c - UM2024
” life.augmented User manual

Headphone virtualization library
software expansion for STM32Cube

Introduction

The HeadPhone Virtualization (HPV) library user manual describes the software interface
and requirements for the integration of the module into a main program like the Audio
STM32Cube expansion software and provides a rough understanding of the underlying
algorithm.

The HPV library implements the audio virtualization for headphone from mono to 7.1 input
signals. Please refer to UM1655 and UM1633 for loudspeakers virtualization.

The HPV library is part of the X-CUBE-AUDIO firmware package.

January 2018 DoclD028986 Rev 3 1/22

www.st.com

http://www.st.com

Contents UM2024

Contents
1 Module overview i i i s 5
1.1 Algorithm function 5
1.2 Module configuration 5
1.3 Resources summary 7
2 Module Interfaces i 10
21 APIS 10
211 hpv_resetfunction 10
2.1.2 hpv_setParamfunction 10
213 hpv_getParam function 11
214 hpv_setConfig function 11
21.5 hpv_getConfig function 12
216 hpv_processfunction 12
2.2 External definitionsand types i 12
2.21 Inputand outputbuffers 12
222 Returned errorvalues 13
2.3 Static parameters structure L. 13
24 Dynamic parameters structure 14
3 Algorithm description i i i e 15
3.1 Processing steps 15
3.2 Dataformats 15
3.3 Performance assessment 16
4 System requirements and hardwaresetup 17
4.1 Recommended setup for optimalsetup 17
411 Module integrationexample i 17
41.2 Module integration summary 18
5 How to run and tune the application 20
6 Revision history e 21

2/22 DoclD028986 Rev 3 ‘Yl

UM2024

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.

3

RESOUICES SUMMIANYt e e e e e e e e e e e et 7
NPV _reSet . . 10
hpv_setParam. 11
hpv_getParam 11
hpV_SetCoNfig. 11
hpv_getConfig. e 12
PV PrOCESS . . o o e 12
Inputand output buffers e 13
Returned error values. e 13
Static parameters structure. 14
Dynamic parameters structure 14
Documentrevision history 21
DoclD028986 Rev 3 3/22

List of figures UM2024

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.

4/22

HPV algorithm functionality. 5
Block diagramofthe HPV module 15
HPV positioning ina basicaudiochain. 17
APl call procedure 18

DocID028986 Rev 3

3

UM2024

Module overview

1.1

1.2

3

Module overview

Algorithm function

The HPV module provides functions to handle audio virtualization on headphones. Goals of
this module are to have virtualization effect and to feel sounds less aggressive for the ears.
Front channels (from stereo or multichannel files) are no more heard on the sides close to
the ears but are narrowed in front of the listener, while surround and rear sounds are played
around the listener. Some reverberation and “Out of Head” effects help feeling greater
virtualization and allows to feel smoother sounds as well (attenuation of HP vibrations).

The Figure 1 presents the effect perception with HPV activated.

Figure 1. HPV algorithm functionality

Perceived Virtual
Speakers

» A o

= 110 Deg

< R f » 150 Deg
Physical
Speakers

MSv38478V1

Module configuration

The HPV module supports 1.0, 2.0, 5.1 and 7.1 interleaved 16-bit and 32-bit I/O data at a
48 kHz sampling frequency, with a minimum input frame size of 2ms (96 samples per
channel). For MIPS optimization reasons, frame length must be a multiple of 4 samples as

well.

Several versions of the module are available depending on the 1/0 format, the supported
features, the quality level, the Cortex Core and the used tool chain:

DoclD028986 Rev 3 5/22

Module overview UM2024

6/22

HPV_20_CM4_lAR.a/HPV_20_CM4_GCC.a/HPV_20_CM4_Keil.lib: standard
version optimized for mono and stereo inputs only, with 16 bits input/output buffers and
it runs on any STM32 microcontroller featuring a core with Cortex-M4 instruction set.

HPV_20_HQ_CM4_|AR.a/HPV_20_HQ_CM4_GCC.a/HPV_20_HQ_CM4_Keil.lib:
High Quality version optimized for mono and stereo inputs only, with 16 bits
input/output buffers and it runs on any STM32 microcontroller featuring a core with
Cortex-M4 instruction set.

HPV_20_HQ_32b_CM4_IAR.a/HPV_20_HQ_32b_CM4_GCC.a/

HPV_20 HQ_32b_CM4_Keil.lib: High Quality version optimized for mono and stereo
inputs only, with 32 bits input/output buffers and it runs on any STM32 microcontroller
featuring a core with Cortex-M4 instruction set.

HPV_CM4 _IAR.a/HPV_CM4_GCC.a/HPV_CM4 Keil.lib: standard version
optimized for mono, stereo, 5.1 and 7.1 inputs, with 16 bits input/output buffers and it
runs on any STM32 microcontroller featuring a core with Cortex-M4 instruction set.

HPV_HQ_CM4_lAR.a/HPV_HQ_CM4_GCC.a/HPV_HQ_CM4_Keil.lib: High Quality
version optimized for mono, stereo, 5.1 and 7.1 inputs, with 16 bits input/output buffers
and it runs on any STM32 microcontroller featuring a core with Cortex-M4 instruction
set.

HPV_HQ_32b_CM4_lAR.a/HPV_HQ_32b_CM4_GCC.a/
HPV_HQ_32b_CM4_Keil.lib: High Quality version optimized for mono, stereo, 5.1 and
7.1 inputs, with 32 bits input/output buffers and it runs on any STM32 microcontroller
featuring a core with Cortex-M4 instruction set.

HPV_20_CM7_lAR.a/HPV_20_CM7_GCC.a/HPV_20_CM7_Keil.lib: standard
version optimized for mono and stereo inputs only, with 16 bits input/output buffers and
it runs on any STM32 microcontroller featuring a core with Cortex-M7 instruction set.

HPV_20_HQ_CM7_IAR.a/HPV_20_HQ_CM7_GCC.a/HPV_20_HQ_CM7_Keil.lib:
High Quality version optimized for mono and stereo inputs only, with 16 bits
input/output buffers and it runs on any STM32 microcontroller featuring a core with
Cortex-M7 instruction set.

HPV_20 HQ_32b_CM7_lAR.a/HPV_20 HQ_32b_CM7_GCC.a/

HPV_20 HQ_32b_CM?7_Keil.lib: High Quality version optimized for mono and stereo
inputs only, with 32 bits input/output buffers and it runs on any STM32 microcontroller
featuring a core with Cortex-M7 instruction set.

HPV_CM7_IAR.a/HPV_CM7_GCC.a/HPV_CM7_Keil.lib: standard version
optimized for mono, stereo, 5.1 and 7.1 inputs, with 16 bits input/output buffers and it
runs on any STM32 microcontroller featuring a core with Cortex-M7 instruction set.

HPV_HQ_CM7_lAR.a/HPV_HQ_CM7_GCC.a/HPV_HQ_CM7_Keil.lib: High Quality
version optimized for mono, stereo, 5.1 and 7.1 inputs, with 16 bits input/output buffers
and it run on any STM32 microcontroller featuring a core with Cortex-M7 instruction
set.

HPV_HQ_32b_CM7_IAR.a/HPV_HQ_32b_CM7_GCC.a/
HPV_HQ_32b_CM7_Keil.lib: High Quality version optimized for mono, stereo, 5.1 and
7.1 inputs, with 32 bits input/output buffers and it runs on any STM32 microcontroller
featuring a core with Cortex-M7 instruction set.

3

DocID028986 Rev 3

UM2024 Module overview
1.3 Resources summary
Table 1 contains Flash, stack, RAM and frequency requirements, the consumed MHz bein
y 9
measured with a 10 ms framing.
Those footprints are measured on board, using IAR Embedded Workbench for ARM v7.40
g
(IAR Embedded Workbench common components v7.2).
Table 1. Resources summary
Flash Flash
i Frequenc
- Use case @ 48 kHz | Core code data Stack Pe':fntnent S;r:;;:h 9 4
(.text) | (.rodata) (MHz)
11142
M4 Bytes 27
1.0=>2.0
HPV Stereo my | 11314 18.9
Standard Bytes 7800 500 17220 2884
Quality, 11142 Bytes Bytes Bytes Bytes
16-bits /0 M4 | Bytes 25
2.0=>2.0 1314
M7 Bytes 16.3
10166
M4 Bytes 26
1.0=>2.0 10178
7
M7 17.7
HPV Stereo Bytes | 7800 | 500 19908 3460
High Quality, Bytes Bytes Bytes Bytes
16-bits /0 ma | 10166 | EY y y 23
Bytes
2.0=>2.0 101
0178
M7 Bytes 14.9
11674
M4 Bytes 27
1.0=>2.0 11798
M7 Bytes 19
11674
M4 Bytes 24
2.0=>2.0
HPV Multi my | 1798 16.3
Standard Bytes 7800 500 26180 3844
Quality, 11674 Bytes Bytes Bytes Bytes
16-bits /0 M4 | Bytes 76
5.1=>2.0 1
798
M7 Bytes 48.3
11674
M4 | Btes 86
7.1=>2.0 11798
M7 Bytes 51.4
1S7 DoclD028986 Rev 3 7/22

Module overview UM2024

Table 1. Resources summary (continued)

Flash Flash .
Frequenc
- Use case @ 48 kHz | Core code data Stack Pen:f“;ent s;’:ﬁh 9 y
(.text) | (.rodata) (MHz)
11098
MA | Bie 27
1.0=>2.0
11126
M7 | Blte 19.8
11098
MA | Biie 24
2.0=>2.0 1126
, M7 16.9
HPV Multi Bytes | 7800 | 500 | 35588 | 5380
High Quality, Bytes Bytes Bytes Bytes
16-bits 1/0 Ma | 11098 y y y y 75
Bytes
5.1=>2.0 126
M7 | B tes 525
11098
MA | Bie 86
7.1=>2.0
11126
M7 | Blte 56.6
10166
M4 | Bies 28
1.0=>2.0 prve
M7 18
HPV Stereo Bytes | 7g00 500 19908 3460
High Quality, Bytes Bytes Bytes Bytes
32-bits 1/0 va | 10166 4 Y y y 045
Bytes ’
2.0=>2.0
10178
M7 | Btes 14.9
11098
MA | Bie 28
1.0=>2.0
11126
M7 | Bltee 19.6
ma | 11098 245
Bytes
2.0=>2.0 1126
, M7 16.8
HPV Multi Bytes | 7800 500 35508 5380
High Quality, Bytes Bytes Bytes Bytes
32-bits 1/0 va | 11098 y y y y 79
Bytes
5.1=>2.0 o
26
M7 | B tes 523
11098
M4 | Bie 93
7.1=>2.0
11126
M7 | Blte 56.4
8/22 DoclD028986 Rev 3 ‘Yl

UM2024 Module overview

Note: Footprints on STM32F7 are measured on boards with stack, persistent and scratch RAM
located in DTCM memory while I/O buffers are located in ISRAM.
Scratch RAM is the memory that can be shared with other process running on the same
priority level. This memory is not used from one frame to another by HPV routines.

3

DocID028986 Rev 3 9/22

Module Interfaces UM2024

2 Module Interfaces

Two files are needed to integrate HPV module. HPV_xxx_CMy zzz.a/.lib library and the
hpv_glo.h header file which contain all definitions and structures to be exported to the
software integration framework.

Note: The audio_fw_glo.h file is a generic header file common to all audio modules; it must be
included in the audio framework.

2.1 APls

Six generic functions have a software interface to the main program:
e hpv_reset

e hpv_setParam

e hpv_getParam

e hpv_setConfig

e hpv_getConfig

e hpv_process

211 hpv_reset function

This procedure initializes the persistent memory of the module, and initializes static and
dynamic parameters with default values.

int32_t hpv_reset (void *persistent_mem_ptr, void *dynamic_mem_ptr) ;

Table 2. hpv_reset

110 Name Type Description
Input persistent_mem_ptr |void * Pointer to internal persistent memory
Input scratch_mem_ptr void * Pointer to internal scratch memory
Returned value - int32_t Error value

This routine must be called at least once at initialization time, when the real time processing
has not started.

21.2 hpv_setParam function

This procedure writes module’s static parameters from the main framework to the module's
internal memory. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with the values which
cannot be changed during the module processing (frame by frame).

int32_t hpv_setParam(hpv_static_param_t *input_static_param_ptr, void
*persistent_mem_ptr) ;

3

10/22 DocID028986 Rev 3

UM2024 Module Interfaces

Table 3. hpv_setParam

110 Name Type Description
. . . " Pointer to static parameters
Input input_static_param_ptr | hpv_static_param_t structure
. . Pointer to internal persistent
Input persistent_mem_ptr void
memory
Retumed - int32_t Error value
value -

21.3 hpv_getParam function

This procedure gets the module’s static parameters from the module's internal memory to
the main framework. It can be called after the reset routine and before the start of the real
time processing. It handles the static parameters, i.e. the parameters with values which
cannot be changed during the module processing (frame by frame).

int32_t hpv_getParam(hpv_static_param_ t *input_static_param ptr, void
*persistent_mem_ptr) ;

Table 4. hpv_getParam

/10 Name Type Description
Input input_static_param_ptr | hpv_static_param_t * Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value

214 hpv_setConfig function

This procedure sets the module’s dynamic parameters from the main framework to the
module’s internal memory. It can be called at any time during the module processing (after
hpv_reset() and hpv_setParam() routines call).

int32_t hpv_setConfig (hpv_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;

Table 5. hpv_setConfig

110 Name Type Description
Input input_dynamic_param_ptr | hpv_dynamic _param_t* Pointer to dynamic parameters
P put_dy P P pv_dy —P - structure
Input persistent_mem_ptr void * Pointer to internal persistent
memory
Returned - int32_t Error value
value -
‘Yl DoclD028986 Rev 3 11/22

Module Interfaces UM2024

215 hpv_getConfig function

This procedure gets the module’s dynamic parameters from the internal persistent memory
to the main framework. It can be called at any time during processing (after hpv_reset() and
setParam() routines call).

int32_t hpv_getConfig(hpv_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;

Table 6. hpv_getConfig

110 Name Type Description
Input input_dynamic_param_ptr | hpv_dynamic_param_t * Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value
21.6 hpv_process function

This procedure is the module's main processing routine. It should be called at any time, to
process each frame.

int32_t hpv_process (buffer_t *input_buffer, buffer_t *output_buffer, void
*persistent_mem_ptr) ;

Table 7. hpv_process

110 Name Type Description
Input input_buffer buffer_t * Pointer to input buffer structure
Output output_buffer buffer_t * Pointer to output buffer structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
\I/?aeltjuerned - int32_t Error value

This process routine can run in place only for 2.0 to 2.0 processing.

2.2 External definitions and types

In order to facilitate the integration in the main frameworks, some types and definitions have
been defined.

2.21 Input and output buffers

The HPV library is using extended I/O buffers which contain, in addition to the samples,
some useful information on the stream such as the number of channels, the number of
bytes per sample and the interleaving mode.

An I/O buffer structure type, as described below, must be used each time before calling to
the processing routine; otherwise error will be returned:

typedef struct {

12/22 DoclD028986 Rev 3 ‘Yl

UM2024

Module Interfaces

int32_t nb_channels;
int32_t nb_bytes_per_Sample;
void *data_ptr;
int32_t buffer_size;
int32_t mode;
} buffer_t;
Table 8. Input and output buffers
Name Type Description
nb_channels int32_t | Number of channels in data: 1 for mono, 2 for stereo, 6 for 5.1, 8 for 7.1

nb_bytes per_Sample |int32_t

Dynamic data in number of bytes (2 for 16-bit data, ...)

data_ptr void * | Pointer to data buffer (must be allocated by the main framework)
buffer_size int32_t | Number of samples per channel in the data buffer

mode int32_t | Buffer mode: 0 = not interleaved, 1 = interleaved

222 Returned error values

Possible returned error values are described below:

Table 9. Returned error values

Definition Value Description
HPV_ERROR_NONE 0 OK - No error detected
HPV BAD HW 1 May happen if the library is not used with the
- - right HW
HPV_ERROR_BAD STRENGHT -2 HPV strength must be between 0 and 100%
HPV_ERROR_BAD_HEADTRACKING_AZIMUTH 3 HPV head tracking azimuth must be between -
175 and +180 degrees
HPV_ERROR_BAD_AUDIOMODE -4 Error returned in case of unsupported mode
HPV ERROR BAD BUFFER LENGTH 5 Error retyrned if buffer length is smaller than
- - - — 2 ms or if not a multiple of 4 samples
2.3 Static parameters structure

Some static parameters must be set before calling the processing routine.

struct hpv_static_param {

int32_t HpvAudioMode;

int32_t HpvSamplingRate;

int32_t HpvLfeEnable;

Y

typedef struct hpv_static_param hpv_static_param_t;

3

DocID028986 Rev 3

13/22

Module Interfaces UM2024

Table 10. Static parameters structure

Name Type Description
HpvAudioMode int32_t Values taken from eHvpAcinput_Supported enumeration below
HpvSamplingRate int32_t 1/0 sampling rate in Hz
HpvLfeEnable int32_t 1 if LFE is part of input stream (5.1 or 7.1 inputs), else 0

The possible audio modes are described below:
enum eHpvAcInput_Supported
{
AINPUT 10 = 1, /* C */
AINPUT 20 = 2, /* L, R */
AINPUT 32 = 7, /* L, R, C, Ls, Rs */
AINPUT 34 = 11, /* L, R, C, Ls, Rs, Csl, Csr */
ANB_INPUT

24 Dynamic parameters structure

Four dynamic parameters can be used.
struct hpv_dynamic_param {
int32_t HpvEnable;
int32_t HpvStrength;
int32_t HpvHTEnable;
int32_t HpvHTAzimuth;
}i
typedef struct hpv_dynamic_param hpv_dynamic_param_t;

Table 11. Dynamic parameters structure

Name Type Description

HpvEnable int32_t | 1 to enable the HPV effect, else 0

HpvStrength int32_t | Effect strength from 0% to 100%

HpvHTEnable int32_t | 1 to activate head tracking usage, else 0
Head rotation angle (used when head tracking usage is activated). Values

HpvHTAzimuth int32_t | are in the range]-180: +180], +90 meaning head has turned right 90
degrees.

14/22 DoclD028986 Rev 3 Kys

UM2024 Algorithm description

3 Algorithm description

3.1 Processing steps

The block diagram of the Hpv module is described in Figure 2.

Figure 2. Block diagram of the HPV module

HPV high level processing
Left 1 > 2 3 4 5 6
Right —» >
»
Center > Eayand | »| HRTFand [> > > Left
Pre- Late Head Diffuse Spectrum
Side Left processing > Reflections > Tracking Reflections LFE compensation
management processing management management management
Side Right =l =l —» —» -+—» Right
Center Surround
Let | > > >
Center Surround
Right | 7 e B
LFE >

1. Pre-processing block: Preparation of the input signal for a better Early Reflections (ER) management by producing some
phase diffusion and channel separation.

Early and Late Reflections management block: Generation of early and late reflections.

3. HRTF and Head Tracking processing block: Virtualization from 7 channels to 2 channels based on Head-Related
Transfer Functions modeling.

4. Diffuse Reflections management block: Generation of diffuse reflections for a better reverberation modeling.
LFE management block: Omnidirectional LFE channel is combined with virtualized signals.
Spectrum compensation management block: Signal equalization for a better spectrum preservation.

3.2 Data formats

The module supports fixed point data in Q15 or Q31 format, with a mono, stereo, 5.1 and
7.1 interleaved pattern at 48kHz input sampling frequency.

3

DocID028986 Rev 3 15/22

Algorithm description UM2024

3.3

16/22

Performance assessment

There is no objective measurement available for this module; performances are only based
on a subjective assessment.

Below a list of subjective indicators that could be used to evaluate the effect quality:

Balance between Left Front and Right Front: capacity to avoid changing energy on
one front channel as compared to the other.

Balance between Left Surround and Right Surround: capacity to avoid changing
energy on one surround channel as compared to the other.

Center image stability: ability to keep the center image at the center speaker, or
between the left and right front loudspeakers.

Distinction between front and surround channels.

Out of head effect: Sensation that the sound does not come from the headphones,
very close to your ears, but from a farther source. Received sounds should be
perceived as less aggressive for ears.

Sound source direction: precision in the virtual sound source (30 degrees for front
signals, 110 degrees for side signals and 150 degrees for rear signals).

Spectrum preservation: ability to keep the original spectrum perception, wherever the
virtual sound comes from.

3

DocID028986 Rev 3

UM2024

System requirements and hardware setup

4

System requirements and hardware setup

HPV libraries are built to run either on a Cortex M4 or on a Cortex M7 core, without FPU
usage. They can be integrated and run on corresponding STM32F4/STM32L4 or STM32F7
family devices. There is no other HW dependency.

4.1 Recommended setup for optimal setup
The library processing should be placed just after the multichannel decoder for the
multichannel streams at 48 kHz, or after the sampling rate conversion for stereo streams at
any sampling frequencies. Note that only 48 kHz sampling frequency is supported in this
SW version.
There is no need for this module to be positioned close to the audio DAC, and some
graphical equalizer and volume management modules can be placed after it, without
affecting the virtualization perception.
Figure 3. HPV positioning in a basic audio chain
Multichannel : :
Audio . Audio Post
Strga_r_n Decoder HPV Processing Processing \ﬂ
Acquisition
2.0, 48
Multichannel, kHz
48 kHz input output

Mono or

Stereo Audio Sampling Rate . Audio Post

Stream Decoder Conversion AlPY FEezssing Processing \/A

Acquisition
1é00/ 21(501:8 2.0,
in;‘Jut kHz ‘éit[/(gf
MSv38480V1
41.1 Module integration example

Cube expansion HPV integration examples are provided on STM32746G-Discovery and
STM32469I-Discovery boards. Please refer to provided integration code for more details.

3

DocID028986 Rev 3

17/22

System requirements and hardware setup UmM2024

4.1.2

18/22

Module integration summary

Figure 4. API call procedure

1 Memory allocation
and
CRC enable and reset

v

hpv_reset()

v

static_param initialization

v

4
hpv_setParam()
A 4
5 audio stream read
input_buffer preparation
6
hpv_setConfig()
7
hpv_process()
8
Audio stream write
A 4
9

Memory freeing

MS32200v4

1. As explained above, the module' s persistent and scratch memories have to be allocated, as well as the
input and output buffer, according to the structures defined in Section 2.2.1: Input and output buffers.
Furthermore, as HPV library run on STM32 devices, CRC HW block must be enable and reset.

Once the memory is allocated, the call to hpv_reset() function initializes the internal variables.

The module's static configuration can now be set by initializing the static_param structure, once the audio
mode is known.

Call the hpv_setParam() routine to send the static parameters from the audio framework to the module.

The audio stream is read from the proper interface and the input_buffer structure has to be filled in
according to the stream characteristics (number of channels, sample rate, interleaving and data pointer).
The output buffer structure has to be set as well.

6. Get the dynamic parameters when they are updated and call the hpv_setConfig() routine to send the

DoclD028986 Rev 3 ‘Yl

UM2024 System requirements and hardware setup

dynamic parameters from the audio framework to the module.

7. Call the main processing routine to apply the effect.
The output audio stream can now be written in the proper interface.
Once the processing loop is over, the allocated memory has to be freed.

3

DocID028986 Rev 3 19/22

How to run and tune the application UM2024

5

20/22

How to run and tune the application

Once the module is integrated into an audio framework to play stereo samples at 48kHz,
user launches a player and the output file will be decoded and played with virtualization
effect on two physical output headphones.

The HPVEnable is used to enable and disable the effect.

The HPVStrength dynamic parameter is provided to change virtualization effect strength.
“Out of the head” effect and reverberation can be attenuated using this parameter.

The HpvHTEnable dynamic parameter is used to enable the head tracking feature. When it
is activated, HpvHTAzimuth parameter is taken into account.

The HpvHTAzimuth dynamic parameter should contain the relative azimuth of the head
compared to the sound coming from the front of the listener. A typical usage of this feature is
gaming, connecting sensors (accelerometer, gyroscope) output to HpvHTAzimuth input. If
head tracking feature is activated, sound will come from fixed sources, whatever the head
rotation around vertical axe.

3

DocID028986 Rev 3

UM2024 Revision history

6 Revision history

Table 12. Document revision history

Date Revision Changes

17-Feb-2016 1 Initial release.

Updated:

— Table 1: Resources summary, Table 2: hpv_reset, Table 3:
hpv_setParam, Table 4: hpv_getParam, Table 5: hpv_setConfig,
Table 6: hpv_getConfig, Table 7: hpv_process, Table 8: Input and
output buffers, Table 11: Dynamic parameters structure

— Section 1.2: Module configuration, Section 1.3: Resources
21-Mar-2017 2 summary, Section 2: Module Interfaces, Section 2.1.1: hpv_reset
function, Section 2.1.2: hpv_setParam function, Section 2.1.3:
hpv_getParam function, Section 2.1.4: hpv_setConfig function,
Section 2.1.5: hpv_getConfig function, Section 2.1.6: hpv_process
function, Section 4.1.1: Module integration example, Section 4.1.2:
Module integration summary, Section 5: How to run and tune the
application

Replace RPNs X-CUBE-AUDIO-F4, X-CUBE-AUDIO-F7 and X-
CUBE-AUDIO-L4 with X-CUBE-AUDIO.

08-Jan-2018 3

3

DoclD028986 Rev 3 21/22

UM2024

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

22/22 DocID028986 Rev 3

	1 Module overview
	1.1 Algorithm function
	Figure 1. HPV algorithm functionality

	1.2 Module configuration
	1.3 Resources summary
	Table 1. Resources summary

	2 Module Interfaces
	2.1 APIs
	2.1.1 hpv_reset function
	Table 2. hpv_reset

	2.1.2 hpv_setParam function
	Table 3. hpv_setParam

	2.1.3 hpv_getParam function
	Table 4. hpv_getParam

	2.1.4 hpv_setConfig function
	Table 5. hpv_setConfig

	2.1.5 hpv_getConfig function
	Table 6. hpv_getConfig

	2.1.6 hpv_process function
	Table 7. hpv_process

	2.2 External definitions and types
	2.2.1 Input and output buffers
	Table 8. Input and output buffers

	2.2.2 Returned error values
	Table 9. Returned error values

	2.3 Static parameters structure
	Table 10. Static parameters structure

	2.4 Dynamic parameters structure
	Table 11. Dynamic parameters structure

	3 Algorithm description
	3.1 Processing steps
	Figure 2. Block diagram of the HPV module

	3.2 Data formats
	3.3 Performance assessment

	4 System requirements and hardware setup
	4.1 Recommended setup for optimal setup
	Figure 3. HPV positioning in a basic audio chain
	4.1.1 Module integration example
	4.1.2 Module integration summary
	Figure 4. API call procedure

	5 How to run and tune the application
	6 Revision history
	Table 12. Document revision history

