
ADCS 7473749D

OS20 User Manual

ADCS 7473749D

ii

OS20 User Manual

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to
make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without
notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability
whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document
refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any
intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services
or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY
WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN
PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any
warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2001, 2002, 2003, 2004, 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

http://www.st.com

http://www.st.com/

ADCS 7473749D

 Contents

iii

Contents

Preface . xiii

ST20 documentation suite . xiii

Conventions used in this manual . xiv

Acknowledgements . xv

1 Introduction .1

1.1 Overview . 2

1.2 Classes and objects . 4

1.3 Defining memory partitions . 5

1.4 Tasks . 6

1.5 Priority . 6

1.6 Semaphores . 7

1.7 Message queues . 7

1.8 Clocks . 7

1.9 Interrupts . 7

1.10 Device ID . 7

1.11 Cache . 8

1.12 Processor specific functions . 8

2 Getting started .9

2.1 Building for OS20 . 9

2.2 Starting OS20 manually . 16

3 Kernel .17

3.1 Implementation . 17

3.2 Optional debug features . 18

3.3 OS20 kernel . 19

3.4 Kernel header file: kernel.h . 19

OS20 User Manual

ADCS 7473749D

iv

4 Memory and partitions . 21

4.1 Partitions . 21

4.2 Allocation strategies . 22

4.3 Predefined partitions . 23

4.4 Obtaining information about partitions . 25

4.5 Partition header file: partitio.h . 25

5 Tasks . 27

5.1 OS20 tasks overview . 27

5.2 Implementation of priority and timeslicing . 28

5.3 OS20 priorities . 30

5.4 Scheduling . 31

5.5 Creating and running a task . 32

5.6 Synchronizing tasks . 33

5.7 Communicating between tasks . 33

5.8 Timed delays . 34

5.9 Rescheduling . 34

5.10 Suspending tasks . 35

5.11 Killing a task . 36

5.12 Getting the current task’s ID . 36

5.13 Stack usage . 37

5.14 Task data . 38

5.15 Task termination . 39

5.16 Waiting for termination . 40

5.17 Deleting a task . 41

5.18 Task header file: task.h . 41

6 Semaphores . 43

6.1 Semaphores overview . 43

6.2 Using semaphores . 45

6.3 Semaphore header file: semaphor.h . 46

ADCS 7473749D

 Contents

v

7 Mutexes .47

7.1 Mutexes overview . 47

7.2 Using mutexes . 49

7.3 Mutex header file: mutex.h . 49

8 Message handling .51

8.1 Message queues overview . 51

8.2 Creating message queues . 52

8.3 Using message queues . 54

8.4 Message header file: message.h . 56

9 Real-time clocks .57

9.1 ST20-C1 clock peripheral . 57

9.2 The ST20 timers on the ST20-C2 . 58

9.3 Reading the current time . 58

9.4 Determining the tick rate . 58

9.5 Time arithmetic . 59

9.6 Time header file: ostime.h . 60

10 Interrupts .61

10.1 Interrupt models . 61

10.2 Selecting the correct interrupt handling system . 64

10.3 Initializing the interrupt handling support system . 67

10.4 Attaching an interrupt handler in OS20 . 68

10.5 Initializing the peripheral device . 70

10.6 Enabling and disabling interrupts . 71

10.7 Example: setting an interrupt for an ASC . 72

10.8 Locking out interrupts . 73

10.9 Raising interrupts . 73

10.10 Retrieving details of pending interrupts . 74

10.11 Clearing pending interrupts . 74

10.12 Changing trigger modes . 75

10.13 Low power modes and interrupts . 75

10.14 Obtaining information about interrupts . 75

OS20 User Manual

ADCS 7473749D

vi

10.15 Uninstalling interrupt handlers and deleting interrupts . 76

10.16 Restrictions on interrupt handlers . 76

10.17 Interrupt header file: interrup.h . 77

11 Device information . 79

11.1 Device ID header file: device.h . 80

12 Caches . 81

12.1 Introduction . 81

12.2 Initializing the cache support system . 82

12.3 Configuring the caches . 82

12.4 Enabling and disabling the caches . 83

12.5 Locking the cache configuration . 83

12.6 Example: setting up the caches . 84

12.7 Flushing and invalidating caches . 84

12.8 Cache header file: cache.h . 85

13 ST20-C1 specific features . 87

13.1 In-built PWM support . 89

13.2 ST20-C1 example plug-in timer module . 90

13.3 Plug-in timer module header file: c1timer.h . 91

14 ST20-C2 specific features . 93

14.1 Overview . 93

14.2 Channels . 94

14.3 Two dimensional block move support . 99

15 Advanced configuration . 101

15.1 Run-time configuration . 102

15.2 Compiling OS20 . 104

15.3 Compilation option file: conf.h . 105

15.4 Performance considerations . 108

ADCS 7473749D

 Contents

vii

16 Alphabetical list of functions .111

16.1 Header files . 111

16.2 OS20 function descriptions . 117

cache_config_data . 117

cache_config_instruction . 119

cache_disable_data . 121

cache_disable_instruction . 122

cache_enable_data . 123

cache_enable_instruction . 124

cache_flush_data . 125

cache_init_controller . 126

cache_invalidate_data . 128

cache_invalidate_instruction . 129

cache_lock . 130

cache_status . 131

callback_... . 133

chan_alt . 135

chan_create . 137

chan_create_address . 138

chan_delete . 139

chan_in . 140

chan_in_char . 141

chan_in_int . 142

chan_init . 143

chan_init_address . 144

chan_out . 145

chan_out_char . 146

chan_out_int . 147

chan_reset . 148

device_id . 149

device_name . 150

interrupt_clear . 151

interrupt_clear_number . 152

OS20 User Manual

ADCS 7473749D

viii

interrupt_delete . 153

interrupt_disable . 154

interrupt_disable_global . 155

interrupt_disable_mask . 156

interrupt_disable_number . 157

interrupt_enable . 158

interrupt_enable_global . 159

interrupt_enable_mask . 160

interrupt_enable_number . 162

interrupt_init . 163

interrupt_init_controller . 165

interrupt_install . 167

interrupt_install_sl . 169

interrupt_lock . 171

interrupt_pending . 172

interrupt_pending_number . 173

interrupt_raise . 174

interrupt_raise_number . 175

interrupt_status . 176

interrupt_status_number . 178

interrupt_test_number . 180

interrupt_trigger_mode_number . 182

interrupt_uninstall . 183

interrupt_unlock . 184

interrupt_wakeup_number . 185

kernel_idle . 186

kernel_initialize . 187

kernel_start . 188

kernel_time . 189

kernel_version . 190

memory_allocate . 191

memory_allocate_clear . 192

memory_deallocate . 193

ADCS 7473749D

 Contents

ix

memory_reallocate . 194

message_claim . 195

message_claim_timeout . 196

message_create_queue . 198

message_create_queue_timeout . 199

message_delete_queue . 200

message_init_queue . 201

message_init_queue_timeout . 202

message_receive . 203

message_receive_timeout . 204

message_release . 206

message_send . 207

move2d_all . 208

move2d_non_zero . 209

move2d_zero . 210

mutex_create_fifo . 211

mutex_create_priority . 212

mutex_delete . 213

mutex_init_fifo . 214

mutex_init_priority . 215

mutex_lock . 216

mutex_release . 217

mutex_trylock . 218

partition_create_fixed . 219

partition_create_heap . 220

partition_create_simple . 221

partition_delete . 222

partition_init_fixed . 223

partition_init_heap . 224

partition_init_simple . 225

partition_status . 226

semaphore_create_fifo . 229

semaphore_create_fifo_timeout . 230

OS20 User Manual

ADCS 7473749D

x

semaphore_create_priority . 231

semaphore_create_priority_timeout . 232

semaphore_delete . 233

semaphore_init_fifo . 234

semaphore_init_fifo_timeout . 235

semaphore_init_priority . 236

semaphore_init_priority_timeout . 237

semaphore_signal . 238

semaphore_wait . 239

semaphore_wait_timeout . 240

task_context . 242

task_create . 243

task_create_sl . 246

task_data . 249

task_data_set . 250

task_delay . 251

task_delay_until . 252

task_delete . 253

task_exit . 254

task_id . 255

task_immortal . 256

task_init . 257

task_init_sl . 260

task_kill . 263

task_lock . 265

task_mortal . 266

task_name . 267

task_onexit_set . 268

task_onexit_set_sl . 269

task_priority . 270

task_priority_set . 271

task_private_data . 272

task_private_data_set . 273

ADCS 7473749D

 Contents

xi

task_reschedule . 274

task_resume . 275

task_stack_fill . 276

task_stack_fill_set . 277

task_status . 279

task_suspend . 281

task_unlock . 282

task_wait . 283

time_after . 284

time_minus . 285

time_now . 286

time_plus . 287

time_ticks_per_sec . 288

time_ticks_per_sec_set . 289

timer_init_pwm . 290

timer_initialize . 292

timer_interrupt . 294

Revision history. .295

Index .297

OS20 User Manual

ADCS 7473749D

xii

ADCS 7473749D

xiii

Preface

ST20 documentation suite
The document set provided with the toolset comprises the following documents.

OS20 User Manual (this document)

This manual is a user guide for the OS20 real-time kernel. It provides an introduction and
getting started section then continues with separate chapters for each of the main features
supported, such as, kernel, memory and partitions management, tasks, semaphores,
message handling queues, real-time clocks and interrupts.

ST20 Embedded Toolset Delivery Manual (ADCS 7257995)

The delivery manual provides installation instructions, a summary of the release and a list of
changes since the previous revision.

ST20 Embedded Toolset User Manual (ADCS 7143840)

This manual provides an overview of the toolset and a getting started guide for using the
graphical user interface. It also describes how the core features of the toolset are used to build
and run application programs. It includes compiling and linking, connecting to a target, loading
programs and application debugging.

ST20 Embedded Toolset Reference Manual (ADCS 7250966)

This manual describes the advanced facilities of the toolset such as the assembler, librarian,
lister, and ST20 instruction set simulator. It also describes facilities such as code and data
placement, the stack depth and memory map files, the use of relocatable code units and
profiling and trace facilities. Reference information is provided for the C and C++
implementations, the libraries and the command language.

OS20 User Manual Conventions used in this manual

ADCS 7473749D

xiv

Conventions used in this manual

Typographical conventions

The following typographical conventions are used in this manual:

Command line conventions

Example command lines and directory path names are documented using UNIX®/Linux style
notation which makes use of the forward slash (/) delimiter. In most cases this should be
recognized by Windows hosts; if not, substitute the forward slash with a backslash (\). For
example, the directory:

release/examples/simple

is the same as:

release\examples\simple

Command line options are prefixed by a hyphen (-); this is compatible with Linux, Windows
and UNIX.

Examples of the debugging tools use the following convention to distinguish command
prompts:

“%” is used to indicate the operating system command prompt, for example:

% st20run ...

“>” is used to indicate the interactive command language prompt, for example:

> break ...

Bold Used within text for emphasis

Blue Italic Denotes hyperlink cross-references

Italic Denotes nonhyperlink cross-references

UPPER CASE Denotes special terminology, for example, register or signal/pin names

Monotype bold Denotes command options, command line examples, code fragments, and
program listings

Monotype bold italic Denotes arguments or parameters in command syntax definitions

Monotype italic Denotes code comments

Braces {} Denotes a list of optional items in command syntax

Brackets [] Denotes optional items in command syntax

Ellipsis ... In general terms, used to denote the continuation of a series. For example, in
syntax definitions denotes a list of one or more items.

| In command syntax, separates two mutually exclusive alternatives

__ Denotes two underscores together

A change bar in the left margin indicates a change from the previous version of
the manual. This may indicate a change in the functionality of the toolset or
merely an updated description.

ADCS 7473749D

Acknowledgements Preface

xv

Acknowledgements
Linux® is a registered trademark of Linus Torvalds.

Red Hat® is a registered trademark of Red Hat Software, Inc.

Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the US
and other countries.

UNIX® is a registered trademark of the The Open Group in the US and other countries.

Microsoft®, Windows® and Windows NT® are registered trademarks of Microsoft Corporation
in the United States and other countries.

The C compiler implementation was developed from the Perihelion Software “C” Compiler
and the Codemist Norcroft “C” Compiler.

The C++ language front-end was developed under a Licence Agreement between Edison
Design Group, Inc. (EDG) and STMicroelectronics Limited.

This product incorporates innovative techniques which were developed with support from the
European Commission under the ESPRIT Projects:

● P2701 PUMA (Parallel Universal Message-passing Architectures),

● P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines),

● P7250 TMP (Transputer Macrocell Project),

● P7267 OMI/STANDARDS,

● P6290 HAMLET (High Performance Computing for Industrial Applications),

● P606 STARLIGHT (Starlight core for Hard Disk Drive Applications).

OS20 User Manual Acknowledgements

ADCS 7473749D

xvi

ADCS 7473749D

1

Introduction 1
Multi-tasking is widely accepted as an optimal method of implementing real-time systems.
Applications may be broken down into a number of independent tasks which co-ordinate their
use of shared system resources such as memory and CPU time. External events arriving
from peripheral devices are made known to the system via interrupts.

The OS20 real-time kernel provides comprehensive multi-tasking services. Tasks
synchronize their activities and communicate with each other via semaphores and message
queues. Real-world events are handled via interrupt routines and communicated to tasks
using semaphores. Memory allocation for tasks is selectively managed by OS20 or the user
and tasks may be given priorities and are scheduled accordingly. Timer functions are
provided to implement time and delay functions.

The OS20 real-time kernel is common across all ST20 microprocessors, facilitating the
portability of code. The kernel is re-implemented for each core, taking advantage of chip-
specific features to produce a highly efficient multi-tasking environment for embedded
systems developed for the ST20.

The API (Application Programming Interface) defined in this document corresponds to the
2.10 version of OS20.

OS20 User Manual 1.1 Overview

ADCS 7473749D

2

1.1 Overview
OS20 kernel features:

● a high degree of hardware integration,

● multi-priority pre-emptive scheduling based on 16 levels of priority,

● semaphores,

● message queues,

● timers,

● memory management,

● interrupt handling,

● very small memory requirement,

● context switch time of 6 µs or less,

● common across all ST20 microprocessors.

Each OS20 service can be used largely independently of any other service and this division
into different services is seen in several places.

● Each service has its own header file, which defines all the variables, macros, types and
functions for that service; see Table 1 below.

● All the symbols defined by a service have the service name as the first component of the
name; see Table 1 below.

Header Description

c1timer.h ST20-C1 timer plug-in functions

cache.h Cache functions

callback.h Callback functions

chan.h ST20-C2 specific functions

device.h Device information functions

interrup.h Interrupt handling support functions

kernel.h Kernel functions

message.h Message handling functions

move2d.h Two dimensional block move functions (ST20-C2 specific)

mutex.h Mutex functions

ostime.h Timer functions

partitio.h Memory functions

semaphor.h Semaphore functions

tasks.h Task functions

Table 1: OS20 header files

ADCS 7473749D

1.1 Overview 1 Introduction

3

1.1.1 Naming

All the functions in OS20 follow a common naming scheme. This is:

service_action[_qualifier]

where service is the service name, which groups all the functions, and action is the
operation to be performed. qualifier is an optional keyword which is used where there are
different styles of operation, for example, most interrupt_ functions use interrupt levels,
however those with a _number suffix use interrupt numbers.

1.1.2 How this manual is organized

The division of OS20 functions into services is used throughout this manual. Each of the
major service types is described separately, using a common layout:

● an overview of the service, and the facilities it provides,

● a list of the macros, types and functions defined by the service header file.

The remaining sections of this introductory chapter describe the main concepts on which
OS20 is founded. It is advisable to read the remainder of this chapter if you are a first-time
user.

A Getting started which describes how to start using OS20 is provided in Chapter 2: Getting
started on page 9.

Chapter 3: Kernel on page 17 describes the OS20 scheduling kernel.

Chapter 4: Memory and partitions on page 21 describes OS20 memory and partitions.

Chapter 5: Tasks on page 27 describes OS20 tasks.

Chapter 6: Semaphores on page 43 describes OS20 semaphores.

Chapter 8: Message handling on page 51 describes OS20 message handling.

Chapter 9: Real-time clocks on page 57 describes support for real-time clocks.

Chapter 10: Interrupts on page 61 describes OS20 interrupt handling.

Chapter 11: Device information on page 79 describes OS20 functions for obtaining ST20
device information.

Chapter 12: Caches on page 81 describes OS20 support for caches.

Chapter 13: ST20-C1 specific features on page 87 describes a facility for providing timer
support for OS20 when run on an ST20-C1 core.

Chapter 14: ST20-C2 specific features on page 93 describes support for some ST20-C2
specific features such as channel communication, high priority processes and two
dimensional block moves.

1.1.3 Related OS20 material

The Advanced facilities part of the ST20 Embedded Toolset Reference Manual contains
information which is pertinent to OS20 in the chapters Using st20run with OS20 and Building
and running relocatable code.

OS20 User Manual 1.2 Classes and objects

ADCS 7473749D

4

1.2 Classes and objects
OS20 uses an object-oriented style of programming. This will be familiar to many people from
C++, however it is useful to understand how this has been applied to OS20, and how it has
been implemented in the C language.

Each of the major services of OS20 is represented by a class, that is:

● memory partitions,

● tasks,

● semaphores,

● message queues,

● channels.

A class is a purely abstract concept, which describes a collection of data items and a list of
operations which can be performed on it.

An object represents a concrete instance of a particular class, and so consists of a data
structure in memory which describes the current state of the object, together with information
which describes how operations which are applied to that object affect it and the rest of the
system.

For many classes within OS20, there are different flavors. For example, the semaphore class
has FIFO and priority flavors. When a particular object is created, the required flavor must be
specified by using a qualifier on the object creation function, and that is then fixed for the
lifetime of that object. All the operations specified by a particular class can be applied to all
objects of that class, however, how they behave may depend on the flavor of that class. So the
exact behavior of semaphore_wait() depends on whether it is applied to a FIFO or priority
semaphore object.

Once an object has been created, all the data which represents that object is encapsulated
within it. Functions are provided to modify or retrieve this data.

Caution: The internal layout of any of the structure should not be referenced
directly. This changes between implementations and releases, although
the size of the structure does not change.

To provide this abstraction within OS20 using only standard C language features, most
functions which operate on an object take the address of the object as their first parameter.
This provides a level of type checking at compile time, for example, to ensure that a message
queue operation is not applied to a semaphore. The only functions which are applied to an
object, and which do not take the address of the object as a first parameter are those where
the object in question can be inferred. For example, when an operation can only be applied to
the current task, there is no need to specify its address.

1.2.1 Object lifetime

All objects can be created using one of two functions:

class_create
class_init

Normally the class_create version of the call can be used. This allocates whatever
memory is required to store the object, and returns a pointer to the object which can then be
used in all subsequent operations on that object.

However, if it is necessary to build a system with no dynamic memory allocation features or to
have more control over the memory which is allocated, then the class_init calls can be

ADCS 7473749D

1.3 Defining memory partitions 1 Introduction

5

used. This leaves memory allocation up to the user, allowing a completely static system to be
created if required. For class_init calls, the user must provide pointers to the data
structures, and OS20 uses these data structures instead of allocating them itself.

When using class_create calls, the memory for the object structure is normally allocated
from the system partition (the one exception to this is that tdesc_t structures are allocated
from the internal partition). Thus the partitions must be initialized before any class_create
calls are made. Normally this is done automatically as described in Chapter 2: Getting started
on page 9. Chapter 4: Memory and partitions on page 21 describes the system and internal
partitions in more detail.

The number of objects which can be created is only limited to the available memory, there are
no fixed size lists within OS20’s implementation.

When an object is no longer required, it should be deleted by calling the appropriate
class_delete function. If objects are not deleted and memory is reused, then OS20 and
the debugger’s knowledge of valid objects will become corrupted. For example, if an object is
defined on the stack and initialized using class_init then it must be deleted before the
function returns and the object goes out of scope.

Using the appropriate class_delete function has a number of effects.

● The object is removed from any lists within OS20, and no longer appears in the
debugger’s list of known objects.

● The object is marked as deleted, so any future attempts to use it will result in an error.

● If the object was created using class_create then the memory allocated for the object
is freed back to the appropriate partition.

Note: The objects created using both class_create and class_init are deleted using
class_delete.

Once an object has been deleted, it cannot continue to be used. Any attempt to use a deleted
object will cause a fatal error to be reported. In addition, if a task is blocked on an object (for
example it has performed a semaphore_wait()) and the object is then deleted, the task will
be rescheduled, but will immediately raise a fatal error.

1.3 Defining memory partitions
Memory blocks are allocated and freed from memory partitions for dynamic memory
management. OS20 supports three different types of memory partition - heap, fixed and
simple - as described in Chapter 4: Memory and partitions on page 21. The different styles of
memory partition allow trade-offs between execution times and memory utilization.

An important use of memory partitions is for object allocation. When using the
class_create_ versions of the library functions to create objects, OS20 allocates memory
for the object. In this case OS20 uses two pre-defined memory partitions (system and
internal) for its own memory management. These partitions need to be defined before any of
the create_ functions are called. This is normally performed automatically; see Chapter 2:
Getting started on page 9.

OS20 User Manual 1.4 Tasks

ADCS 7473749D

6

1.4 Tasks
Tasks are the main elements of the OS20 multi-tasking facilities. A task describes the
behavior of a discrete, separable component of an application, behaving like a separate
program, except that it can communicate with other tasks. New tasks may be generated
dynamically by any existing task.

Each task has its own data area in memory, including its own stack and the current state of
the task. These data areas can be allocated by OS20 from the system partition or specified by
the user. The code, global static data area and heap area are all shared between tasks. Two
tasks may use the same code with no penalty. Sharing static data between tasks must be
done with care, and is not recommended as a means of communication between tasks
without explicit synchronization.

Applications can be broken into any number of tasks provided there is sufficient memory. The
overhead for generating and scheduling tasks is small in terms of processor time and
memory.

Tasks are described in more detail in Chapter 5: Tasks on page 27.

1.5 Priority
Task scheduling is determined by priority. Normally the highest priority task is the one set to
run, with all lower priority tasks paused until the highest priority task deschedules.

In some cases, when there are two or more tasks of the same priority waiting to run, they are
each run for a short period, dividing the use of the CPU between the tasks. This is called
timeslicing.

A task’s priority is set when the task is created, although it may be changed later. OS20
provides the user with sixteen levels of priority.

Some members of the ST20 family of micro-cores implement an additional level of priority via
hardware processes.

OS20 supports the following system of priority for tasks running on an ST20-C2 processor.

● Tasks are normally run as low priority processes, and within this low priority rating may
be given a further priority level specified by the user. Low priority tasks of equal priority
are timesliced to share the processor time. Low priority tasks only run when there are no
high priority processes waiting to run.

● Tasks may be created to run as high priority processes, in which case they are never
timesliced and run until they terminate or have to wait for a time or communication before
they deschedule themselves. High priority tasks should be kept as short as possible to
prevent them from monopolizing system resources. High priority tasks can interrupt low
priority tasks that are running.

On an ST20-C1 there is no hardware priority support. OS20 allows the user to define
individual task priorities, and tasks of equal priority are timesliced. High priority processes are
not supported on the ST20-C1.

To implement multi-priority scheduling, OS20 uses a scheduling kernel which needs to be
installed and started before any tasks are created. This is described in Chapter 3: Kernel on
page 17. Further details of how priority is implemented is given in Section 5.2:
Implementation of priority and timeslicing on page 28.

ADCS 7473749D

1.6 Semaphores 1 Introduction

7

1.6 Semaphores
OS20 uses semaphores to synchronize multiple tasks. They can be used to ensure mutual
exclusion and control access to a shared resource.

Semaphores may also be used for synchronization between interrupt handlers and tasks and
to synchronize the activity of low priority tasks with high priority processes.

Semaphores are described in more detail in Chapter 6: Semaphores on page 43.

1.7 Message queues
Message queues provide a buffered communication method for tasks and are described in
Chapter 8: Message handling on page 51. On the ST20-C2 they should not be used from
tasks running as high priority processes and there are some restrictions on their use from
interrupt handlers.

1.8 Clocks
OS20 provides a number of clock functions to read the current time, to pause the execution of
a task until a specified time and to time-out an input communication. Chapter 9: Real-time
clocks on page 57 provides an overview of how time is handled in OS20. Time-out related
functions are described in Chapter 5: Tasks on page 27, Chapter 6: Semaphores on page 43
and Chapter 8: Message handling on page 51.

On the ST20-C2 microprocessor, OS20 makes use of the device’s two clock registers, one
high resolution, the other low resolution. The number of clock ticks is device-dependent and is
documented in the device datasheet.

The ST20-C1 microprocessor does not have its own clock and so a clock peripheral is
required when using OS20. This may be provided on the ST20 device or on an external
device. A number of functions are required, one to initialize the clock and the others to provide
the interface between the clock and the OS20 functions. OS20 provides some example
sources of such functions which the user can modify for their particular device; see
Chapter 13: ST20-C1 specific features on page 87 for details.

1.9 Interrupts
A comprehensive set of interrupt handling functions is provided by OS20 to enable external
events to interrupt the current task and to gain control of the CPU. These functions are
described in Chapter 10: Interrupts on page 61.

1.10 Device ID
Support is provided for obtaining the ID of the current device; see Chapter 11: Device
information on page 79.

OS20 User Manual 1.11 Cache

ADCS 7473749D

8

1.11 Cache
There are a number of functions available to exploit the cache support provided on ST20
devices; see Chapter 12: Caches on page 81.

1.12 Processor specific functions
The OS20 API has been designed to be consistent across the full range of ST20 processors.
However, some processors have additional features which it may be useful to take advantage
of. It should be remembered that using these functions may reduce the portability of any
programs to other ST20 processors. See Chapter 13: ST20-C1 specific features on page 87
and Chapter 14: ST20-C2 specific features on page 93.

ADCS 7473749D

9

Getting started 2
This chapter describes how to start using OS20 and write a simple application. The concepts
and terminology used in this chapter are introduced in Chapter 1: Introduction on page 1.

2.1 Building for OS20
Normally using OS20 can be almost transparent. All that is necessary is to specify to the
linker that the OS20 run-time system is to be used using the -runtime option. For example:

st20cc -p STi5516MB382 -runtime os20 app.tco -o system.lku

This ensures that by the time the user’s main function starts executing:

● the OS20 scheduler has been initialized and started,

● the interrupt controller has been initialized,

● the system and internal partitions have been initialized,

● thread safe versions of malloc and free have been set up,

● protection has been installed to ensure that when multiple threads call debug functions,
device-independent I/O functions or stdio functions concurrently, all operations are
handled correctly.

st20cc is described in the ST20 Embedded Toolset User Manual, chapter st20cc compile/link
tool; the toolset command language is described in the ST20 Embedded Toolset Reference
Manual‘.

2.1.1 How it works

To initialize OS20 requires some cooperation between the linker configuration files, and the
run-time start up code.

● By specifying the -runtime os20 option to the linker, the configuration file
os20lku.cfg or os20rom.cfg is used instead of the normal C run-time files. This
replaces a number of the standard library files with OS20 specific versions.

● Some modules within the OS20 libraries contain functions which are executed at start
time automatically (through the use of the #pragma ST_onstartup).

OS20 User Manual 2.1 Building for OS20

ADCS 7473749D

10

● A number of symbols are defined by the linker in the OS20 configuration files, and
through the use of the chip command. This allows the library code to pick up chip
specific definitions, for example, the base address of the interrupt level controller and the
amount of available internal memory.

● The heap defined in the configuration files is used for the system partition and so
memory for objects defined via class_create functions is allocated from this heap
area. malloc and free are redefined to allocate memory from the system partition.

● The internal partition is defined to be whatever memory is left unused in the INTERNAL
memory segment.

All the functions which are called at start up time are standard OS20 functions. So if the start
up code is not doing what is required for a particular application, it is simple to replace it with
a custom run-time system and pick and choose which libraries to replace from the C or OS20
run-time libraries. Chapter 15: Advanced configuration on page 101 provides details of how
the OS20 kernel may be recompiled or reconfigured to meet specific application needs.
Although this should be done with care and may not be suitable for a production system.

Note: An ST20-C1 timer module is not installed automatically, because this requires knowledge of
how any timer peripherals are being used by the application. See Chapter 13: ST20-C1
specific features on page 87 for further details.

2.1.2 Initializing partitions

The two partitions used internally by OS20, the system and internal partitions, are set up
automatically when the st20cc linker command line option -runtime os20 is used.
However, this relies on information which the user must provide in the linker configuration file.

The system partition uses the memory which is reserved using the heap command. As
malloc and free have been redefined to operate on the system partition, the two
statements:

malloc(size);

and

memory_allocate(system_partition, size);

are now equivalent.

Similarly calloc is equivalent to memory_allocate_clear, free is equivalent to
memory_deallocate and realloc is equivalent to memory_reallocate.

The internal partition is defined to be whatever memory is left unused in the INTERNAL
segment. Thus an INTERNAL segment must be defined. This involves the OS20 configuration
files defining a number of global variables which are read by OS20 at start up. These are
defined using the addressof, sizeof and sizeused commands in the configuration file to
give details of the unused portion of the INTERNAL segment.

ADCS 7473749D

2.1 Building for OS20 2 Getting started

11

2.1.3 Example

The following example shows how to write a simple OS20 program, in this case a simple
terminal emulator; see Figure 1. The code is written to run on an STi5500 evaluation board,
but can be easily ported to another target. For device-specific details, refer to the device
datasheet.

To keep the example concise, some code which does not demonstrate the use of OS20 is
omitted here. The full source code is provided with the OS20 examples in the
examples/os20/getstart directory.

The software is structured as two tasks, one handling characters passing from the keyboard
and out of the serial port, the other handling characters received from the serial port and
being displayed on the console. In addition there is an interrupt handler which services
interrupts from the serial hardware.

First some constants and global variables need to be defined:

#define CPU_FREQUENCY 40000000
#define BAUD_RATE 9600

#define SERIAL_TASK_STACK_SIZE 1024
#define SERIAL_TASK_PRIORITY 10
#define SERIAL_INT_STACK_SIZE 1024

ring_t serial_rx_ring, serial_tx_ring;
semaphore_t serial_rx_sem;
int serial_mask = ASC_STATUS_RxBUF_FULL;

task_t *serial_tasks[2];
char serial_int_stack[SERIAL_INT_STACK_SIZE];

This defines some constants which are needed to initialize the serial port hardware, in
particular the CPU frequency, which is needed when programming the serial port hardware’s
baud rate generator, and may need to be changed when run on another CPU.

Figure 1: Example program schematic

serial_int

serial_tx_ring

serial_rx_ring

tty_to_serial

serial_to_tty

ASC
Hardware

Interrupt
handler

Ring buffer Task

OS20 User Manual 2.1 Building for OS20

ADCS 7473749D

12

It also defines some constants which are needed when setting up the tasks and interrupts,
and global variables which are used for communication between the interrupt handler and
tasks (the ring buffers and semaphore).

To initialize this system, an initialization function serial_init is provided:

void serial_init(int loopback)
{
#pragma ST_device(asc)

volatile asc_t* asc = asc1;

/* Initialize the PIO pins */
pio1->pio_pc0_rw = PIO1_PC0_DEFAULT;
pio1->pio_pc1_rw = PIO1_PC1_DEFAULT;
pio1->pio_pc2_rw = PIO1_PC2_DEFAULT;

/* Initialize the Rx semaphore */
semaphore_init_fifo(&serial_rx_sem, 0);

/* Initialize the ring buffers */
ring_init(&serial_rx_ring);
ring_init(&serial_tx_ring);

/* Install the interrupt handler */
interrupt_install(ASC1_INT_NUMBER, ASC1_INT_LEVEL, serial_int,

(void*)asc);
interrupt_enable(ASC1_INT_LEVEL);

/* Initialize the serial port hardware */
asc->asc_baud = CPU_FREQUENCY / (16 * BAUD_RATE);
asc->asc_control = ASC_CONTROL_DEFAULT |

(loopback ? ASC_CONTROL_LOOPBACK : 0);
asc->asc_intenable = serial_mask;

/* Create the tasks */
serial_tasks[0] = task_create(serial_to_tty, (void*)asc,

SERIAL_TASK_STACK_SIZE, SERIAL_TASK_PRIORITY, "serial0", 0);
serial_tasks[1] = task_create(tty_to_serial, (void*)asc,

SERIAL_TASK_STACK_SIZE, SERIAL_TASK_PRIORITY, "serial1", 0);
if ((serial_tasks[0] == NULL) || (serial_tasks[1] == NULL)) {

printf("task_create failed\n");
debugexit(1);

}
}

First the PIO pins need to be set up so that the serial port is connected to the PIO pins (this
involves configuring them as “alternate mode” pins - see the device datasheet for details).
Next the semaphore used to synchronize the interrupt handler with the receiving task is
initialized. Initially this is set to zero to indicate that there are no buffered characters. Each
time a character is received, the semaphore is signalled, in effect keeping a count of the
number of buffered characters. This means that the receiving task does not need to check
whether the buffer is empty or not when it is run, as long as it waits on the semaphore once
per character.

After initializing the ring buffers, the interrupts are initialized. This connects the interrupt
handler (serial_int) to the interrupt number (ASC1_INT_NUMBER).

Note: The interrupt level is not configured here.

ADCS 7473749D

2.1 Building for OS20 2 Getting started

13

It is good practice to initialize all used interrupt levels in one central location rather than
individual modules, as each one may be shared by several interrupt numbers (see the
definition of main at the end of this example).

Next the serial port hardware needs to be configured. This sets up the baud rate, enables the
port (possibly enabling loopback mode), and enables the interrupts. Initially only receive
interrupts are enabled, as there are no characters to transmit yet. However, the handler needs
to be notified as soon as a character is received, so receive interrupts are permanently
enabled.

Finally the two tasks which manage the serial communication are created. This allocates the
tasks’ stacks from the system partition, and immediately starts them running.

The next part of the software is the interrupt handler:

void serial_int(void* param)
{

int status;
#pragma ST_device(asc)

volatile asc_t* asc = (volatile asc_t*)param;

while ((status = (asc->asc_status & serial_mask)) != 0) {
switch(status) {

case ASC_STATUS_RxBUF_FULL:
ring_write(&serial_rx_ring, asc->asc_rxbuf);
semaphore_signal(&serial_rx_sem);
break;

case ASC_STATUS_TxBUF_EMPTY:
asc->asc_txbuf = ring_read(&serial_tx_ring);
if (ring_empty(&serial_tx_ring)) {

serial_mask &= ~ASC_STATUS_TxBUF_EMPTY;
asc->asc_intenable = serial_mask;

}
break;

}
}

}

This is constructed as a while loop, so that when the loop exits, there are certain to be no
interrupts pending1. The code needs to be written this way, as the interrupt level is set up to
trigger on a rising edge, and so the interrupt must go inactive to guarantee that the next
interrupt is seen as a low-to-high transition. An alternative way of constructing this as a high
level triggered interrupt is possible, which would cause the interrupt handler to be entered as
long as there are pending interrupts.

Inside the loop, the code checks for the two cases we are interested in, the receive buffer
being full (that is, containing a character), and the transmit buffer being empty.

Note: The STATUS register is masked by the variable serial_mask. This ensures that the code
does not check for the transmit buffer being empty when there are no characters to transmit.

1. The possibility of error interrupts is ignored in this simple example.

OS20 User Manual 2.1 Building for OS20

ADCS 7473749D

14

The first task takes characters received from the serial port and displays them on the console:

void serial_to_tty(void* param)
{

char c;
while (running) {

semaphore_wait(&serial_rx_sem);
c = ring_read(&serial_rx_ring);
debugwrite(1, &c, 1);

}
}

This just waits for the semaphore to be signalled, at which point there must be a character in
the ring buffer, so this is read and printed.

The second task is slightly more complex. This takes characters typed on the keyboard and
sends them to the serial port:

void tty_to_serial(void* param)
{

long int c;
long int flag;
const clock_t initial_delay = ONE_SECOND / 100;
clock_t delay = initial_delay;

#pragma ST_device(asc)
volatile asc_t* asc = (volatile asc_t*)param;

while (running) {
flag = debugpollkey(&c);
if (flag == 1) {

interrupt_lock();
ring_write(&serial_tx_ring, (char)c);
serial_mask |= ASC_STATUS_TxBUF_EMPTY;
asc->asc_intenable = serial_mask;
interrupt_unlock();

} else {
task_delay(delay);
if (delay < (ONE_SECOND / 10)) delay *= 2;

}
}

}

This code has to poll the keyboard, otherwise while it was waiting for keyboard input it would
prevent other tasks writing data. So the code polls the keyboard, and if no character is read,
waits for a short while.

If a character is received, then it needs to be written into the transmit ring buffer, and the
transmit serial interrupt enabled. This is the only piece of code which needs to be executed
with interrupts disabled, as the updating of the ring buffer, serial_mask and the serial port’s
interrupt enable register needs to be atomic.

ADCS 7473749D

2.1 Building for OS20 2 Getting started

15

Finally a small test harness needs to be provided:

int main(int argc, char* argv[])
{

int loopback = (argc > 1);
device_id_t devid = device_id();

printf("-- Simple Terminal Emulator ---\n");
printf("OS/20 version %s\n", kernel_version());
printf("Device %x (%s)\n\n", devid.id, device_name(devid));

/* Initialize the interrupt system for the chip */
interrupt_init(ASC1_INT_LEVEL, serial_int_stack,

sizeof(serial_int_stack), interrupt_trigger_mode_rising,
interrupt_flags_low_priority);

interrupt_enable(INTERRUPT_GLOBAL_ENABLE);

serial_init(loopback);

while (1) {
debugmessage(".");
task_delay(ONE_SECOND);

}
}

First this dumps some information to the screen about the OS20 version and which chip it is
running on. Next the interrupt system is initialized, setting up the stack and trigger mode for
the interrupt which is going to be used, before enabling global interrupts. The test application
is then started, and finally the task goes into an infinite loop, dumping a character periodically.

The application can be built as follows:

st20cc -p STi5500MB159 example.c -o example.tco -g -c
st20cc -p STi5500MB159 example.tco -o system.lku -runtime os20
-M system.map

The first st20cc command compiles the source file into a .tco. The second command links
the application code with the run-time libraries, specifying that an OS20 run-time library is to
be used.

It can now be run as normal:

st20run -t major2 system.lku -args loopback

This uses a target called major2, and specifies an argument so that the code can be run in
loopback mode.

OS20 User Manual 2.2 Starting OS20 manually

ADCS 7473749D

16

2.2 Starting OS20 manually
If the -runtime option to st20cc cannot be used, then it is still possible to use OS20.

The linker is called with the normal ANSI C run-time libraries and the OS20 libraries are
included. This could be achieved, for example, by the following:

st20cc -p STi5516MB382 -T myfile.cfg app.tco -o system.lku

where myfile.cfg includes the following commands:

file os20.lib
file os20intc1.lib
file os20ilc1.lib

Note: The two libraries os20intc1.lib and os20ilc1.lib may need to be replaced by
alternative libraries for some devices; see Section 10.2: Selecting the correct interrupt
handling system on page 64 for further details.

OS20 must then be started and initialized by making the relevant calls from the user code.
The order in which initialization and object creation can occur is strictly defined.

1 partition_init_type can be called to initialize the system and internal partitions.
Being able to call this before kernel_initialize is a special dispensation for
backward compatibility, is not required, and is not encouraged for new programs.

2 kernel_initialize should normally be the first OS20 call made.

3 All class _init and _create functions can now be called, apart from tasks. This allows
objects to be created while guaranteed to still be in single threaded mode.

4 kernel_start can now be called to start the multi-tasking kernel. OS20 is now fully up
and running.

5 Tasks can now be created by calling task_create or task_init, together with any
other OS20 call.

The one exception to this list is the interrupt system. This has been designed so that it can be
used even when the remainder of OS20 is not being used. Thus calls to
interrupt_init_controller, interrupt_init, interrupt_install and any other
interrupt_ function can be made at any point. Obviously any interrupt handlers which run
before the kernel has started, should not make calls which can cause tasks to be scheduled,
for example semaphore_signal.

There is one other piece of initialization which must be performed for the ST20-C1. Before any
time functions are used, a timer module needs to be installed. For an example of how to do
this see Chapter 13: ST20-C1 specific features on page 87.

When OS20 is used, the heap functions (malloc, calloc, free and realloc), debug
functions, device-independent I/O functions and stdio functions are thread-safe; see the ST20
Embedded Toolset Reference Manual, chapter Libraries introduction.

Note: Although thread-safe versions of the heap functions are used they are not mapped to the
OS20 memory management functions as they are when the -runtime option is used; see
Section 2.1.2: Initializing partitions.

ADCS 7473749D

17

Kernel 3
To implement multi-priority scheduling, OS20 uses a small scheduling kernel. This is a piece
of code which makes scheduling decisions based on the priority of the tasks in the system. It
is the kernel’s responsibility to ensure that it is always the task which has the highest
scheduling priority that is the one which is currently running.

The toolset is supplied with two prebuilt OS20 kernel libraries: the deployment kernel and
debug kernel. The debug kernel is provided to support debugging. Currently the only
difference between the two kernels is that the debug kernel has an additional time logging
facility. Apart from specific references to the “debug kernel”, the term “kernel” when used in
this chapter applies to either kernel.

3.1 Implementation
The kernel maintains two vitally important pieces of information:

● the currently executing task, and thus what priority is currently being executed,

● a list of all the tasks which are currently ready to run.

This is stored as a number of queues, one for each priority, with the tasks stored in the
order in which they will be executed.

The kernel is invoked whenever a scheduling decision has to be made. This happens on three
possible occasions.

● When a task is about to be scheduled, the scheduler is called to determine if the new
task is of higher priority than the currently executing task. If it is, then the state of the
current task is saved, and the new one installed in its place, so that the new task starts to
run. This is termed “preemption”, because the new task has preempted the old one.

● When a task deschedules, for example it is waiting on a message queue which does not
have any messages available, then the scheduler is invoked to decide which task to run
next. The kernel examines the list of processes which are ready to run, and picks the one
with the highest priority.

OS20 User Manual 3.2 Optional debug features

ADCS 7473749D

18

● Periodically the scheduler is called to timeslice the currently executing task. If there are
other tasks which are of the same priority as the current task, then the state of the
current task is saved onto the back of the current priority queue, and the task at the front
of the queue installed in its place. In this way all processes of the same priority get a
chance to run.

In this way the kernel ensures that it is always the highest priority task(s) which run.

The scheduler code is installed as a scheduler trap handler, which causes the ST20 hardware
to invoke the scheduling software whenever a scheduling operation is required.

3.2 Optional debug features
The OS20 kernel is supplied in two forms, the deployment kernel and the debug kernel. The
debug kernel contains extra features designed to find bugs and assist with performance
tuning. Chapter 16: Alphabetical list of functions on page 111 contains function descriptions.

Note: All features in the debug kernel are slightly intrusive. This may subtly alter the real-time
performance of the system being debugged, however, in most cases the difference in
performance should be negligible.

3.2.1 Assertion checking

The debug kernel performs assertion checks on entry to every OS20 library call. These
assertions catch a number of illegal calling conditions that can lead to a variety of difficult to
debug scheduling failures. Specifically the assertions are triggered if the application illegally:

● passes a NULL pointer argument,

● calls a function from an interrupt handler,

● calls a function from a high priority process (ST20-C2 only),

● calls a function while interrupts are locked.

An assertion is also triggered if any of the following functions are called on a non-timeout
object with a timeout that is not TIMEOUT_INFINITY:

● semaphore_wait_timeout,

● message_claim_timeout,

● message_receive_timeout.

When an assertion is triggered a message is displayed identifying the failure and the machine
will stop in the debugger at the point of failure. If a debugger is not connected then the
machine will enter a busy loop until a debugger is connected at which point it will display the
message and stop the machine.

3.2.2 Time logging

For targets with an ST20-C2 core the debug kernel is also configured to maintain a record of
the amount of time each task and interrupt spends executing. This facility is not available on
ST20-C1 cores.

The following information is available in the debug kernel.

● Task time logging maintains a record of the amount of time each task spends running
on the processor. The data collected can be accessed using the task_status function.

● Interrupt time logging maintains a record of the amount of time spent servicing each
interrupt and the number of times the interrupt has been called. The functions

ADCS 7473749D

3.3 OS20 kernel 3 Kernel

19

interrupt_status and interrupt_status_number are used to return this
information.

● The functions kernel_idle and kernel_time return the time spent idle and the total
up-time respectively. The total up-time being the time elapsed since the kernel started.

3.2.3 Using the debug kernel

If OS20 is started automatically using -runtime os20 then the st20cc option
-debug-runtime causes the application to link with the debug kernel. This is the
recommended way to access the debug kernel.

If OS20 is started manually (see Section 2.2: Starting OS20 manually) then the three library
files used must be prefixed with ’debug/’.

For example:

file debug/os20.lib
file debug/os20intc1.lib
file debug/os20ilc1.lib

Note: No assertion checking is performed until kernel_start() has been called, for this reason
assertion checking cannot be used to find problems during manual initialization.

3.3 OS20 kernel
The primary operations which can be performed on the OS20 kernel are its installation and
start. These are performed by calling the functions kernel_initialize() and
kernel_start(). Normally, if the st20cc option -runtime os20 is specified when linking,
this is done automatically. However, if OS20 is being started manually, the initialization of the
OS20 kernel is usually performed as the first operation in main():

if (kernel_initialize() != 0) {
printf ("Error : initialize. kernel_initialize failed\n");
exit (EXIT_FAILURE);

}
...initialize memory and semaphores...
if (kernel_start() != 0) {

printf("Error: initialize. kernel_start failed\n");
exit(EXIT_FAILURE);

}

3.4 Kernel header file: kernel.h
All the definitions related to the kernel are in the single header file, kernel.h; see Table 2:

Function Description

kernel_idle Return the kernel idle time

kernel_initialize Initialize for preemptive scheduling

kernel_start Starts preemptive scheduling regime

kernel_time Return the kernel up-time

kernel_version Return the OS20 version number

Table 2: Functions defined in kernel.h

OS20 User Manual 3.4 Kernel header file: kernel.h

ADCS 7473749D

20

ADCS 7473749D

21

Memory and partitions 4
Memory management on many embedded systems is vitally important, because available
memory is often quite small, and must be used efficiently. For this reason three different styles
of memory management have been provided with OS20; see Section 4.2: Allocation
strategies. These give the user flexibility in controlling how memory is allocated, allowing a
space/speed trade-off.

4.1 Partitions
The basic job of memory management is to allow the application program to allocate and free
blocks of memory from a larger block of memory, which is under the control of a memory
allocator. In OS20 these concepts have been combined into a partition, which has three
properties:

● the block of memory for which the partition is responsible,

● the current state of allocated and free memory,

● the algorithm to use when allocating and freeing memory.

The method of allocating/deallocating memory is the same whatever style of partition is used,
only the algorithm used (and thus the interpretation of the partition data structures) changes.

There is nothing special about the memory which a partition manages. It can be a static or
local array, or an absolute address which is known to be free. It can also be a block allocated
from another partition (see the example given in Chapter 16: Alphabetical list of functions,
function partition_delete on page 222). This arrangement can be useful to avoid having to
explicitly free all the blocks allocated:

1 Allocate a block from a partition, and create a second partition to manage it.

2 Allocate memory from the partition as normal.

3 When finished, rather than freeing all the allocated blocks individually, free the whole
partition (as a block) back to the partition from which it was first allocated.

The OS20 system of partitions can also be exploited to build fault-tolerance into an
application, by implementing different parts of the application using different memory
partitions. Then if a fault occurs in one part of the application it does not necessarily affect the
whole application.

OS20 User Manual 4.2 Allocation strategies

ADCS 7473749D

22

4.2 Allocation strategies
OS20 supports three types of partition:

● Heap

Heap partitions use the same style of memory allocator as the traditional C run-time
malloc and free functions. Variable sized blocks can be allocated, with the requested
size of memory being allocated by memory_allocate. The first available block of
memory is returned to the user. Blocks of memory may be deallocated using
memory_deallocate, in which case they are returned to the partition for re-use. When
blocks are freed, if there is a free block before or after it, it is combined with that block to
allow larger allocations.

Although the heap style of allocator is very versatile, it does have some disadvantages. It
is not deterministic, the time taken to allocate and free memory is variable because it
depends upon the previous allocations/deallocations performed and lists have to be
searched. Also the overhead (additional memory which the allocator consumes for its
own use) is quite high, with several additional words being required for each allocation.

● Fixed

The fixed partition overcomes some of these problems, by fixing the size of the block
which can be allocated when the partition is created, using
partition_create_fixed or partition_init_fixed. This means that allocating
and freeing a block takes constant time (it is deterministic), and there is a very small
memory overhead. Thus this partition ignores the size argument when an allocation is
preformed by memory_allocate and uses instead the size argument passed by
either partition_create_fixed or partition_init_fixed.

Blocks of memory may be deallocated using memory_deallocate, in which case they
are returned to the partition for re-use.

● Simple

The simple partition is a trivial allocator, which just increments a pointer to the next
available block of memory. This means that it is impossible to free any memory back to
the partition, but there is no wasted memory when performing memory allocations. Thus
this partition is ideal for allocating internal memory. Variable sized blocks of memory can
be allocated, with the size of block being defined by the argument to memory_allocate
and the time taken to allocate memory is constant.

The properties of the three partition types are summarized in Table 3.

Properties Heap Fixed Simple

Allocation method As requested by
memory_allocate
or
memory_reallocate

Fixed at creation by
partition_create_fixed
or
partition_init_fixed.

As requested by
memory_allocate

Deallocation possible Yes Yes No

Overhead size (bytes) 8 0 0

Deterministic No Yes Yes

Table 3: Partition properties

ADCS 7473749D

4.3 Predefined partitions 4 Memory and partitions

23

4.3 Predefined partitions
OS20 has been designed not to require any dynamic memory allocation itself. This allows the
construction of deterministic systems, or for the user to take over all memory allocation.

However, for convenience, all of the object initialization functions (for example, task_init,
semaphore_init_fifo) are also available with a creation style of interface (for example,
task_create, semaphore_create_fifo), where OS20 performs the memory allocation
for the object. In these cases OS20 uses two predefined partitions.

● The system_partition is used for all object allocation, including semaphores,
message queues and the static portion of the task’s data structure, including the task’s
stack. Normally this is managed as a heap partition.

● The internal_partition is used just for the allocation of the dynamic part of a task’s
data structure by task_create. To minimize context switch time, this data should be
placed in internal memory (see Section 5.1: OS20 tasks overview on page 27 for more
information about a task’s state). Thus the internal_partition should manage a
block of memory from the ST20’s internal memory. Normally this is managed as a simple
partition, to minimize wastage of internal memory.

These partitions must be defined before any of the object creation functions are called, and
because they are independent of the kernel, this can be done before kernel initialization if
required.

Normally, if the st20cc option -runtime os20 is specified when linking, this initialization is
performed automatically; see Chapter 2: Getting started on page 9.

If OS20 is being started manually, the following can be done:

partition_t *system_partition;
partition_t *internal_partition;
static int internal_block[200];
static int external_block[100000];
#pragma ST_section(internal_block, “internal_part”)

void initialize_partitions(void)
{

static partition_t the_system_partition;
static partition_t the_internal_partition;

 if (partition_init_simple(&the_internal_partition,
(unsigned char*)internal_block, sizeof(internal_block)) !=0){
printf(“partition creation failed \n”);
return;

 }
 if (partition_init_heap(&the_system_partition,

(unsigned char*)external_block, sizeof(external_block)) !=0){
printf(“partition creation failed \n”);
return;

 }

system_partition = &the_system_partition;
internal_partition = &the_internal_partition;

}

The section internal_partition is then placed into internal memory by adding a line to
the application configuration file:

place internal_partition INTERNAL

OS20 User Manual 4.3 Predefined partitions

ADCS 7473749D

24

4.3.1 Calculating partition sizes

In order to calculate the size of system and internal partitions, the memory allocation function
requires several pieces of information for each object created using the _create functions
(for example, task_create, message_create_queue, semaphore_create_fifo). The
information consists of memory requirements for:

● the object (see Object memory allocation below),

● the object tasks’ stacks (created using task_create),

● object overhead (see Object overhead memory allocation below),

● any additional allocations performed by the user’s application.

Object memory allocation

Each object is defined by a data structure or type (refer to individual chapters). For example,
task_t (refer to Chapter 5: Tasks on page 27). Table 4 lists the different types of object
structure that may be created and their memory requirement.

Object overhead memory allocation

The number of words used depend on whether the object is allocated from a heap, fixed or
simple partition. All objects are allocated from the system partition, which is managed as a
heap partition. The exception is the object structure tdesc_t which is allocated from the
internal partition (normally managed as a simple partition). Table 3 shows the memory
overhead associated for each partition type.

Object structure Size (words) Size (bytes) Notes

chan_t 4 16 ST20-C2 specific

semaphore_t 6 24

message_queue_t 19 76

partition_t 15 60

task_t 9 36

tdesc_t 6
9

24
36

ST20-C2 specific
ST20-C1 specific

Table 4: Object size memory requirement

ADCS 7473749D

4.4 Obtaining information about partitions 4 Memory and partitions

25

4.4 Obtaining information about partitions
When memory is dynamically allocated, it is important to have knowledge of how much
memory is used or how much memory is available in a partition. The status of a partition can
be retrieved with a call to the following function:

#include <partitio.h>
int partition_status(

partition_t* Partition,
partition_status_t* Status,
partition_status_flags_t flags);

The information returned includes the total memory used, the total amount of free memory,
the largest block of free memory and whether the partition is in a valid state.

partition_status() returns the status of heap, fixed and simple partitions by storing the
status into the partition_status_t structure which is passed as a pointer to
partition_status().

For fixed partitions, the largest free block of memory is always be the same as the block size
of a given fixed partition.

4.5 Partition header file: partitio.h
All the definitions related to memory partitions are in the single header file, partitio.h; see
Table 5.

Function Description

memory_allocate Allocate a block of memory from a partition

memory_allocate_clear Allocate a block of memory from a partition and clear to zero

memory_deallocate Free a block of memory back to a partition

memory_reallocate Reallocate a block of memory from a partition

partition_create_simple Create a simple partition

partition_create_heap Create a heap partition

partition_create_fixed Create a fixed partition

partition_delete Delete a partition

partition_init_simple Initialize a simple partition

partition_init_heap Initialize a heap partition

partition_init_fixed Initialize a fixed partition

partition_status Get the status of a partition

Table 5: Functions defined in partitio.h

OS20 User Manual 4.5 Partition header file: partitio.h

ADCS 7473749D

26

Table 6 lists the types defined by partitio.h.

Types Description

partition_t A memory partition

partition_stuatus_flags_t Additional flags for partition_status

Table 6: Types defined by partitio.h

ADCS 7473749D

27

Tasks 5
Tasks are separate threads of control, which run independently. A task describes the behavior
of a discrete, separable component of an application, behaving like a separate program,
except that it can communicate with other tasks. New tasks may be generated dynamically by
any existing task.

Applications can be broken into any number of tasks provided there is sufficient memory.
When a program starts, there is a single main task in execution. Other tasks can be started as
the program executes. These other tasks can be considered to execute independently of the
main task, but share the processing capacity of the processor.

5.1 OS20 tasks overview
A task consists of a data structure, stack and a section of code. A task’s data structure is
known as its state; its exact content and structure are processor-dependent. In OS20 it is
divided into two parts, and includes the following elements:

● Dynamic state

This is defined in the data structure tdesc_t, which is used directly by the CPU to
execute the process. The fields of this structure vary depending on the processor type.
The most important elements of this structure are the machine registers, in particular the
instruction (IPTR) and workspace (WPTR) pointers. A task priority is also used to make
scheduling decisions. While the task is running, the IPTR and WPTR are maintained by
the CPU; when the task is not executing they are stored in tdesc_t. On the ST20-C1,
the TDESC register points to the current task’s tdesc_t.

● Static state

This is defined in the data structure task_t, which is used by OS20 to describe the task,
and which does not usually change while the task is running. It includes the task’s state
(that is; being created, executing, terminated) and the stack range (used for stack
checking).

The dynamic state should be stored in internal memory to minimize context switch time. The
state is divided into two in this way so that only the minimum amount of internal memory
needs to be used to store tdesc_t.

OS20 User Manual 5.2 Implementation of priority and timeslicing

ADCS 7473749D

28

A task is identified by its task_t structure and this should always be used when referring to
the task. A pointer to the task_t structure is called the task’s ID; see Section 5.12: Getting
the current task’s ID on page 36.

The task’s data structure may either be allocated by OS20 or by the user declaring the
tdesc_t and task_t data structures. (These structures are defined in the header file
task.h). The code for the task to execute is provided by the user function. To create a task,
the tdesc_t and task_t data structures must be allocated and initialized and a stack and
function must be associated with them. This is done using the task_create or task_init
functions depending on whether the user wishes to control the allocation of the data
structures or not. See Section 5.5: Creating and running a task.

5.2 Implementation of priority and timeslicing
Readers familiar with the ST20 micro-core and OS20 priority handling may wish to skip to
Section 5.3: OS20 priorities which introduces the facilities provided by OS20 for influencing
priority.

OS20 implements 16 levels of priority. Tasks are run as the lowest priority hardware process
for the target hardware, with a OS20 priority specified by the user. OS20 tasks sit on top of the
processes implemented by the hardware and use features of the hardware to ensure efficient
implementation.

The ST20-C1 has no hardware support for multiple priorities.

The ST20-C2 supports two priorities of processes, high and low; see Figure 2.

High priority processes take precedence over low priority processes, for example, OS20
tasks. Thus on the ST20-C2, for critical sections of code it is possible to create tasks which
use the hardware’s high priority processes directly.

ST20-C2 high priority processes run outside of the OS20 scheduler, and so some restrictions
have to be placed on them.

● They cannot use priority-based and timeout semaphores.

● They cannot use timeout message queues.

Figure 2: ST20-C2 priorities

Hardware processor

High priority processes Low priority processes

OS20 kernel

OS20 task priorities

ADCS 7473749D

5.2 Implementation of priority and timeslicing 5 Tasks

29

In addition, they inherit two features of the hardware scheduler.

● Tasks are not timesliced; they execute until they voluntarily deschedule.

● Units of time are different, with high priority processes running considerably faster than
low priority processes. Clock times are device-dependent, so check datasheets for actual
timings.

5.2.1 Timeslicing on the ST20-C1

On the ST20-C1 microprocessor, timeslicing is supported by the timeslice instruction. By
default, the compiler disables timeslicing. However, if the application is compiled with the
st20cc option -finl-timeslice then the compiler inserts timeslice instructions (except
in hand-crafted assembler).

Note: The run time libraries are compiled without timeslicing, so it is not possible to timeslice in a
library function.

If a timeslice instruction is executed when a timeslice is due and timeslicing is enabled,
then the current process is timesliced, that is, the current process is placed on the back of the
scheduling queue and the process on the front of the scheduling queue is loaded into the
CPU for execution.

On some ST20-C1 devices, the timeslice clock is provided by peripheral modules and this
timeslice clock must be enabled for timeslicing to work. See the device datasheet for details.

Note: Timeslicing is implemented independently of the clocking peripheral discussed in Chapter 13:
ST20-C1 specific features on page 87.

Further details are given in the ST20-C1 Core Instruction Set Reference Manual 72-TRN-274.

5.2.2 Timeslicing on the ST20-C2

The ST20-C2 microprocessor contains two clock registers, the high priority clock register and
the low priority clock register; see Chapter 9: Real-time clocks on page 57.

After a set number of ticks of the high priority clock, a timeslice period is said to have ended.
When two timeslice period ends have occurred while the same task (low priority hardware
process) has been continuously executing, the processor attempts to deschedule the task.
This occurs after the next j or lend instruction is executed. When this happens the task is
descheduled and the next waiting task is scheduled; see Figure 3.

High priority processes are never timesliced, and run until completion, or until they have to
wait for a communication.

OS20 User Manual 5.3 OS20 priorities

ADCS 7473749D

30

A task nominally runs for between one and two timeslice periods. The compiler inserts
instructions which allow timeslicing (for example j) at suitable points in the code, in order to
minimize latency and prevent tasks monopolizing processor time.

If an OS20 task is preempted by a higher priority OS20 task then when the lower priority tasks
resumes, it starts its timeslice period from the beginning of the timeslice period. However, if an
OS20 task is interrupted by an interrupt or preempted by a high priority process then it
resumes the timeslice period from the point where the interrupt or high priority process
released the period. Therefore the OS20 task loses some of its timeslice.

Further details are given in the ST20-C2 Core Instruction Set Reference Manual 72-TRN-273.

5.3 OS20 priorities
The number of OS20 task priorities and the highest and lowest task priorities are defined
using the macros in the header file task.h; see Section 5.18: Task header file: task.h on
page 41. Numerically higher priorities preempt lower priorities, for example, 3 is a higher
priority than 2.

A task’s initial priority is defined when it is created; see Section 5.5: Creating and running a
task. The only task which does not have its priority defined in this way is the root task, that is,
the task which starts OS20 running by calling kernel_start. This task starts running with
the highest priority available, MAX_USER_PRIORITY.

If a task needs to know the priority it is running at or the priority of another task, it can call the
following function:

int task_priority (task_t* Task)

task_priority() retrieves the OS20 priority of the task specified by Task or the priority of
the currently active task if Task is NULL.

The priority of a task can be changed using the task_priority_set() function:

int task_priority_set (task_t* Task, int NewPriority);

Figure 3: Timeslicing on the ST20-C2

Priority

Lower

Higher

Time

jt1 t2 t1 t1

t4

j j

timeslice
period

task completion

ADCS 7473749D

5.4 Scheduling 5 Tasks

31

task_priority_set() sets the priority of the task specified by Task, or of the currently
active task if Task is NULL. If this results in the current task’s priority falling below that of
another task which is ready to run, or a ready task now has a priority higher than the current
task’s, then tasks may be rescheduled. This function is only applicable to OS20 tasks, not to
high priority hardware processes.

5.4 Scheduling
An active task may either be running or waiting to run. OS20 ensures the following conditions
are met.

● The currently executing task is always the one with the highest priority.

If a task with a higher priority becomes ready to run, then the OS20 scheduler saves the
current task’s state and makes the higher priority task the current task. The current task
runs to completion unless it is preempted by a higher priority task, and so on. Once a
task has completed, the next highest priority task starts executing.

● Tasks of equal priority are timesliced, to ensure that they all get the chance to run (when
compiling for an ST20-C1 a command line option needs to be given; see Section 5.2.1).

Each task of the same priority level executes in turn for a period of time known as a
timeslice. See Section 5.2.

The kernel scheduler can be prevented from preempting or timeslicing the current task, by
using the following pair of functions:

void task_lock(void);
void task_unlock(void);

These functions should always be called as a pair and can be used to create a critical region
where one task is prevented from preempting another. Calls to task_lock() can be nested,
and the lock is not released until an equal number of calls to task_unlock() have been
made. Once task_unlock() is called, the scheduler (re)starts the highest priority task
available. This may not be the task which calls task_unlock().

If a task voluntarily deschedules, for example, by calling semaphore_wait, then the critical
region is unlocked and normal scheduling resumes. In this case the subsequent
task_unlock has no effect. It should still be included in case the task did not deschedule, for
example, the semaphore count was already greater than zero.

Note: When this lock is in place, the task can still be interrupted by interrupt handlers and high
priority processes (on the ST20-C2). Interrupts can be disabled and enabled using the
interrupt_lock() and interrupt_unlock() functions; see Chapter 10: Interrupts on
page 61.

OS20 User Manual 5.5 Creating and running a task

ADCS 7473749D

32

5.5 Creating and running a task
The following functions are provided for creating and starting a task running:

#include <task.h>
task_t* task_create(void (*Function)(void*),

void* Param,
int StackSize,
int Priority,
const char* Name,
task_flags_t flags);

#include <task.h>
int task_init(void (*Function)(void*),

 void* Param,
 void* Stack,
 int StackSize,
 task_t* Task,
 tdesc_t* Tdesc,
 int Priority,
 const char* Name,
 task_flags_t flags);

Both functions set up a task and start the task running at the specified function. This is done
by initializing the data structures tdesc_t and task_t and associating a function with them.

Using either task_create or task_init, the function is passed in as a pointer to the task’s
entry point. Both functions take a single pointer to be used as the argument to the user
function. A cast to void* should be performed in order to pass in a single word sized
parameter (for example an int) otherwise a data structure should be set up.

The functions differ in how the task’s data structure is allocated. task_create allocates
memory for the task’s stack, control block task_t and task descriptor tdesc_t, whereas
task_init enables the user to control memory allocation. The task’s control block and task
descriptor should be declared before the call to task_init.

task_create and task_init both require the stack size to be specified. Stack is used for
a function’s local variables and parameters.

As a guide, functions use the following amounts of space.

● 4 words are used for the task to remove itself if it returns.

● 4 extra words are used for the initial user stack.

● On the ST20-C2, 6 words are needed by the hardware scheduler (for state, which is
saved into “negative workspace”).

● In some cases, the full CPU context needs to be saved on the task’s stack. On the
ST20-C1 this is always needed when a task is preempted (7 words). On the ST20-C2 it is
only needed if a task’s priority is changed by another task, or it is suspended (11 words).

● Additional space is then used recursively:

➢ for local variables declared in the function (add up the number of words),

➢ for calls to extra functions (for a library function, allow a worst case of 150 words).

For details of data representation; see the ST20 Embedded Toolset Reference Manual
chapter Implementation Details.

Both functions require an OS20 priority level to be specified for the task and a name to be
associated with the task for use by the debugger. The priority levels are defined in the header

ADCS 7473749D

5.6 Synchronizing tasks 5 Tasks

33

file task.h by the macros OS20_PRIORITY_LEVEL, MAX_USER_PRIORITY and
MIN_USER_PRIORITY; see Section 5.18: Task header file: task.h on page 41.

For tasks running on an ST20-C2, both functions also enable the task to be elevated to a high
priority process. In this case, the OS20 task priority should not be used. High priority
processes have restrictions associated with them as described in Section 5.2:
Implementation of priority and timeslicing on page 28.

5.5.1 Creating a task for an RCU

Two functions are provided for creating a task in a relocatable code unit: task_create_sl
and task_init_sl. For details of using OS20 with relocatable code units, see the ST20
Embedded Toolset Reference Manual, chapter Building and running relocatable code.

5.6 Synchronizing tasks
Tasks synchronize their actions with each other using semaphores, as described in
Chapter 6: Semaphores on page 43.

5.7 Communicating between tasks
Tasks communicate with each other by using message queues, as described in Chapter 8:
Message handling on page 51.

OS20 User Manual 5.8 Timed delays

ADCS 7473749D

34

5.8 Timed delays
The following two functions cause a task to wait for a certain length of time as measured in
ticks of the timer.

void task_delay(clock_t delay);
void task_delay_until(clock_t delay);

Both functions wait for a period of time and then return. task_delay_until waits until the
given absolute reading of the timer is reached. If the requested time is before the present time
then the task does not wait.

task_delay waits until the given time has elapsed, that is, it delays execution for the
specified number of timer ticks. If the time given is negative, no delay takes place.

task_delay or task_delay_until may be used for data logging or causing an event at a
specific time. A high priority task can wait until a certain time; when it wakes it preempts any
lower priority task that is running and performs the time-critical function.

When initiating regular events, such as for data logging, it may be important not to accumulate
errors in the time between ticks. This is done by repeatedly adding to a time variable rather
than rereading the start time for the delay.

For example, to initiate a regular event every delay ticks:

#include <ostime.h>

clock_t time;
time = time_now();
for (;;)
{

time = time_plus (time, delay);
task_delay_until(time);
initiate_regular_event();

}

5.9 Rescheduling
Sometimes, a task needs to voluntarily give up control of the CPU so that another task at the
same priority can execute, that is, terminate the current timeslice. This may be achieved with
the function:

void task_reschedule (void);

This provides a clean way of suspending execution of a task in favor of the next task on the
scheduling list, but without losing priority. The task which executes task_reschedule is
added to the back of the scheduling list and the task at the front of the scheduling list is
promoted to be the new current task.

A task may be inadvertently rescheduled when the task_priority_set() function is
used; see Section 5.3: OS20 priorities on page 30.

ADCS 7473749D

5.10 Suspending tasks 5 Tasks

35

5.10 Suspending tasks
Normally a task only deschedules when it is waiting for an event such as a semaphore signal.
This requires that the task itself call a function indicating that it is willing to deschedule at that
point (for example, by calling semaphore_wait). However, sometimes it is useful to be able
to control a task, causing it to forcibly deschedule, without it explicitly indicating that it is willing
to be descheduled. This can be done by suspending the task.

When a task is suspended, it stops executing immediately. When the task starts executing
again, another task must resume it. When it is resumed, the task will be unaware that it was
suspended, other than the time delay.

Task suspension is in addition to any other reason that a task is descheduled. Thus a task
which is waiting on a semaphore and has been suspended will not start executing again until
both the task is resumed and the semaphore is signalled, although these can occur in either
order.

Caution: Task suspension can easily cause deadlock; see task_suspend in
Chapter 16: Alphabetical list of functions on page 111.

A task is suspended using the call:

int task_suspend(task_t* Task);

where Task is the task to be suspended. A task may suspend itself by specifying Task as
NULL. The result is 0 if the task was successfully suspended, -1 if it failed. This call will fail if
the task has terminated. A task may be suspended multiple times by executing several calls to
task_suspend. It will not start executing again until an equal number of task_resume calls
have been made.

A task is resumed using the call:

int task_resume(task_t* Task);

where Task is the task to be resumed. The result is 0 if the task was successfully resumed,
-1 if it failed. The call will fail if the task has terminated, or is not suspended.

It is also possible to specify that when a task is created, it should be immediately suspended,
before it starts executing. This is done by specifying the flag task_flags_suspended when
calling task_create or task_init. This can be useful to ensure that initialization is carried
out before the task starts running. The task is resumed in the usual way, by calling
task_resume, and starts executing from its entry point.

OS20 User Manual 5.11 Killing a task

ADCS 7473749D

36

5.11 Killing a task
Normally a task runs to completion and then exits. It may also choose to exit early by calling
task_exit(). However, it is also possible to force a task to exit early, using the function:

int task_kill(task_t* task,
 int status,
 task_kill_flags_t flags);

This stops the task immediately, causes it to run the exit handler (if there is one), and exit.

Sometimes it may be desirable for a task to prevent itself being killed temporarily, for example,
while it owns a mutual exclusion semaphore. To do this, the task can make itself immortal by
calling:

void task_immortal(void);

and once it is willing to be killed again calling:

void task_mortal(void);

While the task is immortal, it cannot be killed. However, if an attempt was made to kill the task
whilst it was immortal, it will die immediately it makes itself mortal again by calling
task_mortal.

Calls to task_immortal and task_mortal nest correctly, so the same number of calls
need to be made to both functions before the task becomes mortal again.

5.12 Getting the current task’s ID
Several functions are provided for obtaining details of a specified task. The following function
returns a pointer to the task structure of the current task:

task_t* task_id (void);

While task_id is very efficient when called from a task, it takes a long time to execute when
called from a high priority process, and cannot be called from an interrupt handler. To avoid
these problems an alternative function is available:

task_context_t task_context(task_t** task, int* level);

This returns whether it was called from a task, interrupt, or high priority process. In addition if
task is not NULL, and task_context is called from a task or high priority process, it
assigns the current task ID to the task_t pointed to by task. Similarly if level is not NULL,
and task_context is called from an interrupt handler, then it assigns the current interrupt
level to the int pointed to by level. The advantage in not requiring the current task_t or
interrupt level is that this function may operate considerably faster when this information does
not have to be found.

Both of these function may be used in conjunction with task_wait; see Section 5.16:
Waiting for termination.

The function:

const char* task_name(task_t *task);

returns the name of the specified task, or if task is NULL, the current task. The task’s name
is set when the task is created.

ADCS 7473749D

5.13 Stack usage 5 Tasks

37

5.13 Stack usage
A common problem when developing applications is not allocating enough stack for a task, or
the need to tune stack allocation to minimize memory wastage. OS20 provides a couple of
techniques which can be used to address this.

The first technique is to enable stack checking in the compiler see the ST20 Embedded
Toolset User Manual, chapter st20cc compile/link tool. This adds an additional function call at
the start of each of the user’s functions, just before any additional stack is allocated. The
called stack check function can then determine whether there is sufficient space available for
the function which is about to execute.

As OS20 is multi-threaded, a special version of the stack check function needs to be used,
which can determine the current task, and details about the task’s stack. When using
-runtime os20 to link the application, the stack check function is linked in automatically.
Otherwise it is necessary to link with the configuration file os20scc1.cfg (for a C1 target) or
os20scc2.cfg (for a C2 target) to ensure the correct function is linked in.

Whilst stack checking has the advantage that stack overflows are reported immediately, it has
a number of problems.

● There is a run-time cost incurred for every function call to perform the check.

● It can only report on functions which are recompiled with stack checking enabled.

An alternative technique is to determine experimentally how much stack a task uses by giving
the task a large stack initially, running the code, and then seeing how much stack has been
used. To allow this, OS20 normally fills a task’s stack with a known value. As the task runs, it
writes its own data into the stack, altering this value, and later the stack can be inspected to
determine the highest address which has not been altered.

To support this, OS20 provides the function:

int task_status(task_t* Task,
 task_status_t *Status,
 task_status_flags_t Flags);

This function can be used to determine information about the task’s stack, in particular the
base and size specified when the task was created, and the amount of stack which has been
used.

Stack filling is enabled by default, however, in some cases the user may want to control it, so
two functions are provided:

int task_stack_fill(task_stack_fill_t* fill);

returns details about the current stack fill settings, and:

int task_stack_fill_set(task_stack_fill_t* fill);

allows them to be altered. Stack filling can be enabled or disabled, or the fill value changed.
By default it is enabled, and the fill value set to 0x12345678.

By placing a call to task_stack_fill_set in a start-up function, before the OS20 kernel is
initialized, it is possible to control the filling of the root task’s stack.

To determine how much stack has been used task_status can be called, with the Flags
parameter set to task_status_flags_stack_used. For this to work correctly, task stack
filling must have been enabled when the task was created, and the fill value must have the
same value as the one which was in effect when the task was created.

OS20 User Manual 5.14 Task data

ADCS 7473749D

38

5.14 Task data

5.14.1 Application data

OS20 provides one word of “task-data” per task. This can be used by the application to store
data which is specific to the task, but which needs to be accessed uniformly from multiple
tasks.

This is typically used to store data which is required by a library, when the library can be used
from multiple tasks but the data is specific to the task. For example, a library which manages
an I/O channel may be called by multiple tasks, each of which has its own I/O buffers. To avoid
having to pass an I/O descriptor into every call it could be stored in task-data.

Although only one word of storage is provided, this is usually treated as a pointer, which
points to a user defined data structure which can be as large as required.

Two functions provide access to the task-data pointer:

void* task_data_set (task_t* Task, void* NewData);

sets the task-data pointer of the task specified by Task.

void* task_data(task_t* Task);

task_data() retrieves the task-data pointer of the task specified by Task.

If Task is NULL, both functions use the currently active task.

When a task is first created (including the root task), its task-data pointer is set to NULL (0).
For example:

typedef struct {
char buffer[BUFFER_SIZE];
char* buffer_next;
char* buffer_end;

} ptd_t;

char buffer_read(void)
{

ptd_t *ptd;

ptd = task_data(NULL);
if (ptd->buffer_next == ptd->buffer_end) {

...fill buffer...
}
return *(ptd->buffer_next++);

}

int main()
{

ptd_t *ptd;
task_t *task;

...create a task...

ptd = memory_allocate(system_partition, sizeof(ptd_t));
ptd->buffer_next = ptd->buffer_end = ptd->buffer;
task_data_set(task, ptd);

}

ADCS 7473749D

5.15 Task termination 5 Tasks

39

5.14.2 Library data

OS20 also provides a facility to manage multiple instances of task private data. This is to
enable libraries to store their own per task private data. Two function calls provide access to
this facility:

void* task_private_data(task_t* Task, void* Cookie);
int task_private_data_set(task_t* Task, void* Data, void* Cookie,

void (*Destructor)(void* Data));

This API allows a client to allocate and associate a block of data with a given Task, under a
unique Cookie identifier. The Cookie is typically the address of some object within the client
library, in order to guarantee uniqueness.

task_private_data() returns NULL if no data has been registered under the given
Cookie, otherwise it returns the address of the private data block.

task_private_data_set() is used to request that a block of Data be associated with the
given Task under the given Cookie. Only one data block can be registered under a given
cookie for a given task. The Destructor parameter is the address of a routine which OS20
calls when the task is deleted. The Destructor is called with the address of the task private
data allocated by the library, and it has the responsibility to deallocate this data.

If the task parameter is NULL the current task is used for the operation.

If task_private_data() or task_private_data_set() are called prior to kernel
initialization, then the operations are performed on the root task.

5.15 Task termination
A task terminates when it returns from the task’s entry point function.

A task may also terminate by using the following function:

void task_exit(int param);

In both cases an exit status can be specified. When the task returns from its entry point
function, the exit status is the value that the function returns. If task_exit is called then the
exit status is specified as the parameter. This value is then made available to the “onexit”
handler if one has been installed (see below).

Just before the task terminates (either by returning from its entry point function, or calling
task_exit), it calls an onexit handler. This function allows any application specific tidying up
to be performed before the task terminates. The onexit handler is installed by calling:

task_onexit_fn_t task_onexit_set(task_onexit_fn_t fn);

The onexit handler function must have a prototype of:

void onexit_handler(task_t *task, int param)

When the handler function is called, task specifies the task which has exited, and param is
the task’s exit status.

The function task_onexit_set_sl is provided to set the task onexit handler and specify a
static link.

OS20 User Manual 5.16 Waiting for termination

ADCS 7473749D

40

The following code example shows how a task’s exit code can be stored in its task-data (see
Section 5.14: Task data), and retrieved later by another task which is notified of the
termination through task_wait.

void onexit_handler(task_t* task, int param)
{

task_data_set(NULL, (void*)param);
}

int main()
{

task_t *Tasks[NO_USER_TASKS];
/* Set up the onexit handler */
task_onexit_set(onexit_handler);

...create the tasks...

/* Wait for the tasks to finish */

for (i=0; i<NO_USER_TASKS; i++) {
int t;
t = task_wait(Tasks, NO_USER_TASKS, TIMEOUT_INFINITY);
printf(“Task %d : exit code %d\n”, t, (int)task_data(Tasks[t]));
Tasks[t] = NULL;

 }
}

5.16 Waiting for termination
It is only safe to free or otherwise reuse a task’s stack, once it has terminated.

The following function waits until one of a list of tasks terminates or the specified timeout
period is reached:

int task_wait(task_t **tasklist,
 int ntasks,
 const clock_t *timeout);

Timeouts for tasks are implemented using hardware and so do not increase the application’s
code size. Any task can wait for any other asynchronous task to complete. A parent task
should, for example, wait for any children to terminate. In this case task_wait can be used
inside a loop.

After task_wait has indicated that a particular task has completed, any of the task’s data
including any memory dynamically loaded or allocated from the heap and used for the task’s
stack, can be freed. The task’s state: its control block task_t and descriptor tdesc_t may
also be freed. task_delete can be used to free task_t and tdesc_t; see Section 5.17.

The timeout period for task_wait may be expressed as an absolute time or it may take
one of two values: TIMEOUT_IMMEDIATE indicates that the function should return
immediately, even if no tasks have terminated, and TIMEOUT_INFINITY indicates that the
function should ignore the timeout period, and only return when a task terminates. The
header file ostime.h must be included when using this function.

ADCS 7473749D

5.17 Deleting a task 5 Tasks

41

5.17 Deleting a task
A task can be deleted by using the task_delete function:

#include <task.h>
int task_delete(task_t* task);

This removes the task from the list of known tasks and allows its stack and data structures to
be reused.

If the task was created using task_create then task_delete calls memory_deallocate
in order to free the task’s state (both static task_t and dynamic tdesc_t) and the task’s
stack.

A task must have terminated before it can be deleted, if it has not task_delete will fail.

5.18 Task header file: task.h
All the definitions related to tasks are in the single header file, task.h; see Table 7, Table 8
and Table 9.

Function Description

task_context Return the current execution context

task_create Create an OS20 task

task_create_sl Create an OS20 task specifying a static link

task_data Retrieve a task’s data pointer

task_data_set Set a task’s data pointer

task_delay Delay the calling task for a period of time

task_delay_until Delay the calling task until a specified time

task_delete Delete a task

task_exit Exits the current task

task_id Find current task’s ID

task_immortal Make the current task immortal

task_init Initialize an OS20 task

task_init_sl Initialize an OS20 task specifying a static link

task_kill Kill a task

task_lock Prevent task rescheduling

task_mortal Make the current task mortal

task_name Return the task’s name

task_onexit_set Setup a function to be called when a task exits

task_onexit_set_sl Setup a function to be called when a task exits and specify a static
link

task_priority Retrieve a task’s priority

Table 7: Functions defined in task.h

OS20 User Manual 5.18 Task header file: task.h

ADCS 7473749D

42

task_priority_set Set a task’s priority

task_private_data Retrieves some task private data

task_private_data_set Registers some task private data

task_reschedule Reschedule the current task

task_resume Resume a suspended task

task_suspend Suspend a task

task_stack_fill Return the task fill configuration

task_stack_fill_set Set the task stack fill configuration

task_status Return status information about the task

task_unlock Allow task rescheduling

task_wait Wait until one of a list of tasks completes

Types Description

task_context_t Result of task_context

task_flags_t Additional flags for task_create and task_init

task_kill_flags_t Additional flags for task_kill

task_onexit_fn_t Function to be called on task exit

task_state_t State of a task (for example: active, deleted)

task_stack_fill_state_t Whether stack filling is enabled or disabled

task_stack_fill_t Stack filling state (specifies enables and value)

task_status_flags_t Additional flags for task_status

task_status_t Result of task_status

task_t A task’s static state

tdesc_t A task’s dynamic state

Table 8: Types defined in task.h

Macro Description

OS20_PRIORITY_LEVELS Number of OS20 task priorities. Default is 16.

MAX_USER_PRIORITY Highest user task priority. Default is 15.

MIN_USER_PRIORITY Lowest user task priority. Default is 0.

Table 9: Macros defined in task.h

Function Description

Table 7: Functions defined in task.h

ADCS 7473749D

43

Semaphores 6
Semaphores provide a simple and efficient way to synchronize multiple tasks. Semaphores
can be used to ensure mutual exclusion, control access to a shared resource, and
synchronize tasks.

6.1 Semaphores overview
A semaphore structure semaphore_t contains two pieces of data:

● a count of the number of times the semaphore can be taken,

● a queue of tasks waiting to take the semaphore.

Semaphores are created using one of the following functions:

semaphore_t* semaphore_create_fifo (int value);
void semaphore_init_fifo(semaphore_t *sem, int value);
semaphore_t* semaphore_create_priority (int value);
void semaphore_init_priority (semaphore_t *sem, int value);

or if a timeout capability is required while waiting for a semaphore, use the timeout versions of
the above functions:

semaphore_t* semaphore_create_fifo_timeout (int value);
void semaphore_init_fifo_timeout(semaphore_t *sem, int value);
semaphore_t* semaphore_create_priority_timeout (int value);
void semaphore_init_priority_timeout(semaphore_t *sem, int value);

The create_ versions of the functions allocate memory for the semaphore automatically,
while the init_ versions enable the user to specify a pointer to the semaphore, using the
data structure semaphore_t.

The semaphores which OS20 provides differ in the way in which tasks are queued. Normally
tasks are queued in the order which they call semaphore_wait, in which case this is termed
a FIFO semaphore. Semaphores of this type are created using semaphore_create_fifo
or semaphore_init_fifo or by using one of the timeout versions of these functions.

OS20 User Manual 6.1 Semaphores overview

ADCS 7473749D

44

However, sometimes it is useful to allow higher priority tasks to jump the queue, so that they
are blocked for a minimum amount of time. In this case a second type of semaphore can be
used, a priority based semaphore. For this type of semaphore, tasks are queued based on
their priority first, and the order which they call semaphore_wait second. Semaphores of
this type are created using semaphore_create_priority or
semaphore_init_priority or one of the timeout versions of these functions.

Semaphores may be acquired by the function:

void semaphore_wait(semaphore_t* Sem);

For semaphores created via one of the timeout functions, the following function may also be
used:

int semaphore_wait_timeout(semaphore_t* Sem
const clock_t *timeout);

When a task wants to acquire a semaphore, it calls semaphore_wait. At this point if the
semaphore count is greater than zero, then the count is decremented, and the task continues.
If however, the count is already zero, then the task adds itself to the queue of tasks waiting for
the semaphore and deschedule itself. Eventually another task should release the semaphore,
and the first waiting task is able to continue. In this way, when the task returns from the
function it will have acquired the semaphore.

If you want to make certain that the task does not wait indefinitely for a particular semaphore
then the timeout versions of the semaphore functions may be used.

Note: These functions cannot use the hardware support for semaphores, and so are larger and
slower than the non-timeout versions.

semaphore_wait_timeout enables a timeout to be specified. If this time is reached before
the semaphore is acquired then the function returns and the task continues without acquiring
the semaphore. Two special values may be specified for the timeout period.

● TIMEOUT_IMMEDIATE causes the semaphore to be polled and the function to return
immediately. The semaphore may or may not be acquired and the task continues.

● TIMEOUT_INFINITY causes the function to behave the same as semaphore_wait,
that is, the task waits indefinitely for the semaphore to become available.

When a task wants to release the semaphore, it calls semaphore_signal:

void semaphore_signal (semaphore_t* Sem);

This looks at the queue of waiting tasks, and if the queue is not empty, remove the first task
from the queue, and starts it running. If there are no tasks waiting, then the semaphore count
is incremented, indicating that the semaphore is available.

If a semaphore is deleted using semaphore_delete then how the memory is released
depends on whether the semaphore was created by the create or init version of the
function. See the functional description in Chapter 16: Alphabetical list of functions, function
semaphore_delete on page 233.

An important use of semaphores is for synchronization between interrupt handlers and tasks.
This is possible because while an interrupt handler cannot call semaphore_wait, it can call
semaphore_signal, and so cause a waiting task to start running.

FIFO semaphores can also be used to synchronize the activity of low priority tasks with high
priority tasks.

ADCS 7473749D

6.2 Using semaphores 6 Semaphores

45

6.2 Using semaphores
Semaphores can be defined to allow a given number of tasks simultaneous access to a
shared resource. The maximum number of tasks allowed is determined when the semaphore
is initialized. When that number of tasks have acquired the resource, the next task to request
access to it waits until one of those holding the semaphore relinquishes it.

Semaphores can protect a resource only if all tasks that wish to use the resource also use the
same semaphore. It cannot protect a resource from a task that does not use the semaphore
and accesses the resource directly.

Typically, semaphores are set up to allow at most one task access to a resource at any given
time. This is known as using the semaphore in binary mode, where the count either has the
value zero or one. This is useful for mutual exclusion or synchronization of access to shared
data. Areas of code protected using semaphores are sometimes called critical regions.

When used for mutual exclusion the semaphore is initialized to one, indicating that no task is
currently in the critical region, and that at most one can be. The critical region is surrounded
with calls to semaphore_wait at the start and semaphore_signal at the end. Thus the
first task which tries to enter the critical region successfully takes the semaphore, and any
others are forced to wait. When the task currently in the critical region leaves, it releases the
semaphore, and allows the first of the waiting tasks into the critical region.

Semaphores are also used for synchronization. Usually this is between a task and an interrupt
handler, with the task waiting for the interrupt handler. When used in this way the semaphore
is initialized to zero. The task then performs a semaphore_wait on the semaphore, and
deschedules. Later the interrupt handler performs a semaphore_signal, which
reschedules the task. This process can then be repeated, with the semaphore count never
changing from zero.

All the OS20 semaphores can also be used in a counting mode, where the count can be any
positive number. The typical application for this is controlling access to a shared resource,
where there are multiple resources available. Such a semaphore allows N tasks simultaneous
access to a resource and is initialized with the value N. Each task performs a
semaphore_wait when it wants a device. If a device is available the call returns
immediately, having decremented the counter. If no devices are available then the task is
added to the queue. When a task has finished using a device it calls semaphore_signal to
release it.

OS20 User Manual 6.3 Semaphore header file: semaphor.h

ADCS 7473749D

46

6.3 Semaphore header file: semaphor.h
All the definitions related to semaphores are in the single header file, semaphor.h; see
Table 10 and Table 11.

Function Description

semaphore_create_fifo Create a FIFO queued semaphore

semaphore_create_fifo_timeout Create a FIFO queued semaphore with timeout

semaphore_create_priority Create a priority queued semaphore

semaphore_create_priority_timeout Create a priority queued semaphore with timeout

semaphore_delete Delete a semaphore

semaphore_init_fifo Initialize a FIFO queued semaphore

semaphore_init_fifo_timeout Initialize a FIFO queued semaphore with timeout

semaphore_init_priority Initialize a priority queued semaphore

semaphore_init_priority_timeout Initialize a priority queued semaphore with timeout

semaphore_signal Signal a signal

semaphore_wait Wait for a signal

semaphore_wait_timeout Wait for a semaphore or a timeout

Table 10: Functions defined in semaphor.h

Types Description

semaphore_t A semaphore

Table 11: Types defined in semaphor.h

ADCS 7473749D

47

Mutexes 7
Mutexes provide a simple and efficient way to ensure mutual exclusion and control access to
a shared resource.

7.1 Mutexes overview
A mutex structure mutex_t contains several pieces of data including:

● the current owning task,

● a queue of tasks waiting to take the mutex.

A mutex can be owned by only one task at time. In this sense they are like OS20 semaphores
initialized with a count of 1 (also known as binary semaphores). Unlike semaphores, once a
task owns a mutex, it can re-take it as many times as necessary, provided that it also releases
it an equal number of times. In this situation binary semaphores would deadlock.

Mutexes are created using one of the following functions:

mutex_t* mutex_create_fifo(void);
void mutex_init_fifo(mutex_t *mutex);
mutex_t* mutex_create_priority(void);
void mutex_init_priority(mutex_t *mutex)

The create_ version of these functions allocates memory for the mutex automatically, while
the init_ versions enable the user to specify a pointer to the mutex, using the data structure
mutex_t.

The mutexes which OS20 provide differ in the way in which tasks are queued when waiting for
it. For FIFO mutexes tasks are queued in the order in which they call mutex_lock().
Mutexes of this type are created using mutex_create_fifo() or mutex_init_fifo().

However, sometimes it is useful to allow higher priority tasks to jump the queue, so that they
are blocked for a minimum amount of time. In this case, a second type of mutex can be used,
a priority based mutex. For this type of mutex, tasks are queued based on their priority first,
and the order which they call mutex_lock() second. Mutexes of this type are created using
mutex_create_priority() or mutex_init_priority().

OS20 User Manual 7.1 Mutexes overview

ADCS 7473749D

48

Mutex may be acquired by the functions:

void mutex_lock(mutex_t* mutex);

and

int mutex_trylock(mutex_t* mutex);

When a task wants to acquire a mutex, it calls mutex_lock(). If the mutex is currently
unowned, or already owned by the same task, then the task gets the mutex and continues. If
however, the mutex is owned by another task, then the task adds itself to the queue of tasks
waiting for the mutex and deschedules itself. Eventually another task should release the
mutex, and the first waiting task gets the mutex and is able to continue. In this way, when the
task returns from the function it has acquired the mutex.

Note: The same task can acquire a mutex any number of times without deadlock, but it must release
it an equal number of times.

If you want to make certain that the task does not wait indefinitely for a mutex then use
mutex_trylock(), which attempts to gain ownership of the mutex, but fails immediately if it
is not available.

A task is automatically made immortal while it has ownership of a mutex.

When a task wants to release the mutex, it calls mutex_release():

int mutex_release(mutex_t* mutex);

This looks at the queue of waiting tasks, and if the queue is not empty, removes the first task
from the queue and, if it is not of a lower priority, assigns ownership of the mutex to that task,
and makes it executable. If there are no tasks waiting, then the mutex becomes free.

Note: If a task exits whilst holding a mutex, the mutex remains locked, and a deadlock is inevitable.

7.1.1 Priority inversion

Priority mutexes also provide protection against priority inversion. This can occur when a low
priority task acquires a mutex, and then a high priority task tries to claim it. The high priority
task is then forced to wait for the low priority task to release the mutex before it can proceed.
If an intermediate priority task now becomes ready to run, it preempts the low priority task. A
lower priority task (that is not holding the mutex in question) is therefore blocking the
execution of a higher priority task, this is termed priority inversion. Priority mutexes are able to
detect when this occurs, and correct the situation. This is done by temporarily boosting the
low priority task’s priority to be the same as the priority of the highest priority waiting task, all
the while the low priority task owns the mutex.

Priority inversion detection occurs every time a task has to queue to get a priority mutex,
every time a task releases a priority mutex, and every time a task changes priority.

ADCS 7473749D

7.2 Using mutexes 7 Mutexes

49

7.2 Using mutexes
Mutexes can only be used to protect a resource if all tasks that wish to use the resource also
use the same mutex. It cannot protect a resource from a task that does not use the mutex and
accesses the resource directly.

Mutexes allow at most one task access to the resource at any given time. Areas of code
protected using mutexes are sometimes called critical regions.

The critical region is surrounded with calls to mutex_lock() at the start and
mutex_release() at the end. Thus the first task which tries to enter the critical region
successfully takes the mutex, and any others are forced to wait. When the task currently in the
critical region leaves, it releases the mutex, and allows the first of the waiting tasks into the
critical region.

7.3 Mutex header file: mutex.h
All the definitions related to mutexes are in the single header file, mutex.h, see Table 12 and
Table 13.

Function Description

mutex_create_fifo Create a FIFO queued mutex

mutex_create_priority Create a priority queued mutex

mutex_delete Delete a mutex

mutex_init_fifo Initialize a FIFO queued mutex

mutex_init_priority Initialize a priority queued mutex

mutex_lock Acquire a mutex, block if not available

mutex_release Release a mutex

mutex_trylock Try to get a mutex, fail if not available

Table 12: Functions defined in mutex.h

Type Description

mutex_t A mutex

Table 13: Types define in mutex.h

OS20 User Manual 7.3 Mutex header file: mutex.h

ADCS 7473749D

50

ADCS 7473749D

51

Message handling 8
A message queue provides a buffered communication method for tasks. Message queues
also provide a way to communicate without copying data, which can save time. Message
queues are, however, subject to the following restriction.

Message queues may only be used from interrupt handlers if the timeout versions of the
message handling functions are used and a timeout period of TIMEOUT_IMMEDIATE is used;
see Section 8.3: Using message queues on page 54. This prevents the interrupt handler from
blocking on a message claim.

8.1 Message queues overview
An OS20 message queue implements two queues of messages: one for message buffers
which are currently not being used (known as the “free” queue); the other holds messages
which have been sent but not yet received (known as the “send” queue). Message buffers
rotate between these queues, as a result of the user calling the various message functions.

The movement of messages between the two queues is illustrated in Figure 4.

OS20 User Manual 8.2 Creating message queues

ADCS 7473749D

52

8.2 Creating message queues
Message queues are created using one of the following functions:

#include <message.h>
message_queue_t* message_create_queue(size_t MaxMessageSize,

unsigned int MaxMessages);

#include <message.h>
void message_init_queue (message_queue_t* MessageQueue,

void* memory,
size_t MaxMessageSize,
unsigned int MaxMessages);

or by using timeout versions of the above functions:

#include <message.h>
message_queue_t* message_create_queue_timeout(size_t MaxMessageSize,

unsigned int MaxMessages);

#include <message.h>
void message_init_queue_timeout(message_queue_t* MessageQueue,

void* memory,
size_t MaxMessageSize,
unsigned int MaxMessages);

Figure 4: Message queues

message_release()

message_claim()message_send()

message_receive()

free
queue

send
queue

ADCS 7473749D

8.2 Creating message queues 8 Message handling

53

These functions create a message queue for a fixed number of fixed sized messages, each
message being preceded by a header; see Figure 5. The user must specify the maximum
size for a message element and the total number of elements required.

message_create_queue and message_create_queue_timeout allocate the memory
for the queue automatically from the system partition.

message_init_queue and message_init_queue_timeout require the user to allocate
the memory for the message queue. This needs to be large enough for storing all the
messages (rounded up to the nearest word size) plus a header, for each message.

The total amount of memory needed (in bytes) can be calculated using the macro:

MESSAGE_MEMSIZE_QUEUE(maxMessageSize, maxMessages)

where maxMessageSize is the size of the message, and maxMessages is the number of
messages.

As long as both of the parameters can be determined at compile time, this macro can be
completely evaluated at compile time, and so can be used as the dimension of an array, for
example:

typedef struct {
int tag;
char msg[10];

} msg_t;
#define NUM_MSG 10
char msg_buffer[MESSAGE_MEMSIZE_QUEUE(sizeof(msg_t), NUM_MSG);

Alternatively this can be done by calling the function memory_allocate. This function
returns a pointer to the allocated memory, which should be passed to
message_init_queue or message_init_queue_timeout as the parameter
MessageQueue.

Note: These functions cannot use the hardware support for semaphores, and so are larger and
slower than the nontimeout versions.

Example

#include <message.h>
#include <partitio.h>

#define MSG_SIZE 512
#define MAX_MSGS 10

#define QUEUE_SIZE MESSAGE_MEMSIZE_QUEUE(MSG_SIZE,MAX_MSGS)

#define EXIT_SUCCESS 0
#define EXIT_FAILURE -1

Figure 5: OS20 message elements

message header message

OS20 User Manual 8.3 Using message queues

ADCS 7473749D

54

int myqueue_create(void)
{

void *msg_queue;
message_queue_t *msg_queue_struct;

/* allocate memory for message queue itself */

msg_queue = memory_allocate(system_partition,QUEUE_SIZE);
if (msg_queue == 0)

{
return(EXIT_FAILURE);

}

/* allocate memory for message struct which holds details of queue */

msg_queue_struct = memory_allocate(system_partition,sizeof(
message_queue_t));

if (msg_queue_struct == 0)
{

memory_deallocate(system_partition,msg_queue);
return(EXIT_FAILURE);

}

message_init_queue(msg_queue_struct,msg_queue,MSG_SIZE,MAX_MSGS);
return(EXIT_SUCCESS);

}

8.3 Using message queues
Initially all the messages are on the free queue. The user allocates free message buffers by
calling either of the following functions, which can then be filled in with the required data:

void* message_claim(message_queue_t* queue);

void* message_claim_timeout(message_queue_t* queue
const clock_t* time);

Both functions claim the next available message in the message queue.
message_claim_timeout enables a timeout to be specified but can only be used if the
message queue was created with a timeout capability. If the timeout is reached before a
message buffer is acquired then the function returns NULL. Two special values may be
specified for the timeout period.

● TIMEOUT_IMMEDIATE causes the message queue to be polled and the function to
return immediately. A message buffer may or may not be acquired and the task
continues.

● TIMEOUT_INFINITY causes the function to behave the same as message_claim, that
is, the task waits indefinitely for a message buffer to become available.

When the message is ready it is sent by calling message_send(), at which point it is added
to the send queue.

Messages are removed from the send queue by a task calling either of the functions:

void* message_receive(message_queue_t* queue);

void* message_receive_timeout(message_queue_t* queue
const clock_t* time);

ADCS 7473749D

8.3 Using message queues 8 Message handling

55

Both functions return the next available message. message_receive_timeout provides a
timeout facility which behaves in a similar manner to message_claim_timeout in that it
returns NULL if message does not become available. If TIMEOUT_IMMEDIATE is specified in
place of time, then the task continues whether or not a message is received and if
TIMEOUT_INFINITY is specified the function behaves as message_receive and waits
indefinitely.

Finally when the receiving task has finished with the message buffer, it should free it by calling
message_release(), which adds it to the free queue, where it is again available for
allocation.

If the size of the message is variable, the user should specify that the message is
sizeof(void*), and then use pointers to the messages as the arguments to the message
functions. The user is then responsible for allocating and freeing the real messages using
whatever techniques are appropriate.

Message queues may be deleted by calling message_delete_queue(). If the message
queue was created using message_create_queue or
message_create_queue_timeout then this also frees the memory allocated for the
message queue. If it was created using message_init_queue or
message_init_queue_timeout then the user is responsible for freeing any memory
which was allocated for the queue.

OS20 User Manual 8.4 Message header file: message.h

ADCS 7473749D

56

8.4 Message header file: message.h
All the definitions related to messages are in the single header file, message.h; see Table 14
and Table 15.

Function Description

message_claim Claim a message buffer

message_claim_timeout Claim a message buffer with timeout

message_create_queue Create a fixed size message queue

message_create_queue_timeout Create a fixed size message queue with timeout

message_delete_queue Delete a message queue

message_init_queue Initialize a fixed size message queue

message_init_queue_timeout Initialize a fixed size message queue with timeout

message_receive Receive the next available message from a queue

message_receive_timeout Receive the next available message from a queue or
timeout

message_release Release a message buffer

message_send Send a message to a queue

Table 14: Functions defined in message.h

Types Description

message_hdr_t A message buffer header

message_queue_t A message queue

Table 15: Types defined in message.h

ADCS 7473749D

57

Real-time clocks 9
Time is very important for real-time systems. OS20 provides some basic functions for
manipulating quantities of time:

The ST20 traditionally regards time as circular. That is, the counters which represent time can
wrap round, with half the time period being in the future, and half of it in the past. This
behavior means that clock values should only be manipulated using time functions. OS20
provides functions to:

● add and subtract quantities of time,

● determine if one time is after another,

● return the current time.

9.1 ST20-C1 clock peripheral
The ST20-C1 microprocessor does not have its own clock so a clock peripheral is required
when using OS20.

OS20 for ST20-C1 contains a table of function pointers that it calls to handle time-related
operations. By default, the function pointers are connected to fatal error handlers. Therefore,
before using any time related API calls, these function pointers must be initialized by calling
timer_initialize() or timer_init_pwm(). For more information, see Chapter 13:
ST20-C1 specific features on page 87.

Note: The OS20 kernel and interrupt controller must be initialized before the clock peripheral is
initialized.

OS20 User Manual 9.2 The ST20 timers on the ST20-C2

ADCS 7473749D

58

9.2 The ST20 timers on the ST20-C2
The ST20-C2 processor has two on-chip real-time 32-bit clocks, called timers, one with low
resolution and one with high resolution. The following details are relevant for some ST20-C2
devices. You should check the figures given in the device datasheet as the timing values vary
with different processor revisions.

The low resolution clock can be used for timing periods up to approximately 38 hours, with a
resolution of 64 µsec. The low resolution clock is accessed by low priority tasks. The high
resolution clock can be used for timing periods up to approximately half an hour with a
resolution of 1 µsec. The high resolution clock is accessed by high priority tasks. Longer
periods can be timed with either timer by explicitly incrementing a counter.

The clocks start at an undefined value and wrap round to 0 on the next tick after 0xFFFFFFFF,
or, if treated as signed, to the most negative integer on the next tick after the most positive
integer. The tick rate of the clocks is derived from the processor input CLOCKIN, and the
speed and accuracy depends on the speed and accuracy of the input clock.

For ST20 variants with power-down capability, the clocks pause when the ST20 is in power-
down mode.

9.3 Reading the current time
The value of a timer (or clock) is read using time_now which returns the value of the timer for
the current priority.

#include <ostime.h>
clock_t time_now (void);

The time at which counting starts is no later than the call to kernel_start.

9.4 Determining the tick rate
The function time_ticks_per_sec() can be used to determine the current tick rate of the
timer.

On ST20-C1, the tick rate is the same across all tasks and interrupts.

On ST20-C2, the tick rate returned is that of the current CPU priority, that is, the value
returned will be 64 times larger if the CPU is running a high priority process or high priority
interrupt.

time_ticks_per_sec_set() is used to replace the estimated tick rate determined by the
operating system with an actual tick rate observed on real hardware.

Parameter Low priority High priority

Interval between ticks 64 µs 1 µs

Ticks per second 15625 1000000

Approximate full timer cycle 76.35 hours 1.193 hours

Table 16: Summary of clock intervals for parts operating at 40 MHz

ADCS 7473749D

9.5 Time arithmetic 9 Real-time clocks

59

The estimated tick rate for ST20-C1 is configured automatically if timer_init_pwm() is
used, however if timer_initialize() is used then there is no estimated tick rate and the
user must call time_ticks_per_sec_set() before time_ticks_per_sec() is used.

The estimated tick rate for ST20-C2 is simply the values shown in Table 16: Summary of clock
intervals for parts operating at 40 MHz.

9.5 Time arithmetic
Arithmetic on timer values should always be performed using special modulo operators.
These routines perform no overflow checking and so allow for timer values ‘wrapping round’ to
the most negative integer on the next tick after the most positive integer.

clock_t time_plus(const clock_t time1, const clock_t time2);
clock_t time_minus(const clock_t time1, const clock_t time2);
int time_after(const clock_t time1, const clock_t time2);

time_plus adds two timer values together and returns the sum allowing for any wrap-
around. For example, if a number of ticks is added to the current time using time_plus then
the result is the time after that many ticks.

time_minus subtracts the second value from the first and returns the difference allowing for
any wrap-around. For example, if one time is subtracted from another using time_minus
then the result is the number of ticks between the two times. If the result is positive then the
first time is after the second. If the result is negative then the first time is before the second.

time_after determines whether the first time is after the second time. One time is
considered to be after another if the one is not more than half a full timer cycle later than the
other. Half a full cycle is 231 ticks. The function returns the integer value one if the first time is
after the second, otherwise it returns zero.

Some of these concepts are shown in Figure 6.

Time arithmetic is modulo 232. In applications running for a long time, take care to ensure that
times are close enough together for arithmetic to be meaningful. For example, subtracting two
times which are more than 231 ticks apart produces a result which may be ambiguous. Very
long intervals can be tracked by counting a number of cycles of the clock.

OS20 User Manual 9.6 Time header file: ostime.h

ADCS 7473749D

60

9.6 Time header file: ostime.h
All the definitions related to time are in the single header file, ostime.h; see Table 17.

Table 18 lists the types defined by ostime.h.

Figure 6: Time arithmetic

Function Description

time_after Return whether one time is after another

time_minus Subtract two clock values

time_now Return the current time

time_plus Add two clock values

Table 17: Functions defined in ostime.h

Types Description

clock_t Number of processor clock ticks

Table 18: Types defined by ostime.h

Now

After Now

Before Now

0x800000000x7FFFFFFF

x ticks

time_minus (Now, x)

time_plus (Now, y)0 0xFFFFFFFF

y ticks

Past

Future

ADCS 7473749D

61

Interrupts 10
Interrupts provide a way for external events to control the CPU. Normally, as soon as an
interrupt is asserted, the CPU stops executing the current task, and starts executing the
interrupt handler for that interrupt. In this way, the program can be made aware of external
changes as soon as they occur. This switch is performed completely in hardware, and so can
be extremely rapid. Similarly when the interrupt handler has completed, the CPU resumes
execution of the interrupted task, which is unaware that it has been interrupted.

The interrupt handler which the CPU executes in response to the interrupt is called the first
level interrupt handler. This piece of code is supplied as part of OS20, and simply sets up the
environment so that a normal C function can be called. The OS20 API allows a different user
function to be associated with each interrupt, and this is called when the interrupt occurs.
Each interrupt also has a parameter associated with it, which is passed into the function when
it is called. This could be used to allow the same code to be shared between different interrupt
handlers.

10.1 Interrupt models
The interrupt hardware on different ST20 processors is similar, but there are a number of
variations.

The basic hardware unit is called the interrupt controller. This receives the interrupt signals,
and alerts the CPU when interrupts go active. Interrupts can be programmed to be active
when high, or low, or on a rising, falling or both edges of the signal; this is called the “trigger
mode” by OS20.

On some processors, interrupt sources are connected directly to the interrupt controller,
similar to the example shown in Figure 7.

OS20 User Manual 10.1 Interrupt models

ADCS 7473749D

62

The relative priority of the interrupts is defined by the interrupt level, with numerically higher
interrupts interrupting numerically lower priority interrupts. Thus, an interrupt level 3 can
interrupt an interrupt level 2, which can interrupt an interrupt level 1. As the connection
between the peripheral and the interrupt controller is fixed when the device is designed, so is
the relative priority of the peripheral’s interrupts.

Some ST20 processors have a second piece of interrupt hardware, called the interrupt level
controller; see the example in Figure 8. This allows the relative priority of different interrupt
sources to be changed. Each peripheral generates an interrupt number, which is fixed for the
peripheral. This is fed into the interrupt level controller, which maps interrupt numbers to
interrupt levels. This mapping is programmable, allowing relative priorities to be changed in
software. As there are generally more interrupt numbers than interrupt levels, it is possible to
multiplex several interrupt numbers onto a single interrupt level.

An important distinction between interrupt numbers and levels is that interrupt levels are
prioritized (numerically higher interrupt levels preempt lower ones) however, interrupt
numbers are not.

Figure 7: Peripherals directly attached to the interrupt controller - example

Interrupt

Controller
CPU

Peripherals

Interrupt
Levels

3

1

4

2

5

ADCS 7473749D

10.1 Interrupt models 10 Interrupts

63

There are two types of interrupt controller for ST20 processors: IntC-1 and IntC-2. Both
provide the same services, but the IntC-2 has a register layout that makes it capable of
supporting more interrupt levels in the future; see Table 19: Interrupt controller libraries.

There are three types of interrupt level controller for ST20 processors: ILC-1, ILC-2 and
ILC-3.

ILC-1 supports up to 32 interrupt numbers and the trigger mode logic is part of the interrupt
controller. All interrupt numbers attached to the same level share the same trigger mode.

ILC-2 supports up to 32 interrupt numbers but there is support for programmable trigger
modes and an enable and disable facility for all interrupt numbers.

ILC-3 currently supports up to 128 interrupt numbers, each of which can have a
programmable trigger mode and enable status.

OS20 functions provide support for all ST20 interrupt models.

Figure 8: Peripherals mapped via an interrupt level controller - example

Interrupt

Controller
CPU

Peripherals

Interrupt

Numbers

Interrupt

Levels

1

4

7

3

5

10

11

0

1

7

2

6

Interrupt level
controller

OS20 User Manual 10.2 Selecting the correct interrupt handling system

ADCS 7473749D

64

10.2 Selecting the correct interrupt handling system
OS20 contains two libraries to support different interrupt controller combinations:

Additionally OS20 contains five libraries to support different interrupt level controller
combinations:

In order for OS20 to operate properly the correct libraries must be linked in. When using the
st20cc option -runtime os20, the linker needs to select the appropriate IntC and ILC
libraries. When using the chip command, the correct libraries are always selected. If the
chip command is not used then IntC-1 and ILC-1 libraries are used to preserve backward
compatibility.

Table 21 and Table 22 cross-reference these libraries to specific ST chips.

Library Description

os20intc1.lib IntC-1 (default)

os20intc2.lib IntC-2

Table 19: Interrupt controller libraries

Library Description

os20ilcnone.lib ILC-None

os20ilc1.lib ILC-1 (default)

os20ilc2.lib ILC-2

os20ilc2b.lib ILC-2B

os20ilc3.lib ILC-3

Table 20: Interrupt level controller libraries

Library Description Devices

os20intc1.lib IntC-1 (default) ST20GP6, ST20MC2, ST20TP3, ST20TP4, STi5100, STi5500,
STi5505, STi5508, STi5510, STi5512, STi5514, STi5516, STi5517,
STi5518, STi5519, STi5528, STi5580, STi5588, STi5589, STi5598,
STV0396, STV3500, ST20-C1 simulator, ST20-C2 simulator.

os20intc2.lib IntC-2 ST20DC1, ST20DC2, STi7710, STm5700, STV0684.

Table 21: Interrupt controller libraries

ADCS 7473749D

10.2 Selecting the correct interrupt handling system 10 Interrupts

65

All supported ST chips are listed in the ST20 Embedded Toolset Reference Manual, chapter
Alphabetical list of commands, command Chip.

Note: All referenced technology and versions are listed in the ST20 Embedded Toolset Delivery
Manual.

In addition to providing support for the ILC-1, the ILC-1 library can support systems without an
interrupt level controller and systems that have an ILC-2. In both these cases, the support is
not optimal. The ILC-None library uses much less RAM than its ILC-1 counterpart. The ILC-2
library supports the extra features the ILC-2 provides.

Note: The interrupt function definitions given in this chapter list the interrupt level controllers they
can be used with. If a function is used which is not applicable to the interrupt level controller
on the device used then that function is not provided and the application will fail at link time.
This can cause link errors if the interrupt calls are used inappropriately. There are no
warnings issued at compile time.

10.2.1 Compiling legacy code

The IntC-1 and IntC-2 libraries provide an identical set of function calls. There are no
problems compiling code for either interrupt controller.

On ILC-2 and ILC-3 interrupt level controllers, new function calls have been introduced to
provide support for the newer features of these controllers. This may cause problems when
reusing existing code. In particular, be aware that calls to interrupt_enable() and
interrupt_disable() should be replaced with calls to interrupt_enable_number()
or interrupt_disable_number(). Code that does not do this will compile and link
cleanly but interrupts will never be serviced because they are not enabled.

If permanently migrating old code, it is advisable to change interrupt handling functions as
shown in Table 23, which describes the migration path between ILCs.

Library Description Devices

os20ilcnone.lib ILC-None ST20-C1 simulator, ST20-C2 simulator.

os20ilc1.lib ILC-1 (default) ST20DC1, ST20DC2, ST20GP6, ST20MC2, ST20TP3, ST20TP4,
STi5500, STi5505, STi5508, STi5510, STi5512, STi5580.

os20ilc2.lib ILC-2 STi5518, STi5519, STi5588, STi5589, STi5598.

os20ilc2b.lib ILC-2B STV0396

os20ilc3.lib ILC-3 STi5100, STi5514, STi5516, STi5517, STi5528, STm5700,
STi7710, STV0684, STV3500.

Table 22: Interrupt level controller libraries

OS20 User Manual 10.2 Selecting the correct interrupt handling system

ADCS 7473749D

66

Note: At reset the ILC-2 hardware is configured to be backwards compatible with the ILC-1. The
fastest way to bring old code up on these chips is to link in the ILC-1 library instead of the
ILC-2 support. An OS20 configuration option is provided to support this when the st20cc
option -runtime os20 is used. See Chapter 15: Advanced configuration on page 101.

10.2.2 Linking legacy code

The only recommended method of linking is to use the command st20cc -runtime os20 in
conjunction with the application using the chip command. All new programs should follow
this methodology.

Linking OS20 applications using st20cc -Tos20.cfg is not recommended. Do not write
new code using this option. If backwards compatibility is required, link in the IntC-1 and ILC-1
support libraries.

Linking os20.lib directly is also no longer recommended. os20.lib does not contain any
interrupt functions. To link legacy code, os20.lib should be followed by the correct
combination of interrupt controller and interrupt level controller libraries (see Table 19 and
Table 20). Do not write new code using this option.

ILC library Legacy code Recommended replacement

ILC-1 interrupt_enable()
(INTERRUPT_GLOBAL_ENABLE)

interrupt_enable_global()a

interrupt_disable()
(INTERRUPT_GLOBAL_DISABLE)

interrupt_disable_global()a

interrupt_pending_number interrupt_test_number()a

ILC-2 All changes recommended for ILC-1 plus:

interrupt_enable() interrupt_enable_number()b

(May require multiple calls.)

interrupt_disable() interrupt_disable_number()b

(May require multiple calls.)

ILC-3 All changes recommended for ILC-2 plus:

interrupt_pending_number() interrupt_test_number()b

Table 23: Migration path for ILCs

a. This change is optional and makes code easier to port in the future.

b. This change is mandatory on the ILC-3 and the default ILC-2 library. See also the Note below.

ADCS 7473749D

10.3 Initializing the interrupt handling support system 10 Interrupts

67

10.3 Initializing the interrupt handling support system
Before writing any interrupt handling routines, configure and initialize the interrupt hardware
so that OS20 knows which hardware model is being targeted.

Both the interrupt controller and interrupt level controller have a number of configuration
registers which must be correctly programmed before peripherals can assert interrupt signals.
This varies for each device and typically includes setting the MASK register to enable/disable
individual interrupts (see Section 10.6: Enabling and disabling interrupts) and the
TRIGGERMODE register; see below.

The interrupt_init_controller() function enables you to specify how the interrupt
controller and interrupt level controller (if present) are configured.

#include <interrup.h>
void interrupt_init_controller(void* interrupt_controller,

 int interrupt_levels,
 void* level_controller,
 int interrupt_numbers,
 int input_offset);

The base address and number of inputs supported by the interrupt controller and (if
applicable) the interrupt level controller, on the target ST20 device must be specified. These
details are device specific and can be obtained from the device datasheet.

Normally if st20cc -runtime os20 is used when linking, then this is performed
automatically before the user’s application starts to run.

Next each interrupt level must be initialized. The interrupt_init() function is used to
initialize a single interrupt level in the interrupt controller:

#include <interrup.h>
int interrupt_init(int interrupt_level,

void* stack_base,
size_t stack_size,
interrupt_trigger_mode_t trigger_mode,
interrupt_flags_t flags);

This function enables an area of stack to be defined and also specifies the trigger mode
associated with an interrupt level, that is, whether the interrupt is active when the signal is
high, or low, or on a rising, falling or both edges of the signal. The stack is used to execute all
interrupt handlers attached at that level so must be large enough to accommodate the largest
interrupt handler.

10.3.1 Calculating stack size

The area of stack must be large enough for each interrupt handler to execute within. It must
accommodate all the local variables declared within a handler and must take account of any
further function calls that the handler may make.

As a general rule, an interrupt handler uses the following workspace:

● 8 words of save state,

● 5 words for internal pointers, for ILC-None or ILC-1 interrupt libraries, 7 words for ILC-2
and 8 words for ILC-3,

OS20 User Manual 10.4 Attaching an interrupt handler in OS20

ADCS 7473749D

68

● space for the user’s initial stack frame (4 words on an ST20-C2, 3 words on an
ST20-C1),

● then recursively:

➢ space for local variables declared in the function (add up the number of words),

➢ space for calls to extra functions. For a library function allow a worst case of 150
words.

Note: For details of data representation; see the ST20 Embedded Toolset Reference Manual,
chapter Implementation Details.

10.4 Attaching an interrupt handler in OS20
An interrupt handler is attached to an interrupt using the interrupt_install() function:

#include <interrup.h>
int interrupt_install(int Number,

int Level,
void (*Handler)(void* Param),
void* Param);

Once the interrupt handler is attached, the interrupt is enabled by calling
interrupt_enable or interrupt_enable_number as described in Section 10.6:
Enabling and disabling interrupts.

The function interrupt_install_sl() enables an interrupt to be installed for use with
relocatable code units. For details of using OS20 with relocatable code units, see the ST20
Embedded Toolset Reference Manual, chapter Building and running relocatable code.

10.4.1 Attaching interrupt handlers directly to peripherals

If there is no interrupt level controller on the ST20, then only one handler can be attached to
each interrupt level (and the interrupt number specified to the interrupt_install function
must be specified as -1). interrupt_install() then associates the specified interrupt
handler with a particular interrupt level.

Example

#include <interrup.h>
int interrupt_stack[500];
void interrupt_handler(void* param);

int intrpt_stack[500];
void intrpt_handler(void* param);

interrupt_init(4, interrupt_stack, sizeof(interrupt_stack),
interrupt_trigger_mode_rising, 0);

interrupt_install(-1, 4, interrupt_handler, NULL);

interrupt_init(2, intrpt_stack, sizeof(intrpt_stack),
interrupt_trigger_mode_low_level, 0);

interrupt_install(-1, 2, intrpt_handler, NULL);
interrupt_enable(2);
interrupt_enable(4);

interrupt_enable_global();

ADCS 7473749D

10.4 Attaching an interrupt handler in OS20 10 Interrupts

69

10.4.2 Attaching interrupt handlers using an interrupt level controller

On devices which have an interrupt level controller, multiple handlers can be attached to each
level, one for each interrupt number. The act of attaching the interrupt handler at a level
results in the interrupt controller being programmed to generate the chosen interrupt level.
When an interrupt occurs at an interrupt level which has multiple interrupt numbers attached,
OS20 arranges to call all the appropriate handlers for interrupts which are pending. To do this
it loops, checking for pending interrupts at the current level, until there are none outstanding.
When multiple interrupt numbers are pending, the numerically highest is called first.

Example

#include <interrup.h>
int interrupt_stack[500];
void interrupt_handler(void* param);
void intrpt_handler(void* param);

interrupt_init(4, interrupt_stack, sizeof(interrupt_stack),
interrupt_trigger_mode_rising, 0);

interrupt_install(10, 4, interrupt_handler, NULL);
interrupt_install(3, 4, intrpt_handler, NULL);
/* for ILC-2 or ILC-3 type interrupt level controllers
* interrupt_enable(4) would be replaced by
* interrupt_enable_number(10)
* interrupt_enable_number(3)
*/
interrupt_enable(4);
interrupt_enable_global();

10.4.3 Routing interrupts to external pins

ILC-3 supports the function of routing interrupts to external pins (called interrupt outputs)
where additional hardware can handle the interrupt. Typically this would be used for multi-
CPU systems. To set up this mode of operation, use interrupt_install(), and specify
the interrupt level is as: -1 minus the number of the interrupt output. For example:

/* Direct interrupt number 4 to external interrupt output 2 */
interrupt_install(4, -3, NULL, NULL);

10.4.4 Efficient interrupt layouts

OS20 does not install the interrupt handler supplied to interrupt_install() as the first
level handler. Instead it installs its own optimized interrupt handlers to determine which
interrupt number caused that interrupt level to be raised, and then sets up the workspace to
make C calls. OS20 picks the best code it can to minimize interrupt latency. Carefully laying
out interrupts can assist this.

The most efficient case is when a single interrupt number is attached to an interrupt level,
there is little work to be done and every address can be precalculated by
interrupt_install(). Devices that require absolute minimum latency should be
attached like this.

For the ILC-1 and ILC-2 there are no further optimizations that can be made.

ILC-3 has more than 32 interrupt numbers. The ST20 is a 32-bit processor and therefore
ILC-3 registers cross the word boundary of the machine. When two interrupt numbers
attached to the same level are spread across more than one word, the work required to
determine the source of the interrupt increases. Thus bunching interrupt numbers between
word boundaries minimizes interrupt latency.

OS20 User Manual 10.5 Initializing the peripheral device

ADCS 7473749D

70

Example

/* good layout (for ILC-3) */
interrupt_install(1, 1, intrpt_handler1, NULL);
interrupt_install(31, 1, intrpt_handler2, NULL);

/* poor layout (crosses word boundary) */
interrupt_install(3, 2, intrpt_handler3, NULL);
interrupt_install(33, 2, intrpt_handler4, NULL);

10.5 Initializing the peripheral device
Each peripheral device has its own interrupt control register(s) which must be programmed in
order for the peripheral to assert an interrupt signal. This is device-dependent and so varies
between devices, but usually involves specifying which events should cause an interrupt to be
raised. The example in Section 10.7 shows a setup for an Asynchronous Serial Controller
(ASC). It is important that these device registers are set up after the interrupt controller and
interrupt level controller. Likewise when deleting interrupts it is important that the peripheral
device interrupt control register(s) are reprogrammed first; see Section 10.15: Uninstalling
interrupt handlers and deleting interrupts on page 76.

ADCS 7473749D

10.6 Enabling and disabling interrupts 10 Interrupts

71

10.6 Enabling and disabling interrupts
The following two functions can be used to set or clear the global enables bit
INTERRUPT_GLOBAL_ENABLE in the interrupt controller’s SET_MASK register:

#include <interrup.h>
void interrupt_enable_global();
void interrupt_disable_global();

When the global enables bit is set then any enabled interrupt can be asserted. When the
global enables bit is not set then no interrupts can be asserted, regardless of whether they are
individually enabled. These two functions apply to all interrupt controllers.

10.6.1 Enabling and disabling interrupts without an ILC or with ILC-1

The following two functions take an interrupt level and set or clear the corresponding bit in the
interrupt controller SET_MASK register:

#include <interrup.h>
int interrupt_enable (int Level);
int interrupt_disable (int Level);

This can be used to enable or disable the associated interrupt level.

Although the global enables bit can be set or cleared by these functions (as
INTERRUPT_GLOBAL_ENABLE) this use is no longer recommended. These functions
return -1 if an illegal interrupt level is passed in.

Although both functions work on all existing ST20 processors they are not guaranteed to work
for future processors with ILC-2 or ILC-3 interrupt level controllers. Thus their use is only
recommended for use on chips with no interrupt level controller or with ILC-1.

The following two functions are similar to those above, but take a mask which contains bits to
be set or cleared in the interrupt controller SET_MASK register depending on the operation
being performed.

#include <interrup.h>
void interrupt_enable_mask (int Mask);
void interrupt_disable_mask (int Mask);

Like the previous functions the global enables bit can be set or cleared using the mask
functions (as 1 << INTERRUPT_GLOBAL_ENABLE) and again it is no longer
recommended. Similarly these functions are only recommended for use on chips with no
interrupt level controller or with ILC-1.

10.6.2 Enabling and disabling interrupts with ILC-2 or ILC-3

The following two functions apply only to ILC-2 or ILC-3 interrupt level controllers and are
used to enable and disable interrupt numbers.

#include <interrup.h>
int interrupt_enable_number (int Number);
int interrupt_disable_number (int Number);

These functions allow specific interrupt numbers to be enabled and disabled independently by
writing to the interrupt level controllers ENABLE registers.

OS20 User Manual 10.7 Example: setting an interrupt for an ASC

ADCS 7473749D

72

10.7 Example: setting an interrupt for an ASC
This example shows how an interrupt could be set for an Asynchronous Serial Controller on
an STi5500 device, which has an ILC-1 type interrupt level controller. The example
demonstrates the steps described in the previous sections to:

● initialize the interrupt controller; see Section 10.3 on page 67,

● attach an interrupt handler; see Section 10.4 on page 68,

● program the peripheral device registers; see Section 10.5 on page 70,

● enable an interrupt; see Section 10.6 above.

#define INTERRUPT_NUMBERS 18
#define INTERRUPT_INPUT_OFFSET 18
#define INTERRUPT_CONTROLLER 0x20000000
#define INTERRUPT_LEVEL_CONTROLLER 0x20011000
#define ASC0_INTERRUPT_NUMBER 9
#define ASC_INTERRUPT_LEVEL 5

typedef struct {
int asc_BaudRate;
int asc_TxBuffer;
int asc_RxBuffer;
int asc_Control;
int asc_IntEnables;
int asc_Status;

} asc_t;

volatile asc_t* asc0 = (asc_t*)0x20003000;

#define ASC_MODE_8D 0x01
#define ASC_STOP_1_0 0x08
#define ASC_RUN 0x80
#define ASC_RXEN 0x100

#define ASC_BAUD_9600 (40000000 / (16*9600))

#define ASC_RX_BUF_FULL 1

interrupt_init_controller((void*)INTERRUPT_CONTROLLER, 8,
(void*)INTERRUPT_LEVEL_CONTROLLER,
INTERRUPT_NUMBERS, INTERRUPT_INPUT_OFFSET);

interrupt_init(ASC_INTERRUPT_LEVEL, ser_stack, sizeof(ser_stack),
interrupt_trigger_mode_high_level, 0);

interrupt_enable_global();

if (interrupt_install(ASC0_INTERRUPT_NUMBER, ASC_INTERRUPT_LEVEL,
ser_handler, NULL) == 0) {

asc->asc_Control = ASC_MODE_8D | ASC_STOP_1_0 | ASC_RUN | ASC_RXEN;
asc->asc_BaudRate = ASC_BASE_9600;
asc->asc_intEnables = ASC_RX_BUF_FUL;
interrupt_enable(ASC_INTERRUPT_LEVEL);

}

ADCS 7473749D

10.8 Locking out interrupts 10 Interrupts

73

If this example were transferred to a device with an ILC-2 or ILC-3 interrupt level controller the
call to interrupt_enable (last line) would become:

interrupt_enable_number(ASC0_INTERRUPT_NUMBER);

Section 10.15: Uninstalling interrupt handlers and deleting interrupts gives an example of how
to remove this interrupt.

10.8 Locking out interrupts
All interrupts to the CPU can be globally disabled or re-enabled using the following two
commands:

#include <interrupt.h>
void interrupt_lock(void);
void interrupt_unlock(void);

These functions should always be called as a pair, and prevent any interrupts from the
interrupt controller having any effect on the currently executing task while the lock is in place.
These functions can be used to create a critical region in which the task cannot be preempted
by any other task or interrupt. Calls to interrupt_lock() can be nested, and the lock not
released until an equal number of calls to interrupt_unlock() have been made.

Note: Locking out interrupts is slightly different from disabling an interrupt. Interrupts are locked by
changing the ST20’s ENABLES register, which causes the CPU to ignore the interrupt
controller (and any other external device), while disabling an interrupt modifies the interrupt
controller’s MASK register, and so can be used much more selectively. On the ST20-C2,
locking interrupts also prevents high priority processes from interrupting, and disables
channels and timers.

A task must not deschedule with interrupts locked, as this can cause the scheduler to fail.
When interrupts are locked, calling any function that may not be called by an interrupt service
routine is illegal.

10.9 Raising interrupts
The following functions can be used to force an interrupt to occur:

#include "interrup.h"
int interrupt_raise (int Level);
int interrupt_raise_number (int Number);

The first function raises the specified interrupt level and should be used when peripherals are
attached directly to the interrupt controller. The second function raises the specified interrupt
number and is for use when an interrupt level controller is present.

Note: Neither function should be used to raise level-sensitive interrupts. These are immediately
cleared by the interrupt hardware.

OS20 User Manual 10.10 Retrieving details of pending interrupts

ADCS 7473749D

74

10.10 Retrieving details of pending interrupts
The following functions return details of pending interrupts:

#include <interrupt.h>
int interrupt_pending(void);
int interrupt_pending_number(void);
int interrupt_test_number(int Number);

interrupt_pending() returns which interrupt levels are pending, that is, those interrupts
which have been set by a peripheral, but whose interrupt handlers have not yet run. This
function should be used when peripherals are attached directly to the interrupt controller.

interrupt_pending_number() returns which interrupt numbers are pending, that is, all the
interrupts which are currently set by peripherals. The ST20 C compiler treats int as a 32-bit
quantity, thus interrupt_pending_number cannot be used on ILC-3 type interrupt level
controllers because they have too many interrupt numbers.

interrupt_test_number() can be used to test if any one specific interrupt number is
pending. This function applies to any interrupt level controller because it does not return a
mask.

Note: Shared interrupt handlers should not call interrupt_pending_number or
interrupt_test_number since they will find the called interrupt’s PENDING bit already reset
(this is done before running the applications handler). Instead, they should use the interrupt
handlers argument to differentiate between different interrupt numbers.

10.11 Clearing pending interrupts
The following functions can be used to prevent a raised interrupt signal from causing an
interrupt event to occur:

#include "interrupt.h"
int interrupt_clear (int level);
int interrupt_clear_number (int Number);

The first function clears the specified pending interrupt level and should be used when
peripherals are attached directly to the interrupt controller. The second function clears the
specified interrupt number and is for use when an interrupt level controller is present. If the
specified number is the only pending interrupt number attached to the interrupt level then the
pending interrupt level is also cleared.

On ILC-1, only interrupts asserted in software by interrupt_raise_number can be
cleared in this way.

ADCS 7473749D

10.12 Changing trigger modes 10 Interrupts

75

10.12 Changing trigger modes
This section applies only to ST20 variants with ILC-2 or ILC-3. On these devices the following
function can be used to change a specific interrupt number’s trigger mode.

#include <interrup.h>
int interrupt_trigger_mode_number(int Number,

interrupt_trigger_mode_t trigger_mode);

When interrupt_init() is called, the user supplies a default trigger mode for all interrupt
numbers attached to that interrupt level. When an interrupt is installed then the trigger mode is
set to this default. interrupt_trigger_mode_number can be used to change away from
the default behavior set by interrupt_init().

10.13 Low power modes and interrupts
This section applies only to ST20 variants with ILC-2 or ILC-3. On these devices the following
function can be used to configure which external interrupts can wake the ST20 from low
power mode.

#include <interrup.h>
int interrupt_wakeup_number(int Number,

interrupt_trigger_mode_t trigger_mode);

Once the ST20 has been placed in low power mode the device can be woken either when its
real-time wake-up alarm triggers or when an external interrupt request is asserted. The
external request is active high or active low; it cannot be edge-triggered.

Note: On some ST20 variants, not all external interrupt pins can be used to wake the device from
low power mode; exact details can be found from the appropriate device datasheet.

10.14 Obtaining information about interrupts
The following two functions can be used to obtain interrupt state information:

#include <interrup.h>
int interrupt_status(int Level,

interrupt_status_t* Status,
interrupt_status_flags_t flags);

int interrupt_status_number(int Number,
interrupt_status_number_t* status,
interrupt_status_number_flags_t flags);

The first function provides information about the state of an interrupt level. This includes the
number of interrupt handlers attached to this level and the current state of the interrupt stack,
specifically the stack’s base, size and peak usage.

The second function provides information about the state of an interrupt number. For standard
OS20 kernels this includes only the interrupt level to which this interrupt number is attached.

On the debug kernel, interrupt_status() and interrupt_status_number() provide
extra timing information. This extra data is not available on the deployment kernel because it
would decrease interrupt performance. See Chapter 15: Advanced configuration on page 101
for further details.

OS20 User Manual 10.15 Uninstalling interrupt handlers and deleting interrupts

ADCS 7473749D

76

10.15 Uninstalling interrupt handlers and
deleting interrupts
The following function can be used to uninstall an interrupt handler:

#include <interrup.h>
int interrupt_uninstall(int Number,

int Level);

Before interrupt_uninstall is used, the interrupt must be disabled on the actual
peripheral device by programming the peripheral’s interrupt control register(s) and then using
one of the functions:

interrupt_disable()
interrupt_disable_mask()
interrupt_disable_number()

A replacement trap handler may then be swapped in using interrupt_install() or the
interrupt may be deleted, using interrupt_delete() if it is no longer required. If a
replacement trap handler is installed, the interrupt must be re-enabled on the peripheral
device by programming its interrupt control register(s).

The following function deletes an initialized interrupt, allowing the interrupt level’s stack to be
freed:

#include <interrup.h>
int interrupt_delete(int Level);

The interrupt must be disabled by programming the peripheral’s interrupt control register(s)
and uninstalled by calling interrupt_uninstall before interrupt_delete is called.

Example

This example demonstrates how to delete the interrupt set up by the example given in
Section 10.7: Example: setting an interrupt for an ASC.

asc->asc_intEnables = 0;
interrupt_disable(ASC_INTERRUPT_LEVEL);
interrupt_uninstall(ASC0_INTERRUPT_NUMBER, ASC_INTERRUPT_LEVEL);
interrupt_delete(ASC_INTERRUPT_LEVEL);

10.16 Restrictions on interrupt handlers
Certain restrictions must be kept in mind when using interrupts on the ST20.

● Descheduling and timeslicing are automatically disabled for interrupt handlers.

Channel communications (on the ST20-C2) and any other descheduling operation are
not permitted.

● On the ST20-C2 interrupt handlers must not use 2D block move functions or instructions
unless the existing block move state is explicitly saved and restored by the handler.

● Interrupt handlers cannot use C++ exception handling, that is, they must not be compiled
with the st20cc option -exceptions.

ADCS 7473749D

10.17 Interrupt header file: interrup.h 10 Interrupts

77

10.17 Interrupt header file: interrup.h
All the definitions related to interrupts are in the single header file, interrup.h; see
Table 24.

The full ILC library names are given in Table 20 on page 64.

Function Description
ILC library ILC-

None 1 2 3

interrupt_clear Clear a pending interrupt ✓ ✓

interrupt_clear_number Clear a pending interrupt number ✓ ✓ ✓

interrupt_delete Delete an interrupt level ✓ ✓ ✓ ✓

interrupt_disable Disable an interrupt level ✓ ✓

interrupt_diable_global Global disable interrupts ✓ ✓ ✓ ✓

interrupt_disable_mask Disable one or more interrupts ✓ ✓

interrupt_disable_number Disable an interrupt number ✓ ✓

interrupt_enable Enable an interrupt level ✓ ✓

interrupt_enable_global Globally enable interrupts ✓ ✓ ✓ ✓

interrupt_enable_mask Enable one or more interrupts ✓ ✓

interrupt_enable_number Enable an interrupt number ✓ ✓

interrupt_init Initialize an interrupt level ✓ ✓ ✓ ✓

interrupt_init_controller Initialize the interrupt controller ✓ ✓ ✓ ✓

interrupt_install Install an interrupt handler ✓ ✓ ✓ ✓

interrupt_install_sl Install an interrupt handler and specify a static link ✓ ✓ ✓ ✓

interrupt_lock Lock all interrupts ✓ ✓ ✓ ✓

interrupt_pending Return pending interrupt levels ✓ ✓

interrupt_pending_number Return pending interrupt numbers ✓ ✓ ✓

interrupt_raise Raise an interrupt level ✓ ✓

interrupt_raise_number Raise an interrupt number ✓ ✓ ✓

interrupt_status Report the status of an interrupt level ✓ ✓ ✓ ✓

interrupt_status_number Report the status of an interrupt number ✓ ✓ ✓

interrupt_test_number Test whether an interrupt number is pending ✓ ✓ ✓

interrupt_trigger_mode_number Change the trigger mode of an interrupt number ✓ ✓

interrupt_uninstall Uninstall an interrupt handler ✓ ✓ ✓ ✓

interrupt_unlock Unlock all interrupts ✓ ✓ ✓ ✓

interrupt_wakeup_number Set wakeup status of an interrupt number ✓ ✓

Table 24: Functions defined in interrup.h

OS20 User Manual 10.17 Interrupt header file: interrup.h

ADCS 7473749D

78

Types and macros defined to support interrupts are listed in Table 25 and Table 26.

Types Description

interrupt_flags_t Additional flags for interrupt_init

interrupt_status_t Structure describing the status of an interrupt level

interrupt_status_flags_t Additional flags for interrupt_status

interrupt_status_number_t Structure describing the status of an interrupt number

interrupt_status_number_flags_t Additional flags for interrupt_status_number

interrupt_trigger_mode_t Interrupt trigger modes (used in interrupt_init)

Table 25: Types defined in interrup.h

Macro Description

INTERRUPT_GLOBAL_ENABLE Global interrupt enables bit number

Table 26: Macros defined in interrup.h

ADCS 7473749D

79

Device information11
Two functions are provided to return information about the ST20 family of devices.
device_id returns the ID of the current device. device_name takes a device ID as input
and returns a brief description of the device.

Device Identifiers are defined by the IEEE1149.1 (JTAG) Boundary-Scan Standard. This is a
32 bit number composed of a number of fields. OS20 defines a type to describe this,
device_id_t. This is a union with three fields:

● id which allows the code to be manipulated as a 32 bit quantity,

● jtag which views the value as defined by the JTAG standard,

● st which views the value as used by STMicroelectronics. This breaks the device code
down into a family and a device code.

jtag and st are structs of bit-fields, which allows the elements to be accessed
symbolically.

The identification code is made up as shown below in Table 27.

Bits jtag st Meaning

[31:28] revision revision Mask revision

[27:22] device_code family 2010 – CMG DVD family

[21:12] device_code Device code

[11:1] manufacturer manufacturer 3210 – STMicroelectronics

[0] JTAG_bit JTAG_bit 1 – fixed by JTAG

Table 27: Composition of identification code

OS20 User Manual 11.1 Device ID header file: device.h

ADCS 7473749D

80

11.1 Device ID header file: device.h
All the definitions related to device identification are in the single header file, device.h; see
Table 28.

Function Description

device_id Returns the ID of the current device

device_name Returns the name of the current device

Table 28: Functions defined in device.h

Types Description

device_id_t Device ID

Table 29: Types defined in device.h

ADCS 7473749D

81

Caches 12
Cache provides a way to reduce the time taken for the CPU to access memory and so can
greatly increase system performance.

12.1 Introduction
All ST20 processors that support cache use similar hardware and the operation of the caches
is the same, however, the blocks of memory that can be cached vary between ST20 devices;
see the appropriate device datasheets for details.

The ST20 cache system provides a read-only instruction cache and a write-back data cache.

There is a risk when using cache that the cache can become incoherent with main memory,
meaning that the contents of the cache conflicts with the contents of main memory. For
example, devices that perform direct memory access (DMA) modify the main memory without
updating the cache, leaving its contents invalid. For this reason enabling the data cache for
blocks of memory accessed by the DMA engine is not recommended.

Note: On an ST20-C2 core, device access instructions (generated with #pragma ST_device)
bypass the cache and can be used to solve some cache coherency issues.

12.1.1 Data caches with internal SRAM

Some ST20 devices have a data cache which must be reserved by the linker in order to
prevent it from being corrupted by the application. This is described in the ST20 Embedded
Toolset User Manual, chapter Defining a target system.

OS20 User Manual 12.2 Initializing the cache support system

ADCS 7473749D

82

12.2 Initializing the cache support system
Before any call is made to the cache handling routines, the cache control hardware needs to
be configured and initialized in order that OS20 knows which hardware model is being
targeted.

If the st20cc -runtime os20 command is used when linking, the cache controller is
configured automatically before the user’s application starts to run.

If st20cc -runtime os20 is not used, the cache_init_controller function enables
you to specify how the cache control hardware is configured:

#include <cache.h>
void cache_init_controller(void* cache_controller,

cache_map_data_t cache_map);

Both the cache controller address and the cache map are device-specific. The cache
controller address can be obtained from the device datasheet. The correct cache map can be
found in Chapter 16: Alphabetical list of functions, function cache_init_controller on
page 126.

Note: Some ST20 devices have two base addresses, one for the instruction cache and one for the
data cache, for example the STm5700 and the STi5516. It is the base address of the
instruction cache that should be passed to the cache_init_controller function.

12.3 Configuring the caches
On any ST20 device with a data cache the cache_config_data function is used to
configure the data cache to treat certain blocks of memory as cacheable or non-cacheable.

Note: By default all configurable blocks are set to non-cacheable, therefore for all devices with a
data cache, the use of the cache_config_data function is vital to achieve maximum
performance.

#include <cache.h>
int cache_config_data(void* start_address,

void* end_address,
cache_config_flags_t flags);

There are two types of ST20 instruction cache: configurable and fixed. A fixed instruction
cache can only be enabled or disabled; it cannot be selectively applied to specific blocks of
memory.

On devices which have a configurable instruction cache, the function
cache_config_instruction is used to enable or disable specific blocks of memory. A
configurable instruction cache, like the data cache, treats all configurable blocks as non-
cacheable by default. For devices with a configurable instruction cache the use of
cache_config_instruction is necessary to achieve maximum performance.

#include <cache.h>
int cache_config_instruction(void* start_address,

void* end_address,
cache_config_flags_t flags);

ADCS 7473749D

12.4 Enabling and disabling the caches 12 Caches

83

12.4 Enabling and disabling the caches
The caches are enabled using the following two functions:

#include <cache.h>
int cache_enable_data();
int cache_enable_instruction();

The first function invalidates the data cache (see Section 12.7: Flushing and invalidating
caches) before writing to the ENABLEDCACHE register thereby enabling the data cache. The
second function is similar but operates on the ENABLEICACHE register.

If the target application requires the caches to be disabled at some later point the following
two functions can be used.

#include <cache.h>
int cache_disable_data();
int cache_disble_instruction();

Disabling the cache can potentially take a long time to complete; during this time the
processor is unable to handle interrupts or perform any other time-critical task.

12.5 Locking the cache configuration
The cache can be locked using the following function:

int cache_lock();

It is recommended that all cache configuration is performed at boot time and then never
modified. To prevent accidental modification, ST20 devices can lock the cache configuration,
preventing it from being changed until the hardware is reset.

OS20 User Manual 12.6 Example: setting up the caches

ADCS 7473749D

84

12.6 Example: setting up the caches
This example shows how the caches could be set up for an STi5516 device. The example
demonstrates the steps described in the previous sections to:

● initialize and configure the cache hardware; see Section 12.2,

● enable the data and instruction caches; see Section 12.4,

● lock the cache configuration; see Section 12.5.

The example uses the header file <chip/STi5516addr.h> supplied in the ST20
Embedded Toolset’s standard configuration files directory: $ST20ROOT/include. The
header file contains the base address of the cache controller, defined as
CacheControlAddr.

#include <chip/STi5516addr.h>
#include <cache.h>

cache_init_controller((void*) CacheControlAddr, cache_map_c2_c200);

/* Configure instruction caches to cache all possible memory */
cache_config_instruction((void *)0x80000000, (void *)0x7fffffff,
cache_config_enable);

/* Configure data caches to cache all possible memory... */
cache_config_data((void *)0x80000000, (void *)0x7fffffff,
cache_config_enable);

/* ...except region required for DMA */
cache_config_data((void *)0x40010000, (void *)0x4001ffff,
cache_config_disable);

cache_enable_instruction();
cache_enable_data();
cache_lock();

12.7 Flushing and invalidating caches
When the cache is enabled, any data written to main memory is stored in the cache and
marked as dirty so that at some point in the future it can be properly stored to main memory.
A cache flush causes all dirty cache lines to be written immediately to main memory.

Invalidating a cache causes the cache to forget its entire contents, thus forcing it to reload all
data from main memory.

Note: On ST20 devices, flushing the cache also causes it to be invalidated. After a cache flush all
data is reloaded from main memory.

In some applications it is useful to force a cache flush or invalidate, this can be achieved using
the following three functions:

int cache_flush_data(void* reserved1, void* reserved2);
int cache_invalidate_data(void* reserved1, void* reserved2);
int cache_invalidate_instruction(void* reserved1, void* reserved2);

Each of these functions takes two arguments that are reserved for future use by OS20, users
must supply NULL as each argument.

ADCS 7473749D

12.8 Cache header file: cache.h 12 Caches

85

12.7.1 Relocatable code units

When caches are enabled, extra care must be taken when handling relocatable code units. To
ensure cache coherency is maintained, follow the advice given in the ST20 Embedded
Toolset Reference Manual, chapter Building and running relocatable code.

12.8 Cache header file: cache.h
All the definitions related to the caches are in the single header file, cache.h; see Table 30.

The types defined to support the cache API are listed in Table 31.

Function Description

cache_config_data Configure the data cache

cache_config_instruction Configure the instruction cache

cache_disable_data Disable the data cache

cache_disable_instruction Disable the instruction cache

cache_enable_data Enable the data cache

cache_enable_instruction Enable the instruction cache

cache_flush_data Flush the data cache

cache_init_controller Initialize the cache controller

cache_invalidate_data Invalidate the data cache

cache_invalidate_instruction Invalidate the instruction cache

cache_lock Lock the cache configuration

cache_status Report the cache status

Table 30: Functions defined in cache.h

Types Description

cache_config_flags_t Additional flags for cache_config_data

cache_map_data_t Description of cacheable memory available on a particular ST20 variant (used by
cache_init_controller)

cache_status_t Structure describing the status of the cache

Table 31: Types defined in cache.h

OS20 User Manual 12.8 Cache header file: cache.h

ADCS 7473749D

86

ADCS 7473749D

87

ST20-C1 specific
features 13

OS20 has many features, some of which depend on a timer peripheral being present, for
example, functions such as semaphore_wait_timeout() and time_now().

The ST20-C1 core does not have a built-in timer peripheral. In order for the ST20-C1 version
of OS20 to provide the full API, you need to incorporate a timer plug-in module into any
applications built for the ST20-C1 cores. Plug-in modules are board-specific and must be
written to manage whatever hardware is present on the development board; OS20 contains a
generic timer plugin that uses the PWM peripheral if present, see Section 13.1: In-built PWM
support on page 89 for more details.

OS20 can be used with or without the plug-in module, however, when accessing timer-related
functions without a plug-in module present, a run-time error occurs, so take care when not
using the plug-in module.

Internally, OS20 uses a standardized low level timer API, which accesses functions provided
by the plug-in module via function pointers; see Figure 9. This is so that the application can be
built with or without the plug-in module. Linkage between OS20 and the plug-in module is
performed at run time as opposed to compile time so that the only change needed to the
application is an additional call to the plug-in module’s initialization function.

OS20 User Manual

ADCS 7473749D

88

The plug-in module must provide an initialization function which the application can call. Upon
calling the initialization function, the module initializes the programmable timer and passes a
structure detailing all of the functions’ locations into OS20 via a function called
timer_initialize. This is an OS20 ST20-C1 specific function call. At this stage the plug-
in module is linked into the OS20 kernel.

The syntax of the timer API is consistent with the remainder of OS20. The naming convention
has an object-oriented approach:

<class>_<type_of_operation>

Before the plug-in module is initialized, the OS20 kernel must be initialized and started by
calling kernel_initialize() and kernel_start(); additionally the interrupt controller
must be initialized by calling interrupt_init_controller().

Figure 9: Plug-in timer model for the ST20-C1

Function Description

timer_read Read the timer

timer_set Set the timer

timer_enable_int Enable the timer interrupt

timer_disable_int Disable the timer interrupt

timer_raise_int Raise a timer interrupt

Table 32: Internal OS20 Timer API

OS20 API

Plug-in timer module

Programmable timer peripheral

ADCS 7473749D

13.1 In-built PWM support 13 ST20-C1 specific features

89

Note: The plug-in timer module’s tick frequency is self-defined, because it is external to OS20. This
arrangement has the advantage that the tick frequency can be tailored for specific
applications: a short tick for high accuracy, a longer tick for timing long periods. Take care
when porting code to different devices because the tick frequency is likely to change.

13.1 In-built PWM support
OS20 includes in-built support for PWM based timer peripherals. PWM timers are included in
the majority of ST20-C1 based devices.

timer_pwm_init() is used to initialize the in-built timer support. This function is supplied
with the PWM's input frequency and attempt to run both the system clock and the timeslice at
rates similar to those found on ST20-C2 based parts. Specifically it attempts to provide a
system clock running at 15625 ticks per second and a quiessant timeslice of 2 ms.

Note: Few PWM devices are capable of directly providing a 15625 tick rate so this should never
appear as a manifest constant in ST20-C1 code; use the time_ticks_per_sec() call
instead.

timer_pwm_init() requires an interrupt level to have been initialized before it is called.
Similarly it requires the interrupt to be enabled after it has been called. The following is a
typical initialization sequence.

/* Generally the operating system timer should run as the least
* priority interrupt.
*/
err = interrupt_init(0, stack, sizeof(stack),

interrupt_trigger_mode_rising, 0);
/* error checking */

err = timer_init_pwm((void *) PWM_BASE_ADDRESS, PWM_INTERRUPT, 0,
PWM_FREQ_IN_KHZ, 0);

/* error checking */

#ifdef ILC1
interrupt_enable(0);
#else
interrupt_enable_number(PWM_INTERRUPT);
#endif
interrupt_enable_global();

OS20 User Manual 13.2 ST20-C1 example plug-in timer module

ADCS 7473749D

90

13.2 ST20-C1 example plug-in timer module
A plug-in module is provided as example code for ST evaluation boards. This can be found in
the examples/os20/c1timer directory. The readme file supplied with the example
explains how to build and run the example.

This example contains completely separate timer modules named after the products they
work with. These can each be used standalone if required (that is, only one need be linked to
your application). However, the supplied example has a single timer initialize function called
c1_timer_initialize that uses device_id to determine which timer module to use.

13.2.1 PWM peripheral

Both timer plug-in modules use the on-chip PWM peripheral to provide the timer functionality.
This peripheral is described here in sufficient detail to explain how the example works.

The PWM peripheral has a programmable timer which you program to cause an interrupt at a
specified time.

The CAPTURECOUNT register is a 32-bit counter that is incremented regularly. The
COMPARE register is set by your application. When the value in the CAPTURECOUNT
register becomes equal to the value in the COMPARE register an interrupt is generated.

Table 33 provides a list of registers which are actively used by the plug-in module.

Control

The CONTROL register controls the top level function of the PWM peripheral. In particular, it
contains a Capture enable bit that causes the CAPTURECOUNT register to start counting
and a Capture prescale value which controls the rate at which the CAPTURECOUNT register
runs. By default, the prescale value is set to 0.

InterruptEnable

The INTERRUPTENABLE controls which events will cause an interrupt to be asserted. In
particular, the register contains a bit which when set causes an interrupt to be asserted, the
CAPTURECOUNT register then becoming equal to the COMPARE register.

CaptureCount

The CAPTURECOUNT register is a 32-bit counter that is clocked by the system clock. The
counter can be prescaled by the Capture prescale value stored in the CONTROL register.

Compare

The COMPARE register contains the time which is compared against the CAPTURECOUNT
register. When these are equal, the timer requests an interrupt, depending on the state of the
INTERRUPTENABLE register.

Register Description

CONTROL Used to initialize PWM peripheral

INTERRUPTENABLE Enable and disable interrupts by this register

CAPTURECOUNT 32-bit counter

COMPARE Time at which an event should occur

Table 33: PWM registers used by the plug-in module

ADCS 7473749D

13.3 Plug-in timer module header file: c1timer.h 13 ST20-C1 specific features

91

13.3 Plug-in timer module header file: c1timer.h
All the definitions related to ST20-C1 plug-in timer modules are defined in a single header file,
c1timer.h; see Table 34.

Function Description

timer_initialize Initialize the timer plug-in module

timer_interrupt Notify OS20 that the timer has expired

Table 34: Functions defined in c1timer.h

Types Description

timer_api_t Set of function pointers to be used as a plug-in timer module

Table 35: Types defined in c1timer.h

OS20 User Manual 13.3 Plug-in timer module header file: c1timer.h

ADCS 7473749D

92

ADCS 7473749D

93

ST20-C2 specific
features 14
14.1 Overview

The ST20-C2 has the following additional features over the ST20-C1.

● Channels

The ST20-C2 supports a point-to-point unidirectional communications channel, which
can be used for communication between tasks on the same processor, and with
hardware peripherals on the ST20.

● High priority processes

High priority processes run outside of the normal OS20 scheduling regime, using the
ST20’s hardware scheduler. A high priority process is created using the task_create
or task_init functions and specifying the task_flags_high_priority_process
flag. High priority processes always preempt normal OS20 tasks (irrespective of the
task’s priority) and as this takes advantage of the ST20’s hardware scheduler, high
priority processes can respond faster than normal OS20 tasks.

In general, high priority processes should be regarded as the equivalent of interrupt
handlers for those peripherals which have a channel style interface.

However, because high priority processes run outside of the OS20 scheduling regime,
they only have very limited access to OS20 library functions. In general they can only call
functions which are implemented directly in hardware; in particular, this means they can
only use channels and FIFO based semaphores, not priority-based semaphores or
message queues.

● Two dimensional block move

A number of instructions are provided which allow two dimensional blocks or memory to
be moved efficiently. This is especially useful for graphical applications.

OS20 User Manual 14.2 Channels

ADCS 7473749D

94

14.2 Channels
OS20 supports the use of channels by all tasks (both normal/low and high priority).

Channels are a way of transferring data from one task to another, and they also provide a way
of synchronizing the actions of tasks. If one task needs to wait for another to reach a particular
state, then a channel is a suitable way of ensuring that happens.

If one task is sending and one receiving on the same channel then whichever tries to
communicate first waits until the other communicates. The data is copied from the memory of
the sending task to the memory of the receiving task and both tasks then continue. If only one
task attempts to communicate then it will wait forever.

A channel communicates in one direction, so if two tasks need bidirectional communication,
then two channels are needed, one in each direction. Any data can be passed down a
channel, but the user must ensure that the tasks agree a protocol in order to interpret the data
correctly.

It is the responsibility of the programmer to ensure that:

● data sent by one task is received by another,

● there is never more than one task sending on one channel,

● there is never more than one task receiving on one channel,

● the amounts of data sent and received are the same,

● the types of data sent and received are the same.

If any of these rules are broken then the effect is not defined.

Channels between tasks are created by using the data structure chan_t and initializing it by
calling a library function. Channel input and output functions are then used to pass data.
Separate functions exist for input and output and the two must be paired for communication
between two tasks to take place. The header file chan.h declares the chan_t data type and
channel library functions.

If one task has exclusive access to a particular resource and acts as a server for the other
tasks, then channels can also act as a queuing mechanism for the server to wait for the next
of several possible inputs and handle them in turn.

A channel used to communicate between two tasks on the same processor is known as a
“soft channel”. A channel used to communicate with a hardware peripheral is known as a
“hard channel”.

When the OS20 scheduler is enabled (by calling kernel_start), channel communication
results in traps to the kernel, which ensure that correct scheduling semantics are maintained.

ADCS 7473749D

14.2 Channels 14 ST20-C2 specific features

95

14.2.1 Creating a channel

OS20 refers to channels using a chan_t structure. This needs to be initialized before it can
be used, by using one of the following functions:

chan_t *chan_create(void)
chan_t *chan_create_address(void *address)
chan_init(chan_t *chan);
void chan_init_address(chan_t *chan, void *address);

The _create versions allocate memory for the data structure from the system partition and
initialize the channel to their default state. chan_create creates a “soft” channel,
chan_create_address creates a “hard” channel.

The _init versions also initialize a channel, but the allocation of memory for chan_t is left
to the user. chan_init initializes a “soft” channel and chan_init_address initializes a
“hard” channel:

For example:

#include <chan.h>
/* Initialize a soft channel */
chan_t soft_chan;
chan_init(&soft_chan);

/* Initialize a hard channel to link 0 input channel */
chan_t chan0;
chan_init_address(&chan0, (void*)0x80000010);

14.2.2 Communications over channels

Once a channel has been initialized, there are several functions available for communications:

void chan_in(chan_t *chan, void* cp, int count);
void chan_out(chan_t *chan, const void* cp, int count);
int chan_in_int(chan_t *chan);
void chan_out_int(chan_t *chan, int data);
char chan_in_char(chan_t *chan);
void chan_out_char(chan_t *chan, char data);

These functions transfer a block of data (chan_in and chan_out), an integer
(chan_in_int and chan_out_int) or a character (chan_in_char and
chan_out_char).

Each communications function call represents a single communication. The task does not
continue until the transfer is complete.

Take care to ensure that data is only transferred in one direction across the channel, and that
the sending and receiving data is the same length, as this is not checked for at run time.

For example, the following code uses channel my_chan to send a character followed by an
integer followed by a string:

#include <chan.h>
char ch1;
int n1;

chan_out_char (my_chan, ch1);
chan_out_int (my_chan, n1);
chan_out (my_chan, ”Hello”, 5);

OS20 User Manual 14.2 Channels

ADCS 7473749D

96

To receive this data on channel my_chan, the following code could be used:

#include <chan.h>
char ch, buffer[5];
int n;

ch = chan_in_char (my_chan);
n = chan_in_int (my_chan);
chan_in (my_chan, buffer, 5);

14.2.3 Reading from several channels

There are many cases where a receiving task needs to listen to several channels and wishes
to detect which one has data ready first. The ST20-C2 micro-kernel provides a mechanism to
handle this situation called an alternative input. This is implemented in OS20 by the following
function:

int chan_alt(chan_t ** chanlist,
int nchans,
const clock_t *timeout);

chan_alt takes as parameters an array of channel pointers, and a count of the number of
elements in the array. It returns the index of the selected channel, starting at zero for the first
channel. The selected channel may then be read, using the input functions described in
Section 14.2.2. Any channels that become ready and are not read continue to wait. In addition
an optional timeout may be provided, which allows chan_alt to be used in a polling mode, or
wait until a specified time before returning, whether a channel has become ready for reading
or not. Timeouts for channels are implemented using hardware and so do not increase the
application’s code size.

Normally chan_alt is used with the time-out value TIMEOUT_INFINITY, in which case only
one of the channels becoming ready (that is, one of the sending tasks that is trying to send)
will cause it to return. When one or more channels are ready then one is selected. If no
channel becomes ready then the function will wait for ever.

Note: The header file ostime.h must be included when using this function.

To read from an array of channels, the returned index can be used as an index into the
channel array, for example:

#include <chan.h>
#include <ostime.h>
#define NUM_CHANS 5

chan_t *data_chan[NUM_CHANS];

int selected, x;

...

selected = chan_alt(data_chan, NUM_CHANS, TIMEOUT_INFINITY);
x = chan_in_int(data[selected]);
deal_with_data (x, selected);

chan_alt is implemented so that it does not poll while it is waiting, but is woken by one of the
input channels becoming ready. This means that the processor is free to perform other tasks
while the task is waiting.

ADCS 7473749D

14.2 Channels 14 ST20-C2 specific features

97

When it is necessary to poll channels, this can be performed by specifying a timeout of
TIMEOUT_IMMEDIATE. This causes the function to perform a single poll of the channels to
identify whether any channel is ready. If no channel is ready then it returns -1.

Polling channels is inefficient and should only be used when there is a significant interval
between polls, since otherwise the processor can be occupied entirely with polling. Polling is
usually only used when a task is performing some regular or ongoing task and occasionally
needs to poll one or more input channels for control signals or feedback.

Finally, it is also possible to specify that chan_alt should only wait until a specified time
before returning, even if none of the specified channel has become ready for input. If the list
consists of only one channel then this becomes a time-out for a single channel input. If no
channel becomes ready before the clock reaches the given time, then the function returns and
the task continues execution.

When used in this way chan_alt returns on the occurrence of the earlier of either an input
becoming ready on any of the channels or the time. The time given is an absolute time which
is compared with the timer for the current priority.

The value -1 is returned if the time expires with no channel becoming ready. If a channel
becomes ready before the time then the index of the channel in the list (starting from 0) is
returned.

For example, the following code imposes a time out of wait ticks when reading from a single
channel chan:

#include <ostime.h>
#include <chan.h>
int time_out_time, selected, x;

time_out_time = time_plus (time_now(), wait);
selected = chan_alt (&chan, 1, &time_out_time);

switch (selected)
{

case 0: /* channel input successful */
x = chan_in_int (chan);
deal_with_data (x);
break;

case -1: /* channel input timed out */
deal_with_time_out();
break;

default:
error_handler();
break;

}

The use of timers is described in Chapter 9: Real-time clocks on page 57.

14.2.4 Deleting channels

Channels may be deleted using chan_delete; see Chapter 16: Alphabetical list of functions
on page 111 for full details.

OS20 User Manual 14.2 Channels

ADCS 7473749D

98

14.2.5 Channel header file: chan.h

All the definitions related to ST20-C2 channel specific functions are in the single header file,
chan.h; see Table 36 and Table 37.

Function Description

chan_alt Wait for input on one of a number of channels

chan_create Create a soft channel

chan_create_address Create a hard channel

chan_delete Delete a channel

chan_in Read data from a channel

chan_in_char Read character from a channel

chan_in_int Read integer from a channel

chan_init Initialize a channel

chan_init_address Initialize a hardware channel

chan_out Write data to a channel

chan_out_char Write character to a channel

chan_out_int Write integer to a channel

chan_reset Reset channel

Table 36: Functions defined in chan.h

Types Description

chan_t A channel

Table 37: Types defined in chan.h

ADCS 7473749D

14.3 Two dimensional block move support 14 ST20-C2 specific features

99

14.3 Two dimensional block move support
Graphical applications often require the movement of two dimensional blocks of data, for
example to perform windowing, overlaying. The ST20-C2 contains instructions to perform
efficient copying, overlaying and clipping of graphics data based on byte sized pixels.

A two dimensional array can be implemented by storing rows adjacently in memory. Given any
two 2-dimensional arrays implemented in this way, the instructions provided can copy a
section (a block) of one array to a specified address in the other.

To perform a two dimensional move, 6 parameters are required (see Figure 10).

Source address The address of the first element of the source block to be copied

Destination address The address of the first element of the destination block

Block width The number of bytes in each row in the block to be copied

Block length The number of rows in the block to be copied

Source stride The number of bytes in each row in the source array

Destination stride The number of bytes in each row in the destination array

The two stride values are needed to allow a block to be copied from part of one array to
another array where the arrays can be of differing size.

None of the two dimensional moves has any effect if either the block width or length is zero.
Also a two dimensional block move only makes sense if the source stride and destination
stride are both greater or equal to the width of the block being moved. If the source and
destination blocks overlap, the effect of the two dimensional moves is undefined.

Instructions are provided which allow a whole block to be moved, or only the zero or nonzero
values.

Figure 10: Two dimensional block move

Width

Source stride Destination stride

Source
address Destination

address

Le
ng

th

OS20 User Manual 14.3 Two dimensional block move support

ADCS 7473749D

100

OS20 provides three functions which give access to these instructions:

void move2d_all(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

void move2d_non_zero(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

void move2d_zero(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

where:

● move2d_all copies the whole of the block of nrows rows each of width bytes from the
source to the destination.

● move2d_non_zero copies the non zero bytes in the block leaving the bytes in the
destination corresponding to the zero bytes in the source unchanged. This can be used
to overlay a non rectangular picture onto another picture.

● move2d_zero copies the zero bytes in the block leaving the bytes in the destination
corresponding to the non zero bytes in the source unchanged. This can be used to mask
out a non-rectangular shape from a picture.

14.3.1 Two dimensional block move header file: move2d.h

All the definitions related to ST20-C2 two dimensional block move specific functions are in the
single header file, move2d.h; see Table 38.

All functions are callable from an OS20 task or a high priority process (HPP), however, none
of them can be called from an interrupt service routine.

Function Description
Callable from

ISR/HPP

move2d_all Two dimensional block move HPP

move2d_non_zero Two dimensional block move of nonzero bytes HPP

move2d_zero Two dimensional block move of zero bytes HPP

Table 38: Functions defined in move2d.h

ADCS 7473749D

101

Advanced
configuration 15

Two OS20 kernels are supplied with the ST20 toolset. A deployment kernel is preconfigured
for use in a wide variety of applications and is the standard kernel. The second kernel is a
debug kernel which provides time logging. The two kernels are described in Chapter 3: Kernel
on page 17, and briefly in the ST20 Embedded Toolset User Manual, chapter st20cc compile/
link tool.

There are however some situations in which building a kernel that is tailored to the needs of a
specific application is worthwhile.

Similarly there is a standard link process that can be tailored for a specific application using
the command language.

Recompiling or reconfiguring the OS20 kernel will result in a configuration which has not been
tested by STMicroelectronics and should only be done, if necessary, with due care and
consideration.

The OS20 function descriptions can be found in Chapter 16: Alphabetical list of functions on
page 111.

OS20 User Manual 15.1 Run-time configuration

ADCS 7473749D

102

15.1 Run-time configuration
The OS20 run-time system is most easily invoked by specifying the -runtime option on the
st20cc command line. The default actions that occur when the st20cc option
-runtime os20 is used are described in Chapter 2: Getting started on page 9. These
generic defaults may not be suitable for all applications, therefore OS20 supports
configuration options to control the link process more finely. These configuration options are
usually specified in a command language file that is read at link time.

For example if an application does not perform any input/output operations then initializing
thread-safe stdio is not required, since it would cause unused code and data to be linked in.
To suppress this initialization, the user may specify a configuration file, options.cfg, as
follows:

do not install interrupt initialization
OS20_config.initialize_interrupt_first=0

This configuration can be supplied to the linker as follows:

st20cc -p STi5516MB382 <application>.c -runtime os20 -T options.cfg

A large proportion of the configuration options take a boolean argument. Boolean options use
C-like truth values where any non-zero value is true.

OS20 is provided with an example configuration file:
$ST20ROOT/lib/os20conf.cfg. This file lists all the OS20 configuration options together
with a brief explanation and their default values. This can be copied into the application
source directory and edited to suit the needs of a particular application.

Note: This file is not read by OS20 at link time. Modifying it directly does not change the default
behavior.

15.1.1 Specifying initialization code

By default the OS20 run-time system ensures that some initialization code runs before the
user’s application starts to run. By the time the user’s main function is run, the kernel has
been started and peripherals supported by OS20 such as the interrupt and cache systems
have been initialized.

It is clearly inefficient to initialize something that is never used. In addition, legacy code often
includes calls to the initialization functions, in this case disabling the automatic initialization
means that there is no need to change the C code.

All initialization options have the following form:

OS20_config.initialize_ ... _first = <boolean>

Their exact details are described in the example configuration file.

ADCS 7473749D

15.1 Run-time configuration 15 Advanced configuration

103

15.1.2 Specifying placement of code and data

By default the OS20 run-time system places some code and data into internal SRAM to
increase scheduler and interrupt performance. The scheduler can disable interrupts for a
relatively long period during its execution so its speed of execution has a critical effect on
interrupt latency. Even taking this into account, in some applications the internal SRAM is
better employed storing application specific code or data. Configuration options are provided
to prevent OS20 installing itself into internal SRAM.

All placement options have the following form:

OS20_config.place_ ... = "<memory segment>"

Their exact details are described in the example configuration file os20conf.cfg located in
the lib directory of the toolset installation.

Note: On devices with only two kilobytes of internal SRAM (for example, an STi5500 device with the
data cache enabled) it is not always possible to store all the scheduler code and data in
internal SRAM. The standard OS20 kernel does not present any problems, however,
expanded kernels (particularly those with time logging enabled) do not fit. In this case it is
recommended that the scheduler code is not placed in internal SRAM.

15.1.3 Caching peripheral memory in larger blocks

Currently this option applies only to devices which use cache_map_sti5512a or
cache_map_sti5512b (shown in Table 44: Cache maps on page 126).

By default, these devices have sixteen 64 Kbyte blocks, in the range 0xC0000000 to
0xC00FFFFF, for which the data cache can be selectively enabled and disabled in order to
support non-coherent DMA peripherals.

Since these devices can support much larger memories than older chips, it is possible to
configure them to have sixteen 512 Kbyte blocks in the range 0xC0000000 to 0xC07FFFFF
instead. This permits much larger sections of DMA memory.

The option:

OS20_config.sti551x_cache_512kbyte_blocks

selects the larger cache blocks at link time.

15.1.4 Making devices with ILC-2 strictly backward compatible

By default, the interrupt level controller ILC-2 provides the same programmer interface as the
interrupt level controller ILC-3 since they both provide similar features. Unfortunately this
means that existing application code has to be modified to make it run on the ILC-2. (See
Chapter 10: Interrupts on page 61).

The ILC-2 is designed to be hardware backward compatible with the ILC-1. This useful
property allows the ILC-1 support library to be used to make the ILC-2 software backward
compatible. The option to achieve this is:

OS20_config.interrupt_force_ilc1

OS20 User Manual 15.2 Compiling OS20

ADCS 7473749D

104

15.1.5 Altering the internal partition manager

The internal partition automatically created by -runtime os20 uses the simple partition
manager in order to conserve internal memory. The simple partition manager does not permit
memory to be freed. Therefore if the application has any requirement to reuse internal
memory it must alter the internal partition to permit memory to be freed.

This can be acheived by allocating all remaining memory from the original internal partition
and creating a new internal partition. Since the simple partition manager has a zero memory
overhead this does not waste any internal memory.

The code to migrate the internal partition is shown below:

partition_status_t status;
partition_status(internal_partition, &status, 0);
internal_partiton = partition_create_heap(

memory_allocate(internal_parititon,
status.partition_status_free_largest),

status.partition_status_free_largest);
assert(internal_partition);

Note: No other threads can use the internal partition while it is being migrated. Even if this code
were made thread-safe by retrying the allocation of the large block then other threads would
fail since they would not be able to allocate memory.

15.2 Compiling OS20
There are a number of extensions that are not supported by the pre-built OS20 kernel. These
extensions generally provide useful services but at a cost, both in speed of execution and
memory footprint, that may be unacceptably high for some applications. The extensions are
most useful when debugging, because some of them give greater visibility of what OS20 is
doing internally, and should be used with caution in production systems.

The standard kernel also contains workarounds to silicon defects that do not affect the whole
ST20 family of processors. Therefore it may be beneficial to disable a workaround if it is does
not affect the target device.

The source for OS20 is located in $ST20ROOT/src/os20. Copy this directory locally and
set an environment variable MYOS20 to point to the copied directory. OS20 is provided with
makefiles for Sun make under Solaris, GNU make under Linux and Microsoft nmake under
Windows.

From the source directory OS20 can be built under Solaris as follows:

make -f makefile.top c1dxx

Under Linux, OS20 can be built from the source directory with the following command:

make -f makefile.top c1dxx-linux

Under Windows, OS20 can be built from the source directory with the command:

nmake /f makefile.top c1dxx-pc

Finally st20cc must be directed to pick up the new libraries rather than those supplied with the
toolset. Under Solaris and Linux, add the following options to the st20cc command line each
time it is used:

st20cc -I$MYOS20/dist-cx/lib -L$MYOS20/dist-cx/lib ...

ADCS 7473749D

15.3 Compilation option file: conf.h 15 Advanced configuration

105

Similarly for Windows:

st20cc -I%MYOS20%\dist-cx\lib -L%MYOS20%\dist-cx\lib ...

For details on how to make the above options permanent, see the ST20 Embedded Toolset
User Manual, chapter st20cc compile/link tool.

15.3 Compilation option file: conf.h
The conf.h header file is included by every source file in OS20 and is used to set the
compile time options. It is located in $ST20ROOT/src/os20/include/conf.h. Every
compile time option is listed in this file together with a brief description. Most options (such as
silicon workarounds) are fully described in conf.h and are not mentioned in this document.
There are some options that require additional explanation; these are listed in the following
section.

15.3.1 Callback Support

Callback support is enabled using the option CONF_CALLBACK_SUPPORT. This causes OS20
to call a user-supplied callback function whenever certain scheduler or interrupt events take
place.

The following events can have a callback function attached to them:

● a task switch,

● when a task is initialized with task_init,

● when a task exits,

● when a task is deleted with task_delete,

● whenever a high priority process is removed from the scheduler queue (deschedules
waiting for some event),

● whenever a high priority process is added to the scheduler queue (rescheduled after an
event occurred),

● when an interrupt handler is installed with interrupt_install,

● when an interrupt handler is removed with interrupt_delete,

● when an interrupt handler is entered,

● when an interrupt handler exits.

The callback setup functions are described in Chapter 16: Alphabetical list of functions on
page 111.

Note: To increase performance the OS20 interrupt handlers can loop to service more then one
interrupt without leaving the interrupt state. For this reason it is possible for the user’s interrupt
handlers to run more times than the interrupt enter and exit callbacks.

15.3.2 Changing the number of task priority levels

The pre-built OS20 kernel supports 16 priority levels. There are two factors which affect the
number of priority levels the scheduler can support.

By default the scheduler code supports up to 32 priority levels on a ST20-C2 and16 priority
levels on a ST20-C1. However this can be extended for both cores, up to 64 priority levels
using the option CONF_PRIORITY_64.

OS20 User Manual 15.3 Compilation option file: conf.h

ADCS 7473749D

106

The scheduler data structures support exactly 16 priority levels by default. There is a fixed
overhead per priority level so memory overhead must be traded off against the flexibility
provided by more or fewer priority levels. To change the scheduler data structure allocation,
the header file task.h must be modified; OS20_PRIORITY_LEVELS can be changed from
16 to any number in the range 1 to 64.

15.3.3 Reducing interrupt latency (ST20-C2 core only)

The largest block of code for which interrupts are disabled is the scheduler trap handler,
invoked by the hardware every time a context switch may be required. In many cases the
interrupt latency introduced by the scheduler trap handler is acceptable. However, in some
cases it may be necessary to reduce it even further.

The configuration option BETWEEN_HIGH_AND_LOW causes the scheduler trap handler to run
with high priority interrupts still enabled. This permits high priority interrupts and high priority
processes to run with near to hardware latency.

However, an unfortunate side-effect of doing this is that it is now the user’s responsibility to
ensure that the scheduler trap handler is not re-entered. Low priority interrupts are still
disabled, so re-entry can only occur if a high priority interrupt or high priority process performs
an operation which generates a low priority scheduler trap.

In particular this means that some operations cannot be used from high priority interrupts or
high priority processes:

● signalling a semaphore which could have a low priority task waiting on it,

● performing any channel operations where the other end of the channel is connected to a
low priority task.

Communication between the high priority process and the low priority task can still take place,
as long as it is through a mechanism which defers the communication until it is safe to enter
the trap handler. The easiest way to do this is to use a low priority interrupt, which is triggered
from a high priority interrupt or high priority process but does not run until the high priority
interrupt or high priority process has descheduled, and the trap handler has completed (if it
was executing).

15.3.4 Time logging (ST20-C2 core only)

OS20 can be configured to maintain a record of the amount of time each task spends running
on the processor. This feature is always enabled when the prebuilt debug kernel is selected
using the st20cc option -debug-runtime (see the introduction at the start of this chapter).

Time logging is enabled by defining specific compile-time options in the conf.h file
introduced in Section 15.3: Compilation option file: conf.h. These options may either be
defined automatically using the -debug-runtime st20cc option or manually by editing
conf.h.

● CONF_TIME_LOGGING enables task time logging and idle time logging. The data
collected is accessed using the task_status function.

● CONF_INTERRUPT_TIME_LOGGING enables interrupt time logging. The recorded data
is accessed using the functions interrupt_status and
interrupt_status_number.

See Chapter 16: Alphabetical list of functions on page 111 for function descriptions. Task time
logging and interrupt time logging are described in Section 3.2: Optional debug features on
page 18.

ADCS 7473749D

15.3 Compilation option file: conf.h 15 Advanced configuration

107

The ST20-C2 core has two internal 32-bit timers that run at different speeds. Either timer can
be used for time logging; the one used is selected based upon the value of
CONF_TIME_LOGGING_PRIORITY, defined in conf.h. If this is set to 0 then the high
resolution clock is used, with 1 µs resolution, and a maximum time of about 71 minutes before
the timer wraps around. If this is set to 1 then the low resolution clock is used, with 64 µs
resolution, and a maximum time of about 76 hours before the timer wraps around.

Using CONF_TIME_LOGGING and CONF_INTERRUPT_TIME_LOGGING to control time
logging has the advantage of being selective about which type of time logging is enabled. If
the debug kernel is linked, all types of time logging are enabled.

Note: All time logging is slightly intrusive. Logging is performed by the target in the scheduler trap
and when an interrupt is handled. This could subtly alter the real time performance of the
system being logged, however, in most cases the difference in performance should be
negligible.

15.3.5 Software interrupts

The ST20 processor provides the useful facility to raise an interrupt level from software, this is
a hardware feature and if the feature is not used then there is no software cost.

The situation is made more complex by ST20 variants that also have an interrupt level
controller. When more then one interrupt number is attached to an interrupt level the OS20
interrupt handler interrogates the interrupt level controller to determine the source of interrupt.
If this interrupt has been generated by software, the interrupt level controller cannot provide
this information. To support software interrupts, extra code is added to one of the OS20
interrupt handlers to determine the source of the interrupt. This is only required when more
than one interrupt number is attached to a single level.

Software interrupts are enabled by default as their cost is relatively low. For a well designed
system, disabling software interrupts is rarely necessary because no code is added to the
high performance interrupt handler. Refer to Chapter 10: Interrupts on page 61 for details on
efficient interrupt layout.

15.3.6 Mutex initialization

The function kernel_initialize() initializes mutex code for the following parts of the C
run-time system:

● stdio functions,

● device-independent I/O functions,

● debug functions,

● heap functions.

If any of these mutexes are not required there is an opportunity to reduce the memory
requirements of OS20. This is done by editing conf.h to define the appropriate configuration
options as listed in Table 39 on page 108.

OS20 User Manual 15.4 Performance considerations

ADCS 7473749D

108

The stdio layer uses the device-independent I/O layer and debug layer, so if stdio is not
used, but debug functions are used, both the stdio and the device-independent I/O mutexes
may be disabled.

When using C++, kernel_initialize() also initializes mutex code for C++ exception
handling, I/O streams mutex protection and generic C++ mutex code (which is used by the
I/O streams mutex code and for protecting function local static constructions).

CONF_NO_GENERIC_CPP_MUTEX_INIT is the configuration option to disable the generic
C++ mutex code, CONF_NO_EXCEPTION_MUTEX_INIT disables the mutex code for thread-
safe exception handling and CONF_NO_DINKUM_THREAD_PROT_INIT disables the
IOstreams thread-safety initialization code.

15.4 Performance considerations
This section gives some hints on how to place portions of OS20 in memory to optimize
performance. Normally the defaults generate reasonably good results. However, in some
circumstances it may be necessary to select where in memory certain sections should be
placed, and this section gives some recommendations.

OS20 has been structured so that most of the important code exists within the scheduler trap
handler. This code is responsible for all context switches and management of the kernel data
structures. For this reason the trap handler code is normally executed with all interrupts
disabled, and so can affect interrupt latency. Thus there are usually two objectives when trying
to tune OS20 performance:

● to reduce context switch times,

● to reduce interrupt latency caused by the scheduler disabling interrupts.

The trap handler has been written to reduce execution time as far as possible; timings are
dominated by memory access times. This is why the task structures have been broken down
into two components, the task_t structure which contains largely static information, and the
tdesc_t which contains dynamic information, accessed on context switches. This
breakdown allows the tdesc_t to be moved into on-chip memory.

There are five sections which OS20 uses:

● trap handler code (os20_th_code section),

● trap handler workspace (including many OS20 variables) (os20_th_data section),

● task tdesc_t structures,

● task queues (os20_task_queue section),

● interrupt handler stacks.

Mutex Configuration option to disable mutex

stdio functions CONF_NO_STDIO_MUTEX_INIT

Device-independent I/O functions CONF_NO_DEVICEIO_MUTEX_INIT

Debug functions CONF_NO_DEBUG_MUTEX_INIT

Heap functions CONF_NO_HEAP_MUTEX_INIT

All mutex code for the functions listed above. CONF_NO_MUTEX_INIT

Table 39: Configuration options to disable mutex

ADCS 7473749D

15.4 Performance considerations 15 Advanced configuration

109

Three of these can be placed using the ST20 Embedded Toolset’s configuration files, using
the section names indicated in brackets. The remaining two are under the user’s control. By
default, tdesc_ts are allocated from the internal_partition if task_create() is used, which
is normally placed in internal memory, however, if task_init() is used then their location is
completely up to the user.

Putting the trap handler code and data on chip can bring large performance gains, with fairly
small usage of internal memory, and should be done if at all possible. This has been shown to
decrease the time for a context switch by 30%, while moving tdescs, queues and interrupt
stacks on chips only yields a context switch latency improvement of 9%.

For the remaining three categories, the choices are not so clear. Moving task queues and
tdescs on-chip brings performance improvements in virtually all circumstances, however,
these can be large data structures when there are lots of tasks and priorities. One option is to
only place the tdescs of critical tasks on chip while others are still off-chip. This improves the
context switch times to those tasks which have their tdescs on-chip, although this does not
result in the full performance gain seen with all tdescs on-chip, because details of the task
being switched away from may have to saved.

Moving the interrupt stacks on-chip may be desirable to improve the performance of critical
routines, and OS20 also benefits; however it is unlikely to be possible for all interrupt stacks,
and should only be considered where the interrupt handler itself needs to execute quickly, and
the task response time is also important.

OS20 User Manual 15.4 Performance considerations

ADCS 7473749D

110

ADCS 7473749D

111

Alphabetical
list of functions 16
16.1 Header files

Table 40 lists the supplied OS20 header files. The functions defined in these header files are
listed in Table 41. Full descriptions of the functions can be found in Section 16.2.

Header Description

cache.h Cache functions

callback.h Callback functions

chan.h Channel functions (ST20-C2 specific)

device.h Device information functions

interrup.h Interrupt handling support functions

kernel.h Kernel functions

message.h Message handling functions

move2d.h Two dimensional block move functions (ST20-C2 specific)

mutex.h Mutex functions

partitio.h Memory functions

semaphor.h Semaphore functions

tasks.h Task functions

ostime.h Timer functions

c1timer.h ST20-C1 timer functions

Table 40: OS20 header files

OS20 User Manual 16.1 Header files

ADCS 7473749D

112

Function Description

Header file: cache.h

cache_config_data Configure the data cache

cache_config_instruction Configure the instruction cache

cache_disable_data Disable the data cache

cache_disable_instruction Disable the instruction cache

cache_enable_data Enable the data cache

cache_enable_instruction Enable the instruction cache

cache_flush_data Flush the data cache

cache_init_controller Initialize the cache controller

cache_invalidate_data Invalidate the data cache

cache_invalidate_instruction Invalidate the instruction cache

cache_lock Lock the cache configuration

cache_status Report the cache status

Header file: callback.h

callback_... Register a callback for an event

Header file: chan.h

chan_alt Wait for input on one of a number of channels

chan_create Create a soft channel

chan_create_address Create a hard channel

chan_delete Delete a channel

chan_in Read data from a channel

chan_in_char Read character from a channel

chan_in_int Read integer from a channel

chan_init Initialize a soft channel

chan_init_address Initialize a hardware channel

chan_out Write data to a channel

chan_out_char Write character to a channel

chan_out_int Write integer to a channel

chan_reset Reset channel

Header file: device.h

device_id Return the ID of the current device

device_name Return the name of the current device

Table 41: OS20 functions

ADCS 7473749D

16.1 Header files 16 Alphabetical list of functions

113

Header file: interrup.h

interrupt_clear Clear a pending interrupt level

interrupt_clear_number Clear a pending interrupt number

interrupt_delete Delete an interrupt level

interrupt_disable Disable an interrupt level

interrupt_disable_global Disable interrupts globally

interrupt_disable_mask Disable one or more interrupt levels

interrupt_disable_number Disable an interrupt number

interrupt_enable Enable an interrupt level

interrupt_enable_global Enable interrupts globally

interrupt_enable_mask Enable one or more interrupt levels

interrupt_enable_number Enable an interrupt number

interrupt_init Initialize an interrupt level

interrupt_init_controller Initialize the interrupt controller

interrupt_install Install an interrupt handler

interrupt_install_sl Install an interrupt handler and specify a static link

interrupt_lock Lock all interrupts

interrupt_pending Return pending interrupt levels

interrupt_pending_number Return pending interrupt numbers

interrupt_raise Raise an interrupt level

interrupt_raise_number Raise an interrupt number

interrupt_status Report the status of an interrupt level

interrupt_status_number Report the status of an interrupt number

interrupt_test_number Test whether an interrupt number is pending

interrupt_trigger_mode_number Change the trigger mode of an interrupt number

interrupt_uninstall Uninstall an interrupt handler

interrupt_unlock Unlock all interrupts

interrupt_wakeup_number Set wakeup status of an interrupt number

Header file: kernel.h

kernel_idle Return the kernel idle time

kernel_initialize Initialize for preemptive scheduling

kernel_start Start preemptive scheduling regime

kernel_time Return the kernel up-time

kernel_version Return the OS20 version number

Function Description

Table 41: OS20 functions

OS20 User Manual 16.1 Header files

ADCS 7473749D

114

Header file: message.h

message_claim Claim a message buffer

message_claim_timeout Claim a message buffer or timeout

message_create_queue Create a fixed size message queue

message_create_queue_timeout Create a fixed size message queue with timeout

message_delete_queue Delete a message queue

message_init_queue Initialize a fixed size message queue

message_init_queue_timeout Initialize a fixed size message queue with timeout

message_receive Receive the next available message from a queue

message_receive_timeout Receive the next available message from a queue or timeout

message_release Release a message buffer

message_send Send a message to a queue

Header file: move2d.h

move2d_all Two dimensional block move

move2d_non_zero Two dimensional block move of non-zero bytes

move2d_zero Two dimensional block move of zero bytes

Header file: mutex.h

mutex_create_fifo Create a FIFO queued mutex

mutex_create_priority Create a priority queued mutex

mutex_delete Delete a mutex

mutex_init_fifo Initialize a FIFO queued mutex

mutex_init_priority Initialize a priority queued mutex

mutex_lock Acquire a mutex, block if not available

mutex_release Release a mutex

mutex_trylock Try to get a mutex, fail if not available

Header file: partitio.h

memory_allocate Allocate a block of memory from a partition

memory_allocate_clear Allocate a block of memory from a partition and clear to zero

memory_deallocate Free a block of memory back to a partition

memory_reallocate Reallocate a block of memory from a partition

partition_create_fixed Create a fixed partition

partition_create_heap Create a heap partition

partition_create_simple Create a simple partition

partition_delete Delete a partition

Function Description

Table 41: OS20 functions

ADCS 7473749D

16.1 Header files 16 Alphabetical list of functions

115

partition_init_fixed Initialize a fixed partition

partition_init_heap Initialize a heap partition

partition_init_simple Initialize a simple partition

partition_status Get the status of a partition

Header file: semaphor.h

semaphore_create_fifo Create a FIFO queued semaphore

semaphore_create_fifo_timeout Create a FIFO queued semaphore with timeout

semaphore_create_priority Create a priority queued semaphore

semaphore_create_priority_timeout Create a priority queued semaphore with timeout

semaphore_delete Delete a semaphore

semaphore_init_fifo Initialize a FIFO queued semaphore

semaphore_init_fifo_timeout Initialize a FIFO queued semaphore with timeout

semaphore_init_priority Initialize a priority queued semaphore

semaphore_init_priority_timeout Initialize a priority queued semaphore with timeout

semaphore_signal Signal a semaphore

semaphore_wait Wait for a semaphore

semaphore_wait_timeout Wait for a semaphore or a timeout

Header file: task.h

task_context Return the current execution context

task_create Create an OS20 task

task_create_sl Create an OS20 task specifying a static link

task_data Retrieve a task’s data pointer

task_data_set Set a task’s data pointer

task_delay Delay the calling task for a period of time

task_delay_until Delay the calling task until a specified time

task_delete Delete a task

task_exit Exit the current task

task_id Find the current task’s id

task_immortal Make the current task immortal

task_init Initialize an OS20 task

task_init_sl Initialize an OS20 task specifying a static link

task_kill Kill a task

task_lock Prevent task rescheduling

task_mortal Make the current task mortal

Function Description

Table 41: OS20 functions

OS20 User Manual 16.1 Header files

ADCS 7473749D

116

task_name Returns the task’s name

task_onexit_set Setup a function to be called when a task exits

task_onexit_set_sl Setup a function to be called when a task exits and specify a
static link

task_priority Retrieve a task’s priority

task_priority_set Set a task’s priority

task_private_data Retrieve a task’s private data pointer

task_private_data_set Set a task’s private data pointer

task_reschedule Reschedule the current task

task_resume Resume a suspended task

task_stack_fill Return the task fill configuration

task_stack_fill_set Set the task stack fill configuration

task_status Return status information about the task

task_suspend Suspend a task

task_unlock Allow task rescheduling

task_wait Wait until one of a list of tasks completes

Header file: ostime.h

time_after Return whether one time is after another

time_minus Subtract two clock values

time_now Return the current time

time_plus Add two clock values

time_ticks_per_sec Obtain the current system clock rate

time_ticks_per_sec_set Specify the number of ticks per second observed on a
hardware device

timer_init_pwm Use OS20's in built timer management code for ST20-C1

Header file: c1timer.h

timer_initialize Initialize the timer plug-in library for ST20-C1 cores

timer_interrupt Notify OS20 that the timer has expired

Function Description

Table 41: OS20 functions

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

117

16.2 OS20 function descriptions

cache_config_data
Configure the data cache

Synopsis

#include <cache.h>

int cache_config_data(void* start_address,
void* end_address,
cache_config_flags_t flags);

Arguments

void* start_address Start of address range

void* end_address End of address range

cache_config_flags_t flags Flags which affect behavior

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if any of the following are true:

● the cache configuration is locked,

● an attempt is made to disable a cacheable region when the data cache is enabled,

● the start address or end address fall in the middle of a cacheable region,

● the start address and end address do not span a cacheable region,

● the flags are invalid.

Description

This function writes to the CACHECONTROL registers to enable or disable data caching for
the specified range. It affects all cacheable regions between start_address and
end_address, neither of which may fall in the middle of a cacheable region. Refer to the
appropriate datasheet to find the cache regions for a specific ST20 device.

The ST20 memory map runs from MININT to MAXINT, therefore addresses supplied to this
function wrap around from 0xFFFFFFFF to 0x00000000. To cache all possible memory the
following ST20 address range may be specified:

cache_config_data ((void *)0x80000000, (void *)0x7fffffff ...);

Alternatively, the address range in this example produces the same result:

cache_config_data ((void *)0x00000000, (void *)0xffffffff ...);

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

118

The flags can be used to choose whether the function enables or disables caching for the
specified range. Possible values for flags are shown in Table 42.

Note: On STi5500 devices, a single bit in the CACHECONTROL register is used to control the
cacheability of non-contiguous blocks of memory. For this device, enabling or disabling one
such block of memory actually affects both blocks. Refer the device datasheet for further
details.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

cache_config_data(
(void*) 0x80000000, (void*)0x7fffffff, cache_config_enable);

cache_config_data(
(void*) 0x40000000, (void*)0x4000ffff, cache_config_disable);

cache_enable_data();
cache_lock();

See also

cache_enable_data

Data cache configuration flags Data cache configuration behavior

cache_config_enable Enable caching for the specified range

cache_config_disable Disable caching for the specified range

Table 42: Data cache configuration flags

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

119

cache_config_instruction
Configure the instruction cache

Synopsis

#include <cache.h>

int cache_config_data(void* start_address,
void* end_address,
cache_config_flags_t flags);

Arguments

void* start_address Start of address range

void* end_address End of address range

cache_config_flags_t flags Flags which affect behavior

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 for any of the following is true:

● the cache configuration is locked,

● an attempt is made to disable a cacheable region when the data cache is enabled,

● the start address or end address fall in the middle of a cacheable region,

● the start address and end address do not span a cacheable region,

● the target device does not have a configurable instruction cache,

● the flags are invalid.

Description

This function writes to the CACHECONTROL registers to enable or disable instruction
caching for the specified range. It affects all cacheable regions between start_address
and end_address, neither of which may fall in the middle of a cacheable region. Refer to the
appropriate datasheet to find the instruction cache regions for a specific ST20 device.

The ST20 memory map runs from MININT to MAXINT, therefore addresses supplied to this
function wrap around from 0xFFFFFFFF to 0x00000000. To cache all possible memory the
following ST20 address range may be specified:

cache_config_instruction ((void *)0x80000000, (void *)0x7fffffff ...);

Alternatively, the address range in this example produces the same result:

cache_config_instruction ((void *)0x00000000, (void *)0xffffffff ...);

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

120

The flags can be used to choose whether the function enables or disables caching for the
specified range. Possible values for flags are shown in Table 43.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

cache_config_instruction(
(void*) 0x80000000, (void*)0x7fffffff, cache_config_enable);

cache_enable_instruction();
cache_lock();

See also

cache_config_data, cache_enable_instruction

Instruction cache configuration flags Instruction cache configuration behavior

cache_config_enable Enable caching for the specified range

cache_config_disable Disable caching for the specified range

Table 43: Instruction cache configuration flags

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

121

cache_disable_data
Disable the data cache

Synopsis

#include <cache.h>

int cache_disable_data(void);

Arguments

None

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have been locked or if the data cache is not enabled.

Description

This function disables the data cache by flushing it before writing to the ENABLEDCACHE
register.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_enable_data

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

122

cache_disable_instruction
Disable the instruction cache

Synopsis

#include <cache.h>

int cache_disable_instruction(void);

Arguments

None

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have been locked or if the instruction cache is not enabled.

Description

This function disables the instruction cache by writing to the ENABLEICACHE register.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_enable_data

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

123

cache_enable_data
Enable the data cache

Synopsis

#include <cache.h>

int cache_enable_data(void);

Arguments

None

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have been locked or if the data cache is already enabled.

Description

This function enables the data cache by writing to the ENABLEDCACHE register.

The data cache should be configured before it is enabled, by making calls to
cache_config_data.

Most ST20 caches must be invalidated prior to being enabled; on such processors,
cache_enable_data() will automatically invalidate the cache before enabling it, to guard
against data loss. As such, it is not necessary to call cache_invalidate_data() in order
to enable the cache.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_config_data, cache_enable_data, cache_enable_instruction, cache_invalidate_data

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

124

cache_enable_instruction
Enable the instruction cache

Synopsis

#include <cache.h>

int cache_enable_instruction(void);

Arguments

None

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have been locked or if the instruction cache is already
enabled.

Description

This function enables the instruction cache by writing to the ENABLEICACHE register.

If the target device has a configurable instruction cache then this should be configured before
enabling the instruction cache by making calls to cache_config_instruction.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_config_instruction, cache_enable_data

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

125

cache_flush_data
Flush the data cache

Synopsis

#include <cache.h>

int cache_flush_data(void* reserved1,
void* reserved2);

Arguments

void* reserved1 Reserved for future use (must be NULL)

void* reserved2 Reserved for future use (must be NULL)

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the arguments are not NULL or if the data cache is not enabled.

Description

This function flushes the data cache by writing to the FLUSHDCACHE register bit. Flushing
the data cache causes all dirty lines in the data cache to be written back to memory. A dirty
line is a line of cache that has been written to since it was loaded or last written back. Flushing
the data cache also causes the entire cache to be marked invalid. All data is reloaded from
main memory.

Note: Any accesses to cacheable memory are blocked until the flush is complete.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

cache_flush_data(NULL, NULL);

See also

cache_invalidate_data

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

126

cache_init_controller
Initialize the cache controller

Synopsis

#include <cache.h>

int cache_init_controller(void* cache_controller,
cache_map_data_t* cache_map);

Arguments

void* cache_controller Cache controller base address; see appropriate device
datasheet for details

cache_map_data_t* cache_map Pointer to a description of cacheable memory

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have been locked.

Description

This function is used to tell OS20 how the cache controller is configured for a particular variant
of the ST20. This function must be called prior to any cache handling routines.

If st20cc -runtime os20 is used when linking, this function is called automatically before
the user’s application starts to run. If st20cc -runtime os20 is not used then the cache
map should be selected from the list in Table 44. Cache map details can also be found in the
file %ST20ROOT%\stdcfg\chip.cfg, by referring to the _ST_AddDevice lines.

ST20 variant Cache map

ST20TP3 cache_map_st20tp3

ST20DC1, ST20DC2 cache_map_st20dc1

STi5100 cache_map_c2_c200

STi5105 cache_map_c1_c100

STi5500, STi5505. cache_map_sti5500

STi5508, STi5510, STi5580. cache_map_sti5510

STi5512, STi5518, STI5519, STi5588, STi5589, STi5598 (cache region 1 in 64kB
blocks).

cache_map_sti5512a

STi5512, STi5518, STi5519, STi5588, STi5589, STi5598 (cache region 1 in 512kB
blocks).

cache_map_sti5512b

STm5700, STV0684. cache_map_c1_c100

STi5514, STi5516, STi5517, STi5528, STV396, STV3500. cache_map_c2_c200

Table 44: Cache maps

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

127

cache_init_controller can also be used to restore the power on state of the
CACHECONTROL registers, providing that the cache has not been locked. Any work
performed by cache_config_data is undone.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_config_data, cache_enable_data, cache_enable_instruction, cache_lock

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

128

cache_invalidate_data
Invalidate the data cache

Synopsis

#include <cache.h>

int cache_invalidate_data(void* reserved1,
void* reserved2);

Arguments

void *reserved1 Reserved for future use (must be NULL)

void *reserved2 Reserved for future use (must be NULL)

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the arguments are not NULL or if the data cache is not enabled.

Description

This function flushes and invalidates the data cache by writing to the INVALIDATEDCACHE
register bit. The entire data cache is marked invalid. If not used correctly this causes data
loss. In particular the return address stored when this function is called is destroyed if the
workspace occupies cacheable memory.

Note: Any accesses to cacheable memory are blocked until the flushing and invalidation have
completed.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

cache_invalidate_data(NULL, NULL);

See also

cache_flush_data, cache_invalidate_instruction

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

129

cache_invalidate_instruction
Invalidate the instruction cache

Synopsis

#include <cache.h>

int cache_invalidate_instruction(void* reserved1,
void* reserved2);

Arguments

void* reserved1 Reserved for future use (must be NULL)

void* breserved2 Reserved for future use (must be NULL)

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the arguments are not NULL or if the instruction cache is not enabled.

Description

This function invalidates the instruction cache by writing to the INVALIDATEICACHE register
bit. Invalidating the instruction cache marks every line as not containing valid data. This
function is intended for use when instruction code has been changed by some means such as
replacing one relocatable code unit with another.

Note: Any accesses to cacheable memory are blocked until the invalidation is complete.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

cache_invalidate_instruction(NULL, NULL);

See also

cache_invalidate_data

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

130

cache_lock
Lock the cache configuration

Synopsis

int cache_lock(void);

Arguments

None

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the cache registers have already been locked.

Description

This function locks the cache configuration by writing to the CACHECONTROLLOCK register
bit. The cache configuration can only be unlocked by a hardware reset. After the configuration
has been locked only invalidating and flushing operations can be performed.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

cache_flush_data, cache_invalidate_data, cache_invalidate_instruction

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

131

cache_status
Report the cache status

Synopsis

#include <cache.h>

cache_status_t cache_status(void);

Arguments

None

Results

A structure describing the status of the cache.

Errors

None

Description

This function returns a structure describing the current status of the cache.

Note: ST20 variants that use cache_map_sti5500 do not have a CACHESTATUS register so
OS20 implements it in software. In software it is not possible to implement all of the features of
the CACHESTATUS register. Therefore only ENABLEDCACHE, ENABLEICACHE and
CACHECONTROLLOCK should be used on these processors.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Field name Meaning

EnableDCache 1 if the data cache is enabled, 0 otherwise

EnableICache 1 if the instruction cache is enabled, 0 otherwise

InvalidatingDCache 1 if the cache controller is invalidating the data cache, 0 otherwise

InvalidatingICache 1 if the cache controller is invalidating the instruction cache, 0 otherwise

FlushingDCache 1 if the cache controller is flushing the data cache, 0 otherwise

DCacheReady 1 if the data cache is ready to perform an operation, 0 otherwise

ICacheReady 1 if the instruction cache is ready to perform an operation, 0 otherwise

CacheControlLock 1 if the cache configuration is locked, 0 otherwise

Table 45: Cache status structure

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

132

Example

cache_status_t status = cache_status();
if (status.CacheControlLock) {

/* cache is locked */
...

}

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

133

callback_...
Register a callback for an event

Synopsis

#include <callback.h>

callback_fn_t callback_task_switch(callback_fn_t Function);
callback_fn_t callback_task_init(callback_fn_t Function);
callback_fn_t callback_task_exit(callback_fn_t Function);
callback_fn_t callback_task_delete(callback_fn_t Function);
callback_fn_t callback_task_restart(callback_fn_t Function);
callback_fn_t callback_task_stop(callback_fn_t Function);
callback_fn_t callback_interrupt_install(callback_fn_t Function);
callback_fn_t callback_interrupt_delete(callback_fn_t Function);
callback_fn_t callback_interrupt_enter(callback_fn_t Function);
callback_fn_t callback_interrupt_exit(callback_fn_t Function);

Arguments

callback_fn_t Function Pointer to void (*)(void) function

Results

Pointer to the previously installed function.

Errors

None

Description

This group of functions is used to install callback handlers to any of the supported internal
OS20 events. These functions can only be used if OS20 is rebuilt with
CONF_CALLBACK_SUPPORT defined; see Section 15.3.1: Callback Support on page 105.

task_context can be used to determine what task/interrupt level the callback has been
called for.

Callable from

Tasks only

Example

#include <callback.h>
void my_callback_handler(void)
{

static int level;
task_context(NULL, &level);
...

}
callback_interrupt_enter(my_callback_handler);

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

134

See also

task_context

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

135

chan_alt
Wait for input on one of a number of channels

Synopsis

#include <chan.h>
#include <ostime.h>

int chan_alt(chan_t ** chanlist,
int nchans,
const clock_t *timeout);

Arguments

chan_t ** chanlist Pointer to a list of channels

int nchans The number of channels in chanlist

const clock_t *timeout Maximum time to wait for input from a channel

Results

Returns an index into chanlist for the ready channel, or -1 if the timeout expires.

Errors

None

Description

This function is ST20-C2 specific.

chan_alt blocks the calling task until one of the channel arguments is ready to receive input,
or the time-out expires. The index returned for the ready channel is an integer which is the
index into the chanlist array, or -1 if the time-out occurred. chan_alt only returns when a
channel is ready to receive input, it does not perform the input operation, which must be done
by the code following the call to chan_alt.

The channels are considered in the order they appear in the list. The first ready channel in the
list is returned.

timeout is a pointer to the time-out value. If this time is reached then the function returns
the value -1.

The timeout value may be specified in ticks, which is an implementation dependent quantity.
Two special values can be specified for timeout: TIMEOUT_IMMEDIATE indicates that the
function should return immediately, even if no channels are ready, and TIMEOUT_INFINITY
indicates that the function should ignore the timeout period, and only return when a channel
becomes ready.

Callable from

A task or a high priority process (on an ST20-C2).

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

136

Example

/* select from one of two channels with a ten second timeout */

#include <chan.h>
#include <ostime.h>

chan_t c1, c2;
chan_t *chanlist[2];
int i;
clock_t timeout = time_plus(time_now(), CLOCKS_PER_SEC * 10);

/* initialize all the channels */

chanlist[0] = c1;
chanlist[1] = c2;

i = chan_alt(chanlist, 2, &timeout);
switch(i)
{
 case 0: /* c1 selected */

/* consume input from c1 */
break;

 case 1: /* c2 selected */
/* consume input from c2 */

break;
 case -1: /* timeout occurred */

/* handle timeout */
break;

}

See also

chan_in

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

137

chan_create
Create a soft channel

Synopsis

#include <chan.h>

chan_t *chan_create(void);

Arguments

None

Results

The address of an initialized channel or NULL if an error occurs.

Errors

Returns NULL if there is insufficient memory for the channel.

Description

This function is ST20-C2 specific.

This function creates a soft channel and initializes it to its default state. The memory for the
channel structure is allocated from the system memory partition, and the address of the
channel is returned. The result can then be used by any of the channel input/output functions:
chan_alt, chan_in, chan_in_char, chan_in_int, chan_out, chan_out_char or
chan_out_int.

A soft channel is one used to communicate between two tasks running on the same
processor.

Callable from

Tasks only

See also

chan_create_address, chan_delete, chan_init, chan_init_address

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

138

chan_create_address
Create a hard channel

Synopsis

#include <chan.h>

chan_t *chan_create_address(void *address);

Arguments

voiiid *address Address of the hardware channel

Results

The address of an initialized channel or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the channel.

Description

This function is ST20-C2 specific.

This function creates a channel which uses the hardware channel specified by address
address to communicate with a peripheral device. The chan_t structure is allocated from
the system partition.

Callable from

Tasks only

See also

chan_create, chan_delete, chan_init, chan_init_address

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

139

chan_delete
Delete a channel

Synopsis

#include <chan.h>

void chan_delete(chan_t *chan);

Arguments

chan_t *chan Channel to delete

Results

None

Errors

None

Description

This function is ST20-C2 specific.

This function allows a channel to be deleted. If the channel was created using chan_create
or chan_create_address this function frees the memory used by the channel. If the
channel was created using the chan_init or chan_init_address functions then the user
is responsible for freeing the channel data structure (chan_t).

Note: If any tasks are waiting on the channel when it is deleted, this causes the following fatal error
to be reported:

delete handler- operation on deleted object attempted

Similarly any attempt to use the deleted channel will report the same error.

Callable from

Tasks only

See also

chan_init, chan_init_address, chan_create, chan_create_address

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

140

chan_in
Receive data from a channel

Synopsis

#include <chan.h>

int chan_in(chan_t *chan,
void* cp,
int count);

Arguments

chan_t *chan Pointer to the input channel

void* cp Pointer to the data

int count Number of bytes of data

Results

Always returns 0.

Errors

None

Description

This function is ST20-C2 specific.

Receives count bytes of data on the specified channel and stores them in the array pointed
to by cp.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_init, chan_out

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

141

chan_in_char
Receive character from a channel

Synopsis

#include <chan.h>

char chan_in_char(chan_t *chan);

Arguments

chan_t *chan Pointer to the input channel

Results

Returns the input character.

Errors

None

Description

This function is ST20-C2 specific.

Receives a single character on the specified channel and returns it.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_in, chan_init, chan_out_char

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

142

chan_in_int
Receive integer from a channel

Synopsis

#include <chan.h>

int chan_in_int(chan_t *chan);

Arguments

chan_t *chan Pointer to the input channel

Results

Returns the input integer.

Errors

None

Description

This function is ST20-C2 specific.

Receives a single integer on the specified channel and returns it.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_in_char, chan_init, chan_out_int

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

143

chan_init
Initialize a soft channel

Synopsis

#include <chan.h>

void chan_init(chan_t *chan);

Arguments

chan_t *chan Pointer to the channel

Results

Returns no results.

Errors

None

Description

This function is ST20-C2 specific.

Initializes the channel pointed to by chan to its default state. This function must be used to
initialize a soft channel before it can be used by any of the channel input/output functions:
chan_alt, chan_in, chan_in_char, chan_in_int, chan_out, chan_out_char or
chan_out_int.

A soft channel is one used to communicate between two tasks running on the same
processor.

Callable from

Tasks only

See also

chan_create, chan_create_address, chan_delete, chan_init_address

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

144

chan_init_address
Initialize a hard channel

Synopsis

#include <chan.h>

void chan_init_address(chan_t *chan,
void *address);

Arguments

chan_t *chan Pointer to the channel

void *address Address of the hard channel

Results

Returns no results.

Errors

None

Description

This function is ST20-C2 specific.

Initializes the channel pointed to by chan to point to the specified hardware channel at
address address. This function must be used to initialize a hard channel before it can be
used by any of the channel input/output functions: chan_alt, chan_in, chan_in_char,
chan_in_int, chan_out, chan_out_char or chan_out_int.

A hard channel is one used to communicate with a peripheral device.

Callable from

Tasks only

See also

chan_create, chan_create_address, chan_delete, chan_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

145

chan_out
Write data to a channel

Synopsis

#include <chan.h>

void chan_out(chan_t *chan,
const void* cp, int count);

Arguments

chan_t *chan Pointer to the output channel

const void* cp Pointer to the data

int count The number of bytes of data

Results

Returns no results.

Errors

None

Description

This function is ST20-C2 specific.

Writes count bytes of data on the specified channel from the array pointed to by cp.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_in, chan_init

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

146

chan_out_char
Write character to a channel

Synopsis

#include <chan.h>

void chan_out_char(chan_t *chan,
char data);

Arguments

chan_t *chan Pointer to the input channel

char data The character to be output

Results

None

Errors

None

Description

This function is ST20-C2 specific.

Writes a single character on the specified channel.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_in_char, chan_init, chan_out_int

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

147

chan_out_int
Write integer to a channel

Synopsis

#include <chan.h>

void chan_out_int(chan_t *chan,
int data);

Arguments

chan_t *chan Pointer to the input channel

int data The integer to be output

Results

None

Errors

None

Description

This function is ST20-C2 specific.

Writes a single integer on the specified channel.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_in_int, chan_init, chan_out_char

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

148

chan_reset
Reset a channel

Synopsis

#include <chan.h>

void* chan_reset(chan_t *chan);

Arguments

chan_t *chan Pointer to the channel

Results

The workspace descriptor of the process which was waiting on the channel, or
NOTPROCESS.P (0x80000000) if the channel was idle.

Errors

None

Description

This function is ST20-C2 specific.

Performs a resetch operation on the channel. This returns the channel to the idle state. If
the channel describes a hardware channel, then the link hardware is reset. chan_reset
returns the contents of the channel word prior to the operation.

Callable from

A task or a high priority process (on an ST20-C2).

See also

chan_create, chan_create_address, chan_init, chan_init_address

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

149

device_id
Return the current device ID

Synopsis

#include <device.h>

device_id_t device_id(void);

Arguments

None

Results

Returns the device ID for the current device.

Errors

None

Description

device_id returns the device identification (ID) for the current device. The result is a union
which breaks down the different fields of the device ID.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

device_name

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

150

device_name
Return the name of the specified device

Synopsis

#include <device.h>

const char* device_name(device_id_t id);

Arguments

device_id_t id The device ID

Results

Returns a pointer to static data which contains the device name and whose content is
overwritten by each call.

Errors

None

Description

device_name returns the address of a buffer containing a text string describing the specified
device ID. A typical result would be the device name and its revision, for example STi5516-A.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Example

printf("Device name %s\n", device_name(device_id()));

See also

device_id

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

151

interrupt_clear
Clear a pending interrupt level

Synopsis

#include <interrup.h>

int interrupt_clear(int Level)

Arguments

int Level Interrupt level

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

This function clears the specified pending interrupt level. Interrupts must be disabled when
writing to the interrupt controller’s PENDING register, and so this function first reads whether
the interrupt is enabled, and if so disables it, before writing to the CLEAR_PENDING register
to clear the interrupt, and finally re-enabling the interrupt if it was previously enabled.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_clear_number, interrupt_raise, interrupt_pending

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

152

interrupt_clear_number
Clear a pending interrupt number

Synopsis

#include <interrup.h>

int interrupt_clear_number(int Number)

Arguments

int Number Interrupt number

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number is illegal.

Description

This function clears the specified pending interrupt number. If this is the only interrupt number
which is pending and that is attached to the interrupt level, then the pending interrupt level is
cleared as well.

Note: On an ILC-1 type interrupt level controller, interrupt_clear_number only works with
interrupt numbers which have been triggered using interrupt_raise_number(). It has
no effect on interrupts which have been triggered by a peripheral.

Applies to

ILC-1, ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_clear, interrupt_raise_number, interrupt_pending

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

153

interrupt_delete
Delete an interrupt level

Synopsis

#include <interrup.h>

int interrupt_delete(int Level);

Arguments

int Level Interrupt level

Results

Returns 0 on success, -1 on failure.

Errors

Returns -1 if the interrupt level is illegal.

Description

This function allows an initialized interrupt to be deleted. This then allows the interrupt level’s
stack to be freed, as no more interrupts will be generated at this level.

Before calling this function the interrupt must first be disabled at the peripheral level (to avoid
unexpected interrupts) and uninstalled (by calling interrupt_uninstall()).

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

Tasks only

See also

interrupt_init, interrupt_uninstall

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

154

interrupt_disable
Disable an interrupt level

Synopsis

#include <interrup.h>

int interrupt_disable(int Level);

Arguments

int Level Interrupt level

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

Disable interrupt level Level. This involves writing to the interrupt controller’s MASK register.

Note: 1 Although the global enables bit can still be specified as INTERRUPT_GLOBAL_ENABLE this
usage is no longer recommended; use the function interrupt_disable_global()
instead.

2 This function is provided as part of the IntC library, and so is always available whichever ILC is
used. However, when ILC-2 and ILC-3 are being used, the ILC library enables all interrupt
levels, and expects them to remain enabled, so that interrupts can be controlled using the
function interrupt_disable_number(). Thus the use of interrupt_disable() is
discouraged.

3 Any code running on an ILC-2 or ILC-3 which uses this function to dismiss a level-sensitive
interrupt will become locked at interrupt. The function interrupt_disable_number()
should be used instead.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_disable_global, interrupt_disable_mask, interrupt_enable

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

155

interrupt_disable_global
Globally disable interrupts

Synopsis

#include <interrup.h>

void interrupt_disable_global(void);

Arguments

None

Results

None

Errors

None

Description

This function clears the global enables bit thus disabling all interrupts. This prevents the
interrupt controller from attempting to raise any interrupts.

Note: 1 This operation is not the same interrupt_lock. It does not disable preemption or
timeslicing and tasks are permitted to deschedule with interrupts disabled. On an ST20-C2,
high priority processes, channels and timers are still available. On an ST20-C1 core the timer
interrupt is disabled so timer waits are not handled until interrupts are re-enabled.

2 Any code running on an ILC-2 or ILC-3 which uses this function to dismiss a level-sensitive
interrupt will become locked at interrupt. The function interrupt_disable_number()
should be used instead.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_disable_mask, interrupt_disable_number, interrupt_enable_global, interrupt_lock,
interrupt_unlock

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

156

interrupt_disable_mask
Disable one or more interrupt levels

Synopsis

#include <interrup.h>

void interrupt_disable_mask(int Mask);

Arguments

int Mask Interrupt mask

Results

None

Errors

None

Description

This function simply writes Mask into the Interrupt controller’s CLEAR_MASK register, thus
disabling all the specified interrupt levels.

Note: 1 Although the global enables bit can still be specified in this mask as
1 << INTERRUPT_GLOBAL_ENABLE this usage is no longer recommended; use the
function interrupt_disable_global instead.

2 This function is provided as part of the IntC library, and so is always available whichever ILC is
used. However, when ILC-2 and ILC-3 are being used, the ILC library enables all interrupt
levels, and expects them to remain enabled, so that interrupts can be controlled using the
function interrupt_disable_number(). Thus the use of
interrupt_disable_mask() is discouraged. See Chapter 10: Interrupts on page 61.

3 Any code running on an ILC-2 or ILC-3 which uses this function to dismiss a level-sensitive
interrupt will become locked at interrupt. The function interrupt_disable_number()
should be used instead.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_disable, interrupt_disable_global, interrupt_disable_number,
interrupt_disable_global, interrupt_enable_mask

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

157

interrupt_disable_number
Disable an interrupt number

Synopsis

#include <interrup.h>

int interrupt_disable_number(int Number);

Arguments

int Number Interrupt number

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number is illegal.

Description

Disable interrupt number Number. This involves writing to one of the interrupt level controller’s
CLEAR_ENABLE registers.

Applies to

ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_enable_number

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

158

interrupt_enable
Enable an interrupt level

Synopsis

#include <interrup.h>

int interrupt_enable(int Level);

Arguments

int Level Interrupt level

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

Enable interrupt level Level. This involves writing to the interrupt controller’s SET_MASK
register.

Note: 1 Although the global enables bit can still be specified as INTERRUPT_GLOBAL_ENABLE this
usage is no longer recommended; use the function interrupt_enable_global instead.

2 This function is provided as part of the IntC library, and so is always available whichever ILC is
used. However, when ILC-2 and ILC-3 are being used, the ILC library enables all interrupt
levels, and expects them to remain enabled, so that interrupts can be controlled using the
function interrupt_enable_number. Thus the use of interrupt_enable is
discouraged. See Chapter 10: Interrupts on page 61.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_disable, interrupt_enable_mask, interrupt_enable_number

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

159

interrupt_enable_global
Globally enable interrupts

Synopsis

#include <interrup.h>

void interrupt_enable_global(void);

Arguments

None

Results

None

Errors

None

Description

This function sets the global enables bit, thus permitting specifically enabled interrupts to
generate interrupts. At power-on, the global enables bit is cleared. The user must call
interrupt_enable_global before any interrupts are generated.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_disable_global, interrupt_lock, interrupt_unlock

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

160

interrupt_enable_mask
Enable one or more interrupt levels

Synopsis

#include <interrup.h>

void interrupt_enable_mask(int Mask);

Arguments

int Mask Interrupt mask

Results

None

Errors

None

Description

This function simply writes Mask into the Interrupt controller’s SET_MASK register, thus
enabling all the specified interrupt levels.

Note: 1 Although the global enables bit can still be specified in this mask as
1 << INTERRUPT_GLOBAL_ENABLE this usage is no longer recommended; use the
function interrupt_enable_global instead.

2 This function is provided as part of the IntC library, and so is always available whichever ILC is
used. However, when ILC-2 and ILC-3 are being used, the ILC library enables all interrupt
levels, and expects them to remain enabled, so that interrupts can be controlled using the
function interrupt_enable_number. Thus the use of interrupt_enable_mask is
discouraged. See Chapter 10: Interrupts on page 61.

Example

int main()
{

int Mask;

/* Enable global interrupts and interrupt 1 */
Mask = (1 << INTERRUPT_GLOBAL_ENABLE) | (1<<1);
interrupt_enable_mask(Mask);
...

}

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

161

See also

interrupt_disable_mask, interrupt_enable

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

162

interrupt_enable_number
Enable an interrupt number

Synopsis

#include <interrup.h>

int interrupt_enable_number(int Number);

Arguments

int Number Interrupt number

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number is illegal.

Description

Enable interrupt number Number. This involves writing to one of the interrupt level controller’s
SET_ENABLE registers.

Applies to

ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_enable

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

163

interrupt_init
Initialize an interrupt level

Synopsis

#include <interrup.h>

int interrupt_init(int interrupt_level,
void* stack_base,
size_t stack_size,
interrupt_trigger_mode_t trigger_mode,
interrupt_flags_t flags);

Arguments

int interrupt_level Interrupt level

void* stack_base Address of the base of the interrupt
handler’s stack

size_t stack_size Size of the interrupt handler’s stack in
bytes

interrupt_trigger_mode_t trigger_mode Interrupt trigger mode; see Table 46

interrupt_flags_t flags Various flags which affect interrupt
behavior; see Table 47

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number or level are illegal, or if
interrupt_init_controller() has not yet been called.

Description

This function initializes a single interrupt level in the interrupt controller, ready for interrupt
handlers to be installed (using interrupt_install). stack_base and stack_size
specify a single stack area, which must be large enough to accommodate the largest interrupt
handler routine for that interrupt level. Only one interrupt handler ever uses the stack at a time.
trigger_mode is one of the supported trigger modes, selected from the list shown in
Table 46.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

164

flags is used to give additional information about the interrupt. Normally flags should be
specified as 0, which results in the default behavior, however, other options can be specified
which change the behavior of the interrupt. Possible values for flags are shown in Table 47.

Currently the only supported options to flags are for the ST20-C2 where the scheduling
priority of the handler must be specified. This specifies how the interrupt interacts with ST20
processes. Low priority interrupts only interrupt low priority processes (and can themselves
be interrupted by high priority processes) while high priority interrupts interrupt both high and
low priority processes.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

Tasks only

See also

interrupt_install

Interrupt trigger mode name Interrupt behavior

interrupt_trigger_mode_high_level Trigger while the input is high

interrupt_trigger_mode_low_level Trigger while the input is low

interrupt_trigger_mode_rising Trigger on the rising edge of the input

interrupt_trigger_mode_falling Trigger on the falling edge of the input

interrupt_trigger_mode_any Trigger on rising and falling edges

Table 46: Interrupt trigger modes

Interrupt flags Interrupt behavior Target

0 Trigger at high scheduling priority (Default) Any

interrupt_flags_low_priority Trigger at low scheduling priority ST20-C2

interrupt_flags_high_priority Trigger at high scheduling priority ST20-C2

Table 47: Interrupt flags

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

165

interrupt_init_controller
Initialize the interrupt controller

Synopsis

#include <interrup.h>

void interrupt_init_controller(void* interrupt_controller,
int interrupt_levels,
void* level_controller,
int interrupt_numbers,
int input_offset);

Arguments

void* interrupt_controller Interrupt controller base address

int interrupt_levels Number of interrupt levels

void* level_controller Interrupt level controller base address

int interrupt_numbers Number of interrupt numbers to the interrupt level
controller

int input_offset Offset of the INPUTINTERRUPTS register in the
interrupt level controller

Results

None

Errors

None

Description

interrupt_init_controller() is used to tell OS20 how the interrupt controller and
interrupt level controller are configured for a particular variant of the ST20. This function is
always required to be executed once, prior to any interrupt handling routines.

interrupt_controller and interrupt_levels specify the base address and number
of interrupt levels (that is, the number of inputs) supported by the interrupt controller. Similarly,
level_controller and interrupt_numbers specify the base address and number of
interrupt numbers (that is, inputs) supported by the interrupt level controller.

input_offset gives the offset in words into the interrupt level controller of the
INPUTINTERRUPTS register.

Note: On ILC-2 and ILC-3 devices input_offset is not required, so in this case use a value of
zero for this argument.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

166

Callable from

Tasks only

Example

/* Set up an STi5516*/
interrupt_init_controller((void*)0x20000000, 16, (void*)0x20111000, 53, 0);

See also

interrupt_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

167

interrupt_install
Install an interrupt handler

Synopsis

#include <interrup.h>

int interrupt_install(int Number,
int Level,
void (*Handler)(void* Param),
void* Param);

Arguments

int Number Interrupt number

int Level Interrupt level

void (*Handler)(void* Param) Pointer to the interrupt handler entry point

void* Param A parameter to be passed to Handler when it is
called

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number or level are illegal, or if interrupt_init() has not yet
been called for the interrupt level.

Description

Install the interrupt handler to be called when the specified interrupt number occurs. Normally
this involves programming the interrupt level controller to associate an interrupt level with an
interrupt number, and setting up the function pointer and parameter in OS20’s internal data
structures.

However if the interrupt number is specified as -1, then no attempt is made to program the
interrupt level controller, and the interrupt function is associated with the interrupt level. This
technique must be used on ST20 hardware which does not have an interrupt level controller,
but may also be useful when an interrupt is only triggered from software, and never from a
hardware device.

The ILC-3 can route interrupts from internal peripherals to external pins allowing an external
processor to handle that peripheral. interrupt_install is used to program this behavior.
The interrupt level should be specified as -1 minus the number of the external pin. In this case
the ST20 does not handle the interrupt, so the handler and parameter must be specified as
NULL.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

168

Callable from

Tasks only

Example

/* normal use */
int interrupt_stack[500];
void interrupt_handler(void* param);

interrupt_init(4, interrupt_stack, sizeof(interrupt_stack),
interrupt_trigger_mode_rising, 0);
interrupt_install(10, 4, interrupt_handler, NULL);

/* routing to external pin 1 (ILC-3 only) */
interrupt_install(12, -2, NULL, NULL);

See also

interrupt_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

169

interrupt_install_sl
Install an interrupt handler specifying a static link

Synopsis

#include <interrup.h>

int interrupt_install(int Number,
int Level,
void (*Handler)(void* Param),
void* Param,
void* StaticLink);

Arguments

int Number Interrupt number

int Level Interrupt level

void (*Handler)(void* Param) Pointer to the interrupt handler entry point

void* Param A parameter which is passed to Handler when it is
called

void* StaticLink Static link to be used when calling Function

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number or level are illegal, or if interrupt_init() has not yet
been called for the interrupt level.

Description

Install the interrupt handler to be called when the specified interrupt number occurs. Normally
this involves programming the interrupt level controller to associate an interrupt level with an
interrupt number, and setting up the function pointer and parameter in OS20’s internal data
structures.

However, if the interrupt number is specified as -1, then no attempt is made to program the
interrupt level controller, and the interrupt function is associated with the interrupt level. This
technique must be used on ST20 hardware which does not have an interrupt level controller,
but may also be useful when an interrupt is only triggered from software, and never from a
hardware device.

StaticLink is the static link which should be used when calling Handler. This is normally
obtained as a result of loading an RCU.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

170

Callable from

Tasks only

See also

interrupt_init, interrupt_install

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

171

interrupt_lock
Lock all interrupts

Synopsis

#include <interrup.h>

void interrupt_lock(void);

Arguments

None

Results

None

Errors

None

Description

This function disables all interrupts to the CPU. This prevents any interrupts from the interrupt
controller having any effect on the currently executing task. In addition, on the ST20-C2 this
also disables high priority processes, channels and timers.

This function should always be called as a pair with interrupt_unlock(), so that it can be
used to create a critical region in which the task cannot be preempted by any other task or
interrupt. Calls to interrupt_lock() can be nested, and the lock will not be released until
an equal number of calls to interrupt_unlock() have been made.

A task must not deschedule while an interrupt lock is in effect. When interrupts are locked
calling any function that may not be called by an interrupt service routine is illegal.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_unlock, task_lock

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

172

interrupt_pending
Return pending interrupt levels

Synopsis

#include <interrup.h>

int interrupt_pending(void);

Arguments

None

Results

A mask specifying which interrupt levels are currently pending,

Errors

None

Description

Return which interrupt levels are currently pending. That is, those interrupts which have been
set by peripheral devices, but their handlers have not yet been run. This simply involves
reading the interrupt controller’s PENDING register.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_clear, interrupt_pending_number, interrupt_raise

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

173

interrupt_pending_number
Return pending interrupt numbers

Synopsis

#include <interrup.h>

int interrupt_pending_number(void);

Arguments

None

Results

A mask specifying which interrupt numbers are currently pending.

Errors

None

Description

Return which interrupt numbers are currently pending, that is, all the interrupts which are
currently set by the peripherals. This simply involves reading the interrupt level controller’s
INPUTINTERRUPTS register and combining it with the software register maintained by
interrupt_raise_number().

Note: This function cannot be fully implemented for ILC-3, therefore its use is not recommended
with any ILCs; interrupt_test_number() should be used instead.

Applies to

ILC-None, ILC-1, ILC-2.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Note: Edge-triggered interrupt handlers should not call this function to query their own interrupt
since they will find the PENDING bit already reset before running the applications handler.
Instead, they should use the interrupt handlers argument to differentiate between different
interrupt numbers; see interrupt_install on page 167.

See also

interrupt_pending, interrupt_test_number

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

174

interrupt_raise
Raise an interrupt level

Synopsis

#include <interrup.h>

int interrupt_raise(int Level);

Arguments

int Level Interrupt level

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

Raise the specified interrupt level. This involves writing to the interrupt controller’s
SET-PENDING register.

Note: This function does not write to the interrupt level controller, so it should only be used with
interrupts levels which are attached to a single interrupt number. If interrupt Level has
multiple interrupt numbers attached to it, the results are undefined.

Applies to

ILC-None, ILC-1.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_clear, interrupt_enable, interrupt_install, interrupt_raise_number

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

175

interrupt_raise_number
Raise an interrupt number

Synopsis

#include <interrup.h>

int interrupt_raise_number(int Number);

Arguments

int Number Interrupt number

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number is illegal.

Description

Simulate the raising of an interrupt number. This function is equivalent to
interrupt_raise(), except that it works with interrupt levels which have multiple interrupt
numbers attached. It does this by maintaining a software equivalent of the interrupt
controller’s INPUTINTERRUPTS register, which is checked by the first level interrupt handler,
as well as the hardware register.

Applies to

ILC-1, ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_clear, interrupt_enable, interrupt_install

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

176

interrupt_status
Report the status of an interrupt level

Synopsis

#include <interrup.h>

int interrupt_status(int Level,
interrupt_status_t* Status,
interrupt_status_flags_t flags);

Arguments

int Level Interrupt level

interrupt_status_t* Status Pointer to a structure that the current status can
be written to

interrupt_status_flags_t flags What information to return

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

This function returns useful information about an interrupt level. This information can be of
benefit when debugging an application.

Structure member Meaning

interrupt_numbers Number of interrupt handlers attached to this level

interrupt_stack_base Pointer to the base of the stack space for this level

interrupt_stack_size Size of the stack for this level, in bytes

interrupt_stack_used Peak stack usage in bytes

interrupt_time Ti levela

a. interrupt_time and interrupt_count should not be used on the standard OS20
deployment kernel, which does not record this data as it decreases interrupt
performance. Refer to Section 15.3.4 for details of kernels which support these fields.

interrupt_count Number of times an interrupt at this level has been serviceda

Table 48: The interrupt_status_t structure

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

177

The Flags parameter is used to indicate which values should be returned. Values which can
be determined immediately (all except interrupt_stack_used) are always returned. If
only these fields are required then Flags should be set to 0. However, calculating peak stack
usage may take a while, and so is only returned when Flags is set to
interrupt_status_flags_stack_used.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3.

Callable from

Tasks only

See also

interrupt_status_number

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

178

interrupt_status_number
Report the status of an interrupt number

Synopsis

#include <interrup.h>

int interrupt_status_number(int Number,
interrupt_status_number_t* Status,
interrupt_status_number_flags_t flags);

Arguments

int Number Interrupt number

interrupt_status_number_t* Status Pointer to a structure where the current
status can be written to

interrupt_status_number_flags_t flags Reserved for future use; flags should
be set to zero

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt level is illegal.

Description

This function returns useful information about an interrupt number. This information can be of
benefit when debugging an application.

Applies to

ILC-1, ILC-2, ILC-3.

Callable from

Tasks only

Structure Member Meaning

intnum_status_level The level that this interrupt number is attached to

intnum_time Time spent servicing this interrupt numbera

a. interrupt_time and interrupt_count should not be used on the standard OS20
deployment kernel, which does not record this data as this decreases interrupt
performance. Refer to Section 15.3.4: Time logging (ST20-C2 core only) on page 106 for
details of kernels which support these fields.

intnum_count Number of times this interrupt number has been serviceda

Table 49: The interrupt_status_number_t structure

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

179

See also

interrupt_status_number

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

180

interrupt_test_number
Test whether an interrupt number is pending

Synopsis

#include <interrup.h>

int interrupt_test_number(int Number);

Arguments

int Number Interrupt number

Results

Returns 1 if interrupt number Number is pending, 0 if it is not, -1 if an error occurs.

Errors

Returns -1 if the interrupt number is illegal.

Description

Tests the interrupt level controllers PENDING register to see if interrupt number Number is
pending.

Note: If Number is not valid and returns the error code the function evaluates to true if used in a
conditional context (see below).

Example

/* do not do this */
if (interrupt_test_number(n)) {

/* n is pending OR n is not valid */
...

}

/* this is safer */
if (interrupt_test_number(n) == 1) {

/* n is pending */
...

}

Applies to

ILC-1, ILC-2, ILC-3

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Note: Edge-triggered interrupt handlers should not call this function to query their own interrupt
number since they will find the PENDING bit already reset before running the applications
handler. Instead, they should use the interrupt handlers argument to differentiate between
different interrupt numbers; see interrupt_install on page 167.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

181

See also

interrupt_pending_number

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

182

interrupt_trigger_mode_number
Change the trigger mode of an interrupt number

Synopsis

#include <interrup.h>

int interrupt_trigger_mode_number(int Number,
interrupt_trigger_mode_t trigger_mode);

Arguments

int Number Interrupt number

interrupt_trigger_mode_t trigger_mode Interrupt trigger mode; see the ST20
Embedded Toolset Reference Manual,
chapter Using the ST20 simulator tool,
table Trace value identifiers for ST20-C1

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number or interrupt trigger mode is illegal.

Description

This function changes the trigger mode of an interrupt number on ILC-2 or ILC-3.

Be aware that interrupt_install sets the trigger mode based on that default supplied to
interrupt_init. Therefore interrupt_trigger_mode_number must be called after
the interrupt handler has been installed to prevent its effects from being overwritten.

Example

#include <interrup.h>
void interrupt_handler(void* param);

interrupt_install(10, 4, interrupt_handler, NULL);
interrupt_trigger_mode_number(10, interrupt_trigger_mode_falling);
interrupt_enable_number(10);

Applies to

ILC-2, ILC-3

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

183

interrupt_uninstall
Uninstall an interrupt handler

Synopsis

#include <interrup.h>

int interrupt_uninstall(int Number, int Level);

Arguments

int Number Interrupt number

int Level Interrupt level

Results

Returns 0 on success, -1 on failure.

Errors

If the interrupt number or level are illegal, or no interrupt has been installed, then this fails.

Description

This function allows an interrupt handler to be uninstalled. This then allows a replacement
handler function to be installed as a replacement. No attempt is made to disable the interrupt,
so before calling this function the interrupt must have been disabled at the peripheral level.

On systems which do not have an interrupt level controller, specify the Number parameter as
-1.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3

Callable from

Tasks only

See also

interrupt_delete, interrupt_install

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

184

interrupt_unlock
Unlock all interrupts

Synopsis

#include <interrup.h>

void interrupt_unlock(void);

Arguments

None

Results

None

Errors

None

Description

This function re-enables all interrupts to the CPU. Any interrupts which have been prevented
from executing start immediately.

This function should always be called as a pair with interrupt_lock(), so that it can be
used to create a critical region in which the task cannot be preempted by another task or
interrupt. As calls to interrupt_lock() can be nested, the lock is not released until an
equal number of calls to interrupt_unlock() have been made.

Applies to

ILC-None, ILC-1, ILC-2, ILC-3

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

interrupt_lock, task_lock

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

185

interrupt_wakeup_number
Set wakeup status of an interrupt number

Synopsis

#include <interrup.h>

int interrupt_wakeup_number(int Number,
interrupt_trigger_mode_t trigger_mode);

Arguments

int Number Interrupt number

interrupt_trigger_mode_t trigger_mode Interrupt trigger mode

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the interrupt number of trigger mode are illegal.

Description

This function routes an external interrupt to the low power controller, enabling an ST20 with
ILC-2 or ILC-3 to exit power-down mode only for specific interrupts.

Note: The set of possible trigger modes differs slightly from those used by interrupt_init and
interrupt_trigger_mode_number.

Applies to

ILC-2, ILC-3.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

Interrupt trigger mode name Wakeup behavior

interrupt_trigger_mode_no_trigger Do not wakeup

interrupt_trigger_mode_high_level Wakeup while the input is high

interrupt_trigger_mode_low_level Wakeup while the input is low

Table 50: Wakeup trigger modes

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

186

kernel_idle
Return the kernel idle time

Synopsis

#include <kernel.h>

clock_t kernel_idle(void);

Arguments

None

Results

Returns a clock value indicating the kernel idle time, or 0 if the kernel has not been built with
time-logging enabled.

Errors

None

Description

kernel_idle() returns a clock value indicating the time the kernel has been idle, that is, the
time not executing code. Idle time occurs when there is no valid task or interrupt and the task
queues are empty.

The idle time is measured by recording the accumulation of intervals between the time when
the kernel becomes idle and the time when it becomes active again.

Callable from

kernel_idle() can only be called from a task.

See also

kernel_time

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

187

kernel_initialize
Initialize for preemptive scheduling

Synopsis

#include <kernel.h>

int kernel_initialize(void);

Arguments

None

Results

Returns 0 for success, -1 if an error occurs.

Errors

Failure is caused by insufficient space to create the necessary data structures.

Description

kernel_initialize() must be called before any tasks are created. It creates and
initializes the task and queue data structures.

After the structures are created the calling process is initialized as the root task in the system.

kernel_initialize() installs a default mutual exclusion for the C run-time system. This
may be disabled if it is not required; see Section 15.3.6.

Note: 1 On the ST20-C2, if this function is called at high priority, it returns executing at low priority.
This is a requirement for the correct functioning of the OS20 kernel.

2 This function may be called automatically if st20cc -runtime os20 is specified when
linking; see Chapter 2: Getting started on page 9. It is important that this function is not called
twice.

Callable from

Not applicable (must be called before scheduler starts).

See also

kernel_start

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

188

kernel_start
Start preemptive scheduling regime

Synopsis

#include <kernel.h>

int kernel_start(void);

Arguments

None

Results

Returns 0 for success, -1 if an error occurs.

Errors

Failure is caused by insufficient space to create the scheduler trap handler.

Description

kernel_start() must be called before any tasks are created. It creates and installs the
scheduler trap handler and enables the desired scheduler traps. On return from the function
the preemptive scheduler is running, and the calling function is installed as the first OS20
task, and is now running at MAX_USER_PRIORITY.

Note: This function may be called automatically if st20cc -runtime os20 is specified when
linking; see Chapter 2: Getting started on page 9. It is important that this function is not called
twice.

Callable from

Not applicable (must be called before scheduler starts).

See also

kernel_initialize, task_create

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

189

kernel_time
Return the kernel up-time

Synopsis

#include <kernel.h>

clock_t kernel_time(void);

Arguments

None

Results

Returns a clock value indicating how long has elapsed since the kernel started executing, or 0
if the kernel has not been built with time-logging enabled.

Errors

None

Description

kernel_time() returns the kernel up-time, a clock value indicating the elapsed time the
kernel has been running; that is the total time spent executing code or in idle state.

The kernel up-time is the time from when the kernel was successfully started to the time when
the kernel_time() call is made.

Callable from

kernel_time() can only be called from a task.

See also

kernel_idle

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

190

kernel_version
Return the OS20 version number

Synopsis

#include <kernel.h>

const char* kernel_version(void);

Arguments

None

Results

Returns a pointer to the OS20 version string.

Errors

None

Description

kernel_version() returns a pointer to a string which gives the OS20 version number. This
string takes the form:

{major number}.{release number}.{minor number} [text]

that is, a major, release and minor number, separated by decimal points, and optionally
followed by a space and a printable text string.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

kernel_initialize

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

191

memory_allocate
Allocate a block of memory from a partition

Synopsis

#include <partitio.h>

void* memory_allocate(partition_t *part,
size_t size);

Arguments

partition_t *part The partition from which to allocate memory

size_t size The number of bytes to allocate

Results

A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors

If there is insufficient memory for the allocation, it fails and returns NULL.

Description

memory_allocate() allocates a block of memory of size bytes from partition part. It
returns the address of a block of memory of the required size, which is suitably aligned to
contain any type.

This function calls the memory allocator associated with the partition part, so for a full
description of the algorithm; see the description of the appropriate partition creation function.

Callable from

A task or a high priority process (on an ST20-C2).

See also

memory_deallocate, memory_reallocate,
partition_create_fixed, partition_create_heap, partition_create_simple

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

192

memory_allocate_clear
Allocate and zero a block of memory from a partition

Synopsis

#include <partitio.h>
void* memory_allocate_clear(partition_t *part,

size_t nelem,
size_t elsize);

Arguments

partition_t *part The partition from which to allocate memory

size_t nelem The number of elements to allocate

size_t elsize The size of each element in bytes

Results

A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors

If there is insufficient memory for the allocation, it fails and returns NULL.

Description

memory_allocate_clear() allocates a block of memory large enough for an array of
nelem elements, each of size elsize bytes, from partition part. It returns the base address
of the array, which is suitably aligned to contain any type. The memory is initialized to zero.

This function calls the memory allocator associated with the partition part, so for a full
description of the algorithm; see the description of the appropriate partition creation function.

Callable from

A task or a high priority process (on an ST20-C2).

See also

memory_allocate, memory_deallocate, memory_reallocate,
partition_create_fixed, partition_create_heap, partition_create_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

193

memory_deallocate
Free a block of memory back to a partition

Synopsis

#include <partitio.h>

void memory_deallocate(partition_t *part,
 void* block);

Arguments

partition_t *part The partition to which memory is freed

void* block The block of memory to free

Results

None

Errors

None

Description

memory_deallocate() returns a block of memory at block back to partition part. The
memory must have been originally allocated from the same partition to which it is being freed.

This function calls the memory allocator associated with the partition part, so for a full
description of the algorithm; see the description of the appropriate partition creation function.

Callable from

A task or a high priority process (on an ST20-C2).

See also

memory_allocate, memory_reallocate,
partition_create_fixed, partition_create_heap, partition_create_simple, partition_delete

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

194

memory_reallocate
Reallocate a block of memory from a partition

Synopsis

#include <partitio.h>

void* memory_reallocate(partition_t *part,
void* block,
size_t size);

Arguments

partition_t *part The partition to reallocate

void* block The current memory block

size_t size The number of bytes to allocate

Results

A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors

If there is insufficient memory for the allocation, it fails and returns NULL.

Description

memory_reallocate() changes the size of a memory block allocated from a partition,
preserving the current contents.

Note: This function may only be used for heap partitions.

This function tries to do the reallocation efficiently, changing the size of the existing block, and
returning a pointer to the original block. However if this is not possible, then a new block is
allocated of the requested size (which is suitably aligned to contain any type), the data copied,
the original block freed, and a pointer to the new block returned.

block must have been allocated from part originally.

This function calls the memory allocator associated with the partition part, so for a full
description of the algorithm; see the description of the appropriate partition initialization
function.

Callable from

A task or a high priority process (on an ST20-C2).

See also

memory_allocate, memory_deallocate, partition_create_fixed, partition_create_heap,
partition_create_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

195

message_claim
Claim a message buffer

Synopsis

#include <message.h>

void* message_claim(message_queue_t* queue);

Arguments

message_queue_t* queue The message queue from which the message is claimed

Results

The next available message buffer.

Errors

None

Description

message_claim() claims the next available message buffer from the message queue, and
returns its address. If no message buffers are currently available then the task blocks until one
becomes available (by another task calling message_release()).

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2).

For timeout queues, this function is callable from tasks only.

See also

message_receive, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

196

message_claim_timeout
Claim a message buffer or timeout

Synopsis

#include <message.h>
#include <ostime.h>

void* message_claim_timeout(message_queue_t* queue
const clock_t* time);

Arguments

message_queue_t* queue The message queue from which the message is claimed

const clock_t* time The maximum time to wait for a message

Results

The next available message buffer, or NULL if a timeout occurs.

Errors

None

Description

message_claim_timeout() claims the next available message buffer from the message
queue, and returns its address. If no message buffers are currently available then the task
blocks until one becomes available (by another task calling message_release()), or the
time specified by time is reached.

Note: time is an absolute not a relative value, so if a relative timeout is required this needs to be
made explicit, as shown in the example.

time may be specified in ticks, which is an implementation dependent quantity.

Two special time values may also be specified for time. TIMEOUT_IMMEDIATE causes the
message queue to be polled, that is, the function always returns immediately. If a message is
available then it is returned, otherwise the function returns immediately with a result of NULL.
A timeout of TIMEOUT_INFINITY behaves exactly as message_claim.

message_claim_timeout may be used from an interrupt handler, as long as time is
TIMEOUT_IMMEDIATE.

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2). Timeout value is ignored. Behaves as though TIMEOUT_INFINITY was specified.
The debug kernel triggers an assertion if the timeout value is ignored, see Section 3.2.1:
Assertion checking on page 18.

For timeout queues, this function is callable from a task, interrupt service routine or high
priority process (on an ST20-C2). For interrupt service routines and high priority processes
this function can only be used with a time value of TIMEOUT_IMMEDIATE.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

197

Example

clock_t time;
time = time_plus(time_now(), 15625);
message_claim_timeout(message_queue, &time);

See also

message_receive_timeout, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

198

message_create_queue
Create a fixed size message queue

Synopsis

#include <message.h>

message_queue_t* message_create_queue(size_t MaxMessageSize,
unsigned int MaxMessages);

Arguments

size_t MaxMessageSize The maximum size of a message, in bytes

unsigned int MaxMessages The maximum number of messages

Results

The message queue identifier, or NULL on failure.

Errors

Returns NULL if there is insufficient memory for the message queue.

Description

Create a message queue with buffering for a fixed number of fixed size messages. Buffer
space for the messages and the message_queue_t structure, is created automatically by
the function calling memory_allocate() on the system memory partition.

Callable from

Tasks only

See also

memory_allocate, message_claim, message_delete_queue,
message_receive, message_release, message_send

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

199

message_create_queue_timeout
Create a fixed size message queue with timeout capability

Synopsis

#include <message.h>

message_queue_t* message_create_queue_timeout(
size_t MaxMessageSize,
unsigned int MaxMessages);

Arguments

size_t MaxMessageSize The maximum size of a message, in bytes

unsigned int MaxMessages The maximum number of message elements

Results

The message queue identifier, or NULL on failure.

Errors

Returns NULL if there is insufficient memory for the message queue.

Description

Create a message queue with buffering for a fixed number of fixed size messages. Buffer
space for the messages and the message_queue_t structure, is created automatically by
the function calling memory_allocate() on the system memory partition.

Callable from

Tasks only

See also

memory_allocate, message_claim_timeout, message_delete_queue,
message_receive_timeout, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

200

message_delete_queue
Delete a message queue

Synopsis

#include <message.h>

void message_delete_queue(message_queue_t* MessageQueue);

Arguments

message_queue_t* MessageQueue The message queue to be deleted

Results

None

Errors

None

Description

This function allows a message queue to be deleted. If the message queue was created using
message_create_queue or message_create_queue_timeout then this also frees the
memory allocated for the message queue. If it was created using message_init_queue or
message_init_queue_timeout then the user is responsible for freeing any memory
which was allocated for the queue.

Note: If any tasks are waiting on the message queue when it is deleted, this causes the following
fatal error to be reported:

delete handler- operation on deleted object attempted

Similarly any attempt to use the deleted message queue will report the same error.

Tasks using message_claim_timeout or message_receive_timeout to wait on the
message queue are protected from this possibility by a timeout period, which enables the task
to continue.

Callable from

Tasks only

See also

message_create_queue, message_create_queue_timeout,
message_init_queue, message_init_queue_timeout

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

201

message_init_queue
Initialize a fixed size message queue

Synopsis

#include <message.h>

void message_init_queue(message_queue_t* MessageQueue,
void* memory,
size_t MaxMessageSize,
unsigned int MaxMessages);

Arguments

message_queue_t* MessageQueue The message queue to be initialized

void* memory The memory which will hold the messages

size_t MaxMessageSize The maximum size of a message, in bytes

unsigned int MaxMessages The maximum number of messages

Results

None

Errors

None

Description

Initialize a message queue with buffering for a fixed number of fixed size messages. Buffer
space for the messages must be allocated by the user, and passed to the function as the
memory parameter. This needs to be large enough for storing all the messages (rounded up
to the nearest word size) plus a header, for each message; see Chapter 8: Message handling
on page 51.

The total size of memory (in bytes) can be calculated using the macro:

MESSAGE_MEMSIZE_QUEUE(MaxMessageSize, MaxMessages)

where MaxMessageSize is the size of the message, and MaxMessages is the number of
messages.

Callable from

Tasks only

See also

message_claim, message_create_queue, message_delete_queue,
message_receive, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

202

message_init_queue_timeout
Initialize a fixed size message queue with timeout capability

Synopsis

#include <message.h>

void message_init_queue_timeout(message_queue_t* MessageQueue,
 void* memory,
 size_t MaxMessageSize,
 unsigned int MaxMessages);

Arguments

message_queue_t* MessageQueue The message queue to be initialized

void* memory The memory which will hold the messages

size_t MaxMessageSize The maximum size of a message, in bytes

unsigned int MaxMessages The maximum number of messages

Results

None

Errors

None

Description

Initialize a message queue with buffering for a fixed number of fixed size messages. Buffer
space for the messages must be allocated by the user, and passed to the function as the
memory parameter. This needs to be large enough for storing all the messages (rounded up
to the nearest word size) plus a header, for each message; see Chapter 8: Message handling
on page 51.

The total size of memory (in bytes) can be calculated using the macro:

MESSAGE_MEMSIZE_QUEUE(MaxMessageSize, MaxMessages)

where MaxMessageSize is the size of the message, and MaxMessages is the number of
messages.

Callable from

Tasks only

See also

message_claim_timeout, message_create_queue, message_delete_queue,
message_receive_timeout, message_release, message_send

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

203

message_receive
Receive the next available message from a queue

Synopsis

#include <message.h>

void* message_receive(message_queue_t* queue);

Arguments

message_queue_t* queue The message queue that delivers the message

Results

The next available message from the queue.

Errors

None

Description

message_receive() receives the next available message from the message queue, and
returns its address. If no messages are currently available then the task blocks until one
becomes available (by another task calling message_send()).

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2).

For timeout queues, this function is callable from tasks only

See also

message_claim, message_receive_timeout, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

204

message_receive_timeout
Receive the next available message from a queue or timeout

Synopsis

#include <message.h>
#include <ostime.h>

void* message_receive_timeout(message_queue_t* queue,
const clock_t* time);

Arguments

message_queue_t* queue The message queue that delivers the message

const clock_t* time The maximum time to wait for a message

Results

The next available message from the queue, or NULL if a timeout occurs.

Errors

None

Description

message_receive_timeout() receives the next available message from the message
queue, and returns its address. If no messages are currently available then the task blocks
until one becomes available (by another task calling message_send()), or the time specified
by time is reached.

Note: time is an absolute not a relative value, so if a relative timeout is required this needs to be
made explicit, as shown in the example.

time is specified in ticks, which is an implementation-dependent quantity.

Two special time values may also be specified as an alternative to time.
TIMEOUT_IMMEDIATE causes the message queue to be polled, that is, the function always
returns immediately. If a message was available then it is returned, otherwise the function
returns immediately with a result of NULL. A timeout of TIMEOUT_INFINITY behaves exactly
as message_receive.

Note: These special values must be used directly in a message_receive_timeout() command;
setting time = TIMEOUT_INFINITY for example, then using time in the command will
cause undefined results.

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2). Timeout value is ignored. Behaves as though TIMEOUT_INFINITY was specified.
The debug kernel triggers an assertion if the timeout value is ignored, see Section 3.2.1:
Assertion checking on page 18.

For timeout queues, this function is callable from an interrupt service routine or a high
priority process (on an ST20-C2). Can only be used with TIMEOUT_IMMEDIATE.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

205

Example

clock_t time;
time = time_plus(time_now(), 15625);
message_receive_timeout(message_queue, &time);

See also

message_claim, message_receive, message_release, message_send

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

206

message_release
Release a message buffer

Synopsis

#include <message.h>

void message_release(message_queue_t* queue,
void* message);

Arguments

message_queue_t* queue The message queue to which the message is released

void* message The message buffer

Results

None

Errors

None

Description

message_release() returns a message buffer to the message queue’s free list. This
function should be called when a message buffer (received by message_receive()) is no
longer required. If a task is waiting for a free message buffer (by calling message_claim())
this causes the task to be restarted and the message buffer returned.

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2).

For timeout queues, this function is callable from a task, interrupt service routine or a high
priority process (on an ST20-C2).

See also

message_claim, message_receive, message_send

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

207

message_send
Send a message to a queue

Synopsis

#include <message.h>

void message_send(message_queue_t* queue,
void* message);

Arguments

message_queue_t* queue The message queue to which the message is sent

void* message The message to send

Results

None

Errors

None

Description

message_send() sends the specified message to the message queue. This adds the
message to the end of the queue of sent messages; if any tasks are waiting for a message
they are rescheduled and the message returned.

Callable from

For non-timeout queues, this function is callable from a task or a high priority process (on an
ST20-C2).

For timeout queues, this function is callable from a task, interrupt service routine or a high
priority process (on an ST20-C2).

See also

message_claim, message_receive, message_release

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

208

move2d_all
Two dimensional block move

Synopsis

#include <move2d.h>

void move2d_all(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

Arguments

const void *src Source address for the block move

void *dst Destination address for the block move

int width Width in bytes of each row to be copied

int nrows Number of rows to be copied

int srcwidth Stride of the source array in bytes

int dstwidth Stride of the destination array in bytes

Results

None

Errors

The effect of the block move is undefined if either width or nrows is negative. The effect of
the block move is undefined if the source and destination blocks overlap. The block move only
makes sense if srcwidth and dstwidth are greater or equal to width.

Description

This function is ST20-C2 specific.

move2d_all copies the whole of the block of nrows each of width bytes from src to dst.
Each row of src is of width srcwidth bytes; and each row of dst is of width dstwidth
bytes.

If either width or nrows are zero, the two dimensional block move has no effect.

Callable from

A task or a high priority process (on an ST20-C2).

See also

move2d_non_zero, move2d_zero

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

209

move2d_non_zero
Two dimensional block move of all non-zero bytes

Synopsis

#include <move2d.h>

void move2d_non_zero(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

Arguments

const void *src Source address for the block move

void *dst Destination address for the block move

int width Width in bytes of each row to be copied

int nrows Number of rows to be copied

int srcwidth Stride of the source array in bytes

int dstwidth Stride of the destination array in bytes

Results

None

Errors

The effect of the block move is undefined if either width or nrows is negative. The effect of
the block move is undefined if the source and destination blocks overlap. The block move only
makes sense if srcwidth and dstwidth are greater or equal to width.

Description

This function is ST20-C2 specific.

move2d_non_zero copies a two dimensional block of memory, copying all the non-zero
bytes from the source block to the destination, leaving the bytes in the destination
corresponding to the zero bytes in the source unchanged.

move2d_non_zero copies the block of nrows each of width bytes from src to dst. Each
row of src is of width srcwidth bytes; and each row of dst is of width dstwidth bytes.

If either width or nrows are zero, the two dimensional block move has no effect.

Callable from

A task or a high priority process (on an ST20-C2).

See also

move2d_all, move2d_zero

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

210

move2d_zero
Two dimensional block move of all zero bytes

Synopsis

#include <move2d.h>

void move2d_zero(const void *src,
void *dst,
int width,
int nrows,
int srcwidth,
int dstwidth);

Arguments

const void *src Source address for the block move

void *dst Destination address for the block move

int width Width in bytes of each row to be copied

int nrows Number of rows to be copied

int srcwidth Stride of the source array in bytes

int dstwidth Stride of the destination array in bytes

Results

None

Errors

The effect of the block move is undefined if either width or nrows is negative. The effect of
the block move is undefined if the source and destination blocks overlap. The block move only
makes sense if srcwidth and dstwidth are greater or equal to width.

Description

This function is ST20-C2 specific.

move2d_zero copies a two dimensional block of memory, copying all the zero bytes from the
source block to the destination, leaving the bytes in the destination corresponding to the non-
zero bytes in the source unchanged.

move2d_zero copies the block of nrows each of width bytes from src to dst. Each row of
src is of width srcwidth bytes; and each row of dst is of width dstwidth bytes.

If either width or nrows are zero, the two dimensional block move has no effect.

Callable from

A task or a high priority process (on an ST20-C2).

See also

move2d_all, move2d_non_zero

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

211

mutex_create_fifo
Create a FIFO queued mutex

Synopsis

#include <mutex.h>

mutex_t* mutex_create_fifo(void);

Arguments

None

Results

The address of an initialized mutex, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the mutex.

Description

mutex_create_fifo() creates a mutex. The memory for the mutex structure is allocated
from the system heap. Mutexes created with this function have the usual mutex semantics,
except that when a task calls mutex_lock() it is always appended to the end of the queue
of waiting tasks, irrespective of its priority.

Callable from

Tasks only

See also

mutex_init_fifo, mutex_create_priority

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

212

mutex_create_priority
Create a priority queued mutex

Synopsis

#include <mutex.h>

mutex_t* mutex_create_priority(void);

Arguments

None

Results

The address of an initialized mutex, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the mutex.

Description

mutex_create_priority() creates a mutex. The memory for the mutex structure is
allocated from the system heap. Mutexes created with this function have the usual mutex
semantics, except that when a task calls mutex_lock() it is inserted into the queue of
waiting tasks so that the list remains sorted by the task’s priority, highest priority first. In this
way when a task is removed from the front of the queue by mutex_release(), it is
guaranteed to be the task with the highest priority of all those waiting for the mutex.

Mutexes created with this function also guarantee to detect and correct priority inversion.

Callable from

Tasks only

See also

mutex_create_fifo, mutex_init_priority

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

213

mutex_delete
Delete a mutex

Synopsis

#include <mutex.h>

int mutex_delete(
mutex_t *mutex);

Arguments

mutex_t* mutex Mutex to delete

Results

Returns 0 on success, -1 if an error occurs.

Errors

Fails if the mutex is locked, or has tasks blocked waiting for it.

Description

mutex_delete() deletes the mutex, mutex.

Note: The results are undefined if a task attempts to use a mutex once it has been deleted.

Callable from

Tasks only

See also

mutex_create_priority, mutex_create_fifo, mutex_init_priority, mutex_init_fifo

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

214

mutex_init_fifo
Initialize a FIFO queued mutex

Synopsis

#include <mutex.h>

void mutex_init_fifo(mutex_t *mutex);

Arguments

mutex_t *mutex The mutex to be initialized.

Results

None

Errors

None

Description

mutex_init_fifo initializes a mutex. Mutexes initialized with this function have the usual
mutex semantics, except that when a task calls mutex_lock() it is always appended to the
end of the queue of waiting tasks, irrespective of its priority.

Callable from

Tasks only

See also

mutex_create_fifo, mutex_init_priority

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

215

mutex_init_priority
Initialize a priority queued mutex

Synopsis

#include <mutex.h>

void mutex_init_priority(mutex_t *mutex);

Arguments

mutex_t *mutex The mutex to be initialized.

Results

None

Errors

None

Description

mutex_init_priority initializes a mutex. Mutexes initialized with this function have the
usual mutex semantics, except that when a task calls mutex_lock() it is inserted into the
queue of waiting tasks so that the list remains sorted by the task’s priority, highest priority first.
In this way when a task is removed from the front of the queue by mutex_release(), it is
guaranteed to be the task with the highest priority of all those waiting for the mutex.

Callable from

Tasks only

See also

mutex_create_priority, mutex_init_fifo

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

216

mutex_lock
Acquire a mutex, block if not available

Synopsis

#include <mutex.h>

void mutex_lock(mutex_t* mutex);

Arguments

mutex_t* mutex A pointer to a mutex

Results

None

Errors

None

Description

mutex_lock acquires the given mutex. The exact behavior of this function depends on the
mutex type. If the mutex is currently not owned, or is already owned by the task, then the task
acquires the mutex, and carries on running. If the mutex is owned by another task, then the
calling task is added to the queue of tasks waiting for the mutex, and deschedules. Once the
task acquires the mutex it is made immortal, until it releases the mutex.

Note: Management of priority mutexes requires OS20 to allocate a control block when a thread first
calls mutex_lock. If this allocation fails it causes a fatal error. This does not apply to FIFO
mutexes because they do not require a control block.

Callable from

Tasks only

See also

mutex_release, mutex_trylock, task_immortal

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

217

mutex_release
Release a mutex

Synopsis

#include <mutex.h>

int mutex_release(mutex_t* mutex);

Arguments

mutex_t* mutex A pointer to a mutex to release

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the task releasing the mutex does not own it.

Description

mutex_release() releases the specified mutex. The exact behavior of this function
depends on the mutex type. The operation checks the queue of tasks waiting for the mutex, if
the list is not empty, then the first task on the list is restarted and granted ownership of the
mutex, possibly preempting the current task. Otherwise the mutex is released, and the task
continues running.

If the releasing task had its priority temporarily boosted by the priority inversion logic, then
once the mutex is released the task’s priority is returned to its correct value.

Once the task has released the mutex, it is made mortal again.

Callable from

Tasks only

See also

mutex_lock, mutex_trylock, task_mortal

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

218

mutex_trylock
Acquire a mutex, return immediately if not available

Synopsis

#include <mutex.h>

int mutex_trylock(
mutex_t* mutex);

Arguments

mutex_t* mutex A pointer to a mutex

Results

Returns 0 on success, -1 if an error occurs.

Errors

Call fails if the mutex is currently owned by another task.

Description

mutex_trylock() checks to see if the mutex is free or already owned by the current task,
and acquires it if it is. If the mutex is not free, then the call fails and returns OS21_FAILURE.

If the task acquires the mutex it is automatically made immortal, until it releases the mutex.

Callable from

Tasks only

See also

mutex_lock, mutex_release, task_immortal

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

219

partition_create_fixed
Create a fixed size partition

Synopsis

#include <partitio.h>

partition_t* partition_create_fixed(void* memory,
 size_t memory_size,
 size_t block_size);

Arguments

void* memory The start address for the memory partition

size_t memory_size The size of the memory block in bytes

size_t block_size The size of the block to allocate from the partition

Results

The partition identifier or NULL if an error occurs.

Errors

If the amount of memory is insufficient it fails and return NULL.

Description

partition_create_fixed() creates a memory partition where the size of the blocks
which can be allocated is fixed when the partition is created. Only the amount of memory
requested is allocated, with no overhead for the partition manager. Allocating and freeing
simply involves removing and adding blocks to a linked list, so is constant time.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_allocate() must specify the same block size as was
used when the partition was created, otherwise the allocation will fail.
memory_reallocate() has no effect.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_create_heap, partition_create_simple

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

220

partition_create_heap
Create a heap partition

Synopsis

#include <partitio.h>

partition_t* partition_create_heap(void* memory,
size_t size);

Arguments

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Results

The partition identifier or NULL if an error occurs.

Errors

If the amount of memory is insufficient it fails and returns NULL.

Description

partition_create_heap() creates a memory partition with the semantics of a heap. This
means that variable size blocks of memory can be allocated and freed back to the memory
partition. Only the amount of memory requested is allocated, with a small overhead on each
block for the partition manager. Allocating and freeing requires searching through lists, and so
the length of time depends on the current state of the heap.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_reallocate() is implemented efficiently, reducing the
size of a block is always done without copying, and expanding only results in a copy if the
block cannot be expanded because subsequent memory locations have been allocated.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_create_fixed, partition_create_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

221

partition_create_simple
Create a simple partition

Synopsis

#include <partitio.h>

partition_t* partition_create_simple(void* memory,
size_t size);

Arguments

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Results

The partition identifier or NULL if an error occurs.

Errors

If the amount of memory is insufficient it fails and returns NULL.

Description

partition_create_simple() creates a memory partition with allocation only semantics.
This means that memory can only be allocated from the partition, attempting to free it back
has no effect. Only the amount of memory requested is allocated, with no overhead.
Allocation simply involves checking if there is space left in the partition, and incrementing a
pointer, so is very efficient and takes constant time.

Memory is allocated from this partition using memory_allocate(). Calling
memory_deallocate() on this partition has no effect. As there is no record of the original
allocation size, memory_reallocate() cannot know whether the block is growing or
shrinking, and so always returns NULL.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_create_fixed, partition_create_heap

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

222

partition_delete
Delete a partition

Synopsis

#include <partitio.h>

void partition_delete(partition_t *Partition)

Arguments

partition_t *PartitIion Partition to delete

Results

None

Errors

None

Description

This function allows a partition to be deleted. If the partition was created using a _create
function, for example partition_create_heap then this function frees the data structure
used to manage the partition (partition_t). If the partition was created using an _init
function, that is partition_init_heap then the user is responsible for freeing the partition
data structure.

The deletion of the memory that forms the partition is the responsibility of the user. The block
of memory being managed by the partition is unaffected by partition_delete; see the
example below.

Callable from

Tasks only

Example

partition_t *part;
char *ptr;
ptr = memory_allocate(system_partition, size);
part = partition_create_fixed(ptr, size);

...memory_allocate(part)
 memory_deallocate(part)

...memory_allocate(part)

partition_delete(part);
memory_deallocate(system_partition, ptr);

See also

partition_create_fixed, partition_create_heap, partition_create_simple,
partition_init_fixed, partition_init_heap, partition_init_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

223

partition_init_fixed
Initialize a fixed size partition

Synopsis

#include <partitio.h>

int partition_init_fixed(partition_t* partition,
void* memory,
size_t memory_size,
size_t block_size);

Arguments

partition_t* partition Pointer to the partition to initialize

void* memory The start address for the memory partition

size_t memory_size The size of the memory block in bytes

size_t block_size The size of the block to allocate from the partition

Results

Returns 0 on success or -1 on error.

Errors

If the amount of memory is insufficient it fails and returns -1.

Description

partition_init_fixed() initializes a memory partition where the size of the blocks
which can be allocated is fixed when the partition is created. Only the amount of memory
requested is allocated, with no overhead for the partition manager. Allocating and freeing
simply involves removing and adding blocks to a linked list, so is constant time.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_allocate() must specify the same block size as was
used when the partition was created, otherwise the allocation will fail.
memory_reallocate() has no effect.

partition_t should be declared before the call to partition_init_fixed is made.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_init_heap, partition_init_simple

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

224

partition_init_heap
Initialize a heap partition

Synopsis

#include <partitio.h>

int partition_init_heap(partition_t* partition,
void* memory,
size_t size);

Arguments

partition_t* partition Pointer to the partition to initialize

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Results

Returns 0 on success or -1 on error.

Errors

If the amount of memory is insufficient it fails and returns -1.

Description

partition_init_heap() initializes a memory partition with the semantics of a heap. This
means that variable size blocks of memory can be allocated and freed back to the memory
partition. Only the amount of memory requested is allocated, with a small overhead on each
block for the partition manager. Allocating and freeing requires searching through lists, and so
the length of time depends on the current state of the heap.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_reallocate() is implemented efficiently; reducing the
size of a block is always done without copying, and expanding only results in a copy if the
block cannot be expanded because subsequent memory locations have been allocated.

partition_t should be declared before the call to partition_init_heap is made.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_init_fixed, partition_init_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

225

partition_init_simple
Initialize a simple partition

Synopsis

#include <partitio.h>

int partition_init_simple(partition_t* partition,
void* memory,
size_t size);

Arguments

partition_t* partition Pointer to the partition to initialize

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Results

Returns 0 on success or -1 on error.

Errors

If the amount of memory is insufficient it fails and return -1.

Description

partition_init_simple() initializes a memory partition with allocation only semantics.
This means that memory can only be allocated from the partition; attempting to free it back
has no effect. Only the amount of memory requested is allocated, with no overhead.
Allocation simply involves checking if there is space left in the partition, and incrementing a
pointer, so is very efficient and takes constant time.

Memory is allocated from this partition using memory_allocate(). Calling
memory_deallocate() on this partition has no effect. As there is no record of the original
allocation size, memory_reallocate() cannot know whether the block is growing or
shrinking, and so always returns NULL.

partition_t should be declared before the call to partition_init_simple is made.

Callable from

Tasks only

See also

memory_allocate, memory_deallocate, partition_init_fixed, partition_init_heap

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

226

partition_status
Get status of a partition

Synopsis

#include <partitio.h>

int partition_status(partition_t* Partition,
partition_status_t* Status,
partition_status_flags_t flags);

Arguments

partition_t* Partition Pointer to a partition

partition_status_t* Status Pointer to a buffer to save to

partition_status_flags_t flags Reserved for future use;
flags should be set to zero

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if Partition or Status is NULL, or if Partition has not been initialized using
one of the _create or _init functions. Partitions previously deleted with
partition_delete() also return -1.

Description

partition_status() checks the status of the partition by checking that the partition is not
corrupt and also by calculating the memory usage of the partition. Memory usage includes the
amount of memory used, memory available and largest available block of memory.

Partition is a pointer to a partition which partition_status() references to calculate
memory usage. Status is a pointer to a structure which partition_status() uses to
store the results.

Table 51 shows the layout of the structure partition_status_t.

Name Description

partition_status_state Partition state (See Table 52)

partition_status_type Type of partition (See Table 53)

partition_status_size Total number of bytes within partition

partition_status_free Total number of bytes free within partition

partition_status_free_largest Total number of bytes within the largest free block in partition

partition_status_used Total number of bytes which are allocated/in use within the
partition

Table 51: Layout of structure partition_status_t

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

227

Table 52 show all the possible values which are available to the field
partition_status_state.

Table 53 shows all the possible values which are available to the field
partition_status_type.

If partition_status() returns successfully then the structure pointed to by Status
contains statistics about the partition Partition.

partition_status_state is set to partition_status_state_valid if the partition
is valid. Otherwise it is set to partition_status_state_invalid.

partition_status_type depending on the type of partition contains one of the flags as
shown in Table 53.

partition_status_size contains the size of the partition in bytes. The size of a partition
is defined when a partition is initialized using the _create or _init functions, therefore
partition_status_size does not change with subsequent calls to
partition_status().

partition_status_used is the total number of bytes which have been allocated in the
partition.

partition_status_free is the number of free bytes available in the partition.

partition_status_free_largest is the size of the largest free block of memory in the
partition.

partition_status_used is the total number of bytes which have been used in the
partition.

The results provided by partition_status() may differ slightly for each partition type, for
example, heap and fixed partitions incur a memory overhead with each allocation/
deallocation, these overheads are taken into account in the results. (See Chapter 4: Memory
and partitions on page 21).

Callable from

A task or a high priority process (on an ST20-C2).

Flag Flag description

partition_status_state_valid Partition is valid

partition_status_state_invalid Partition is corrupt

Table 52: Flag values for partition_status_state

Flag Flag description

partition_status_state_type_simple Partition is a Simple partition

partition_status_state_type_fixed Partition is a Fixed partition

partition_status_state_type_heap Partition is a Heap partition

Table 53: Flag values for partition_status_type

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

228

Example

#include <partitio.h>

unsigned char buffer[BUFFER_SIZE];
partition_status_t status;
partition_t partition;

partition_init_heap(&partition, &buffer, BUFFER_SIZE);

if (partition_status(&partition, &status) == 0) {
... process status of partition

} else {
... process partition error

}

See also

partition_create_fixed, partition_create_heap, partition_create_simple,
partition_init_fixed, partition_init_heap, partition_init_simple

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

229

semaphore_create_fifo
Create a FIFO queued semaphore

Synopsis

#include <semaphor.h>

semaphore_t* semaphore_create_fifo(int value);

Arguments

int value The initial value of the semaphore

Results

The address of an initialized semaphore, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the semaphore.

Description

This function creates a counting semaphore, initialized to value. The memory for the
semaphore structure is allocated from the system memory partition. Semaphores created
with this function have the usual semaphore semantics, except that when a a task calls
semaphore_wait() it is always appended to the end of the queue of waiting tasks,
irrespective of its priority.

Callable from

Tasks only

See also

semaphore_create_priority, semaphore_init_fifo

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

230

semaphore_create_fifo_timeout
Create a FIFO queued semaphore with timeout capability

Synopsis

#include <semaphor.h>

semaphore_t* semaphore_create_fifo_timeout(int value);

Arguments

int value The initial value of the semaphore

Results

The address of an initialized semaphore, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the semaphore.

Description

This function creates a counting semaphore, initialized to value, which can be used in calls
to semaphore_wait_timeout(). The memory for the semaphore structure is allocated
from the system memory partition. Semaphores created with this function have the usual
semaphore semantics, except that when a a task calls semaphore_wait() or
semaphore_wait_timeout(), it is always appended to the end of the queue of waiting
tasks, irrespective of its priority.

Callable from

Tasks only

See also

semaphore_create_fifo, semaphore_create_priority_timeout, semaphore_init_fifo_timeout

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

231

semaphore_create_priority
Create a priority queued semaphore

Synopsis

#include <semaphor.h>

semaphore_t* semaphore_create_priority(int value);

Arguments

int value The initial value of the semaphore

Results

The address of an initialized semaphore, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the semaphore.

Description

This function creates a counting semaphore, initialized to value. The memory for the
semaphore structure is allocated from the system memory partition. Semaphores created
with this function have the usual semaphore semantics, except that when a task calls
semaphore_wait() it is inserted into the queue of waiting tasks so that the list remains
sorted by the task’s priority, highest priority first. In this way when a task is removed from the
front of the queue by semaphore_signal(), it is guaranteed to be the task with the highest
priority of all those waiting for the semaphore.

Callable from

Tasks only

See also

semaphore_create_fifo, semaphore_init_priority

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

232

semaphore_create_priority_timeout
Create a priority queued semaphore with timeout capability

Synopsis

#include <semaphor.h>

semaphore_t* semaphore_create_priority_timeout(int value);

Arguments

int value The initial value of the semaphore

Results

The address of an initialized semaphore, or NULL if an error occurs.

Errors

NULL if there is insufficient memory for the semaphore.

Description

This function creates a counting semaphore, initialized to value, which can be used in calls
to semaphore_wait_timeout(). The memory for the semaphore structure is allocated
from the system memory partition. Semaphores created with this function have the usual
semaphore semantics, except that when a task calls semaphore_wait() or
semaphore_wait_timeout() it is inserted into the queue of waiting tasks so that the list
remains sorted by the task’s priority, highest priority first. In this way when a task is removed
from the front of the queue by semaphore_signal(), it is guaranteed to be the task with the
highest priority of all those waiting for the semaphore.

Callable from

Tasks only

See also

semaphore_create_fifo_timeout, semaphore_create_priority,
semaphore_init_priority_timeout,

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

233

semaphore_delete
Delete a semaphore

Synopsis

#include <semaphor.h>

void semaphore_delete(semaphore_t *sem);

Arguments

semaphore_t *sem Semaphore to delete

Results

None

Errors

None

Description

This function allows a semaphore to be deleted. If the semaphore was created using
semaphore_create then this also frees the memory used by the semaphore. If it was
created using semaphore_init then the user is responsible for freeing the semaphore data
structure.

Note: If any tasks are waiting on the semaphore when it is deleted, this causes the following fatal
error to be reported:

delete handler- operation on deleted object attempted

Similarly any attempt to use the deleted semaphore will report the same error.

Callable from

Tasks only

See also

semaphore_create_fifo, semaphore_create_priority,
semaphore_init_fifo, semaphore_init_priority

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

234

semaphore_init_fifo
Initialize a FIFO queued semaphore

Synopsis

#include <semaphor.h>

void semaphore_init_fifo(semaphore_t *sem,
int value);

Arguments

semaphore_t* sem The semaphore to be initialized

int value The initial value of the semaphore

Results

None

Errors

None

Description

This function initializes a counting semaphore to value. Semaphores initialized with this
function have the usual semaphore semantics, except that when a task calls
semaphore_wait() it is always be appended to the end of the queue of waiting tasks,
irrespective of its priority.

sem should be declared before the call to semaphore_init_fifo is made.

Callable from

Tasks only

See also

semaphore_create_fifo, semaphore_init_priority

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

235

semaphore_init_fifo_timeout
Initialize a FIFO queued semaphore with timeout capability

Synopsis

#include <semaphor.h>

void semaphore_init_fifo_timeout(semaphore_t *sem,
int value);

Arguments

semaphore_t* sem The semaphore to be initialized

int value The initial value of the semaphore

Results

None

Errors

None

Description

This function initializes a counting semaphore to value, which can be used in calls to
semaphore_wait_timeout(). Semaphores initialized with this function have the usual
semaphore semantics, except that when a task calls semaphore_wait() or
semaphore_wait_timeout() it is always appended to the end of the queue of waiting
tasks, irrespective of its priority.

sem should be declared before the call to semaphore_init_fifo_timeout is made.

Callable from

Tasks only

See also

semaphore_create_fifo_timeout, semaphore_init_fifo, semaphore_init_priority_timeout

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

236

semaphore_init_priority
Initialize a priority queued semaphore

Synopsis

#include <semaphor.h>

void semaphore_init_priority(semaphore_t *sem,
int value);

Arguments

semaphore_t* sem The semaphore to be initialized

int value The initial value of the semaphore

Results

None

Errors

None

Description

This function initializes a counting semaphore to value. Semaphores initialized with this
function have the usual semaphore semantics, except that when a task calls
semaphore_wait() it is inserted into the queue of waiting tasks so that the list remains
sorted by the task’s priority, highest priority first. In this way when a task is removed from the
front of the queue by semaphore_signal(), it is guaranteed to be the task with the highest
priority of all those waiting for the semaphore.

sem should be declared before the call to semaphore_init_priority is made.

Callable from

Tasks only

See also

semaphore_create_priority

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

237

semaphore_init_priority_timeout
Initialize a priority queued semaphore with timeout capability

Synopsis

#include <semaphor.h>

void semaphore_init_priority_timeout(semaphore_t *sem,
int value);

Arguments

semaphore_t* sem The semaphore to be initialized

int value The initial value of the semaphore

Results

None

Errors

None

Description

This function initializes a counting semaphore to value, which can be used in calls to
semaphore_wait_timeout(). Semaphores initialized with this function have the usual
semaphore semantics, except that when a task calls semaphore_wait() or
semaphore_wait_timeout() it is inserted into the queue of waiting tasks so that the list
remains sorted by the task’s priority, highest priority first. In this way when a task is removed
from the front of the queue by semaphore_signal(), it is guaranteed to be the task with the
highest priority of all those waiting for the semaphore.

sem should be declared before the call to semaphore_init_priority_timeout is made.

Callable from

Tasks only

See also

semaphore_create_priority_timeout, semaphore_init_fifo_timeout, semaphore_init_priority

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

238

semaphore_signal
Signal a semaphore

Synopsis

#include <semaphor.h>

void semaphore_signal(semaphore_t* Sem);

Arguments

semaphre_t* Sem Pointer to a semaphore

Results

None

Errors

None

Description

Perform a signal operation on the specified semaphore. The exact behavior of this function
depends on the semaphore type. The operation checks the queue of tasks waiting for the
semaphore, if the list is not empty, then the first task on the list is restarted, possibly
preempting the current task. Otherwise the semaphore count is incremented, and the task
continues running.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

semaphore_wait

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

239

semaphore_wait
Wait for a semaphore

Synopsis

#include <semaphor.h>

int semaphore_wait(semaphore_t* Sem);

Arguments

semaphore_t* Sem Pointer to a semaphore

Results

Always returns 0.

Errors

None

Description

Perform a wait operation on the specified semaphore. The exact behavior of this function
depends on the semaphore type. The operation checks the semaphore counter, and if it is 0,
adds the current task to the list of queued tasks before descheduling. Otherwise the
semaphore counter is decremented, and the task continues running.

Callable from

For non-timeout FIFO, this function is callable from a task or a high priority process (on an
ST20-C2).

For timeout FIFO, timeout priority and non-timeout priority, this function is callable from tasks
only.

See also

semaphore_signal, semaphore_wait_timeout

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

240

semaphore_wait_timeout
Wait for a semaphore or a timeout

Synopsis

#include <semaphor.h>
#include <ostime.h>

int semaphore_wait_timeout(semaphore_t* Sem,
const clock_t *timeout);

Arguments

semaphore_t* Sem Pointer to a semaphore

const clock_t* timeout Maximum time to wait for the semaphore. Expressed in ticks
or as TIMEOUT_IMMEDIATE or TIMEOUT_INFINITY

Results

Returns 0 on success, -1 if timeout occurs.

Errors

None

Description

Perform a wait operation on the specified semaphore. If the time specified by the timeout is
reached before a signal operation is performed on the semaphore, then
semaphore_wait_timeout returns the value -1 indicating that a timeout occurred, and the
semaphore count will be unchanged. If the semaphore is signalled before the timeout is
reached, then semaphore_wait_timeout returns 0.

Note: Timeout is an absolute, not a relative value, so if a relative timeout is required this needs to be
made explicit, as shown in the example.

The timeout value may be specified in ticks, which is an implementation dependent quantity.
Two special time values may also be specified for timeout. TIMEOUT_IMMEDIATE causes
the semaphore to be polled, that is, the function always returns immediately. If the semaphore
count is greater than zero, then it has been successfully decremented, and the function
returns 0, otherwise the function returns -1. A timeout of TIMEOUT_INFINITY will behave
exactly as semaphore_wait.

Callable from

For non-timeout FIFO, this function is callable from a task or a high priority process (on an
ST20-C2). Timeout value is ignored. Behaves as though TIMEOUT_INFINITY was specified.
The debug kernel triggers an assertion if the timeout value is ignored, see Section 3.2.1:
Assertion checking on page 18.

For timeout FIFO, this function is callable from a task, interrupt service routine or high priority
process (on an ST20-C2). For interrupt service routines and high priority processes this
function can only be used with a time value of TIMEOUT_IMMEDIATE.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

241

For non-timeout priority, this function is callable from tasks only. Timeout value is ignored.
Behaves as though TIMEOUT_INFINITY was specified. The debug kernel triggers an
assertion if the timeout value is ignored, see Section 3.2.1: Assertion checking on page 18.

For timeout priority, this function is callable from a task, interrupt service routine or high
priority process (on an ST20-C2). For interrupt service routines and high priority processes
this function can only be used with a time value of TIMEOUT_IMMEDIATE.

Example

clock_t time;
time = time_plus(time_now(), 15625);
semaphore_wait_timeout(semaphore, &time);

See also

semaphore_signal, semaphore_wait

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

242

task_context
Return the current execution context

Synopsis

#include <task.h>

task_context_t task_context(task_t **task,
int* level);

Arguments

task_t **task Where to return the task descriptor

int* level Where to return the interrupt level

Results

Returns whether the function was called from a task, interrupt or high priority process.

Errors

None

Description

The task_context function returns a description of the context from which it is called,
whether this is a task, interrupt or high priority process. This is indicated by one of three
possible values.

If the function was called from:

● an OS20 task, then it returns task_context_task,

● an interrupt handler, then it returns task_context_interrupt,

● a high priority process on an ST20-C2, then it returns task_context_hpp.

In addition, information about which particular task, interrupt or high priority process the
function was called from can be returned. If task is not NULL, and the function was called
from an OS20 task or a high priority process, then the corresponding task_t is written into
the variable pointed to by task. Similarly if level is not NULL, and the function was called
from an interrupt handler, then the interrupt level is written into the variable pointed to by
level.

Determining the task_t for a high priority process on an ST20-C2, or the interrupt level on
an ST20-C1, can take a variable length of time. So task_context executes faster if these
values are not required.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

task_id

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

243

task_create
Create an OS20 task

Synopsis

#include <task.h>

task_t* task_create(void (*Function)(void*),
void* Param,
size_t StackSize,
int Priority,
const char* Name,
task_flags_t flags);

Arguments

void (*Function)(void*) Pointer to the task’s entry point

void* Param The parameter passed into Function

size_t StackSize Required stack size for the task, in bytes

int Priority Task’s scheduling priority in the range
MIN_USER_PRIORITY to MAX_USER_PRIORITY.

const char* Name The name of the task, to be used by the debugger

task_flags_t flags Various flags which affect task behavior

Results

Returns a pointer to the task structure if successful or NULL otherwise. The returned structure
pointer should be assigned to a local variable for future use.

Errors

Returns a NULL pointer if an error occurs, either because the task’s priority is invalid, or there
is insufficient memory for the task’s data structures or stack.

Description

task_create() sets up a function as an OS20 task and starts the task executing.
task_create() returns a pointer to the task control block task_t, which is subsequently
used to refer to the task.

Function is a pointer to the function which is to be the entry point of the task.

StackSize is the size of the stack space required in bytes. It is important that enough stack
space is requested, if not, the results of running the task are undefined. task_create
automatically calls memory_allocate() in order to allocate the stack on the system
memory partition.

Param is a pointer to the arguments to Function. If Function has a number of parameters,
these should be combined into a structure and the address of the structure provided as the
argument to task_create(). When the task is started it begins executing as if Function
were called with the single argument Param.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

244

The task’s data structures are also allocated by task_create calling
memory_allocate(). The task descriptor (tdesc_t) is allocated from the internal memory
partition, the task state (task_t) from the system memory partition.

Priority is the task’s scheduling priority.

Name is the name of the task, which is passed to the debugger (if present) so that the task can
be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should be
specified as 0, which results in the default behavior, however, other options can be specified
which change the behavior of the task.

For the ST20-C2 this is used to create tasks which execute using the ST20’s hardware high
priority processes. Tasks which execute as high priority processes are not scheduled using
the OS20 scheduler, but the hardware scheduler built into the ST20-C2. The effect of this is
that they can be scheduled very rapidly, but there are some restrictions on their usage. In
particular tasks executing at high priority cannot:

● use priority semaphores,

● use message queues,

● use task locks (although interrupt locks work for high priority processes),

● change their priority (using task_priority_set).

The Priority parameter is ignored for tasks created as high priority processes.

Note: The units of time are different for high priority processes; see Chapter 9: Real-time clocks on
page 57.

The other possible value for flags is task_flags_suspended. This can be used to create
tasks which are initially suspended. This means that the task does not run until it is resumed
using the task_resume call.

Note: High priority processes cannot be created suspended.

Thus, current possible values for flags are:

Note: This function allocates memory from the internal partition. It is common for the internal
partition to use the simple partition manager in order to conserve internal memory,
-runtime os20 does this. Since the simple partition manager does not support freeing
memory this has the potential to cause memory leaks if tasks do not exist for the lifetime of the
system. See Section 15.1.5: Altering the internal partition manager on page 104 for details of
how to migrate a partition to the heap manager.

Callable from

Tasks only

Task flags Task behavior Target

0 Create an OS20 task. Default. Any

task_flags_high_priority_process Create the task as a high priority process
(this is ignored on ST20-C1 devices).

ST20-C2

task_flags_suspended Create the task already suspended. Any

Table 54: Flag values for task_create

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

245

Example

struct sig_params{
semaphore_t *Ready;
int Count;

};

void signal_task(void* p)
{

struct sig_params* Params = (struct sig_params*)p;
int j;

for (j = 0; j < Params->Count; j++) {
 semaphore_signal (Params->Ready);
 task_delay(ONE_SECOND);
}

}

main() {
task_t* Task;
struct sig_params params;

Task = task_create (signal_task, ¶ms,
 USER_WS_SIZE, USER_PRIORITY, "Signal", 0);
if (Task == NULL) {
 printf ("Error : create. Unable to create task\n");
 exit (EXIT_FAILURE);
}
...

}

See also

task_delete

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

246

task_create_sl
Create an OS20 task specifying a static link

Synopsis

#include <task.h>

task_t* task_create(void (*Function)(void*),
void* Param,
void* StaticLink,
size_t StackSize,
int Priority,
const char* Name,
task_flags_t flags);

Arguments

void (*Function)(void*) Pointer to the task’s entry point

void* Param The parameter passed into Function

void* StaticLink Static link to be used when calling Function

size_t StackSize Required stack size for the task, in bytes

int Priority Task’s scheduling priority in the range
MIN_USER_PRIORITY to MAX_USER_PRIORITY.

const char* Name The name of the task, to be used by the debugger

task_flags_t flags Various flags which affect task behavior

Results

Returns a pointer to the task structure if successful or NULL otherwise. The returned structure
pointer should be assigned to a local variable for future use.

Errors

Returns a NULL pointer if an error occurs, either because the task’s priority is invalid, or there
is insufficient memory for the task’s data structures or stack.

Description

task_create_sl() sets up a function as an OS20 task and starts the task executing.
task_create_sl() returns a pointer to the task control block task_t, which is
subsequently used to refer to the task.

Function is a pointer to the function which is to be the entry point of the task.

Param is a pointer to the arguments to Function. If Function has a number of
parameters, these should be combined into a structure and the address of the structure
provided as the argument to task_create_sl(). When the task is started it begins
executing as if Function were called with the single argument Param.

StaticLink is the static link which should be used when calling Function. This is normally
obtained as a result of loading an RCU. See the ST20 Embedded Toolset Reference Manual,
chapter Building and running relocatable code.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

247

StackSize is the size of the stack space required in bytes. It is important that enough stack
space is requested; if not, the results of running the task are undefined. task_create_sl
automatically calls memory_allocate() in order to allocate the stack on the system
memory partition.

The task’s data structures are also allocated by task_create_sl calling
memory_allocate(). The task descriptor (tdesc_t) is allocated from the internal memory
partition, the task state (task_t) from the system memory partition.

Priority is the task’s scheduling priority.

Name is the name of the task, which is passed to the debugger (if present) so that the task can
be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should be
specified as 0, which results in the default behavior, however, other options can be specified
which change the behavior of the task.

For the ST20-C2 this is used to create tasks which execute using the ST20’s hardware high
priority processes. Tasks which execute as high priority processes are not scheduled using
the OS20 scheduler, but the hardware scheduler built into the ST20-C2. The effect of this is
that they can be scheduled very rapidly, but there are some restrictions on their usage. In
particular tasks executing at high priority cannot:

● use priority semaphores,

● use message queues,

● use task locks (although interrupt locks work for high priority processes),

● change their priority (using task_priority_set).

The Priority parameter is ignored for tasks created as high priority processes.

Note: The units of time are different for high priority processes; see Chapter 9: Real-time clocks on
page 57.

The other possible value for flags is task_flags_suspended. This can be used to create
tasks which are initially suspended. This means that the task does not run until it is resumed
using the task_resume call.

Note: High priority processes cannot be created suspended.

Thus, current possible values for flags are:

Note: This function allocates memory from the internal partition. It is common for the internal
partition to use the simple partition manager in order to conserve internal memory, -runtime
os20 does this. Since the simple partition manager does not support freeing memory this has
the potential to cause memory leaks if tasks do not exist for the lifetime of the system. See
Section 15.1.5: Altering the internal partition manager on page 104 for details of how to
migrate a partition to the heap manager.

Task flags Task behavior Target

0 Create an OS20 task. Default. Any

task_flags_high_priority_process Create the task as a high priority process
(this is ignored on ST20-C1 devices).

ST20-C2

task_flags_suspended Create the task already suspended. Any

Table 55: Flag values for task_create_sl

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

248

Callable from

Tasks only

See also

task_create, task_delete, task_init_sl

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

249

task_data
Retrieve a task’s data pointer

Synopsis

#include <task.h>

void* task_data(task_t* Task);

Arguments

task_t* Task Pointer to the task structure

Results

Returns the task data pointer of the task pointed to by Task. If Task is NULL the return result
is the data pointer of the calling task.

Errors

None

Description

task_data() retrieves the task-data pointer of the task specified by Task, or the currently
active task if Task is NULL. See Section 5.14: Task data on page 38.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_data_set

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

250

task_data_set
Set a task’s data pointer

Synopsis

#include <task.h>

void* task_data_set(task_t* Task, void* NewData);

Arguments

task_t* Task Pointer to the task structure

void* NewData New data pointer for the task

Results

task_data_set() returns the task's previous data pointer. If Task is NULL the return result
is the data pointer of the calling task.

Errors

None

Description

task_data_set() sets the task-data pointer of the task specified by Task, or of the
currently active task if Task is NULL. See Section 5.14: Task data on page 38.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_data

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

251

task_delay
Delay the calling task for a period of time

Synopsis

#include <task.h>

void task_delay(clock_t delay);

Arguments

clock_t delay The period of time to delay the calling task

Results

None

Errors

None

Description

Delay the calling task for the specified period of time. delay is specified in ticks, which is an
implementation dependent quantity; see Chapter 9: Real-time clocks on page 57.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_delay_until

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

252

task_delay_until
Delay the calling task until a specified time

Synopsis

#include <task.h>

void task_delay_until(clock_t delay);

Arguments

clock_t delay The time period during which the calling task is delayed

Results

None

Errors

None

Description

Delay the calling task until the specified time. If delay is before the current time, then this
function returns immediately. delay is specified in ticks, which is an implementation
dependent quantity; see Section 9: Real-time clocks on page 57.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_delay

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

253

task_delete
Delete an OS20 task

Synopsis

#include <task.h>

int task_delete(task_t* task);

Arguments

task_t *task Task to delete

Results

Returns 0 on success, -1 on failure.

Errors

If the task has not yet terminated, then this instruction fails.

Description

This function allows a task to be deleted. The task must have terminated (by returning from its
entry point function) before this can be called. Attempting to delete a task which has not yet
terminated will fail.

Callable from

Tasks only

See also

task_create, task_kill

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

254

task_exit
Exit the current task

Synopsis

#include <task.h>

void task_exit(int param);

Arguments

int param Parameter to pass to onexit handler

Results

None

Errors

None

Description

This causes the current task to terminate, after having called the onexit handler. It has the
same effect as the task returning from its entry point function.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_onexit_set

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

255

task_id
Find current task’s ID

Synopsis

#include <task.h>

task_t* task_id(void);

Arguments

None

Results

Returns a pointer to the OS20 task structure of the calling task.

Errors

None

Description

task_id returns a pointer to the task structure of the currently active task.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_create

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

256

task_immortal
Make the current task immortal

Synopsis

#include <task.h>

void task_immortal(void);

Arguments

None

Results

None

Errors

None

Description

task_immortal makes the current task immortal. If an attempt is made to kill a task whilst it
is immortal, it will not die immediately, but continues running until it becomes mortal again,
and will then die.

Callable from

Tasks only

See also

task_kill, task_mortal

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

257

task_init
Initialize an OS20 task

Synopsis

#include <task.h>

int task_init(void (*Function)(void*),
 void* Param,
 void* Stack,
 size_t StackSize,
 task_t* Task,
 tdesc_t* Tdesc,
 int Priority,
 const char* Name,
 task_flags_t flags);

Arguments

void (*Function)(void*) Pointer to the task’s entry point

void* Param The parameter passed into Function

void* Stack Pointer to the stack for the task

size_t StackSize Size in bytes of Stack

task_t* Task Pointer to the task’s task control block

tdesc_t* Tdesc Pointer to the task’s descriptor

int Priority Task’s scheduling priority (in the range
MIN_USER_PRIORITY to MAX_USER_PRIORITY)

const char* Name The name of the task, to be used by the debugger

task_flags_t flags Various flags which effect task behavior

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the priority is illegal, or the stack size too small for the initial stack frame.

Description

task_init() sets up a function as an OS20 task and starts the task executing. If the call
succeeds, then Task should be used in any subsequent calls to refer to the task. On ST20-C2
cores task_init cannot be used on a high priority process.

Function is a pointer to the function which is to be the entry point of the task.

Stack is a pointer to the base of the stack for the task, which is of StackSize bytes. It is
important that enough stack space is allocated; if not, the results of running the task are
undefined.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

258

Param is a pointer to the arguments to Function. If Function has a number of parameters,
these should be combined into a structure and the address of the structure provided as the
argument to task_init(). When the task is started it begins executing as if Function
were called with the single argument Param.

Task and Tdesc are pointers to data structures which are used by OS20 to store details
about the task. These structures should be declared before task_init is called and after
the task is created, these structures should not be modified by the user.

Name is the name of the task, which is passed to the debugger (if present) so that the task can
be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should be
specified as 0, which results in the default behavior, however other options can be specified
which change the behavior of the task.

For the ST20-C2 this is used to create tasks which execute using the ST20’s hardware high
priority processes. Tasks which execute as high priority processes are not scheduled using
the OS20 scheduler, but the hardware scheduler built into the ST20. The effect of this is that
they can be scheduled very rapidly, but there are some restrictions on their usage. In
particular tasks executing at high priority cannot:

● use priority semaphores,

● use message queues,

● use task locks (although interrupt locks work for high priority processes),

● change their priority (using task_priority_set).

The priority parameter is ignored for tasks created as high priority processes, and the TDesc
should be specified as NULL.

Note: The units of time are different for high priority processes; see Section 9: Real-time clocks on
page 57.

The other possible value for flags is task_flags_suspended. This can be used to create
tasks which are initially suspended. This means that the task does not run until it is resumed
using the task_resume call.

Note: High priority processes cannot be created suspended.

Thus, current possible values for flags are:

Callable from

Tasks only

Example

#include <task.h.>
#define STACK_SIZE 1024

Task flags Task behavior Target

0 Create an OS20 task. Default. Any

task_flags_high_priority_process Create the task as a high priority process
(this is ignored on ST20-C1 devices).

ST20-C2

task_flags_suspended Create the task already suspended Any

Table 56: Flag values for task_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

259

task_t task;
tdesc_t tdesc;

char stack[STACK_SIZE];

task_init(fn_ptr, NULL, stack, STACK_SIZE,
&task, &tdesc, 10, “test”, 0);

See also

task_create

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

260

task_init_sl
Initialize an OS20 task specifying a static link

Synopsis

#include <task.h>

int task_init_sl(void (*Function)(void*),
void* Param,
void* StaticLink,
void* Stack,
size_t StackSize,
task_t* Task,
tdesc_t* Tdesc,
int Priority,
const char* Name,
task_flags_t flags);

Arguments

void (*Function)(void*) Pointer to the task’s entry point

void* Param The parameter which is passed into Function

void* StaticLink Static link to be used when calling Function

void* Stack Pointer to the stack for the task

size_t StackSize Size in bytes of Stack

task_t* Task Pointer to the task’s task control block

tdesc_t* Tdesc Pointer to the task’s descriptor

int Priority Task’s scheduling priority (in the range
MIN_USER_PRIORITY to MAX_USER_PRIORITY)

const char* Name The name of the task, to be used by the debugger

task_flags_t flags Various flags which effect task behavior

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the priority is illegal, or the stack size too small for the initial stack frame.

Description

task_init() sets up a function as an OS20 task and starts the task executing. If the call
succeeds, then Task should be used in any subsequent calls to refer to the task. On ST20-C2
cores task_init_sl cannot be used on a high priority process.

Function is a pointer to the function which is to be the entry point of the task.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

261

Param is a pointer to the arguments to Function. If Function has a number of parameters,
these should be combined into a structure and the address of the structure provided as the
argument to task_init_sl. When the task is started it begins executing as if Function
were called with the single argument Param.

StaticLink is the static link which should be used when calling Function. This is normally
obtained as a result of loading an RCU. See the ST20 Embedded Toolset Reference Manual,
chapter Building and running relocatable code.

Stack is a pointer to the base of the stack for the task, which is of StackSize bytes. It is
important that enough stack space is allocated, if not, the results of running the task are
undefined.

Task and Tdesc are pointers to data structures which are used by OS20 to store details
about the task. These structures should be declared before task_init is called and after
the task is created, these structures should not be modified by the user.

Name is the name of the task, which is passed to the debugger (if present) so that the task can
be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should be
specified as 0, which results in the default behavior, however other options can be specified
which change the behavior of the task.

For the ST20-C2 this is used to create tasks which execute using the ST20’s hardware high
priority processes. Tasks which execute as high priority processes are not scheduled using
the OS20 scheduler, but the hardware scheduler built into the ST20. The effect of this is that
they can be scheduled very rapidly, but there are some restrictions on their usage. In
particular tasks executing at high priority cannot:

● use priority semaphores,

● use message queues,

● use task locks (although interrupt locks work for high priority processes),

● change their priority (using task_priority_set).

The priority parameter is ignored for tasks created as high priority processes, and the TDesc
should be specified as NULL.

Note: The units of time are different for high priority processes; see Section 9: Real-time clocks on
page 57.

The other possible value for flags is task_flags_suspended. This can be used to create
tasks which are initially suspended. This means that the task does not run until it is resumed
using the task_resume call.

Note: High priority processes cannot be created suspended.

Thus, current possible values for flags are:

Interrupt flags Interrupt behavior Target

0 Create an OS20 task. Default. Any

task_flags_high_priority_process Create the task as a high priority process
(this is ignored on ST20-C1 devices).

ST20-C2

task_flags_suspended Create the task already suspended. Any

Table 57: Flag values for task_init_sl

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

262

Callable from

Tasks only

See also

task_create, task_create_sl, task_init

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

263

task_kill
Kill a task

Synopsis

#include <task.h>

int task_kill(task_t* task,
int status,
task_kill_flags_t flags);

Arguments

task_t* task The task to be killed

int status The task’s exit status

task_kill_flags_t flags Additional flags

Results

Returns 0 if the task is successfully killed, -1 if it cannot be killed.

Errors

If the task has been deleted, is a high priority process, then this call fails.

Description

task_kill kills the task specified by task, causing it to stop running, and call its exit
handler. If task is NULL then the current task is killed. If the task was waiting on any objects
when it is killed, it is removed from the list of tasks waiting for that object before the exit
handler is called.

status is the exit status for the task. Thus task_kill can be viewed as a way of forcing the
task to call:

task_exit(status)

Normally flags should have the value 0. However, by specifying the value
task_kill_flags_no_exit_handler, it is possible to prevent the task calling its exit
handler, and so it terminates immediately, never running again.

Note: When task_kill is used to kill a task with the task_kill_flags_no_exit_handler
flag set, any waiting tasks (caused by task_wait) are not informed that the task has been
killed. This is because the exit handler is used to inform waiting tasks, so if the exit handler is
not called the waiting tasks are not informed about the event.

A task can temporarily make itself immune to being killed by calling task_immortal; see
Section 5.11: Killing a task on page 36 for more details. When a task which has made itself
immortal is killed, task_kill returns immediately, but the killed task does not die until it
makes itself mortal again.

Note: task_kill may return before the task has died. A task_kill should normally be followed by a
task_wait to be sure that the task has made itself mortal again, and completed its exit
handler.

On ST20-C2 cores task_kill cannot be used on a high priority process.

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

264

Callable from

Tasks only

Example

void tidy_up(task_t* task, int status)
{

task_kill(task, status, 0);
task_wait(&task, 1, TIMEOUT_INFINITY);
task_delete(task);

}

See also

task_delete, task_immortal, task_mortal

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

265

task_lock
Prevent task rescheduling

Synopsis

#include <task.h>

void task_lock(void);

Arguments

None

Results

None

Errors

None

Description

This function prevents the kernel scheduler from preempting or timeslicing the current task,
although the task can still be interrupted by interrupt handlers (and high-priority processes on
the ST20-C2).

This function should always be called as a pair with task_unlock(), so that it can be used
to create a critical region in which the task cannot be preempted by another task. If the task
deschedules, the lock is terminated. Calls to task_lock() can be nested, and the lock not
be released until an equal number of calls to task_unlock() have been made.

Callable from

Tasks only

See also

interrupt_lock, task_unlock

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

266

task_mortal
Make the current task mortal

Synopsis

#include <task.h>

void task_mortal(void);

Arguments

None

Results

None

Errors

None

Description

task_mortal makes the current task mortal again. If an attempt had been made to kill the
task whilst it was immortal, it dies as soon as task_mortal is called.

Calls to task_immortal are cumulative. That is, if a task makes two calls to
task_immortal, then two calls to task_mortal are required before it becomes mortal
again.

Callable from

Tasks only

See also

task_immortal, task_kill

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

267

task_name
Return the name of the specified task

Synopsis

#include <task.h>

const char*task_name(task_t *task);

Arguments

task_t* task Task to return the name of

Results

The name of the specified task.

Errors

None

Description

This function returns the name of the specified task, or if task is NULL, the current task. The
task’s name is set when the task is created.

Callable from

A task or a high priority process (on an ST20-C2).

See also

task_create, task_init

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

268

task_onexit_set
Set the task onexit handler

Synopsis

#include <task.h>

task_onexit_fn_t task_onexit_set(task_onexit_fn_t fn);

Arguments

task_onexit_fn_t fn Task onexit handler to be called

Results

Returns the previous onexit handler, or NULL if none had previously been set.

Errors

None

Description

Sets the task onexit handler to be fn. This handler is called whenever a task exits. The
handler is called by the task which exits, before the task is marked as terminated. fn must be
a pointer to a function which must have the following prototype:

void task_onexit_fn(task_t* task, int param)

where:

task is the task pointer of the task which has just exited, and

param is the parameter which was passed to task_exit, or the value the task’s entry point
function returned.

Callable from

Tasks only

See also

task_exit

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

269

task_onexit_set_sl
Set the task onexit handler specifying a static link

Synopsis

#include <task.h>

task_onexit_fn_t task_onexit_set_sl(task_onexit_fn_t fn,
 void* sl);

Arguments

task_onexit_fn_t fn Task onexit handler to be called

void* sl Static link to be used when calling fn

Results

Returns the previous onexit handler, or NULL if none had previously been set.

Errors

None

Description

Sets the task onexit handler to be fn. This handler is called whenever a task exits. The
handler is called by the task which exits, before the task is marked as terminated. fn must be
a pointer to a function which must have the following prototype:

void task_onexit_fn(task_t* task, int param)

where:

task is the task pointer of the task which has just exited, and

param is the parameter which was passed to task_exit, or the value the task’s entry point
function returned.

sl is the static link which should be used when calling fn. This is normally obtained as a
result of loading an RCU. This does not have to be the same static link which was used when
the task was created. See the ST20 Embedded Toolset Reference Manual, chapter Building
and running relocatable code.

Callable from

Tasks only

See also

task_exit, task_onexit_set_sl

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

270

task_priority
Retrieve a task’s priority

Synopsis

#include <task.h>

int task_priority(task_t* Task);

Arguments

task_t* Task Pointer to the task structure

Results

Returns the OS20 priority of the task pointed to by Task. If Task is NULL the return result is
the priority of the calling task. If Task was created as an ST20-C2 high priority process then
task_priority returns the value -1.

Errors

None

Description

task_priority() retrieves the OS20 priority of the task specified by Task or the priority of
the currently active task if Task is NULL.

Callable from

A task or a high priority process (on an ST20-C2)

See also

task_priority_set

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

271

task_priority_set
Set a task’s priority

Synopsis

#include <task.h>

int task_priority_set(task_t* Task, int NewPriority);

Arguments

task_t* Task Pointer to the task structure

int NewPriority Desired OS20 priority value for the task

Results

task_priority_set() returns the task's previous OS20 priority. If Task is NULL, the
return result is the priority of the calling task.

Errors

None

Description

task_priority_set() sets the priority of the task specified by Task, or of the currently
active task if Task is NULL. If this results in the current task’s priority falling below that of
another task which is ready to run, or a ready task now has a priority higher than the current
task’s, then tasks may be rescheduled.

On ST20-C2 cores task_priority_set cannot be used on a high priority process.

Callable from

Tasks only

See also

task_priority

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

272

task_private_data
Retrieve a task’s private data pointer

Synopsis

#include <task.h>

void* task_private_data(task_t* task, void* cookie);

Arguments

task_t* task Pointer to the task structure

void* cookie Unique identifier

Results

task_private_data() returns the address of the private data registered for the task
pointed to by task, under the unique identifier cookie, or NULL if no data has been
registered.

Errors

None

Description

task_private_data() retrieves the address of the private data for the task identified by
task, under the unique identifier cookie. If task is NULL the calling task is used for the
operation. This interface is intended to be used by libraries which have to store private data on
a per task basis.

If this API is used prior to kernel initialization, then the operation is performed on the root task.

Callable from

Tasks only

See also

task_private_data_set

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

273

task_private_data_set
Set a task’s private data pointer

Synopsis

#include <task.h>

int task_private_data_set(task_t* task,
 void* data,
 void* cookie,
 void (*destructor)(void* data));

Arguments

task_t* task Pointer to the task structure

void* data Pointer to task private data

void* cookie Unique identifier

void (*destructor)(void* data)

Deallocation routine

Results

Returns 0 for success, -1 if an error occurs.

Errors

If OS20 runs out of memory, or private data for this task already exits under the specified
cookie (and data is not NULL) then -1 is returned.

Description

task_private_data_set() is used to store private data for the task identified by task,
under the unique identifier cookie. If task is NULL the calling task is used for the operation.
This interface is intended to be used by libraries which have to store private data on a per task
basis.

The destructor routine is called when the task is deleted, so that the client can free the
memory allocated.

If a piece of data registered with this call is no longer required, then call this routine with a
NULL data pointer. This causes the destructor for the old data to be called and leaves the
task with no data registered under the cookie given.

If this API is used prior to kernel initialization, then the operation is performed on the root task.

Callable from

Tasks only.

See also

task_private_data

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

274

task_reschedule
Reschedule the current task

Synopsis

#include <task.h>

void task_reschedule(void);

Arguments

None

Results

None

Errors

None

Description

This function reschedules the current task, moving it to the back of the current priority
scheduling list, and selecting the new task from the front of the list. If the scheduling list was
empty before this call, then it has no effect, otherwise it performs a timeslice at the current
priority.

If task_reschedule is called while a task_lock is in effect, it does not cause a
reschedule.

On the ST20-C2, this can be called from tasks running as high priority processes, in which
case the task effectively timeslices, something which high priority processes never do
automatically.

Callable from

A task or a high priority process (on an ST20-C2).

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

275

task_resume
Resume a suspended task

Synopsis

#include <task.h>

int task_resume(task_t* Task);

Arguments

task_t* Task Pointer to the task structure

Results

Returns 0 if the task was successfully resumed, or -1 if it could not be resumed.

Errors

If the task is not suspended, then the call fails.

Description

This function resumes the specified task. The task must previously have been suspended,
either by calling task_suspend, or created by specifying a flag of
task_flags_suspended to task_create or task_init.

If the task is suspended multiple times, by more than one call to task_suspend, then an
equal number of calls to task_resume are required before the task starts to execute again.

If the task was waiting for an event when it was suspended, then the event must also occur
before the task starts executing. When a task is resumed it starts executing the next time it is
the highest priority task, and so may preempt the task calling task_resume.

On ST20-C2 cores, task_resume cannot be used on a high priority process.

Callable from

Tasks only

See also

task_suspend

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

276

task_stack_fill
Retrieve task stack fill settings

Synopsis

#include <task.h>

int task_stack_fill(task_stack_fill_t* fill);

Arguments

task_stack_fill_t* fill Pointer to structure to be filled in

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if fill is NULL.

Description

task_stack_fill() retrieves the current settings for task stack filling and writes them to a
structure provided by the pointer fill.

Table 58 shows the layout of the structure task_stack_fill_t.

Callable from

Tasks only

Example

#include <task.h>

int result;
task_stack_fill_t settings;
result = task_stack_fill(&settings);

See also

task_create, task_init, task_stack_fill_set

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

277

task_stack_fill_set
Set task stack fill settings

Synopsis

#include <task.h>

int task_stack_fill_set(task_stack_fill_t* fill);

Arguments

task_stack_fill_t* fill Pointer to new settings

Results

Returns 0 on success, -1 if an error occurs.

Errors

Returns -1 if the new settings are invalid.

Description

task_stack_fill_set() allows task stack fill settings to be changed by reading the new
settings from the structure provided by the pointer fill. Task stack filling can be enabled,
disabled or the fill pattern redefined.

Any subsequent calls to the functions task_init() or task_create() use these settings
when initializing the stack.

By default, task stack filling is enabled with a fill pattern of 0x12345678. Any task that is
created using task_init() or task_create() has its stack initialized by overwriting the
whole contents of the stack with the value 0x12345678. Table 58 shows the layout of the
task_stack_fill_t structure.

Table 59 shows all the flag values which can be used in the field task_stack_fill_state.
Any other value not in the table causes task_stack_fill_set() to return -1.

Field Description

task_stack_fill_state Enable or Disable stack filling (See Table 59).

task_stack_fill_pattern Pattern value used when a stack is initialized.

Table 58: Layout of structure task_stack_fill_t

Flag Description

task_stack_fill_state_off Disable task stack filling.

task_stack_fill_state_on Enable task stack filling.

Table 59: Flags used by task_stack_fill_state

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

278

Callable from

Tasks only

Example

#include <task.h>

task_stack_fill_t options = {
 task_stack_fill_state_on,
 0x76543210
};

int result = task_stack_fill_set(&options);

See also

task_create, task_init, task_stack_fill

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

279

task_status
Return information about the specified task

Synopsis

#include <task.h>

int task_status(task_t* Task,
task_status_t *Status,
task_status_flags_t Flag);

Arguments

task_t* Task Pointer to the task structure

task_status_t *Status Where to return the status information

task_status_flags_t Flag What information to return

Results

Returns 0 if the status was successfully reported, -1 if it failed.

Errors

If the task does not exist then the call fails.

Description

This function returns information about the specified task. If Task is NULL then information is
returned about the current task. Information is returned by filling in the fields of Status, which
must be allocated by the user, and is of type task_status_t. The fields of this structure are:

Note: The task_time field is only valid when using the debug version of the kernel library or when
OS20 has been built with time logging enabled. See Section 15.3.4: Time logging (ST20-C2
core only) for details.

The Flags parameter is used to indicate which values should be returned. Values which can
be determined immediately (task_stack_base, task_stack_size and task_time) are
always returned. If only these fields are required then Flags should be set to 0. However,
calculating how much stack has been used may take a while, and so is only returned when
Flags is set to task_status_flags_stack_used.

On ST20-C2 cores task_status cannot be used on a high priority process.

Field name Description

task_stack_base Base address of the task’s stack.

task_stack_size Size of the task’s stack in bytes.

task_stack_used Amount of stack used by the task in bytes.

task_time CPU time used by the task.

Table 60: task_status_t fields

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

280

Callable from

Tasks only

See also

task_stack_fill_set

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

281

task_suspend
Suspend a specified task

Synopsis

#include <task.h>

int task_suspend(task_t* Task);

Arguments

task_t* Task Pointer to the task structure

Results

Returns 0 if the task was successfully suspended, or -1 if it could not be suspended.

Errors

If the task has been deleted then the call fails.

Description

This function suspends the specified task. If Task is NULL then this suspends the current
task.

task_suspend stops the task from executing immediately, until it is resumed using
task_resume.

On ST20-C2 cores task_suspend cannot be used on a high priority process.

Caution: task_suspend() is an inherently dangerous API when applied to any
task except the caller, because it takes no account of the state of the
specified task.

If the suspended task holds any semaphores or other locks, these locks
will not be released until the task is resumed.

Similarly, if the suspended task is waiting for a lock, the fact that the task
is suspended does not prevent the lock being assigned to the task.

Both these situations make deadlock highly likely.

task_suspend() can be used for interactive debug/test tools but
should not be used as a general syncronization mechanism.

Callable from

Tasks only

See also

task_resume

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

282

task_unlock
Allow task rescheduling

Synopsis

#include <task.h>

void task_unlock(void);

Arguments

None

Results

None

Errors

None

Description

This function allows the scheduler to resume scheduling following a call to task_lock().
The highest priority task currently available (which may not be the task which calls this
function) continues running.

This function should always be called as a pair with task_lock(), so that it can be used to
create a critical region in which the task cannot be preempted by another task. As calls to
task_lock() can be nested, the lock is not released until an equal number of calls to
task_unlock() have been made.

Callable from

Tasks only

See also

interrupt_lock, task_lock

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

283

task_wait
Wait until one of a list of tasks completes

Synopsis

#include <task.h>
#include <ostime.h>

int task_wait(task_t **tasklist,
 int ntasks,
 const clock_t *timeout);

Arguments

task_t **tasklist Pointer to a list of task_t pointers

int ntasks The number of tasks in tasklist

const clock_t *timeout Maximum time to wait for tasks to terminate. Expressed as
an absolute time or as TIMEOUT_IMMEDIATE or
TIMEOUT_INFINITY

Results

The index into the array of the task which has terminated, or -1 if the timeout occurs.

Errors

None

Description

task_wait() waits until one of the indicated tasks has terminated (by returning from its
entry point function or calling task_exit), or the timeout period has passed. Only once a
task has been waited for in this way is it safe to free or otherwise reuse its stack, task_t and
tdesc_t data structures.

tasklist is a pointer to a list of task_t structure pointers, with ntasks elements. Task
pointers may be NULL, in which case that element is ignored.

timeout is a pointer to the timeout value. If this time is reached then the function returns -1.

The timeout value must be specified as an absolute time, which is an implementation
dependent quantity; see Chapter 9: Real-time clocks on page 57.

Two special values can be specified for timeout: TIMEOUT_IMMEDIATE indicates that the
function should return immediately, even if no tasks have terminated; TIMEOUT_INFINITY
indicates that the function should ignore the timeout period, and only return when a task
terminates.

Callable from

Tasks only

See also

task_create, task_init

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

284

time_after
Return whether one time is after another

Synopsis

#include <ostime.h>

int time_after(const clock_t time1,
const clock_t time2);

Arguments

const clock_t time1 A clock value returned by time_now

const clock_t time2 A clock value returned by time_now

Results

Returns 1 if time1 is after time2, otherwise 0.

Errors

None

Description

Returns the relationship between time1 and time2. Time values are cyclic, so time1 may
be numerically less than time2, but still represent a later time, if the difference is larger than
half of the complete time period.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

time_minus, time_now

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

285

time_minus
Subtract two clock values

Synopsis

#include <ostime.h>

clock_t time_minus(const clock_t time1,
const clock_t time2);

Arguments

const clock_t time1 A clock value returned by time_now

const clock_t time2 A clock value returned by time_now

Results

Returns the result of subtracting time2 from time1.

Errors

None

Description

Subtracts one clock value from another using modulo arithmetic. No overflow checking takes
place because the clock values are cyclic.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

time_plus

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

286

time_now
Return the current time

Synopsis

#include <ostime.h>

clock_t time_now(void);

Arguments

None

Results

Returns the number of ticks since the system started.

Errors

None

Description

time_now() returns the number of ticks since the system started running. The exact time at
which counting starts is implementation specific, but is no later than the call to
kernel_start.

The units of ticks is an implementation dependent quantity; see Chapter 9: Real-time clocks
on page 57.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

task_delay

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

287

time_plus
Add two clock values

Synopsis

#include <ostime.h>

clock_t time_plus(const clock_t time1,
const clock_t time2);

Arguments

const clock_t time1 A clock value returned by time_now

const clock_t time2 A clock value returned by time_now

Results

Returns the result of adding time1 to time2.

Errors

None

Description

Adds one clock value to another using modulo arithmetic. No overflow checking takes place
because the clock values are cyclic.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

time_minus

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

288

time_ticks_per_sec
Obtain the current system clock rate

Synopsis

#include <ostime.h>

clock_t time_ticks_per_sec(void);

Arguments

None

Returns

The number of system clock ticks per second.

Errors

None

Description

Returns the number of system clock ticks per second.

On ST20-C2, this number will be different depending on the calling context. Specifically the
system clock runs 64 times faster for high priority processes and interrupts than for low priority
processes and interrupts. By default OS20 tasks and interrupts run at low priority.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

time_ticks_per_sec_set, timer_init_pwm

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

289

time_ticks_per_sec_set
Specify the number of ticks per second observed on a hardware device

Synopsis

#include <ostime.h>

void time_ticks_per_sec_set(clock_t tick_rate);

Arguments

clock_t tick_rate Number of ticks per second. On ST20-C2 this is the number
of HIGH PRIORITY ticks per second.

Errors

None

Description

This function is used to update the operating systems estimate of the system clock tick rate.

On ST20-C1 it is not always possible to estimate the tick rate, making the use of this function
mandatory unless the timer is managed using timer_init_pwm(). If timer_init_pwm()
is used the tick rate is calculated from the PWM's input frequency.

On ST20-C2 the tick rate is an architectural constant thus it is always possible to make an
estimate. However, since this architectural constant is subject to a small percentage tolerance
in some applications it is desirable to update the tick rate to a more precise value.

Callable from

A task, interrupt service routine or a high priority process (on an ST20-C2).

See also

time_ticks_per_sec, timer_init_pwm

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

290

timer_init_pwm
Use OS20's in built timer management code for ST20-C1

Synopsis

#include <c1timer.h>

int timer_init_pwm(void *base,
int number,
int level,
int freq_in_khz,
timer_init_pwm_flags_t flags);

Arguments

void *base PWM base address

int number Interrupt number

int level Interrupt level

int freq_in_khz PWM input frequency (in KHz)

timer_init_pwm_flags_t flags

Various flags which affect PWM behavior

Results

Returns 0 for success, -1 if an error occurs.

Errors

Returns -1 if the PWM interrupt handler cannot be installed.

Description

This function installs an ST20-C1 timer peripheral implemented using the PWM hardware
found on many ST20-C1 devices. As such this function is unique to the ST20-C1.

Before calling this function interrupt_init() must already have been called for the
desired interrupt level. The trigger mode for that interrupt level must be
interrupt_trigger_mode_rising. Unless there is a specific reason to avoid it, the
PWM should use interrupt level 0 (least priority) since there are no real time constraints on
interrupt latancy for the OS timer.

After calling this function the interrupt must be enabled using the combination of
interrupt_enable_global(), interrupt_enable() and
interrupt_enable_number() appropriate to the device.

The PWM input frequency is used to attempt to acheive target rates for both the system clock
and the timeslice. It is also used to configure the value returned by
time_ticks_per_second(). The target rates for the system clock is 15625 ticks per
second while the target quiessant timeslice is 2 ms.

Note: Few PWM devices are capable of directly providing a 15625 tick rate, usually the achieved tick
rate is much faster (sometimes by as much as two orders of magnitude).

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

291

Callable from

Tasks only.

See also

interrupt_init, time_ticks_per_sec

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

292

timer_initialize
Initialize the timer plug-in library for ST20-C1 cores

Synopsis

#include <c1timer.h>
void timer_initialize(timer_api_t* timer_functions);

Arguments

timer_api_t* timer_functions Table of function pointers for use by the OS20 time
functions

Results

None

Errors

None

Description

The timer_initialize function enables OS20 when it is run on an ST20-C1 core to fully
implement the OS20 API. The ST20-C1 core does not have a built-in timer and therefore
requires the timer code in order to support functions that require timed waits such as
task_delay or message_claim_timeout. See Chapter 13: ST20-C1 specific features on
page 87.

The plug-in functions are typically implemented using the on-chip PWM peripheral but there
are other ways the timer can be implemented.

timer_functions should be populated with function pointers as described below.

int (*timer_read)(void);

timer_read is used by OS20 to determine the current time.

timer_read should return a 32-bit unsigned integer (although for legacy reasons it is
prototyped to return a signed integer)). To ensure that the timer arithmetic works correctly it is
important that the timer does not roll-over before it reaches 0xFFFFFFFF. For example a
16-bit counter should be multiplied by 65536 before being returned, in order to meet the roll-
over requirements.

void (*timer_set)(int time);

timer_set is used by OS20 to set the point at which the timer expires.

timer_set should treat its argument as a 32-bit unsigned integer (although for legacy
reasons it is prototyped to take a signed integer). When the current time reaches the supplied
time, the timer plug-in should call timer_interrupt. Typically this function programs
whatever hardware device is being used to generate an interrupt at the appropriate time.

void (*timer_enable_int)(void);
void (*timer_disable_int)(void);

The functions are used by OS20 to enable or disable the timer interrupt.

The timer_interrupt function should not be called unless the timer interrupt is enabled.

ADCS 7473749D

16.2 OS20 function descriptions 16 Alphabetical list of functions

293

void (*timer_raise_int)(void);

timer_raise_int is used by OS20 to forcibly generate a timer interrupt.

This function should cause timer_interrupt to be called, typically by generating a
software interrupt using interrupt_raise_number.

Callable from

Tasks only

Example

Refer to the examples supplied with the toolset in:

$ST20ROOT/examples/os20/c1timer

See also

timer_interrupt

OS20 User Manual 16.2 OS20 function descriptions

ADCS 7473749D

294

timer_interrupt
Notify OS20 that the timer has expired

Synopsis

#include <c1timer.h>

void timer_interrupt(void);

Arguments

None

Results

None

Errors

None

Description

timer_interrupt should be used only on ST20-C1 cores and is used to notify OS20 that
the timer has expired.

This function should be called by the ST20-C1 timer interrupt service routine. See
Chapter 13: ST20-C1 specific features on page 87.

Callable from

Interrupt service routines only.

Example

An example is provided in the examples directory supplied with the toolset:

$ST20ROOT/examples/os20/c1timer

See also

timer_initialize

ADCS 7473749D

295

Revision history

Version Date Comments

D Feb 06 Supports the R2.2.1 Product Release of the ST20 Toolset.

Preface on page xiii updated.

Section 3.2: Optional debug features on page 18 updated.

Section 4.2: Allocation strategies on page 22, Table 3 updated.

Section 12.2: Initializing the cache support system on page 82 updated.

Section 15.3.2: Changing the number of task priority levels on page 105 updated.

Chapter 16: Alphabetical list of functions:

cache_init_controller on page 126 updated.

cache_invalidate_instruction on page 129 updated.

message_claim_timeout on page 196 updated.

message_receive_timeout on page 204 updated.

mutex_lock on page 216 corrected.

semaphore_wait_timeout on page 240 updated.

task_kill on page 263 updated.

time_ticks_per_sec on page 288 corrected.

time_ticks_per_sec_set on page 289 corrected.

C Nov 04 Supports the R2.1 Product Release of the ST20 Toolset.

Tasks chapter:
Added descriptions of task_private_data and task_private_data_set.

Real-time clocks chapter:
Added new section on Detemining the tick rate.

ST20-C1 specific features chapter:
Added new section on In-built PWM support.

Alphabetical list of functions chapter:
Added the functions task_private_data, task_private_data_set,
time_ticks_per_sec, time_ticks_per_sec_set and timer_init_pwm.

OS20 User Manual

ADCS 7473749D

296

B Nov 03 Supports the R2.0 Product Release of the ST20 Toolset.

Added Mutex functions and updated the ‘Kernel’ and ‘Interrupts’ chapters.

A Aug 03 Split from ST20 Embedded Toolset User Manual, ADCS 7143840H.

Version Date Comments

ADCS 7473749D

297

Index

Numerics
2D block move 93, 99-100, 208

B
Backwards compatibility 16, 65-66, 103

C
Cache 81-85, 117-132

example of use 84
locking configuration of 130
reporting status of 131

Cache controller
initializing 126

cache_config_data library function 82, 117
cache_config_instruction library function

119
cache_disable_data library function 83, 121
cache_disable_instruction library

function 83, 122
cache_enable_data library function 83, 123
cache_enable_instruction library function

83, 124
cache_flush_data library function 84, 125
cache_init_controller library function 82,

126
cache_invalidate_data library function 84,

128
cache_invalidate_instruction library

function 84, 129
cache_lock library function 83, 130
cache_status library function 131
Callback, registering for an event 133
callback_interrupt_ ... library functions

133
callback_task_ ... library functions 133
chan_alt library function 96, 135
chan_create library function 137
chan_create_address library function 138
chan_delete library function 139

chan_in library function 95, 140
chan_in_char library function 95, 141
chan_in_init library function 95
chan_in_int library function 142
chan_init library function 95, 143
chan_init_address library function 95, 144
chan_out library function 95, 145
chan_out_char library function 95, 146
chan_out_init library function 95
chan_out_int library function 147
chan_reset library function 148
chan_t

data structure 24, 94
Channel I/O 93-98, 135-148
Channels

creating
hard 138
soft 137

deleting 139
initializing

hard 144
soft 143

receiving
character 141
data 140
integers 142

resetting 148
waiting for input on 135
writing to

characters 146
data 145
integers 147

Class 4-5
Clocks see time, timers
Command line conventions xiv
Compiling/configuring

OS20 101-109
caching peripheral memory 103
initialization options 102
placing OS20 in memory 103, 108

Conventions used in this manual xiv

OS20 User Manual

ADCS 7473749D

298

Critical regions 49

D
Data cache

configuring 117
disabling 121
enabling 123
flushing 125
invalidating 128

Debugging. See Compiling/configuring
OS20

Device
identification 149
name 150

device_id library function 149
device_name library function 150

E
Event, register callback for 133

I
Initialization

of memory partitions for OS20 23
Instruction cache

configuring 119
disabling 122
enabling 124
invalidating 129

Internal partition
initialization 10
link error 24

interrupt_clear library function 74, 151
interrupt_clear_number library function

74, 152
interrupt_delete library function 76, 153
interrupt_disable library function 71, 154
interrupt_disable_global library function

71, 155
interrupt_disable_mask library function

71, 156
interrupt_disable_number library function

71, 157
interrupt_enable library function 71, 158
interrupt_enable_global library function

71, 159
interrupt_enable_mask library function 71,

160
interrupt_enable_number library function

71, 162

interrupt_init library function 67-69, 163
interrupt_init_controller library

function 67, 165
interrupt_install library function 68-69,

167
interrupt_install_sl library function 68,

169
interrupt_lock library function 73, 171
interrupt_pending library function 74, 172
interrupt_pending_number library function

74, 173
interrupt_raise library function 73, 174
interrupt_raise_number library function

73, 175
interrupt_status library function 75, 176
interrupt_status_number library function

75, 178
interrupt_test_number library function 74,

180
interrupt_trigger_mode_number library

function 75, 182
interrupt_uninstall library function 76,

183
interrupt_unlock library function 73, 184
interrupt_wakeup_number library function

75, 185
Interrupts 61-78, 151-185

callback support 105
controller 61-67
controller, initializing 165
disabling 155
enabling 159
handlers

installing 167, 169
uninstalling 183

level controller 61-67, 69-71, 75
levels

changing number of 105
clearing 151
deleting 153
disabling 154, 156
enabling 158, 160
initializing 163
raising 174
reporting status of 176

locking 171
numbers

changing the trigger mode of 182
clearing 152
disabling 157
enabling 162

Index

ADCS 7473749D

299

raising 175
reporting status of 178
return pending 173
set wakeup status of 185
testing whether pending 180

reducing latency 106, 108
restrictions 76
returning pending levels 172
timer 294
unlocking 184

K
Kernel

cache functions 81-85, 117-132
clock functions 57-60, 284
creating and running a task 32
debug version 18
example program 11-15
idle time 186
implementation 17
initializing 187
interrupting tasks 151-185
linking 9-16
objects and classes 4-5
performance considerations 108-109
recompiling 101-109
Starting preemptive scheduling regime 188
time delays 34
time logging 18, 106
up-time 189

kernel_idle library function 186
kernel_initialize library function 19, 187
kernel_start library function 188
kernel_time library function 189
kernel_version library function 190

M
Memory

allocating 191-192
block move 93, 99-100
block moves 208-210
deallocating 193
partitions

creating 219-221
deleting 221-222
getting status of 226
initializing 222-225

reallocating 194
set-up 21-26, 219-228
set-up for OS20 21-26

memory_allocate library function 191

memory_allocate_clear library function
192

memory_deallocate library function 193
memory_reallocate library function 194
Message buffers

claiming 195-196
releasing 206

Message handling
with OS20 51-56, 195-207

Message queues
creating 198-199
deleting 200
initializing 201-202
receiving messages 203-204

message_claim library function 195
message_claim_timeout library function 54,

196, 200
message_create_queue library function 198
message_create_queue_timeout library

function 52, 199
message_delete_queue library function 55,

200
message_hdr_t

data structure 56
message_init_queue library function 52, 201
message_init_queue_timeout library

function 52, 202
MESSAGE_MEMSIZE_QUEUE macro 53
message_queue_t

data structure 24, 56
message_receive library function 203
message_receive_timeout library function

200, 204
message_release library function 55, 206
message_send library function 54, 207
Messages

handling 51-56, 195-207
sending 207

move2d_all library function 100, 208
move2d_non_zero library function 100, 209
move2d_zero library function 100, 210
mutex header file 49
mutex_create_fifio library function 211
mutex_create_priority library function

212
mutex_delete library function 213
mutex_init_fifo library function 214
mutex_init_priority library function 215
mutex_lock library function 216

OS20 User Manual

ADCS 7473749D

300

mutex_release library function 217
mutex_trylock library function 218
mutexes 47

priority inversion protection 48
mutual exclusion 47

O
Objects

creating 4
deleting 5

OS20
version number 190

os20lku.cfg configuration command file 9
os20rom.cfg configuration command file 9

P
Partition

calculating size 24
internal or system

link error 24
partition_create_fixed library function

219
partition_create_heap library function

220
partition_create_simple library function

221
partition_delete library function 222
partition_init_fixed library function 223
partition_init_heap library function 23,

224
partition_init_simple library function 23,

225
partition_status library function 25, 226
partition_t

data structure 24, 26
Performance consideration 108-109
Priority

OS20 implementation 6, 28
priority inversion 48
priority mutexes 48
Programmable timer peripheral 88

R
Real-time clocks 57-60, 284
Recompile/reconfigure. See Compiling/

configuring
OS20

Reset 66

Root task
OS20 30, 38, 187

RTOS. See Kernel
runtime os20 9, 67, 187-188

S
semaphore_create_fifo library function 43,

229
semaphore_create_fifo_timeout library

function 43, 230
semaphore_create_priority library

function 43, 231
semaphore_create_priority_timeout

library function 43, 232
semaphore_delete library function 233
semaphore_init_fifo library function 43,

234
semaphore_init_fifo_timeout library

function 43, 235
semaphore_init_priority library function

43, 236
semaphore_init_priority_timeout

library function 43, 237
semaphore_signal library function 44, 238
semaphore_t

data structure 24, 43
semaphore_wait library function 44, 239
semaphore_wait_timeout library function

44, 240
Semaphores 43-46, 229

creating
FIFO queued 229
FIFO queued with timeout capability 230
priority queued 231
priority queued with timeout capability 232

deleting 233
initializing

FIFO queued 234
FIFO queued with timeout capability 235
priority queued 236
priority queued with timeout capability 237

signalling 238
waiting for 239-240

ST20-C2
channel communications 93-98, 135-148

Stack usage 37
System partition

initialization 10
link error 24

Index

ADCS 7473749D

301

T
task_context library function 36, 242
task_create library function 32, 93, 243
task_create_sl library function 246
task_data library function 38, 249
task_data_set library function 38, 250
task_delay library function 34, 251
task_delay_until library function 34, 252
task_delete library function 41, 253
task_exit library function 39, 254
task_id library function 36, 255
task_immortal library function 36, 256
task_init library function 32, 93, 257
task_init_sl library function 260
task_kill library function 36, 263
task_lock library function 31, 265
task_mortal library function 36, 266
task_name library function 36, 267
task_onexit_set library function 39, 268
task_onexit_set_sl library function 269
task_priority library function 30, 270
task_priority_set library function 30, 271
task_private_data library function 272
task_private_data_set library function

273
task_reschedule library function 34, 274
task_resume library function 35, 275
task_stack_fill library function 37, 276
task_stack_fill_set library function 37,

277
task_status library function 37, 279
task_suspend library function 35, 281
task_t

data structure 24, 27
task_unlock library function 31, 282
task_wait library function 40, 283
Tasks

creating 243, 246
data 38
data pointers

retrieving 249
setting 250

delaying 251-252
deleting 253
execution context 242
exiting 254
identity 255
initializing 257, 260
killing 36, 263

locking 265
mortality 256, 266
names 267
onexit handlers

setting 268-269
priorities 6, 28

retrieving 270
setting 271

private data pointer 272-273
rescheduling 274, 282
resuming 275
scheduling 31, 34
stack fill settings

retrieving 276
setting 277

status 279
suspending 281
synchronizing 43-46, 229
terminating 39
waiting for 283

tdesc_t
data structure 24, 27

Time
adding values 287
comparison 284
getting current 286
logging 18, 106
number of ticks per second 289
slicing 31

ST20-C1 29
ST20-C2 29

subtraction 285
system clock rate 288

time_after library function 59, 284
time_minus library function 59, 285
time_now library function 58, 286
time_plus library function 59, 287
time_ticks_per_sec library function 288
time_ticks_per_sec_set library function

289
timer_init_pwm library function 290
timer_initialize library function 88, 292
timer_interrupt library function 294
Timers

initializing 292
interrupt function 294
real-time clocks 57-60, 284
support for ST20-C1 87-91
timer management code for ST20-C1 290

Trigger mode 61, 75
Two dimensional block move 93, 99-100, 208

OS20 User Manual

ADCS 7473749D

302

	OS20 User Manual
	Contents
	Preface
	ST20 documentation suite
	OS20 User Manual (this document)
	ST20 Embedded Toolset Delivery Manual (ADCS 7257995)
	ST20 Embedded Toolset User Manual (ADCS 7143840)
	ST20 Embedded Toolset Reference Manual (ADCS 7250966)

	Conventions used in this manual
	Typographical conventions
	Command line conventions

	Acknowledgements

	Introduction 1
	1.1 Overview
	1.1.1 Naming
	1.1.2 How this manual is organized
	1.1.3 Related OS20 material

	1.2 Classes and objects
	1.2.1 Object lifetime

	1.3 Defining memory partitions
	1.4 Tasks
	1.5 Priority
	1.6 Semaphores
	1.7 Message queues
	1.8 Clocks
	1.9 Interrupts
	1.10 Device ID
	1.11 Cache
	1.12 Processor specific functions

	Getting started 2
	2.1 Building for OS20
	2.1.1 How it works
	2.1.2 Initializing partitions
	2.1.3 Example

	2.2 Starting OS20 manually

	Kernel 3
	3.1 Implementation
	3.2 Optional debug features
	3.2.1 Assertion checking
	3.2.2 Time logging
	3.2.3 Using the debug kernel

	3.3 OS20 kernel
	3.4 Kernel header file: kernel.h

	Memory and partitions 4
	4.1 Partitions
	4.2 Allocation strategies
	4.3 Predefined partitions
	4.3.1 Calculating partition sizes
	Object memory allocation
	Object overhead memory allocation

	4.4 Obtaining information about partitions
	4.5 Partition header file: partitio.h

	Tasks 5
	5.1 OS20 tasks overview
	5.2 Implementation of priority and timeslicing
	5.2.1 Timeslicing on the ST20-C1
	5.2.2 Timeslicing on the ST20-C2

	5.3 OS20 priorities
	5.4 Scheduling
	5.5 Creating and running a task
	5.5.1 Creating a task for an RCU

	5.6 Synchronizing tasks
	5.7 Communicating between tasks
	5.8 Timed delays
	5.9 Rescheduling
	5.10 Suspending tasks
	5.11 Killing a task
	5.12 Getting the current task’s ID
	5.13 Stack usage
	5.14 Task data
	5.14.1 Application data
	5.14.2 Library data

	5.15 Task termination
	5.16 Waiting for termination
	5.17 Deleting a task
	5.18 Task header file: task.h

	Semaphores 6
	6.1 Semaphores overview
	6.2 Using semaphores
	6.3 Semaphore header file: semaphor.h

	Mutexes 7
	7.1 Mutexes overview
	7.1.1 Priority inversion

	7.2 Using mutexes
	7.3 Mutex header file: mutex.h

	Message handling 8
	8.1 Message queues overview
	8.2 Creating message queues
	Example

	8.3 Using message queues
	8.4 Message header file: message.h

	Real-time clocks 9
	9.1 ST20-C1 clock peripheral
	9.2 The ST20 timers on the ST20-C2
	9.3 Reading the current time
	9.4 Determining the tick rate
	9.5 Time arithmetic
	9.6 Time header file: ostime.h

	Interrupts 10
	10.1 Interrupt models
	10.2 Selecting the correct interrupt handling system
	10.2.1 Compiling legacy code
	10.2.2 Linking legacy code

	10.3 Initializing the interrupt handling support system
	10.3.1 Calculating stack size

	10.4 Attaching an interrupt handler in OS20
	10.4.1 Attaching interrupt handlers directly to peripherals
	Example

	10.4.2 Attaching interrupt handlers using an interrupt level controller
	Example

	10.4.3 Routing interrupts to external pins
	10.4.4 Efficient interrupt layouts
	Example

	10.5 Initializing the peripheral device
	10.6 Enabling and disabling interrupts
	10.6.1 Enabling and disabling interrupts without an ILC or with ILC-1
	10.6.2 Enabling and disabling interrupts with ILC-2 or ILC-3

	10.7 Example: setting an interrupt for an ASC
	10.8 Locking out interrupts
	10.9 Raising interrupts
	10.10 Retrieving details of pending interrupts
	10.11 Clearing pending interrupts
	10.12 Changing trigger modes
	10.13 Low power modes and interrupts
	10.14 Obtaining information about interrupts
	10.15 Uninstalling interrupt handlers and deleting interrupts
	Example

	10.16 Restrictions on interrupt handlers
	10.17 Interrupt header file: interrup.h

	Device information 11
	11.1 Device ID header file: device.h

	Caches 12
	12.1 Introduction
	12.1.1 Data caches with internal SRAM

	12.2 Initializing the cache support system
	12.3 Configuring the caches
	12.4 Enabling and disabling the caches
	12.5 Locking the cache configuration
	12.6 Example: setting up the caches
	12.7 Flushing and invalidating caches
	12.7.1 Relocatable code units

	12.8 Cache header file: cache.h

	ST20-C1 specific features 13
	13.1 In-built PWM support
	13.2 ST20-C1 example plug-in timer module
	13.2.1 PWM peripheral
	Control
	InterruptEnable
	CaptureCount
	Compare

	13.3 Plug-in timer module header file: c1timer.h

	ST20-C2 specific features 14
	14.1 Overview
	14.2 Channels
	14.2.1 Creating a channel
	14.2.2 Communications over channels
	14.2.3 Reading from several channels
	14.2.4 Deleting channels
	14.2.5 Channel header file: chan.h

	14.3 Two dimensional block move support
	14.3.1 Two dimensional block move header file: move2d.h

	Advanced configuration 15
	15.1 Run-time configuration
	15.1.1 Specifying initialization code
	15.1.2 Specifying placement of code and data
	15.1.3 Caching peripheral memory in larger blocks
	15.1.4 Making devices with ILC-2 strictly backward compatible
	15.1.5 Altering the internal partition manager

	15.2 Compiling OS20
	15.3 Compilation option file: conf.h
	15.3.1 Callback Support
	15.3.2 Changing the number of task priority levels
	15.3.3 Reducing interrupt latency (ST20-C2 core only)
	15.3.4 Time logging (ST20-C2 core only)
	15.3.5 Software interrupts
	15.3.6 Mutex initialization

	15.4 Performance considerations

	Alphabetical list of functions 16
	16.1 Header files
	16.2 OS20 function descriptions
	cache_config_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	cache_config_instruction
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	cache_disable_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_disable_instruction
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_enable_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_enable_instruction
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_flush_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	cache_init_controller
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_invalidate_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	cache_invalidate_instruction
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	cache_lock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	cache_status
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example

	callback_...
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	chan_alt
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	chan_create
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_create_address
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_in
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_in_char
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_in_int
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_init
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_init_address
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_out
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_out_char
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_out_int
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	chan_reset
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	device_id
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	device_name
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	interrupt_clear
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_clear_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_disable
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_disable_global
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_disable_mask
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_disable_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_enable
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_enable_global
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_enable_mask
	Synopsis
	Arguments
	Results
	Errors
	Description
	Example
	Applies to
	Callable from
	See also

	interrupt_enable_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_init
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_init_controller
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	Example
	See also

	interrupt_install
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	Example
	See also

	interrupt_install_sl
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_lock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_pending
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_pending_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_raise
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_raise_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_status
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_status_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_test_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Example
	Applies to
	Callable from
	See also

	interrupt_trigger_mode_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Example
	Applies to
	Callable from
	See also

	interrupt_uninstall
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_unlock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from
	See also

	interrupt_wakeup_number
	Synopsis
	Arguments
	Results
	Errors
	Description
	Applies to
	Callable from

	kernel_idle
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	kernel_initialize
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	kernel_start
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	kernel_time
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	kernel_version
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	memory_allocate
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	memory_allocate_clear
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	memory_deallocate
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	memory_reallocate
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_claim
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_claim_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	message_create_queue
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_create_queue_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_delete_queue
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_init_queue
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_init_queue_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_receive
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_receive_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	message_release
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	message_send
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	move2d_all
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	move2d_non_zero
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	move2d_zero
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_create_fifo
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_create_priority
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_init_fifo
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_init_priority
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_lock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_release
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	mutex_trylock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_create_fixed
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_create_heap
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_create_simple
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	partition_init_fixed
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_init_heap
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_init_simple
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	partition_status
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	semaphore_create_fifo
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_create_fifo_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_create_priority
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_create_priority_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_init_fifo
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_init_fifo_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_init_priority
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_init_priority_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_signal
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_wait
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	semaphore_wait_timeout
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_context
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_create
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_create_sl
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_data_set
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_delay
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_delay_until
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_delete
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_exit
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_id
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_immortal
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_init
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_init_sl
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_kill
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_lock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_mortal
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_name
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_onexit_set
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_onexit_set_sl
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_priority
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_priority_set
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_private_data
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_private_data_set
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_reschedule
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from

	task_resume
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_stack_fill
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_stack_fill_set
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	task_status
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_suspend
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_unlock
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	task_wait
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	time_after
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	time_minus
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	time_now
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	time_plus
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	time_ticks_per_sec
	Synopsis
	Arguments
	Returns
	Errors
	Description
	Callable from
	See also

	time_ticks_per_sec_set
	Synopsis
	Arguments
	Errors
	Description
	Callable from
	See also

	timer_init_pwm
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	See also

	timer_initialize
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	timer_interrupt
	Synopsis
	Arguments
	Results
	Errors
	Description
	Callable from
	Example
	See also

	Revision history
	Index
	Numerics
	B
	C
	D
	E
	I
	K
	M
	O
	P
	R
	S
	T

