP function 634
HASHBAKAMP function 637
HASHBUCKET function 640
Hash-related functions 633

HASHAMP 634
HASHBAKAMP 637
HASHBUCKET 640
HASHROW 643

HASHROW function 643
Hyperbolic functions 116

ACOSH 116
ASINH 116
ATANH 116
COSH 116
SINH 116
TANH 116

I
Implicit type conversion 745

byte-to-UDT 760
character-to-UDT 795
comparison operators and 168
DATE-to-UDT 815, 888, 923
interval-to-UDT 825
numeric-to-UDT 841

IN predicate 585
INDEX function 511

ANSI equivalent 498
INTERSECT operator 195
Interval conversion

interval-to-character 817
interval-to-interval 819
interval-to-UDT 825

Interval expressions 222
rules for, ANSI 228

INTERVAL function 300
Interval scalar operations

arithmetic 229
restrictions on 213

Interval types
aggregate functions and 231
assignment rules 210, 211

Interval-to-character conversion 817
Interval-to-exact numeric conversion 823
INTERVAL-to-INTERVAL conversion 819
Interval-to-UDT conversion 825
Inverse trigonometric functions 110

ACOS 110
ASIN 110
ATAN 110
ATAN2 110

IS NOT NULL predicate 592
IS NOT UNTIL_CHANGED predicate 297
IS NOT UNTIL_CLOSED predicate 299
IS NULL predicate 592
IS UNTIL_CHANGED predicate 297
IS UNTIL_CLOSED predicate 299

J
Japanese character code notation, how to read 954
Join index, ordered analytical functions and 440

K
KURTOSIS aggregate function 370

L
LDIFF operator 320
Least squares, computing 476
LIKE predicate 594

Index

964 SQL Functions, Operators, Expressions, and Predicates

Linear regression, computing 476
LN function 76
LOG function 78
Logical expressions

BETWEEN predicate 578
FALSE result 609
NOT BETWEEN predicate 578
TRUE result 609
UNKNOWN result 609

Logical operators
AND 608
defined 608
NOT 608
OR 608
search conditions and 608

Logical predicate
conditional expression as 569
DATE as 171
DEFAULT function and 177, 572
defined 569
LOB data types and 570
order of evaluation 609
primitives, tabular summary of 570
SQL use of 569

LOWER function 517
LZCOMP function 656
LZCOMP_L function 658
LZDECOMP function 660
LZDECOMP_L function 662

M
MAVG function 470
MAX aggregate function

DateTime types and 231
described 372
Interval types and 232

MAX window function 449
MAXIMUM aggregate function. See MAX aggregate function
MCHARACTERS function 613, 616

ANSI equivalent 613
MDIFF function 473
MEETS predicate 304
MIN aggregate function

DateTime types and 231
described 375
Interval types and 232

MIN window function 449
MINDEX function 498, 520

ANSI equivalent 498
MINIMUM aggregate function. See MIN aggregate function
MINUS operator 198
MLINREG function 476
MOD operator 48

month_of_calendar function 274
month_of_quarter function 270
month_of_year function 272
Moving average, computing 470
Moving difference

CALENDAR view 474
computing 473

Moving sum, computing 479
MSUBSTR function 498, 532

ANSI equivalent 498
MSUM function 479
Multiplication operator 48
Mutator methods 740

N
Name, get user name 685, 702
NEW expression 734
NEXT function 306
Normalize functions

TD_NORMALIZE_MEET 328
TD_NORMALIZE_OVERLAP 326
TD_NORMALIZE_OVERLAP_MEET 330
TD_SUM_NORMALIZE_MEET 334
TD_SUM_NORMALIZE_OVERLAP 332
TD_SUM_NORMALIZE_OVERLAP_MEET 336

NOT BETWEEN predicate 578
NOT EXISTS predicate 579
NOT IN predicate 585

NOT EXISTS predicate and 580
recursive queries and 590

NOT logical operator 608
NULLIF expression 44
NULLIFZERO function 80
Nulls

aggregate operations and 347
CASE expression and 42
searching for/excluding 592

Numeric conversion
numeric-to-character 827
numeric-to-date 833
numeric-to-UDT 841

Numeric-to-character conversion 827
Numeric-to-date conversion 833
Numeric-to-numeric conversion 837
Numeric-to-UDT conversion 841

O
Observer methods 740
OCTET_LENGTH function 626
OLAP functions. See Ordered analytical functions.
operators

arithmetic operators 287
defined 21

Index

SQL Functions, Operators, Expressions, and Predicates 965

LDIFF operator 320
P_INTERSECT operator 312
P_NORMALIZE operator 314
RDIFF operator 322

OR logical operator 608
truth table 610

ORDER BY clause
ordered analytical functions and 432, 440
window specification and 440

Order of evaluation. See Logical predicate
Ordered analytical functions 427

aggregates and 442
AVG window function 449
common characteristics of 439
CORR window function 449
COUNT window function 449
COVAR_POP window function 449
COVAR_SAMP window function 449
CSUM 467
derived tables and 442
description 428
examples 446
GROUP BY clause 443
hash indexes and 440
HAVING clause 442
join indexes and 440
MAVG 470
MAX window function 449
MDIFF 473
MIN window function 449
MLINREG 476
MSUM 479
ORDER BY clause 432, 440
PARTITION BY clause 431, 441
PERCENT_RANK window function 481
Period data types and 440
QUALIFY clause 439, 442
QUANTILE 485
RANK 488
RANK window function 491
recursive queries and 440
REGR_AVGX window function 449
REGR_AVGY window function 449
REGR_COUNT window function 449
REGR_INTERCEPT window function 449
REGR_R2 window function 449
REGR_SLOPE window function 449
REGR_SXX window function 449
REGR_SXY window function 449
REGR_SYY window function 449
result order 440
ROW_NUMBER window function 494
ROWS clause 436
STDDEV_POP window function 449

STDDEV_SAMP window function 449
SUM window function 449
syntax alternatives for 429
Teradata OLAP functions 430
Teradata queries, extending 428
Teradata Warehouse Miner and 428
UDF window function 449
VAR_POP window function 449
VAR_SAMP window function 449
views and 442
window 430
window functions 430

OVERLAPS predicate 308, 604

P
P_INTERSECT operator 312
P_NORMALIZE operator 314
PARTITION BY clause

affect on spool space 441
ordered analytical functions and 431, 441

Partitioned primary index. See PPI
PERCENT_RANK window function, described 481
Period data types, logical predicates and 571
Period Value Constructor 284
Period-to-character conversion 843
Period-to-DATE conversion 846
Period-to-Period conversion 848
Period-to-TIME conversion 853
Period-to-TIMESTAMP conversion 855
POSITION function 498, 520
PPI

defined 60, 91
maximum partitions when using CASE_N 61
maximum partitions when using RANGE_N 92
multilevel 60, 91
system-derived columns 61, 92

PPI functions
CASE_N 58
RANGE_N 87

Precedence
arithmetic expressions 53
logical operators 609
operator 53
set operators 182

PRECEDES predicate 316
Predicate quantifiers

ALL 573
ANY 573
SOME 573

Predicates
BETWEEN 578
CONTAINS 293
DEFAULT function and 177, 572

Index

966 SQL Functions, Operators, Expressions, and Predicates

defined 23
EXISTS 579
IN 585
IS NOT NULL 592
IS NOT UNTIL_CHANGED 297
IS NOT UNTIL_CLOSED 299
IS NULL 592
IS UNTIL_CHANGED 297
IS UNTIL_CLOSED 299
LIKE 594
logical 569
MEETS 304
NOT BETWEEN 578
NOT EXISTS 579
NOT IN 585
OVERLAPS 308, 604
PRECEDES 316
quantifiers 573
SUCCEEDS 324

PRIOR function 318
PROFILE function 691
Profiles, getting the current profile 691
Proximity functions

NEXT function 306
PRIOR function 318

Q
QUALIFY clause, ordered analytical functions and 439
Quantifiers

ALL 573
ANY 573
SOME 573

QUANTILE function, described 485
quarter_of_calendar function 278
quarter_of_year function 276

R
RADIANS function 113
RANDOM function 83

valued CASE and 26
RANGE_N function 87
RANK function 488
RANK window function 491
RDIFF operator 322
REGR_AVGX aggregate function 378
REGR_AVGX window function 449
REGR_AVGY aggregate function 381
REGR_AVGY window function 449
REGR_COUNT aggregate function 384
REGR_COUNT window function 449
REGR_INTERCEPT aggregate function 388
REGR_INTERCEPT window function 449
REGR_R2 aggregate function 392

REGR_R2 window function 449
REGR_SLOPE aggregate function 396
REGR_SLOPE window function 449
REGR_SXX aggregate function 400
REGR_SXX window function 449
REGR_SXY aggregate function 403
REGR_SXY window function 449
REGR_SYY aggregate function 406
REGR_SYY window function 449
Remaining average 440
Remaining count 461
Remaining sum 466
ROLE function 675, 692
Roles, getting the current role 675, 692
ROLLUP grouping set, GROUPING aggregate function and

367
ROTATELEFT function 140
ROTATERIGHT function 143
Rounding

arithmetic operators and DECIMAL/NUMERIC data 53
data type conversion rules 838

Row length errors, UNION operator 201
ROW_NUMBER window function, described 494
Rowhash, identify with HASHROW function 643
ROWNUM. See ROW_NUMBER window function.
ROWNUMBER. See ROW_NUMBER window function.
ROWS clause

defined 436
ordered analytical functions and 436

S
Scalar UDF 711
Scalar, converting scalar value expressions 752
SDF

Currency 778
CurrencyName 778
data type default formats and 780
FORMAT phrase, relationship to 778
GroupingRule 778
GroupSeparator 778
RadixSeparator 778

Search conditions
defined 608
logical operators and 608

Sequenced aggregation functions
TD_SEQUENCED_AVG 340
TD_SEQUENCED_COUNT 342
TD_SEQUENCED_SUM 338

SESSION function 695
Session, get session number 695
Set operators

ALL option 183
derived tables and 185

Index

SQL Functions, Operators, Expressions, and Predicates 967

EXCEPT operator 198
INSERT...SELECT statements containing 188
INTERSECT operator 195
MINUS operator 198
overview 179
precedence 182
rules for 181
rules for connecting queries by 191
set result, attributes of 183
subqueries containing 186
UNION operator 200
view definitions containing 190

SETBIT function 146
SHIFTLEFT function 149
SHIFTRIGHT function 152
Signed zone decimal conversion 857
SIN trigonometric function 110
SINH hyperbolic function 116
SKEW aggregate function 409
SOME predicate quantifier 573
SOUNDEX function, described 523
Specification for data formatting, see SDF
SQL expressions

aggregate functions
AVG 350
CORR 353
COUNT 356
COVAR_POP 361
COVAR_SAMP 364
DISTINCT option 349
GROUPING 367
HAVING clause and 349
KURTOSIS 370
MAX 372
MIN 375
REGR_AVGX 378
REGR_AVGY 381
REGR_COUNT 384
REGR_INTERCEPT 388
REGR_R2 392
REGR_SLOPE 396
REGR_SXX 400
REGR_SXY 403
REGR_SYY 406
SKEW 409
STDDEV_POP 412
STDDEV_SAMP 415
SUM 418
VAR_POP 421
VAR_SAMP 424
WHERE clause and 349

arithmetic functions
ABS 56
CEILING 68

DEGREES 113
EXP 71
FLOOR 73
LN 76
LOG 78
NULLIFZERO 80
RADIANS 113
RANDOM 83
SQRT 101
ZEROIFNULL 107

arithmetic operators
addition operator 48
division operator 48
exponentiation 48
MOD operator 48
multiplication operator 48
precedence 53
subtraction operator 48
unary minus operator 48
unary plus operator 48

CASE operation 25
COALESCE expression 42
NULLIF expression 44
searched CASE 29
valued CASE 26

comparison operators
= 162
> 162
>= 162
EQ 162
GE 162
GT 162
Japanese character set comparison operators 175
LE 162
LT 162
NE 162
Period data type comparison operators 289

conditional expressions 608
hyperbolic functions 116

ACOSH 116
ASINH 116
ATANH 116
COSH 116
SINH 116
TANH 116

inverse trigonometric functions 110
ACOS 110
ASIN 110
ATAN 110
ATAN2 110

logical expressions
BETWEEN 578
NOT BETWEEN 578

trigonometric functions 110

Index

968 SQL Functions, Operators, Expressions, and Predicates

COS 110
SIN 110
TAN 110

SQL functions
attribute functions 613

BYTES 614
CHARACTER_LENGTH 616
CHARACTERS 619
DEFAULT 621
FORMAT 625
MCHARACTERS 613, 616
OCTET_LENGTH 626
TITLE 629
TYPE 630

built-in functions
ACCOUNT 670
CURRENT_DATE 671
CURRENT_TIME 677
CURRENT_TIMESTAMP 681
CURRENT_USER 685
DATABASE 686
DATE 687
PROFILE 691
ROLE 675, 692
SESSION 695
TIME 699
USER 702

byte strings
BYTES 614
TRIM 549

byte/bit manipulation functions
BITAND 125
BITNOT 128
BITOR 130
BITXOR 133
COUNTSET 136
GETBIT 138
ROTATELEFT 140
ROTATERIGHT 143
SETBIT 146
SHIFTLEFT 149
SHIFTRIGHT 152
SUBBITSTR 155
TO_BYTE 158

Calendar functions
day_of_calendar 260
day_of_month 256
day_of_week 254
day_of_year 258
month_of_calendar 274
month_of_quarter 270
month_of_year 272
quarter_of_calendar 278
quarter_of_year 276

week_of_calendar 268
week_of_month 264
week_of_year 266
weekday_of_month 262
year_of_calendar 280

Compression functions
CAMSET 646
CAMSET_L 649
LZCOMP 656
LZCOMP_L 658
TransUnicodeToUTF8 664

Decompression functions
DECAMSET 652
DECAMSET_L 654
LZDECOMP 660
LZDECOMP_L 662
TransUTF8ToUnicode 667

hash-related functions 633
HASHAMP 634
HASHBAKAMP 637
HASHBUCKET 640
HASHROW 643

Ordered analytical functions
AVG window function 449
CORR window function 449
COUNT window function 449
COVAR_POP window function 449
COVAR_SAMP window function 449
CSUM 467
MAVG 470
MAX window function 449
MDIFF 473
MIN window function 449
MLINREG 476
MSUM 479
PERCENT_RANK window function 481
QUANTILE 485
RANK 488
RANK window function 491
REGR_AVGX window function 449
REGR_AVGY window function 449
REGR_COUNT window function 449
REGR_INTERCEPT window function 449
REGR_R2 window function 449
REGR_SLOPE window function 449
REGR_SXX window function 449
REGR_SXY window function 449
REGR_SYY window function 449
ROW_NUMBER window function 494
STDDEV_POP window function 449
STDDEV_SAMP window function 449
SUM window function 449
UDF window function 449
VAR_POP window function 449

Index

SQL Functions, Operators, Expressions, and Predicates 969

VAR_SAMP window function 449
partitioning functions

CASE_N 58
RANGE_N 87

string functions 497
CHAR2HEXINT 508
concatenation operator 502
INDEX 511
LOWER 517
MINDEX 520
MSUBSTR 532
POSITION 520
SOUNDEX 523
STRING_CS 527
SUBSTR 530, 532
SUBSTRING 530
TRANSLATE 536
TRANSLATE_CHK 545
TRIM 549
TRIM and concatenation 551
UPPER 553
VARGRAPHIC 556

WIDTH_BUCKET function 103
SQL UDF 706
SQRT function 101
STDDEV_POP aggregate function 412
STDDEV_POP window function 449
STDDEV_SAMP aggregate function 415
STDDEV_SAMP window function 449
String functions

CHAR2HEXINT 508
implicit character type conversion 500
INDEX 511
LOWER 517
MINDEX 498, 520
MSUBSTR 498, 532
POSITION 520
rules 500
server character sets and 500
SOUNDEX 523
STRING_CS 527
SUBSTR 530, 532
SUBSTRING 530
TRANSLATE 536
TRANSLATE_CHK 545
TRIM 549
UPPER 553
VARGRAPHIC 556

STRING_CS function 527
SUBBITSTR function 155
Subqueries, comparison operators and 164
SUBSTR function 530, 532

ANSI equivalent 498
SUBSTRING function 498, 530

Subtraction operator 48
SUCCEEDS predicate 324
SUM aggregate function 418
SUM function, Interval types and 232
SUM window function 449
Syntax, how to read 949
SYS_CALENDAR system database 468, 474

T
Table UDF 725
TAN trigonometric function 110
TANH hyperbolic function 116
TD_NORMALIZE_MEET function 328
TD_NORMALIZE_OVERLAP function 326
TD_NORMALIZE_OVERLAP_MEET function 330
TD_SEQUENCED_AVG function 340
TD_SEQUENCED_COUNT function 342
TD_SEQUENCED_SUM function 338
TD_SUM_NORMALIZE_MEET function 334
TD_SUM_NORMALIZE_OVERLAP function 332
TD_SUM_NORMALIZE_OVERLAP_MEET function 336
TEMPORAL_DATE, reference 696
TEMPORAL_TIMESTAMP

reference 697
Teradata conversion syntax 755
Teradata OLAP functions. See Ordered analytical functions
Teradata Warehouse Miner 428
Time

get current time (Teradata) 699
get system time 677

Time expressions, Teradata 233
TIME function 699
Time stamp, get system time stamp 681
Time zone comparisons 221
Time zone, get time zone displacement 677
TIME, conversion to character 861
TIMESTAMP

arithmetic 228
conversion to character 890

TIMESTAMP-to-DATE conversion 894
TIMESTAMP-to-Period conversion 905
TIMESTAMP-to-TIMESTAMP conversion 907, 915
TIMESTAMP-to-UDT conversion 923
TIME-to-Period conversion 864
TIME-to-TIME conversion 866
TIME-to-TIMESTAMP conversion 874
TIME-to-UDT conversion 888
TITLE function 629
TO_BYTE function 158
TRANSLATE function 536
TRANSLATE_CHK function 545
Translation, character 765
TransUnicodeToUTF8 function 664

Index

970 SQL Functions, Operators, Expressions, and Predicates

TransUTF8ToUnicode function 667
Trigonometric functions 110

COS 110
SIN 110
TAN 110

TRIM function 549
TRIM function, concatenation and 551
TRUE 609
Type conversion, implicit 745
TYPE function 630

U
UDF window function 449
UDM invocation 740
UDT data types

aggregate functions and 351
arithmetic operators and 49
CASE expression and 27, 30, 34
COALESCE expression and 43
comparison operators and 167
conversion 925, 928, 932, 935, 938, 941, 944, 947
hash-related functions and 635, 638
implicit type conversions and 747
logical predicates and 571
method invocation 740
mutator methods 740
NEW expression 730, 734
NULL value 347
NULLIF expression and 45
observer methods 740
ordered analytical functions and 440
set operators and 182
string functions and 503

UDT expression 730
UDT-to-byte type conversion 925
UDT-to-character type conversion 928
UDT-to-DATE type conversion 932
UDT-to-INTERVAL type conversion 935
UDT-to-numeric type conversion 938
UDT-to-TIME type conversion 941
UDT-to-TIMESTAMP type conversion 944
UDT-to-UDT type conversion 947
Unary minus operator 48
Unary plus operator 48
UNION operator 200

outer join and 204
reason for unexpected row length errors 201

Universal Coordinated Time, see UTC
UNKNOWN 609
UNTIL_CLOSED value 284
UPPER function 553
USER function 702
User-defined function

aggregate UDF 714
scalar UDF 711
SQL UDF 706
table UDF 725
window aggregate UDF 717

User-defined types. See UDT data types
Username, get user name 685, 702
UTC

time conversions and 786, 792
UTF16 client character set

KANJI1 translation, internal to external 500
OCTET_LENGTH and 627

UTF8 client character set
KANJI1 translation 500
OCTET_LENGTH and 627

V
VAR_POP aggregate function 421
VAR_POP window function 449
VAR_SAMP aggregate functions 424
VAR_SAMP window function 449
VARGRAPHIC function 556
VARGRAPHIC function conversion tables 559

W
week_of_calendar function 268
week_of_month function 264
week_of_year function 266
weekday_of_month function 262
WIDTH_BUCKET function 103
Wildcards, used with LIKE predicate 595
Window aggregate functions

defined 438
difference between aggregate functions and 438

Window aggregate UDF 717
Window functions. See Ordered analytical functions
Window, defined 430

Y
year_of_calendar function 280

Z
ZEROIFNULL function 107

	Preface
	Purpose
	Audience
	Supported Software Releases and Operating Systems
	Prerequisites
	Changes to This Book
	Additional Information

	Table of Contents
	Chapter 1 Introduction
	SQL Functions
	SQL Operators
	SQL Expressions
	SQL Predicates

	Chapter 2 CASE Expressions
	CASE
	Valued CASE Expression
	Searched CASE Expression
	Error Conditions
	Rules for the CASE Expression Result Type
	Format for a CASE Expression
	CASE and Nulls
	COALESCE Expression
	NULLIF Expression

	Chapter 3 Arithmetic Operators and Functions / Trigonometric and Hyperbolic Functions
	Arithmetic Operators
	Binary Arithmetic Result Data Types
	Structure of Arithmetic Expressions
	Arithmetic Functions
	ABS
	CASE_N
	CEILING
	EXP
	FLOOR
	LN
	LOG
	NULLIFZERO
	RANDOM
	RANGE_N
	SQRT
	WIDTH_BUCKET
	ZEROIFNULL
	Trigonometric Functions (COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2)
	DEGREES RADIANS
	Hyperbolic Functions (COSH, SINH, TANH, ACOSH, ASINH, ATANH)

	Chapter 4 Byte/Bit Manipulation Functions
	Bit and Byte Numbering Model
	Performing Bit-Byte Operations against Arguments with Non-Equal Lengths
	BITAND
	BITNOT
	BITOR
	BITXOR
	COUNTSET
	GETBIT
	ROTATELEFT
	ROTATERIGHT
	SETBIT
	SHIFTLEFT
	SHIFTRIGHT
	SUBBITSTR
	TO_BYTE

	Chapter 5 Comparison Operators
	Comparison Operators
	Comparison Operators in Logical Expressions
	Comparisons That Produce TRUE Results
	Data Type Evaluation
	Implicit Type Conversion of Comparison Operands
	Comparison of ANSI DateTime and Interval in USING Clause
	Proper Forms of DATE Types in Comparisons
	Character String Comparisons
	Comparison of KANJI1 Characters
	Comparison Operators and the DEFAULT Function in Predicates

	Chapter 6 Set Operators
	Overview of Set Operators
	Rules for Set Operators
	Precedence of Set Operators
	Retaining Duplicate Rows Using the ALL Option
	Attributes of a Set Result
	Set Operators With Derived Tables
	Set Operators in Subqueries
	Set Operators in INSERT … SELECT Statements
	Set Operators in View Definitions
	Queries Connected by Set Operators
	INTERSECT Operator
	MINUS/EXCEPT Operator
	UNION Operator

	Chapter 7 DateTime and Interval Functions and Expressions
	Overview
	ANSI DateTime and Interval Data Type Assignment Rules
	Scalar Operations on ANSI SQL:2008 DateTime and Interval Values
	ANSI DateTime Expressions
	ANSI Interval Expressions
	Arithmetic Operators
	Aggregate Functions and ANSI DateTime and Interval Data Types
	Scalar Operations and DateTime Functions
	Teradata Date and Time Expressions
	Scalar Operations on Teradata DATE Values
	ADD_MONTHS
	EXTRACT
	GetTimeZoneDisplacement

	Chapter 8 Calendar Functions
	day_of_week
	day_of_month
	day_of_year
	day_of_calendar
	weekday_of_month
	week_of_month
	week_of_year
	week_of_calendar
	month_of_quarter
	month_of_year
	month_of_calendar
	quarter_of_year
	quarter_of_calendar
	year_of_calendar

	Chapter 9 Period Functions and Operators
	Period Value Constructor
	Arithmetic Operators
	Comparison of Period Types
	BEGIN
	CONTAINS
	END
	IS UNTIL_CHANGED/IS NOT UNTIL_CHANGED
	IS UNTIL_CLOSED/IS NOT UNTIL_CLOSED
	INTERVAL
	LAST
	MEETS
	NEXT
	OVERLAPS
	P_INTERSECT
	P_NORMALIZE
	PRECEDES
	PRIOR
	LDIFF
	RDIFF
	SUCCEEDS
	TD_NORMALIZE_OVERLAP
	TD_NORMALIZE_MEET
	TD_NORMALIZE_OVERLAP_MEET
	TD_SUM_NORMALIZE_OVERLAP
	TD_SUM_NORMALIZE_MEET
	TD_SUM_NORMALIZE_OVERLAP_MEET
	TD_SEQUENCED_SUM
	TD_SEQUENCED_AVG
	TD_SEQUENCED_COUNT

	Chapter 10 Aggregate Functions
	Aggregate Functions
	AVG
	CORR
	COUNT
	COVAR_POP
	COVAR_SAMP
	GROUPING
	KURTOSIS
	MAX
	MIN
	REGR_AVGX
	REGR_AVGY
	REGR_COUNT
	REGR_INTERCEPT
	REGR_R2
	REGR_SLOPE
	REGR_SXX
	REGR_SXY
	REGR_SYY
	SKEW
	STDDEV_POP
	STDDEV_SAMP
	SUM
	VAR_POP
	VAR_SAMP

	Chapter 11 Ordered Analytical Functions
	Ordered Analytical Functions
	Ordered Analytical Functions Benefits
	Syntax Alternatives for Ordered Analytical Functions
	Window Feature
	Applying Windows to Aggregate Functions
	Characteristics of Ordered Analytical Functions
	Nesting Aggregates in Ordered Analytical Functions
	GROUP BY Clause
	Using Ordered Analytical Functions Examples
	Window Aggregate Functions
	CSUM
	MAVG
	MDIFF
	MLINREG
	MSUM
	PERCENT_RANK
	QUANTILE
	RANK
	RANK
	ROW_NUMBER

	Chapter 12 String Operator and Functions
	String Functions
	Effects of Server Character Sets on Character String Functions
	Concatenation Operator
	CHAR2HEXINT
	INDEX
	LOWER
	POSITION
	SOUNDEX
	STRING_CS
	SUBSTRING/SUBSTR
	TRANSLATE
	TRANSLATE_CHK
	TRIM
	UPPER
	VARGRAPHIC
	VARGRAPHIC Function Conversion Tables

	Chapter 13 Logical Predicates
	Logical Predicates
	ANY/ALL/SOME Quantifiers
	BETWEEN/NOT BETWEEN
	EXISTS/NOT EXISTS
	IN/NOT IN
	IS NULL/IS NOT NULL
	LIKE
	OVERLAPS
	Logical Operators and Search Conditions

	Chapter 14 Attribute Functions
	Attribute Functions
	BYTES
	CHARACTER_LENGTH
	CHARACTERS
	DEFAULT
	FORMAT
	OCTET_LENGTH
	TITLE
	TYPE

	Chapter 15 Hash-Related Functions
	Features
	HASHAMP
	HASHBAKAMP
	HASHBUCKET
	HASHROW

	Chapter 16 Compression/Decompression Functions
	CAMSET
	CAMSET_L
	DECAMSET
	DECAMSET_L
	LZCOMP
	LZCOMP_L
	LZDECOMP
	LZDECOMP_L
	TransUnicodeToUTF8
	TransUTF8ToUnicode

	Chapter 17 Built-In Functions
	ACCOUNT
	CURRENT_DATE
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	DATABASE
	DATE
	PROFILE
	ROLE
	SESSION
	TEMPORAL_DATE
	TEMPORAL_TIMESTAMP
	TIME
	USER

	Chapter 18 User-Defined Functions
	SQL UDF
	Scalar UDF
	Aggregate UDF
	Window Aggregate UDF
	Table UDF

	Chapter 19 UDT Expressions and Methods
	UDT Expression
	NEW
	NEW VARIANT_TYPE
	Method Invocation

	Chapter 20 Data Type Conversions
	Forms of Data Type Conversions
	Implicit Type Conversions
	CAST in Explicit Data Type Conversions
	Teradata Conversion Syntax in Explicit Data Type Conversions
	Data Conversions in Field Mode
	Byte Conversion
	Character-to-Character Conversion
	Implicit Character-to-Character Translation
	Character-to-DATE Conversion
	Character-to-INTERVAL Conversion
	Character-to-Numeric Conversion
	Character-to-Period Conversion
	Character-to-TIME Conversion
	Character-to-TIMESTAMP Conversion
	Character-to-UDT Conversion
	Character Data Type Assignment Rules
	DATE-to-Character Conversion
	DATE-to-DATE Conversion
	DATE-to-Numeric Conversion
	DATE-to-Period Conversion
	DATE-to-TIMESTAMP Conversion
	DATE-to-UDT Conversion
	INTERVAL-to-Character Conversion
	INTERVAL-to-INTERVAL Conversion
	INTERVAL-to-Numeric Conversion
	INTERVAL-to-UDT Conversion
	Numeric-to-Character Conversion
	Numeric-to-DATE Conversion
	Numeric-to-INTERVAL Conversion
	Numeric-to-Numeric Conversion
	Numeric-to-UDT Conversion
	Period-to-Character Conversion
	Period-to-DATE Conversion
	Period-to-Period Conversion
	Period-to-TIME Conversion
	Period-to-TIMESTAMP Conversion
	Signed Zone DECIMAL Conversion
	TIME-to-Character Conversion
	TIME-to-Period Conversion
	TIME-to-TIME Conversion
	TIME-to-TIMESTAMP Conversion
	TIME-to-UDT Conversion
	TIMESTAMP-to-Character Conversion
	TIMESTAMP-to-DATE Conversion
	TIMESTAMP-to-Period Conversion
	TIMESTAMP-to-TIME Conversion
	TIMESTAMP-to-TIMESTAMP Conversion
	TIMESTAMP-to-UDT Conversion
	UDT-to-Byte Conversion
	UDT-to-Character Conversion
	UDT-to-DATE Conversion
	UDT-to-INTERVAL Conversion
	UDT-to-Numeric Conversion
	UDT-to-TIME Conversion
	UDT-to-TIMESTAMP Conversion
	UDT-to-UDT Conversion

	Appendix A Notation Conventions
	Syntax Diagram Conventions
	Character Shorthand Notation Used In This Book
	Predicate Calculus Notation Used In This Book

	Glossary
	Index

