STMicroelectronics

TRACES32 for
Nomadik

User manual

8063903 Rev. A

January 2008

S74

BLANK

IYI User manual

TRACE32 for Nomadik

A/C)MADH(@ Nomadik is a registered trademark of STMicroelectronics
(it 01058

Introduction

This user guide is a quick reference to help the installation and use of TRACE32®, the
premier solution for debugging multi-cores on Nomadik.

January 2008 8063903 Rev. A 3/63

www.st.com

http://www.st.com

Contents TRACE32
Contents

Preface . . . 7

1 Installation 9

11 Software installation 9

111 Installing the run environments 10

1.2 Hardware installation 11

1.2.1 Installing the PowerTrace or PowerDebug driver 11

1.2.2 Configuring the targetboard 11

1.2.3 Connecting the Trace32 Devices to the targetboard 12

2 Using TRACE3Z e e e e e 13

2.1 Starting TRACES32 13

211 Startt32.bat parameters 13

2.1.2 startt32.bat usage examples 15

2.1.3 Trace32 Configurationfiles 17

214 Configuring the USB or Ethernet host connection 19

215 TRACE32startup 20

216 Nomadik configuration files 20

217 Stopping TRACES32 20

2.2 The graphical user interface (GUI) 21

2.3 Connectingto atarget Core 22

2.4 Changing CPUS 23

2.5 Loading an executable program i 24

251 Viewing the executablecode 25

2.6 Running the executable program 26

2.7 Breakpoints 26

271 Setting breakpoints 27

2.7.2 Viewing breakpoints 28

2.7.3 Changing breakpoints 28

2.8 Variables 29

2.9 MMy o e e 30

210 SymbOls 31

2.11 Targetcore’s peripheralsview i 32

4/63 8063903 ‘ﬁ

TRACE32 Contents
2.12 REgISIerS ... e 33

2121 StACK e 33

2.13 RTOS (TRACE32-MMDSP only)t 34

3 Performance analysistools 35
3.1 Coverage statistics 36

4 Using Nexus trace in TRACE32 37
4.1 Configuring Nexus tracettt e e 37

4.2 Nexus trace capture 38

4.3 View Program and data by Nexustrace 38

4.4 Example of using Nexus in STn8815 39

5 Cross debugging 44
6 Miscellaneous and tips 46
6.1 Terminal interface for I/O operations (MMDSP only) 46

6.2 Setting arguments for an MMDSP program a7

6.3 Displaying TRACE32 MESSAgES . .o oo i vttt i i i i it i i i e 47

6.4 Executing commands onthe hostshell 48

6.5 PriNtiNg e 49

6.5.1 Print preferences 49

6.5.2 Print the contents of awindow 50

6.6 Commands history e e e 51

6.7 Save andreuse settingso e 51

6.8 LOgging . ..ot 52

6.9 TRACE32help ... 53
Appendix A Licenseand guarantee i 54
Al LICENSE . .. 54

A.2 GUAraNtEE . . . e 54

'S7i 8063903 5/63

Contents TRACE32

Appendix B Target board configuration................. 0. ... 55
B.1 NDKI15 boards.o e 55

B.1.1 Switches configurations for debug and Nexus trace. 55

B.1.2 Distinguishthedebugmodes 56

B.2 COB20 boards.o 57

B.2.1 Switch configurations for debug and Nexus trace. 57

B.2.2 Debug mode change in STn8820. 57

AppendiXx C TRACE32 deVICEeS. . . oo v ittt e 58
AppendiX D CoNNECtiONSottt 59
AppendiX E GlOSSary 61
ReVISION NiSTOrY ... 62
6/63 8063903 1S7

TRACE32 Preface

Preface

Comments on this manual should be made by contacting your local STMicroelectronics
sales office or distributor.

License and guarantee information

Appendix A: License and guarantee on page 54 shows the licence and guarantee for
TRACE32.

MMDSP documentation suite

The Nomadik documentation suite comprises the following volumes:

Nomadik Toolset getting started

ADCS 8087207. This manual describes the principles of the Nomadik Toolset and provides
some basic worked examples.

Nomadik MMDSP+ Toolset

ADCS 8086787. This manual describes the Nomadik MMDSP+ Tools for compiling,
debugging and simulating code on Nomadik cores.

NMF programming model

ADCS 8071313. This manual describes the Nomadik multimedia framework (NMF)
programming model that is used to define the Nomadik component-based projects.

Trace32 for Nomadik

ADCS 8063903. This manual describes how to use TRACE32 to configure and connect to a
target board through a PowerTrace or PowerDebug box.

GNU documentation

In addition, there are several GNU documents supplied with the Nomadik Toolset that are
published by the Free Software Foundation.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:
e sample code, keyboard input and file names,
e variables, code variables and code comments,

e equations and math,

e screens, windows, dialog boxes and tool names,

e instructions.

KYI 8063903 7/63

Preface

TRACE32

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF) unless otherwise

specified.

e Terminal strings of the language, that is those not built up by rules of the language, are
printed in teletype font. For example, void.

e Nonterminal strings of the language, that is those built up by rules of the language, are
printed in italic teletype font. For example, name.

e If a nonterminal string of the language starts with a nonitalicized part, it is equivalent to
the same nonterminal string without that nonitalicized part. For example, vspace-
name.

e Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (*: : =").

e Alternatives are separated by vertical bars (‘|’).

e Optional sequences are enclosed in square brackets (‘[* and ‘17).

e Items which may be repeated appear in braces (‘{’ and ‘}").

Acknowledgements

8/63

Multi-ICE® and RealView® are registered trademarks of ARM limited in the EU and other
countries.

windows® is a registered trademarks of Microsoft Corporation in the United States and/or
other countries.

Linux®

TRACE32®is a registered trademark of Lauterbach Datentechnik GmbH.

is a registered trademark of Linus Torvalds.

Nomadik is a registered trademark of STMicroelectronics.

J

8063903

TRACE32 Installation

1 Installation

Perform the installation of TRACE32 in the following main steps.
1. Software installation, see Section 1.1: Software installation.
2. Hardware installation, see Section 1.2: Hardware installation on page 11.

1.1 Software installation

TRACE32 is a Windows program, to install do the following.
1. Insert the CD into your CD drive. The installation starts automatically. If it does not:

From the Windows Start menu, select Run and type D: \SETUP.BAT, where D is the
drive letter of your CD drive. A welcome page appears.

2. From the destination page, select the installation directory.
3. From the setup type page, select the type of installation:

If a version of TRACE32 is already installed for the ARM or SxA, download the latest
software update. Contact the TRACE32 purchase support for information on where to
locate the latest update.

4. From the product type page, select ICD.

5. From the ICD interface page, select the interface type. We recommend that you use a
USB Interface.

6. From the license selection page, select the licence. If you are using a new TRACE32
hardware device, you do not require a licence key, see Appendix A: License and
guarantee on page 54.

7. From the OS page, select the OS system.

8. From the CPU page, select each of the target CPUs from the list: ICD ARM, ICD and
MMDSP.

9. TRACES32 installs to your PC. A message box opens stating that “The USD driver
(T32USB.sys) is on the CD.", see Section 1.2: Hardware installation.

10. From the environment variable T32ID page, type the name of the T32ID environmental
variable.

11. From the environment variable T32TMP page, select the path to the T32ID
environmental variable. This is the directory for the TRACE32 temporary files. Ensure
that you have write permissions for this directory.

12. From the screen configuration page, select the TRACE32 screen configuration (font
sizes).

13. From the next screen configuration page, select whether TRACE32 has client windows
in a single window (MDI) or multiple windows spread around the whole screen (MWI).

14. From the prepare for integration page, select which products TRACE32 is to integrate
with.

15. From the folder selection page, select the Windows start folder for TRACE32.

16. From the program group type, select whether TRACES32 is for all users (common) or for
a single user (personal).

17. From the registration page, select the registration method.

This completes the installation.

KYI 8063903 9/63

Installation

TRACE32

111

Note:

10/63

Installing the run environments

To simplify the Nomadik debug configuration and Trace32 run environment configuration,
some configuration script files are delivered in the following folder.

<NDKTOOLS ROOT>\configuration\debugger\trace32

There are two ways to use the configuration files:

e Copy the content of the folder into the same location as the TRACE32 installation.

e If you need to keep these files somewhere else, modify the Windows environment
variable PATH so that Trace32 debugger programs are reachable. For example:

set PATH=%PATHS%;<Trace32 location>

Script files

The folder contains a set of scripts files (cob15_ xxx_xxx.cmm, stn8820xx_xxx.cmm) that
gives the STn8815 and STn8820 NDK boards configurations.
The following are the most common methods of booting a NDK15 or a NDK20 board.

e Running a configuration script file by an ARM debugger such as Trace32, Realview
Debugger, and so on.

The board configuration script files (cob15_xxx_xxx.cmm, stn8820xx_xxx.cmm) are
run using this method. The Trace32-ARM boot file can invoke the configuration files so
that when Trace32-ARM starts, the board is configured.

e Running (often by using an ARM debugger) an executable that configures the board.

The first two methods can be used with Trace32-ARM.

e The board boots itself at power-on or at reset by the boot code loaded in a flash
memory.

.bat files

The folder contains the startt32.bat that starts TRACE32.

Configuration files

The folder contains a set of configuration files that initialize and configure TRACE32, see
Section 2.1.3: Trace32 Configuration files on page 17.

Utility scripts

The folder contains a set of utilities scripts that help with the Nomadik debugging
configurations. For example, when configuring cross debugging (also known as cross
triggering), changing debug mode and so on.

J

8063903

TRACE32 Installation

1.2 Hardware installation

This section describes the installation of the TRACE32 devices.

Figure 1. PowerTrace or PowerDebug connections

USB PowerTrace or

PowerDebug Box
to PC X‘:[Debug Cable

Power

in %

|

ooooooooo

(¢}
@
>

|

1.2.1 Installing the PowerTrace or PowerDebug driver

On first use of the PowerTrace or PowerDebug, do the following.
1. Ensure that the installation CD is in the CD drive.
2. Connect the device through the USB cable to the PC.

3. Connect the device to the power supply and set the device power adaptor switch to On.
The PC detects the device automatically and opens the Found new hardware dialog
box.

4. Install the device driver.

On subsequent use, there is no need to install the device driver.

1.2.2 Configuring the target board

Appendix B: Target board configuration on page 55 shows how to set the switches and
jumpers on most target boards. Please refer to the NDK-15 Core Board user manual for
more information.

For the COB-10(B) and NDK-15 bhoards, select either “chained” or “unchained” debugging
mode (also known as “separated” mode).

In unchained mode, ARM and MMDSP debugging signals are routed through different paths
to different connectors on the board. A typical configuration has the debugger connect to the
NEXUS Mictor (P3) for SxA debugging and to the MAIN JTAG connector (J6) for ARM
debugging.

In chained mode, ARM and MMDSP debugging units (JTAG TAPs) are chained through the
same path to the same connector on the board. The debugger can connect to the MAIN
JTAG connector (J6) for both ARM and SxA debugging.

KYI 8063903 11/63

Installation TRACE32
1.2.3 Connecting the Trace32 Devices to the target board
Connect the debug devices correctly to the target boards.
For a minimal installation, you require a single PowerDebug box with a debug cable.
Appendix C: TRACE32 devices on page 58 shows the devices to be used in the different
configuration cases.
To connect the target board, do the following.
1. Identify the Nexus connector and JTAG interface on the target board, see Appendix D:
Connections on page 59.
2. Identify the debug mode (chained or unchained) configured by the Section 1.2.2:
Configuring the target board.
3. Identify the connection name in the Table5 in Appendix C: TRACE32 devices on
page 58.
4. Make the connection according to the Appendix D: Connections on page 59.
Caution: Always power on the Trace32 device first, then the target board. Always power off the target

12/63

board first, then Trace32 device.

8063903 ﬁ

TRACE32

Using TRACE32

2

2.1

211

Using TRACE32

This chapter describes briefly how to work with TRACE32, and describes only the most
commonly used functionality. For information on advanced operation, please consult the
TRACE32 help menu.

Starting TRACE32

To launch up to four Trace32 debuggers simultaneously in chained or unchained debug
mode, run the startt32.bat file, see 1.1.1: Installing the run environments on page 10.
Alternately, use the t32start.exe tool to launch the Trace32 debuggers.

To run startt32.bat, ensure that the following are correct before starting.

e Use the correct startt32 parameters, see Section 2.1.1: Startt32.bat parameters.

e Ensure that the configuration file is correct, see Section 2.1.3: Trace32 Configuration
files.

e Ensure the host connection is correct, see 2.1.4: Configuring the USB or Ethernet host
connection on page 19.

Startt32.bat parameters

start32 has three mandatory parameters and five optional parameters.

startt32 [-c] debug mode cores Nomadik version [MMDSP cores names]
[2-ports] [config-file] [-b boot-file]

To open the on-line help, type one of the following commands:
e startt32

e startt32/?

e startt32 --help

e startt32 -h

interactive mode

The option “-c” helps generate a startt32 command with the correct parameters. For
example:

startt32 -c

8063903 13/63

Using TRACE32

TRACE32

Other parameters

<debug mode>

<Ccores>

<Nomadik version>

14/63

Debug mode, see Section 1.2.2: Configuring the target board.
Use one of the following values.

chained: ARM and SXA(MMDSP+) JTAG interfaces are
chained.

unchained: ARM and SXA(MMDSP+) JTAG interfaces are
unchained. (It needs the PODBUS if the debug cores are
ARM+MMDSPs).

For ARM or MMDSP.
Use one of the following values.
arm: Starts one Trace32 GUI for ARM debugging.

arm-mmdsp: Starts two Trace32 GUI at a time for ARM and
one MMDSP debuggers.

arm-2mmdsp: Starts three Trace32 GUIs for ARM and two
MMDSPs debuggers.

arm-3mmdsp: Starts four Trace32 GUIs for ARM and three
MMDSPs debuggers.

mmdsp: Starts one Trace32 GUI for one MMDSP debugging

2mmdsp: Starts two Trace32 GUIs for two MMDSPs
debuggers.

3mmdsp: Starts three Trace32 GUIs for three MMDSPs
debuggers.

Use one of the following values.

8810: Configures STn8810 with init ndk10.cmm when
Trace32-ARM starts.

8815: Configures STn8815 with init ndkl5.cmm when
Trace32-ARM starts.

8820: Configures STn8820 with init ndk20.cmm when
Trace32-ARM starts.

none: Do not configure Nomadik at Trace32-ARM start.

J

8063903

TRACE32

Using TRACE32

2.1.2

[MMDSP cores names]

[2-ports]

[config-file]

[-b boot-file]

SAA, SVA or SIA. It's a optional parameter.

Use one of the following values.

a: the MMDSP to debug is SAA

v: the MMDSP to debug is SVA

i:the MMDSP to debug is SIA

av: the MMDSPs to debug are SAA and SVA
ai:the MMDSPs to debug are SAA and SIA

vi: the MMDSPs to debug are SVA and SIA

avi: the MMDSPs to debug are SAA, SVA, and SIA

This is an optional parameter. This parameter is rarely used
and not recommended.

It is used in the chained debug mode and the board is
configured to output ARM and MMDSP debug signals onto
both MAIN JTAG port and NEXUS mictor.

This mode of debug configuration is useful if the Nexus trace is
required and the debug mode can only be chained mode.

This option requires supplementary switches configuration on
the NDK boards, see NDK15 boards on page 55.

Displays the configuration file appropriate to the Trace32
settings. The command prompt displays the name of the
configuration file but does not start TRACE32, see
Section 2.1.3: Trace32 Configuration files.

Specifies the . cmm file that each Trace32 debugger runs at
start up. Without this option, the Trace32 uses the
ndk t32.cmm file.

startt32.bat usage examples

This section gives several examples of the start32.bat usage to start a Trace32-ARM
and a Trace32-MMDSP for debugging ARM and SAA in STn8815 in chained debug mode.

Example one

To open Trace32 in interactive mode, type startt32 -c. Trace32 displays the following

options.

<startt32 -c

The available debug modes are:

(c) chained: ARM and SxA (MMDSP+) JTAG interfaces are chained.

(u) unchained: ARM and SxA (MMDSP+) JTAG interfaces are unchained. (It needs the
PODBUS if the debug cores are ARM+MMDSPSs)

Please choose a debug mode:c

The available cores to debug are:
(a) arm start 1 Trace32 GUI for ARM debugging
(am) arm-mmdsp start 2 Trace32 GUI at a time for ARM and 1 MMDSP debuggings

(amm) arm-2mmdsp

start 3 Trace32 GUIs for ARM and 2 MMDSPs debuggings

8063903 15/63

Using TRACE32 TRACE32

Note:

16/63

(ammm) arm-3mmdsp start 4 Trace32 GUIs for ARM and 3 MMDSPs debuggings
(m) mmdsp start 1 Trace32 GUI for 1 MMDSP debugging

(mm) 2mmdsp start 2 Trace32 GUIs for 2 MMDSPs debuggings

(mmm) 3mmdsp start 3 Trace32 GUIs for 3 MMDSPs debuggings

Please chose the core(s) to debug:am

The available Nomadik versions are:

8810 configure STn8810 with init ndk1l0.cmm when Trace32-ARM starts
8815 configure STn8815 with init ndkl5.cmm when Trace32-ARM starts
8820 configure STn8820 with init ndk20.cmm when Trace32-ARM starts
(n) none do not configure Nomadik at Trace32-ARM start

Please choose a version:8815

The available SxA (MMDSP+) are:

a the MMDSP to debug is SAA

v the MMDSP to debug is SVA

i the MMDSP to debug is SIA

av the MMDSPs to debug are SAA and SVA

ai the MMDSPs to debug are SAA and SIA

vi the MMDSPs to debug are SVA and SIA

avi the MMDSPs to debug are SAA, SVA, and SIA

Please choose SxA:a
Each Trace32 GUI is started according to its configuration file. You may need to

edit it.
Do you want to get the configuration file(s) name(s)?[Y/N] (N)

Each Trace32 GUI runs a .cmm file at boot.
Do you want to specify the boot file (ndk_t32.cmm by default)?[Y/N] (N)

Running the command: startt32 chained arm-mmdsp 8815 a
start t32marm.exe -c ndk mc_config arm.t32, ndk_t32.cmm chained 8815 a C:\T32

Starting the second Trace32, please wait
start t32mmdsp.exe -c ndk mc_config mmdsp.t32, ndk t32.cmm chained 8815 a C:\T32

Example two

Open Trace32 by specifying all the startt32 parameters.

>startt32 chained arm-mmdsp 8815 a
start t32marm.exe -c ndk_mc_config arm.t32, ndk_t32.cmm chained 8815 a C:\T32

Starting the second Trace32, please wait
start t32mmdsp.exe -c ndk_mc_config mmdsp.t32, ndk_t32.cmm chained 8815 a C:\T32

Example three
Find the available configuration files names of example one.

To find the configuration names in interactive mode, type startt32 -c or by the complete
command:

>startt32 chained arm-mmdsp 8815 a config-file
Config file for Trace32-ARM: ndk mc_config arm.t32
Config file for Trace32-MMDSP: ndk mc_config mmdsp.t32

Trace32 debugger does not start.

8063903 ﬁ

TRACE32

Using TRACE32

2.1.3

Example four

Usemy t32 boot file.cmm as the Trace32 boot file instead of ndk_t32.cmm in the
example one.

startt32 chained arm-mmdsp 8815 a -b my t32 boot file.cmm
start t32marm.exe -c ndk mc_config arm.t32, my t32 boot file.cmm chained 8815 a
C:\T32

Starting the second Trace32, please wait ...
start t32mmdsp.exe -c ndk mc_config mmdsp.t32, my t32 boot file.cmm chained 8815
a C:\T32

Trace32 Configuration files

Use the appropriate configuration files to configure Trace32. Depending on the debug mode
and connections, use:

e PODBUS for the debug connection

e Environment variables referenced by the debugger
e USB or Ethernet for the connection to the host

e Printer settings

e Debugger's GUI setting

Use the config-file parameter to find the configuration file to the target, see
Section 2.1.1: Startt32.bat parameters.

It is possible that the configuration file needs to be modified to correspond with the host
environment. Ensure that the following lines are correct:

e SYS=the location of TRACE32

e HELP= the location of TRACE32 help

e TMP= the location of the temporary files folder

Table 1 lists the configuration files.

Table 1. Configuration files
Configuration file Description
the configuration file of Trace32-ARM in the single-
ndk _config arm.t32 core debug mode (without Trace32-MMDSP
launched)
the configuration file of Trace32-MMDSP in the
ndk_config mmdsp.t32 single-core mode (without Trace32-ARM

launched).

the configuration file of second instance of
ndk_config mmdsp_ core2.t32 Trace32-MMDSP in the single-core mode (without
Trace32-ARM launched).

the configuration file of third instance of Trace32-
ndk_config mmdsp core3.t32 MMDSP in the single-core mode (without Trace32-
ARM launched).

in the chained debug mode, the configuration file of
ndk _mc _config arm.t32 Trace32-ARM in multi-cores debug mode (at least

one Trace32-MMDSP will be launched).

8063903 17/63

Using TRACE32

TRACE32

18/63

Table 1. Configuration files

Configuration file

Description

ndk_mc_config mmdsp.t32

In the chained debug mode, the configuration file of
Trace32-MMDSP in multi-cores debug mode (the
Trace32-ARM has been launched before hand).

ndk_mc_config mmdsp core2.t32

In the chained debug mode, the configuration file of
the second instance of Trace32-MMDSP in multi-
cores debug mode (the Trace32-ARM and a
Trace32-MMDSP have been launched).

ndk_mc_config_mmdsp_core3.t32

in the chained debug mode, the configuration file of
the third instance of Trace32-MMDSP in multi-
cores debug mode (the Trace32-ARM and two
Trace32-MMDSP have been launched).

ndk_mc_podbus_config arm.t32

In the unchained debug mode, the configuration file
of the Trace32-ARM in multi-cores debug mode (at
least one Trace32-MMDSP will be launched).

ndk_mc_podbus config mmdsp.t32

In the unchained debug mode, the configuration file
of Trace32-MMDSP in multi-cores debug mode
(the Trace32-ARM has been launched before
hand).

ndk_mc_podbus config mmdsp core2.t32

In the unchained debug mode, the configuration file
of the second instance of Trace32-MMDSP in
multi-cores debug mode (the Trace32-ARM and a
Trace32-MMDSP have been launched).

ndk_mc_podbus config mmdsp core3.t32

in the unchained debug mode, the configuration file
of the third instance of Trace32-MMDSP in multi-
cores debug mode (the Trace32-ARM and two
Trace32-MMDSP have been launched).

8063903

TRACE32

Using TRACE32

2.1.4

Configuring the USB or Ethernet host connection

There are two ways to connect a PowerDebug or PowerTrace box to the host machine.

USB cable

By default, the configuration files use the USB connection, see Section 2.1.3: Trace32
Configuration files.

Ethernet

To configure the Ethernet connection, do the following:

1. Initially, use the default USB connection to start a Trace32-ARM or a Trace32-MMDSP.

2. Either, from the Misc menu select Ethernet config..., or type ifconfig in the command
line and click ok. The ifconfig dialog box opens, seeFigure 2.

3. Select the DHCP option and type a name for the connection.

Because the “ " and upper case characters are sometimes not recognized, we
recommend using lowercase characters and “-” instead of “_".

4. Modify the appropriate configuration file (use config-file parameter to find the
configuration file name, see Section 2.1.1: Startt32.bat parameters):
Uncomment the ETH section.

Comment the USB section.
Change the connection name in the NODE line, like

==== ETH ======

PBI=

NET

NODE=a-name.gnb.st.com

5. Click the Save Configuration button and close the dialog box.
Figure 2. ifconfig dialog box
| £ p:ifcontie. - [=alx]|
E address (— host ip address
phy addrezs - host phy addrezs
00-C0-84-80-41-19
licenze key (— statistics
50135
10824
%63
CIRARP enable 0.
[]BOOTP enable .
MDHCP [aname | 0
[full cuplex .
- configuration; UsSE

[S ave Configuration | [test]

8063903 19/63

Using TRACE32 TRACE32

2.1.5

2.1.6

2.1.7

20/63

TRACES32 start up

On startup, each TRACE32 debugger goes through the following tasks.

1. startt32 callst32marm. exe or t32mmdsp . exe, or both (as appropriate to the “cores”
parameter of the startt32 command).

2. t32arm.exe Or t32mmdsp.exe, or both start TRACE32 and the self tests.

3. When the self test procedure completes, t32arm.exe Or t32mmdsp . exe, Or both
execute the boot script given by the “-b” parameter or ndk_t32.cmm by default.

4. ndk_t32.cmm script performs the tasks such as:
— configuring the menus, speed buttons, GUI settings and so on

— adding the current folder (where startt32 is called) into the Trace32 internal PATH
environment variable so that the command scripts located in the current folder can
be called anywhere

— configuring the JTAG chain according to the “Nomadik_version” and
“debug_mode” parameters

— for SxA, set the target CPU to be the selected one
— for SxA, plug in RTOS awareness feature

— for ARM, call init_ndk10.cmm or init_ndk15.cmm or init_ndk20.cmm to configure
selected Nomadik according to the “Nomadik_version” parameter

— activating the autostore and history feature

To enable customized procedures or configurations that need to be performed at Trace32
start up, the boot script possibly needs to be edited.

Nomadik configuration files

As mentioned in the Section 2.1.1: Startt32.bat parameters by the option “-b”, the boot file
ndk_t32.cmm file is run by default whenTrace32 debuggers start.

If the debugger is Trace32-ARM, according to the chosen Nomadik version, the
init_8810.cmm, init_8815.cmm or init_8820.cmm is called by the ndk_t32.cmm boot file.

These scripts configure Nomadik and NDK board for debug use. You probably need to
modify these scripts to adapt to your project. Without modifications, the scripts do by default:

e call target board init scripts, like
do cobl5_b06_100mhz.cmm

e If the “Nomadik _version” parameter is “8820", power on the selected SxA core
according to the “cores” parameter in the startt32 command

e configure the AHB bases/tops addresses of the external memory area allocated for the
selected SxA, if the <cores> parameter on the startt32 command line contains mmdsp.

e configure GPIOs for SXA debug in unchained mode, if the mode is given by the startt32
command and the <cores> parameter contains mmdsp.

e enable Nexus trace if the “unchained” mode is given by the startt32 command and the
the <cores> parameter contains mmdsp.

Stopping TRACE32

At power off, always turn the board off first before the TRACE32 devices. Do not disconnect
any devices until power has been switched off on all devices.

8063903 ﬁ

TRACE32

Using TRACE32

2.2

The graphical user interface (GUI)

Figure 3 shows the layout of the TRACE32 application window.

Figure 3.

TRACE32 GUI

File Edit View ‘ar Break

Menu bar
_

®un CPU Misc Trace Ferf Cov ARM Window Help

Toolbar Message area Window-specific buttons

=]

Mk |||?ﬂil?k?%||%ﬁﬂllﬁﬂ@|3

CTargetSystenm: :ActivateCorenNrRenlacelora:
SD:pAR6Z2000 = BAABARBA

B:Data.List

_§D:BB1B@B = BapEARaA Ml Step | M Over | 4 Mext | ¢ FL\umI ¢ Up I p Go I 1 Breakl ode I
. %n!:!ai!zeg :gﬁg :ur- addr/line code |label |mnemonic lcomment | |
. I"!t!al!zed nﬂnsstgr SR:AARAZFFA [E1AB3311 nov r3,ri,1sl r3 =]
o d’." IELI}'?EHHRF SR:@AAA7FFA [EAS22081 atld r2,rz,ri
F'?‘i' ”']g-wazx domorarm ke | SR:00007FF8 F5602014 str r2,[r13,#0x141
PR EnOArm SR:AARAZFEC [F1ABARG3 nov ri@,r3
B RN S9FPA34 __main: ldr r,Bx803C
SR :ARARBARS [FSOF 134 ldr ri,0x80480
SR :ARARBARE [FSOF 3034 ldr r3,8x8044
SR :ABABBARC |E 1500001 cnp ré,ri
SR :ARAABA1A [PARPARA3 beq AxBAZ4
SR :ARARBA14 |F 1510003 chp ri,r3 ~
4| | vl 4
I]_}: |
emu]atx trigger | dewices | trace | [ata | War | F'EFH'Q I S'Stem | other | Presios |
| SF:0000801C\\\ahx_DEMOAGIobalh__main+x1C |stopped N I o M [P A
\—Command line \—Message line Softkeys Status bar

Menu bar

Toolbar
Message area
Window-specific buttons

Command line

Message line

Softkeys

Status bar

Gives access to all the TRACE32 functionality. If you use startt32
to connect to a target, an additional menu item with the CPU
name appears. For example, 8815a.

Gives access to TRACE32 common tasks.
Displays relevant messages during debugging.
Each window can have window-specific buttons.

Either type commands directly into the command line or use the
softkeys to construct commands.

Displays any errors or other messages.

Softkeys enable you to construct a string of commands in the
command line. The softkeys are context-sensitive, so that as you
add commands the keys change to other appropriate commands.

Because there are often more softkeys than can fit in the screen,
use the other or previous softkeys to show the available
commands.

Shows the current status of the target.

8063903 21/63

Using TRACE32 TRACE32

2.3

22/63

Connecting to a target core

For a debug session, connect to the appropriate target using startt32, see Section 2.1:
Starting TRACE32. For example:

startt32 unchained mmdsp 8815 a
TRACE32 opens with STN8815A selected.

To connect to the target, do the following.

1. From the CPU menu select System Settings..., the SYSTEM dialog box opens, see
Figure 4.

2. Select either:
— Mode: Up to connect and reset the target core (this is the default value)
— Mode: Attach to connect without resetting the core

Figure 4. Connect the target from the SYStem dialog box

=10 %]

— Mode ————— — Memfccess—— — Option DCUMode

& Down L o=l [T IMASKASH & AUTO

" MoDebug % Denied [IMASKHLL 16

" Go — Cpufcoess [~ OPScompatible | | 24

" Attach " Enable I+ ICFLUSH

" StandBy &+ Denied [~ EnReset

= Up [StandBy) " Nonstop

 Up

— JtagClock MuliCore
Y -] P IE.UMHz |

ISTNBS‘IE& "I

Alternately, use the softkeys:

1. Click the SYStem then Mode softkeys, the softkeys change to the available connection
options, see Figure 5.

2. Click the softkey for the required connection and click ok.

Figure 5. Connecting to the target using the softkeys

: :[SYSTEM.MODE
mulation mode: DOWH

[ok] | Doy I NDDEbugI Go Aftach StandBy p

8063903 ﬁ

TRACE32 Using TRACE32

2.4 Changing CPUs

The default connections are:
— For TRACE32-ARM, TRACE32 connects automatically to the ARM core.
— For TRACE32-MMDSP, the default CPUs are:

STn8810A (STn8810-SAA) 8810a

STn8810V (STn8810-SVA) 8810v
STn8815A (STn8815-SAA) 8815a
STn8815V (STn8815-SVA) 8815v
STn8820A (STn8820-SAA) 8820a
STn8820V (STn8820-SVA) 8820V
STn8820I (STn8820-SIA) 88201

To change CPUs, do the following.

1. From the CPU menu select System Settings..., the SYSTEM dialog box opens, see
Figure 6.

2. From the CPU drop-down list, select the CPU.

Figure 6. Changing the CPU from the SYStem dialog box

& BuSYSTEM. b
— Mode — Memécocess —— — Option
& Down Lainil [~ IMASKASH
" MoDebug ' Denied [IMASKHLL
" Go - Cputccess—— | [OPscompatible
" Atach " Enable v ICFLUSH
' StandBy % Denied [~ EnReset
= Up [EtandBy) " Monstop
 Up
— JtagClack. FultiCore
— CPLU [sotHe v
STHEE15. 'I
LIS THEET 0
_STNSEH
SN
STHEE204
STHES20W
STHEE200

Alternately, use the softkeys:

1. Click the SYStem then CPU softkeys, the softkeys change to the available CPUs, see
Figure 7.

2. Click the softkey for the required CPU and click ok.

Figure 7. Changing the CPU using the softkeys

IB= :/SYSTEM.CPU

fokl | sTuE10a | sTHEmoV | STNEETSS | STHEs1SY | STHeszos | STHaszov | STMSEz0

K7[8063903 23/63

Using TRACE32 TRACE32

2.5

24/63

Loading an executable program

When TRACE32 connects to the selected target (see Section 2.3: Connecting to a target
core), you are ready to debug.

If the connection to the target core is performed through the system > up softkeys or from
the from the CPU > system Settings > up button, load the executable program or a binary
file onto the target.

To load an executable or a binary file, do the following.

1. From the File menu select Load..., a file browser opens.

2. Locate the required executable and click Open. The program loads to TRACE32, the
message line shows the path to the program, see Figure 8.

Figure 8. Loading an executable program

|
Eile 'C : 2 T32xdeno~arn“\KERHEL sAM¥ \AMX_DEMO .A¥F © (ELF/DHARF2) loaded.
emilate I trigger | dewices | trace I [ata I War | FERF | SY'Shem I_
1 | SR:00008000 S\AkE_DEMOMNGIobaly_main

Alternately, use the softkeys:
1. Click the Data, Load and ELF softkeys.
2. Type the path to the executable file and press the Enter key.

Figure 9. Loading an executable program using the softkeys

IB ::[DATA.LOAD.ELF C:xT32\deno\arn\KERHEL \AMX\AMX_DEMO . AXF|

o | | | | | | |

| SR:00003000 MhWAbix_DEMONGlabalh__main

If the connection to the target core is performed through the system > mode > attach
softkeys, or from the CPU > System settings... menu, and if the target core memories are
already loaded, there is no requirement to load any program or binary.

The debugger requires the debug segments of the program or the binary file. To load only
the debug segment without loading the target core memories, use the following command.

data.load <file> /NOCODE

8063903 ﬁ

TRACE32

Using TRACE32

2.5.1

Viewing the executable code

There are three ways to view the executable code:

The Data.List window opens, see Figure 10.

from the View menu, select List Source...

click the Data, List softkeys and click ok

from the toolbar, click the .EE_J button

Figure 10. View the executable code

[S B:Data.List =101 x|
M Step I B Over | o Mext | ¢ Hetuml e Up I I 1 Breakl yﬂMode | Find: I

addr/line code |1abel mnemonic |comment =

SR :ABAA7FFA E1AA3311 mow ri,ri,1sl r3 -]

SR :PABR7FF4 EVSZ2Z081 add ré,ré,ri

SR :PABRZFF8 E58D2014 str rZ,[r13,#fx14]

SR :ABAAZFFC [E1ABNAA3 nov rid,r3
59FAR34 __main: 1dr ré,8x883C

SR :pARR8MR4 ESOF 1034 1dr ri,8x8040

SR :ABARBARE [E55F 3034 1dr r3,8x8844

SR :pAAR8RAC E 1500081 cnp ré,ri

SR :pARRBA1A AANRAR3 beq Bx8024

SR :pBAABA14 15168083 cnp ri,r3

SR :pAARBA18 (31902094 ldrcc r2,[r@l,#0x4

SR :pAeR8A1C (34812004 strec r2,[r1],H08x4

SR :ABAABAZA (3AFFFFFE bcc Bx0A14

SR :pAARBR24 [ESOF 1010 1dr ri,0x8048 =
«| vl 4

Executable code view modes

There are three viewing modes available:

ASM (Assembler)
HLL (High Level Language)
Mix.

To view the complete source code in HLL or Mix mode, TRACE32 must know the location of
the source code.

To specify the source code location, do the following.
Click the sYmbol, sourcePATH then SetRecurseDir softkeys.

1.
2.

Click ok, see Figure 11.

Figure 11. Setting the executable source path using the softkeys

IB: :/SYMBOL . SOURCEPATH . SETRECURSEDIR |

okl | ca |

There are three ways to toggle between the code view modes:

from the Run menu, select Mode
click the Mode softkeys and click ok
from the toolbar, click the y?f button

8063903

25/63

Using TRACE32 TRACE32

2.6

2.7

26/63

Running the executable program

TRACE32 has the ability to run, step, continue or stop the loaded executable.

Table 2. Program execution keys
Actions Softkey |Button | Hot key
Do a single step (execute an ASM instruction) step H F2
Step over function call or subroutines step.over ﬁ F3
Go to the next HLL code line. Useful, for example, to leave loops go.next 4, F4
Go to the last instruction of a function go.return ,..r F5
Return to the caller function go.up ¢ F6
Run the program go [3 F7
Stop execution break 1} F8

Breakpoints

There are two commonly used breakpoints:
e software program breakpoint

A stop instruction replaces the break instruction to stop the real time execution. All
code lines where there is a program breakpoint are marked with a small red bar.

e onchip breakpoint

A hardware stop signal, stops the execution when it encounters the break condition.
Onchip breakpoints are mainly used as breakpoints on data access, but program
breakpoints are also available. The SxA cores support a maximum of two onchip
program breakpoints and one onchip data breakpoint. If the number of active onchip
breakpoints is beyond the hardware limit, TRACE32-MMDSP reports an error.

Breakpoints in the Data.List window appear as red lines next to the address line.

J

8063903

TRACE32

Using TRACE32

2.7.1

Setting breakpoints

There are four ways to set a breakpoint:

from the Data.List window, double click on the code line (toggles on or off)

for software breakpoints, click the break.set <range> <address> softkeys. For
example, BREAK.SET P:0x20

for onchip breakpoints, click the break.set <range> <address> /onchip softkeys. For
example, break.set P:0x20 /onchip

set breakpoints through the Change Breakpoint dialog box:

a) From the Break menu, select Set..., the change breakpoint dialog box opens, see
Figure 12..

b) Type the address of the breakpoint and click Ok.

The break condition can be configured for various variables: a data value, task magic
number (for RTOS), count and so on.

Figure 12. Change Breakpoint dialog box

‘¥ Change Breakpoinkt o] 4|
— address / expression

|_main+ 0400 =1 &| T H
— typg —————— — optiohz — implementation —
f* Pragram [~ EXclude [~ Temporamny Iautc. vl
" Readwite [~ WOMsRE [T DISable — actioh

" Fead [T DISableHIT |$t|:||:| vl
= Wiite — DATA

" default I I LI e advancedl

ok | add | Deletz | Cancel |
8063903 27163

Using TRACE32

TRACE32

2.7.2

Note:

2.7.3

28/63

Viewing breakpoints

There are three ways to display information about all set breakpoints:

e from the Break menu select List.
e click the Break, List softkeys and click ok
e from the toolbar, click the a button

The Break.List window opens, see Figure 13.

Figure 13. View breakpoints

‘?’ BuBreak.List

B Delere AIIIO Disable AII {®) Enable F\II = Init |JE’) Select...l E Store... I E Load... I ﬁ Set... |

address [tuypes inpl =
R :ARAA3AAA | Program SOFT __main =]
R :AAAA8A4A |[Readlrite OHCHIP __main+@x48
R :AAAABA98 | Read OHCHIP c jcfhurd+8x24
R :AAAABAES | Program SOFT ¢ jefhvur+8x20
R :AAAAB198 | Programn SOFT c jefocosave +AxB

s H 4

To open a new Data.List window, double-click on a breakpoint.

Changing breakpoints

To modify or disable the breakpoint, do the following.

1. From the Break.List window (see Section 2.7.2: Viewing breakpoints), right-click on
the breakpoint to open the context-sensitive popup menu and select Change. The
Change Breakpoint dialog box opens, see Figure 12: Change Breakpoint dialog box

2. Update the setpoint to the required values.

8063903

TRACE32

Using TRACE32

2.8

Variables

To view the list of variables in an executable file, from the Var menu select Watch. The

variable watch screen opens, see Figure 14.

Figure 14. View variables

£ Bu¥ar.AddWatch * !]]
||***] 3 Teee | [Variables | [Source
sumbol [type address =
hlocksize (static int [161) D:A0P181A0--0PA1813F «
hphi t
bpoo11id (CJ_ID) D :A8R18198--ANA1819B
(CJ_ID) —— 819C——0081815F!
f% idd to Wakch Window
jkdatp (CJ_T8 %) i i i Winlow 8158—80A18158
J-kdbp1 {static int [2 = ;et el IN34—PPAZ3DF 3
J-kdhp2 (static int [2 IDF4—-APRZ4253
J-kdhudef (struct c jxhwdi 68 Modify Value... 82 70——PRARBZAF
J-kdstk1 (static int [5 = GoTil * 11A34——AeR22233
j_kdstk2 (static int [5 g3 ereskeot... 7234—B0022A33
G L 1 e 1 B2
Jkdupt (struct cjxupt I Ereakpoints ' |eAD8—-AAR1ABZ7
Jj_kpdata (struct cj_xksi g Display Memory » |[E794—-ABA21A33
J-kpexitl 3 Grep in Sourcefiles
Dinict i ’
J-kpinit2 i & ‘iew Details
Jbpdt (static struct| A9DA——PPA1BIFF
jhpidp {static stpuct HL=EEESE0E A9CS--PAA1AOCF
Jjepl {static struct BACC——ABA18AD7
Jjevdt (static struct c jxevdef .. . ESBE——EEElES[Z_?ILI
4 2 v

There are three ways to add a variable to the watch window (see Figure 15.):
e double click on a variable (this closes the view variables window)

e right-click on the variable to open the context-sensitive popup menu and select Add to
Watch Window

e open an existing watch window. Drag and drop the variable to the watch window

Figure 15. Watch window

=10l |

&3 Bzvar.Watch

= il | [&rvaa] esven || x|

o cjkdbpl = (1937339237, 544040308, 1734436249, 2661, 1718558811, 542974054, 174
i = BxESD330AC

= cj kdbpl = (

-'1937339237,

- 54404@308, ~
H 4

8063903 29/63

Using TRACE32 TRACE32
2.9 Memory
There are three ways to display the memory:
e from the View menu, select Dump...
e click the data, and dump softkeys and click ok
e from the toolbar, click the }ii{ button
The Data dump dialog box opens, see Figure 16.
Figure 16. Memory dump dialog box
8 B:DATA.DUMP -|0O] x|
— Addrezs / Expreszion
|) L
— Width Access Options Flag
&+ default &+ default [T Track ™ Fead
" Bute T E v Orient = winite
 word v asci
" Long [SpotLight
Cancel |
Note: To open the symbol browser, click the é button, see Section 2.10: Symbols.
To view the memory zone, do the following.
1. Type the address range.
2. If necessary, change the Width, Access and Options.
3. Click the Ok button. The memory zone containing the given address opens, see
Figure 17.
Figure 17. Data dump window
iR B::Data.dump (Dx25c) /DIALDG . i] |
[C:ovzse #9Find.. | Modiy.. | | Jlong x| TE [Tiack W Hex W Asci
address i 3 8 C 9123456789ABCDEF
SD:ARARRZ5E | E51F2214 E242291A E242208BYER9ZARAC 3"+54) BSs BERy2s 2
SD:PEARR26@ | E28DAR48 E28D5A34 E1N@1APE EBASAAAF HussaPgssinssues+
SD:00en270 | E1n0AGPD EBOPA191 PADOPEPD BAPPRDER SUasIRVEuINULINYS
SD:PAARRZ8@ | E51FD244 E24DDI1A E24DDAS8 ESBDEAAR D2reisMssgMeysseis
SD:PPAARR29@ | E14FEARA ESBDEAB E30ADA13 E169FAAD YE055535139555i15
SD:0008N2A0 | E1ABEGRF E1BPFOOE E24DDB48 ESSDIFFF S5a5stesHaMeriss
SD:AAARNZBA | E51F2274 E242291A E2422088 E892006C t"ﬁamgzunsﬁuzzJ
SD:PPARAZCA | E268DAR48 E28D5A34 E1NA1APE ESSSARAF HugsaP3ssiassies
SD:00Aen2D0 | E1n0AERD EBGPA170 PAOOGODA DOOPAROD SHaSpryusuuluuuey
SD:@AARNZEA | E51FD2A4 E24DD91A E24DDAS8 ESBDEAAA 52:T2Msss gussj;l
14 H .z
Note: The title of the window reflects the calling parameters.
30/63 8063903 1S7

TRACE32

Using TRACE32

2.10

Symbols

There are two ways to view symbols such as functions, modules and types:
e from the View menu, select the Symbols and the required symbol from the menu
e click the sYmbol and the required symbol softkeys and click ok

Each view has its own display mode. For example, Figure 18 shows the Symbols by Type

window.

Figure 18. Symbols list

7. BisYmbol.List e 10l x|
atddress to path\synbol type scope |location |info |
R:00088198 \\ANK_DEMO:G lobalic jcfoccsave global |static -]
R:0008819C |\\ANK_DEHONG lobalye jcfccsetup global |static 1
R:B0BBB1A8 \\AMK_DEMOMG lobalye j_kpdtkey global |static
R:000881BA \\ANK_DEMONG lobalye jksinitarn global |static
R:000881C8 |\ \ANX_DEHO\G lobale jksclock global |static
R:008081DC |\\AMKX_DEMONG 1obal e j_kdevt global |static
D: 0pAR8Z7A—BAaR82AF \AMX_DEMO\Globalyc j_kdhuwdef (struct c jxhudef) |global |static
R:B00B8ZBC |\\ANX_DEMO:G lobalye jof flagrd global |static
R:000082BC |\\AMK_DEMONG 1oba 1 VASHSScode mnodule static
R:000882C4 \\ANK_DEMO:G lobalrc jof flagur global |static
R:B00882CC |\\ANX_DEHONG lobalye jcfmodcpsr global |static
R:000082E8 |\ \AMKX_DEMONG lobalre jofing global |static
R:B00882F@ \\ANK_DEMO\G1obalyc jcfinl6 global |static
R:088082F8 |\\AHX_DEMONG 1obalyc jofin32 global static
R:00088308 |\ \AMK_DEMOMG lobalse jcfoutB global |static -
JIET ol 4
Alternately, use the symbol browser, there are three ways to open the browser:
e from the View menu, select Symbols then Browse
e click the sYmbol, and the Browse softkeys and click ok
e from the toolbar, click the é button
The Symbol Browser window opens, see Figure 19.
Figure 19. Symbols browser
K;' B::s¥Ymbol.Browse _I— _ID ﬂ
|l\\x\x'\x— il _‘I T}'PEZ l— I-S_l,lmb0|s j I- Source
mbo1 [type address | =
j_evkevsig R:0088D298 -]
J-evkrevsig R:088AD3AC
Jj-kdatp (CJ_T8 =) D:APA18158--APA18158
Jkdbpl (static int [2481) | D:ABAZ3A34--0A0B23DF3 _
Jkdbp2 (static int [2801) | D:AAAZ3DF4--A0A24253
Jkdeut R:008881DC
Jj-kdhudef {struct cjxhudef) D :08RBZ270-—8PAAB2ZAF
Jkdstkl (static int [5121) | D:APAAZ1A34--A0A22233
Jkdstk2 (static int [5121) | D:ABAAZ22234--00A22A33
Jkdstk3 (static int [5121) | D:ABAZZA34--A0B23233
Jkdstk4 (static int [5121) | D:APAAZ3234--AAA23A33
Jkdupt {struct cjxupt) D:AeR1AADE--APA1AB27
Jj-kphnbuild R :0808DF 10
J-kpbnip R :A9ARDESS
J-kpbnutp R :00AREABS
Jkpcfx R :088889EC
J-kpclock R :0088B818
Ji-kpcopyr R:00808754 -
i
8063903 31/63

Using TRACE32 TRACE32

2.11 Target core’s peripherals view

Trace32 can display the hardware peripherals of the target core and make the configuration
of writable peripherals possible.

After connecting to the target core, Trace32 adds an additional menu with the core name.
For ARM cores there is an ARM menu, for MMDSP the menu shows the core name, for
example, ST8815a, see Figure 20.

Figure 20. peripheral menu with core name

Petf Cow ARM Window Petf Cow STBB153 Ze0S Window
ARM MMDSP

T | e e E el |

The menu lists all the available peripherals. For example: STN8815A peripherals.

Figure 21. peripherals menu

=W ZeQs Window Help

- AHE_Interface

ARM DMA Interface 2
CacheCtrl

- DataCache

DMA

L GPIC

0]
- IntegrationReg

: Inkterrupk
RealTimeCounter
Semaphares

- Timer

| MMDSP+ % Diata Memory Block

“Hostreg
- Emulation
MEXUS

: Stack COverflow and Underflove Control

Each target core corresponds to a . per file that defines all the available peripherals and the
read/write rules of fields.

To view pop-up information about a field, select and keep the cursor on it the field.

To change a value, right-click on the value to open the context-sensitive popup menu and
select set or modify. For some values, there can be a pull-down menu that displays
meaningful values.

Figure 22. pull-down popup menu

- B2z per; , "DMA™ = 2]
= DHA »
DHAB_CTRL aneeea GIE Disahled PT a
FCD DHAA ERSC
DSP_LOC_SIZE 1-location ESTERH_HMIO 16 bits|v lanored
IHTERH_HEM_CHT Incremented WORD_EHDIAN @ Considered
BYTE_ENDIAN a STOP Hot st
DIRECTION External /MMDSP+ START_CHD Hot started

DMAA_IHT_BASE GPB8Ya
DMAA_IHT_LEKGTH QPB8va
DMAA_EXT_BASEH GPB8Ya

32/63 8063903 IYI

TRACE32

Using TRACE32

2.12

2121

Registers

There are three ways to display the registers:
e from the View menu, select Registers

e click the Register softkey and click ok

e from the toolbar, click the ' button

The Registers window opens, see Figure 23.

Figure 23. Registers window

{.... B::Register

To change the value of a register, do the following.

1. Double-click on the value to be changed. The register value opens in the command bar.
2. Inthe command bar, type the new value and click the ok softkey.

Stack

There are two ways to display the registers:
e from the View menu, select Stackframe
e from the toolbar, click the ﬂ button

The Stack window opens, see Figure 24.

Figure 24. Stack window

Frame [/l fc

"3 Down

[Args
—A08|(sys_write(asm)
—A81||wr- i tebuf {asm)

—aa2||__f 1shuf {asm)

—@03 | [printf_outstr_char (asmn)

—884 (__printf{asm)

—@05 (printf_char_common{asmn)

—B06 (__Aprintf(asm) -
—B@7 [maind)

—@A88 (__rt_entryfasm)

— lend of frame

[JLocals] Caller Task:

>

£

To check the caller of the current function, click the UP button. Trace32 shows the caller
function as the current function and the registers and variables and so on, are switched to

be that of the callers too. Note that the current function, that is, pc register and stack content
on the target core does not affected.

To return to the callee function, click on the Down button.

8063903 33/63

Using TRACE32 TRACE32

2.13

34/63

RTOS (TRACE32-MMDSP only)

For MMDSP targets, an additional ZeOS menu item opens, see Figure 25.

TRACE32 is ZeOS (SAA RTOS) aware. Additional features are available such as tasks
(thread) information, statistics, stack coverage and task related debugging.

Figure 25. ZeOS menu

Petf Cow ARM Window Petf Cow STBB153 Ze0S Window
ARM MMDSP

NEE T BT T

8063903 ﬁ

TRACE32

Performance analysis tools

3

Performance analysis tools

TRACE32 has performance analysis tools that are based on up 6 methods. 3 methods are
usable with ARM and SxA on the Nomadik:

StopAndGo (default)

The debugger stops the core, reads the PC, then resumes the execution. This is
intrusive.

Trace

The debugger retrieves the PC history from Nexus trace in the case of SxA or ETM
trace in the case of ARM. This is not intrusive.

This method is available only if the target board has a Nexus or ETM trace connection,
and the Nexus preprocessor or ETM preprocessor is connected to the trace port on the
board. See Appendix B: Target board configuration on page 55 and Appendix D:
Connections on page 59.

Snoop

The debugger uses special target core features to get the PC while the target is
running. This is not intrusive. This method is available for ARM and SxA in STn8820
and later.

The performance analysis tools give information such as:

minimum, maximum and average execution times for each function
the number of times each function has been called

details of code coverage

other performance information

To select the items to monitor, do the following.

1.

2.

From the Perf menu, select Perf Configuration... the PERF dialog box opens, see
Figure 26.

Select the items to monitor.

Figure 26. Performance configuration

=[]
— commands — perfarmance pragran file
& OFF g Program | edit | brovese |
" Program TaoProgram
 TREE — Sort — Address
= LINE G Init * OFF IEZDHD"DHFFFFFFFF
 Function RESet Addiess
" Module " ¥mbol — zcahs dote —— — ShoopAddress —
" Funchod — options " Ratio IW
 LABEL [T Arptccess (— CLIT. $CAn SnoopSize
" RANGE [¥ PreFstch | —METHOD [Bte =]
510 = Ertiy ' Hardware - cov.time
5100 [~ SCan) BusSnoop
51000 [T MMUSFACES | | O StopindGa | - runtime
= DistriBution " Trace
 WarState — Gate = Snoop — snoop.failz
 TASK [tooos || obcc
) Leiel
8063903 35/63

Performance analysis tools

TRACE32

3.1

36/63

To view the results, for example function performance, from the Perf menu, select Perf

List... the Perf dialog box opens, see Figure 27.

Figure 27. Perf.List.DYNamic

=PERF.List DYNamic o [m] 1|

& Setup.. | 28 Config.. llFrofie | @it | O o |
14.142% runtime: 96.629% |

name dratio 24 54 1084 287 teY 109 '
s tevgrph n.000, -]
5 tevgrpc .008%
5 tevgrpd .00
s tevgrpe 0.008%
stevgrpf .008%
5tnsgl .00
stmsg2 0.008%
stmsg3 .008%
usedbuf fer a.a00x
freebuf fer 8.99@8x +
sthufpool 12.8714
5 tmempool 4.9507 | ——
subfunc 2.970) —
5 thkgr a.808y,
uurancdomn a.a00x
uurvait A .00ax
uusend a.808y,
uusendu a.a00x -
NEN Hl

Coverage statistics

The coverage analysis tool is based on the Nexus or ETM trace.

After a trace capture, but before the coverage analysis tools in TRACE32 can be activated,
add the trace (Nexus or ETM) data to the coverage buffer, see Section 4.2: Nexus trace

capture on page 38. From the Cov menu, select Add Tracebuffer.

Figure 28. Coverage statistics

address coverage executed @4 587 100 |taken nottaken 1
P :PBB4DE--BARAFE printf partial | 74,0747 |—— 1. 1.
P :PR04F 9--BARAFE sprintf never @.008Y a. a.
P :PB04FF--BAA5Z21 viprintf never @.008Y a. a.
P :PB0522--000A541 vprintf never @.008Y a. a.
P:P@0542--000554 | = stdio not taken | 94.736Y (e—— 1. 2.
P :B00542--A00554 init_stdio not taken | 94.7367 =—— 1. 2.
P :BABS55—-BARGEA | = stdioput partial | 4.433/ = 2. 2.
P :ABA555--PAASER fpute never @.008Y a. a.
P :PAB561--BAA57C fputs partial | 64.205) ——— 2. 2.
P :P@057D--00A588 pute never @.008 a. a.
P :pBA589--AAASAE putw never @.088Y a. a.
P :PBASAF—-BAASCH putchar never @.008Y a. a.
P :PAA5C1--PAASF2 puts never @.008Y a. a.
P : ARASF 3--ARAG3A furite never A.ARAY a. a.
P :PB0631--AAA6SC fwrited never @.088Y a. a.
P :ABB6SD--BAA6SA furiteld never @.008Y a. a.
P :PRB69B--BAAGEA fwrite2d never @.008Y a. a.
P:BABGEB—-BAAICY | = wsprintf partial | 19.5897 |wem 18, 17.
P :PBOGEB--BAAT1E pris never @.008Y a. a.
P :PB071F--BOA788 prtu partial | 64.1507 e——— 7. 5.
P :P@0789--000A508 prtlu never @.008 a. a.
P :PB0BBA9--PAAICS vsprintf partial | 16.8917 w 3. 12.
P:PAAOCS—P@AOEL | Zexit partial | 31.0347 |ee— 1. a.
P :PRASCS--AAAICE atexit partial | 70.000) —— 1. a.
8063903 1S7]

TRACE32

Using Nexus trace in TRACE32

4

4.1

Note:

Using Nexus trace in TRACE32

The SxA target core generates Nexus trace data that is collected by the debug tools.
TRACE32 gives:

e avisual representation of the execution of the embedded application
e monitoring of data memory accesses which occur during the execution

For information about the MMDSP+ implementation of the Nexus Trace unit, see the
HAMAC Audio/Video IP for Nomadik 8820 (ADCS 8044228).

TRACE32 makes MMDSP-Nexus trace available and associates it with the debugging
sessions. It also performs advanced analysis of Nexus trace to provide valuable application
statistics.

Configuring Nexus trace

The default configuration for Nexus tracing is as follows:

e Nexus maintains the entire history of the program counter from the beginning of
execution to the stall state of the target core

e Nexus deactivates trace monitoring of data memory access
If specifically configured, Nexus filters the trace generation according to user defined criteria

and generates a trace that monitors data memory accesses, see the HAMAC Audio/Video
IP for Nomadik 8820 (8044228).

Before carrying out a customized configuration, execute the command

do nexusconfig on. This command ensures that TRACE32 abandons the default
configuration. To subsequently return to the default configuration, execute the command
do nexusconfig off.

To reconfigure the filters or watch points of Nexus trace, perform one of the following
operations.

e Inthe menu ST881xx/Nexus, set the Nexus register values. This method is available for
the Nexus in the MMDSP+s on the STn8810, STn8815 and later.

e use the commands listed below. This method is not available for the Nexus in the
MMDSP+s on the STn8810.

do nexus_reset 8815
do nexus_ fil conf 8815 <fil number> <FLTVALO> <FLTVALl> <FLTCTL>

do nexus wth config 8815 <wtch number> <WTCHVALO> <WTCHVALI>
<WTCHVAL2> <WTCHCNT> <WTCHCTL>

do nexus_enable 8815 <NXSCT1l>

For examples of configuration commands for the STn8815, see Section 4.2: Nexus trace
capture

All the above commands (as well as nexusconfig on/off) are . cmm script files that are
not included in the TRACES32 initial installation package. These script files are provided to
aid the Nexus configuration. They are delivered within Nomadik Toolset under the folder:

<NDKTOOLS ROOT>\configuration\debugger\trace32

8063903 37/63

Using Nexus trace in TRACE32 TRACE32

4.2

4.3

38/63

Nexus trace capture

Only PTn (see) provides the Nexus trace capture service. PTd is not suitable in this case.
Connect the PTn to the target board with the help of the scheme PTn, PDd+PTn or
PTd+PTn.

PTn is equipped with a 16 Mb buffer that temporarily stocks the trace to be read by the
software interpreter module. TRACE32 enables selection of the buffering mode from Fifo,
Stack, leash, and so on.

Figure 29. Nexus trace capture

w Yar Bresk Run CPU Misc Trace Perf Cov S5T8615a ZeOS Window Help

P || ;ﬁ_{ ? Configuration... E@ &) e é
B 15 settings..,

Ba

ﬂ-liming

- v v -

state - uzed - analyzer program file
23 Chart O DISable = | f edit | [browse...
g Save trace data ... © 0FF Sl
E:g‘ Lnadirefarence datai OA.rm | .SIZE ; aymbol value leevel
d) trigger 16777216, |
.Reset O break -
' Mode
commands &) Fifo

O sk
Ot

F + ‘analyzer| TEST BusTrace ACCESS TDelay
=] List (O ClockTrace | v || |0 |
— Autadrm (%) FlowT race |03 v

[tsutalnit

CLOCK
[AutoTEST SLAvE

Click on the Reset button to delete collected messages if necessary.

Run the application program (after configuring the Nexus trace, if needed). The trace
capture can be monitored by the used bar which shows the run-time occupation of the
buffer.

View Program and data by Nexus trace

When the application stops, or is stopped by a break command, the execution can be
viewed by clicking on the list button in the analyzer window.

To help make the output easier to read, we recommend the use of the following command.
The command separates the program addresses and HLL from disassembler code.

analyzer.list def cpu

By default, the analyzer is positioned at the end of the execution. To go to the beginning, use
the CTRL + Home key combination.

To search the listing, use the CTRL + f combination key. This is useful, for example, when
searching for a specific function.

8063903 ﬁ

TRACE32 Using Nexus trace in TRACE32
Figure 30. List window
a.l def cpu
record run laddress cucle |data ti.back run address cycle data symbol |
24 return ath; E
Reh = add(R@1,R11); v
jumpi Bx48; -~
-POPARGZB | | P:8PAB48 pirace 8.880us P 000048 ptrace B
r Sp@ += Bx1;
pop R61;
pop Ril;
pop RAL;
25|}
rts;
fEBBEBBég | P:BE%BSB ptzﬁce B .860us ‘ P 088856 ptrace
’ r RZh = add{R2h,R@1};
Sp@ += Bx1;
pop RAL;
39}
rts;
—-0Nene18 | | P:BB@3B7 ptrace 0.320us ‘ P:B8@3B7 ptrace
2 W////////}/WWWWW//WWWW
S X 3
—EEEBBBIBJBRK BRK ! -
4.4 Example of using Nexus in STn8815
This section gives a number of typical configurations for Nexus tracing.
Note: Due to a hardware flaw, from STn8815 cut2 and later, the Nexus capture requires the

running of the program go <program address> Of go <functions, where
<p:program_address> and <function> is a server attained spot by the execution. For
example:

go OxFFFFF

The following examples assume that the program is loaded in the zone [0x0 -- O0xXFFFF],
view of MMDSP+.

Example one

To capture the execution history of program between 0x123 and OXABC, use the following
the filtering.
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus reset 8815

do nexus fil conf 8815 0 0x123 O0xABC 1

do nexus enable 8815 1
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

8063903 39/63

Using Nexus trace in TRACE32 TRACE32

Example two

To capture the execution history of all instructions reading or writing the memory address
0x400000, and output data access value:

1. Configure the trace:
system.option btm off
do nexusconfig on
do nexus_ reset 8815
do nexus fil conf 8815 0 0 Oxffff 1
do nexus fil conf 8815 1 0x400000 0x400000 OxF
do nexus_wth conf 8815 0 0x400000 0x400000 0 O Ox1B
do nexus_enable 8815 0x11

2. Run the program:
go p:0xffff (or a never attained address or function)

3. Restore the btm configuration:
sys.o btm on

To view the trace output use the following command.
analyzer.list def cpu

Each wr-trip corresponds to a P: addr that is just above the wr-trip. The P:addr is
the instruction that writes the defined data memory address (0x400000). To search each
wr-trip and look at the P:addr above the wr-trip. The data column displays the
written value.

Each rd-trip corresponds to a P: addr that is just above the rd-trip. The P:addr is
the instruction that reads the defined data memory address (0x400000). To search each
rd-trip and look at the P:addr above the rd-trip. The data column displays the read
value.

Figure 31. Example output

Setup... || (3 Gota... || #Find. & More || Y Less
record run address cycle data ti.back run address cycle |data symbol f
—EEXEXEER A
— GO =
-A6B44952 | P:ABAABA pirace P:ABPAAR ptrace v
96844951 P:@88826 pirace 151.908Bus P:888826 ptrace \get_valiget_val wnaintdx6 ~
R21 = *(MEM) Axx1; =
9 while (*(volatile ESRAM umsigned int *)0x400000UL '= 0x14)
{
11 it
R21 = *(MEM) SpB; cmpu(R21,8x14);
96844958 | ¥:488008 rd-trip 6D18B1 0.888us }:4008088 rd-trip 601881
96844948 P:@88827 pirace 0.868us P:888827 ptrace \\get_valvget_valwnain+Bx?
9 while (*(volatile ESRAM umsigned int *)0x400000UL '= 0x14)
{
11 it
R21 = *(MEM) SpB; cmpu(R21,8x14);
-ARA44947 | | P:@AAA36 ptrace 0.248us P:888A36 ptrace \\get_valvget_valnaintdx16
R21 = *(MEM) Axx1;
R21 = *(MEM) SpB; cmpu(R21,8x14);
96844946 ¥:488008 rd-trip 6D18B1 0.108us }:4008088 rd-trip 601881
06844944 P:@888837 ptrace 0.888us P:888A37 ptrace \\get_valvget_valwnaintdx1?
| R21 = *(MEM) Spd; cnpu(R21,8x14) ; v
< | B

40/63 8063903 I‘YI

TRACE32

Using Nexus trace in TRACE32

Example three

To capture the history of each execution of the program between 0x123 and OxABC and
sub-function calls. A watch point is required, that is, the trace generation and output is
enabled when PC== 0x123 and is disabled at the moment that PC== 0xABC.
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus reset 8815

do nexus fil conf 8815 0 0 OxFFFF 1

do nexus _wth conf 8815 0 0x123 0xABC 0 0 0xC1l

do nexus_enable 8815 0x11
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

Example four

To capture the history of every third time execution of the program between 0x123 and
O0xABC, and, in addition, the sub function calls:
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus_reset 8815

do nexus_fil conf 8815 0 0 OxXFFFF 1

do nexus_wth conf 8815 0 0x123 0xABC 0 2 0xCl

do nexus_enable 8815 0x11
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

8063903 41/63

Using Nexus trace in TRACE32 TRACE32

42/63

Example five

To capture the history of the read and write access to the stack (from memory address
0x123 to OXABC):
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus_ reset 8815

do nexus fil conf 8815 0 0x123 O0xABC OxF

do nexus_ enable 8815 0x1
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

Example six

To capture the execution history of the program from 0x123 to OXABC (without subfunctions
calls) and to monitor all data access performed by this section of program:
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus_reset 8815

do nexus_fil conf 8815 0 0x123 OxABC 0x11

do nexus_fil conf 8815 1 0x0 OxXFFFFFF OxF

do nexus_enable 8815 0x1
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

8063903 ﬁ

TRACE32

Using Nexus trace in TRACE32

Example 7

To capture the execution history only of the program between 0x123 and 0xABC (without
subfunctions calls), a filter is required. To also monitor the data access from the address
0x235 to 0x434, performed by this section of program:
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus_ reset 8815

do nexus fil conf 8815 0 0x123 O0xABC 0xl11

do nexus fil conf 8815 1 0x235 0x434 OxF

do nexus enable 8815 0x1
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

Example 8

To capture the history of each execution of the program from 0x123 to OXABC as well as the
sub-function calls. To also monitor the data access from the address 0x235 to 0x434,
performed by this section of program:
1. Configure the trace:

system.option btm off

do nexusconfig on

do nexus_reset 8815

do nexus_fil conf 8815 0 0 OxXFFFF 1

do nexus_ fil conf 8815 1 0x235 0x434 OxF

do nexus_wth conf 8815 0 0x123 0xABC 0 0 0xCl

do nexus_enable 8815 0x10411
2. Run the program:

go p:0xffff (or a never attained address or function)
3. Restore the btm configuration:

sys.o btm on

To view the trace output:

analyzer.list def cpu

8063903 43/63

Cross debugging TRACE32

5

Note:

44/63

1

Cross debugging

Nomadik (STn8810, STn8815 and STn8820) has the ability to perform cross debugging. It is
possible to propagate a stop or stop at breakpoint event from one target core to
another. For example, if cross debugging is established between the ARM and SAA, when
the ARM stops (either at a breakpoint or otherwise), the SAA stops simultaneously.

The mmxdbg . cmm script helps to configure the cross debugging. It is delivered with the
Nomadik Toolset in the following folder.

<NDKTOOLS ROOT>\configuration\debugger\trace32
See Section 1.1.1: Installing the run environments on page 10.
The parameters for cross debugging are:

do mmxdbg <break src> <break dest> <and or>

Where:

<break src> The source of the BREAK signal. It can be ARM, SAA, SVA, SIA (8820
only), EXTBRK, RESET or SBAG (8820 only).

If <break src> is RESET, the script resets the cross debugging
configuration so that there is no source or destination of the break signal.

<break dest> The destination of the break signal. It can be ARM, SAA, SVA, SIA (8820
only).
<and_or> Can be either AND or OR.

When AND, the condition that break src is stopped or not is logically
AND combined with other conditions to decide if dest_src is to be
stopped.

When OR, the condition is logically OR combined with other conditions.

To enable cross debugging, in the command line, type do mmxdbg.

In Trace32-ARM, use the do mmxdbg command.

If <break destx>is SAA, SVA or SIA, and the Trace32-MMDSP requires connection to the
target core by using the up mode, use the do mmxdbg command after the connection. This
is because the up mode resets the target core and clears the configuration performed by do
mmxdbg.

Example one

In Trace32-ARM, to configure the ARM and SAA for cross debugging, use the following
commands.

do mmxdbg RESET
do mmxdbg ARM SAA OR

Outcome When the ARM core stops (for example, by a breakpoint), the SAA core stops
simultaneously.

Condition "ARM is stopped or not" is an OR condition that determines if SAA is to be
stopped.

J

8063903

TRACE32

Cross debugging

Example two

In Trace32-ARM, executing the following commands configures the ARM, SAA, SVA for
cross debugging:

do mmxdbg RESET

do mmxdbg ARM SAA OR

do mmxdbg SVA SAA OR

Outcome When either the ARM or the SVA core stops (for example, by a breakpoint),
the SAA stops simultaneously.

Condition "ARM is stopped or not" is an OR condition that determines if the SAA is to be
stopped.

Condition "SVA is stopped or not" is an OR condition that determines if the SAA is to be
stopped.

8063903 45/63

Miscellaneous and tips TRACE32

6

6.1

46/63

Miscellaneous and tips

This chapter describes miscellaneous tips when configuring and connecting to target
boards.

Terminal interface for 1/0O operations (MMDSP only)

TRACE32 uses the mmterm. cmm script from t32config. zip to activate the terminal
window for TRACE32-MMDSP, see Section 1.1.1: Installing the run environments on
page 10.

In TRACE32-MMDSP, the terminal window serves as the stdin/stdout device. For example,
for standard C I/O operations such as printf ().

The terminal window opens automatically when TRACE32 starts. The TRACE32 boot file
xy-t32.cmm activates the 1/0O terminal in TRACE32-ARM by default, see Section 1.2.3:
Connecting the Trace32 Devices to the target board on page 12.

To open the terminal window, do the following.

1. Ensure that the mmterm. cmm script from the t32config. zip is present in the default
folder, see Section 1.1.1: Installing the run environments on page 10.

2. Inthe command line, type do.mmterm, see Figure 32.

Figure 32. The terminal window

[B::term.gate : =10l x|

8063903 ﬁ

TRACE32

Miscellaneous and tips

6.2

6.3

Setting arguments for an MMDSP program

The application running on the MMDSP possibly needs to set some of the main (argc,
argv) function arguments.
To set the arguments, do the following.

1. Ensure that the mmsetargs . cmm script from the t32config. zip is present in the
default folder, see Section 1.2.3: Connecting the Trace32 Devices to the target board
on page 12.

2. Inthe command line, type do mmsetargs <argls> <arg2> and so on, see Figure
33.

Figure 33. Setting the main function arguments example

IB: :do mmsetargs 5 Bxf8A2 hello

okl | came | |

Displaying TRACE32 messages

The area window shows TRACE32 runtime messages, error messages and so on. It opens
automatically when TRACE32 starts.

To open the area window, in the command line, type area, see Figure 34.

Figure 34. The area window

=10] |

CTargetSysten: :ActivateCoreQrReplaceCore: ChipNr B, CoreNr 8x@, Globallndex @, Th
SD:ARP6Z0AA = PRARARRA

SD:ABA31000 = PRARARAA

== Initialized HDK15 for 8815 debugging (trace not configured} ==

== Initialized NDK15 for AUDIO trace ==

== Initialized ARM926EJ ==

loading ELF/DMARF

file ‘C:\T32xdemorarn\KERNEL \AMX\AMX_DEMO.AXF* (ELF/DUARF2) loaded. -

4] | A

8063903 47163

Miscellaneous and tips

TRACE32

6.4

48/63

Executing commands on the host shell

The 0s command executes a command on the host shell.

To open a host shell, in the command line, type either os or os . screen, see Figure 35.

Figure 35. Host shell

Microsoft Windows 2068 [Version 5.860.21951
(C>» Copyright 1985-2808 Microsoft Corp.

c:NT32>

A command can run on the host operating system level and the output re-routed to the area

window.

To execute a host shell command and display it in the area window, do the following.
1. Open an area window, in the command line, type area an area window opens.

2. Inthe command line, type os.area <commandline>, for example os.area help, see

Figure 36.

Figure 36. Area window

=101 x|

ERASE Deletes one or more files. -]

EXIT Quits the CHD.EXE program (command interpreter).

FC Conpares two files or sets of files, and displays the differences
between then.

F IND Searches for a text string in a file or files.

FINDSTR Searches for strings in files.

FOR Runs a specified command for each file in a set of files.

FORMAT Formats a disk for use with Windows 2008.

FTYPE Displays or modifies file types used in file extension associations.

GOTO Directs the Windows 2008 command interpreter to a labeled line in a
batch progranm.

GRAFTABL Enables Windows 2088 to display an extended character set in gr‘aphic:s__I
node .

HELP Provides Help information for Windows 2888 commands.

IF Perforns conditional processing in batch programs. M

4| | v Lz

8063903 1S7

TRACE32

Miscellaneous and tips

6.5

6.5.1

Printing

You can print the contents of the active window to:
e aprinter

e the clipboard

e tofile

Print preferences

There are two ways to set the print preferences:

e from the File menu, select Print then Printer selection...

e click the Printer softkey and click ok

The printer dialog box opens, see Figure 36.

Figure 37. Print preferences

& B:PRinTer ;Iglil

Type

& Pinter [N fwindows Defaul] [
ClipType

" ClipBoard [ASCIE (45CII ENHANCED) [
FileType

" File C5Y [Comma Separated Valug] Ll
cAT 3232 et browse. .. |

8063903

49/63

Miscellaneous and tips

TRACE32

6.5.2

Note:

50/63

Print the contents of a window

There are two ways to print the contents of a window:

e from the File menu, select Print then Hardcopy
e click the PRinTer and Hardcopy softkeys and click ok

The contents of the window prints to the printer, clipboard or file, see Figure 38.

Only the visible part of the window prints.

Figure 38. Window contents to be printed

[& B::Data.List P] B
Bl Step | B Over | $ Mewt | & Retum| @& Up p Go | 1l Break | ;%Mode | Find: r
addr/line |code |label mnemonic comment | |
SR:BAPATFES [F1AR2332 mov rZ,rzZ,lsr r3]
SR:@BAAYFEC [EAH1A192 mul ri,r2,rl
SR:AABATFFA [E1AA3311 mov r3,ri,1sl r3
SR:0PBATFF4 [ERSZ22001 add rZ,rZ,ri
SR:@BBA7FFS [E58D2014 str r2, [r13,#08x141
SR:BABATFFC [E1ARAAA3 mov ri@,r3
59FA034 __main: lde r@, #x8A3C
SR:08AA8AA4 [ES9F 1034 ldr r1,8xB80408
SR :AARABAAEG |E59F 3034 1ldr rd,0x8n44
SR :0APA8AAC |F 1500001 B:Data.List
SR:0AAASA1A PNERARAS
SR :AABABA14 [F15188A3 addriline code label mnemonic comment
ggggggggig g:g?%gg: SR:0000YFES E1A02332 mov 12 r2 Ist 13
SR :AABABAZA |JAFFFFFE SR:00007FEC EOO101592 mul 11 r2 r1
‘.
I SR:00007FFO0 E1A03311 mov r3 ri Isl r3
SR:00007FF4 EO0822001 add 2 r2 1
SR:00007FFE ES8D2014 str 2 [r13 #0201 4]
SR:00007FFC E1A0AD03 mov o r3
SR:00003000 EASFO034 _ main: Idr ra 0x803C
SR:00003004 EASF1034 Idr 11 Ox5040
SR:00008008 EAS9F3034 dr t3 0x8044
SR:0000800C E1500001 cmp rd ri
SR:000028010 0AD00003 beq 0x8024
SR:000028014 E1510003 cmp r1 r3
SR:00008018 34802004 Idrcc r2 [r0] #0x4
SR:0000801C 34812004 strec 12 [r1] F#0x4
SR:00003020 3AFFFFFB boe 028014

8063903

TRACE32

Miscellaneous and tips

6.6

6.7

Commands history

TRACE32 remembers every successfully completed command line entry.

To display a complete list of the successful commands, do the following.
1. Click the HISTory softkey.
2. Click ok. The History window opens, see Figure 39.

Figure 39. Command history

(=] 3]
B::history -
B::DATA.
B::STEP.SINGLE
B::GO.DIRECT
1 :SYSTEM.CPU ARMSE
B::B::D.LOAD C:\T32\denovarn\KERNEL \AMX\ANK_DEMO . AXF
B::DATA.LISTASH
B : :DATA . PROGRAM
B: :BREAK .
B::HISTORY.
B::printer
B: :printer .hardcopy
B::REGISTER.STACKTOP BACKAR1
B::REGISTER.STACKTOP 088020

1:60.
B : :BREAK .DISABLE =
< | H 4

Click on any of the commands to send it to the command line. To execute the command,
click ok.

Save and reuse settings

TRACE32 can save all the current settings to an executable script file. The setting can later
be re-applied for a subsequent session. The settings include:

e TRACE32’s configuration system setting

e performance analysis tools setting

e interface set-up such as windows size and layout

To store the settings, do the following.

1. Click the STOre softkey.

2. Type the path and name of the executable script file.
3. Click ok.

For example, store c:\mylayout.cmm, stores the current layout to an executable script file
named mylayout . cmm.

To reapply a configuration do the following.
1. Inthe command line, type do c:\mylayout.cmm.
2. Click ok. TRACE32 applies the windows settings defined in the file.

8063903 51/63

Miscellaneous and tips TRACE32

6.8

Note:

52/63

Logging
Logging records all commands to a file until a complementary close command is given.

To start logging, do the following.

1. Click the LOG softkey.

2. Type the path and name of the log file, For example C: \mylog.
3. Click ok. TRACE32 writes all commands to the log file.

To view the current log, click the LOG softkey and click ok.
To close the current log, click the LOG and CLOSE softkeys and click ok.
TRACE32 does not write to the log file until it is closed.

The following factors apply to log files:

e the log command records not only the executed softkey commands but also the
operations activated by a mouse

Mouse commands are recorded as their line-oriented softkey command equivalents.
e everylog.open <file> command generates a new file
If a file with the same name already exists, it is overwritten.
e the size of the file is unlimited
e when the log has been activated, command execution slows down due to the recording
e name the log file with the . cmm suffix

This enables the commands recorded in the log file to be re-executed by entering do
<file.cmm>.

J

8063903

TRACE32

Miscellaneous and tips

6.9

TRACE32 help

We strongly recommend that you consult the TRACE32 help system. It is especially helpful

for checking the softkey command syntax and usages.

There are three ways to open the help:

e from the Help menu, select Help topics...
e pressF1

e from the toolbar, click the ‘E button

The help window opens, see Figure 40.

Figure 40. Trace32 help

<> TRACE3Z Online Help

File Edit Bookmark Options Help

Qontentsl lndexl Back | FErint | e | 2 |

TRACE32 Online Manual

Using the online help
Using the printed manuals

Belease History
Distributor Addresses
Comrmand List
Global Index

Installation Guide

Operation Systermn User's Guide
Operation Systern Heference
PRACTICE User's Guide
PRACTICE Reference

8063903

53/63

License and guarantee TRACE32

Appendix A License and guarantee

Al

Note:

A.2

54/63

License

A TRACES32 license key is associated with the serial number of a hardware device such as a
debug cable or a Nexus adapter (also known as a Nexus preprocessor).

To obtain the serial number of a debug cable or a Nexus adapter, from the Help menu, select
About TRACE32...

Figure 41. About TRACE32 window

T BVERSION - _ 1Ol x|

TRACES32 &

MICROPROCESS0R DEVELOPMENT SYSTEM
Copyright [c] 1985-2007 Lauterbach D atentechnik. GrbH

Jun B 2007 Operation System Build 8356.
Jun 122007 Debugger

Cable licence——p | Cable CO70S0033234 [ARMS)
ID: T32.ARM

5YS: CATaz

TMP: CATEMP

HELP: CATazpd

CONFIG: c\T32%w config_arm.t32

Hardware Software Cloze I

The license key is valid for 12 months. After 12 months, contact TRACE32 purchase support
to update the licence(®. Without this update, TRACE32 runs in a demo mode. In demo
mode TRACE32 is accessible and usable with full functionality, but utilization is limited to 60
minutes. When this time has expired, TRACE32 must be closed and restarted to get another
60-minute session.

Each time a TRACE32 software update or patch is received, make sure that the license keys
associated with the hardware devices are still valid.

The beta-test license for TRACE32-MMDSP has a valid period of 6 months instead of 12
months.

Guarantee

Lauterbach gives a guarantee of 12 months for software and 3 years for hardware. Within
the guarantee periods, free software upgrades and free hardware repair are provided.

a. An update fee may be charged.

8063903 ﬁ

TRACE32

Target board configuration

Appendix B

B.1

B.1.1

Target board configuration

This appendix describes the target board configurations for the NDK15 and COB20 boards.

NDK15 boards

Switches configurations for debug and Nexus trace

Table 3 shows how to configure Nomadik Development Kit boards for debugging and Nexus

trace.
Table 3. NDK boards configurations for debugging and Nexus trace
NDK-15-REVB NDK-15-REVC NDK-15 rev1.0
SW1-2 =0ON W1-2 = ON SW1-2 = ON
Debug ARM and SxA both SW4-1 =0N SW4-1 = ON SW4-1 = ON
through MAIN JTAG port. SW4-2 = OFF SW4-2 = OFF SW4-2 = OFF
(ARM Debug unit and SxA Debug | SW4-4 = OFF SW4-4 = OFF :
unit are in the “chained” mode.) SW8-2 = ON SW8-2 = ON SW8-2 = ON
SW2-2 = OFF Sw2-2 = OFFW SW2-2 = OFF
SW1-2 =ON
SW1-2 =ON SW4-1 = ON SW1-2 =ON
SW4-1 =0ON SW4-2 = OFF SW4-1 =0ON
Sw4-2 = OFF SW4-4 = OFF 2=
Debug ARM MAIN JTAG port. _ SW4-2 = OFF
SW4-4 = OFF SW8-2 = ON SW8-2 =ON
Debug SxA through NEXUS _
mictor. SW8-2 = ON SW2-2 = ON SW2-2 = ON
(ARM Debug Unit and SxA Debug SW2-2 = ON SW9o-1 = OFF SW5-4 = OFF
Unit are in the "unchained” mode.) | SW9-1 = OFF SW9-2 = ON (CPLD not
SW9_2 = ON SW5‘4, R54, R56(2) aValIable)

SW5-4 =0OFF(CPLD
not available)

All dips of SW11,
SW12 are at OFF
position.

JP1~4= pos2-3 or
not connected.

8063903

55/63

Target board configuration

TRACE32

B.1.2

56/63

Table 3. NDK boards configurations for debugging and Nexus trace (continued)
NDK-15-REVB NDK-15-REVC NDK-15 rev1.0
SW1-2 =ON
SW4-1 =0N
SW1-2 = ON SW4-2 = OFF SW1-2 = ON
Debug ARM through MAIN JTAG | SWA4-1=0ON Sw4-4 = OFF SW4-1 = ON
port, SW4-2 = OFF SW8-2 = ON SW4-2 = OFF
Debug SxA through NEXUS SW4-4 = OFF SW2-2 = ON SW8-2 = ON
mictor, SW8-2 = ON SW9-1 = OFF SW2-2 ~ ON
Nexus trace through NEXUS SW2-2 = ON SW9-2 = ON T
; SW5-4 = OFF
mictor. _ SW9-1 = OFF SW5-4, R54, R56) | (cp| b not
(L;AEQtM D?blig Unit arr:d_ SX(;A,‘, Dek;ug SW9-2 = ON Disconnect R59- available)
nit are in the "unchained” mode.) | q\\is_4 - OFF(CPLD |R66®) IP1~4= pos2-3
not available) Al dips of SW11,
SW12 are at OFF
position.
SW1-2 = ON
SW4-1 =0ON
SW4-2 = OFF SW1-2 = ON
Debug ARM through MAIN JTAG SW4-4 = OFF SW4-1 = ON
port, SW8-2 = ON SW4-2 = OFF
Debug SxA through NEXUS SW2-2 = OFF SW8-2 = ON
mictor, Not supported by SW9-1 = OFF i :
Nexus trace through NEXUS the NDK-15 rev2 SW9-2 = OFF SW2-2 = OFF
mictor, @ SW5-4 = OFF
!) SW5-4, R54, R56 (CPLD not
(ARM Debug unit and SxA Debug Di R59- :
. : € Isconnect available)
unit are in the “chained” mode.) rR66(ML
JP1~4=posl-2

All dips of SW11,
SW12 are at ON
position.

1. To make SW2-2 effective, SW10-1, SW10-2 should be both at OFF at power-on/reset phase.
2. SxA debug shares GPI0s [33-37] with peripherals such as keyboard, MSP1 and LCD.

3. Keyboard is not available if R59-R66 are disconnected.

To make GPIOs available for SxA debug, select the appropriate configuration.
e Disconnect R54, R56 so that SxA debug and peripherals are both available.
e Disconnect only R56, SW5-4 = OFF so that SxA debug is available and peripherals are

NOT available.

Distinguish the debug modes

Table 4. How to distinguish the debug modes:
NDK-15-REVB NDK-15-REVC NDK-15 rev1.0
Chained SW2-2 = OFF SW2-2 = OFF SW2-2 = OFF
Unchained SW2-2 = ON SW2-2 = ON SW2-2 = ON
8063903 1S7]

TRACE32

Target board configuration

B.2

B.2.1

B.2.2

COB20 boards

Switch configurations for debug and Nexus trace

Switch positions:
OFF: Away from the Nomadik chip.

ON: Towards the Nomadik chip.

Table 5. switches configuration for COB20 boards for debugging

Description COB20-A

ARM debug or ARM+SxA debug in chained debug mode TAPSEL is OFF
through MAIN JTAG port SCANEN is ON

SxA debug (with or without Nexus trace) in unchained debug | NEXUS is oN®
mode through NEXUS mictor VPIP is OFF

1. Remove resistors R715 to R718, R727, R729, R700. If there is poor Nexus trace quality, the following
resistors possibly need to be removed: R701 ~ R706, R713, R714

Debug mode change in STn8820

By default, the COB20 board is in chained debug mode.

To change to the “unchained” mode, run the following command in Trace32-ARM.
do jtagmode unchained

There is no need to reconnect the debugger to the target core. By default, after setting the
unchained mode on the STn8820, the jtagmode command updates the debug
configuration and reconnects the debugger.

8063903 57/63

TRACES32 devices

TRACE32

Appendix C

58/63

Table 6.

TRACE32 devices

TRACE32 devices

Without Nexus trace

With Nexus trace

Debug ARM | Debug SxA | Debug ARM | Debug SxA | Debug ARM
standalone | standalone + SXA standalone + SxA
Separated ARM and SxA @ @ @
JTAGS in Nomadik® PDd PTn PDd** + PTn PTn PDd'“+ PTn
PTn PDA@ + PTn
Chained ARM and SxA @) @ (not (not
JTAGs in Nomadik® PDd PDd PDd supported | supported by
by NDK-15 | NDK-15 rev2
rev2 boards) boards)

1. Default configuration on COB-10(B) and NDK-15 boards
2. A PDd can be substituted by a PTd

3. For details on setting up chained ARM and SxA JTAG TAPs, see Appendix B:

Target board configuration

Table 7. Legend used in Table 6
Device code Description Connection
PDd PowerDebug (LA-7705) with | The debug cable is connected to the debug cable port
a debug cable (LA-7742) on the PowerDebug (see Figure 42)
PTd PowerTrace (LA-7707) with a | The debug cable is connected to the debug cable port
debug cable (LA-7742) on the PowerTrace (see Figure 43)
PowerTrace (LA-7707) with a The Nexus preprocessor is connected to the C
PTn Nexus preprocessor dongle connector on the PowerTrace (see Figure 44)
(LA-7625) 9
+ Connected by the PODBUS FI?OO”DBUS OUT port is connected to the PODBUS IN
8063903 1S7

TRACE32

Connections

Appendix D Connections

Nexus connector: labelled NEXUS and P3

JTAG interface: labelled J6. It is also marked by JTAG on the COB-10(B) boards and by

MAIN JTAG on NDK-15 boards.

Figure 42. PDd

Target board

JTAG interface ———P» ——
Debug cable
PowerDebug
PC // Trigger infout
L # _1

USB interface D <:‘:I Power supply

AC/DC adapter

Figure 43. PTd

Target board

JTAG interfface ——P» ——

Debug cable

Trigger infout —

PowerTrace

PC

A]

[l

AC/DC adapter

USB interface

8063903

59/63

Connections

TRACE32

Figure 44. PTn

Trigger in/out

Target board

o

Nexus connector

PC

USB interface

.y

PowerTrace

C

R

[l

 —

<:‘:] Power supply

AC/DC adapter

Figure 45. PDd + PTn

Target board

PC

USB interface

—a [——1 --§—— JTAG interface

Nexus connector Debug cable
A
o
C

PowerTrace PowerDebug
[}] Podbus
— i - | =]
] P
AC/DC adapter

Figure 46. PTd + PTn

Target board

—a [—1 --§——— JTAG interface
Nexus connector Debug cable
A A
— B B — B B
ke L=
PowerTrace PowerTrace
PC
[- - [= o H Podbus
UsB interface |} = == Powersupply
AC/DC adapter
60/63 8063903 1S7]

TRACE32

Glossary

Appendix E

TRACE32-MMDSP
TRACE32-ARM
PODBUS

HLL

JTAG

Glossary

TRACE32 software adapted for MMDSP (SxA)

TRACE32 software for ARM processors family

High speed serial bus which connects TRACE32 debuggers to the host system
High level language

Joint test action group. A Ostandard for test access port and boundary-scan
architecture for printed circuit board

8063903 61/63

Revision history

TRACE32

Revision history

62/63

Table 8. Document revision history
Date Revision Changes
10-Jan-2008 A Initial release.
8063903 1S7]

TRACE32

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST") reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

KYI 8063903 63/63

	Preface
	License and guarantee information
	MMDSP documentation suite
	Conventions used in this guide
	Acknowledgements

	1 Installation
	1.1 Software installation
	1.1.1 Installing the run environments

	1.2 Hardware installation
	Figure 1. PowerTrace or PowerDebug connections
	1.2.1 Installing the PowerTrace or PowerDebug driver
	1.2.2 Configuring the target board
	1.2.3 Connecting the Trace32 Devices to the target board

	2 Using TRACE32
	2.1 Starting TRACE32
	2.1.1 Startt32.bat parameters
	2.1.2 startt32.bat usage examples
	2.1.3 Trace32 Configuration files
	Table 1. Configuration files

	2.1.4 Configuring the USB or Ethernet host connection
	Figure 2. ifconfig dialog box

	2.1.5 TRACE32 start up
	2.1.6 Nomadik configuration files
	2.1.7 Stopping TRACE32

	2.2 The graphical user interface (GUI)
	Figure 3. TRACE32 GUI

	2.3 Connecting to a target core
	Figure 4. Connect the target from the SYStem dialog box
	Figure 5. Connecting to the target using the softkeys

	2.4 Changing CPUs
	Figure 6. Changing the CPU from the SYStem dialog box
	Figure 7. Changing the CPU using the softkeys

	2.5 Loading an executable program
	Figure 8. Loading an executable program
	Figure 9. Loading an executable program using the softkeys
	2.5.1 Viewing the executable code
	Figure 10. View the executable code
	Figure 11. Setting the executable source path using the softkeys

	2.6 Running the executable program
	Table 2. Program execution keys

	2.7 Breakpoints
	2.7.1 Setting breakpoints
	Figure 12. Change Breakpoint dialog box

	2.7.2 Viewing breakpoints
	Figure 13. View breakpoints

	2.7.3 Changing breakpoints

	2.8 Variables
	Figure 14. View variables
	Figure 15. Watch window

	2.9 Memory
	Figure 16. Memory dump dialog box
	Figure 17. Data dump window

	2.10 Symbols
	Figure 18. Symbols list
	Figure 19. Symbols browser

	2.11 Target core’s peripherals view
	Figure 20. peripheral menu with core name
	Figure 21. peripherals menu
	Figure 22. pull-down popup menu

	2.12 Registers
	Figure 23. Registers window
	2.12.1 Stack
	Figure 24. Stack window

	2.13 RTOS (TRACE32-MMDSP only)
	Figure 25. ZeOS menu

	3 Performance analysis tools
	Figure 26. Performance configuration
	Figure 27. Perf.List.DYNamic
	3.1 Coverage statistics
	Figure 28. Coverage statistics

	4 Using Nexus trace in TRACE32
	4.1 Configuring Nexus trace
	4.2 Nexus trace capture
	Figure 29. Nexus trace capture

	4.3 View Program and data by Nexus trace
	Figure 30. List window

	4.4 Example of using Nexus in STn8815
	Figure 31. Example output

	5 Cross debugging
	6 Miscellaneous and tips
	6.1 Terminal interface for I/O operations (MMDSP only)
	Figure 32. The terminal window

	6.2 Setting arguments for an MMDSP program
	Figure 33. Setting the main function arguments example

	6.3 Displaying TRACE32 messages
	Figure 34. The area window

	6.4 Executing commands on the host shell
	Figure 35. Host shell
	Figure 36. Area window

	6.5 Printing
	6.5.1 Print preferences
	Figure 37. Print preferences

	6.5.2 Print the contents of a window
	Figure 38. Window contents to be printed

	6.6 Commands history
	Figure 39. Command history

	6.7 Save and reuse settings
	6.8 Logging
	6.9 TRACE32 help
	Figure 40. Trace32 help

	Appendix A License and guarantee
	A.1 License
	Figure 41. About TRACE32 window

	A.2 Guarantee

	Appendix B Target board configuration
	B.1 NDK15 boards
	B.1.1 Switches configurations for debug and Nexus trace
	Table 3. NDK boards configurations for debugging and Nexus trace (continued)

	B.1.2 Distinguish the debug modes
	Table 4. How to distinguish the debug modes:

	B.2 COB20 boards
	B.2.1 Switch configurations for debug and Nexus trace
	Table 5. switches configuration for COB20 boards for debugging

	B.2.2 Debug mode change in STn8820

	Appendix C TRACE32 devices
	Table 6. TRACE32 devices
	Table 7. Legend used in Table 6

	Appendix D Connections
	Figure 42. PDd
	Figure 43. PTd
	Figure 44. PTn
	Figure 45. PDd + PTn
	Figure 46. PTd + PTn

	Appendix E Glossary
	Revision history
	Table 8. Document revision history

