UM2417
,’ life.augmented

User manual

API guide for the BlueNRG-Mesh iOS SDK

Introduction

The BlueNRG-Mesh iOS SDK from ST is based on the BLE Mesh Profile 1.0 connectivity specification from Bluetooth® SIG that
extends network reach beyond the BLE point to point range.

The SDK allows iOS devices to communicate with BLE mesh nodes based on BlueNRG-1/2/MS platforms. It provides the
functions to provision new devices to the mesh network, and mesh node control and configuration features.

The BlueNRG-Mesh iOS SDK includes iOS static library and demo mesh application sources. The APl is implemented in
Objective-C and can be called in both Objective-C and Swift applications.

A demo application in Swift 4 is provided for reference and all code snippets in this document are in Swift 4.

The requirements to use the SDK are listed below:
* Tools: XCode 9+

* Operating system: iOS 10.0

» Device: 64 bit capable (iPhone 5s onwards)

Figure 1. Low Energy mesh schematic

———> Advertising bearer
=3 GATT bearer 0

<

UM2417 - Rev 2 - September 2018
For further information contact your local STMicroelectronics sales office.

www.st.com

ﬁ UM2417

BlueNRG-Mesh SDK specifications

1 BlueNRG-Mesh SDK specifications

The Bluetooth® Mesh specifications are defined in two parts:
1. Bluetooth® Mesh Profile specifications for mesh nodes in general
2. Bluetooth® Mesh Model specifications for specific applications like lighting, sensors, etc.

1.1 BlueNRG-Mesh SDK modules

The following BlueNRG-Mesh SDK modules cover various aspects of Bluetooth® Mesh specifications.

1. MeshManager: the main module that controls basic mesh network functionality and provides factory
methods for other modules.

2. MeshProvisioner: provides the functions and callbacks necessary for adding a node to a mesh network
(provisioning).

3. ConfigurationModel: provides functions defined in Configuration client (Mesh Profile Specifications) to
configure a mesh node (e.g., enabling and disabling various features, setting and updating keys, etc.)

4. GenericModel: provides functions defined in Generic client (Mesh Model Specifications) for generic control
of the mesh nodes.

5. VendorModel: provides a vendor-defined (STMicroelectronics) interface to control the mesh nodes. The

functionality of the standard Bluetooth® SIG model offers little scope for customization. The vendor model
provides the flexibility to define interfaces for specific needs and applications.

6. Health Model: provides functions defined in the Health client (Mesh profile specification) to monitor the
node health status.

7. Heartbeat Model: provides functions and callbacks to check if the nodes are still alive in the network. It
also provides functionality to configure the heartbeat functionality.

UM2417 - Rev 2 page 2/30

UmM2417
How to set up and use the BlueNRG-Mesh SDK

3

2 How to set up and use the BlueNRG-Mesh SDK

Mesh stack functionality is accessed through the STMeshManager class.
Step 1. First, we need to create an instance of STMeshManager class as follows:

Note: The ViewController mustimplement the STMeshManagerDelegate protocol to receive important events.

let meshManager = STMeshManager.getInstance (self)

2.1 How to set up the mesh network

Initializing the library
Step 1. Initialize the library before you call any other function.
If there are multiple provisioners in a network, they must be initialized with unique unicast addresses.

/* The unicast address of provisioner is passed as parameter */
meshManager.createNetwork (1)

Set the network information

Step 2. The application should retrieve the Network configuration and provide it to the mesh library as soon as
it starts.

The demo provides routines to store network data in JSON format. You can also use the JSON format
to sync with a cloud application and other provisioners.

meshManager.setNetworkData (networkSettings)

Note: Any undocumented BlueNRG-Mesh iOS SDK headers you find that are not listed in this document represent
future or untested functionality and are not recommended for use.
2.2 How to use the BlueNRG-Mesh library

The BlueNRG-Mesh library can function in Provisioning mode to add nodes to a mesh network and in Network
mode to communicate with provisioned nodes in the network. Entering one mode automatically interrupts
operation of the other.

221 How to use the mesh library in Network mode (with Swift 4 code sample)

Step 1. Determine proxy connection method.

The BlueNRG-Mesh Library requires a mesh proxy node to connect to a mesh network. There are two
ways to connect to a proxy node:

a. Using NetworklID: the BlueNRG-Mesh Library connects to any capable proxy node in the mesh
network identified by an 8-octet key.

proxyAddress = 0

b. Using Node Identity: the BlueNRG-Mesh Library connects to a specific node in the mesh network
through a 16-octet key. This may be useful when you need to transmit a lot of data to a node
directly over the GATT connection.

proxyAddress = unicast address of a specific proxy node

Note: For this connection method, the target node must be in direct radio range and advertise with Node Identity (refer
to Mesh Profile 1.0 specifications).

Step 2. Start in Network mode.

This is the default operation mode used for normal mesh network operations. In this mode we can send
and receive messages from mesh nodes.

meshManager.startNetwork (proxyAddress)

UM2417 - Rev 2 page 3/30

UM2417
How to use the BlueNRG-Mesh library

3

Step 3. Suspend mesh operation.
This command stops the network.

meshManager.stopNetwork ()

The following Swift 4 sample code shows how you can start and stop the mesh network in an application.

var currentNetworkDataManager = NetworkDataManager.sharedInstance ()
var manager: STMeshManager?

override func viewDidLoad() {
super.viewDidLoad ()
manager = STMeshManager.getInstance (self)
/* All the functions below are to be called only once.*/
/* Initialize provisioner node with unicast address 1 */
manager?.createNetwork (1)
/* Read network settings from storage */
currentNetworkDataManager.populateNodesFromStorage ()
//provide networkSetting/Provisioning data to library
manager?.setNetworkData (currentNetworkDataManager.currentNetworkData)

}

override func viewWillAppear(animated: Bool) {
/* For the cases when we come back from other screens where stopNetwork
may have been called. */
manager = STMeshManager.getInstance (self)
manager?.startNetwork (0)

}

/* Sending vendor model commands to mesh node. */
func switchStateDidChange (index: IndexPath, switchState:Bool) -> Bool {
let node = currentNetworkSetting.nodes[index.row] as! STMeshNode
//Send toggle command
let data = NSData (bytes: [0x03, 0x00] as [UInt8], length: 2)
letvendorModel = manager?.getVendorModel ()
vendorModel?.setRemoteData (node.unicastAddress , usingOpCode:3,
send: data as Data!, isResponseNeeded: false)
return true

}

/* Use this call-back instead of using CBCentralManager for BLE status */
func meshManager (manager:STMeshManager!,

didBTStateChange state:STMeshBleRadioState) {
if (state != STMeshBleRadioState PoweredOn) {
//Display error / prompt user to switch on Bluetooth

}

222 How to add new nodes in Provisioning Mode (with Swift 4 code sample)
Step 1. Search for unprovisioned devices and add them to the network using the provisioning procedure.

Call the following method(s):

let provisioner = STMeshManager.getProvisioner ()
//Start scan for unprovisioned devices
//The timeout parameter is passed. Not used in current version 1.01.000
manager.startDeviceScan (0)

Step 2. Use the didDeviceAppearedWithUUID:RSSTI callback when advertisement packets are received.
Your application may update the RSSI values and visibility of the nodes in the user interface.

Once the node to be provisioned is identified through its UUID, provisioning can start.
Step 3. Provide a new instance of STMeshNode with the UUID address.

Step 4. Usethe didProvisionStageChanged callback during provisioning to provide status information
regarding the process.

Step 5. Pause scanning for nodes.

UM2417 - Rev 2 page 4/30

m UM2417

How to use the BlueNRG-Mesh library

This is useful to save power.

provisioner.stopDeviceScan ()

Step 6. Refer to the following Swift 4 sample code to build your own application.

The following Swift 4 sample code shows how you can provision nodes in an application.

var manager: STMeshManager?
override func viewDidAppear(animated: Bool) {
manager = STMeshManager.getInstance (self)
provisioner = manager.getProvisioner ()
/* Switch to provisioning mode from proxy mode */
/* Parameter : scan interval, not used in current SDK 1.01.000 */
self.provisioner?.startDeviceScan (0) ;

/* invoked whenever unprovisioned node’s data packet is received
UI can be updated to show nodes and also update RSSI value */
func provisioner (provisioner:STMeshProvisioner!,
didDeviceAppearedWithUUID uuid:String, rssi:Int32) {
/* Update or add new nodes in UI here. */
addOrUpdateNode (uuid: uuid, rssi: rssi)

/* Start the provisioning process */
func startProvisioning(nodeToProvision: STMeshNode) -> Void {
//Supply instance of STMeshNode, unicast addr, initial subscription addr

manager?.provisionDevice (nodeToProvision, meshNode: 0, groupAddr: O,
identificationTime: 10)

/* invoked when node capability packet is received */

func provisioner(provisioner:STMeshProvisioner!, didReceiveCapabilitiesElementCount ele
mentCount:UInt8) {

/* Element count would be required for allocating addresses */

/* invoked when provisioning status changes */
func provisioner(provisioner:STMeshProvisioner!, didProvisionStageChanged
percentage:Int32, updateMessage message:String!, hasError error:Bool) ({
/* Update UI to display provisioning progress to user */

override func viewDidDisappear (animated: Bool) {
/* This may be called when leaving the provisioning screen */
manager?.stopDeviceScan ()

UM2417 - Rev 2

page 5/30

UM2417
BlueNRG-Mesh iOS library API: types

3

3 BlueNRG-Mesh iOS library API: types

Table 1. enum STMeshStatus options

STMeshStatus_Success = 0 Command completed successfully
STMeshStatus_False =1 Operation did not occur but no error encountered
STMeshStatus_Fail = 2 General error

STMeshStatus_InvalidArg = 3 Invalid argument supplied
STMeshStatus_OutOfMemory = 4 Lack of memory

STMeshStatus_Timeout = 5 Operation timed out
STMeshStatus_NoConnection = 6 Operation failed as bearer not connected
STMeshStatus_NoBLE =7 BLE radio is off or not present

Table 2. enum STMeshMode options

STMeshMode_Provisioner = 0x00 Provisioner mode of the BLE mesh device or node
STMeshMode_ProxyClient = 0x01 Proxy mode of the BLE mesh device or node

Offline mode of BLE mesh node. Not connected to any mesh

STMeshMode_Offline = OxFF)
device or node

UM2417 - Rev 2 page 6/30

UM2417

3

4 BlueNRG-Mesh iOS library API: functions (Objective-C)
4.1 STMeshManager methods
411 Create Mesh Manager class object

(instancetype) getinstance
All mesh interaction is done through an instance of STMeshManager class. This function returns a single instance
of STMeshManager.

41.2 Create network
(STMeshStatus) createNetwork:(uint16_t) address
Initializes the mesh network with given address.
Returns
STMeshStatus
Status of the command
Parameters

address
Uint1e6: Local address of node (usually 1 for smartphones)

41.3 Start and stop network processing

(STMeshStatus) startNetwork:(uint16_t) proxyAddress
Mesh network messages cannot be sent or received until this function is called.
Returns
STMeshStatus
Status of the command
Parameters
proxyAddress
Uint16: Address of preferred proxy node to connect to.
0 = the iOS device can connect to any proxy capable node in the network.
(STMeshStatus) stopNetwork
This method stops the network processing. It may be called to save power when user is not interacting with the
app.
Returns
STMeshStatus
Status of the command.

414 Set network data

(STMeshStatus) setNetworkData:(STMeshNetworkSettings *)networkSettings;
This function is used to provide networkSettings to the BlueNRG-Mesh library. The Network settings contain the
data required to communicate with the nodes in the network.
In the application, these settings are used to populate the list of provisioned nodes.

Returns

STMeshStatus
Status of the command.

Parameters

networkSettings
STMeshNetworkSettings: object containing the network information. To be managed by user application.

41.5 Get model instances

(STMeshConfigurationModel *) getConfigurationModel;
(STMeshGenericModel *) getGenericModel;
(STMeshVendorModel *) getVendorModel;

UM2417 - Rev 2 page 7/30

UM2417

3

(STMeshLightingModel*) getLightingModel;
(STMeshHealthModel *)getHealthModel;
(STMeshHeartbeatModel *)getHeartbeatModel;
These functions are used to get instances of various models to access model specific commands and callbacks.

Returns

STMeshStatus
Status of the command.

4.1.6 Proxy connection

(BOOL) isConnectedToProxyService;
Checks whether the BlueNRG-Mesh Library is currently connected to any proxy nodes. This check is useful before
sending commands to nodes to ensure there is a connection.

Returns

BOOL
Status of connection with proxy node.

41.7 Dummy mode operation

(void) setDummyMode:(BOOL *)dummyMode;
BlueNRG-Mesh iOS SDK includes Dummy mode functionality that allows app development even without access to
actual BlueNRG mesh nodes and is also useful when fine tuning the Ul on simulator.
When dummy mode is active, the actual Bluetooth radio is not used and the API simulates the behavior of actual
devices. If you call provisioner startDeviceScan() in this mode, you receive callbacks from virtual devices that you
can provision normally.

Note: The simulated behaviors are approximated and do not model a real mesh device perfectly. It is provided for
convenience but you should not base your developments on them.
Parameters

dummyMode
BOOL: true to enable and false to disable dummy mode operation.

4.2 Mesh Manager callbacks

4.21 BT State is Changed

(void) meshManager:(STMeshManager *)manager didBTStateChange:(STMeshBleRadioState)status
This is called when local Bluetooth chip has changed state. It indicates to the application whether Bluetooth is
supported and switched on.

Parameters

status
STMeshBleRadioState: returns status of the BLE radio.

4.3 Network mode and proxy callbacks

431 Proxy connection changes

(void) meshManager:(STMeshManager *)manager didProxyConnectionChanged :(BOOL)isConnected
This method is called when a connection to a proxy is made or when it terminates. You can update the Ul with this
information and perhaps disable commands when there is no connection to a proxy.

Parameters

isConnected
BOOL: true if connected, false if disconnected.

4.4 Provisioning methods

UM2417 - Rev 2 page 8/30

UM2417

3

441 Scan for unprovisioned devices

(STMeshStatus) startDeviceScan:(uint32_t)timeOut
Initiates scan of unprovisioned devices. Callback method didDeviceAppearedWithUUID is called by the library
when an unprovisioned device is found.

Returns

STMeshStatus
Status of the command.

Parameters

timeOut
Scanning stops after this period (in seconds) expires. This parameter is not used in the current version of the
library 1.02.000.

Note: Network operations are stopped while this scan is running and the application must call
meshManager. startNetwork after provisioning is completed to resume the network processing.

(STMeshStatus) stopDeviceScan
Stops the scanning of unprovisioned devices. This method can be used to save energy.
Returns

STMeshStatus
Status of the command.

4.4.2 Provision a device

(STMeshStatus) provisionDevice:(STMeshNode *)node deviceAddress:(uint16_t)addr identificationTime:
(uint32_t)duration
This method starts provisioning the target device. Callback method didProvisionStageChanged is called to report
the progress of the provisioning process. 100 % provisioning means that the process has completed successfully.
Returns
STMesh_Status
STMESH SUCCESS: if the provisioning was started.
STMESH_ FAIL: If the provisioning could not be started.

Note: The return value does not tell us if provisioning has completed successfully, it only tells us whether the process
could be started or not. didProvisionStageChanged delegate, reports the status of provisioning.
Parameters
node
STMeshNode: new instance of STMeshNode with node UUID field filled in.
addr

uintl6_t:the mesh unicast address to be assigned to the node being provisioned.

duration
uint32_t:the duration (in seconds) of the identify state of an unprovisioned device. In this state, the device
signals for user attention in order to identify itself; e.g., with a blinking LED or beeping sound. This feature is not
available in current release version 1.02.000.

4.5 Provisioning callbacks

451 Device provisioning updates

(void) meshManager:(STMeshManager *)manager didProvisionStageChanged :(int32_t)percentage
updateMessage:(NSString *)message hasError:(BOOL)error
This method is called multiple times during the provisioning process to indicate the progress. Applications can
reflect this information in Ul (e.g., a progress bar) based on these callbacks.

Parameters

percentage
int32_t: provisioning process progress in percent.

message

UM2417 - Rev 2 page 9/30

UM2417

Configuration model methods

3

NSString: text message to denote the progress of provisioning process. This field does not provide meaningful
information in the current version of SDK (1.02.000)

error
BOOL: this flag is true if an error occurs during provisioning process.

4.5.2 New device found
(void): meshManager:(STMeshManager *)manager didDeviceAppearedWithUUID:(NSString*)uuid RSSI:
(int32_t)rssi;
This method is called when advertisement packets are received from an unprovisioned device after the

meshManager.startDeviceScan is called. Applications can update the Ul to display the new node. This callback
may be called multiple times for the same node to update RSSI value, for example.

Parameters
uuid
NSString: UUID of device

rssi
int32 t:RSSI strength

453 Error
meshManager:(STMeshManager *)manager didErrorOccurred:(NSString *)errMessage;
Called by the mesh library to indicate error condition.
Parameters

errorMessage
NSString: error type

4.6 Configuration model methods

These methods are used by configuration client to update configuration of the mesh node.

4.6.1 Unprovision a device

- (STMeshStatus) resetConfigNode:(uint16_t)peerAddress;
This command instructs a mesh node to delete its network information and so become unprovisioned.

4.6.2 Key management

- (STMeshStatus) addConfigAppKeyOnNode:(uint16_t)peerAddress appKeylndex:(uint16_t)appKeylndex
netKeylndex:(uint16_t)netKeylndex;
This method sets an application key on the target node. After provisioning, the app key must be configured before
any application commands can be accepted by the node.

Note: In current version 1.02.000 non-zero netKeylndex is not supported.

4.6.3 Subscription and group management

- (STMeshStatus) addConfigModelSubscriptionToNode:(uint16_t) peerAddress elementAddress:
(uint16_t)elementAdrress address:(uint16_t)subscriptionAddress modelldentifier:(uint32_t)
modelldentifier;

This method is used to subscribe a node to a group address.

- (STMeshStatus) deleteConfigModelSubscriptionFromNode:(uint16_t)peerAddress elementAddress:
(uint16_t)elementAddress group:(uint16_t) groupAddress;

This method is used to remove group subscription from a node element.
(STMeshStatus)ConfigSubscriptionDeleteAll:(uint16_t)peerAddress elementAddress:
(uint16_t)elementAddress modelldentifier:(uint32_t)modelldentifier isVendor:(BOOL)isVendorModelld;

This method is used to remove all group subscribtion from a node element.

4.6.4 Publication

- (STMeshStatus) setConfigModelPublicationOnNode:(uint16_t)peerAddress elementAddress:
(uint16_t)elementAddress publishAddress:(uint16_t)publishAddress appKeylndex:(uint16_t)
appKeylindex credentialFlag:(BOOL) credentialFlag publishTTL:(uint8_t) publishTTL publishPeriod:

UM2417 - Rev 2 page 10/30

UM2417

Configuration method callbacks

3

(uint32_t) publishPeriod retransmitCount:(uint8_t) retransmitCount retransmitinterval:(uint16_t)
retransmitinterval modelldentifier:(uint32_t) modelldentifier;
This method is used to update publish address of the node. Publish address is used by the node if it initiates
communication. This address can be a unicast or a group address.

Note: In current version 1.02.000 appKeylndex must be 0, also all parameters after appKeylndex are ignored .

(STMeshStatus)getConfigPublish:(uint16_t)peerAddress elementAddress:(uint16_t)elementAddress
modelldentifier:(uint32_t)modelldentifier isVendorModelld(BOOL)isVendorModelld;
This method is used to send requests for reading publication status.

4.6.5 Composition

(STMeshStatus)getConfigCompositionData:(uint16_t)peerAddress pageNumber:(uint8_t)pageNumber;
This method is used to send requests for reading composition data.

4.6.6 Relay
(STMeshStatus)getConfigNodeRelay:(uint16_t)peerAddress;
This method is used to send requests for relay status data.

(STMeshStatus)setConfigNodeRelay:(uint16_t)peerAddress relay(BOOL)enableRelay retransmitCount:
(uint8_t)count retransmitinterval:(uint16_t)interval;
This method is used to send requests to set relay features.

4.6.7 GATTProxy
(STMeshStatus)getConfigNodeGATTProxy:(uint16_t)peeraddress;
This method is used to send requests for the GATTProxy feature status data.

(STMeshStatus)setConfigNodeGATTProxy:(uint16_t)peerAddress proxyState(BOOL)isEnableProxy;
This method is used to send requests to set relay features.

4.6.8 Node Friend
(STMeshStatus)getConfigNodeFriend:(uint16_t)peeraddress;
This method is used to send requests for the friend feature status data.

(STMeshStatus)setConfigNodeFriend:(uint16_t)peerAddress friendState(BOOL)isEnableFriend;
This method is used to send requests to set the node friend feature.

4.6.9 Node Identity
(STMeshStatus)getConfigNodeldentity:(uint16_t)peerAddress netKeylndex:(uint16_t)netKeylndex
identity:(ConfigState)identity;
This method sends requests for enabling/disabling proxy advertisement using node identity.

4.6.10 Beacon
(STMeshStatus)getConfigBeacon:(uint16_t)peerAddr;
This method is used to send requests for Beacon status data.

(STMeshStatus)setConfigBeacon:(uint16_t)peerAddress isEnable:(BOOL)isEnabled;
This method is used to send requests for enabling/disabling secure network Beacon.

4.6.11 TTL
(STMeshStatus)getConfigTTL:(uint16_t)peerAddr;
This method is used to send requests for config TTL status data.

(STMeshStatus)setConfigTTL:(uint16_t)peerAddress ttIValue:(uint16_t)ttIValue;
This method is used to send requests for enabling/disabling secure network Beacon.

4.7 Configuration method callbacks

(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveSubscriptionStatus:
(ConfigModelStatus) ConfigurationStatus peerAddress:(uint16_t)peerAddress elementAddress:
(uint16_t)elementAdrressmodelldentifier:(uint32_t)modelldentifier;

This callback is invoked when subscription status is received from the element.

(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceivePublishStatus:
(ConfigModelStatus) ConfigurationStatus peerAddress:(uint16_t)peerAddress elementAddress:
(uint16_t)elementAddress publishAddress:(uint16_t)publishAddress appKeylndex:(uint16_t)appKeylndex

UM2417 - Rev 2 page 11/30

UM2417

Arguments used by configuration model methods and callbacks

3

credentialFlag:(BOOL)credentialFlag publishTTL:(uint8_t) publishTTL publishPeriod:
(uint32_t)publishPeriod retransmitCount:(uint8_t)count retransmitinterval:(uint16_t)interval
modelldentifier:(uint32_t)modelldentifier;

This callback is invoked when publish status is received from the element.

(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveAppKeyStatus:
(ConfigModelStatus)ConfigurationStatus peerAddress:(uint16_t)peerAddress netKeyindex:
(uint16_t)netKeylndex appkeylndex:(uint16_t)appKeyindex;

This callback is invoked when AppKey status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveresetStatus:
(STMeshStatus)ConfigurationStatus peerAddress:(uint16_t)peerAddress;

This callback is invoked when reset status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveCompositionData:
(STMeshStatus)ConfigurationStatus peerAddress:(uint16_t)peerAddresspageNumber:
(uint8_t)pageNumber ReceivedData:(STMeshCompositionDataModel*)data;

This callback is invoked when composition page 0 data is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveFriendStatus:
(uint16_t)peerAddress proxy:(ConfigState)relay retransmitCount:;

This callback is invoked when friend feature status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel*)configModel didReceiveConfigRelayStatus:
(uint16_t)peerAddress relay:(ConfigState)relay retransmitCount:(uint8_t)retransmitCount
retransmitinterval:(uint16_t)interval

This callback is invoked when relay feature status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel *)configModel
didReceiveConfigNodeldentityStatus:(uint16_t)peerAddress indentity:(ConfigState)indentity;

This callback is invoked when Nodeidentity status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel *)configModel didReceiveConfigBeaconStatus:
(uint16_t)peerAddress status:(ConfigState)status;

This callback is invoked when Beacon status is received from the node.
(void) meshConfigModel:(STMeshConfigurationModel *)configModel didReceiveConfigTTLStatus:
(uint16_t)peerAddress status:(ConfigState)status;

This callback is invoked when TTL status is received from the node.

4.8 Arguments used by configuration model methods and callbacks

Parameters

peerAddress
uintlé6_t:address of node which is being configured

Subscription or group address

uintlé6_t: group address to be added subscription list of the node.

The current version supports up to 10 group addresses per node.
Publish address

uintl6_t:address at which the node should publish its messages.
Element address

uintlé6_t:address of element which is being configured within the node.
App key index

uintl6_t: global app key Index.

Default value is 0.
Net key index

uintl6_t: global net key Index.

Default value is 0.
Model Identifier

uint32_ t: Model ID of the model for which the command is being sent.

credentialFlag
BOOL: the publish friendship credential flag is a 1-bit state controlling the credentials used to publish messages
from a model.
0: master security material is used for publishing
1: friendship security material is used for publishing

UM2417 - Rev 2 page 12/30

UM2417

Generic model methods

3

Publish TTL
uint8 t: TTL of the message published by the element of node.
Value from 0x00-0x7F
O0xFF: the messages use the Default TTL.
Publish period
uint32_ t:the Publish Period state determines the interval (in milliseconds) in which status messages are
published by a model.
Retransmit count
uint8_t: specifies the number of times that a message published will be retransmitted after the initial send.
Retransmit interval
uintl6_t:time in milliseconds between each retransmission.

49 Generic model methods

These methods are used by the generic client to send generic model commands to the mesh node. The generic
model allows nodes to perform generic automation functions while maintaining the highest level of interoperability.
- (STMeshStatus) setGenericOnOff:(uint16_t)peerAddress isOn:(BOOL) isOn transitionTime:(uint8_t)
time withDelay:(uint8_t) delay isUnacknowledged:(BOOL) responseFlag;

This method is used to send Generic On/Off commands to an element of a peer node with transition time.
- (STMeshStatus) readGenericOnOff:(uint16_t)peerAddress;

This method is used to read Generic On/Off status information from an element of a peer node.
- (STMeshStatus) setGenericLevel:(uint16_t)peerAddress level:(uint16_t) levelValue transitionTime:
(uint8_t) time withDelay:(uint8_t) delay isUnacknowledged:(BOOL) responseFlag;

This method is used to send Generic level commands to an element of a peer node with transition time.
- (STMeshStatus) readGenericLevel:(uint16_t)peerAddress;

This method is used to read Generic level status information from an element of a peer node.
- (STMeshStatus) setGenericDelta:(uint16_t)peerAddress deltaLevel:(uint16_t) deltaValue transitionTime:
(uint8_t) time withDelay:(uint8_t) delay isUnacknowledged:(BOOL) responseFlag;

This method is used to send Generic delta commands to an element of a peer node.
- (STMeshStatus) setGenericMove:(uint16_t)peerAddress deltaLevel:(uint16_t) deltaValue transitionTime:
(uint8_t) time withDelay:(uint8_t) delay isUnacknowledged:(BOOL) responseFlag;

This method is used to send Generic move commands to an element of a peer node.

410 Generic model callbacks

These callbacks are called after receiving generic status messages.
- (void) genericModel:(STMeshGenericModel*)genericModel didReceiveOnOffStatusFromAddress:
(uint16_t)peerAddress presentOnOff:(uint8_t) presentState targetOnOff:(uint16_t) targetState
remainingTime:(uint16_t) time isTargetStatePresent:(uint16_t) stateFlage;

This callback is called when Generic On/Off status is received from the element of a peer node.
- (void) genericModel:(STMeshGenericModel*)genericModel didReceiveLevelStatusFromAddress:
(uint16_t)peerAddress presentOnOff:(uint8_t) presentState targetOnOff:(uint16_t) targetState
remainingTime:(uint16_t) time isTargetStatePresent:(uint16_t) stateFlage;

This callback is called when Generic On/Off status is received from the element of a peer node.

4.11 Arguments used by generic model methods and callbacks

Parameters

peerAddress
uintl6_t: Address of element of the node involved.
isOn
BOOL: Requested On/Off state in generic On/Off command.
0x00: Off
0x01: On
transitionTime:time
uint8 t: Transition time determines how long an element shall take to transition from a present state to a new

state. The parameter has a 6-bit field for the number of steps and a 2-bit field for the time for each step:
Number of steps (6-bit field):

UM2417 - Rev 2 page 13/30

UM2417

Vendor model methods

3

0x00: Immediate transition
0x01-0x3E: number of steps
Time resolution per step (2-bit field):
0b00: Resolution 100ms
0b01: Resolution 1 seconds
0b10: Resolution 10 seconds
0b11: Resolution 10 minutes
withDelay:Delay
uint8_ t: Message execution delay in 5 millisecond steps.
isUnacknowledged: responseFlag
BOOL: Determines whether the command is acknowledged or unacknowledged. Acknowledged requires the
receiver to send a response message.
False: Acknowledged
True: Unacknowledged
presentState
uint8 t /uintlé t: Current On/Off or level state of the model.
targetState
uint8 t /uintlé t: Target level field identifies the target Generic Level state that the element should reach.
remainingTime
uint8 t: Remaining time field identifies the time it should take the element to complete the transition to the target
Generic Level state of the element. The format of the field is same as transitionTime field.
isTargetStatePresent
BOOL: Target state and remainingTime fields are optional in Generic On/Off and Level status messages.This
parameter indicates whether the optional fields are present.
False: Optional fields not present.
True: optional fields are present.

412 Vendor model methods

These methods are used to send and receive data from a mesh node.

4121 Send command

(STMeshStatus) setRemoteData:(uint16_t)peerAddress dataMap:(uint32_t)opcode sendData:
(NSData*)data isResponseNeeded:(BOOL)responseFlag
This function is used to send a commands (with or without a payload) to a mesh network node with destination
address. The user application is responsible for serializing data into the data buffer.
Returns
STMeshStatus
Status of the command
Parameters
peerAddress
uintl6_t: destination address. May also be set to group address.
opcode
uint32_t: opcode of the command being sent. Only 4 LSB bits of opcode are used.
data
NSData: data buffer.
To get best results, payload length should be limited to 8 bytes.

responseFlag
BOOL: true if a response is requested for the command, false otherwise.

Note: Commands with response flag set are called reliable commands. If a reliable command is sent to a group
address, an acknowledgement must be sent by each node in the group, which will cause extra traffic and may
degrade network performance if there are many nodes in the group.

4.12.2 Read data
(STMeshStatus) readRemoteData:(uint16_t)peerAddress dataMap:(uint32_t)opcode

UM2417 - Rev 2 page 14/30

UM2417

Vendor model callbacks

3

Requests data from the given destination address.
Returns
STMeshStatus
Status of the command.
Parameters
peerAddress
uintlé6_t: destination address. It can be a group address also. Use of group addresses in read commands is not
advised.

opcode
uint32_t: opcode of the read command being sent. Only 4 LSB bits of opcode are used.

4.12.3 Read version data

(STMeshStatus) readDeviceVersionData:(uint16_t)peerAddress usingOpcode:(uint8_t)opcodesendData:
(NSData*)data
Returns STMeshStatus, status of the command and parameters.

413 Vendor model callbacks

These callbacks are called after receiving vendor model responses.
-(void) meshManager:(STMeshManager *)manager gotResponseFrom:(uint16_t)peerAddress
commandStatus:(STMeshCmdStatus)status recvData:(NSData*)data
This methods is called when response of command sent earlier is received.
Parameters
peerAddress
uintl6_t: address of device that has sent the response.

status
STMeshCommandStatus: status of the command.

data
NSData: data buffer containing the response payload.

414 Lighting model method

4141 Lighting lightness

(STMeshStatus)readLightingLightnessStatus:(uint16_t)peerAddress;

This method is used to read Lighting lightness status from an element of a peer node.
(STMeshStatus)setLightingLightness:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting lightness command to element of a peer node.
(STMeshStatus)setLightingLightness:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
transationTime:(uint8_t)time withDelay:(uint8_t)delay isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting lightness command with optional parameters to an element of a peer node.
(STMeshStatus)readLightingLightnessLinearStatus:(uint16_t)peerAddress;

This method is used to read Lighting lightness Linear status from an element of a peer node.
(STMeshStatus)setLightingLightnesslinear:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting lightness Linear command to an element of a peer node.
(STMeshStatus)setLightingLightnessLinear:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
transationTime:(uint8_t)time withDelay:(uint8_t)delay isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting lightness Linear command with optional parameters to an element of a peer

node.
(STMeshStatus)readLightingLightnessLastStatus:(uint16_t)peerAddress;

This method is used to read Lighting lightness Last status from an element of a peer node.
(STMeshStatus)readLightingDefaultStatus:(uint16_t)peerAddress;

This method is used to read Lighting lightness default status from an element of a peer node.

UM2417 - Rev 2 page 15/30

UM2417
Lighting model method callback

3

(STMeshStatus)setLightingLightnessDefault:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
isUnacknowledged:(BOOL)responseFlag;
This method is used to send lightness default command to an element of a peer node.

(STMeshStatus)readLightingRangeStatus:(uint16_t)peerAddress;
This method is used to read Lighting lightness range status from an element of a peer node.

(STMeshStatus)setLightingLightnessRange:(uint16_t)peerAddress rangeMinValue:(uint16_t)rangeMin
rangeMaxValue:(uint16_t)rangeMax isUnacknowledged:(BOOL)responseFlag;
This method is used to send lightness range command to an element of a peer node.

4.14.2 Lighting CTL

(STMeshsStatus)readLightCTLStatus:(uint16_t)peerAddress;
This method is used to read Lighting CTL status from an element of a peer node.

(STMeshsStatus)setLightingCTL:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
temperatureValue:(uint16_t)temperature deltaUVValue:(int16_t)deltaUV isUnacknowledged:
(BOOL)responseFlag;

This method is used to send Lighting CTL command from an element of a peer node.

(STMeshStatus)setLightingCTL:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
temperatureValue:(uint16_t)temperature deltaUVValue:(int16_t)deltaUV transatimnTime:(uint16_t)time
withDelay:(uint8_t)delay isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting CTL command with optional parameters from an element of a peer node.

(STMeshStatus)readLightCTLTemperatureStatus:(uint16_t)peerAddress;
This method is used to read Lighting CTL Temperature status from an element of a peer node.

(STMeshStatus)setLightingCTLTemperature:(uint16_t)peerAddress temperatureValue:
(uint16_t)temperature deltaUVValue:(int16_t)deltaUV isUnacknowledged:(BOOL)responseFlag;
This method is used to send Lighting CTL Temperature command from an element of a peer node.

(STMeshStatus)setLightingCTLTemperature:(uint16_t)peerAddress temperatureValue:
(uint16_t)temperature deltaUVValue:(int16_t)deltaUV transatimnTime:(uint16_t)time withDelay:
(uint8_t)delay isUnacknowledged:(BOOL)responseFlag;

This method is used to send Lighting CTL temperature command optional parameters from an element of a peer

node.
(STMeshStatus)readLightCTLDefaultStatus:(uint16_t)peerAddress;

This method is used to read Lighting CTL default status from an element of a peer node.
(STMeshStatus)setLightingCTLDefault:(uint16_t)peerAddress lightnessValue:(uint16_t)lightness
temperatureValue:(uint16_t)temperature deltaUVValue:(uint16_t)deltaUV isUnacknowledged:
(BOOL)responseFlag;

This method is used to send Lighting CTL default command from an element of a peer node.
(STMeshStatus)readLightCTLTemperatureRangeStatus:(uint16_t)peerAddress;

This method is used to read Lighting CTL range status from an element of a peer node.
(STMeshStatus)setLightCTLTemperatureRange:(uint16_t)peerAddress rangeMinValue:(uint16_t)rangeMin
rangeMaxValue:(uint16_t)rangeMax isUnacknowledged:(BOOL)responseFlag;

This method is used to read Lighting CTL range command from an element of a peer node.

415 Lighting model method callback

(void) lightingModel:(STMeshLightingModel*)lightingModel didReceiveLightnessStatusFromAddress:
(uint16_t)peerAddress presentLightness:(uint16_t)presentLightness targetLightness:
(uint16_t)targetLightness remainingTime:(uint8_t)time isTargetStatePresent:(BOOL)stateFlag;

This callback is called when lighting lightness status is received from the element of a peer node.
(void) lightingModel:(STMeshLightingModel*)lightingModel
didReceiveLightnessLinearStatusFromAddress:(uint16_t)peerAddress presentLighness:
(uint16_t)presentLightness targetLightness:(uint16_t)targetLightness remainingTime:(uint8_t)time
isTargetStatePresent:(BOOL)stateFlag;

This callback is called when lighting lightness linear status is received from the element of a peer node.

(void) lightingModel:(STMeshLightingModel*)lightingModel didReceiveLightnessLastStatusFromAddress:
(uint16_t)peerAddress lightnessValue:(uint16_t)lightness;
This callback is called when lighting lightness last status is received from the element of a peer node.

UM2417 - Rev 2 page 16/30

UM2417

Arguments used by configuration model methods and callbacks

3

(void) lightingModel:(STMeshLightingModel*)lightingModel
didReceiveLightnessDefaultStatusFromAddress:(uint16_t)peerAddress lightnessValue:
(uint16_t)lightness;

This callback is called when lighting lightness default status is received from the element of a peer node.

(void) lightingModel:(STMeshLightingModel*)lightingModel
didReceiveLightnessRangeStatusFromAddress:(uint16_t)peerAddress status:(uint8_t)statusCode
rangeMinValue:(uint16_t)rangeMin rangeMaxValue:(uint16_t)rangeMax;

This callback is called when lighting lightness range status is received from the element of a peer node.

(void) lightingModel:(STMeshLightingModel*)lightingModel didReceiveCTLStatusFromAddress:
(uint16_t)peerAddress presentLightness:(uint16_t)presentLightness presentTemperature:
(uint16_t)presentTemperature targetLightness:(uint16_t)targetLightness targeTemperature:
(uint16_t)targetTemperature isTargetStatePresent:(BOOL)stateFlag;

This callback is called when lighting CTL status is received from the element of a peer node.

(void) lightingModel:(STMeshLightingModel*)lightingModel
didReceiveCTLTemperatureStatusFromAddress:(uint16_t)peerAddress presentTemperature:
(uint16_t)presentTemperature presentDeltaVU:(uint16_t)targetDeltaVU targeTemperature:
(uint16_t)targetTemperature targetDeltaVU:(uint16_t)targetDeltaVU isTargetStatePresent:
(BOOL)stateFlag;

This callback is called when lighting CTL temperature status is received from the element of a peer node.
(void) lightingModel:(STMeshLightingModel*)lightingModel
didReceiveCTLTemperatureRangeStatusFromAddress:(uint16_t)peerAddress status:(uint8_t)statusCode
rangeMinValue:(uint16_t)rangeMin rangeMaxValue:(uint16_t)rangeMax;

This callback is called when lighting CTL temperature range status is received from the element of a peer node.
(void) lightingModel:(STMeshLightingModel*)lightingModel didReceiveCTLDefaultStatusFromAddress:
(uint16_t)peerAddress presentLightness:(uint16_t)presentLightness presentTemperature:
(uint16_t)presentTemperature;

This callback is called when lighting CTL default status is received from the element of a peer node.

4.16 Arguments used by configuration model methods and callbacks

peerAddress
uint16_t: Address of element of the node involved

lightness
uint16_t: lightness of light

transitiontime:Time
uint8_t: Transition time determines how long an element shall take to transition from a present state to a new state.
The parameter has a 6-bit field for the number of steps and a 2-bit field for the time for each step.

Number of steps (6-bit field):
. 0x00: Immediate transition
. 0x01-0x3E: number of steps

Time resolution per step (2-bit field):
. 0b00: Resolution 100ms
. 0b01: Resolution 1 second
. 0b10: Resolution 10 seconds
. Ob11: Resolution 10 minutes
withDelay:Delay
uint8_t: Message execution delay in 5 millisecond steps.

isUnacknowledged: responseFlag
BOOL: Determines whether the command is acknowledged or unacknowledged. Acknowledged requires the
receiver to send a response message:

. False = Acknowledged
. True = Unacknowledged
TemperatureValue:temperature
Uint16_t: color temperature of tunable white light emitted by an element.

DeltaUVValue:deltaUV
Uint16_t: deltaUV value of from CIE 1976 curve, it determines the distance from the black body curve.

UM2417 - Rev 2 page 17/30

UM2417

Health model methods

3

417 Health model methods

4171 Get Faults

(STMeshStatus)healthModelGetFaults:(uint16_t)peerAddr companyldentifier:(uint16_t)cid;
This method is used to read all the present faults related to the peer node.

4.17.2 Clear Faults

(STMeshStatus)HealthFaultClear:(uint16_t) peerAddr companyldentifier:(uint16_t) cid
isUnacknowledgedCommand:(bool) isUnacknowledged;
This method is used to clear all the faults from the fault register without waiting for an acknowledgement message.

(STMeshStatus)HealthFaultClear:(uint16_t) peerAddr companyldentifier:(uint16_t) cid;
This method is used to clear all the faults from the fault register (by default Acknowledge message).

4.17.3 Get Health Period

(STMeshStatus)HealthPeriodGet:(uint16_t) peerAddr;
This method is used to get the health period from a respective peer node.

417.4 Set Health Period

(STMeshStatus)HealthPeriodSet:(uint16_t) peerAddr fastPeriodDivisor:(uint8_t)fastPeriodDivisor
isUnacknowledgedCommand:(bool) isUnacknowledged;
This method is used to set the health period by passing the fastPeriodDivisor argument without waiting for an
acknowledgement message.
(STMeshStatus)HealthPeriodSet:(uint16_t) peerAddr fastPeriodDivisor:(uint8_t)fastPeriodDivisor;
This method is used to set the health period by passing the fastPeriodDivisor argument (by default Acknowledge

message)
Note: FastPeriodDivisor splits the current health period value.
The response to Health Period get/set message is Health Period status message.
4.17.5 Get Health Attention

(STMeshStatus)HealthAttentionGet:(uint16_t) peerAddr;
This method is used to get health attention from a respective peer node.

4.17.6 Set Health Attention

(STMeshStatus)HealthAttentionSet:(uint16_t) peerAddr attention:(uint8_t)attention
isUnacknowledgedCommand:(bool) isUnacknowledged;
This method is used to set the health attention by passing the attention argument (without waiting for the
acknowledgement message).

(STMeshStatus)HealthAttentionSet:(uint16_t) peerAddr attention:(uint8_t)attention;
This method is used to set the health attention by passing the attention argument (by default Acknowledge
message).

Note: The response to Health Attention get/set messages is Health Attention status message.

@property(weak, nonatomic) id<STMeshHealthModelDelegate> delegate;
This delegate must be confirmed to get the callbacks of the methods.

417.7 Health Status

(void) healthModel:(STMeshHealthModel*)healthModel didReceiveHealthStatusFromAddress:
(uint16_t)peerAddr withPresentsFaults:(NSArray*)faultsArray;
This callback is called when register fault status is received from the peer node. All the present fault will be present
in faultsArray.

4.17.8 Health Period Status

(void) healthModel:(STMeshHealthModel *)healthModel
didReceiveHealthPeriodStatusResponseFromAddress:(uint16_t)peerAddr WithFastPeriodDivisor:
(uint8_t)fastPeriodDivisor;

This callback is called when the Health Period Status is received from the peer node.

UM2417 - Rev 2 page 18/30

UM2417

Heartbeat model methods

3

4.17.9 Health Attention Status

(void) healthModel:(STMeshHealthModel *)healthModel
didReceiveHealthAttentionStatusResponseFromAddress:(uint16_t)peerAddr WithAttention:
(uint8_t)attention;

This callback is called when Health Attention Status is received from the peer node.

418 Heartbeat model methods

4.18.1 Get Heartbeat Publication

(STMeshStatus)heartbeatPublicationGet:(uint16_t)peerAddress;
This method is used to get the Heartbeat Publication from a peer node.

4.18.2 Set Heartbeat Publication

(STMeshStatus)heartbeatPublicationSet:(uint16_t) peerAddr destinationAddress:(uint16_t)
destinationAddress countLog:(uint8_t)countLog periodLog:(uint8_t)periodLog TTL:(uint8_t)TTL features:
(uint16_t)features netKeylndex:(uint16_t)netkeylndex;

This method is used to set the Heartbeat Publication from a peer node.

Note: The response to Heartbeat Publication get/set message is Heartbeat Publication status message.

4.18.3 Get Heartbeat Subscription

(STMeshStatus)heartbeatSubscriptionGet:(uint16_t) peerAddr;
This method is used to get the Heartbeat Subscription from a peer node.

4.18.4 Set Heartbeat Subscription

(STMeshStatus)heartbeatSubscriptionSet:(uint16_t) peerAddr sourceAddress:(uint16_t)sourceAddress
destinationAddress:(uint16_t)destinationAddress periodLog:(uint8_t) periodLog;
This method is used to set the Heartbeat Subscription from a peer node.

Note: The response to the Heartbeat Subscription get/set message is Heartbeat Subscription status message.

@property(weak , nonatomic) id<STMeshHeartBeatModelDelegate> delegate;
This delegate must be confirmed to get the callbacks of the methods.

4.18.5 Heartbeat Publication Status

(void) heartbeatModel:(STMeshHeartbeatModel *)heartbeatModel

didRecieveHeartbeatPublicationsStatusFromAddress:(uint16_t)peerAddress statusCode:(uint8_t)status

destinationAddress:(uint16_t)destinationAddress countLog:(uint8_t)countLog periodLog:

(uint8_t)periodLog TTL:(uint8_t)TTL features:(uint16_t)features netKeylndex:(uint16_t)netKeylndex;
This callback is called when Heartbeat Publication Status is received from a peer node.

4.18.6 Heartbeat Subscription Status

(void) heartbeatModel:(STMeshHeartbeatModel *)heartbeatModel
didRecieveHeartbeatSubscriptionStatusFromAddress:(uint16_t)peerAddress statusCode:(uint8_t)status
destinationAddress:(uint16_t)destinationAddress periodLog:(uint8_t)periodLog countLog:
(uint8_t)countLog minHops:(uint8_t)minHops maxHops:(uint8_t)maxHops

This callback is called when Heartbeat Subscription Status is received from a peer node.

UM2417 - Rev 2 page 19/30

UmM2417
BlueNRG-Mesh iOS Library API: classes

3

5 BlueNRG-Mesh iOS Library API: classes

NetworkSettings object contains the provisioning data required by provisioner to manage and control the
nodes on the network. It can also be used by user application to display a list of nodes in Ul.

Types used in the API are defined as below.

@class STMeshNode;

@class STMeshElement;

@class STMeshProvisionerData;
Qclass STMeshModel;

@class ProvisioningRangeObjects;
@class STMeshNodeFeatures;

@interface STMeshGroup:NSObject

@property (nonatomic) NSString *groupName;

@property (nonatomic) uintl6 t groupAddress;

@property (nonatomic) BOOL switchState;

@property (nonatomic) NSMutableArray<STMeshElement*> *subscribersElem;

@end

@interface STMeshNode:NSObject
@property (nonatomic) NSString *nodeName;

@property (nonatomic) NSString *nodeUUID;
@property (nonatomic) NSString *deviceKey;
@property (nonatomic) BOOL isProxyNode;
@property (nonatomic) BOOL switchState;
@property (nonatomic) uintl6 t publishAddress;
@property (nonatomic) uintl6 t unicastAddress;
@property (nonatomic, strong) id publishTarget;
@property (nonatomic) BOOL configComplete;
@property (nonatomic) BOOL blacklisted;
@property (nonatomic) NSString * cid;

@property (nonatomic) NSString * pid ;

@property (nonatomic) NSString * wvid;

@property (nonatomic) NSString * crpl;

@property (nonatomic) STMeshNodeFeatures * features;

@property (nonatomic) NSMutableArray<STMeshElement *> *elementList;
@property (nonatomic) NSMutableArray<STMeshElement*> *subscribedGroups;

@end

@interface STMeshElement : NSObject

@property (nonatomic) uint8 t index;

@property (nonatomic) NSString *elementName;

@property (nonatomic,strong) id publishTarget;

@property (nonatomic) uintl6 t unicastAddress;

@property (nonatomic) NSMutableArray<STMeshModel*> *modelList;
@property (nonatomic) BOOL configComplete;

@property (nonatomic) NSMutableArray<STMeshGroup*> *subscribedGroups;
@property (nonatomic) STMeshNode * parentNode;

@end

@interface ProvisioningRangeObjects : NSMutableDictionary

- (id) initRangeObjectsWithMinValue: (NSString*) lowRange maxValue: (NSString*)highRange;
@end

@interface STMeshProvisionerData : STMeshNode

@property (nonatomic) NSString *provisionerName;
@property (nonatomic) NSString *provisionerUUID;

UM2417 - Rev 2 page 20/30

UM2417

BlueNRG-Mesh iOS Library API: classes

@property (nonatomic)

astRange;

@property (nonatomic)

pRange;

@Qend

NSMutableArray<ProvisioningRangeObjects*> *marrProvisionerAllocatedUnic

NSMutableArray<ProvisioningRangeObjects*> *marrProvisionerAllocatedGrou

@interface STMeshNetworkSettings : NSObject

@property (nonatomic) uint32 t iVindex;
@property (nonatomic) NSString *netKey;
@property (nonatomic) NSString *appKey;
@property (nonatomic) NSString *devKey;
@property (nonatomic) NSString *meshName;
@property (nonatomic) NSString *meshUUID;

@property BOOL useDefaultSecuritiesCredential;
NSMutableArray<STMeshNode*> *nodes;
NSMutableArray<STMeshGroup*> *groups;

@property (nonatomic)
@property (nonatomic)

@property (nonatomic) NSMutableArray<STMeshProvisionerData*> *provisionerDataArray;
@property (nonatomic) NSMutableArray<STMeshProvisionerData*> *onlyProvisionerArray;

+ (instancetype) initAsNewNetwork;
- (void)reinitNetworkDataList;
@end

@interface STMeshModel: NSObject

@property (nonatomic) uint32 t modelId;

@property (nonatomic) NSString * modelName;

@property (nonatomic) NSMutableArray<STMeshGroup*> *subscribelist;
@property (nonatomic) id publish;

@end

@interface STMeshNodeFeatures :NSObject

@property (nonatomic) uint8 t relay;

@property (nonatomic) uint8 t proxy;

@property (nonatomic) uint8 t friendFeature;
()

@property (nonatomic) uint8 t lowPower;

@end

UM2417 - Rev 2

page 21/30

ﬁ UM2417

Notes for developers

6 Notes for developers
1. The library is compiled with iOS 11 as the base SDK
2. The minimum deployment target is iOS 10.2
3. Thelibrary is provided as a (arm64+x86) fat binary.
4. The library includes a Dummy mode to debug app Ul functionality with a simulator (where BLE is not

available).

5. The client application should use —ObjC flag in “other linker settings” to allow XCode to import categories
used by demo application. If you decide not to use these categories, skipping the flag may result in a slightly
smaller app archive.

6. The client application should include a dummy/empty C++ file to indicate to XCode to use C++ bindings if
you encounter linking errors.

UM2417 - Rev 2 page 22/30

m UM2417

Revision history

Table 3. Document revision history

21-May-2018 1 Initial release.
21-Sep-2018 2 Updated all content to reflect BlueNRG-Mesh version 1.05.000.

UM2417 - Rev 2 page 23/30

m UM2417

Contents

Contents
1 BlueNRG-Mesh SDK specificationscoiiiiiiiiii i iieinnns 2
1.1 BlueNRG-Mesh SDK modUles. o e 2
2 How to set up and use the BlueNRG-Mesh SDK ...t 3
2.1 How to setup the mesh network. i 3
2.2 How to use the BlueNRG-Mesh library. 3
221 How to use the mesh library in Network mode (with Swift 4 code sample) 3
222 How to add new nodes in Provisioning Mode (with Swift 4 code sample) 4
3 BlueNRG-Mesh iOS library APL: types........ccoiiiiiiiii it iiiiaannnnnnes 6
4 BlueNRG-Mesh iOS library API: functions (Objective-C)ccoiviiiint, 7
4.1 STMeshManager methods. e 7
411 Create Mesh Manager classobject. i 7
41.2 Create NetWorK 7
41.3 Start and stop Network processing 7
41.4 Setnetwork data. e 7
41.5 Getmodel instances 7
41.6 Proxy connection 8
4.1.7 Dummy mode operation 8
4.2 Mesh Manager callbacks e 8
421 BT Stateis Changed. 8
4.3 Network mode and proxy callbacks 8
431 Proxy connection changes 8
4.4 Provisioning methods e 8
441 Scan for unprovisioned deviCes 8
4.4.2 Provision @adeviCe. 9
4.5 Provisioning callbacks e 9
451 Device provisioningupdates e 9
45.2 New device found e 10
453 e o 10
4.6 Configuration model methods 10
4.6.1 UNprovision @ deviCe. e 10

UM2417 - Rev 2 page 24/30

m UM2417

Contents

46.2 Key management 10
4.6.3 Subscription and group management 10
46.4 Publication 10
4.6.5 COMPOSItION . . . 11
4.6.6 Relay . . 1"
4.6.7 GATTPIOXY .« ot ettt et e e e e e e e 1
4.6.8 Node Friend 1"
46.9 Node Identity. 1"
4.6.10 BeACON . . . 11
e e L I I 1"
4.7 Configuration method callbacks 11
4.8 Arguments used by configuration model methods and callbacks 12
4.9 Genericmodel methods e 13
410 Genericmodel callbacks 13
4.11 Arguments used by generic model methods and callbacks. 13
412 Vendormodel methods. 14
4121 Send CommaNnd. 14
4122 Readdata. 14
4123 Readversiondata. 15
413 Vendormodel callbacks 15
414 Lightingmodel method 15
4141 Lighting lightness 15
4.14.2 LIGhing CTL . . oottt e e e e e e 16
4.15 Lighting model method callback 16
4.16 Arguments used by configuration model methods and callbacks 17
417 Healthmodel methods 18
4171 GetFaulls. ... 18
417.2 Clear Faults 18
417.3 GetHealth Period 18
4174 SetHealth Period 18
417.5 GetHealth Attention 18
4.17.6 SetHealth Attention 18

UM2417 - Rev 2 page 25/30

m UM2417

Contents

417.7 Health Status 18

4.17.8 Health Period Status. 18

4.17.9 Health Attention Status 18

4.18 Heartbeat model methods 19
4.18.1 GetHeartbeat Publication. 19

4.18.2 SetHeartbeat Publication 19

4.18.3 GetHeartbeat Subscription. 19

4.18.4 SetHeartbeat Subscription 19

4.18.5 Heartbeat Publication Status. 19

4.18.6 Heartbeat Subscription Status. 19

5 BlueNRG-Mesh iOS Library APl: classes ... iiieaes 20
6 Notes for developersot i i ittt ae e taa s eaaseansanneennennns 22
ReVISion Ristory it et a s 23

UM2417 - Rev 2 page 26/30

m UM2417

List of figures

List of figures

Figure 1. Low Energy mesh schematic 1

UM2417 - Rev 2 page 27/30

m UM2417

List of tables

List of tables

Table 1. enum STMeshStatus OPlONS. e 6
Table 2. enum STMeshMode OPHIONS. ot e e e 6
Table 3. Documentrevision history 23

UM2417 - Rev 2 page 28/30

m UM2417

BlueNRG-Mesh iOS SDK glossary

BlueNRG-Mesh iOS SDK glossary

(Mesh) Address Unprovisioned device
Mesh addresses are used to uniquely identify nodes or A device that is not yet registered on a mesh network.
groups of nodes.

Vendor model

(Mesh) Element o . Bluetooth® Mesh Profile defines models to represent
An addressable unit within a node; e.g., a single socket node states and messages to operate on these states.

on a switchboard with multiple sockets. Each element The BlueNRG-Mesh SDK provides a vendor model that
has its own unicast address. allows data to be sent and received in a vendor defined
format.

(Mesh) Node
A device that is registered on a mesh network.

Generic attributes

Generic Attributes (GATT), define a hierarchical data
structure used to expose data fields and their
properties in BLE devices. In a mesh network, GATT is
a bearer used to communicate in the mesh network.
GATT bearers send and receive mesh packets via a
proxy node over a BLE connection.

JavaScript Object Notation

JavaScript Object Notation is a lightweight data
exchange format.

Local data
Data stored on a node is called local data.

Opcode

The vendor data consists of opcode and corresponding
parameters.

Provisioner

An entity that adds an unprovisioned device to a
network by allocating security information necessary
for communicating in the mesh network. It also
configures new nodes and sends commands to the
mesh nodes.

Proxy node

Currently, nodes receive and transmit BLE Mesh
messages in a mesh network through a special proxy
node, and smartphones communicate with proxy node
over a GATT connection.

Universally Unique ID

Universally Unique ID is the standard way to identify
mesh devices on a mesh network.

UM2417 - Rev 2 page 29/30

m UM2417

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

UM2417 - Rev 2 page 30/30

	Introduction
	1 BlueNRG-Mesh SDK specifications
	1.1 BlueNRG-Mesh SDK modules

	2 How to set up and use the BlueNRG-Mesh SDK
	2.1 How to set up the mesh network
	2.2 How to use the BlueNRG-Mesh library
	2.2.1 How to use the mesh library in Network mode (with Swift 4 code sample)
	2.2.2 How to add new nodes in Provisioning Mode (with Swift 4 code sample)

	3 BlueNRG-Mesh iOS library API: types
	4 BlueNRG-Mesh iOS library API: functions (Objective-C)
	4.1 STMeshManager methods
	4.1.1 Create Mesh Manager class object
	4.1.2 Create network
	4.1.3 Start and stop network processing
	4.1.4 Set network data
	4.1.5 Get model instances
	4.1.6 Proxy connection
	4.1.7 Dummy mode operation

	4.2 Mesh Manager callbacks
	4.2.1 BT State is Changed

	4.3 Network mode and proxy callbacks
	4.3.1 Proxy connection changes

	4.4 Provisioning methods
	4.4.1 Scan for unprovisioned devices
	4.4.2 Provision a device

	4.5 Provisioning callbacks
	4.5.1 Device provisioning updates
	4.5.2 New device found
	4.5.3 Error

	4.6 Configuration model methods
	4.6.1 Unprovision a device
	4.6.2 Key management
	4.6.3 Subscription and group management
	4.6.4 Publication
	4.6.5 Composition
	4.6.6 Relay
	4.6.7 GATTProxy
	4.6.8 Node Friend
	4.6.9 Node Identity
	4.6.10 Beacon
	4.6.11 TTL

	4.7 Configuration method callbacks
	4.8 Arguments used by configuration model methods and callbacks
	4.9 Generic model methods
	4.10 Generic model callbacks
	4.11 Arguments used by generic model methods and callbacks
	4.12 Vendor model methods
	4.12.1 Send command
	4.12.2 Read data
	4.12.3 Read version data

	4.13 Vendor model callbacks
	4.14 Lighting model method
	4.14.1 Lighting lightness
	4.14.2 Lighting CTL

	4.15 Lighting model method callback
	4.16 Arguments used by configuration model methods and callbacks
	4.17 Health model methods
	4.17.1 Get Faults
	4.17.2 Clear Faults
	4.17.3 Get Health Period
	4.17.4 Set Health Period
	4.17.5 Get Health Attention
	4.17.6 Set Health Attention
	4.17.7 Health Status
	4.17.8 Health Period Status
	4.17.9 Health Attention Status

	4.18 Heartbeat model methods
	4.18.1 Get Heartbeat Publication
	4.18.2 Set Heartbeat Publication
	4.18.3 Get Heartbeat Subscription
	4.18.4 Set Heartbeat Subscription
	4.18.5 Heartbeat Publication Status
	4.18.6 Heartbeat Subscription Status

	5 BlueNRG-Mesh iOS Library API: classes
	6 Notes for developers
	Revision history

