

## UM2191 User manual

# STM32 Nucleo pack for USB Type-C<sup>™</sup> and Power Delivery with the Nucleo-F072RB board and the STUSB1602

## Introduction

The USB Type-C<sup>™</sup> and Power Delivery Nucleo pack P-NUCLEO-USB002 includes:

- the NUCLEO-F072RB board
- the P-NUCLEO-USB002 expansion board based on the certified STUSB1602 USB Type-C port controller with PD PHY and BMC driver
- a full-featured Type-C cable

These components, together with the X-CUBE-USB-PD certified STM32F0 USB Type-C PD middleware stack, form a platform for demonstrating USB Type-C and USB Power Delivery (USB PD) capabilities and facilitating solution development.

The new USB PD protocol expands USB functionality by providing up to 100 W power over the same cable used for data communication. Devices supporting the protocol are able to negotiate voltage and current over the USB power pins and define their roles as Provider or Consumer accordingly.

Once the platform is configured, the embedded demonstration firmware can signal cable status (attached or detached) and orientation information, as well as the role of each of the two ports.



Figure 1: P-NUCLEO-USB002 kit

| Cor  | ntents   |                   |                                                                                |         |
|------|----------|-------------------|--------------------------------------------------------------------------------|---------|
| 1    | USB Typ  | e-C and           | Power Delivery                                                                 | 6       |
|      | 1.1      |                   | -<br>                                                                          |         |
|      | 1.2      | Main cha          | racteristics                                                                   | 6       |
|      | 1.3      | USB Typ           | e-C™ pin map                                                                   | 7       |
|      | 1.4      | Port conf         | igurations                                                                     | 9       |
|      |          | 1.4.1             | Downstream Facing Port (DFP)                                                   |         |
|      |          | 1.4.2             | Upstream Facing Port (UFP)                                                     | 9       |
|      |          | 1.4.3             | Source or provider                                                             | 9       |
|      |          | 1.4.4             | Sink or consumer                                                               | 9       |
|      |          | 1.4.5             | Dual Role Power (DRP)                                                          | 9       |
|      | 1.5      | USB-C P           | D architecture                                                                 | 9       |
|      |          | 1.5.1             | Device Policy Manager (DPM)                                                    | 10      |
|      |          | 1.5.2             | Policy Engine (PE)                                                             | 10      |
|      |          | 1.5.3             | Protocol Layer (PRL)                                                           | 10      |
|      |          | 1.5.4             | Physical layer (PHY)                                                           | 10      |
|      | 1.6      | CC pins:          | port termination characteristics                                               | 11      |
|      | 1.7      | Power op          | tions                                                                          | 11      |
|      | 1.8      | Cable att         | achment and detachment detection and orientation.                              |         |
|      | 1.9      | Power ne          | gotiation                                                                      |         |
|      | 1.10     | Full-featu        | red Type-C™ cable and V <sub>CONN</sub> supply                                 | 14      |
|      | 1.11     | Alternate         | modes and billboard device class                                               | 15      |
| 2    | System a | architect         | ure                                                                            | 17      |
|      | 2.1      | System b          | lock scheme                                                                    |         |
|      | 2.2      | NUCLEO            | -F072RB STM32 Nucleo board                                                     |         |
|      | 2.3      | P-NUCLE           | EO-USB002 expansion board                                                      | 21      |
|      |          | 2.3.1<br>voltage  | P-NUCLEO-USB002 expansion board: USB Type-C connect<br>and current sense stage |         |
|      |          | 2.3.2<br>controll | P-NUCLEO-USB002 expansion board: STUSB1602 USB Ty<br>er 26                     | ype-C   |
|      |          | 2.3.3             | P-NUCLEO-USB002 expansion board: VCONN switch                                  |         |
|      |          | 2.3.4             | P-NUCLEO-USB002 expansion board: VBUS management                               | 30      |
|      |          | 2.3.5<br>stage    | P-NUCLEO-USB002 expansion board: local power manage 31                         | ment    |
|      |          | 2.3.6             | P-NUCLEO-USB002 expansion board: STSAFE secure dev                             | vice 32 |
|      |          | 2.3.7             | P-NUCLEO-USB002 expansion board: USB2.0                                        |         |
|      |          | 2.3.8             | P-NUCLEO-USB002 expansion board: ESD protections                               |         |
| 2/55 |          |                   | DocID030479 Rev 2                                                              | 57      |

#### Contents

|   |           | 2.3.9       | P-NUCLEO-USB002 expansion board: connectors        | 35 |
|---|-----------|-------------|----------------------------------------------------|----|
|   |           | 2.3.10      | P-NUCLEO-USB002 expansion board: test points       | 37 |
|   |           | 2.3.11      | P-NUCLEO-USB002 expansion board: jumpers           | 38 |
|   |           | 2.3.12      | P-NUCLEO-USB002 expansion board: user LEDs         | 38 |
|   | 2.4       | Full-featu  | red Type-C cable                                   | 38 |
| 3 | System    | setup       |                                                    | 39 |
|   | 3.1       | Source p    | ower role configuration                            | 39 |
|   |           | 3.1.1       | Using the NUCLEO-F072 on-board voltage regulator   | 39 |
|   |           | 3.1.2       | Using an external power supply                     | 39 |
|   | 3.2       | Sink pow    | er role configuration                              | 40 |
|   |           | 3.2.1       | Using the NUCLEO-F072RB on-board voltage regulator | 40 |
|   |           | 3.2.2       | Using an external provider                         | 40 |
|   | 3.3       | Dual Role   | e Power configuration                              | 41 |
|   |           | 3.3.1       | Using the NUCLEO-F072RB on-board voltage regulator | 41 |
|   |           | 3.3.2       | Using an external power supply                     | 41 |
| 4 | Orderin   | g informa   | tion                                               | 42 |
| 5 | Electric  | al schema   | atics                                              | 43 |
| 6 | Bill of m | naterials   |                                                    | 48 |
| 7 |           |             | breviations                                        |    |
| - | -         |             |                                                    |    |
| 8 | Referen   | ces         |                                                    | 53 |
| 9 | Revisio   | n history . |                                                    | 54 |



## List of tables

| Table 1: USB Type-C pinout description                                   | 8  |
|--------------------------------------------------------------------------|----|
| Table 2: Source CC termination (Rp) requirements                         |    |
| Table 3: Sink CC termination (Rd) requirements                           |    |
| Table 4: Power options                                                   | 12 |
| Table 5: NUCLEO-F072RB solder bridges and resistors to be modified       | 20 |
| Table 6: P-NUCLEO-USB002 expansion board VCONN settings                  | 28 |
| Table 7: P-NUCLEO-USB002 expansion board JP100 and JP101 settings        | 33 |
| Table 8: P-NUCLEO-USB002 expansion board serial communication connection | 36 |
| Table 9: P-NUCLEO-USB002 expansion board test points                     | 37 |
| Table 10: P-NUCLEO-USB002 expansion board jumpers                        | 38 |
| Table 11: P-NUCLEO-USB002 expansion board LED signaling                  | 38 |
| Table 12: List of acronyms                                               |    |
| Table 13: Document revision history                                      | 54 |



## List of figures

| Figure 1: P-NUCLEO-USB002 kit                                                                                                  | 1   |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2: USB plug form factors                                                                                                |     |
| Figure 3: USB Type-C plug pinout                                                                                               | 7   |
| Figure 4: USB Type-C receptacle pinout                                                                                         | 8   |
| Figure 5: USB power delivery architecture                                                                                      | 10  |
| Figure 6: Pull up/down CC detection                                                                                            | 12  |
| Figure 7: Message flow during power negotiation                                                                                | 14  |
| Figure 8: Pins available for reconfiguration on the plug of the full-featured cable                                            | 15  |
| Figure 9: Pins available for reconfiguration on the receptacle for direct connect applications                                 | 15  |
| Figure 10: The two boards composing the P-NUCLEO-USB002 kit                                                                    |     |
| Figure 11: Block scheme of the complete architecture                                                                           |     |
| Figure 12: STM32 Nucleo development board                                                                                      |     |
| Figure 13: STM32 Nucleo board top and bottom view                                                                              |     |
| Figure 14: P-NUCLEO-USB002 expansion board                                                                                     |     |
| Figure 15: P-NUCLEO-USB002 expansion board functional blocks                                                                   | 22  |
| Figure 16: P-NUCLEO-USB002 expansion board connectors and jumpers                                                              |     |
| Figure 17: P-NUCLEO-USB002 expansion board silkscreen                                                                          |     |
| Figure 18: P-NUCLEO-USB002 expansion board USB Type-C receptacle and current sensing (port 0)                                  |     |
| schematic view                                                                                                                 |     |
| Figure 19: P-NUCLEO-USB002 expansion board USB Type-C receptacle and Current sensing (port 1)                                  |     |
| schematic view                                                                                                                 |     |
| Figure 20: P-NUCLEO-USB002 expansion board Port 0 Current sensing stage schematic view                                         |     |
| Figure 21: P-NUCLEO-USB002 expansion board Port 1 Current sensing stage schematic view                                         |     |
| Figure 22: STUSB1602 front end for Port 0                                                                                      |     |
| Figure 23: P-NUCLEO-USB002 expansion board: JP000 and JP001 jumper settings to provide VCON                                    |     |
|                                                                                                                                |     |
| through the local voltage regulator<br>Figure 24: P-NUCLEO-USB002 expansion board Port 0 schematic view of the VBUS management | 29  |
|                                                                                                                                | 20  |
| mechanism<br>Figure 25: P-NUCLEO-USB002 expansion board Port 1 schematic view of the VBUS management                           | 30  |
|                                                                                                                                | 20  |
|                                                                                                                                | 30  |
| Figure 26: P-NUCLEO-USB002 expansion board: schematic view of the load switches of the local                                   | 24  |
| power management                                                                                                               | -   |
| Figure 27: P-NUCLEO-USB002 expansion board: schematic view of the local DC-DC converter                                        |     |
| Figure 28: P-NUCLEO-USB002 expansion board: STSAFE-A100 schematic view                                                         | 32  |
| Figure 29: P-NUCLEO-USB002 expansion board: JP100 and JP101 connectors for USB 2.0                                             | ~ 4 |
|                                                                                                                                |     |
| Figure 30: P-NUCLEO-USB002: CN13 and C14 connector pinout                                                                      |     |
| Figure 31: P-NUCLEO-USB002: CN4 connector                                                                                      |     |
| Figure 32: P-NUCLEO-USB002 expansion board CN2_1 and CN3_TX pin indications                                                    | 37  |
| Figure 33: P-NUCLEO-USB002 mounting orientation                                                                                |     |
| Figure 34: P-NUCLEO-USB002 expansion board circuit schematic - global view                                                     |     |
| Figure 35: P-NUCLEO-USB002 expansion board circuit schematic - MCU interface                                                   |     |
| Figure 36: P-NUCLEO-USB002 expansion board circuit schematic - STUSB1602 front end Port0                                       |     |
| Figure 37: P-NUCLEO-USB002 expansion board circuit schematic - STUSB1602 front end Port1                                       |     |
| Figure 38: P-NUCLEO-USB002 expansion board circuit schematic - local power                                                     |     |
| Figure 39: P-NUCLEO-USB002 expansion board circuit schematic - local voltage supply                                            |     |
| Figure 40: P-NUCLEO-USB002 expansion board circuit schematic - Type-C Connector 0                                              |     |
| Figure 41: P-NUCLEO-USB002 expansion board circuit schematic - Type-C Connector 1                                              |     |
| Figure 42: P-NUCLEO-USB002 expansion board circuit schematic - Current Sensing C0                                              |     |
| Figure 43: P-NUCLEO-USB002 expansion board circuit schematic - Current Sensing C1                                              |     |
| Figure 44: P-NUCLEO-USB002 expansion board circuit schematic - security                                                        | 47  |



## 1 USB Type-C and Power Delivery

### 1.1 Overview

The USB Type-C<sup>™</sup> and Power Delivery technologies simplify development and enhance user experience; the new reversible USB Type-C connector insertion is more intelligent and user friendly.

These technologies offer a smart connector able to carry all the necessary data (including video) as well as negotiate up to 100 W supply or charge connected equipment according to the Power Delivery protocol.

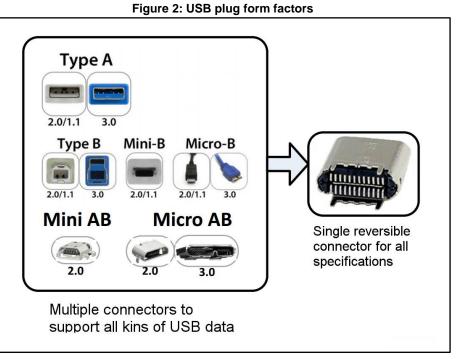
Less cables, less connectors and universal chargers are among the final objectives.

The USB Type-C connector supports up to 15 W (5 V at 3 A), which rises to 100 W (up to 20 V at 5 A) adopting the USB Power Delivery feature.

## 1.2 Main characteristics

The USB Implementer Forum (USB-IF) introduces these complementary specifications:

- 1. the USB Type-C<sup>™</sup> receptacle, plug and cable specification rev. 1.2
- 2. the USB Power Delivery (PD) specification rev. 2.0 that allows two PD compliant entities to exchange up to 100 W during their negotiations.


Any system embedding a USB Type-C receptacle or plug which is designed to implement a USB Power Delivery application such as a single port device, a multi-port hub or a simple cable is based on these specifications.

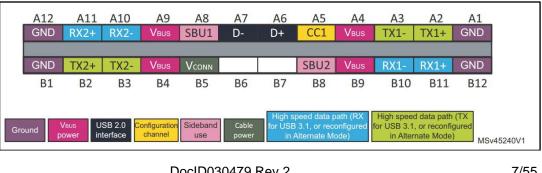
The connector is intended for a wide range of charging applications like computers, displays and mobile phones, with all the advanced features of PD:

- power role negotiation
- power sourcing and consumption level negotiation
- electronically marked cable identification
- vendor-specific message exchange
- alternate-mode negotiation, allowing different communication protocols to be routed onto the reconfigurable pins of the USB Type-C connectors.

The cables use the same male connector on both ends.






The new USB Type-C covers all the features provided by the previous generation USB plugs in a single connector, rendering USB usage easier and more flexible. It supports all protocols from USB2.0 onward, including power capability.

The USB Type-C connection allows ports to operate in host-mode only, device-mode only or dual-role. Both data and power roles can be independently and dynamically swapped using the USB PD protocol.

#### 1.3 USB Type-C<sup>™</sup> pin map

USB Type-C<sup>™</sup> plugs and receptacles are 24-pin connectors with two groups of pin connections arranged so as to ensure pinout reversibility for any connection.

- The symmetrical connections: are
  - eight power pins: V<sub>BUS</sub>/GND
  - USB2.0 differential pairs (D+/D-)
- The asymmetrical connections are:
  - two sets of Tx/Rx signal paths supporting USB3.1 data rates \_
    - two configuration channels (CC lines) for the discovery, configuration and management of USB Type-C power delivery features
  - two sideband use (SBU lines) signals for analog audio modes; may be used by alternate mode.



#### Figure 3: USB Type-C plug pinout



#### DocID030479 Rev 2

7/55

| Figure 4: USB Type-C receptacle pinout |           |            |                      |            |                     |                 |          |                                              |            |             |                                             |            |          |
|----------------------------------------|-----------|------------|----------------------|------------|---------------------|-----------------|----------|----------------------------------------------|------------|-------------|---------------------------------------------|------------|----------|
|                                        | A1<br>GND | A2<br>TX1+ | A3<br>TX1-           | A4<br>VBUS | A5<br>CC1           | A6<br>D+        | A7<br>D- | A8<br>SBU1                                   | A9<br>Veus | A10<br>RX2- | A12<br>RX2+                                 | A12<br>GND |          |
|                                        | GND       | RX1+       | RX1-                 | VBUS       | SBU2                | D-              | D+       | CC2                                          | VBUS       | TX2-        | TX2+                                        | GND        |          |
|                                        | B12       | B11        | B10                  | <b>B</b> 9 | B8                  | B7              | B6       | B5                                           | B4         | B3          | B2                                          | B1         |          |
| Gro                                    | ound      | BUS power  | USB 2.0<br>interface |            | guration S<br>annel | Sideband<br>use | for USB  | eed data pa<br>3.1, or recor<br>iternate Moc | nfigured   | for USB 3.1 | ed data path<br>1, or reconfi<br>rnate Mode | gured      | /45239V1 |

| Pin | Receptacle<br>signal     | Plug<br>signal   | Description                                                              | Comment                                               |  |  |
|-----|--------------------------|------------------|--------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| A1  | GND                      | GND              | Ground return                                                            | Can be up to 5 A split into four pins                 |  |  |
| A2  | TX1+                     | TX1+             | USB3.1 data lines or Alternate                                           | 10-Gbyte TX differential                              |  |  |
| A3  | TX1-                     | TX1-             | CODS. I data lines of Alternate                                          | pair in USB 3.1                                       |  |  |
| A4  | VBUS                     | VBUS             | Bus power                                                                | Max power is 100 W (20 V at 5 A) split into four pins |  |  |
| A5  | CC1 or $V_{\text{CONN}}$ | СС               | Configuration channel or power for active or electronically marked cable | In VCONN configuration,<br>max. power is 1 W          |  |  |
| A6  | D+                       | D+               | USB2.0 datalines                                                         | -                                                     |  |  |
| A7  | D-                       | D-               | USD2.0 dataimes                                                          | -                                                     |  |  |
| A8  | SBU1                     | SBU1             | Sideband Use (SBU)                                                       | Alternate mode only                                   |  |  |
| A9  | VBUS                     | V <sub>BUS</sub> | Bus power                                                                | Max power is 100 W split into four pins               |  |  |
| A10 | RX2-                     | RX2-             | USB3.1 datalines or Alternate                                            | 10-Gbyte RX differential                              |  |  |
| A11 | RX2+                     | RX2+             | USDS. I Galdines of Alternate                                            | pair in USB 3.1                                       |  |  |
| A12 | GND                      | GND              | Ground return                                                            | Can be up to 5 A split into four pins                 |  |  |
| B1  | GND                      | GND              | Ground return                                                            | Can be up to 5 A split into four pins                 |  |  |
| B2  | TX2+                     | TX2+             | USB3.1 datalines or Alternate                                            | 10-Gbyte RX differential                              |  |  |
| B3  | TX2-                     | TX2-             | 0305.1 Galannes of Alternate                                             | pair in USB 3.1                                       |  |  |
| B4  | V <sub>BUS</sub>         | V <sub>BUS</sub> | Bus power                                                                | Max power is 100 W split into four pins               |  |  |
| B5  | CC2 or $V_{\text{CONN}}$ | Vconn            | Configuration channel or power for active or electronically marked cable | In V <sub>CONN</sub> configuration, max. power is 1 W |  |  |
| B6  | D+                       | -                | LISP2 0 datalinaa                                                        | -                                                     |  |  |
| B7  | D-                       | -                | USB2.0 datalines                                                         | -                                                     |  |  |
| B8  | SBU2                     | SBU2             | Sideband Use (SBU)                                                       | Alternate mode only                                   |  |  |
| B9  | VBUS                     | V <sub>BUS</sub> | Bus power                                                                | Max power is 100 W split into four pins               |  |  |

#### Table 1: USB Type-C pinout description

DocID030479 Rev 2



| Pin | Receptacle<br>signal | Plug<br>signal | Description                   | Comment                               |
|-----|----------------------|----------------|-------------------------------|---------------------------------------|
| B10 | RX1-                 | RX1-           | USB3.1 datalines or Alternate | 10-Gbyte RX differential              |
| B11 | RX1+                 | RX1+           | 0505.1 datalines of Alternate | pair in USB 3.1                       |
| B12 | GND                  | GND            | Ground return                 | Can be up to 5 A split into four pins |

## **1.4 Port configurations**

As stated in the USB Type-C<sup>™</sup> and USB Power Delivery specifications, a data role (host or device) and a power role (source, sink or DRP) can be assigned to each port. Both data and power roles can be independently and dynamically swapped according to rules and procedures established by the specifications.

### 1.4.1 Downstream Facing Port (DFP)

The downstream facing port is associated with the flow of data in a USB connection. It is usually the port on a host or hub which devices connect to.

In its initial state, the DFP must be able to supply  $V_{\text{BUS}}$  and  $V_{\text{CONN}}$  and support data.

#### 1.4.2 Upstream Facing Port (UFP)

The upstream facing port is associated with the data flow in a USB connection. It represents the port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, UFP sinks  $V_{\text{BUS}}$  and supports data (e.g., display).

#### 1.4.3 Source or provider

This port must source power over  $V_{BUS}$  (5 V to 20 V and up to 5 A), and most commonly belongs to a host or hub DFP. A provider must assert an Rp resistor (pull-up resistor, See *Figure 5: "USB power delivery architecture"*) on CC pins (configuration channel pins, see *Section 1.6: "CC pins: port termination characteristics"*).

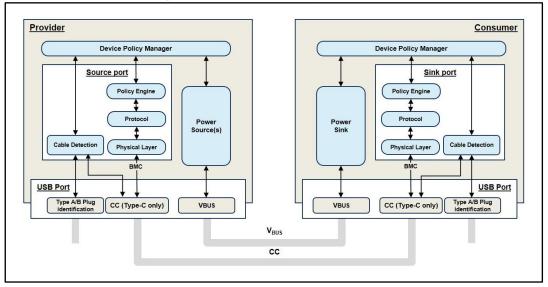
#### 1.4.4 Sink or consumer

This port is able to sink power over  $V_{BUS}$ , making use of power (from 5 V to 20 V and up to 5 A), most commonly embedded on a device or UFP. A Consumer must assert an Rd resistor (pull-down resistor: see *Figure 5: "USB power delivery architecture"*) on CC pins.

#### 1.4.5 Dual Role Power (DRP)

A dual role power USB port can operate as a source or a sink. The initial role of the port may be fixed or may alternate between the two port states.

Initially, when operating as a source, the port also assumes the role of DFP; when operating as a sink, the port takes the role of UFP.


The port role may be changed dynamically to reverse power.

## 1.5 USB-C PD architecture

The USB Power Delivery specification defines the stack architecture with all its layers managing a PD device.



Figure 5: USB power delivery architecture



As per the USB Power Delivery protocol, a USB DFP is initially a Source and a USB UFP is initially a Sink. When these two entities are connected between them, they start to communicate by means of the configuration channel (CC), while the Source supplies the Sink through the V<sub>BUS</sub> path. Although USB-PD enables the Source/Sink and the DFP/UFP, the roles may be swapped every time the application requests it.

### 1.5.1 Device Policy Manager (DPM)

The device policy manager deals with the USB Power Delivery resources used by one or more ports on the basis of the local device policy. It interacts with the policy engines and cable detection entities of the device to implement the local policies for each port.

## 1.5.2 Policy Engine (PE)

The policy engine interacts directly with the DPM to determine which local policy to apply. Its role is to drive the message sequences according to the sent message and its expected response.

It allows power negotiation by establishing an explicit contract for power exchange. The acceptance or the refusal of a request depends on the response of the DPM with respect to a specific power profile.

The PE also handles the flow of vendor defined messages, allowing the discovery, entry and exit of modes supported by the provider and consumer sides.

## 1.5.3 Protocol Layer (PRL)

The protocol layer drives message construction, transmission, reception and acknowledgment. It allows the monitoring of message flows and the detection of communication errors.

## 1.5.4 Physical layer (PHY)

10/55

The physical layer is responsible for sending and receiving messages across the CC wire. It consists of a transceiver that superimposes a BMC signal on the wire. It is responsible for managing data over the wire, avoiding collisions and detecting errors in the messages using a Cyclic Redundancy Check (CRC).



## **1.6 CC** pins: port termination characteristics

The configuration channel (CC) pins are used in the discovery, configuration and management of connection across a USB Type-C<sup>™</sup> cable, as well as a communication channel for the PHY layer of the USB Power Delivery.

There are two CC pins in each receptacle, but only one is connected through the cable to establish communication. The other pin can be re-assigned as the  $V_{CONN}$  pin for powering electronics in the USB Type-C<sup>TM</sup> plug of electronically-marked cables.

Specific Rd and Rp resistor values connected to CC pins allow single role or dual role system configuration. The attachment and orientation detection operations are carried out through CC lines through these resistors:

- a source must assert Rp pull-up resistors on both CC1 and CC2
- a sink must assert Rd pull-down resistors on both CC pins
- a dual role power (DRP) is equipped with both Rp pull-up resistors and Rd pull-down resistors on its CC pins and is able to dynamically assert the appropriate resistors when the role is fixed by the application according to the operated power role.
- A full-featured USB Type-C cable must assert Ra pull-down resistors on the VCONN pin.

The following table provides the values to be used for Rp or current source.

| Source<br>Current Capability | Current Source<br>to 1.7 V - 5.5 V | Rp pull-up<br>to 3.3 V ±5% | Rp pull-up<br>to 4.75 V - 5.5 V |
|------------------------------|------------------------------------|----------------------------|---------------------------------|
| Default USB power            | 80 μA ±20%                         | 36 kΩ ±20%                 | 56 kΩ ±20%                      |
| 1.5 A at 5 V                 | 180 μA ±8%                         | 12 kΩ ±5%                  | 22 kΩ ±5%                       |
| 3.0 A at 5 V                 | 330 µA ±8%                         | 4.7 kΩ ±5%                 | 10 kΩ ±5%                       |

 Table 2: Source CC termination (Rp) requirements

Rp resistors connected to both CC pins may be pulled-up to 3.3 V or 5 V. The resistor value is chosen on the basis the device port supplying capability. Moreover, if the source role is operated, the Rp resistors can be replaced by current sources.

The following table provides the values to be used for Rd or Sink CC termination.

| Rd setting           | Nominal Value | Max Voltage on pin | Power Capability detection |
|----------------------|---------------|--------------------|----------------------------|
| ±20% voltage clamp   | 1.1 V         | 1.32 V             | No                         |
| ±20% resistor to GND | 5.1 kΩ        | 2.18 V             | No                         |
| ±10% resistor to GND | 5.1 kΩ        | 2.04 V             | Yes                        |

Table 3: Sink CC termination (Rd) requirements

Rd resistors may be implemented in multiple ways.

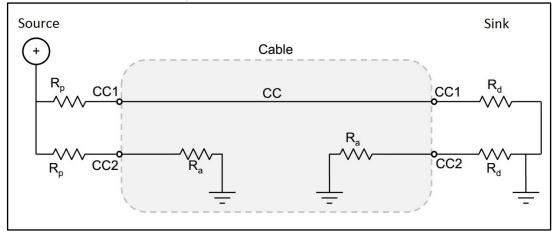
## 1.7 **Power options**

Regarding power exchange, every platform equipped with a Type-C<sup>™</sup> connector but without power delivery must be able to support 5 V with one of the specific current capabilities. When power delivery is supported and the design is specifically optimized for managing high power loads, the same platform may support up to 20 V at 5 A (100 W).



UM2191

|                                 | Table 4: Power options |                    |                  |                                                |  |  |  |  |  |  |  |
|---------------------------------|------------------------|--------------------|------------------|------------------------------------------------|--|--|--|--|--|--|--|
| Mode of operation               | Nominal<br>voltage     | Maximum<br>current | Maximum<br>power | Note                                           |  |  |  |  |  |  |  |
| USB 2.0                         |                        | 500 mA             | 2.5 W            | Default current based on                       |  |  |  |  |  |  |  |
| USB 3.1                         |                        | 900 mA             | 4.5 W            | specification                                  |  |  |  |  |  |  |  |
| USB BC1.2                       |                        | up to 1.5 A        |                  | Legacy charging                                |  |  |  |  |  |  |  |
| USB Type-C™<br>current at 1.5 A | 5 V                    | 1.5 A              | 7.5 W            |                                                |  |  |  |  |  |  |  |
| USB Type-C™<br>current at 3 A   |                        | 3 A                | 15 W             | Support high power devices                     |  |  |  |  |  |  |  |
| USB PD                          | up to 20 V             | up to 5 A          | 100 W            | Directional control and power level management |  |  |  |  |  |  |  |


## **1.8** Cable attachment and detachment detection and orientation

As stated in the USB Power Delivery specification, it is mandatory to determine the orientation of an attachment; i.e., when one of the two CC pins detects a valid Rp/Rd connection.

To detect an attachment, the source monitors both CC pins.

The pins are floating when nothing is attached, but when the sink is attached via the cable, one CC line of the source is directly pulled-down (through the sink Rd), signalling that a connection has been made (see *Figure 6: "Pull up/down CC detection"*).

Hence, once connection is established, a voltage divider is set between source pull-up resistor Rp and sink pull-down resistor Rd, fixing the voltage level on the CC line for the communication signals.



#### Figure 6: Pull up/down CC detection

At the same time, the orientation of the plug, and consequently of the cable, is defined according to which CC line (CC1 or CC2) detects a valid resistance after the attach event.

The figure above shows an unflipped cable orientation.

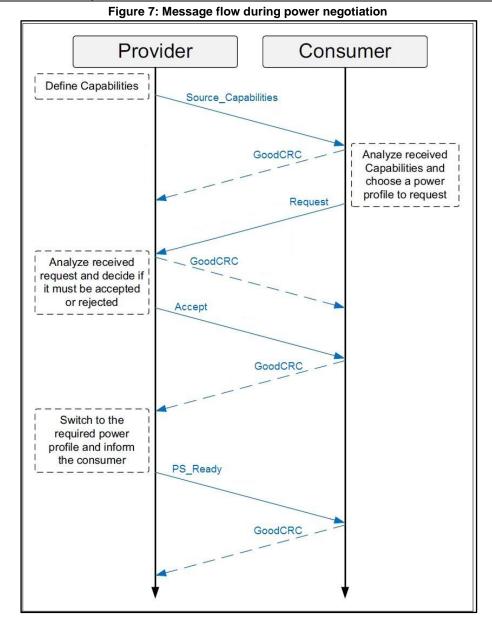
Moreover, the full-featured cable, exposing an Ra resistor, connects the  $V_{\text{CONN}}$  pins to ground.

DocID030479 Rev 2



## **1.9 Power negotiation**

When a connection is made and the respective roles have been assigned, the source and the sink negotiate a contract for the power objects: the selected configuration channel (CC) allows them to establish communication and negotiate the power according to the protocol described in USB Power Delivery specification.


Originally, all the devices equipped with USB Type-C<sup>M</sup> are able to provide up to 15 W (5 V and up to 3 A) power via the V<sub>BUS</sub> path, but every subsequent request for delivering or receiving power from 15 W to 100 W (5 V at 3 A to 20 V at 5 A) must be negotiated according to the USB Power Delivery protocol.

The messages exchanged between a source (provider) and sink (consumer) are illustrated in *Figure 7: "Message flow during power negotiation"*.

- 1. Initially, the source dispatches a Source\_Capabilities message to inform the port partner (sink) of its power capabilities.
- 2. The sink then sends a Request for one of the advertised power profiles.
- 3. The source accepts or rejects this request according to its power balance.
- 4. If confirmed, the source sends an  ${\tt Accept}$  to the sink
- 5. The source then switches to the requested power profile and sends a PS\_Ready confirmation message.

Each received message is acknowledged with a GoodCRC to confirm correct reception. Incorrect reception should be ignored and persistent communication errors should trigger a soft reset to reset protocol parameters and re-establish communication. If the error persists, a hard reset is performed.





## **1.10** Full-featured Type-C<sup>™</sup> cable and V<sub>CONN</sub> supply

Full-featured Type-C<sup>™</sup> cables are Type-C<sup>™</sup> to Type-C<sup>™</sup> cables that support USB2.0 and USB3.1 data operation, and include sideband use (SBU) wires.

All USB full-featured Type-C cables must be electronically marked and must provide 800  $\Omega$  to 1.2 k $\Omega$  impedance (Ra) that connects the assigned V<sub>CONN</sub> pin to ground.

When a full-featured cable is attached to a source, the source must provide a  $V_{CONN}$  (5 V default) to supply it (valid voltage range is 3 V to 5.5 V).

Up to 1 W may be drawn from  $V_{CONN}$  to power the ICs in the plug, necessary to implement electronically-marked cables and  $V_{CONN}$ -powered accessories.



The  $V_{\text{CONN}}$  is systematically assigned to the free CC pin of the receptacle after a connection is established: the CC pins can be monitored to verify a valid Rp/Ra connection and then the  $V_{\text{CONN}}$  supply is routed by the source to the checked pin.

Since all the full-featured Type-C<sup>TM</sup> cables are reversible, both CC pins in the receptacle must be able to assume the role of CC and V<sub>CONN</sub> on cable insertion.

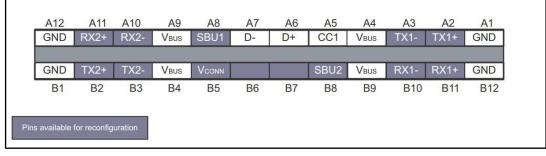
## 1.11 Alternate modes and billboard device class

The USB Power Delivery specification supports alternate mode (Alt Mode) to transfer highspeed data over Type-C<sup>™</sup> cables using protocols like:

- High-Definition Multimedia Interface (HDMI)
- DisplayPort (DP)
- Peripheral Component Interconnect Express (PCI Express)
- Ethernet over twisted pair (Base-T Ethernet)
- Mobile High-Definition Link (MHL)

The adoption of alternate mode lets Type-C hosts and devices incorporate additional functionality, exploiting USB PD structured vendor defined messages (Structured VDMs) to manage typical display controller selection mechanisms: discover, enter and exit.

As alternate modes do not traverse the USB hub topology, they may only be used between a directly connected host and device.


Structured VDMs may also be used for re-assignment of the pins that the USB Type-C connector exposes.

|      | A12         | A11          | A10     | A9   | A8    | A7 | A6 | A5   | A4   | A3   | A2   | A1  |
|------|-------------|--------------|---------|------|-------|----|----|------|------|------|------|-----|
|      | GND         | RX2+         | RX2-    | VBUS | SBU1  | D- | D+ | CC1  | VBUS | TX1- | TX1+ | GND |
|      | GND         | TX2+         | TX2-    | VBUS | VCONN | _  |    | SBU2 | VBUS | RX1- | RX1+ | GND |
|      | B1          | B2           | B3      | B4   | B5    | B6 | B7 | B8   | B9   | B10  | B11  | B12 |
| Pine | s available | for reconfig | uration |      |       |    |    |      |      |      |      |     |

Figure 8: Pins available for reconfiguration on the plug of the full-featured cable

The following figure shows the pins available for reconfiguration with direct connect applications. There are three more pins because this configuration is not limited by the cable wiring.

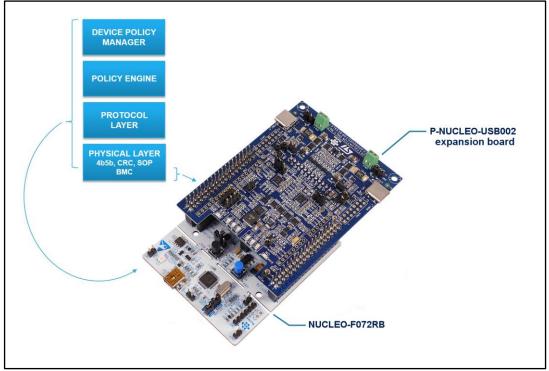
Figure 9: Pins available for reconfiguration on the receptacle for direct connect applications



Where no equivalent USB functionality is implemented, the device must provide a USB interface exposing a USB billboard device class to identify the device. This is not required for non-user facing modes (e.g., diagnostic modes).



The USB billboard device class definition describes how to communicate the alternate modes supported by a device container to a host system, including string descriptors that provide supporting information in a human-readable format.




## 2 System architecture

The P-NUCLEO-USB002 USB Type-C<sup>™</sup> and power delivery kit includes:

- 1. a NUCLEO-F072RB development board acting as the control board running the stack
- 2. a P-NUCLEO-USB002 expansion board acting as a Type-C and Power Delivery
- interface, with two STUSB1602 Type-C PD controllersA full-featured and certified USB Type-C cable





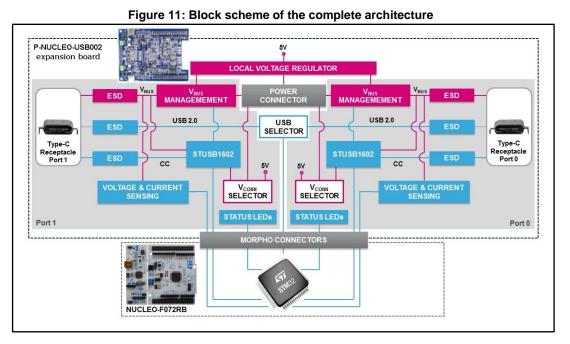
The P-NUCLEO-USB002 USB Type-C and Power Delivery expansion board is equipped with:

- two DRP USB Type-C<sup>™</sup> ports managed by two STUSB1602 Type-C port controllers
- optional V<sub>BUS</sub> current sensing (and discrete voltage monitoring)
- dedicated power connector to interface with an external power supply (not included) to provide different profiles as well as VCONN (5V), if necessary
- on-board power management able to provide internal supply voltages
- six status-control LEDs for USB-PD port purposes, a user LED and a power LED
- USB 2.0 interface capability available on both Type-C portsthere is only one USB 2.0 controller, which can be mapped to either port or in pass-through configuration.
- RoHS compliant
- PCB type and size:
  - PCB material: FR4
  - four-layer architecture
  - copper thickness: 35 μm

The NUCLEO-F072RB board includes:



- an STM32F072RBT6 32-bit microcontroller based on ARM<sup>®</sup> Cortex<sup>®</sup>-M0 with 128-Kbytes of Flash memory, 16-Kbytes of SRAM and a USB 2.0 full speed data interface in a LQFP64 package
- extension resources:
  - Arduino Uno revision 3 connectivity
    - ST morpho extension pin headers for full access to all STM32 I/Os
- on-board ST-LINK/V2-1 debugger/programmer with SWD connector:
- selection-mode switch to use the kit as a standalone ST-LINK/V2-1 flexible board power supply:
  - USB VBUS on Type-B connector or external source
  - Power management access point
- LEDs:
  - USB communication (LD1)
  - user LED (LD2)
    - power LED (LD3)
- push buttons:
  - USER
  - RESET
- USB re-enumeration capability; interfaces supported on USB:
  - Virtual Com port
  - Mass storage
  - Debug port
- Supported by various integrated development environments (IDEs):
  - IAR™
  - Keil®
  - GCC-based IDEs




The NUCLEO-F072RB included in the kit has a different solder bridge configuration with respect to the default one (see *Table 5: "NUCLEO-F072RB* solder bridges and resistors to be modified")



#### UM2191

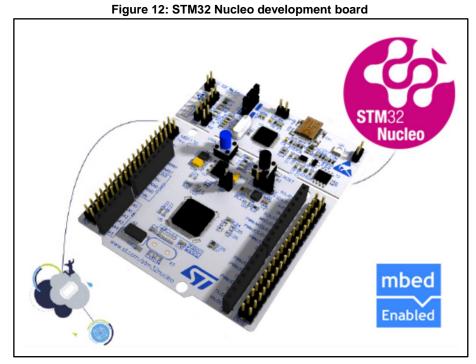
## 2.1 System block scheme



## 2.2 NUCLEO-F072RB STM32 Nucleo board

The STM32 Nucleo board provides an affordable and flexible way for solution and prototype development with any of STM32 microcontroller lines.

The board STM32F072RBT6 32-bit microcontroller is based on the ARM<sup>®</sup> Cortex<sup>®</sup>-M0 with 128 Kb Flash memory and 16 Kb SRAM.


The Arduino<sup>™</sup> connectivity support and ST morpho headers make it easy to expand with a wide range of specialized expansion boards.

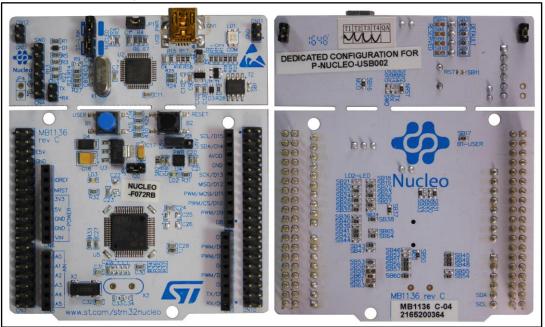
Separate probes are not required as it integrates the ST-LINK/V2-1 debugger/programmer.

The STM32 Nucleo board comes with the comprehensive STM32 HAL software library together with various packaged software examples.

Visit http://www.st.com/stm32nucleo for more information.






The solder bridge configuration on the NUCLEO-F072RB Nucleo board is customized to support USB PD applications (see *Table 5: "NUCLEO-F072RB solder bridges and resistors to be modified"* and *Figure 13: "STM32 Nucleo board top and bottom view"*).

For further information, please refer to user manual *UM1724 STM32 Nucleo-64 boards* on www.st.com.

| Bridge<br>reference | State | Description                                                                             |  |  |  |  |  |
|---------------------|-------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| SB13                | OFF   | PA2 and PA3 on STM32F103CBT6 (ST-LINK MCU) are disconnected from                        |  |  |  |  |  |
| SB14                | OFF   | PA3 and PA2 of the STM32F072RBT6 MCU.                                                   |  |  |  |  |  |
| SB15                | OFF   | The SWO signal is not connected to PB3 on STM32F072RBT6 MCU.                            |  |  |  |  |  |
| SB21                | OFF   | Green user LED LD2 is not connected to PA5 on STM32F072RBT6 MCU.                        |  |  |  |  |  |
| R34                 |       |                                                                                         |  |  |  |  |  |
| R36                 | OFF   | LSE patwards DC14 and DC15 ward as CDIOs instead of law around slock                    |  |  |  |  |  |
| SB48                |       | LSE not used: PC14 and PC15 used as GPIOs instead of low speed clock.                   |  |  |  |  |  |
| SB49                | ON    |                                                                                         |  |  |  |  |  |
| SB62                |       | To connect another USART (not the default USART2) to STLINK MCU,                        |  |  |  |  |  |
| SB63                | ON    | using flying wires between ST morpho connector and CN3.<br>SB13 and SB14 should be OFF. |  |  |  |  |  |

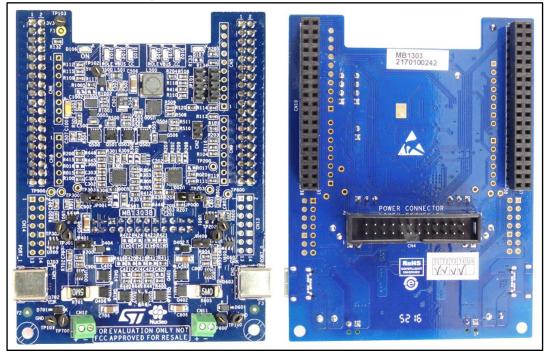
| Table 5: NUCLEO-F072RB solder  | bridges and resid | stors to be modified |
|--------------------------------|-------------------|----------------------|
| TADIE J. NUCLEU-I UZIND SUIUEI | Diluyes and lesis |                      |





#### Figure 13: STM32 Nucleo board top and bottom view

## 2.3 P-NUCLEO-USB002 expansion board


The P-NUCLEO-USB002 expansion board consists of different stages for specific aspects of the power delivery protocol. It embeds two USB Type-C<sup>™</sup> ports, each containing the following functional blocks:

- an STUSB1602 Type-C port controller
- V<sub>BUS</sub> management stage
- voltage and current measurement circuitry
- a VCONN selector
- status LEDs
- ESD protections

The P-NUCLEO-USB002 expansion board local voltage regulator interacts with both of  $V_{\text{BUS}}$  management blocks.



#### Figure 14: P-NUCLEO-USB002 expansion board



The USB selectors (JP100, JP101) allow use of the USB2.0 peripheral provided by the microcontroller, alternately on port 0 and on port 1, as well as allowing a pass-through topology connecting the USB pins of the two Type-C ports.

The main functional blocks regarding USB-C PD applications are shown below

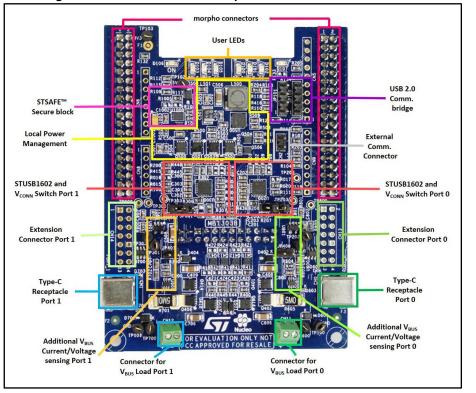
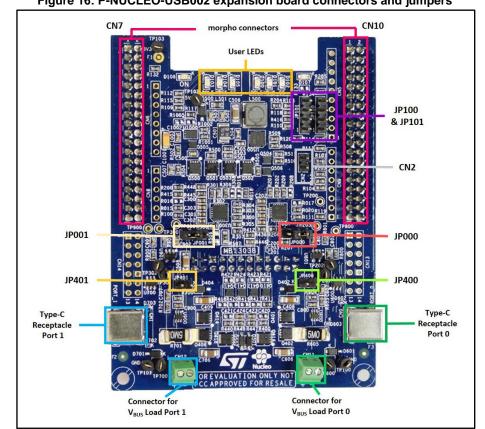
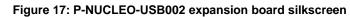
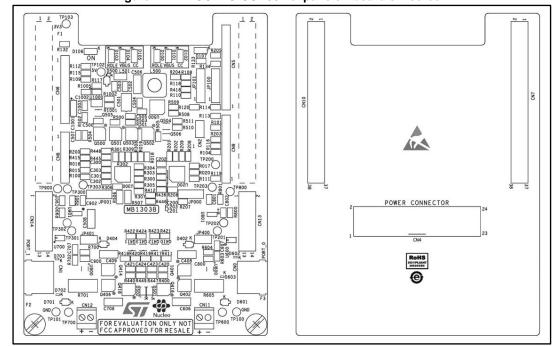




Figure 15: P-NUCLEO-USB002 expansion board functional blocks


DocID030479 Rev 2


57

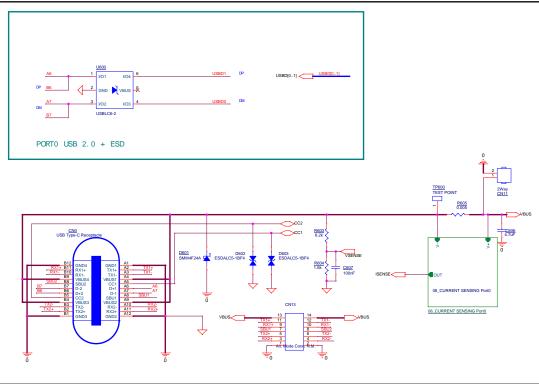


## Figure 16: P-NUCLEO-USB002 expansion board connectors and jumpers

The connectors and jumpers regarding USB-C PD applications are shown below.

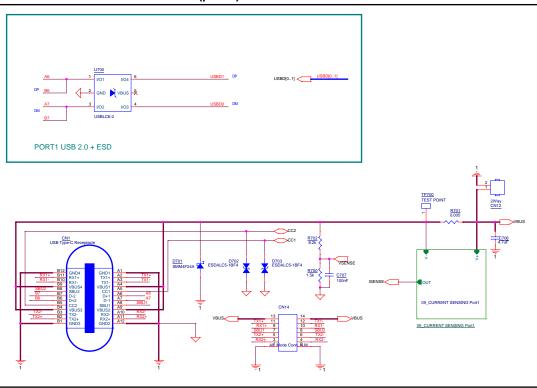





DocID030479 Rev 2

# 2.3.1 P-NUCLEO-USB002 expansion board: USB Type-C connectors, voltage and current sense stage

The two USB Type-C<sup>™</sup> CN0 and CN1 connectors on the P-NUCLEO-USB002 expansion board represent port 0 and port 1 respectively.


When a port acts as a power provider, it can supply an external device connected via a USB Type-C<sup>™</sup> cable; the same port can receive power if it is set as a consumer.

## Figure 18: P-NUCLEO-USB002 expansion board USB Type-C receptacle and current sensing (port 0) schematic view









The STUSB1602 monitors the  $V_{BUS}$  voltage on the USB Type-C receptacle via its VBUS\_SENSE input pin and alerts the MCU if an undervoltage or overvoltage condition is detected.

The  $V_{BUS}$  operating range is defined by a high and a low voltage threshold above and below the nominal  $V_{BUS}$  target value. Valid  $V_{BUS}$  voltage and operating thresholds can be changed via the I<sup>2</sup>C interface.

Each port is also equipped with a dedicated current-sensing stage.

Figure 20: P-NUCLEO-USB002 expansion board Port 0 Current sensing stage schematic view

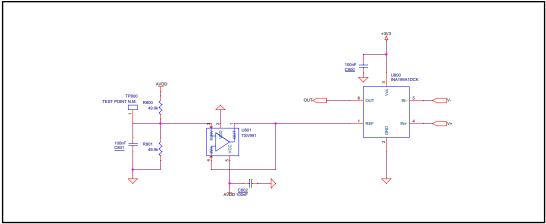
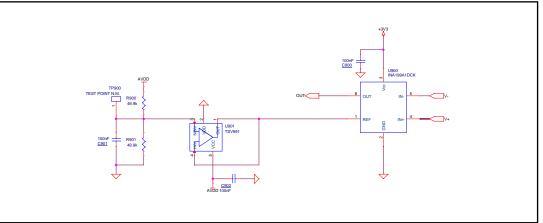






Figure 21: P-NUCLEO-USB002 expansion board Port 1 Current sensing stage schematic view



Although the STUSB1602 monitors the  $V_{BUS}$  voltage, a resistive voltage divider for voltage sensing managed by the STM32F072RBT6 ADC peripherals, has been added. This option, matched with the current sensing stage, provides the alternative of measuring power with the microcontroller.

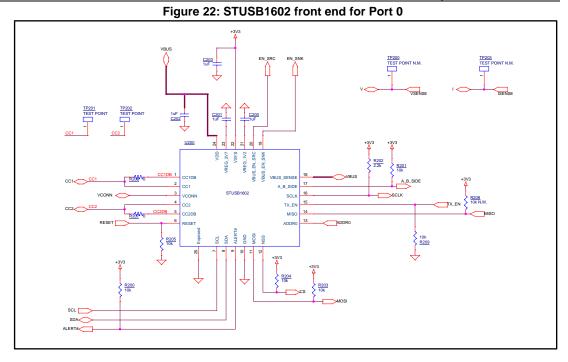
# 2.3.2 P-NUCLEO-USB002 expansion board: STUSB1602 USB Type-C controller

The STUSB1602 device is a 20 V technology USB Type-C<sup>™</sup> controller IC, designed to establish and manage the connection between two USB Type-C ports, according to the configured power role (source, sink or dual role power).

It is fully compatible with:

- USB Power delivery specification (rev2.0)
- USB type-C<sup>™</sup> cable and connector spec (rev1.2)

Each STUSB1602 device interfaces with a Type-C port and interacts with the  $V_{BUS}$  management block and the microcontroller.


The Type-C port interface allows implementation of the lower level functions of the PD firmware stack, including:

- detecting the connection between two USB Type-C ports (attach detection)
- managing BMC coding and decoding
- establishing a valid source-to-sink connection
- determining the attached mode: source, sink or accessory
- resolving cable orientation and twist connections to establish USB data routing (mux control)
- configuring and monitoring the V<sub>BUS</sub> power path
- managing the V<sub>BUS</sub> power mode: USB Default, Type-C Medium or Type-C High current mode
- configuring V<sub>CONN</sub> when required

It also supports dead battery and low power standby modes as well as providing high voltage protection and debug accessory support.

For further information, see the STUSB1602 datasheet on *www.st.com*.





This circuit description uses port 0 for reference (see *Figure 22: "STUSB1602 front end for Port 0"*), but the same applies to port 1.

The STUSB1602 device interacts with the STM32F072RBT6 microcontroller embedded in the NUCLEO board via the following communication buses:

- I<sup>2</sup>C bus: is used by the MCU to configure and control status of the device. This bus is shared by both STUSB1602 devices, according to their I<sup>2</sup>C addresses (ADDR0). Additionally, the STUSB1602 start-up profile can be fully customized by accessing its integrated non-volatile memory via I<sup>2</sup>C.
- 2. **SPI peripheral**: is reserved for USB-PD messages. The BMC transceiver on the STUSB1602 means that messages exchanged between the MCU and STUSB1602 are 5B coded (except the Preamble, as per the USB-PD specification).

The following MCU GPIOs are used for specific functions for each STUSB1602 device:

- 1. **TX\_EN** is a control signal from the MCU to STUSB1602. It enables the BMC control logic that will transfer data from the MCU serial interface, encode in BMC format and drive the connected CC line.
- 2. **ALERT** signals specific events regarding CC detection, monitoring and fault condition groups to the microcontroller. Each of these groups of events can be masked configuring specific I<sup>2</sup>C registers.
- 3. **A\_B\_SIDE** pin provides cable orientation; this is also provided by an internal I<sup>2</sup>C register.
- 4. **RESET** allows resetting of the device; this can be also accomplished via a specific I<sup>2</sup>C register.

**CC1 and CC2** configuration channel pins are for connection and attachment detection, plug orientation and system configuration management across the USB Type-C cable.

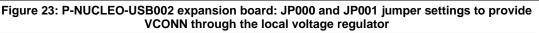
**CC1DB and CC2DB** are for dead battery mode when the STUSB1602 is configured in the sink power role or dual power role. This mode allows systems powered by a battery to be supplied by  $V_{\text{BUS}}$  when the battery is fully discharged.

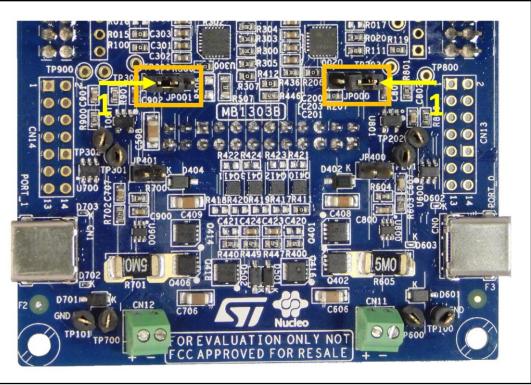


This mode is enabled by connecting CC1DB and CC2DB respectively to CC1 and CC2. Thanks to this connection, the pull-down terminations on the CC pins are present by default even if the device is not supplied.

When an STUSB1602 device configured in dead battery mode is connected to source, it is supplied via its VDD pin connected to  $V_{BUS}$  on the USB Type-C receptacle side. The STUSB1602 may establish the source-to-sink connection by enabling the power path on  $V_{BUS}$ .

When the STUSB1602 assumes the sink power role, the VBUS\_EN\_SNK pin allows the enabling of the incoming  $V_{BUS}$  power when the connection to a source is established and  $V_{BUS}$  is in the valid operating range. Similarly, in the source power role, the VBUS\_EN\_SRC pin allows the enabling of the outgoing  $V_{BUS}$  power when the connection to a sink is established and  $V_{BUS}$  is in the valid operating range.


In both cases, the open drain output of the VBUS\_EN\_SNK and VBUS\_EN\_SRC pins allow the direct driving of a PMOS transistor. The logic value of these pins is also advertised in a dedicated I<sup>2</sup>C register bit.


#### 2.3.3 P-NUCLEO-USB002 expansion board: V<sub>CONN</sub> switch

The  $V_{CONN}$  input power pin of STUSB1602 is connected to pins CC1 and CC2 across independent subscript for CONN power switches. The  $V_{CONN}$  voltage provided to the STUSB1602 device can be supplied via the power connector or the local voltage regulator according to the JP000 and JP001 jumper settings below.

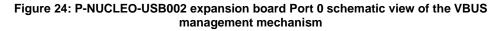
| 1 2 3 3 2 1<br>••••<br>JP001 JP000 | $V_{\text{CONN}}$ is provided by the local voltage regulator |
|------------------------------------|--------------------------------------------------------------|
| 1 2 3 3 2 1<br>••••<br>JP001 JP000 | $V_{\mbox{CONN}}$ is provided by the power connector         |

#### Table 6: P-NUCLEO-USB002 expansion board VCONN settings





The V<sub>CONN</sub> voltage is only applied to the CC pin that is not connected to the CC wire after:


- the device is configured in source power role or dual role power (DRP)
- V<sub>CONN</sub> power switches are enabled
- a valid connection to a sink is achieved
- Ra is detected on the unwired CC pin
- a valid power source is applied on the VCONN pin with respect to a pre-defined UVLO threshold.

VCONN discharge is automatically managed by STUSB1602.

V<sub>CONN</sub> protections can be configured via a dedicated control register (see STUSB1602 datasheet on *www.st.com*).



#### 2.3.4 P-NUCLEO-USB002 expansion board: VBUS management



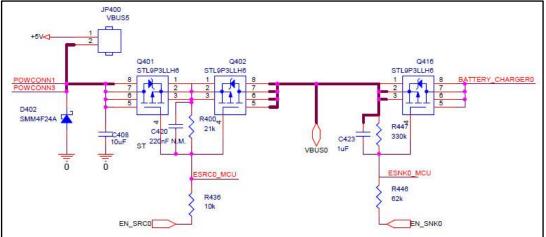
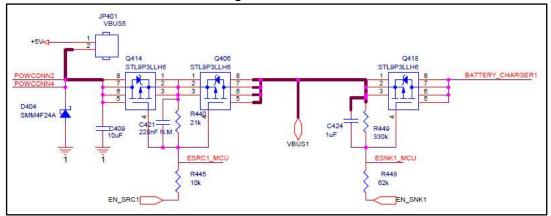




Figure 25: P-NUCLEO-USB002 expansion board Port 1 schematic view of the VBUS management mechanism



This circuit description uses port 0 for reference, but the same applies to port 1.

The  $V_{BUS}$  management block can manage different  $V_{BUS}$ , as described by USB PD specification. It provides energy if the STUSB1602 is set as a provider and supplies energy when it is a consumer.

Transistors Q401 and Q402 are set in back-to-back configuration to protect and isolate the  $V_{BUS}$  supplying path in both directions.

When the port acts as a provider, the  $V_{BUS}$  power can be supplied via power connector CN4 (jumper JP400 must be left open).  $V_{BUS}$  is put on the supply path via the discrete load switch (Q401-Q402), driven by the STUSB1602 VBUS\_EN\_SRC pin.

If no external power supply is available, closing jumper JP400 allows using the 5 V from the NUCLEO-F072RB board as  $V_{BUS}$  in the provider role only. This is mainly used for demonstration purposes.

When the port is a consumer, the same  $V_{BUS}$  path is managed by the VBUS\_EN\_SNK pin of the STUSB1602 device that enables the discrete load switch Q416.



51

The STUSB1602 monitoring block handles the internal  $V_{BUS}$  discharge path connected to the VBUS\_SENSE input pin. The discharge path is activated on a detach event or when the device enters the error recovery state, regardless of the power role.

The  $V_{BUS}$  discharge to 0 V path is enabled by default over a time interval that can be modified via dedicated I<sup>2</sup>C registers.



The exposed Rp value that advertises the current capability may be set on the STUSB1602 by registers (i.e., SINK\_POWER\_STATE).

### 2.3.5 P-NUCLEO-USB002 expansion board: local power management stage



This stage does not contain any power blocks to derive multiple voltage profiles from a single input voltage source. To implement such a solution, the user must connect appropriate external circuitry, under their own responsibility, to the P-NUCLEO-USB002 expansion board CN4 power connector.

The P-NUCLEO-USB002 expansion board is designed to provide power to the connected platforms via:

- 1. An external power supply: this may supply high power levels. If the external power supply is connected to connector CN4, JP400 and JP401 must be open; V<sub>BUS</sub> will be a voltage level offered by the external power supply board
- The standard USB port through connector CN1 on the NUCLEO-F072RB board. The maximum available power is the 5 V 500 mA currently offered by the standard PC USB; jumper JP400 or JP401 or both must be closed

The local power management stage consists of the following sets of load switches implemented by the MOSFETs transistor:

- 1. Q500-Q501 enabled by Q505
- 2. Q502-Q503 enabled by Q506

Similarly, the STM32F072RBT6 MCU can act on DRP and /DRP lines enabling the DC-DC converter L6984 (U500).

Figure 26: P-NUCLEO-USB002 expansion board: schematic view of the load switches of the local power management

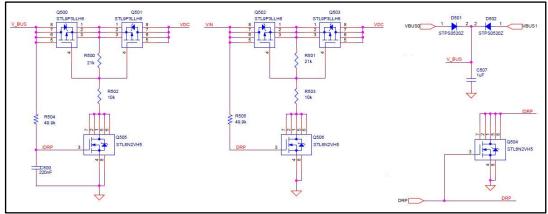
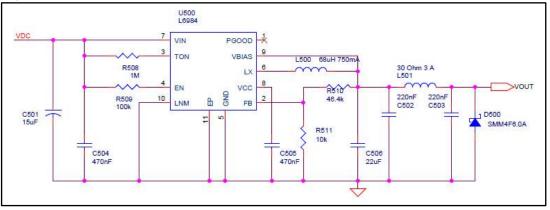




Figure 27: P-NUCLEO-USB002 expansion board: schematic view of the local DC-DC converter



This stage is able to supply different voltage levels to the system according to the USB PD specification. Q500-Q501 and Q502-Q503 are set in back-to-back configuration and permit isolation in both directions of the supplying path.

It is indeed possible to supply the platform from  $V_{BUS}$  via a provider connected to one of the ports or from  $V_{IN}$  via power connector CN4: the two independent power paths are directly controlled by the STM32F072RBT6 MCU through the DRP and /DRP functions.

When the platform is the consumer and receives  $V_{BUS}$  on one of the two ports, diodes D501 and D502 deliver  $V_{BUS}$  to the Q500-Q501 load switch and then supply the DC-DC converter, and hence the system.

#### 2.3.6 P-NUCLEO-USB002 expansion board: STSAFE secure device

The STSAFE<sup>™</sup>-A100 device on the P-NUCLEO-USB002 expansion board provides authentication and secure data management services.

It is mounted on a device that authenticates a remote host or on a peripheral that authenticates the local host itself, legitimating communication between the two entities.

As the STSAFE-A100 is provided with a host library that can be ported to a wide range of microcontrollers, there is an exclusive I<sup>2</sup>C link between the device in P-NUCLEO-USB002 expansion board and the MCU in the NUCLEO-F072.

The STSAFE capabilities can therefore authenticate single port communication or ensure the integrity of the whole platform (dual port solution).

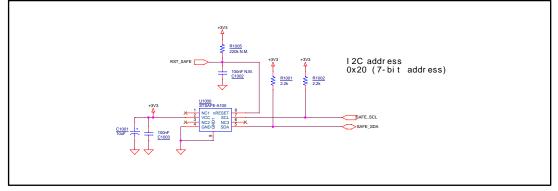



Figure 28: P-NUCLEO-USB002 expansion board: STSAFE-A100 schematic view

Refer to STSAFE-A100 databrief at www.st.com.



#### P-NUCLEO-USB002 expansion board: USB2.0 2.3.7

The P-NUCLEO-USB002 expansion board enables different USB2.0 configurations via jumpers JP100 and JP101.

| Table 7: P-NUCLEO-USB002 expansion board JP100 and JP101 settings |                                        |  |  |  |
|-------------------------------------------------------------------|----------------------------------------|--|--|--|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$             | USB2.0 functionality not used          |  |  |  |
| 4<br>3<br>2<br>1<br>JP101 JP100<br>4<br>3<br>2<br>1<br>JP100      | USB2.0 functionality to Type-C™ port 0 |  |  |  |
| 4<br>3<br>2<br>1<br>JP101 JP100<br>4<br>3<br>2<br>1<br>JP100      | USB2.0 functionality to Type-C port 1  |  |  |  |



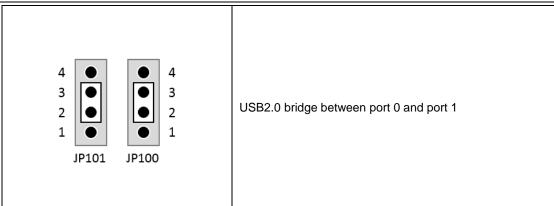
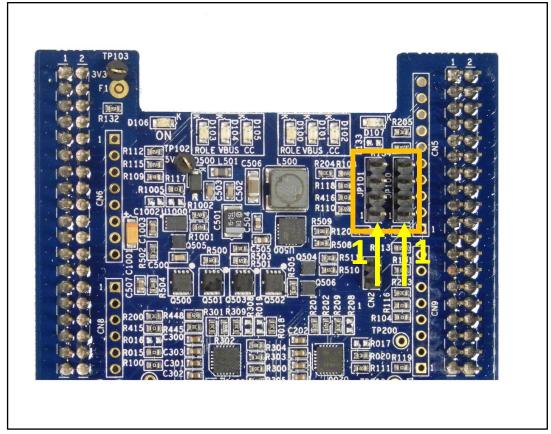




Figure 29: P-NUCLEO-USB002 expansion board: JP100 and JP101 connectors for USB 2.0 configurations



### 2.3.8 P-NUCLEO-USB002 expansion board: ESD protections

The P-NUCLEO-USB002 expansion board features USB protections on:

- 1. V<sub>BUS</sub>: each port is protected by an SMM4F24A Transil, designed to protect sensitive equipment against electro-static discharges
- 2. CCx lines: each CC line is connected to an ESDALC5-1BF4 providing low clamping, low capacitance, bidirectional, single line ESD protection
- 3. USB2.0 pins: the USB pins of both ports are connected to a USBLC6-2 ESD protection for high speed interfaces (USB 2.0, Ethernet links and video lines) with high integrity while still protecting sensitive chips against the worst ESD strikes



UM2191

### 2.3.9 P-NUCLEO-USB002 expansion board: connectors

### 2.3.9.1 VBUS load connectors


UM2191

Connectors CN11 and CN12 for port 0 and port 1 are able to supply  $V_{\text{BUS}}$  externally to power any load connected to them.

#### 2.3.9.2 Extension Connectors

Both ports support the USB PD and the USB Type-C<sup>™</sup> specification, including the alternate-mode capability. For this reason, connectors CN13 and CN14 for port 0 and port 1 are available to expose all the main pins and facilitate the design of applications using this mode.

Figure 30: P-NUCLEO-USB002: CN13 and C14 connector pinout



#### 2.3.9.3 Power connector

The P-NUCLEO-USB002 power connector CN4 on the rear of the board connects the expansion board to a selectable power supply with appropriate voltage and current couples for the USB PD specification.

The pairs 1 and 3 as well as 2 and 4 can externally supply the V<sub>BUS</sub> management circuits from a power board to the two Type-C<sup>™</sup> receptacles CN0 and CN1.

Pairs 9 and 11 as well as 10 and 12 can select the external power requested by the application. In particular, the default GPIO functionality assigned to pins 9 and 11 can be changed to I<sup>2</sup>C SDA and I<sup>2</sup>C SCL respectively if the external power board acts as smart power supply.

Enable and discharge pairs 13 and 15 as well as 14 and 16 can control any external power supply board load switches available. A pair of POWER GOOD pins check whether the power supply is ready to provide the requested power range.

Power connector CN4 is also able to provide the  $V_{\text{CONN}}$  voltage if the external power supply board supports that functionality.

Finally, the  $V_{\mbox{\scriptsize SYS}}$  system supply voltage be the voltage input for the embedded DC-DC converter.



#### Figure 31: P-NUCLEO-USB002: CN4 connector V<sub>BUS1</sub> 0 2 V<sub>BUS2</sub> 4 V<sub>BUS1</sub> 3 V<sub>BUS2</sub> PGND<sub>1</sub> 6 PGND<sub>2</sub> 6 PGND<sub>1</sub> Ø 8 PGND<sub>2</sub> I<sup>2</sup>C / GPIO 9 10 GPIO I<sup>2</sup>C / GPIO 12 GPIO **1** ENABLE1 / GPIO ENABLE2 / GPIO 13 14 DISCHARGE1 / GPIO 16 DISCHARGE2 / GPIO 15 POWER GOOD / GPIO 18 POWER GOOD / GPIO 17 VCONN 19 20 VCONN VSYS VSYS 21 22 GND 23 24 GND

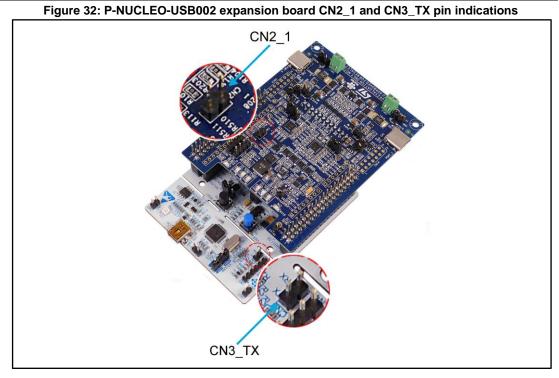
#### 2.3.9.4 Serial communication connector

The P-NUCLEO-USB002 expansion board embeds the CN2 connector that exposes the USART1 peripheral of the STM32F072RBT6 MCU when the expansion board is plugged to the NUCLEO-F072RB board.

This allows exploiting the serial communication to send commands to the NUCLEO-F072 MCU or access to the application data.

Since the ST-LINK contained in the NUCLEO-F072 board may be used as a Virtual COM port, accessible by the CN3 connector, the expansion board CN2 connector can be connected to the NUCLEO-F072 CN3 connector via two female wires (included in the blister). It is also possible to retrieve the application data through a serial/TCP terminal.

The following table and the figure below provide more information on how to set up the serial communication connection.<sup>a</sup>


| Transmit/receive | ST-LINK | P-NUCLEO-USB002 expansion board |  |
|------------------|---------|---------------------------------|--|
| ТХ               | CN3_TX  | CN2_1                           |  |
| RX               | CN3_RX  | CN2_2                           |  |

| Table 8: P-NUCLEO-USB002 | expansion board  | serial com | munication | connection |
|--------------------------|------------------|------------|------------|------------|
|                          | CAPALISION DUALU | Serial Com | mumcauon   | CONNECTION |

DocID030479 Rev 2



<sup>&</sup>lt;sup>a</sup> Refer to UM2205, "Getting started with the STM32 Nucleo pack for USB Type-C<sup>™</sup> and Power Delivery with the Nucleo-F072RB board and the STUSB1602", available at www.st.com.



## 2.3.10 P-NUCLEO-USB002 expansion board: test points

#### Table 9: P-NUCLEO-USB002 expansion board test points

| Test Point                                                      | Description                                         |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------|--|--|
| TP100, TP101                                                    | GND                                                 |  |  |
| TP102                                                           | +3.3V                                               |  |  |
| TP103                                                           | E5V                                                 |  |  |
| TP201                                                           | CC1 port 0                                          |  |  |
| TP202                                                           | CC2 port 0                                          |  |  |
| TP200 (N.M.)                                                    | V sense port 0                                      |  |  |
| TP203 (N.M.)                                                    | I sense port 0                                      |  |  |
| TP301                                                           | CC1 port 1                                          |  |  |
| TP302                                                           | CC2 port 1                                          |  |  |
| TP300 (N.M.)                                                    | V sense port 1                                      |  |  |
| TP303 (N.M.)                                                    | I sense port 1                                      |  |  |
| TP600                                                           | VBUS port 0                                         |  |  |
| TP700                                                           | VBUS port 1                                         |  |  |
| TP800 (N.M)                                                     | Reference voltage of port 0 current sensing circuit |  |  |
| TP900 (N.M) Reference voltage of port 1 current sensing circuit |                                                     |  |  |



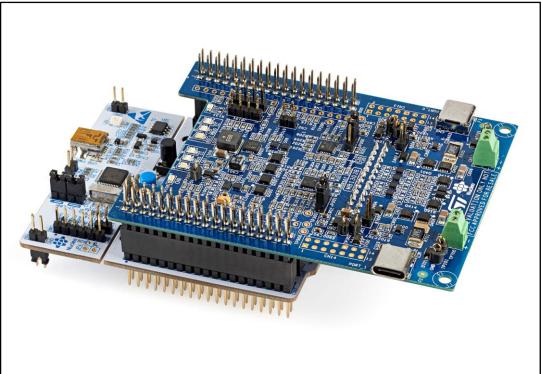
### 2.3.11 P-NUCLEO-USB002 expansion board: jumpers

Table 10: P-NUCLEO-USB002 expansion board jumpers

| Jumper | Description                                                                                                                                                                     |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| JP000  | Port 0 VCONN selector                                                                                                                                                           |  |  |  |
| JP001  | Port 1 VCONN selector                                                                                                                                                           |  |  |  |
| JP100  | USB DP line selector                                                                                                                                                            |  |  |  |
| JP101  | USB DM line selector                                                                                                                                                            |  |  |  |
| JP400  | Port 0 VBUS selector.<br>If closed, VBUS is provided by the standard USB port through connector<br>CN1 of the NUCLEO board (without any other source on the power<br>connector) |  |  |  |
| JP401  | Port 1 VBUS selector.<br>If closed, VBUS is provided by the standard USB port through connector<br>CN1 of the NUCLEO board (without any other source on the power<br>connector) |  |  |  |

### 2.3.12 P-NUCLEO-USB002 expansion board: user LEDs

|      | Table 11: P-NUCLEO-USB002 expansion board LED signaling |                        |       |                                                                                |  |                                                                                           |  |
|------|---------------------------------------------------------|------------------------|-------|--------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------|--|
| LED  | Port                                                    | Function Color Comment |       | Comment                                                                        |  |                                                                                           |  |
| D100 | 0                                                       |                        |       | - one blink: port is a <b>Provider</b>                                         |  |                                                                                           |  |
| D103 | 1                                                       | ROLE                   | Blue  | - two blinks: port is a Consumer                                               |  |                                                                                           |  |
| D103 | -                                                       |                        |       | - three blinks: port is DRP                                                    |  |                                                                                           |  |
| D101 | 0                                                       |                        |       | - <b>blinking</b> : the VBUS is <b>supplied</b> (when Provider) <b>or sunk</b> |  |                                                                                           |  |
|      |                                                         | VBUS                   | Green | (when Consumer) by the port.                                                   |  |                                                                                           |  |
| D104 | 1                                                       |                        |       |                                                                                |  | <ul> <li>ON: the two connected ports have established an explicit<br/>contract</li> </ul> |  |
| D102 | 0                                                       | CC Orange              |       | - one blink: CC Line #1 is connected                                           |  |                                                                                           |  |
| D105 | 1                                                       |                        |       | - two blinks: CC Line #2 is connected                                          |  |                                                                                           |  |


# 2.4 Full-featured Type-C cable


A certified USB full-featured Type-C<sup>™</sup> cable is provided with the pack.



## 3 System setup

For each configuration, the P-NUCLEO-USB002 expansion board must be stacked on the NUCLEO-F072RB board through the ST morpho connector, paying attention to the mounting direction and alignment of the two boards, as per the following figure.





## 3.1 Source power role configuration

### 3.1.1 Using the NUCLEO-F072 on-board voltage regulator

When the P-NUCLEO-USB002 kit is connected to a PC or a standard USB power supply via a USB Type-A to Mini-B cable plugged to CN1 connector, the on-board NUCLEO-F072RB voltage regulator supplies the entire system and provides (5 V)  $V_{BUS}$ .

To deliver the  $V_{BUS}$  on the selected port from the NUCLEO-F072RB USB PWR voltage (CN1 connector):

- on NUCLEO-F072RB board:
  - JP1 open
  - JP5 (PWR) closed on U5V (fitting pins 1-2)
  - JP6 (IDD) closed
- on P-NUCLEO-USB002 expansion board:
  - JP400 and JP401 (relative to PORT\_0 or PORT\_1) closed

### 3.1.2 Using an external power supply

If an external power board is connected to the P-NUCLEO-USB002 expansion board power connector CN4, the provider can offer different  $V_{\text{BUS}}$  voltage profiles. The Provider configuration is:



DocID030479 Rev 2

- on NUCLEO-F072RB board:
  - JP1 closed
  - JP5 (PWR) closed on E5V (fitting pins 2-3)
  - JP6 (IDD) closed
- on P-NUCLEO-USB002 expansion board:
  - JP400 and JP401 (relative to PORT\_0 or PORT\_1) open

Once configured, if a full-featured cable is used, verify that on the selected port the VCONN jumpers (JP000 and JP001) on the P-NUCLEO-USB002 expansion board are configured according to the preferred voltage delivery mode:

- fit pins 1-2 of JP000 and JP001 to select VCONN provided by the +5 V generated by NUCLEO-F072RB board
- fit pins 2-3 of JP000 and JP001 to select the VCONN provided by the external power supply through the CN4 power connector

## 3.2 Sink power role configuration

In the Consumer configuration, the system may manage two supply options.

The first one is supplied by the NUCLEO-F072RB board, while the second configuration is more interesting from the application point of view, since it implements a specific feature of the USB PD solutions, i.e. the Dead Battery mode (when a Consumer is supplied by the Provider by mean of its VBUS). Both configurations correspond to two diverse settings, too:

### 3.2.1 Using the NUCLEO-F072RB on-board voltage regulator

When the P-NUCLEO-USB002 kit is connected to a PC or a USB power supply by NUCLEO-F072RB CN1 connector, the on-board voltage regulator supplies the system.

In this case, the system setting:

- on NUCLEO-F072RB board:
  - JP1 open
  - JP5 (PWR) closed on U5V (fitting pins 1-2)
  - JP6 (IDD) closed
- on P-NUCLEO-USB002 expansion board:
  - VBUS jumpers JP400 and JP401 open
  - V<sub>CONN</sub> jumpers JP000 JP001 open

#### 3.2.2 Using an external provider

This configuration allows applications to implement a specific feature of the USB PD solutions: the Dead Battery mode.

If the Consumer is supplied by the V<sub>BUS</sub> delivered by the connected Provider through the USB Type-C<sup>™</sup> cable, the system setting is:

- on NUCLEO-F072RB board:
  - JP1 closed
  - JP5 (PWR) closed on E5V (fitting pins 2-3)
  - JP6 (IDD) closed
  - on P-NUCLEO-USB002 expansion board:
    - V<sub>BUS</sub> jumpers JP400 and JP401 open
    - V<sub>CONN</sub> jumpers JP000 JP001 open



### 3.3 Dual Role Power configuration

The DRP configuration setting ensures operation as both provider and consumer.

As the provider configuration setting ensures the correct  $V_{\text{BUS}}$  and  $V_{\text{CONN}}$  management, the DRP configuration setting is the same as described for the Provider.

### 3.3.1 Using the NUCLEO-F072RB on-board voltage regulator

When the P-NUCLEO-USB002 kit is supplied by the on-board NUCLEO-F072RB voltage regulator, via a USB Type-A to Mini-B cable plugged to the NUCLEO board CN1 connector and then to a PC or a standard USB power supply.

The system setting is:

- on NUCLEO-F072RB board:
  - JP1 open
  - JP5 (PWR) closed on U5V (fitting pins 1-2)
  - JP6 (IDD) closed
- on P-NUCLEO-USB002 expansion board:
  - JP400 and JP401 (relative to PORT\_0 or PORT\_1) closed

### 3.3.2 Using an external power supply

Connect an external power board to the P-NUCLEO-USB002 power connector CN4 so the system can offer different VBUS voltage profiles.

In this case, the system configuration is:

- on NUCLEO-F072RB board:
- JP1 closed
- JP5 (PWR) closed on E5V (fitting pins 2-3)
- JP6 (IDD) closed
- on P-NUCLEO-USB002 expansion board:
  - JP400 and JP401 (relative to PORT\_0 or PORT\_1) open

Once configured, if a full-featured cable is used, verify that on the selected port the VCONN jumpers (JP000 and JP001) on the P-NUCLEO-USB002 expansion board are fit according to the preferred voltage delivery mode:

- fit pins 1-2 of JP000 and JP001 to select VCONN provided by the +5 V generated by NUCLEO-F072RB board
- fit pins 2-3 of JP000 and JP001 to select the VCONN provided by the external power supply through the CN4 power connector



# 4 Ordering information

To order the USB Type-C<sup>™</sup> and Power Delivery Nucleo pack, use the order code:

• P-NUCLEO-USB002



57

## 5 Electrical schematics

Figure 34: P-NUCLEO-USB002 expansion board circuit schematic - global view

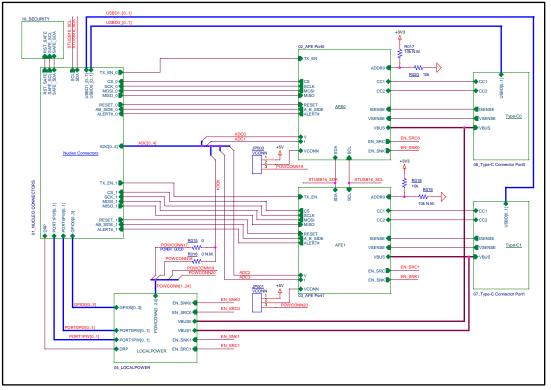
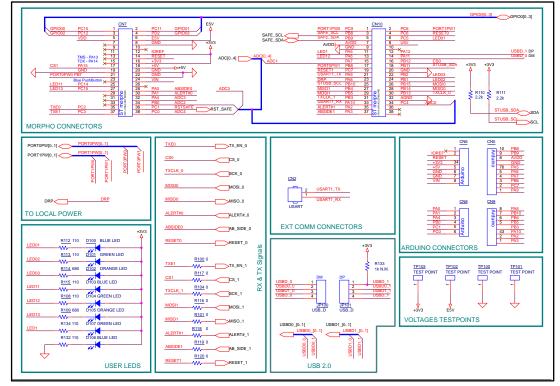




Figure 35: P-NUCLEO-USB002 expansion board circuit schematic - MCU interface



DocID030479 Rev 2

Figure 36: P-NUCLEO-USB002 expansion board circuit schematic - STUSB1602 front end Port0

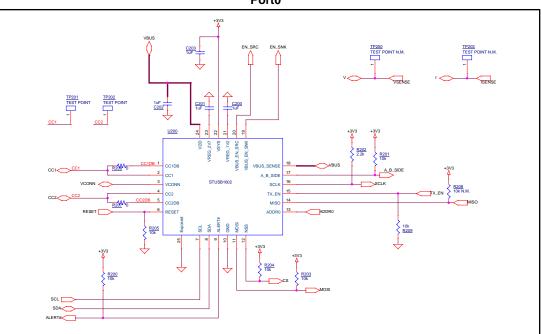
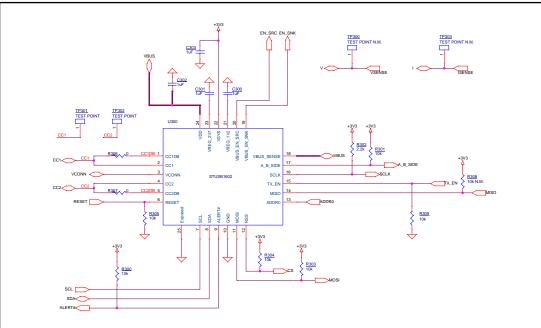




Figure 37: P-NUCLEO-USB002 expansion board circuit schematic - STUSB1602 front end Port1







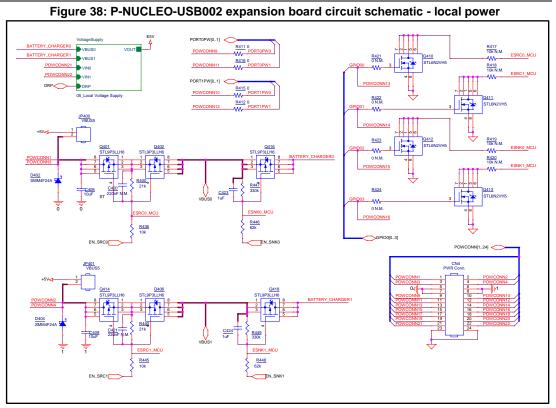
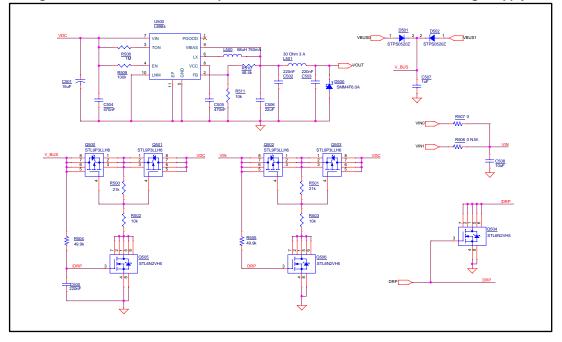
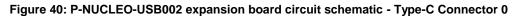
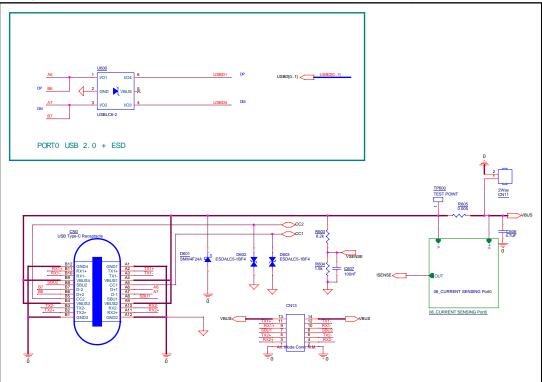
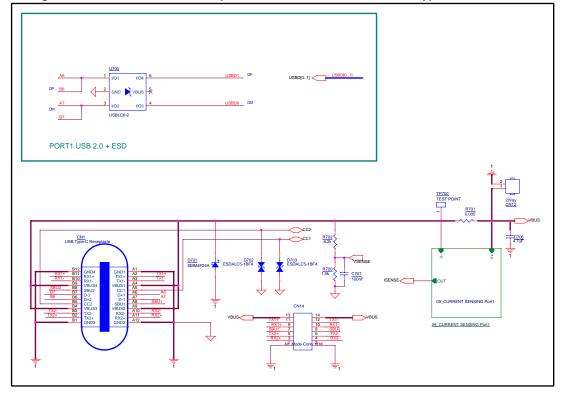
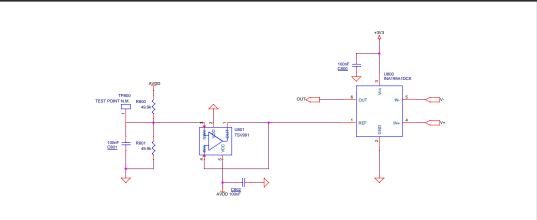




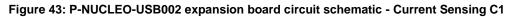

Figure 39: P-NUCLEO-USB002 expansion board circuit schematic - local voltage supply









Figure 41: P-NUCLEO-USB002 expansion board circuit schematic - Type-C Connector 1











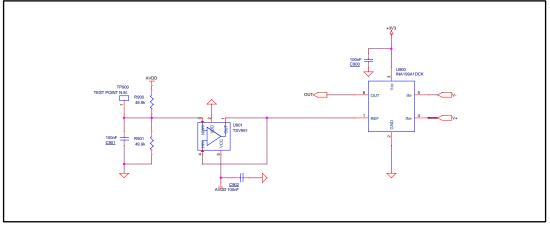
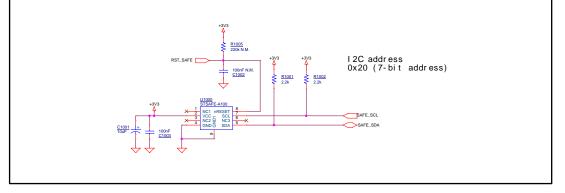




Figure 44: P-NUCLEO-USB002 expansion board circuit schematic - security





6

## **Bill of materials**

| Item | Q.ty | Ref.                                                                       | Part/Value               | Description       | Manufacturer       | Order code              |
|------|------|----------------------------------------------------------------------------|--------------------------|-------------------|--------------------|-------------------------|
| 1    | 2    | CN1,CN0                                                                    | USB Type-C<br>Receptacle | Type-C Receptacle | JEM                | 121U-3CST-01CR          |
| 2    | 1    | CN2                                                                        | UART<br>Connector        | HEADER            | ANY                |                         |
| 3    | 1    | CN4                                                                        | PWR Conn.                | HEADER            | AMPHENOL           | T821124A1S100CEU        |
| 4    | 1    | CN5                                                                        | ARDUINO_10<br>x1 N.M.    | HEADER            | SAMTEC             | SSQ-110-03-F-S          |
| 5    | 2    | CN6,CN9                                                                    | ARDUINO_8x<br>1 N.M.     | HEADER            | SAMTEC             | SSQ-108-03-F-S          |
| 6    | 2    | CN7,CN10                                                                   | ST_MORPHO<br>_19x2       | HEADER            | SAMTEC             | ESQ-119-24-T-D          |
| 7    | 1    | CN8                                                                        | ARDUINO_6x<br>1 N.M.     | HEADER            | SAMTEC             | SSQ-106-03-G-S          |
| 8    | 2    | CN11,CN12                                                                  | 2Way                     | HEADER            | Phoenix<br>Contact | 1725656                 |
| 9    | 2    | CN13,CN14                                                                  | Alt. Mode<br>Conn. N.M.  | HEADER            | ANY                |                         |
| 10   | 11   | C200,C201,<br>C202,C203,<br>C300,C301,<br>C302,C303,<br>C423,C424,<br>C507 | 1µF 50V ±10%             | Ceramic X5R       | ANY                |                         |
| 11   | 3    | C408,C409,<br>C508                                                         | 10µF 35∨<br>±10%         | Ceramic X5R       | MURATA             | GRM31CR6YA106KA<br>12L  |
| 12   | 2    | C420,C421                                                                  | 220nF N.M.<br>50V ±10%   | Ceramic X5R       | ANY                |                         |
| 13   | 3    | C500,C502,<br>C503                                                         | 220nF 50V<br>±10%        | Ceramic X5R       | ANY                |                         |
| 14   | 1    | C501                                                                       | 15µF 25∨<br>±10%         | Tantalium         | VISHAY             | 293D156X9025B2TE<br>3   |
| 15   | 2    | C504,C505                                                                  | 470nF 50V<br>±10%        | Ceramic X5R       | ток                | C1608X5R1H474K08<br>0AB |
| 16   | 1    | C506                                                                       | 22µF 16V<br>±20%         | Ceramic X5R       | AVX                | 1206YD226MAT2A          |
| 17   | 2    | C606,C706                                                                  | 4.7µF 100V<br>±10%       | Ceramic X7S       | AVX                | 12061Z475KAT2A          |
| 18   | 9    | C607,C707,<br>C800,C801,<br>C802,C900,<br>C901,C902,<br>C1003              | 100nF 25V<br>±10%        | Ceramic X5R       | ANY                |                         |
| 19   | 1    | C1001                                                                      | 10µF 6.3V<br>±10%        | Tantalium         | AVX                | TAJR106K006RNJ          |



#### UM2191

Bill of materials

|      |      |                                                                                                                      |                        |                         |                     | Bill of materials |
|------|------|----------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------|-------------------|
| Item | Q.ty | Ref.                                                                                                                 | Part/Value             | Description             | Manufacturer        | Order code        |
| 20   | 1    | C1002                                                                                                                | 100nF N.M.<br>25V ±10% | Ceramic X5R             | ANY                 |                   |
| 21   | 3    | D100,D103,<br>D106                                                                                                   | BLUE LED<br>3.2V       | LED                     | Kingbright          | KP-2012PBC-A      |
| 22   | 3    | D101,D104,<br>D107                                                                                                   | GREEN LED<br>2.2V      | LED                     | Kingbright          | KP-2012SGC        |
| 23   | 2    | D102,D105                                                                                                            | ORANGE LED<br>2.5V     | LED                     | Kingbright          | KP-2012SEC        |
| 24   | 4    | D402,D404,<br>D601,D701                                                                                              | SMM4F24A<br>24V        | Transil                 | ST                  | SMM4F24A-TR       |
| 25   | 1    | D500                                                                                                                 | SMM4F6.0A<br>6V        | Transil                 | ST                  | SMM4F6.0A-TR      |
| 26   | 2    | D501,D502                                                                                                            | STPS0520Z<br>30V       | Diode Schottky<br>diode | ST                  | STPS0520Z         |
| 27   | 4    | D602,D603,<br>D702,D703                                                                                              | ESDALC5-<br>1BF4       | TVS diode               | ST                  | ESDALC5-1BF4      |
| 28   | 2    | JP001,JP000                                                                                                          | VCONN                  | HEADER                  | ANY                 |                   |
| 29   | 2    | JP100,JP101                                                                                                          | USB_D                  | HEADER                  | ANY                 |                   |
| 30   | 2    | JP400,JP401                                                                                                          | VBUS5                  | HEADER                  | ANY                 |                   |
| 31   | 1    | L500                                                                                                                 | 68uH 750mA<br>±30%     | Inductor                | Wurth<br>Elektronik | 744053680         |
| 32   | 1    | L501                                                                                                                 | 30Ω 3 A                | Bead                    | Wurth<br>Elektronik | 74279206          |
| 33   | 10   | Q401,Q402,<br>Q406,Q414,<br>Q416,Q418,<br>Q500,Q501,<br>Q502,Q503                                                    | STL9P3LLH6             | PMOS                    | ST                  | STL9P3LLH6        |
| 34   | 7    | Q410,Q411,<br>Q412,Q413,<br>Q504,Q505,<br>Q506                                                                       | STL6N2VH5              | NMOS                    | ST                  | STL6N2VH5         |
| 35   | 17   | R015,R100,<br>R101,R104,<br>R116,R117,<br>R118,R119,<br>R120,R206,<br>R207,R306,<br>R307,R411,<br>R412,R415,<br>R416 | 0 ±1%                  | RESISTOR                | ANY                 |                   |
| 36   | 5    | R016,R421,<br>R422,R423,<br>R424                                                                                     | 0 N.M. ±1%             | RESISTOR                | ANY                 |                   |
| 37   | 8    | R017,R019,<br>R208,R308,<br>R417,R418,<br>R419,R420                                                                  | 10k N.M. ±1%           | RESISTOR                | ANY                 |                   |



49/55

| erials |      | D.(                                                                                                                                | D. (0/1)           |             |                      | UM2191               |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------------|----------------------|
| Item   | Q.ty |                                                                                                                                    | Part/Value         | Description | Manufacturer         | Order code           |
| 38     | 19   | R018,R020,<br>R200,R201,<br>R203,R204,<br>R205,R209,<br>R300,R301,<br>R303,R304,<br>R305,R309,<br>R436,R445,<br>R502,R503,<br>R511 | 10k ±1%            | RESISTOR    | ANY                  |                      |
| 39     | 6    | R108,R112,<br>R113,R115,<br>R132,R134                                                                                              | 110 ±1%            | RESISTOR    | ANY                  |                      |
| 40     | 2    | R109,R114                                                                                                                          | 680 ±1%            | RESISTOR    | ANY                  |                      |
| 41     | 6    | R110,R111,<br>R202,R302,<br>R1001,<br>R1002                                                                                        | 2.2k ±1%           | RESISTOR    | ANY                  |                      |
| 42     | 1    | R133                                                                                                                               | 1k N.M. ±1%        | RESISTOR    | ANY                  |                      |
| 43     | 4    | R400,R440,<br>R500,R501                                                                                                            | 21k ±1%            | RESISTOR    | ANY                  |                      |
| 44     | 2    | R446,R448                                                                                                                          | 62k ±1%            | RESISTOR    | ANY                  |                      |
| 45     | 2    | R447,R449                                                                                                                          | 330k ±1%           | RESISTOR    | ANY                  |                      |
| 46     | 6    | R504,R505,<br>R800,R801,<br>R900,R901                                                                                              | 49.9k ±1%          | RESISTOR    | VISHAY               | CRCW060349K9FKE<br>A |
| 47     | 2    | R604,R700                                                                                                                          | 1.5k ±1%           | RESISTOR    | ANY                  |                      |
| 48     | 1    | R506                                                                                                                               | 0 N.M. ±1%         | RESISTOR    | ANY                  |                      |
| 49     | 1    | R507                                                                                                                               | 0 ±1%              | RESISTOR    | ANY                  |                      |
| 50     | 1    | R508                                                                                                                               | 1M ±1%             | RESISTOR    | ANY                  |                      |
| 51     | 1    | R509                                                                                                                               | 100k ±1%           | RESISTOR    | ANY                  |                      |
| 52     | 1    | R510                                                                                                                               | 46.4k 50V<br>±1%   | RESISTOR    | MULTICOMP            | MC0063W0603146K4     |
| 53     | 2    | R603,R702                                                                                                                          | 8.2k ±1%           | RESISTOR    | ANY                  |                      |
| 54     | 2    | R605,R701                                                                                                                          | 0.005 ±1%          | RESISTOR    | Panasonic            | ERJM1WSF5M0U         |
| 55     | 1    | R1005                                                                                                                              | 220k N.M.<br>±1%   | RESISTOR    | ANY                  |                      |
| 56     | 10   | TP100,TP10<br>1,TP102,TP1<br>03,TP201,TP<br>202,TP301,T<br>P302,TP600,<br>TP700                                                    | TEST POINT         | TEST POINT  | Vero<br>Technologies | 20-2137              |
| 57     | 6    | TP200,TP20<br>3,TP300,TP3<br>03,TP800,TP<br>900                                                                                    | TEST POINT<br>N.M. | TEST POINT  | Vero<br>Technologies | 20-2137              |



#### UM2191

Bill of materials

|      |      |                     |             |                                                       |                          | Bill of materials |
|------|------|---------------------|-------------|-------------------------------------------------------|--------------------------|-------------------|
| Item | Q.ty | Ref.                | Part/Value  | Description                                           | Manufacturer             | Order code        |
| 58   | 2    | U200,U300           | STUSB1602   | USB Type-C<br>interface                               | ST                       | STUSB1602         |
| 59   | 1    | U500                | L6984       | DCDC                                                  | ST                       | L6984TR           |
| 60   | 2    | U600,U700           | USBLC6-2    | ESD protection                                        | ST                       | USBLC6-2SC6       |
| 61   | 2    | U800,U900           | INA199A1DCK | Current shunt<br>monitor                              | TEXAS<br>INSTRUMENT<br>S | INA199A1DCKR      |
| 62   | 2    | U801,U901           | TSV991      | Rail to rail op-amp                                   | ST                       | TSV991AILT        |
| 63   | 1    | U1000               | STSAFE-A100 | Authentication<br>device                              | ST                       | STSAFE-A100       |
| 64   | 3    | JUMPER              |             | Female 2.54mm<br>jumper                               |                          |                   |
| 65   | 1    | USB Type-C<br>Cable |             | CABLE USB C-<br>MALE TO C-MALE<br>1M                  |                          |                   |
| 66   | 2    | UART wires          |             | Female to Female<br>2.54mm 0.1 in<br>Jumper Wires F/F |                          |                   |



# 7 Acronyms and abbreviations

Table 12: List of acronyms

| Acronym         | Description                               |  |  |  |
|-----------------|-------------------------------------------|--|--|--|
| USB             | Universal Serial Bus                      |  |  |  |
| PD              | Power Delivery                            |  |  |  |
| СС              | Configuration Channel                     |  |  |  |
| DRP             | Dual Role Power                           |  |  |  |
| SBU             | Sideband Use                              |  |  |  |
| EMC             | Electronically Marked Cable               |  |  |  |
| MCU             | Microcontroller Unit                      |  |  |  |
| DFP             | Downstream Facing Port                    |  |  |  |
| UFP             | Upstream Facing Port                      |  |  |  |
| USB OTG         | USB on-the-go                             |  |  |  |
| PHY             | Physical layer                            |  |  |  |
| BMC             | Biphase Marked Coding                     |  |  |  |
| IDEs            | Integrated Development Environments       |  |  |  |
| VDM             | Vendor Defined Messages                   |  |  |  |
| HDMI            | High-Definition Multimedia Interface      |  |  |  |
| DP              | DisplayPort                               |  |  |  |
| PCI Express     | Peripheral Component Interconnect Express |  |  |  |
| Base-T Ethernet | Ethernet over twisted pair                |  |  |  |
| MHL             | Mobile High-definition Link               |  |  |  |
| CRC             | Cyclic Redundancy Check                   |  |  |  |



## 8 References

- 1. USB2.0 Universal Serial Bus Revision 2.0 Specification.
- 2. USB3.1 Universal Serial Bus Revision 3.1 Specification.
- 3. USB PD USB Power Delivery Specification Revision 2.0, Version 1.3, January 12, 2017.
- 4. USB Type-C Cable and Connector Specification Revision 1.2.
- 5. USB BC Battery Charging Specification Revision1.2 (including errata and ECNs through March 15, 2015), March 15, 2012.
- 6. USB BB USB Device Class Definition for Billboard Devices rev1.0a April 15, 2015.



# 9 Revision history

Table 13: Document revision history

| Date        | Version | Changes                                                                                                                                                                                                         |  |  |
|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 26-May-2017 | 1       | Initial release.                                                                                                                                                                                                |  |  |
| 19-Jun-2017 | 2       | Minor text and formatting changes<br>Updated Table 11: "P-NUCLEO-USB002 expansion board LED<br>signaling"<br>Inserted note in Section 2.3.5: "P-NUCLEO-USB002 expansion board:<br>local power management stage" |  |  |



#### UM2191

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

