
June 2018 UM2354 Rev 2 1/30

1

UM2354
User manual

ST framework for connecting to Alexa Voice Service,
 software expansion for STM32Cube

Introduction

This user manual describes the content of the STM32Cube Expansion Package that
enables interfacing to the Alexa Voice Service (AVS) from an STM32 application.

The X-CUBE-VS4A Expansion Package for STM32Cube provides application examples
that connect STMicroelectronics boards to Amazon servers in order to ease implementation
of AVS-oriented products on STM32 devices.

The X-CUBE-VS4A Expansion Package consists of a set of libraries and application
examples for STM32F7 Series microcontrollers acting as Alexa-enabled devices.

X-CUBE-VS4A runs on the 32F769IDISCOVERY board. It features a ready-to-run firmware
example demonstrating the implementation of a simple smart speaker.

X-CUBE-VS4A offers the following features:

• Board configuration interface

• TCP/IP connectivity

• AVS-protocol encapsulation for the easy implementation of applications

• Application specific services

• STMicroelectronics framework for the Alexa Voice Service

• Creation of AVS-oriented STM32 applications

• Replaceable basic audio acquisition

• Example of a limited audio player

Note: X-CUBE-VS4A does not include software for audio front-end enhancement, neither does it
include the complete media player that is needed to be compatible with all different audio
services.

www.st.com

http://www.st.com

Contents UM2354

2/30 UM2354 Rev 2

Contents

1 General information . 6

2 Important note regarding the security . 7

3 Package description . 8

3.1 General description . 8

3.2 Architecture . 9

3.3 Folder structure .11

4 Integration in the application . 12

4.1 Configuration files . 12

4.2 Platform initialization . 12

4.3 STVS4A events . 14

4.4 STVS4A persistent objects . 15

4.5 Service implementation . 15

4.5.1 Simple service implementation . 16

4.5.2 Threaded service implementation . 16

4.5.3 Service with AVS directive/event implementation 16

4.5.4 Send simple AVS event . 16

4.5.5 AVS custom event stream . 17

4.5.6 Manage the synchronization event state . 18

4.6 JSON and JANSSON . 19

4.7 Debugging JSON . 22

5 Application example . 23

5.1 Application description . 23

5.2 Alexa Voice Service account . 23

5.3 Network setup and authentication . 23

5.4 Flash programming . 25

5.5 Using the application . 26

5.6 Endurance tests . 27

5.7 Getting the printf-like traces . 28

UM2354 Rev 2 3/30

UM2354 Contents

3

6 Revision history . 29

List of figures UM2354

4/30 UM2354 Rev 2

List of figures

Figure 1. X-CUBE-VS4A software architecture . 9
Figure 2. Project file structure . 11
Figure 3. STVS4A life cycle . 13
Figure 4. Alexa transport protocol . 17
Figure 5. Network connections . 24
Figure 6. ST-LINK Option Bytes . 25
Figure 7. Virtual COM port selection . 28
Figure 8. Virtual COM port configuration . 28

UM2354 Rev 2 5/30

UM2354 List of tables

5

List of tables

Table 1. List of terms and acronyms. 6
Table 2. Minimum code to start an AVS session . 13
Table 3. AVS application event handler . 14
Table 4. Persistent storage application service callbacks . 15
Table 5. Simple event sending to AVS . 17
Table 6. Functions allowing to create custom event or stream. 18
Table 7. Event creation pseudo-code . 18
Table 8. JANSSON string extraction . 19
Table 9. JSON event creation example . 20
Table 10. JSON event parsing . 21
Table 11. Document revision history . 29

General information UM2354

6/30 UM2354 Rev 2

1 General information

This user manual describes the X-CUBE-VS4A Expansion Package and STVS4A voice-
service middleware. It focuses on their use and neither explains the Alexa architecture, nor
the creation of an AVS account. Such descriptions are available on the Amazon and
developer websites at:

• https://alexa.amazon.com

• https://developer.amazon.com

The X-CUBE-VS4A Expansion Package runs on STM32 32-bit microcontrollers based on
the Arm®(a) Cortex®-M processor.

Table 1 presents the definition of terms and acronyms that are relevant for a better
understanding of this document.

.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of terms and acronyms

Term Definition

Alexa Amazon’s cloud-based voice service

API Application programming interface

AVS Alexa Voice Service

BSP Board support package

DHCP Dynamic host configuration protocol

EVT Event

HAL Hardware abstraction layer

IDE Integrated development environment

IP Internet protocol

JSON JavaScript object notation

STVS4A STMicroelectronics SDK for designing STM32 -based AVS devices

SDK Software development kit

UM2354 Rev 2 7/30

UM2354 Important note regarding the security

29

2 Important note regarding the security

Caution: Application developers must take care of security aspects, and put mechanisms in place to
protect the tokens and secrets used for the connection to AVS.

The application example provided in the X-CUBE-VS4A Expansion Package does not
implement such mechanisms. It only presents a basic implementation for an easy
understanding of the stack interface.

Package description UM2354

8/30 UM2354 Rev 2

3 Package description

This chapter details the content and use of the X-CUBE-VS4A Expansion Package.

3.1 General description

The X-CUBE-VS4A Expansion Package is based on STVS4A, which is a software
development kit supporting the design of STM32-based Alexa Voice Service devices.
STVS4A features the Service API for the connection to the AVS server and the negotiation
of authentication with the server. STVS4A also provides a support to receive directives and
send events to the server. In addition, STVS4A features a set of audio support including
microphone acquisition and audio playback. STVS4A support can be extended to word-
spotting recognition with the addition of an external component.

STVS4A supports Alexa Voice Service API version v20160207.

The following integrated development environments are supported:

• IAR Embedded Workbench® for Arm® (EWARM)

• Keil® Microcontroller Development Kit (MDK-ARM)

• System Workbench for STM32

Note: refer to the release note available in the delivery package root folder for information about
the IDE versions supported.

UM2354 Rev 2 9/30

UM2354 Package description

29

3.2 Architecture

Figure 1 outlines X-CUBE-VS4A software architecture.

Figure 1. X-CUBE-VS4A software architecture

Package description UM2354

10/30 UM2354 Rev 2

X-CUBE-VS4A is an Expansion Package for STM32Cube, which:

• Fully complies with STM32Cube architecture

• Expands STM32Cube for the development of AVS-enabled applications

• Relies on the STM32CubeHAL, which is the hardware abstraction layer for STM32
microcontrollers

The X-CUBE-VS4A Expansion Package and STVS4A middleware exhibit the following
features in addition to those presented in Section 3.1: General description:

• STVS4A offers an API for configuration, which is used mainly at initialization time.

• STVS4A offers an API for the customization of some services by the application such
as persistent memory access to load and store AVS tokens.

• STVS4A uses an event-driven architecture. After the initialization, STVS4A
communicates with the user application using mainly notifications. A notification is a
code number with one or several parameters. The parameter is an opaque variant
depending on the event. It can be interpreted as an integer, a structure pointer, a
handle, or any other meaning. The meaning of the parameter is documented in the
event documentation.

• The porting layer is used to customize STVS4A middleware for the application specific
environment. The customization ensures the interfacing with potentially different
MCUs, networks, and audio interfaces.

• The application and middleware components run in the FreeRTOS™ environment.

• HTTP/2 is the main communication protocol used to interact with an AVS server.
X-CUBE-VS4A provides a library to manage this protocol.

• LwIP is in charge of TCP/IP communication services. The encryption is provided by the
MbedTLS component.

• STM32Audio provides libraries for audio input and output, as well as MP3 decoding.

• The X-CUBE-VS4A Expansion Package is part of the STM32Cube ecosystem. It relies
on its BSP and HAL drivers.

UM2354 Rev 2 11/30

UM2354 Package description

29

3.3 Folder structure

Figure 2 presents the folder structure of the X-CUBE-VS4A Expansion Package.

Figure 2. Project file structure

Integration in the application UM2354

12/30 UM2354 Rev 2

4 Integration in the application

The sections in this chapter review the way to integrate the content of the X-CUBE-VS4A
Expansion Package in the user application.

4.1 Configuration files

STVS4A middleware relies on other components, such as HTTP/2, LwIP, mbedTLS, and
FreeRTOS™:

• HTTP/2 middleware relies on the three other components. It comes as a binary.

• The configuration files for LwIP, mbedTLS, and FreeRTOS™ that have been used
during the library generation are provided in the HTTP2_LWIP folder as references.

Caution: The user must not modify these configuration files in a way that changes the component
APIs.

4.2 Platform initialization

The application is responsible for the initialization of the platform together with all
dependencies. This covers for instance such components as:

• SystemClock

• GPIO

• MPU_Config

• HAL

• Flash

• Serial

In the demonstration application provided within the Expansion Package, the platform_init.c
code illustrates the basic initialization for a platform.

STVS4A has no dedicated activity related to board initialization. It assumes that some
mandatory modules are initialized. As soon as the platform is initialized, the STVS4A SDK
can be initialized as well. The application starts STVS4A initialization using
AVS_Create_Instance().

Figure 3 presents an overview of STVS4A life cycle.

UM2354 Rev 2 13/30

UM2354 Integration in the application

29

Figure 3. STVS4A life cycle

STVS4A initialization consists in filling the Instance Factory with the AVS account IDs and
creating a STVS4A instance.

Most of the parameters of the Instance Factory are mandatory only when customizing its
standard behavior. Only a few parameters are mandatory for a standard use case while all
other are filled with a default values at instance creation. Once these parameters are set,
STVS4A starts on the next osStartKernel().

Table 2 shows the minimum code to start STVS4A.

Caution: The Factory must be defined as a global and not as a constant so that it is always in RAM,
because STVS4A updates the Factory during the application life cycle. For instance, when
STVS4A receives an IP address, the application consequently receives a notification via the
callback and the factory is updated with a valid IP address.

Using the simple initialization presented in Table 2, Alexa is able to listen and speak as soon
as the STVS4A state is changed by means of the function AVS_Set_State(hInstance,
AVS_STATE_START_CAPTURE). However, a final product implies more interaction. The

Table 2. Minimum code to start an AVS session

platform_Init();

osInitKernel();

AVS_VERIFY(AVS_Init());

sInstanceFactory.clientId = MY_CLIENT_ID;

sInstanceFactory.clientSecret = MY_CLIENT_SECRET;

sInstanceFactory.productId = MY_PRODUCT_ID;

sInstanceFactory.eventCB = appEventHandler;

AVS_VERIFY(hInstance = AVS_Create_Instance(&sInstanceFactory));

osStartKernel();

Integration in the application UM2354

14/30 UM2354 Rev 2

application needs to manage events to support more complex use cases and be capable of
interacting fully with the server and local components.

4.3 STVS4A events

A STVS4A event (EVT) is a notification coming from the internal state machine or from the
Alexa server. In order to receive events, the application needs to set the eventCB field from
the AVS_Instance_Factory as shown in the code example in Table 3.

STVS4A notifies the application using an EVT via the eventCB. The EVT behavior depends
on the EVT context. The return value is important since, in some context, it drives the
engine response:

• The AVS_OK return value means that all is fine and STVS4A executes its normal
processing.

• The AVS_EVT_HANDLED return value means that the application caught the event and
that it is not mandatory for AVS to continue the parsing of events.

The following event-handling use case is provided as an example:

• When STVS4A receives a directive from Alexa, it first sends EVT_DIRECTIVE, the
parameter being the JSON handle. The application can parse the JSON and manage it
directly. STVS4A also parses the JSON and can emit a more detailed EVT concerning
this directive. For instance, if the JSON is an alarm event. STVS4A sends
EVT_DIRECTIVE_ALERT and the application is notified only for ALERT directives. If
the application catches EVT_DIRECTIVE and its handler returns AVS_EVT_HANDLED,
STVS4A stops the parsing and the EVT_DIRECTIVE_ALERT is never received.

EVTs are very sensitive. Since they are synchronous, it is not possible to block their
messages for a long period in the callback. All EVTs are dispatched directly from the
STVS4A core to the user application. If the application needs to process a heavy job within
an EVT, it must delegate the job to a task or create a FreeRTOS™ queue. Otherwise, the
STVS4A state management is corrupted, and the overall behavior is impacted.

Most EVTs are re-entrant, meaning that an EVT can be sent from within an EVT. Still, some
EVTs are not re-entrant to avoid that local resources used by the system or the event

Table 3. AVS application event handler

AVS_Result appEventHandler(AVS_Handle handle, uint32_t pCookie, AVS_Event_t evt,

 uint32_t pparam)

{

 return AVS_OK;

}

…

 static AVS_Instance_Factory sInstanceFactory;

 memset(&sInstanceFactory, 0, sizeof(sInstanceFactory));

 sInstanceFactory.clientId = MY_CLIENT_ID;

 sInstanceFactory.clientSecret = MY_CLIENT_SECRET;

 sInstanceFactory.eventCB = appEventHandler;

 AVS_VERIFY(hInstance = AVS_Create_Instance(&sInstanceFactory));

 osStartKernel();

UM2354 Rev 2 15/30

UM2354 Integration in the application

29

regenerate other EVTs making the application fall into a dead lock. The EVTs that are not re-
entrant start from EVT_NO_REENTRANT_START and finishes to EVT_NO_REENTRANT_END.

The STVS4A package provides several services that are given as examples showing EVT
management.

4.4 STVS4A persistent objects

The AVS architecture manages persistent objects in order to save a context that resists
reset. It is the case for tokens and TLS root certificates, which are objects that can be
updated during the STVS4A life cycle. After end-user authentication, tokens are obtained
from the AVS server and refreshed regularly. The root certificates are obtained from the
developer’s reference API web sites and can be revoked by Amazon at any time. STVS4A
provides a mechanism to store these objects through an application service. For example,
this avoids that the full authentication process is run after each reset. The application must
store the given information in Flash or in another persistent storage, using a secured
mechanism. A single callback is exposed in AVS_Factory for this purpose,
persistentCB.

The persistentCB callback manages the persistent storage for different objects. Among
the various objects, at least the tokens and the root certificates must be persistent. It is up to
the application to manage safely these informations. STVS4A calls persistentCB with the
AVS_PERSIST_SET parameter when the application has to store an object, and
AVS_PERSIST_GET or AVS_PERSIST_GET_POINTER when STVS4A wants to retrieve an
object. It is up to the application to manage these events in the appropriate way to serve the
API with the right objects. An object takes the form of an array and size to load or store.

In the demonstration provided within the package, the service service_persistent_storage.c
is the direct illustration of the management of persistent objects using the Flash. The
provided example stores in Flash in a non-secure way.

4.5 Service implementation

A service is an Alexa application. Typically, a service connects an AVS directive to a device,
and the device reports status to AVS using events. There are standard and custom
interfaces, which are described from Section 4.5.1 to Section 4.5.6.

Table 4. Persistent storage application service callbacks

platform_Init();

osInitKernel();

AVS_VERIFY(AVS_Init());

 sInstanceFactory.clientId = MY_CLIENT_ID;

 sInstanceFactory.clientSecret = MY_CLIENT_SECRET_ID;

 sInstanceFactory.productId = MY_CLIENT_PRODUCT_ID;

 sInstanceFactory.eventCB = appEventHandler;

 sInstanceFactory. persistentCB = appPersistCB;

AVS_VERIFY(hInstance = AVS_Create_Instance(&sInstanceFactory));

osStartKernel();

Integration in the application UM2354

16/30 UM2354 Rev 2

4.5.1 Simple service implementation

At least, a service needs to implement an event parser using the eventCB. The
implementation takes the form of a switch/case where all events you are interested in are
caught and processed. In the demo provided with the package, the service
service_serial_trace.c illustrates such simple interaction.

4.5.2 Threaded service implementation

If a services needs to process information or change the STVS4A state, the application
needs to create one or more FreeRTOS™ tasks. These task are able to query or change the
STVS4A state, process the information, and notify Alexa about the new status.

In the demonstration provided within the package, the service service_wakeup.c is the
direct illustration of a basic thread changing the STVS4A state. In this service, the task waits
for a a key or a button action to change the STVS4A state from IDLE to Capture and waits
for the end of the dialogue.

4.5.3 Service with AVS directive/event implementation

The complex use cases also need an interaction with Alexa in addition to the interaction with
STVS4A. Such cases are more sophisticated and require to listen to AVS directives and
notify the server about the service states.

Directives coming from AVS are notified using an EVT and the eventCB callback. A JSON
handle parameter is passed to the application. The parameter is a root (json_t *) that
can be parsed to extract the information of interest.

4.5.4 Send simple AVS event

Most of the time, Alexa expects a response after a directive. The response takes the form of
an AVS event. STVS4A exposes the function AVS_Send_JSon() for this purpose.
AVS_Send_JSon sends a simple event to Alexa using the Alexa transport protocol
presented in Figure 4.

UM2354 Rev 2 17/30

UM2354 Integration in the application

29

Figure 4. Alexa transport protocol

1. This illustration is copied from the AVS web site.

AVS_Send_JSon() sends a simple event. This means that the Multipart Message Pt2 is
omitted and the stream is closed immediately after the JSON body. Table 5 shows the
sending of a simple event to AVS.

4.5.5 AVS custom event stream

If the application needs to create a custom event or stream, STVS4A exposes for this
purpose a set of specific functions presented in Table 6.

Table 5. Simple event sending to AVS

const char *pJson = create_my_event();

 if(AVS_Send_JSon(handle,pJson) != AVS_OK)

 {

 AVS_TRACE_ERROR("Send Json Event");

 }

 free((void *)pJson);

Integration in the application UM2354

18/30 UM2354 Rev 2

The typical sequence to create a custom event takes the form of the pseudo-code
presented in Table 7.

4.5.6 Manage the synchronization event state

Some events or services require to send a synchronization status to Alexa. A
synchronization status is a reporting of all service contexts. STVS4A exposes a function
forcing the engine to post a status as soon as it is possible: AVS_Post_Sychro(). It is
possible that a synchronization status is requested at any time from the STVS4A core. The
synchronization status must reflect the exact context of all services.

Additionally, STVS4A exposes a mechanism to add a custom context to the synchronization
status. Before sending the synchronization status and after creating the JSON headers,
STVS4A sends the EVT_SEND_SYNCHRO_STATE message with the root (json_t *) as
parameter. Each service is notified and free to update the contex JSON array and add its
own events before the synchronization event is sent to Alexa by the STVS4A core.

Table 6. Functions allowing to create custom event or stream

void * AVS_Get_Http2_Instance(AVS_Handle hInstance);

AVS_HStream * AVS_Open_Stream(AVS_Handle hHandle);

AVS_Result AVS_Add_Body_Stream(AVS_Handle hInstance, AVS_HStream hStream,

 const char *pJson);

AVS_Result AVS_Read_Stream(AVS_Handle hInstance, AVS_HStream hStream,

 void *pBuffer, uint32_t szInSByte, uint32_t *retSize);

AVS_Result AVS_Write_Stream(AVS_Handle hInstance, AVS_HStream hStream,

 const void *pBuffer, size_t lengthInBytes);

AVS_Result AVS_Stop_Stream(AVS_Handle hInstance, AVS_HStream hStream);

AVS_Result AVS_Close_Stream_(AVS_Handle hInstance, AVS_HStream hStream);

AVS_Result AVS_Process_Json_Stream(AVS_Handle hInstance, AVS_HStream hStream);

const char_t * AVS_Get_Reponse_Type_Stream(AVS_Handle hInstance,

 AVS_HStream hStream);

Table 7. Event creation pseudo-code

/* main HTTP/2 instance */

void *hClient=AVS_Get_Http2_Instance(hInstance);

/* Create the stream & add HTTP2/2 header */

AVS_HStream *hStream = AVS_Open_Stream(hInstance,hClient);

/* Create the Multipart PL1 and send the message content */

AVS_Add_Body_Stream(hInstance,hStream,create_my_event());

/* Prepare multiPart-PL2 */

/* Customize push/pull payload */

AVS_Read_Stream(hInstance,hStream,...);

AVS_Write_Stream/Pull(hInstance,hStream,...);

....

/* End multiPart-PL2 */

AVS_Stop_Stream(hInstance,hStream);

UM2354 Rev 2 19/30

UM2354 Integration in the application

29

When an event must be sent to Alexa with function AVS_Send_JSon(), it is mandatory to
add the context state to each message. This is done through the use of function
AVS_Json_Add_Context() before the conversion of the (json_t *) to a string.

In the demonstration provided in the package, the service service_alarm.c shows an
example of EVT_SEND_SYNCHRO_STATE management.

4.6 JSON and JANSSON

The main job implementing a service is to parse and create AVS JSON events. For these
purposes, STVS4A uses the JANSSON Open Source API to manage JSON strings.

Information about the JANSSON API is available at http://www.digip.org/jansson/.

The API is simple to use and has a low footprint. STVS4A always gives a root handle
JANSSON when it sends directive events to the application. It is then easy to get a JSON
string from this handle as shown in Table 8.

Creating a JSON event is a common task in a service. It implies some mandatory piece of
code to create a syntonically perfect JSON string. The piece of code in table Table 9
illustrates such a creation.

Table 8. JANSSON string extraction

AVS_Result service_alarm_event_cb(AVS_Handle handle, uint32_t pCookie, AVS_Event_t
evt, uint32_t pparam)

{

If (evt==EVT_DIRECTIVE_ALERT)

 {

 // the json is the parameter

 json_t *root = (json_t *)pparam;

 const char *pJson = json_dumps(root, 0);

 AVS_TRACE_INFO(" %s ", pJson) ;

 }

…

}

Integration in the application UM2354

20/30 UM2354 Rev 2

Parsing a JSON event is also an easy task to perform, for instance when a directive is
received from Alexa. Such parsing is illustrated by the piece of code in Table 10.

Table 9. JSON event creation example

//{

//"event": {

// "header": {

// "namespace": "Alerts",

// "name": "SetAlertSucceeded",

// "messageId": "{{STRING}}"

// },

// "payload": {

// "token": "{{STRING}}"

// }

//}

// send an alarm event to AVS

static void service_alarm_event(AVS_Handle handle,const char *pToken, const char
*pName)

{

 uint32_t err=0;

 json_t *root = json_object();

 json_t *event = json_object();

 json_t *header = json_object();

 json_t *payload = json_object();

 static char_t msgid[32];

 sprintf(msgid, FORMAT_MESSAGE_ID, messageIdCounter++);

 err |= json_object_set_new(header, "namespace", json_string("Alerts"));

 err |= json_object_set_new(header, "name", json_string(pName));

 err |= json_object_set_new(header, "messageId", json_string(msgid));

 err |= json_object_set_new(payload, "token", json_string(pToken));

 // links

 err |= json_object_set_new(root, "event", event);

 err |= json_object_set_new(event, "header", header);

 err |= json_object_set_new(event, "payload", payload);

 /* Add the context state to the event */

 AVS_VERIFY(AVS_Json_Add_Context(handle, root));

 const char *pJson = json_dumps(root, 0);

 json_decref(root);

 if(AVS_Send_JSon(handle,pJson) != AVS_OK)

 {

 AVS_TRACE_ERROR("Send Json Event");

 }

 free((void *)pJson);

}

UM2354 Rev 2 21/30

UM2354 Integration in the application

29

Table 10. JSON event parsing

 //"directive": {

 // "header": {

 // "namespace": "Alerts",

 // "name": "SetAlert",

 // "messageId": "{{STRING}}",

 // "dialogRequestId": "{{STRING}}"

 // },

 // "payload": {

 // "token": "{{STRING}}",

 // "type": "{{STRING}}",

 // "scheduledTime": "{{STRING}}",

 // "assets": [

 // {

 // "assetId": "{{STRING}}",

 // "url": "{{STRING}}"

 // },

 // {

 // "assetId": "{{STRING}}",

 // "url": "{{STRING}}"

 // },

 //],

 // "assetPlayOrder": [{{LIST}}],

 // "backgroundAlertAsset": "{{STRING}}",

 // "loopCount": {{LONG}},

 // "loopPauseInMilliseconds": {{LONG}}

 // }

 //}

 // the directive EVT_DIRECTIVE_ALERT manages timer and alarms

 // we can overload this event to add and delete items

 case EVT_DIRECTIVE_ALERT:

 {

 // the json is the parameter

 json_t *root = (json_t *)pparam;

 // parse it to extract information

 json_t *directive = json_object_get(root, "directive");

 json_t *payload = json_object_get(directive,"payload");

 json_t *header = json_object_get(directive,"header");

 json_t *scheduledTime = json_object_get(payload,"scheduledTime");

 json_t *token = json_object_get(payload,"token");

 json_t *type = json_object_get(payload,"type");

 json_t *name = json_object_get(header,"name");

 const char_t *pToken = json_string_value(token);

 const char_t *pTime = json_string_value(scheduledTime);

 const char_t *pType = json_string_value(type);

…

Integration in the application UM2354

22/30 UM2354 Rev 2

4.7 Debugging JSON

STVS4A provides a mechanism to dump JSON events and directives. STVS4A can dump
JSON script on the serial console. By default, this option is disabled. It is enabled with the
following piece of code:

AVS_Set_Debug_Level(AVS_TRACE_LVL_DEFAULT |
AVS_TRACE_LVL_JSON |
AVS_TRACE_LVL_JSON_FORMATED);

There are two options to visualize the JSON scripts, which are always sent or received in
compact mode by Alexa:

• With AVS_TRACE_LVL_JSON, JSON script is shown exactly as it was sent or
received

• With the addition of AVS_TRACE_LVL_JSON_FORMATED, STVS4A formats the JSON
script so that it is readable

Note: Using AVS_TRACE_LVL_JSON_FORMATED takes time to print and format, and can be
intrusive if there are a too many traces at the same time.

UM2354 Rev 2 23/30

UM2354 Application example

29

5 Application example

This chapter describes the smart-speaker-like application.

Note: The application does not implement the full set of features of the smart speaker.

5.1 Application description

The user can talk to Amazon’s Alexa with this application.

He can ask Alexa to sing a song, hear the news, check the weather forecasts, control smart
home devices, and more.

5.2 Alexa Voice Service account

Two kinds of account may be used:

• A developer needs an Amazon account to create his device on the Alexa server. Refer
to https://developer.amazon.com for details.
The application example is provided with device identifiers and secrets as examples.

• The end-user of the application uses an Amazon account to login (refer to Section 5.3:
Network setup and authentication), and use the application.

Note: During the development phase, both the developer and the end-user accounts may be the
same.

5.3 Network setup and authentication

In order to run the application, the board must be plug to a router that has direct access to
the Internet, without proxy.

The router must be configured as DHCP server. The application needs one DHCP server
available for setting its IP address.

A PC or a smartphone is used for the authentication phase. Figure 5 shows the network and
authentication environment.

Application example UM2354

24/30 UM2354 Rev 2

Figure 5. Network connections

The sequence for the authentication phase is:

1. From the PC or smartphone, connect to the STM32 board internal web server

– http://xxx.xxx.xxx.xxx where xxx.xxx.xxx.xxx is the board IP address. The board IP
address is displayed on the user interface after the initialization phase

2. When the navigator is redirected to the Amazon login page, submit valid Amazon
credentials

3. Then, the navigator tries to load content from a long URL starting with
http://stvs4a/grant_me?code=. Replace the stvs4a string in the URL by the IP address
of the board and send the request

4. After connection, the browser shows a successful message informing that it has got a
token, and displays the first characters of the token

5. At this point, the board stores the information needed to connect to AVS server, even
after next reset. This information is not the Amazon credentials

Caution: Security aspects are not supported in that example that is assumed to be run in a trusted
environment. For a final product, the user must develop and put in place security
mechanisms that are aligned with the product environment.

UM2354 Rev 2 25/30

UM2354 Application example

29

5.4 Flash programming

The application uses the Flash as DUAL BANK. This mode is configured through an option
byte as follows:

1. Run the ST-LINK tool

2. Connect to the board using the Target menu

3. Display the Option Bytes window using the Target menu

4. Uncheck nDBANK and apply the change if needed

Figure 6 shows the Option Bytes window of ST-LINK and the location of the nDBANK check
box.

Figure 6. ST-LINK Option Bytes

Application example UM2354

26/30 UM2354 Rev 2

The application embeds an endurance test suite. These tests need some data that are
stored in the Flash. In most build configurations, the data are stored in the external QSPI
flash. In such a case, the debugger does not program it and the executable file needs to be
programmed through ST-LINK by means of the following sequence of operations:

1. Erase chip command in the Target menu

2. Open File command in the File menu

3. Program & Verify command in the Target menu

Note: If the test assets have not been programmed, the ‘Test start’ button does not work while
other feature do.

5.5 Using the application

When the application is initialized, it is possible to interact with Alexa with questions like:

• “When was Harry Potter published?”

• “What time is it in Tokyo?”

• “How old is Chuck Norris?”

It is also possible to exercise alarm and timer skill with such requests as:

• "Set an alarm for 7:00 AM!"

• “Cancel alarm”

• “Set a timer in two minutes”

• ”Set an alarm”

When the request does not contain all needed details to set the alarm, Alexa asks for
details.

The volume of the board audio output can be controlled as well as in the following
examples:

• "Volume up"

• "Volume down"

• "Set volume to 3"

Unlike a real product, which is generally designed for a precise usage, the application
example supports both button-based modes TAP TO TALK and PUSH TO TALK. The PUSH
TO TALK mode is also known as PRESS AND HOLD. The mode can be selected on the
touchscreen user interface.

The blue push button is used for interactions:

• In TAP TO TALK mode, tap-and-ask triggers instant Alexa’s response

• In PRESS AND HOLD mode, press-and-ask triggers instant Alexa’s response

• A very short tap on the button is used to stop the alarm buzzer

UM2354 Rev 2 27/30

UM2354 Application example

29

The touchscreen displays a two-page user interface.

Both user interface pages display:

• A heart that beats when the application is running

• Version information

• An initiator mode button

– By default the mode is TAP TO TALK

– Pressing this button switches to PUSH TO TALK (PRESS AND HOLD)

– Since the wake-up word detection is not integrated in the application, VOICE
INITIATED works as TAP TO TALK

• The IP address of the board

• The internal state (Idle when ready to run)

• The date

• The user interface page number to switch between both pages

Additionally, the first user interface page displays the following informations:

• The alarm status displays when an alarm has been set through a vocal command

• The audio player status displays information during music playback

The second user interface page displays the following additional informations and buttons
with respect to the common set:

• Endurance test status

Note: timeouts may happen when the expected answer is not provided fast enough.

• Test start button: launches the embedded endurance test suite (data must have been
flashed)

• Set link up/down button: simulates the Ethernet link loss

• Network Sim Off button: removes the network loss simulation from endurance tests

Note: The second user interface page does not exist in some build configuration.

5.6 Endurance tests

The application comes with an endurance test harness, which is implemented as a service.

The endurance tests can be launched by means of a button on the touchscreen, from the
second page of the user interface. When the start tests button is pushed, a list of predefined
tests are executed. The sequence is managed in the source file service_endurance_test.c.

The endurance tests rely on assets stored in Flash memory. Refer to Section 5.4 for details
about Flash programming.

During endurance tests, vocal commands are pushed from audio files (refer to file
service_assets.c) into the input pipe, instead of being obtained through microphone capture
via the BSP.

Network disconnections are also simulated during endurance tests, leading to the display of
error notifications and network re-initialization when the specific test is run.

Note: The test engine loops until the stop test button is pushed.

Application example UM2354

28/30 UM2354 Rev 2

5.7 Getting the printf-like traces

When the board is connected to a PC, a Virtual COM port is created on the PC, which
simulates a serial port.

The STVS4A stack embeds printf-like macros to send debugging information to the
connected PC. To get those traces on the PC, the serial port must be configured with:

• COM port number

• 921600 baud rate

• 8-bit data

• Parity none

• 1 stop bit

• No flow control

The setting of the Virtual COM port for printf-like tracing is illustrated in Figure 7 and
Figure 8.

Figure 7. Virtual COM port selection

Figure 8. Virtual COM port configuration

UM2354 Rev 2 29/30

UM2354 Revision history

29

6 Revision history

Table 11. Document revision history

Date Revision Changes

 20-Mar-2018 1 Initial release.

5-Jun-2018 2

Updated Section 5.4: Flash programming. Updated
STM32Cube Expansion Package reference to X-CUBE-
VS4A. Updated voice-service middleware name to
STVS4A.

UM2354

30/30 UM2354 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 General information
	Table 1. List of terms and acronyms

	2 Important note regarding the security
	3 Package description
	3.1 General description
	3.2 Architecture
	Figure 1. X-CUBE-VS4A software architecture

	3.3 Folder structure
	Figure 2. Project file structure

	4 Integration in the application
	4.1 Configuration files
	4.2 Platform initialization
	Figure 3. STVS4A life cycle
	Table 2. Minimum code to start an AVS session

	4.3 STVS4A events
	Table 3. AVS application event handler

	4.4 STVS4A persistent objects
	Table 4. Persistent storage application service callbacks

	4.5 Service implementation
	4.5.1 Simple service implementation
	4.5.2 Threaded service implementation
	4.5.3 Service with AVS directive/event implementation
	4.5.4 Send simple AVS event
	Figure 4. Alexa transport protocol
	Table 5. Simple event sending to AVS

	4.5.5 AVS custom event stream
	Table 6. Functions allowing to create custom event or stream
	Table 7. Event creation pseudo-code

	4.5.6 Manage the synchronization event state

	4.6 JSON and JANSSON
	Table 8. JANSSON string extraction
	Table 9. JSON event creation example
	Table 10. JSON event parsing

	4.7 Debugging JSON

	5 Application example
	5.1 Application description
	5.2 Alexa Voice Service account
	5.3 Network setup and authentication
	Figure 5. Network connections

	5.4 Flash programming
	Figure 6. ST-LINK Option Bytes

	5.5 Using the application
	5.6 Endurance tests
	5.7 Getting the printf-like traces
	Figure 7. Virtual COM port selection
	Figure 8. Virtual COM port configuration

	6 Revision history
	Table 11. Document revision history

