
July 2015 7379953 Rev 23 1/311

UM1399
User manual

ST40 Micro Toolset

Introducing the ST40 Micro Toolset
The ST40 Micro Toolset is a cross-development system for developing and debugging C
and C++ embedded applications on STMicroelectronics’ ST40 range of products. All ST40
devices include the user debug interface (UDI), available through the JTAG port of the
device, which provides on-chip emulation capabilities such as code and data breakpoints,
watchpoints and memory peeking and poking.

The ST40 Micro Toolset provides an integrated set of tools to support the development of
embedded applications.

This user manual provides detailed information to:

• enable users to run and debug code built for the ST40 family of processors on silicon
and simulated targets

• enable users to customize and extend the support of the ST40 Micro Toolset for new
hardware targets that use ST40 processors

www.st.com

http://www.st.com

Contents UM1399

2/311 7379953 Rev 23

Contents

Preface . 11

Document identification and control . 11

License information. 11

ST40 documentation suite . 11

ST Micro Connection Package documentation suite . 12

Conventions used in this guide. 12

Terminology . 13

Acknowledgements. 13

1 Toolset overview . 14

1.1 Toolset features . 14

1.2 The SuperH configuration . 16

1.2.1 Traditional and SuperH configuration differences 16

1.3 Distribution content . 17

1.3.1 Tools . 17

1.3.2 Libraries . 20

1.3.3 Configuration scripts . 21

1.3.4 Sources . 21

1.3.5 Examples . 21

1.4 Libraries delivered . 22

1.4.1 The C library (newlib) . 23

1.4.2 The C++ library (libstdc++) . 23

1.4.3 The data transfer format (DTF) library . 24

1.4.4 The libgloss library . 24

1.4.5 The zlib library . 24

1.4.6 The syscalls low-level I/O interface . 24

1.4.7 Threading . 25

1.5 Release directories . 26

1.5.1 GDB command scripts directory . 27

1.5.2 The documents directory . 27

1.5.3 The examples directory . 28

7379953 Rev 23 3/311

UM1399 Contents

10

2 Introducing OS21 . 30

2.1 OS21 features . 32

2.2 OSPlus . 33

3 Code development tools . 34

3.1 The GNU compiler (GCC) . 34

3.1.1 GCC command line quick reference . 34

3.1.2 GCC SuperH configuration specific options . 37

3.2 The GNU assembler . 38

3.2.1 GNU assembler command line quick reference 38

3.3 The GNU linker . 39

3.3.1 GNU linker command line quick reference . 39

3.4 Profiling with the sh4gcov and sh4gprof utilities . 40

3.5 Board support . 40

3.5.1 GCC board support setup . 42

3.5.2 Linker board support . 45

3.5.3 Alternative placement of sections . 46

3.6 Run-time support . 46

3.6.1 GCC run-time support setup . 47

4 Cross development tools . 50

4.1 Connecting to the target . 50

4.1.1 Using an ST TargetPack . 50

4.1.2 Using a GDB script with an STMC1 or STMCLite 51

4.1.3 Using a GDB script with an STMC2 . 51

4.1.4 Auto-detect connection . 53

4.1.5 Identification of the STMCLite . 53

4.2 The GNU debugger . 54

4.2.1 Using GDB . 54

4.2.2 The .shgdbinit file . 57

4.2.3 Connecting to a running target . 58

4.2.4 GDB command line reference . 59

4.2.5 GDB command quick reference . 60

4.2.6 Additional GDB commands . 62

4.2.7 Console settings . 65

Contents UM1399

4/311 7379953 Rev 23

4.3 Using sh4xrun . 65

4.3.1 Setting the environment . 65

4.3.2 sh4xrun command line reference . 65

4.3.3 sh4xrun command line examples . 67

5 Using STWorkbench . 68

5.1 Getting started with STWorkbench . 68

5.1.1 The STWorkbench workbench . 70

5.2 STWorkbench tutorials and reference pages . 73

5.3 ST40 System Analysis tutorials and reference pages 74

6 Using Insight . 75

6.1 Launching Insight . 75

6.2 Using the Source Window . 76

6.2.1 Source Window menus . 76

6.2.2 Source Window toolbar . 78

6.2.3 Context sensitive menus . 79

6.3 Debugging a program . 80

6.4 Changing the target . 82

6.5 Configuring breakpoints . 82

6.5.1 The Breakpoints window . 83

6.6 Using the help . 84

6.7 Using the Stack window . 84

6.8 Using the Registers window . 85

6.9 Using the Memory window . 86

6.10 Using the Watch window . 88

6.11 Using the Local Variables window . 89

6.12 The Console Window . 90

6.13 Function Browser window . 91

6.14 The Processes window . 92

7 Building open sources . 93

7.1 Introduction to open sources . 93

7.2 Requirements . 93

7.2.1 Linux . 93

7379953 Rev 23 5/311

UM1399 Contents

10

7.2.2 Windows . 94

7.3 Setting up the build environment . 95

7.4 Building the packages . 96

8 Core performance analysis guide . 98

8.1 Introduction to core performance analysis . 98

8.2 Running performance models under GDB . 98

8.2.1 Example source code . 98

8.2.2 Beginning a debug session . 99

8.2.3 Obtaining performance data . 100

8.3 ST40 simulator reference . 104

8.3.1 ST40 simulator targets . 104

8.3.2 shsimcmds.cmd . 104

8.3.3 ST40 simulator control commands . 104

8.3.4 Commands in shsimcmds.cmd . 108

8.3.5 Dynamic control . 109

8.4 The census inspector (censpect) .110

8.4.1 The Census Inspector window . 111

8.4.2 Creating histograms . 112

8.4.3 2D plots . 114

8.4.4 Preparing new groups . 116

8.4.5 Creating and modifying groups . 118

8.5 The trace viewer (trcview) . 120

8.6 Trace viewer file formats . 122

8.6.1 Trace set files (.trc) . 122

8.6.2 Packet trace files . 123

8.6.3 Trace text files . 123

8.6.4 Probe trace files . 124

8.7 Census file formats . 124

9 OS21 source guide . 126

9.1 Configuration options . 126

9.1.1 Configuration options in the standard OS21 libraries 127

9.2 Building the OS21 board support libraries . 128

9.2.1 Creating a customized board support library . 130

9.2.2 Using the built libraries . 131

Contents UM1399

6/311 7379953 Rev 23

9.3 Adding support for new boards . 131

9.4 GDB OS21 awareness support . 133

9.4.1 Generation of the shtdi service data tables . 134

10 Booting OS21 from Flash ROM . 135

10.1 Overview of booting from Flash ROM . 136

10.2 Standard Flash ROM layout . 136

10.2.1 romgen creation of bootstrap code . 137

10.3 NAND Flash ROM layout . 138

11 Relocatable loader library . 139

11.1 Run-time model overview . 139

11.2 Relocatable run-time model . 140

11.2.1 The relocatable code generation model . 142

11.3 Relocatable loader library API . 142

11.4 Customization . 155

11.4.1 Memory allocation . 155

11.4.2 File management . 155

11.5 Writing and building a relocatable library and main module 156

11.5.1 Example source code . 156

11.5.2 Building a simple relocatable library . 157

11.5.3 Building a simple main module . 157

11.5.4 Running and debugging the main module . 157

11.5.5 Importing and exporting symbols . 158

11.5.6 Optimization options . 159

11.6 Debugging support . 160

11.6.1 GDB support . 160

11.6.2 Verbose mode . 161

11.7 Action callbacks . 161

12 OS21 Trace . 163

12.1 User trace records . 163

12.1.1 os21usertrace host tool . 164

12.1.2 User definition file . 165

12.1.3 os21usertracegen host tool . 168

12.1.4 os21usertracegen example . 171

7379953 Rev 23 7/311

UM1399 Contents

10

12.2 Print a string to the OS21 Trace buffer . 172

12.3 Building an application for OS21 Trace . 172

12.4 Running the application . 173

12.4.1 Trace buffer . 174

12.5 Analyzing the results . 174

12.5.1 Usage of the -m mode option . 176

12.5.2 os21decodetrace control file . 177

12.6 Examples . 178

12.6.1 OS21 activity and OS21 API trace . 178

12.6.2 User API and user activity trace . 179

12.7 Trace overhead . 181

12.8 Structure of trace binary files . 181

12.8.1 os21trace.bin . 182

12.8.2 os21trace.bin.ticks . 182

12.8.3 os21tasktrace.bin . 183

12.9 GDB commands . 183

12.9.1 Buffer full action . 183

12.9.2 Enable OS21 Trace . 183

12.9.3 Enable trace control commands . 184

12.9.4 Enable OS21 activity . 184

12.9.5 Enable OS21 API . 184

12.9.6 Enable OS21 activity event . 184

12.9.7 Enable OS21 API function . 185

12.9.8 Enable task information logging . 186

12.9.9 Dump buffer to file . 186

12.9.10 Flush buffers and reset . 187

12.9.11 Type and event enables . 187

12.10 User GDB control commands . 188

12.10.1 User activity control commands . 189

12.10.2 User API control commands . 190

12.10.3 Miscellaneous commands . 191

12.11 Trace library API . 192

12.12 Variables and APIs that can be overridden . 205

12.13 User trace runtime APIs . 206

12.13.1 User activity control APIs . 206

12.13.2 User API control APIs . 208

Contents UM1399

8/311 7379953 Rev 23

12.13.3 User activity APIs . 210

12.14 Correspondence between GDB commands and APIs 210

12.15 Trace always on . 212

12.16 Source directory . 213

13 Dynamic OS21 profiling . 214

13.1 Overview . 214

13.2 Building an application for dynamic OS21 profiling 215

13.3 Running the application . 215

13.4 GDB commands . 215

13.5 Analyzing the results . 219

13.6 Example . 219

13.7 Profiler library API . 220

13.7.1 Overrides . 221

Appendix A Toolset tips . 223

A.1 Managing memory partitions with OS21 . 223

A.2 Memory managers . 226

A.3 OS21 scheduler behavior . 226

A.4 Managing critical sections in OS21 . 227

A.4.1 task / interrupt critical sections . 227

A.4.2 task / task critical sections . 227

A.5 Access to uncached memory . 230

A.6 Debugging with OS21 . 231

A.6.1 Understanding OS21 stack traces . 231

A.6.2 Identifying a function that causes an exception 234

A.6.3 Catching program termination with GDB . 236

A.7 General tips for GDB . 236

A.7.1 Handling target connections . 236

A.7.2 Windows path names . 237

A.7.3 Debugging OS21 boot from ROM applications. 237

A.7.4 Power up and connection sequence. 238

A.7.5 Using hardware watchpoints. 239

A.8 Polling for keyboard input . 239

A.9 Changing ST40 clock speeds using GDB command scripts 240

7379953 Rev 23 9/311

UM1399 Contents

10

A.10 Just in time initialization. 242

A.11 Using Cygwin . 243

A.12 Using precompiled headers. 244

Appendix B Development tools reference . 245

B.1 Code development tools reference . 245

B.1.1 Preprocessor predefines and asserts . 245

B.1.2 SH-4 specific GCC options . 247

B.1.3 GCC assembler inserts. 249

B.1.4 Compiler pragmas and attributes . 251

B.1.5 Link time optimization . 253

B.1.6 Stack overflow checking . 256

B.1.7 Assembler specifics . 258

B.1.8 Linker relaxation . 260

B.1.9 Floating-point behavior . 260

B.1.10 Speed and space optimization options . 261

B.2 Cross development tools reference. 262

B.2.1 Command scripts . 262

B.2.2 ST TargetPack . 262

B.2.3 Memory mapped registers . 262

B.2.4 Silicon specific commands . 263

B.3 Embedded features . 265

B.3.1 Default C run-time bootstrap. 265

B.3.2 Trap handling . 265

Appendix C Performance counters. 266

C.1 Performance counter modes . 267

C.2 The perfcount command . 269

Appendix D Profiler plugin. 270

D.1 Profiler plugin reference . 271

D.2 Trace profiler output format . 273

D.3 Range profiler output format . 274

D.4 ST Micro Connect configuration options . 275

D.5 Examples. 276

Contents UM1399

10/311 7379953 Rev 23

Appendix E Branch trace buffer . 277

E.1 Branch trace buffer modes . 277

E.2 The branchtrace command . 278

E.2.1 Continuous capture support . 279

E.3 Output format . 280

E.4 ST Micro Connect configuration options . 281

Appendix F ST TargetPack plugin . 282

F.1 The targetpack command . 282

Appendix G Simulator configuration variables . 284

Appendix H GDB os21_time_logging user command. 288

Revision history . 289

List of API functions . 301

List of built-in GDB commands . 302

List of GDB user commands . 303

7379953 Rev 23 11/311

UM1399 Preface

13

Preface

Comments on this manual should be made by contacting your local STMicroelectronics
sales office or distributor.

Document identification and control
Each book carries a unique identifier of the form:

nnnnnnn Rev x

where nnnnnnn is the document number, and x is the revision.

Whenever making comments on this document, quote the complete identification
nnnnnnn Rev x.

License information
The ST40 Micro Toolset is based on a number of open source packages. Details of the
licenses that cover all these packages can be found in the file license.htm. This file is
located in the doc subdirectory and can be accessed from index.htm.

ST40 documentation suite
The ST40 documentation suite comprises the following volumes:

ST40 Micro Toolset user manual (7379953)

This manual describes the ST40 Micro Toolset and provides an introduction to OS21. It
covers the various code and cross development tools that are provided in the ST40 Micro
Toolset, how to boot OS21 applications from ROM and how to port applications which use
STMicroelectronics OS20 operating systems. Information is also given on how to build the
open source packages that provide the compiler tools, base run-time libraries and debug
tools and how to set up an ST Micro Connect.

SH-4 generic and C specific ABI (7839242)

The SH-4 application binary interface (ABI) defines a system interface for application
programs on SH-4 systems using the ELF executable and linking file format.

OS21 user manual (7358306)

This manual describes the generic use of OS21 across the supported platforms. It describes
all the core features of OS21 and their use and details the OS21 function definitions. It also
explains how OS21 differs from OS20, the API targeted at ST20 platforms.

OS21 for ST40 user manual (7358673)

This manual describes the use of OS21 on ST40 platforms. It describes how specific ST40
facilities are exploited by the OS21 API. It also describes the OS21 board support packages
for ST40 platforms.

Preface UM1399

12/311 7379953 Rev 23

ST40 Micro Toolset GDB command scripts (8045872)

This document describes using GDB command scripts to connect to and configure a target
board for loading and debugging programs through GDB.

32-Bit RISC series, ST40 Core and instruction set architecture manual
(7182230)

This manual describes the architecture and instruction set of the ST40 core as used by
STMicroelectronics.

ST40 core support peripherals manual (7988763)

This manual describes the ST40 core support peripheral (CSP) package that give the
optional peripherals for use in ST40-based system-on-chips (SoCs).

ST Micro Connection Package documentation suite
The following documents are not distributed with the ST40 Micro Toolset, but can be
obtained from your ST FAE or ST support center.

ST TargetPack user manual (8020851)

This manual describes the ST TargetPack, which is a method of describing target systems
based upon ST system-on-chip devices.

Developing with an ST Micro Connect and ST TargetPacks application note
(8174498)

This application note describes various aspects of using an ST Micro Connect host-target
interface for system development.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

• sample code, keyboard input and file names

• variables, code variables and code comments

• equations and math

• screens, windows, dialog boxes and tool names

• instructions

Hardware notation

The following conventions are used for hardware notation:

• REGISTER NAMES and FIELD NAMES

• PIN NAMES and SIGNAL NAMES

7379953 Rev 23 13/311

UM1399 Preface

13

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF) unless otherwise
specified.

• Terminal strings of the language, that is those not built up by rules of the language, are
printed in bold teletype font. For example, void.

• Non-terminal strings of the language, that is those built up by rules of the language, are
printed in italic teletype font. For example, name.

• If a non-terminal string of the language is prefixed with a non-italicized part, it is
equivalent to the same non-terminal string without that non-italicized part. For example,
vspace-name.

• Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘::=’).

• Alternatives are separated by vertical bars (‘|’).

• Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

• Items which may be repeated appear in braces (‘{’ and ‘}’).

Terminology
The first ST Micro Connect product was named the “ST Micro Connect”. With the
introduction of the ST Micro Connect 2 and ST Micro Connect Lite, the original product is
now known as the “ST Micro Connect 1” and the term “ST Micro Connect” refers to the
family of ST Micro Connect devices. These names can be abbreviated to “STMC”,
“STMC1”, “STMC2” and “STMCLite”.

Acknowledgements
SuperH® is a registered trademark for products originally developed by Hitachi, Ltd. and is
owned by Renesas Technology Corp.

Microsoft®, MS-DOS®, Windows® and Windows Vista® are registered trademarks of
Microsoft Corporation in the United States and other countries.

Toolset overview UM1399

14/311 7379953 Rev 23

1 Toolset overview

The ST40 Micro Toolset is a cross-development system for developing and debugging C
and C++ embedded applications on STMicroelectronics’ ST40 range of products. All ST40
devices include the user debug interface (UDI), available through the JTAG port of the
device, which provides on-chip emulation capabilities such as code and data breakpoints,
watchpoints and memory peeking and poking.

The ST40 Micro Toolset provides an integrated set of tools to support the development of
embedded applications.

1.1 Toolset features
• Supported host platforms

The toolset is available on:

– Microsoft Windows XP, Vista or 7

– Red Hat Enterprise Linux 4 or 5 (or compatible)

• Code development tools (assembler, compiler and linker)
Program development is supported by the GNU C compiler, the GNU C++ compiler,
assembler, linker and archiver (librarian) tools.

• The ST40 simulator
This provides an accurate software simulation of the entire family of
STMicroelectronics’ ST40 cores.

• Cross development with GDB
The GNU debugger (GDB) supports both the ST40 simulator and the hardware
development boards. GDB also includes a text user interface and the Insight GUI as a
graphical user interface on all supported host platforms. The sh4xrun tool is also
available to provide a command line driven interface to simplify downloading and
running applications on the supported targets using GDB.

• STWorkbench Integrated Development Environment (IDE)
The STWorkbench is built on the Eclipse IDE. The framework is extended using the
CDT (C/C++ Development Tools) and ST40 specific plug-ins which provide a fully
functional C and C++ IDE for STWorkbench. This allows the user to develop, execute
and debug ST40 applications interactively. In addition, the ST Profiler, Coverage and
Trace features enable profiling, coverage and trace data to be collected and analyzed.

• OS21 real-time kernel
The software design of embedded systems is supported by a real-time kernel (OS21)
which facilitates the decomposition of a design into a collection of communicating tasks
and interrupt handlers.

• A C/C++ run-time system
The newlib C library provides ANSI C run-time functions including support for C I/O
using the facilities of the host system. The C++ run-time system is provided by the
GNU GCC libstdc++ library which includes support for the STL and iostream ISO C++
standard libraries.

• File I/O is provided as well as terminal I/O

• Trace and statistical data analysis tools
The toolset supports tracing of OS21 kernel activity and OS21 API calls. The user may
control OS21 Trace either by using GDB commands or function calls embedded in the

7379953 Rev 23 15/311

UM1399 Toolset overview

29

application. Trace and other statistical information can be viewed graphically in
STWorkbench.

• Flash ROM examples
Several Flash ROM examples are provided. These create applications which are able
to boot from NOR Flash and from NAND Flash ROM on the supported targets.

• Support for the ST Micro Connect
Provides the download route to the board through the JTAG interface. The ST Micro
Connect supports download using Ethernet and USB from any host. The ST Micro
Connect interface is connected to the UDI port of the target device, which is used to
control and communicate with the device during development.

• ST TargetPacks
ST TargetPacks are a method of describing target systems based on SoC devices. ST
TargetPacks provide a single, definitive description of a target system for use by
various tools within the development environment (such as sh4xrun).

• Profiling and coverage support
Performance data can be obtained when running an application on an ST40 simulator
and used to generate statistical and trace information. Performance data can also be
acquired from an application running on a target board connected to an ST Micro
Connect. The data can be analyzed using the STWorkbench or tools such as sh4gprof
and sh4gcov.

• MTT (multi-target trace) library
Provides a trace API to log applicative traces over the target’s STM IP interface at both
OS and user level.

The targets supported by this toolset are:

• STMicroelectronics development boards
These boards provide development targets for the STMicroelectronics system-on-chip
devices that use the ST40 core.

• ST40 simulator
This provides an accurate simulation of SuperH architecture cores (such as the ST40)
and comes in two forms.

– Functional simulator
Simulates the core accurately, but ignoring the internal details such as pipelines.

– Performance simulator
Simulates the core in detail in order to model the performance.

• GDB simulator
GNU GDB has a built-in simulator target for the SH-4 family of cores. The GDB
simulator is a user-mode-only basic instruction set simulator, with no support for
memory management, executing privileged instructions, nor any of the extra facilities
that the ST40 simulator provides.

Note: In the text of this document, the term ST40 simulator is used when referring to features that
are common to both the functional and the performance simulators.

Toolset overview UM1399

16/311 7379953 Rev 23

1.2 The SuperH configuration
The ST40 Micro Toolset, maintained by STMicroelectronics, is derived from the GNU tools
maintained by the Free Software Foundation (FSF) and the open source community. The
toolset provides a complete toolset supporting the ST40 core.

The traditional configuration (that is, the non-SuperH configuration) of the GNU tools for SH-
4 is identified by the target triplet(a) sh-elf, or sometimes by the target triplet sh-hitachi-elf
(which is an alias).

The SuperH configuration of the GNU tools is identified by the target triplet sh-superh-elf.
The SuperH configuration is the only configuration supported by STMicroelectronics for the
ST40 Micro Toolset.

1.2.1 Traditional and SuperH configuration differences

There are several changes that have been made to the traditional configuration to create the
SuperH configuration.

• The default endianness has changed from big to little endian.

• Board support has been added. This allows the same tools to create executables for
different target boards and ST40 simulators.

• Run-time support has been added. This allows the same tools to create executables for
different operating systems and for different I/O interfaces (for example, debug link and
simulator traps).

• ANSI C I/O over the debug link has been added. This is provided by the Data Transfer
Format (DTF), a low-level communication mechanism.

• ST40-300 series cores, ST40-400 series cores and ST40-500 series cores support
added.

a. The GNU tools support many platforms, operating systems and vendor configurations. The tools are configured
by means of a triplet, the second part of which is optional. As an example, STMicroelectronics uses the triplet
sh-superh-elf to represent the SuperH configuration of the tools for the sh platform using generic elf files (as
used by bare machines).

7379953 Rev 23 17/311

UM1399 Toolset overview

29

1.3 Distribution content
The ST40 Micro Toolset distribution includes tools, libraries, configuration scripts and
examples.

1.3.1 Tools

From the GNU binutils package

From the GNU make package

sh4as GNU assembler

sh4ld GNU linker

sh4addr2line Convert addresses into file names and line numbers

sh4ar Create, modify, and extract from archives

sh4c++filt Demangle encoded C++ symbols

sh4elfedit Edit the header of ELF format files

sh4gprof GNU profiler

sh4nm List symbols from object files

sh4objcopy Copy and translate object files

sh4objdump Display information from object files

sh4ranlib Generate index to archive contents

sh4readelf Display the contents of ELF format files

sh4size List file section sizes and total size

sh4strings List printable strings from files

sh4strip Discard symbols

make GNU make

sh4make GNU make

Toolset overview UM1399

18/311 7379953 Rev 23

From the GNU GCC package

From the GNU GDB/Insight package

Others

sh4c++ GNU C++ compiler

sh4cpp GNU C/C++ preprocessor

sh4g++ GNU C++ compiler

sh4gcc GNU C compiler

sh4gcov GNU test coverage tool

sh4gdb GNU target debugger

sh4insight Graphical User Interface for the debugger

sh4run GNU SH-4 simulator

sh4xrun SuperH target loader

censpect Statistical data viewer

trcview Trace data viewer

os21decodetrace Decode tool for OS21 Trace

os21usertrace User trace tool for OS21 Trace (implemented as a Perl script)

os21usertracegen Tool to generate definition files for os21usertrace.

os21prof OS21 profiler (implemented as a Perl script)

sh4rltool Relocatable library tool (implemented as a Perl script)

7379953 Rev 23 19/311

UM1399 Toolset overview

29

Reference only

The distribution also provides the sh-superh-elf-tool versions of the tools listed above
(see Section 1.2 on page 16) that are invoked by their sh4tool counterparts with additional
features enabled. As a result, use the short forms of the tools in preference to their long
form counterparts.

Table 1 lists the tools where the short form and long form versions differ in the features they
provide.

The sh-superh-elf-tool tools are located in the sh-superh-elf/bin subdirectory.

Passing arguments from environment variables

Each of the tools that have an associated sh-superh-elf-tool can accept command
line arguments passed from environment variables. Each tool has its own specific
environment variable, as listed in Table 2, which has the form SH4toolOPT. Where there
are + signs in the tool name, these are replaced by X in the name of the environment
variable.

Table 1. sh-superh-elf-tool short and long versions

Long name Short name Additional features

sh-superh-elf-gcc sh4gcc
Provides board and run-time package support for
the -mboard (see Section 3.5 on page 40) and -
mruntime (see Section 3.6 on page 46) options.

sh-superh-elf-g++ sh4g++

sh-superh-elf-c++ sh4g++

sh-superh-elf-gdb sh4gdb Provides support for silicon and ST40 simulator
targets.(1)

Sets the environment for the Insight GUI without
any additional requirements on the user.

set mem inaccessible-by-default is set
to off (default is on).

1. It is possible to enable this support for the long forms of the tools using a customized .shgdbinit file (see
Section 4.2.2 on page 57).

sh-superh-elf-insight sh4insight

Table 2. Tools that accept arguments from an environment variable

Tool Environment variable

sh4addr2line SH4ADDR2LINEOPT

sh4ar SH4AROPT

sh4as SH4ASOPT

sh4c++ SH4CXXOPT

sh4c++filt SH4CXXFILTOPT

sh4cpp SH4CPPOPT

sh4elfedit SH4ELFEDIT

sh4g++ SH4GXXOPT

sh4gcc SH4GCCOPT

sh4gcov SH4GCOVOPT

Toolset overview UM1399

20/311 7379953 Rev 23

If an argument contains spaces, then the whole argument must be quoted (either single or
double quotes can be used, but they must balance). For example:

Windows shell:

set SH4GDBOPT=-ex "break _SH_posix_Exit_r"

Bourne shell (or compatible)

SH4GDBOPT="-ex \"break _SH_posix_Exit_r\""
export SH4GDBOPT

1.3.2 Libraries

The libraries are supplied for each of the possible target configurations supported by GCC;
one version for each permutation of the ST40-specific compiler options that affect code
generation and for the Application Binary Interface (ABI), such as floating-point and
endianness. Therefore, whichever combination of target configurations is chosen to compile
a user program, a library with the same permutation (except for optimizations) exists and is
automatically selected by the compiler driver.

From the newlib package

An ISO/ANSI C run-time library (libc and libm) and header files. The run-time libraries also
provide support for low-level I/O and additional maths functions. The low-level I/O is
implemented by the Data Transfer Format library (libdtf), see Section 1.4.3: The data
transfer format (DTF) library on page 24.

The toolset provides an alternative I/O library (libgloss, see Section 1.4.4 on page 24) for
building applications to run on the GNU GDB SH-4 simulator (sh4run) and also a run-time
library (libprofile) to support profiling with sh4gprof.

sh4gdb SH4GDBOPT

sh4gprof SH4GPROFOPT

sh4insight SH4INSIGHTOPT

sh4ld SH4LDOPT

sh4make SH4MAKEOPT

sh4nm SH4NMOPT

sh4objcopy SH4OBJCOPYOPT

sh4objdump SH4OBJDUMPOPT

sh4ranlib SH4RANLIBOPT

sh4readelf SH4READELFOPT

sh4run SH4RUNOPT

sh4size SH4SIZEOPT

sh4strings SH4STRINGSOPT

sh4strip SH4STRIPOPT

sh4xrun SH4XRUNOPT

Table 2. Tools that accept arguments from an environment variable (continued)

Tool Environment variable

7379953 Rev 23 21/311

UM1399 Toolset overview

29

From the GNU GCC package

The toolset provides compiler intrinsics libraries (libgcc and variants) and a run-time library
libgcov to support code coverage with sh4gcov.

From the libstdc++ subpackage of the GNU GCC package

The toolset provides an ISO/ANSI C++ run-time library (libstdc++) and header files
supporting I/O streams and the standard templates library (the STL).

Others

The OS21 real-time kernel library and header files, and OS21 board support libraries for the
various supported platforms.

The relocatable loader library (librl) and header files.

The zlib compression library (libz) and header files.

The MTT (multi-target trace) library and header files.

1.3.3 Configuration scripts

A full set of GDB command scripts are supplied for connecting to and configuring the
various supported platforms (used in conjunction with sh4gdb, sh4insight and sh4xrun).

A GDB command script (.shgdbinit) is provided in the subdirectory sh-superh-
elf/stdcmd of the release installation directory to make these scripts available. This file is
automatically read by sh4gdb, sh4insight and sh4xrun.

1.3.4 Sources

The package includes full sources for the OS21 real-time kernel library, OS21 Trace library
and the OS21 profiler library. These are located in the sh-superh-elf/src directory.

1.3.5 Examples

The toolset includes various example applications including those using OS21 and
illustrating the construction of Flash ROM systems. See Section 1.5.3: The examples
directory on page 28 for more information on the examples supplied.

Toolset overview UM1399

22/311 7379953 Rev 23

1.4 Libraries delivered
The ST40 Micro Toolset includes ANSI/ISO C and C++ run-time libraries and header files,
supporting both OS21 and bare machine applications for various target application
configurations.

Note: A “bare machine application” is a non-OS21 application built without real-time kernel
libraries.

Figure 1. The relationship between the libraries

The header files shipped with the toolset are located in the subdirectory sh-superh-
elf/include of the release installation directory and include the header files for OS21
support. The OS21 header files are located under sh-superh-elf/include/os21.

Application

syscalls

C++

newlib

GDB

Hardware

syscalls

DTF

ST40 simulator

Program
code

Back end
interface

Communication

System

libc.a libm.a

libstdc++.a

libgloss.a

libdtf.a

simulator

OS21
libos21.a libbsp.a

Relocatable loader
librl.a librl_s.so

zlib
libz.a

7379953 Rev 23 23/311

UM1399 Toolset overview

29

The libraries shipped with the toolset are located in the subdirectory sh-superh-elf/lib
of the release installation directory, which is structured as described below.

• Little endian libraries with pervading double precision FPU support (the default, or
optionally selected by the GCC compiler’s -ml option):

sh-superh-elf/lib

• Little endian libraries with no FPU support (selected by the GCC compiler’s -m4-
nofpu option and optionally the -ml option):

sh-superh-elf/lib/m4-nofpu

• Little endian libraries with pervading single precision FPU support (selected by the
GCC compiler’s -m4-single option and optionally the -ml option):

sh-superh-elf/lib/m4-single

• Little endian libraries with single precision only FPU support (SH-3e ABI) (selected by
the GCC compiler’s -m4-single-only option and optionally the -ml option):

sh-superh-elf/lib/m4-single-only

• Big endian libraries(b) with pervading double precision FPU support (selected by the
GCC compiler’s -mb option):

sh-superh-elf/lib/mb

• Big endian libraries(b) with no FPU support (selected by the GCC compiler’s -mb and -
m4-nofpu options):

sh-superh-elf/lib/mb/m4-nofpu

• Big endian libraries(b) with pervading single precision FPU support (selected by the
GCC compiler’s -mb and -m4-single options):

sh-superh-elf/lib/mb/m4-single

• Big endian libraries(b) with single precision only FPU support (SH-3e ABI) (selected by
the GCC compiler’s -mb and -m4-single-only options):

sh-superh-elf/lib/mb/m4-single-only

1.4.1 The C library (newlib)

newlib implements a version of the C library that is suitable for use in embedded systems.
newlib supports the most common functions used in C programs, but not the more
specialized features available in standard operating systems, such as networking support.

Note: Wide character support is not enabled in the supplied version of newlib.

newlib assumes a minimal set of OS interface functions (the syscalls API). These provide
all the I/O, entry and exit, and process control routines required by programs using newlib.
The syscalls API is implemented either by the libdtf DTF library (for ST40 simulator or
silicon) or by the libgloss library (for GDB simulator).

1.4.2 The C++ library (libstdc++)

The C++ library is part of GNU Compiler Collection and uses the underlying C library for its
basic functionality.

b. Some ST40 products might not be validated for use in big endian mode, please see the relevant silicon product
documentation for details.

Toolset overview UM1399

24/311 7379953 Rev 23

1.4.3 The data transfer format (DTF) library

The DTF library implements the POSIX I/O mechanism used with the ST Micro Connect or
the ST40 simulator. It implements most of the basic file I/O features required by the C
library. The I/O is performed using the debug link and requires the correct host side software
to be present (this is handled automatically by the supplied GDB connection commands).

It is not usually necessary for applications to call the DTF library directly since this is
handled by the newlib C library low-level I/O interface (see Section 1.4.6: The syscalls low-
level I/O interface on page 24).

Note: 1 The DTF library assumes that GDB is present in order to provide the I/O services for the
target. If GDB is not present (for example, in boot-from-ROM systems) then the DTF library
either returns an error (see below), the application waits indefinitely on an I/O transaction
that never completes, or the application fails in some other way.

In order to allow applications linked with the DTF library (the default) to operate correctly in
these circumstances, the DTF library provides a mechanism for disabling communication
with GDB. In the application, define the global variable _SH_DEBUGGER_CONNECTED to 0 in
the C namespace. For example:

int _SH_DEBUGGER_CONNECTED = 0;

If set to 0, the DTF library returns an error and sets errno to EIO.

The Flash ROM examples do this automatically (see the rombootram example
readme.txt file for further details).

2 All interrupts are blocked whilst the target is communicating with the STMC (either sending
a request or receiving a response). This means that I/O calls (such as printf()) may in
certain circumstances cause the application to demonstrate unexpected behavior. All other
application functionality is unaffected

1.4.4 The libgloss library

libgloss is intended to be the newlib backend library (so called because it glosses over the
system details). It implements the interface between newlib and the underlying system,
whatever that may be, in order to allow access to I/O and other system resources via a
standardized trap interface recognized by the GNU GDB simulator.

1.4.5 The zlib library

zlib implements the compression algorithms specified by Internet Task Force standards
RFC 1950, RFC 1951 and RFC 1952. Further details can be found at the zlib website
(www.zlib.net).

1.4.6 The syscalls low-level I/O interface

The syscalls low-level I/O interface consists of the following functions. These functions
provide all the I/O, entry and exit, and process control routines that newlib requires. The
functions are:

__setup_argv_and_call_main _chmod _chown

_close_r _creat _execv _execve_r

_exit _fork_r _fstat_r _getpid_r

_gettimeofday_r _kill_r _link_r _lseek_r

7379953 Rev 23 25/311

UM1399 Toolset overview

29

There are two versions of this interface implemented.

• DTF
This is for use with the ST40 simulator and the ST Micro Connect. Not all functions are
implemented. See Section 1.4.3.

• libgloss
This is for use with the GNU GDB simulator. Not all functions are implemented. See
Section 1.4.4.

DTF provides four additional functions:

The syscalls example provided with the toolset (see syscalls example on page 28) contains
minimal implementations of the functions. These versions are sufficient to compile, link and
execute an application but the application cannot perform I/O or utilize any of the services
that these functions provide until fully functioning versions have been provided.

The example implementation provides an overview of each function but for further
information the POSIX standard should be used as a reference.

Note: It is not required for all functions to be implemented.

1.4.7 Threading

The C (newlib) and C++ (libstdc++) libraries both provide support for thread-safe operation
(although by different mechanisms).

The C library ensures thread-safe operation by using per-task re-entrancy structures and
guards around critical regions (as described in the newlib source documentation). If OS21
tasks are not being used then the C libraries use a single re-entrancy structure for the
application and no guards whereas the OS21 versions use a re-entrancy structure per task
and OS21 semaphores and mutexes as guards.

The C++ library relies on the generic GNU threading interface provided by the
STMicroelectronics’ implementation of the GNU Compiler Collection. The implementation of
the generic threading interface in the GNU Compiler Collection only provides support for
bare machine applications; the default implementation does not provide thread-safe
operation (and hence the C++ library is not thread safe). However, the implementation of the
generic threads interface provides a mechanism whereby the default implementation may
be overridden as they are weakly defined. Therefore the generic GNU threading interface
provides a technique for supporting different OS implementations without requiring a
different GNU Compiler Collection for each OS.

The weakly defined functions exported by the generic GNU threads interface are listed here.

int __generic_gxx_active_p(void);
int __generic_gxx_once(__gthread_once_t *once, void (*func)(void));
int __generic_gxx_key_create(__gthread_key_t *key, void (*dtor)(void *));
int __generic_gxx_key_delete(__gthread_key_t key);
void * __generic_gxx_getspecific(__gthread_key_t key);
int __generic_gxx_setspecific(__gthread_key_t key, const void *ptr);

_open_r _pipe _raise _read_r

_rename_r _readenv_r _sbrk_r _stat_r

_system_r _times_r _unlink_r _utime

_wait_r _write_r isatty truncate

opendir closedir readdir rewinddir

Toolset overview UM1399

26/311 7379953 Rev 23

int __generic_gxx_mutex_destroy(__gthread_mutex_t *mutex) ;
void __generic_gxx_mutex_init(__gthread_mutex_t *mutex);
int __generic_gxx_mutex_lock(__gthread_mutex_t *mutex);
int __generic_gxx_mutex_trylock(__gthread_mutex_t *mutex);
int __generic_gxx_mutex_unlock(__gthread_mutex_t *mutex);
int __generic_gxx_recursive_mutex_destroy(__gthread_recursive_mutex_t *mutex) ;
void __generic_gxx_recursive_mutex_init (__gthread_recursive_mutex_t *mutex);
int __generic_gxx_recursive_mutex_lock (__gthread_recursive_mutex_t *mutex);
int __generic_gxx_recursive_mutex_trylock (__gthread_recursive_mutex_t *mutex);
int __generic_gxx_recursive_mutex_unlock (__gthread_recursive_mutex_t *mutex);

These functions are weakly defined in the GNU Compiler Collection and are implemented
as no-op functions. The OS21 library replaces the GNU Compiler Collection definitions of
these functions with its own definitions. These definitions are OS21 implementations to
ensure thread safe operation of the generic GNU threading interface, and therefore the C++
library.

The __generic_gxx_active_p function returns a status value indicating whether
threading is active (1) or not (0). All other functions return a status value which indicates
either success (1), failure (0) or not supported (-1).

The GNU Compiler Collection generic threading interface types are defined as pointers to
anonymous structures. The actual definitions of the types are determined by the
implementations of the functions.

The functions correspond closely to equivalent functions in the POSIX standard for threads.
Refer to the POSIX documentation for implementation details.

1.5 Release directories
Table 3 lists the directories of the installation. Some of these directories are described in
more detail in the following sections.

As well as including the directories shown in Table 3, the release installation directory also
includes the files index.htm (which can be used to navigate the documentation supplied
with the installation) and version.txt (which gives the version number of the toolset
release).

Table 3. The release directories

Directory Contents

bin The tools.

doc The documentation set.

include Header files.

lib Library files.

libexec C/C++ compiler executables.

man man(1) manual pages.

microprobe The ST Micro Connect target applications.

share GDB GUI configuration files.

sh-superh-elf/bin Subset of the binutils tools used by GCC.

sh-superh-elf/examples Example applications.

7379953 Rev 23 27/311

UM1399 Toolset overview

29

1.5.1 GDB command scripts directory

The directory sh-superh-elf/stdcmd contains GDB command scripts that define
connection commands for simulators and for target boards supplied by STMicroelectronics.
See the GDB command scripts user manual (8045872) for information about these
command scripts.

1.5.2 The documents directory

Several HTML files are provided to navigate the documentation. These can all be accessed
from the index.htm file in the release installation directory. Table 4 lists the main pages.

The doc directory also contains the supporting documentation supplied with the toolset.
There are three subdirectories provided in the doc directory:

sh-superh-elf/include OS21 and C/C++ library header files.

sh-superh-elf/lib Run-time library files.

sh-superh-elf/src Source files for OS21 and other packages.

sh-superh-elf/stdcmd GDB command scripts.

Table 3. The release directories

Directory Contents

Table 4. The HTML files in the doc directory

File Description

acknow.htm The acknowledgments page.

cdmap.htm A map of the information provided.

docbug.htm
Instructions on how to get support on the toolset and report
problems in the documentation.

docs.htm
A list of the documentation supplied with the toolset. Each
document can be accessed from this page by clicking on the
relevant link.

issues.htm Information on bugs outstanding and resolved in this release.

license.htm
Links to each of the license files that the software is shipped
under.

Table 5. The doc subdirectories

Directory Description

images The images used in the documentation.

hyper
The documentation in HTML format. These can be accessed from
the docs.htm file.

pdf
The printable documentation supplied as one PDF file per
document. These can be accessed from the docs.htm file.

Toolset overview UM1399

28/311 7379953 Rev 23

1.5.3 The examples directory

The examples are located in the sh-superh-elf/examples directory. Each example has
a readme.txt file describing the example and makefiles to build the example.

Also supplied is a sample implementation of the low-level I/O interface provided in the libdtf
and libgloss libraries.

Getting started examples

The bare/getstart subdirectory of the examples directory contains two simple
examples of bare machine programs. These examples can be used as confidence tests for
the hardware and the toolset. There is a simple “Hello World” application, and one to display
part of the Fibonacci sequence.

Hardware configuration registers

The bare/sh4reg subdirectory of the examples directory provides C/C++ header files.
These header files define the locations of the memory mapped configuration registers for
the core and other commonly accessed peripherals of the ST40.

MTT trace example

The bare/mtt subdirectory of the examples directory contains a “Hello World” example
using MTT trace API calls.

syscalls example

The syscalls subdirectory of the examples directory contains a sample implementation
of the syscalls low level I/O interface (see Section 1.4.6: The syscalls low-level I/O
interface on page 24).

Census example

The census subdirectory of the examples directory contains the implementation of the API
that enables an application to control performance data collection on a simulated ST40 from
within the source (see Section 8.3.5: Dynamic control on page 109).

OS21 examples

The os21 subdirectory of the examples directory contains some examples of programs
using the features of OS21.

• The os21/autostart subdirectory contains an example of how to start OS21 before
any C++ static constructors or main() are called.

• The os21/dynamic subdirectory contains an example illustrating how to build a
simple application which loads a dynamic library from the host file system.

• The os21/failsafe subdirectory contains an example which runs a fail-safe (that is,
integrity checking and, potentially, repairing) application before running the normal boot
application.

• The os21/lowpower subdirectory contains an example showing how to use the OS21
power management API to put an ST40 core into low power standby mode.

• The os21/mandelbrot subdirectory contains a multi-tasking example generating a
Mandelbrot pattern.

7379953 Rev 23 29/311

UM1399 Toolset overview

29

• The os21/mtt subdirectory contains a "Hello World" and Mandelbrot example using
MTT trace API calls for OS21.

• The os21/nandboot and os21/nandbootblock0 subdirectories contain an
example of booting from NAND Flash ROM using an ST NAND controller, loading an
application into RAM and executing it. The nandboot example requires an ST NAND
controller that supports multiple block remapping in boot mode, whilst the
nandbootblock0 example is for older ST NAND controllers that do not support
multiple block remapping in boot mode.

• The os21/os21demo subdirectory contains an example of using tasks to animate a
graphical display.

• The os21/rombootram and os21/rombootrom subdirectories contains examples of
how to program Flash ROM, and how to build applications which can be booted from
Flash ROM.

• The os21/rombootanywhere subdirectory contains an example that has some of its
code and data placed in an alternative memory location.

• The os21/romdynamic subdirectory shows how to use the Relocatable Loader
Library to load a dynamic library from Flash ROM from an application which is booted
from Flash ROM.

• The os21/romloader subdirectory contains an example showing how the ST40 core
can boot the ST40 and ST231 slave cores of an SoC. This example requires the ST200
Micro Toolset R4.1 or later.

• The os21/rommultiboot subdirectory contains an example showing how the ST40
and ST231 cores of an SoC can boot from Flash ROM. This example requires the
ST200 Micro Toolset R4.1 or later.

• The os21/sh4ubc subdirectory contains an example illustrating using the ST40 UBC
to perform run-time debugging of an application without the use of a debugger (see the
ST40 Core Architecture Manual). The example contains the source for the UBC library
and a small test program that uses the library.

• The os21/soaktest subdirectory contains a simple stress test program, designed to
act as a confidence test for OS21 running on the target.

• The os21/sti5528dualboot subdirectory contains an example showing how both
the ST40 and ST20 cores on the STi5528 device can boot from Flash ROM. This
example requires the ST20 Embedded Toolset R1.9.6 patch 7 or later.

• The os21/sti5528loader subdirectory contains an example showing how the ST40
core on the STi5528 device can boot the ST20 core. This example requires the ST20
Embedded Toolset R1.9.6 patch 7 or later.

• The os21/timer subdirectory contains an example showing how the OS21 API can
be used to implement a simple timer. Tasks are able to create timer objects, which have
a programmable duration, and can run in one shot or periodic mode. When a timer
fires, a user supplied callback function is called in the context of a high priority task.
The example contains the source for the timer library, and a small test program which
uses the library.

Introducing OS21 UM1399

30/311 7379953 Rev 23

2 Introducing OS21

OS21 is a royalty-free, lightweight, multitasking operating system developed by
STMicroelectronics. It is an evolution of the OS20 API and is intended for applications
where small footprint and excellent real-time responsiveness are required. It provides a
multi-priority preemptive scheduler, with low context switch and interrupt handling latencies.

OS21 assumes an unprotected, single address-space model and is designed to be easily
portable between SoC architectures.

OS21 provides an OS20 compatible API to handle task, memory, messaging,
synchronization and time management. In addition, OS21 enhances the OS20 memory API
and introduces API extensions to control virtual memory, mutexes, event flags, interrupts
and caches.

OS21 aware debugging is available through GDB.

Multi-tasking is widely accepted as an optimal method of implementing real-time systems.
Applications may be broken down into a number of independent tasks which co-ordinate
their use of shared system resources, such as memory and CPU time. External events
arriving from peripheral devices are made known to the system via interrupts.

The OS21 real-time kernel provides comprehensive multi-tasking services. Tasks
synchronize their activities and communicate with each other via semaphores, event flags,
mutexes and message queues. Real world events are handled using interrupt routines and
communicated to tasks using semaphores and event flags. Memory allocation for tasks is
selectively managed by OS21, the C run-time library or the user. Tasks may be given
priorities and are scheduled accordingly. Timer functions are provided to implement time
and delay functions.

An OS21 application is built as a single executable image(a), which can be loaded on the
target through a debug link, or from Flash ROM. This single executable is typically written in
C, and statically linked with the C run-time library, the OS21 library and the OS21 board
support library. The application author has control of initializing the OS21 kernel, and
switching on pre-emptive multi-tasking support. Once the OS21 kernel has been started, the
full OS21 API can be used.

a. This executable may load relocatable libraries. See Chapter 11: Relocatable loader library on page 139.

7379953 Rev 23 31/311

UM1399 Introducing OS21

33

A very simple OS21 application (test.c) is shown below:

#include <os21.h>
#include <stdio.h>

void my_task (char *message)
{
 printf("Hello from the child task.\nMessage is '%s'\n", message);

}

int main (void)
{
 task_t *task;

 kernel_initialize(NULL);
 kernel_start();

 printf("Hello from the root task\n");

 task = task_create((void (*)(void*))my_task,
 "Hi ya!",
 OS21_DEF_MIN_STACK_SIZE,
 MAX_USER_PRIORITY,
 "my_task",
 0);

 task_wait(&task, 1, TIMEOUT_INFINITY);

 printf("All tasks ended. Bye.\n");

 return 0;
}

To compile and run this program on an STb7100-MBoard connected to an ST Micro
Connect called stmc:

sh4gcc test.c -mruntime=os21 -mboard=mb411
sh4xrun -t stmc -c mb411 -e a.out

The output should be:

Hello from the root task
Hello from the child task.
Message is ’Hi ya!’
All tasks ended. Bye.

For more information on OS21, see the OS21 User Manual (7358306) and the OS21 for
ST40 User Manual (7358673).

Introducing OS21 UM1399

32/311 7379953 Rev 23

2.1 OS21 features
The following list summarizes the key features of OS21.

• OS21 is a simple, royalty free multi-tasking package.

• There is a single address space and single name space (application has one
executable image).

• There is a 256 level priority based FIFO scheduler.

• It has optional timeslicing.

• It has inter-task synchronization.

• Counting semaphores:

– can be initialized to any count

– can be signalled from interrupts

– for FIFO semaphores, the longest waiting task gets the semaphore

– for priority semaphores, the highest priority task gets the semaphore

• Mutexes can:

– create critical sections between tasks

– can be recursively acquired by the owning task without deadlock

– for FIFO mutexes, the longest waiting task gets the mutex

– for priority mutexes, the highest priority task gets the mutex and supports priority
inheritance to avoid priority inversion

• Event flags where:

– tasks can poll, or wait for all or any event flag within a group

– events can be posted from a task or interrupt

• There is inter-task communication that uses simple FIFO message queues.

• There are user-installable interrupt handlers.

• There are user installable exception handlers.

• It has extensive cache API.

• The memory management has:

– heaps

– fixed block allocator

– simple (non-freeable) allocator

– user definable allocators

– system heap managed by OS21 or C run-time

• It has virtual memory management.

• There is task aware profiling. The OS21 profiler allows profiling of a single task, a
single interrupt level or the system as a whole.

• OS21 provides different power levels and a mechanism for transitioning between
power levels, including waking up from standby mode.

• The board support package (BSP) libraries allow customization for new boards.

• OS21 uses the newlib C run-time library

7379953 Rev 23 33/311

UM1399 Introducing OS21

33

2.2 OSPlus
OSPlus is an optional enhancement package for the OS21 operating system, and is
available separately from the ST40 Micro Toolset. OSPlus provides a number of additional
APIs that support the following features.

• Device driver infrastructure:

– device driver API

– device driver writer’s interface

– registry services

– drivers for standard devices

• File system infrastructure:

– top level virtual file system (VFS)

– support for FAT and Ext2 file systems

• Optional OSPlus extension packages:

– USB 2.0

– TCP/IP

For more information about OSPlus, see OSPlus datasheet (7813502).

Code development tools UM1399

34/311 7379953 Rev 23

3 Code development tools

The code development tools are based on the GNU development tools and have been
modified in various ways from the standard GNU base tools. These modifications are
referred to as the SuperH configuration (see Section 1.2 on page 16). These changes
specialize the tools for the ST40 and provide integration with the ST40 simulators and ST40
target boards.

3.1 The GNU compiler (GCC)
GCC is the GNU Compiler Collection (formerly called the GNU C Compiler). It has support
for a number of languages including C, C++, Objective C, Fortran, Ada and Java. Only the C
and C++ compilers are provided and supported by STMicroelectronics.

The compiler tools are:

• sh4gcc

The C compiler.

• sh4g++

The C++ compiler.

• sh4c++

An alternative name for the C++ compiler.

Note: These tools are compiler drivers. The actual compilers are called cc1 and cc1plus and are
invoked by the compiler drivers for each C and C++ file. The compiler driver may also
invoke the assembler and linker tools as necessary.

3.1.1 GCC command line quick reference

Table 6 lists many of the most useful, generic, options to the compiler driver (which may also
call the assembler and linker).

Table 6. sh4gcc command line quick reference

Option Description

-o file Use file as the output file.

-c Compile and assemble only - no linking.

-llibrary Link against library.

-L directory Search directory for libraries.

-I directory Search directory for header files.

-isystem directory
Search directory for system header files (included with <>
not "").

-S
Do not assemble. Generate .s files containing assembly code
instead.

7379953 Rev 23 35/311

UM1399 Code development tools

49

-E

Preprocess only. Output preprocessed file to standard output or
the file specified by -o if supplied.
When generating preprocessed output, it is sometimes useful to
dump all macro definitions using the -dD option. Further,
comments can be preserved using the -C or -CC options.

-save-temps

Do full compile unless otherwise directed, but do not remove
intermediate files. Preprocessed C output to .i files, preprocessed
C++ output to .ii files, assembler code to .s files and object
code to .o files.

-Wa,optionlist
Pass options to the assembler. Use commas instead of spaces
within the option list (or use quotes).

-Wp,optionlist Pass options to the preprocessor.

-Wl,optionlist Pass options to the linker.

-Wl,-Map,file Generate a linker map file whose name is file.

-v

Verbose output mode. This is useful for viewing the programs the
compiler driver is invoking. If given as the first parameter with a
short form of the tool, any additional options and environment
variables set are also displayed.

--help Provide help on the command line options.

--help -v
Provide help on all the options available on all the programs which
the compiler driver may invoke (for example, the assembler and
linker).

--help=optimizer Provide help on the optimizer options.

--help=target Provide help on the target options.

-g Insert debug information into the output files.

--coverage Enable program coverage.

-pg Enable function profiling.

-O0
Do not optimize the output code. This is the default optimization
setting if -O is not specified.

-O1

Do some optimizations. This is the default optimization setting if -O
is specified without a level.
Some optimizations enabled by -O1 can reduce the ease of
debugging.

-O2
Do most optimizations.

Some optimizations enabled by -O2 can severely impact the ease
of debugging.

-O3
Do all -O2 optimizations, plus additional aggressive optimizations
that can increase code size.

-Os
Do optimizations designed to reduce code size (and skip
optimizations that often increase code size).

Table 6. sh4gcc command line quick reference (continued)

Option Description

Code development tools UM1399

36/311 7379953 Rev 23

Table 7 lists some generic options that are common to all the SH-4 core families and do not
rely on the SuperH configuration.

For more SH-4 specific options, see Table 56: SH-4 specific GCC options on page 247. For
ST40 specific optimization recommendations, see Section B.1.10: Speed and space
optimization options on page 261.

-flto
Enable the link time optimizer. To be effective, use this option
consistently for all of the compile, assemble and link steps. See
B.1.5: Link time optimization on page 253 for further information.

-funroll-loops
Enable loop unrolling; not enabled by default with -O1 or -O2;
enabled in -O3. Only unroll when the iteration count is known.

-funroll-all-loops
Enable loop unrolling for all loops; not enabled by default with -O1,
-O2 or -O3.

-fomit-frame-pointer
Use the offset from the stack pointer instead of a frame pointer to
access frame variables. This frees R14 for other uses. This is
enabled by default.

-Wall Give all but the most unusual warnings.

-pedantic Give all warnings required by the ISO C standard.

-Dmacro[=value]
Define a preprocessor macro (same as #define). If =value is
not given then the default is 1.

Table 7. sh4gcc SH-4 specific options

Option Description

-ml
Compile for a little endian target (default for SuperH and ST40
cores).

-mb Compile for a big endian target.

-mrelax
Do special linker optimizations. To be effective, use consistently for
all of the compile, assemble and link steps. See B.1.6: Stack
overflow checking on page 256 for further information.

-m4-300 Compile for an ST40-300 series core.

Table 6. sh4gcc command line quick reference (continued)

Option Description

7379953 Rev 23 37/311

UM1399 Code development tools

49

3.1.2 GCC SuperH configuration specific options

Table 8 lists all the options added by the SuperH configuration.

Table 8. sh4gcc SuperH configuration specific options

Option Description

-mboard=board

This option is used by the board support package.
The board support package allows the same toolchain to build
executables for a number of different hardware and simulation
platforms (not including OS platforms).
This option must be specified when linking.
The value of board determines the memory location at which the
linker places the program and the stack; therefore this value
determines the boards on which the application will run.
For a list of the valid values, see the HTML document
doc/boardsup.htm in the release installation directory.

-mruntime=runtime

This option is used by the run-time support package to select the
I/O interface and to select between bare machine and OS21
applications.
The default is to compile for a bare machine application using
DTF.
For a list of the valid values, see Section 3.6: Run-time support on
page 46.
For instructions on setting up a custom run-time, see
Section 3.6.1: GCC run-time support setup on page 47.

-profiler
Use this option to enable dynamic OS21 profiler support. See
Chapter 13: Dynamic OS21 profiling on page 214.

-profiler-specs=file
Use this option to replace the default OS21 profiler specs file
os21profiler.specs with file.

-profiler-no-constructor
Use this option to disable the automatic initialization of the
dynamic OS21 profiler.

-rlib
Use this option to build a relocatable library. See Section 11.5:
Writing and building a relocatable library and main module on
page 156.

-rmain
Use this option to build an executable which can load relocatable
libraries. See Section 11.5: Writing and building a relocatable
library and main module on page 156.

-trace
Use this option to enable OS21 Trace support. See
Chapter Appendix D: Profiler plugin on page 270.

-trace-api Use this option to enable OS21 API trace support.

-trace-specs=file
Use this option to replace the default OS21 trace specs file
os21trace.specs with file.

-trace-api-class
Use this option to include the specified class of API in the
tracing.

-trace-api-no-class
Use this option in conjunction with the -trace-api option to
exclude API functions from the specified class of API from tracing.

Code development tools UM1399

38/311 7379953 Rev 23

3.2 The GNU assembler
It is not usually necessary to invoke the assembler directly since the GNU compiler driver
calls the assembler automatically when an assembler source file is specified. However,
there may be occasions when it is necessary to invoke the assembler directly. The
assembler tool is sh4as.

3.2.1 GNU assembler command line quick reference

Table 9 lists the most useful options to the assembler.

-trace-no-constructor
Use this option to disable the automatic initialization of the OS21
Trace buffers.

-trace-no-destructor
Use this option to disable the OS21 Trace destructors on
application exit.

Table 8. sh4gcc SuperH configuration specific options (continued)

Option Description

Table 9. GNU assembler command line quick reference

Option Description

-little Assemble for a little endian target. This is the default setting.

-big Assemble for a big endian target.

-o file Use file as the name of the output file. The default is a.out.

-relax

Place special information in the object file, allowing some additional
optimizations to be performed by the linker.
This is only useful if the relaxation options of the compiler and linker are
also used. The -mrelax option to the compiler driver does this
automatically (if the compile, assemble and link steps are performed as
a single operation).

7379953 Rev 23 39/311

UM1399 Code development tools

49

3.3 The GNU linker
As with the assembler, it is generally unnecessary to use the linker directly since the GCC
compiler driver calls it automatically (using the GCC collect2 tool). The linker tool is sh4ld.

The SuperH configuration is different from the traditional configuration in the set of
supported emulations. These emulations support board support packages (see Section 3.5:
Board support on page 40).

3.3.1 GNU linker command line quick reference

Table 10 lists many of the most useful linker options.

Table 10. sh4ld command line quick reference

Option Description

-llibrary
Specify a library.

The linker searches its search path for a file named
liblibrary.a. Only the first one found on the path is used.

-L path Add path to the library search path.

-m emulation
Use emulation to link the files.
The emulation selects a linker script file from the standard set.

-EL
Link for a little endian target. Outside of the SuperH configuration a
little endian emulation is also required. (Default for SuperH
configuration.)

-EB
Link for a big endian target. Outside of the SuperH configuration a
big endian emulation is also required. (Default for traditional
configuration.)

-t
Output trace information for the link process.
This allows the dependencies to be traced, which is useful for
diagnosing link failures.

-T file
Provide a custom linker script file.

This overrides the linker script from the emulation.

-r Create a relocatable object file as output. Used for partial links.

-M Output map information from the link to standard output.

-Map file Output map information from the link to file.

-s
Strip all symbols from the output. Reduces the output file size, but
cannot be debugged.

-S Strip debugging symbols from the output.

--relax
Do relaxation optimizations (requires that the inputs are compiled
and assembled with the relaxation options).

--defsym s=v
Define symbol s to value v. This option is used by the board support
mechanism to set the top and bottom of memory, the program start
and the stack location.

Code development tools UM1399

40/311 7379953 Rev 23

3.4 Profiling with the sh4gcov and sh4gprof utilities
sh4gcov is used for testing the coverage of a program. This has two main purposes:

• to identify how much of the program code has been tested

• to identify the most-used parts of the program

To use sh4gcov, the entire application must first be instrumented by compiling with the --
coverage compiler option.

When the application is executed a file named program.gcda is created in the same
directory as the object file, for each source file compiled using the --coverage compiler
option. This file can then be read by sh4gcov:

sh4gcov program.c

sh4gcov creates a file named program.c.gcov which records the number of times each
line was executed. Lines that were not executed are marked with ####. The -f option
provides a summary-per-function to the console:

sh4gcov -f program.c

The counts are cumulative. Therefore if the application is run multiple times, the execution
counts in program.gcda are added to those of previous runs. This allows testing of all
possible paths through the application.

The -b option provides information about how many times each branch was taken:

sh4gcov -b program.c

This provides a summary to the console and also records specific information in the .gcov
file.

sh4gprof is used for profiling the application. For best results, the entire application should
be instrumented by compiling with the -pg option.

When the application is executed the file named gmon.out is created which provides the
profiling information. sh4gprof can then be used to examine this data.

There are several options for viewing different aspects of the data. Extensive support for
profiling and coverage analysis is provided in the STWorkbench IDE, see Chapter 5: Using
STWorkbench on page 68. Also refer to the GNU Using the GNU Compiler Collection
manual for more information.

3.5 Board support
The board support mechanism specifies the memory map that is used to link the program.
This defines the top and bottom of memory, the program start and the stack location.

The default memory layout places the data and text (code) sections of the program at the
lowest available address and places the stack at the highest available address. The heap is
placed after the data and text sections and grows towards the stack.

The set of board specifications for a particular release is contained within the boardspecs
file (see Section 3.5.1: GCC board support setup) and is selected with the -mboard GCC
option. For example, the option -mboard=mb411 selects the memory map for the
STb7100-MBoard.

7379953 Rev 23 41/311

UM1399 Code development tools

49

A suitable connect command or ROM loader is required to configure the target. For
example, the sh4gdb GDB command mb411 connects to the target and configures it so that
it is suitable for a program linked for the STb7100-MBoard. See ST40 Micro Toolset GDB
command scripts (8045872) for more information about GDB connection commands.

The ST40 has two physical addressing models; 29-bit and 32-bit mode (also known as
Space Enhancement mode, or SE mode for short). SE mode is only supported on some
variants of the ST40. Further detailed information on these modes can be found in the ST40
Core Architecture Manual (7182230).

The ST40 memory space is divided into 5 memory regions. Each region has different cache
and translation properties. Table 11 lists the memory regions and their properties. See ST40
Core Architecture Manual (7182230) for further details.

29-bit, non SE-mode applications are linked by default to the P1 (cached) region. A different
region can be specified by adding the appropriate px suffix (where x is the region number)
to the board specification name.

Note: STMicroelectronics recommend that applications do not modify the top three address bits to
obtain uncached views of physical memory. The method is not portable and works only with
applications that are linked for non SE-mode or with the se29p1 (or se29p2) -mboard
board name suffixes. Use the OS21 virtual memory API to obtain uncached views of
physical memory. For an example, see Section A.5: Access to uncached memory on
page 230.

Table 11. ST40 memory regions

Region Address range Description

P0
0x00000000

0x7FFFFFFF

Cacheability and address translation is controlled by the Unified
Translation Look-aside Buffers (UTLBs) when the Memory
Management Unit (MMU) is enabled.

If the MMU is not enabled, then cacheability is controlled by the ST40
cache control register (CCN.CCR). Physical addresses are translated
either by an identity mapping in SE mode or by masking the address
to 29 bits.

P1
0x80000000

0x9FFFFFFF

Cacheability and address translation is controlled by the Privileged
Mode Buffers (PMBs) when in SE mode.
If SE mode is not enabled then cacheability is controlled by the ST40
cache control register and the address is masked to 29 bits.

P2
0xA0000000

0xBFFFFFFF

Cache and address translation is controlled by the Privileged Mode
Buffers (PMBs) when in SE mode.

If SE mode is not enabled then the memory region is uncached and
the address is masked to 29 bits.

P3
0xC0000000

0xDFFFFFFF
Same behavior as for P0.

P4
0xE0000000

0xFFFFFFFF

Special region which is uncached with no address translation.
This region contains resources such as memory mapped control
registers for the ST40 and peripheral registers.

Code development tools UM1399

42/311 7379953 Rev 23

SE-mode applications are supported by the following -mboard board name suffix variants:

Note: Support for 32-bit memory is provided using the OS21 virtual memory API, see OS21 User
Manual (7358306) and OS21 for ST40 User Manual (7358673).

For ROM examples in the release that support 32-bit memory, see Chapter 10: Booting
OS21 from Flash ROM on page 135.

Please refer to the HTML document doc/boardsup.htm in the release installation
directory for the complete list of -mboard options recognized by GCC for each supported
SoC.

3.5.1 GCC board support setup

The GCC -mboard option is controlled by the GCC specs file boardspecs. This file is
located in the sh-superh-elf/lib/gccscripts subdirectory of the release installation
directory. A description of the format of a GCC specs file may be found in Section 3.15 of the
Using the GNU Compiler Collection manual.

The primary objectives of the boardspecs file are to provide the linker with the following:

• the start address for placing the linked executable (using the _start symbol)

• the address of the top of the stack (using the _stack symbol) for the given board

For the -mboard options defined by the default boardspecs file, when linking for 29-bit,
non SE-mode, the addresses for these symbols are derived from ___rambase and
___ramsize, which specify the location and size of RAM allocated to the ST40 core.
Similarly ___rombase and ___romsize specify the location and size of the ROM from
which the ST40 core boots. The symbol .reservedramsize defines the size of reserved
memory at the base of RAM and is used for calculating the start address.

See Section 3.5.2: Linker board support on page 45 for details of the linker command line.

Note: ___rambase and ___rombase are board-specific and are derived from .physrambase
and .physrombase as shown in the example below. Specifically, ___rambase always
refers to the virtual address of .physrambase (minus the value of .rambaseoffset, if
defined).

se The se board specification suffix assumes that the PMBs are configured so
that the external RAM is mapped at the base of the P1 region. If there are two
banks of RAM (such as on the STb7109 and STi7200) then the second bank
is mapped at the base of the P2 region.

The se board suffix is the standard -mboard suffix to be used when linking
applications to execute in SE mode.

se29p1 The se29p1 board specification suffix assumes that the PMBs are configured
so that all banks of external RAM are mapped contiguously from the base of
P1 with the caches enabled, and with the same mapping from the base of P2
but with the caches disabled. The se29p1 suffix links applications for the
cached mapping of RAM.

This configuration provides a 29-bit physical addressing compatibility mode
that enables the top three bits of the P1 and P2 addresses to be modified in
order to switch between cached and uncached views of physical memory.

se29p2 The se29p2 board specification suffix assumes the same PMB configuration
as the se29p1 suffix and links applications for the uncached mapping of
RAM.

7379953 Rev 23 43/311

UM1399 Code development tools

49

Refer to the boardspecs file for details of how the _start and _stack symbols are
defined when linking using the SE mode -mboard options.

The boardspecs file works by defining a spec string named board_link. This spec string
must, directly or indirectly, specify the linker options defining the memory available to the
application for the target board.

An example of the simplest boardspecs file is as follows:

*board_link:
--defsym _start=0xA4001000 --defsym _stack=0xA5FFFFFC

This defines the memory for an STb7100-MBoard in the P2 region. The first line (and it
must be the first line) describes that it is defining or re-defining the board_link spec-
string. The second line (and it must be the second line) is the definition of the spec-string.
The string is inserted into the linker command line when the spec-strings are interpreted by
the GNU GCC compiler driver.

The following examples show the linking of applications that rely on the ___rambase and
___ramsize symbols (or their ROM counterparts). The examples directly define the
memory for a single board with no option to support any other board.

*start_and_stack:
--defsym _start=___rambase+.reservedramsize \
--defsym _stack=___rambase+___ramsize-4

*board_link:
--defsym .reservedramsize=0x1000 \
--defsym ___rambase=0xA4000000 --defsym ___ramsize=0x02000000 \
--defsym ___rombase=0xA0000000 --defsym ___romsize=0x00800000 \
%(start_and_stack)

An example of defining the memory indirectly is as follows:

*start_and_stack:
--defsym _start=___rambase+.reservedramsize \
--defsym _stack=___rambase+___ramsize-4

*mb411:
--defsym .reservedramsize=0x1000 \
--defsym ___rambase=0xA4000000 --defsym ___ramsize=0x02000000 \
--defsym ___rombase=0xA0000000 --defsym ___romsize=0x00800000 \
%(start_and_stack)

*board_link:
%(mb411)

This technique allows more than one configuration to be defined (although in this example
the board_link spec string still has to be manually altered in order to switch between
them).

Code development tools UM1399

44/311 7379953 Rev 23

An example of using the -mboard option is as follows:

*start_and_stack:
--defsym _start=___rambase+.reservedramsize \
--defsym _stack=___rambase+___ramsize-4

*mb411:
--defsym .reservedramsize=0x1000 \
--defsym ___rambase=0xA4000000 --defsym ___ramsize=0x02000000 \
--defsym ___rombase=0xA0000000 --defsym ___romsize=0x00800000 \
%(start_and_stack)

*mb442:
--defsym .reservedramsize=0x1000 \
--defsym ___rambase=0xA4000000 --defsym ___ramsize=0x02000000 \
--defsym ___rombase=0xA0000000 --defsym ___romsize=0x00800000 \
%(start_and_stack)

*board_link:
%{mboard=mb411|!mboard=*:%(mb411); \

mboard=mb442:%(mb442)}

This defines that “if the option -mboard=mb411 was specified, or if no -mboard option was
specified then use the spec string mb411” (and is therefore the default action). The next line
defines exactly the same but for mb442 and both these entries are exclusive. This technique
can be scaled up to any number of boards.

An example of adding memory region support is as follows:

*start_and_stack:
--defsym _start=___rambase+.reservedramsize --defsym _stack=___rambase+___ramsize-4

*region_p0:
--defsym .regionbase=0

*region_p1:
--defsym .regionbase=0x80000000

*region_p2:
--defsym .regionbase=0xA0000000

*region_p3:
--defsym .regionbase=0xC0000000

*define_29bit_mem:
--defsym .reservedramsize=0x1000 \
--defsym ___rambase=.regionbase+.physrambase \
--defsym ___rombase=.regionbase+.physrombase \
%(start_and_stack)

*_mb411:
--defsym .reservedramsize=0x1000 \
--defsym .physrambase=0x04000000 --defsym ___ramsize=0x02000000 \
--defsym .physrombase=0x00000000 --defsym ___romsize=0x00800000

*mb411:
%(_mb411) %(region_p0) %(define_29bit_mem)

7379953 Rev 23 45/311

UM1399 Code development tools

49

*mb411p1:
%(_mb411) %(region_p1) %(define_29bit_mem)

*mb411p2:
%(_mb411) %(region_p2) %(define_29bit_mem)

*mb411p3:
%(_mb411) %(region_p3) %(define_29bit_mem)

*board_link:
%{mboard=mb411:%(mb411p1);\

mboard=mb411p0:%(mb411p0);\
mboard=mb411p1:%(mb411p1);\
mboard=mb411p2:%(mb411p2);\
mboard=mb411p3:%(mb411p3)}

This is similar to adding new boards except that instead of specifying a default board, a
default memory region (P1) is specified.

When linking for a multicore SoC with one or more ST200 cores, the top 16 Kbytes of
memory is normally reserved for the ST200 core debug. When this overlaps RAM that is
otherwise allocated to an ST40, this space must be reserved to prevent it being overwritten
by the ST40. In the boardspecs file, this is done using the symbol
.st200debugramsize.

The following example is for the mb411lmivid variant, and reserves 16 Kbytes (0x4000
bytes) of memory to prevent the ST40 using this space for its own stack.

*_mb411lmivid:
--defsym .reservedramsize=0x1000 --defsym .st200debugramsize=0x4000 \
--defsym .physrambase=0x10000000 --defsym ___ramsize=0x04000000-.st200debugramsize \
--defsym .physrombase=0x00000000 --defsym ___romsize=0x00800000

Adding support for new boards

See Section 9.2.1: Creating a customized board support library on page 130 and
Section 9.3: Adding support for new boards on page 131 for information on how to add and
use a new board support library with the toolset.

3.5.2 Linker board support

The board support mechanism (available only in the SuperH configuration) permits the
location the executable is placed in memory and the location of its stack to be specified on
the command line by defining the symbols _start and _stack. For example:

sh4ld --defsym _start=0xA4001000 --defsym _stack=0xA5FFFFFC ...

The start address (_start) should be near the beginning of memory. By default, a small
area (4 Kbytes) is reserved before the _start symbol. This is done using the
.reservedramsize symbol. This is not required by the ST40 Micro Toolset, but is
consistent with other ST40 targeted GNU based toolsets, which use this value for historical
reasons. For examples, see Section 3.5.1 on page 42.

The stack address (_stack) specifies the initial location of the stack for the application and
is the location at the end of the memory allocated to the executable (the ST40 uses a falling
stack).

Note: If the stack is to be at the top of memory, the address should be one word less than the top
of memory since the location must be a legal address.

Code development tools UM1399

46/311 7379953 Rev 23

The GCC compiler driver passes these options automatically when it is used to perform the
link.

The default linker script enables the linking of run-from-ROM executables. _start defines
the location of the start of ROM for the read-only sections, and .start_rwdata the
location in RAM where the read-write sections begin. When a standard -mboard option is
specified, the symbols ___rambase, ___ramsize, ___rombase and ___romsize can
be used to define the values of _start and .start_rwdata, for example:

sh4gcc -Wl,--defsym,_start=___rombase+0x5000,--defsym,
 .start_rwdata=__rambase

3.5.3 Alternative placement of sections

The default linker script expects all code and data sections to be contiguous in the .text,
.rodata and .data sections. For some applications, it may be necessary for code and
data to be located in a different memory location to the rest of the application.

For example, in a low-power scenario, the RAM on the LMI may be put into self-refresh
mode (and thus made inaccessible to the ST40). The code and data required to do this
needs to be located in RAM that is not connected to the LMI. This can be achieved either by
using of a relocatable library loaded into that location, or by creating alternative linker
sections in the main application at the required addresses.

Note: OS21 provides power management APIs that achieve the same objective but do not require
the code and data to be placed in alternative sections.

The os21/rombootanywhere example demonstrates the creation and placement of
alternative sections by replacing the default linker script with one that includes the default
linker script and then lays out the alternative sections. The example uses the GCC
section attribute in the source code to indicate to the script where the code and data
should be located.

3.6 Run-time support
The run-time support mechanism allows GCC to link programs for each recognized run-time
system. The run-time is specified using the -mruntime option (see Section 3.6.1: GCC
run-time support setup).

Table 12 lists the recognized run-time systems.

Table 12. Recognized run-time systems

Supported run-time systems Comment

bare Bare machine (default)

os21 OS21

os21_d OS21 debug

7379953 Rev 23 47/311

UM1399 Code development tools

49

3.6.1 GCC run-time support setup

The GCC -mruntime option is controlled by the GCC specs file runtimespecs. This file
is located in the subdirectory sh-superh-elf/lib/gccscripts of the release
installation directory. A description of the format of a GCC specs file may be found in
Section 3.15 of the Using the GNU Compiler Collection manual.

The SuperH configuration adds five spec strings in the standard GCC specs file. (These
can be reviewed using the GCC option -dumpspecs.) They are named asruntime
(assembler), cppruntime (C preprocessor), cc1runtime (compiler), ldruntime (linker)
and libruntime (libraries). These spec strings can be overridden in the runtimespecs
file in order to specify a new run-time environment setup.

An example of the simplest runtimespecs file is:

*asruntime:
 (line intentionally blank)

*cppruntime:
-D__BARE_BOARD__

*cc1runtime:
 (line intentionally blank)

*ldruntime:
 (line intentionally blank)

*libruntime:
-lc -ldtf

This sets the run-time environment to that of a bare machine application (that is, an
application without an operating system) using the Data Transfer Format (DTF) I/O library. It
does not provide information about which board is targeted. There is one entry for each of
the five spec strings.

Each of the five spec strings is inserted respectively into the command lines of the
assembler, preprocessor, compiler and linker (general linker options and library options).

There is an implicit -lc placed at the end of the library spec string libruntime. However,
if a file or library listed in the libruntime string provides a symbol required by the C library
(such as those found in libgloss or libdtf) then it is necessary to place an additional -lc
first. The final line of the example shows -lc is listed before -ldtf.

The previous example allows only one run-time to be defined and ignores the -mruntime
option. A simple example supporting both bare machine and OS21 applications is:

*as_bare:
 (line intentionally blank)

*cpp_bare:
-D__BARE_BOARD__

Code development tools UM1399

48/311 7379953 Rev 23

*cc1_bare:
 (line intentionally blank)

*ld_bare:
 (line intentionally blank)

*lib_bare:
-lc -ldtf

*libgcc_bare:
-lgcc

*as_os21:
 (line intentionally blank)

*cpp_os21:
-D__os21__ -D__OS21_BOARD__

*cc1_os21:
 (line intentionally blank)

*ld_os21:
 (line intentionally blank)

*lib_os21:
%(lib_bare) -los21 -l%(lib_os21bsp_base) -los21 %(lib_bare)

*libgcc_os21:
-los21 %(libgcc_bare)

*asruntime:
%{mruntime=bare|!mruntime=*:%(as_bare);\

mruntime=os21:%(as_os21)}

*cppruntime:
%{mruntime=bare|!mruntime=*:%(cpp_bare);\

mruntime=os21:%(cpp_os21)}

*cc1runtime:
%{mruntime=bare|!mruntime=*:%(cc1_bare);\

mruntime=os21:%(cc1_os21)}

*ldruntime:
%{mruntime=bare|!mruntime=*:%(ld_bare);\

mruntime=os21:%(ld_os21)}

7379953 Rev 23 49/311

UM1399 Code development tools

49

*libruntime:
%{mruntime=bare|!mruntime=*:%(lib_bare);\

mruntime=os21:%(lib_os21)}

*libgcc:
%{mruntime=bare|!mruntime=*:%(libgcc_bare);\

mruntime=os21:%(libgcc_os21)}

Note: Refer to the installed boardspecs and runtimespecs GCC specs files for the definition
of the lib_os21bsp_base spec string.

Again, there is one line to describe which spec string is being defined (or redefined), one
(possibly blank) line defining the spec string (after escape processing) and one blank line
between rules.

The example supports the compiler driver options:

-mruntime=bare
-mruntime=os21

Cross development tools UM1399

50/311 7379953 Rev 23

4 Cross development tools

The cross development tools enable an executable that has been created by the code
development tools (see Chapter 3: Code development tools on page 34), to run on a variety
of simulator and hardware platforms through the GNU debugger (GDB).

GDB has been enhanced in the SuperH configuration (see Section 1.2: The SuperH
configuration on page 16) to provide better support for the ST40 simulator and silicon
targets.

For the ST40, there are two methods to configure a target through an ST Micro Connect.(a)

• ST TargetPacks – for targets connected to any type of STMC.

• GDB command scripts – for targets connected to an STMC1 or STMCLite. GDB
command scripts are also the only method for connecting and configuring simulated
targets. For more information about using GDB command scripts, see ST40 Micro
Toolset GDB command scripts user manual (8045872)

Note: 1 For backwards compatibility, a target connected to an STMC2 may still be configured using
a GDB command script. The command script must, however, be modified to make the
connection using the appropriate ST TargetPack. See Using a GDB script with an STMC2
on page 51 for more information.

2 The STMC software and ST TargetPacks, together known as the ST Micro Connection
Package, are available as a separate release to the ST40 Micro Toolset. STMicroelectronics
recommends installing the most up-to-date version of the ST Micro Connection Package.
For information concerning the ST Micro Connection Package available for the ST Micro
Connect 2, contact your ST FAE or ST support center.

4.1 Connecting to the target

4.1.1 Using an ST TargetPack

A connection from a host to a target through an ST Micro Connect can be made either by
running sh4xrun or directly using GDB. The purpose of an ST TargetPack is to provide a
description of the target, in order for the ST Micro Connect to configure the target.

The connection is made by using a target connection command (such as sh4tp) and an
appropriate TargetString with sh4xrun or GDB.

The TargetString is made up of three elements, delimited by colons, as follows:

name:targetpack:core

where name is the IP address or name of the ST Micro Connect, targetpack is the name
of the ST TargetPack to use to configure the target, and core is the name of the core that is
defined by the ST TargetPack (for an SoC that contains a single ST40 core, this is usually

a. The original ST Micro Connect product was named the ST Micro Connect. With the introduction of ST Micro
Connect 2 and the ST Micro Connect Lite, this product is now known as ST Micro Connect 1 and the generic
term ST Micro Connect refers to the family of ST Micro Connect devices. In some instances, the names are
abbreviated to STMC, STMC1, STMC2 and STMCLite.

7379953 Rev 23 51/311

UM1399 Cross development tools

67

st40). A list of current SoCs and the names of the cores to which a connection can be
made is given in the release notes to the ST Micro Connection Package.

The following example uses sh4xrun (see Section 4.3: Using sh4xrun) to execute the
application a.out on an STb7100-MBoard connected to the STMC called stmc using an
ST TargetPack.

sh4xrun -c sh4tp -t stmc:mb411:st40 -e a.out

This example calls the sh4tp command for the TargetString given by the -t option and
runs the executable a.out.

To execute the same application using GDB:

sh4gdb -ex “sh4tp stmc:mb411:st40“ -ex load -ex continue a.out

In this case, the sh4tp command and TargetString are passed directly to the debugger as a
quoted argument using the GDB -ex command line option.

The sh4tp command can also be used within GDB:

(gdb) sh4tp stmc:mb411:st40

ST TargetPacks are available separately from the ST40 Micro Toolset. Contact your ST FAE
or ST support center to obtain the latest version of the ST TargetPack for the ST hardware
platform that you intend to use.

4.1.2 Using a GDB script with an STMC1 or STMCLite

If the STb7100-MBoard is connected to an ST Micro Connect 1 or ST Micro Connect Lite
(called stmc in this example), then to use a GDB command script instead of an ST
TargetPack, use the following command:

sh4xrun -c mb411bypass -t stmc -e a.out

where mb411bypass is the command script for connecting to the target.

See ST40 Micro Toolset GDB command scripts (8045872) for information on using GDB
command scripts.

4.1.3 Using a GDB script with an STMC2

If the target is connected to an ST Micro Connect 2, the same command script may be used,
but it must be modified to use the appropriate ST TargetPack for the target. The following
script is an example of a connection command for the STb7100-MBoard.

define mb411stb7100
source register40.cmd
source display40.cmd
source stb7100clocks.cmd
source stb7100jtag.cmd
source stb7100.cmd
source mb411stb7100.cmd
source sh4connect.cmd
source plugins.cmd
if ($argc > 1)

connectsh4le $arg0 mb411stb7100_setup $arg1
else

connectsh4le $arg0 mb411stb7100_setup "jtagpinout=st40 hardreset"
end

end

Cross development tools UM1399

52/311 7379953 Rev 23

To convert this GDB script for the STMC2, make the following modifications:

• change the call to connectsh4le to sh4tp with the name of the appropriate
TargetPack as a parameter

• make a call to the board-specific function to setup the target (mb411stb7100_setup
in this case)

The call to sh4tp must appear exactly as follows:

sh4tp $arg0:mb411:st40,no_pokes=1,no_devid_validate=1,tck_frequency=3375000

Caution: If the command is not entered exactly as written above, the connection to the target may fail.
Do not alter the TargetString comma separated parameters.

The STMC2 version of the script is:

define mb411stb7100stmc2
source register40.cmd
source display40.cmd
source stb7100clocks.cmd
source stb7100jtag.cmd
source stb7100.cmd
source mb411stb7100.cmd
source sh4connect.cmd
source plugins.cmd

sh4tp $arg0:mb411:st40,no_pokes=1,no_devid_validate=1,tck_frequency=3375000

mb411stb7100_setup
end

This command script expects that the name of the ST Micro Connect is passed as a
command line argument ($arg0) and uses the mb411 ST TargetPack to perform the initial
connection to the target. The additional sh4tp parameters prevent the ST TargetPack from
performing any initialization of the peripherals. Instead, this is performed by the command
script mb411stb7100_setup.

Information on the parameters passed to the connection command with the TargetString can
be found in the Developing with an ST Micro Connect and ST TargetPacks application note
(8174498).

See ST40 Micro Toolset GDB command scripts (8045872) for information on using GDB
command scripts to connect to targets.

7379953 Rev 23 53/311

UM1399 Cross development tools

67

4.1.4 Auto-detect connection

The connection commands have the ability to detect the type of connection being used and
set up the hardware accordingly. The auto-connect mechanism uses the name of the ST
Micro Connect to ascertain the type of connection to use. Table 13 lists the names that are
always assumed to specify USB connections for the given STMC type.

There may be certain circumstances under which the STMC might fail to identify the
connection correctly. In order to overcome this problem, it is possible to override the auto-
detection mechanism by replacing the STMC name in the connection command or in the
TargetString with one of the following strings:

• to force the use of an STMC1 Ethernet connection to stmc:
stmc1@eth=stmc

• to force the use of an STMC1 USB connection to stmc:
stmc1@usb=stmc

• to force the use of an STMC2 Ethernet connection to stmc:
stmc2=stmc

• to force the use of an STMCLite USB connection to stmc:
server@stmclite=stmc

For example, to force the host to use an STMC1 Ethernet connection to connect to an
MB519-STi7200 target through an STMC1 with the name hti1, use either the following
GDB script or ST TargetPack connection command:

• GDB script:
mb519bypass stmc1@eth=hti1

• ST TargetPack:
sh4tp stmc1@eth=hti1:mb519:st40

4.1.5 Identification of the STMCLite

When connecting to a target attached to an STMCLite, the STMCLite serial number forms
part of the ST Micro Connect name that is passed to the connection command. The full
name consists of the following components:

• STMCLite serial number

• Target interface identifier, which is A for the Target1 connector and B for the
I2C/Target2 connector. See the ST Micro Connect Lite Datasheet (8282486) for
information on the different connectors.

On Windows, the name used to connect to a target attached to an STMCLite is constructed
by concatenating the serial number and interface identifier.

Table 13. STMC names assumed to specify USB connections

Name STMC type Host

STMCLTdigit+ STMCLite Linux, Windows

USB STMC1 USB Windows(1)

1. The check of the STMC name is case insensitive.

HTIdigit STMC1 USB Windows(1)

Cross development tools UM1399

54/311 7379953 Rev 23

On Linux, the serial number and interface identifier are separated by a space. However, for
convenience, the ST40 tools allow an underscore (_) or a hyphen (-) to be used instead of a
space(b).

Examples

Assuming an STMCLite with the serial number of STMCLT1000 is attached to an STi7108-
HDK reference board with the Target1 connector, the following GDB commands connect to
the host ST40 CPU of the target:

• Windows:

sh4tp STMCLT1000A:hdk7108stx7108:host

• Linux:

sh4tp STMCLT1000_A:hdk7108stx7108:host

Note: The name (for example, STMCLT1000A) is case sensitive and therefore must be specified in
upper case.

4.2 The GNU debugger
The GNU debugger (GDB) supports the downloading and debugging of applications on:

• silicon (using an ST Micro Connect)

• the ST40 functional simulator

• the ST40 performance simulator

• the GDB built-in simulator

The following interfaces are available for debugging applications using GDB:

• the STWorkbench IDE (see Chapter 5: Using STWorkbench on page 68)

• sh4gdb, which uses the standard command line interface

• sh4insight, which uses the Insight GUI (described in Chapter 6: Using Insight on
page 75)

sh4insight is identical to sh4gdb except that it defaults to starting the Insight GUI instead of
the command line interface. Therefore, wherever sh4gdb is referenced the same also
applies to sh4insight.

This section describes only the standard command line interface, sh4gdb.

4.2.1 Using GDB

GDB can be used to execute any program, but it can only be used effectively to debug
programs compiled with debugging information (using the -g compilation option).

When the program is compiled, start GDB as follows:

sh4gdb executable

GDB shows a message describing its version and configuration followed by a command
prompt (gdb).

b. In a future version of the STMCLite Linux driver, the difference between the Windows and Linux naming
conventions may disappear and only the Windows convention will apply.

7379953 Rev 23 55/311

UM1399 Cross development tools

67

There are many GDB commands available. For full instructions on all these commands use
the GDB help command or refer to the GNU Debugging with GDB manual.

All of the commands may be abbreviated to the shortest name that is still unique. The GDB
command line supports auto-completion of both commands and, where possible,
parameters. In addition, many of the most common commands have single letter aliases.

Most of the commands serve no purpose until GDB has connected to and initialized a
target.

Connecting to a target

There is a range of different target types that can be used to debug the executable. The
connection command varies according to the target type.

• Connect to the simulator built into GDB with the target sim command.

• Connect to the ST40 simulators and silicon (using an ST Micro Connect) with special
GDB commands (see ST40 Toolset GDB command scripts (8045872) or by using
ST TargetPacks (see Section 4.1: Connecting to the target on page 50).

The commands are only available when using the short form of GDB (sh4gdb). For
example, to connect to a standard ST40 simulator configured for the STb7100-MBoard:

(gdb) mb411sim

When using an ST TargetPack, use the sh4tp command. The following is an example
of an sh4tp command:

(gdb) sh4tp stmc:mb411:st40

A connection can also be made from the command line, when first invoking the debugger.
The following example executes an application called a.out using an STMC called stmc
on an STb7100-MBoard.

sh4gdb -ex “sh4tp stmc:mb411:st40“ -ex load -ex continue a.out

In this case, the sh4tp command and its arguments (the TargetString) are passed directly
to the debugger as a quoted string using the GDB -ex command line option.

Executing the program

If the program is executed immediately, it simply runs until it reaches completion or an error.
In many cases it is desirable to set a breakpoint so that the program stops at the point of
interest and allows inspection or single-stepping of the program state.

Breakpoints can be set on specific functions, lines or addresses using the break command,
for example:

(gdb) break main
(gdb) break 42
(gdb) break *0x08002000

When ready, download and start the program on the target by invoking the run command.

Note: It is possible to specify arguments to the run command. These arguments are passed to the
target program, which are accessible through argc and argv as usual.

For the GDB simulator target, the load command must be used to download the program
onto the target before the run command is used. For other targets, only the run command
is required. However, in all cases continue must be used to restart the program after it has
stopped.

Cross development tools UM1399

56/311 7379953 Rev 23

The program runs until it completes, hits a breakpoint, is interrupted by the user with a
Ctrl+C, or encounters an error. At this point, a short explanatory message is displayed and
the GDB prompt returns.

The following commands are provided to step execution a line, or a machine instruction at a
time:

• the step command (abbreviated to s) moves on to the next source line (even if it is in
a different function)

• the stepi command (abbreviated to si) moves on a single machine instruction before
pausing the program again

• the next command (abbreviated to n) is the same as step, but moves to the next line
in the current function, rather than the next line in the program, stepping over any
function calls

• the nexti command is the machine code equivalent of next, it moves to the next
instruction in the sequence even if the current one is a call

Examining the target

All the GDB commands for interrogating targets are available.

To view the register set, use the info registers and info all-registers
commands.

To disassemble the current function, use the disassemble command.

To disassemble the current instruction, use:

(gdb) x/i $pc

To inspect the memory, use the x (examine) command. For example:

(gdb) x 0x1000

For other formats, use the / modifier. For example, to display memory as strings:

(gdb) x/s 0x08001234

To view by name any variable currently in scope, use the print (or p) command. The
command can also be used with expressions, for example:

(gdb) p foo+bar*2

To format the displayed information, use the printf command. For example:

(gdb) printf "%s %d %d\n", 0x8001234, foo, foo+bar*2

Changing the state of the program

To alter memory locations, registers and variables, use the set command. For example:

(gdb) set variable i = 0

The expression syntax is much the same as C (or C++ depending what is being debugged),
but there are some extensions. Refer to the GNU Debugging with GDB manual for details.

Exiting GDB

When the debug session is complete, exit GDB using the quit (or q) command.

7379953 Rev 23 57/311

UM1399 Cross development tools

67

4.2.2 The .shgdbinit file

On startup, GDB searches for a file named .shgdbinit, first in the home directory and
then in the current working directory. If either or both of these files exist, GDB sources their
contents.

The GDB -nx option prevents GDB from sourcing any of these files.

Note: Any commands in the .shgdbinit files that require confirmation assume affirmative
responses. Any line beginning with # will be ignored.

Additionally, if GDB is launched using the sh4gdb or sh4insight tools, a default
.shgdbinit file is sourced before any other file (see Using the sh-superh-elf-gdb or sh-
superh-elf-insight tools on page 57). This file enables support for the ST40 simulator and
silicon targets. The -nx option has no effect on sourcing this file.

Using the sh4gdb or sh4insight tools

When using the sh4gdb or sh4insight tools to launch GDB, there is no requirement to
create any additional .shgdbinit files. However, the .shgdbinit files are still useful for
setting up user preferences and defaults.

Using the sh-superh-elf-gdb or sh-superh-elf-insight tools

When using the sh-superh-elf-gdb or sh-superh-elf-insight tools to launch GDB, a user-
defined .shgdbinit file can enable the ST40 simulator and silicon support. Use the
source command to source the default .shgdbinit (in the sh-superh-elf/stdcmd
subdirectory of the release installation directory).

The default .shgdbinit file assumes that the sh-superh-elf/stdcmd directory is on
the GDB search path, which can be displayed using the GDB show directories
command and set using the GDB dir command.

The standard command scripts, containing the SuperH configuration and target connection
mechanisms, are also located in the sh-superh-elf/stdcmd directory and can be
identified by the .cmd extension.

Cross development tools UM1399

58/311 7379953 Rev 23

4.2.3 Connecting to a running target

The ST40 Micro Toolset supports connecting to a running target. This feature allows GDB to
gain control of the target without disrupting the application already running on the target. A
typical situation where this would be used is when an application has booted from Flash
ROM.

The ST40 Micro Toolset provides similar support for connecting to a target that is stopped in
debug mode (see below).

Using an ST TargetPack

The command to connect to a running target, connected to the STMC called stmc
(assuming that the target is an STb7100-MBoard) is the following:

(gdb) sh4tp stmc:mb411:st40,no_reset=1,no_pokes=1(c)

The no_reset=1 and no_pokes=1 TargetString parameters indicate that a connection to
a running target is requested. These parameters prevent the ST TargetPack from resetting
and re-configuring the target, which would destroy its state.

The command to reconnect to the same target stopped in debug mode is:

(gdb) sh4tp stmc:mb411:st40,no_reset=1,no_pokes=1 resettype=none

Note: A target is stopped in debug mode if it has not been reset since it was last connected to by
GDB and was disconnected from GDB with the ondisconnect=none configuration option
set (the default behavior).

For details about the resettype=none and ondisconnect=none configuration options,
see the ST40 Toolset GDB command scripts (8045872).

Using a GDB script

The ST40 Micro Toolset also provides specialized attach connection commands for targets
connected to an STMC1 or STMCLite.

For a description of these connection commands for attaching to a running target and to a
stopped target, see the ST40 Toolset GDB command scripts (8045872).

c. If using version R1.1.1 or earlier of the ST Micro Connection Package then add the option resettype=break
to the command for connecting to a running target. This option is not required when using later versions of the
ST Micro Connection Package.

7379953 Rev 23 59/311

UM1399 Cross development tools

67

4.2.4 GDB command line reference

Table 14 lists some of the most useful command line options.

Table 14. sh4gdb command line options

Option Description

-nw
-nowindows

Disable the Insight GUI and use the command line interface.
Equivalent to the option -interpreter=console.

-n
-nx

Prevent GDB from sourcing any .shgdbinit files or reading the
.gdbtkinit file (if they exist).
If the environment variable INSIGHT_FORCE_READ_PREFERENCES
is set, then -nx does not prevent the reading of the .gdbtkinit
file.

-w
-windows

Enable the Insight GUI instead of the command line interface, see
Chapter 6: Using Insight on page 75.
Equivalent to the option -interpreter=insight.

-tui
Enable the GDB text user interface (TUI) instead of the command
line interface.

Equivalent to the option -interpreter=tui.

-args exe args
Debug the program (exe) and pass the command line arguments
args to the program (exe).

-batch
Process the command line options (including any scripts from the -
command option) and then exit.

-batch-silent
This option is similar to -batch except that the debugger
suppresses all messages other than errors.

-command file
-x file

Source the commands in file. This is useful for setting up functions
or automating downloads.

-eval-command command
-ex command

Execute the specified GDB command, command. This option may be
specified multiple times to execute multiple commands. When used
in conjunction with -command, the commands and scripts will be
executed in the order specified on the command line.

-interpreter interface
-ui interface
-i interface

Set the GDB user interface to interface. Standard user interfaces
are console, tui, insight and mi.

-return-child-result
The return value given by GDB will be the return value from the
target application (unless an explicit value is given to the GDB quit
command, or an error occurs).

Cross development tools UM1399

60/311 7379953 Rev 23

4.2.5 GDB command quick reference

Table 15 lists some of the most useful GDB commands. It does not include any of the
additional commands for connecting and controlling targets that have been added in the
SuperH configuration. For details of these see Section 4.2.6: Additional GDB commands on
page 62. The Debugging with GDB manual provides further details on GDB commands and
the GNU debugger.

Table 15. sh4gdb command quick reference

Command Description

$argc

A GDB convenience variable automatically defined at the start of every
user defined GDB command that specifies the number of arguments to
the command. This allows a command to test how many parameters
have been passed to it.

backtrace n [full]

Print a backtrace of all the stack frames (function calls). If n is specified
and is positive then give the top n frames. If n is specified and is
negative then give the bottom n frames. If the word full is given then
it also prints the values of the local variables.
The bt command may be used as an alias for backtrace.

break function|line
 |file:line
|*address

Set a breakpoint on the specified function, line or address.

clear function|line
|file:line
|*address

Clear a breakpoint on the specified function, line or address.

compare-sections
[section-name]
[LMA | VMA] [offset]

Compare the data of the loadable section section-name in the
executable file of the program being debugged with the same section in
the remote machine’s memory, and report any mismatches. With no
arguments, compares all loadable sections.
LMA (Load Memory Address) or VMA (Virtual Memory Address) specify
whether GDB compares the LMA or the VMA addresses from the
executable file. If unspecified, LMA is assumed.

offset specifies the offset to add to the address of each section
loaded into memory. The default is 0.

continue Continue execution of the program.

delete [number] Delete the numbered breakpoint or all breakpoints.

disable [number] Disable the numbered breakpoint or all breakpoints.

disassemble [add1],
[add2]

Disassemble the machine code between the addresses add1 and
add2. If one address is omitted then the code around the one given is
disassembled. If both are omitted then it uses the program counter as
the address to use. (Command syntax changed for GDB 7.1.)

enable [number] Enable the numbered breakpoint or all breakpoints.

file file Use file as the program to be debugged.

finish Complete current function.

help GDB commands assistance.

info all-registers Print the contents of all the registers.

info breakpoints List all breakpoints.

7379953 Rev 23 61/311

UM1399 Cross development tools

67

info registers Print the contents of the registers.

init-if-undefined
var = exp

The same as the GDB set variable command except that it does not
overwrite an existing value. var must be a GDB convenience variable.

list List next ten source lines.

list - List previous ten source lines.

list function|line
|file:line
|*address
|file:function

List specific source code. Any two arguments separated by a comma
are required to specify a range.

load [file] [LMA | VMA]
[offset]

Download the file to the target. If no file is given, the executable
from the GDB command line or the file (or exec-file) command is
used.

LMA (Load Memory Address) or VMA (Virtual Memory Address) specify
the area of memory file is copied to. If unspecified, LMA is assumed.

offset specifies the offset to add to the address of each section
loaded into memory. The default is 0.

next [n]
Continue execution to next source line, stepping over functions. If n is
specified, do this n times.

nexti [n]
Execute exactly one instruction, stepping over subroutine calls. If n is
specified, do this n times.

print exp|$r
Print the value of the expression exp or contents of the register $r (for
example, $r0 or $pc).

printf "format",
arg1, ..., argn

Same as print but with a format-string. Allows more than one
parameter to be printed. Parameters must be separated by commas.

quit [code]

Exit GDB with the return value code, if specified. If code is not
specified, GDB will exit with the return value of 0.
Note that the GDB convenience variable $_exitcode is set to the
return value of the target application and therefore may be used as the
value for code, for example quit $_exitcode.

rbreak regexp Set a breakpoint on all functions that match regexp.

run [file] args

Run the program. The program must already have been downloaded
(using load) when using the GDB simulator.
If an executable was given on the command line then file must not be
given here.

set args args
Set the command line for the program. Used before starting the
program.

set variable
var = exp

Set the value of a variable or register.

step [n] Continue execution to next source line. If n is specified, do this n times.

stepi [n] Execute exactly one instruction. If n is specified, do this n times.

set trace-commands
on|off

Set trace-commands on/off. Enables the tracing of GDB commands.
The default is off.

show trace-commands Displays the current state of GDB CLI command tracing.

Table 15. sh4gdb command quick reference (continued)

Command Description

Cross development tools UM1399

62/311 7379953 Rev 23

4.2.6 Additional GDB commands

There are several additional features in the supplied GDB not found in the standard version
from the Free Software Foundation (FSF). Some of these features are not specific to the
SuperH configuration, but are generic features that have been added in order to provide
better support for the implementation of the GDB scripts used for connecting to ST40
simulator and silicon targets.

Table 16 lists the additional GDB commands not specific to the SuperH configuration.

target sim
Use the GDB built-in simulator instead of the ST40 simulator or silicon
target.

tbreak function|line
|file:line
|*address

Set a temporary (one time only) breakpoint on the specified function,
line or address.

watch exp Set a watchpoint for the expression exp.

where n [full] This is identical to the backtrace command.

Table 15. sh4gdb command quick reference (continued)

Command Description

Table 16. Additional sh4gdb commands (not SuperH specific)

Command Description

${variable}

Substitute ${variable} with the contents of the environment variable
called variable. Note that substitutions are recursive; that is, if
${var1} is replaced with a value that contains ${var2}, then
${var2} is also replaced with its value.

fork command arg1
[arg2 ... argn]

Execute the host command command with the specified arguments
(arg1 to argn).
The host starts command with the following command line:

command fdout fdin arg1 arg2 ... argn
where:
fdout is the file descriptor of a writable pipe. Anything written to this
pipe is interpreted as commands by GDB.
fdin is the file descriptor of the read end of the same pipe.

keep-variable var
This command is provided for backwards compatibility. GDB always
keeps convenience variables.

set backtrace
abi-sniffer
on|off

Use the ABI frame analyzer for back tracing (in addition to the DWARF2
debug information). Use this to obtain back traces when debug
information is not available. The default is on.

set silent-commands
on|off

Set the output state for GDB commands. If set to on then no output is
displayed by GDB commands. The default is off.

show backtrace
abi-sniffer

Display the current state of the ABI frame analyzer.

show silent-commands Display the output state for GDB commands.

sleep time1 [time2]
Sleep for the specified time. time1 is given in seconds and time2
(optional) is given in microseconds.

7379953 Rev 23 63/311

UM1399 Cross development tools

67

Table 17 lists the additional GDB commands that are specific to the SuperH configuration.

Table 17. SuperH configuration specific sh4gdb commands

Command Description

console on|off Synonym for enable console and disable console.

disable console | rtos |
sharedlibrary

Disable the feature represented by the keyword console,
rtos or sharedlibrary. All three are enabled by default.

For information about disable console, see
Section 4.2.7: Console settings on page 65.

For information about disable rtos, see Section A.7.3:
Debugging OS21 boot from ROM applications on
page 237.
disable sharedlibrary disables the debug support for
shared libraries. When this facility is disabled, GDB does
not examine memory or insert breakpoints to monitor the
loading and unloading of shared libraries.

enable console | rtos |
sharedlibrary

Enable the feature represented by the keyword console,
rtos or sharedlibrary. All three are enabled by default.
See disable for more information.

maintenance shtdi rtos-reset
all | thread

Reset the cached RTOS state.

msglevel opt
Set the target debug interface message level. Use help
msglevel for a list of valid options.

rtos on|off Synonym for enable rtos and disable rtos.

set shtdi subcommand [option]
Configure the SHTDI interface by applying the given
subcommand and option. Details of the subcommands
and their permitted options are given in Table 18.

show shtdi subcommand
Show the current value of the corresponding set shtdi
subcommand. Details of the subcommands are given in
Table 18.

target shtdi
Use the SuperH target debug interface to connect to a
target. Used by the GDB connection commands.

Cross development tools UM1399

64/311 7379953 Rev 23

The subcommands accepted by set shtdi and show shtdi are listed in Table 18.

The directory command is usually used by GDB to locate files (such as C source files). It
has been extended so that it can also be used to locate GDB command scripts sourced
using the source command.

There are also a number of commands that are defined when GDB sources the command
scripts in the sh-superh-elf/stdcmd directory. These command scripts are
automatically sourced when sh4gdb and sh4insight are used. However if sh4gdb and
sh4insight are not used, they must be sourced by a .shgdbinit file in order to be
available. The commands can be listed using the help user-defined command.

Table 18. Subcommands available with the set shtdi and show shtdi commands

Subcommand Description

break-timeout n
Set the timeout to wait before breaking into the target.
The timeout n is specified in seconds. Set to 0 to
disable. The default is 0.

continue-after-exit on | off
Allow GDB to continue debugging the target after the
application calls exit(). The default is off.

read-all-registers on | off

Enable or disable the ability to read all CPU registers
as a single request, instead of reading each register
individually. Enabling this operation may produce an
appreciable improvement in performance. The default
is on.

rtos-initialize-hook option

Configure when RTOS awareness is to be enabled.
option is one of the following:

– attach: enable after attaching to the target
– load: enable after loading an application
– resume: enable after starting the application

The default is resume. Use this command before
connecting to a target.

rtos-thread-information on | off

Enable or disable the display of task status information
by the info threads command. Disabling this
operation may produce an appreciable improvement in
performance.
The default is on. STWorkbench, however, sets this
command to off.

wait-timeout n
Set the timeout when waiting for an event from the
target. The timeout n is specified in milliseconds. The
default is 100 milliseconds.

7379953 Rev 23 65/311

UM1399 Cross development tools

67

4.2.7 Console settings

A target console (separate to the GDB console) is provided for the target application, and is
enabled by default. The target console window may be switched off or on at any time using
the disable console or the enable console command respectively.

When enable console is specified, the console window is opened and all target I/O is
redirected to the new window. When the target program completes, the console window
remains open. The console window closes when GDB is quit.

When disable console is specified, the console window is closed (if open) and all target
I/O is redirected to the same console as GDB. stdout and stderr are displayed in the
GDB command console and stdin is read from the GDB command console.

4.3 Using sh4xrun
sh4xrun provides a simple batch mode interface to GDB. This allows users to connect and
configure a target system, and to load and execute an application on the target system.
sh4xrun invokes GDB with all of the options and scripts required to execute the program.

4.3.1 Setting the environment

The setup of sh4xrun is identical to the setup of GDB. See Section 1.3.3: Configuration
scripts on page 21.

4.3.2 sh4xrun command line reference

To display the help, invoke sh4xrun with the -h option.

Usage

sh4xrun {option} [-a | --] {argument}

Note: The command order is important; -a or -- must always be the last option as this indicates
that all following arguments are to be passed to the target application.

Table 19. sh4xrun command line options

Option Description

-c command

Specify the target configuration command (GDB command) to be
invoked.
The configuration command must be compatible with the target.
If -c is not specified, but the -t option is, then an option of -c sh4tp
is implied by default.

-d directory
Add a directory to GDB’s source search path. This is equivalent to the
-d GDB command line option.

This option can be specified more than once.

-e filename Specify the executable file to be loaded onto the target.(1)

-f Ignored by sh4xrun (included for backward compatibility).

-g gdbpath
Specify the full path to the GDB executable to be used. This should be
a version compatible with the version of GDB supplied by
STMicroelectronics.

Cross development tools UM1399

66/311 7379953 Rev 23

In those cases where an option is specified more than once, the options are applied in the
order specified on the command line.

-h Display the help for sh4xrun.

-i filename
Execute the GDB command script filename. Equivalent to the -x
GDB command line option.

This option can be specified more than once.

-t target

Connect to target. This can be the target name or IP address (if
connecting using a GDB command script) or a TargetString (if
connecting using an ST TargetPack). This option is not required for
simulator targets.

-u gdbname Specify the name of GDB. The default is sh4gdb.

-v Display verbose information.

-x filename
Execute filename as the default GDB startup script instead of
.shgdbinit.

-A command
Execute the GDB command command after running the program. This
option can be specified more than once.

-B command
Execute the GDB command command before running the program.
This option can be specified more than once.

-C option
Add option to the target configuration command specified by the -c
option. This option can be specified more than once.

-D Debug (very verbose information).

-T timeout
The maximum permitted time for executing on the target. The
command set shtdi-break-timeout timeout is issued to GDB.

-V Display the version of sh4xrun.

-a
--

Specify that the remainder of the command line arguments are to be
passed as arguments to the target application.
This option can only be specified as the final sh4xrun specific option
in the command line.
This option can be omitted if the target arguments do not conflict with
the arguments of sh4xrun.

1. If the -e option is omitted (and the -i option has not been used) then sh4xrun assumes that the first
argument in the argument list {argument} is the name of the executable file.

Table 19. sh4xrun command line options (continued)

Option Description

7379953 Rev 23 67/311

UM1399 Cross development tools

67

4.3.3 sh4xrun command line examples

To run hello.out on an STb7100-MBoard with an ST TargetPack:

sh4xrun -t stmc:mb411:st40 -e hello.out

The following is also valid:

sh4xrun -t stmc:mb411:st40 hello.out

Without the -e option, sh4xrun assumes that the first target argument is the name of the
executable.

To run a GDB command before running hello.out, use the -B option:

sh4xrun -t stmc:mb411:st40 -B "stmcprofiler 1" hello.out

To run a GDB command after running hello.out, use the -A option:

sh4xrun -t stmc:mb411:st40 -A "stmcprofiler 0" hello.out

In both the previous examples, stmcprofiler is a user-supplied GDB command that
configures the ST Micro Connect profiler.

To run hello.out on a silicon target using a GDB configuration script instead of an ST
TargetPack, enter the following command:

sh4xrun -c mb411bypass -t stmc -e hello.out

To run hello.out on the ST40 simulator, enter the following command:

sh4xrun -c mb411sim -e hello.out

To run hello.out using a command script, enter the following command:

sh4xrun -i run.cmd

Where the contents of the script file, run.cmd, could be:

file hello.out
mb411bypass stmc
load
c

To run hello.out with target program arguments, enter the following command:

sh4xrun -c mb411bypass -t stmc -e hello.out -a arg1 arg2 arg3 arg4

Using STWorkbench UM1399

68/311 7379953 Rev 23

5 Using STWorkbench

This chapter describes how to use the STWorkbench Integrated Development Environment
(IDE) for the ST40 Micro Toolset. STWorkbench is available on all supported host platforms.

The STWorkbench is delivered with CDT (C/C++ Development Tooling) included. CDT
provides a fully functional C and C++ IDE for the STWorkbench platform and enables the
user to develop, execute and debug applications interactively.

The STWorkbench is built on the Eclipse IDE. The Eclipse development environment and
related information can be found at the Eclipse website http://www.eclipse.org. Information
on CDT can be found at http://www.eclipse.org/cdt.

Note: STWorkbench is a separate release to the ST40 Micro Toolset. Contact your
STMicroelectronics FAE or ST support center for more information.

5.1 Getting started with STWorkbench
Under Linux, start STWorkbench from the shell by entering stworkbench.

Under Windows, start STWorkbench by selecting the appropriate option from the Start
menu: Programs > STM Tools > STWorkbench Rn.n.n > STWorkbench, where n.n.n is
the STWorkbench version number.

Note: The precise menu options displayed are dependant upon the version of STWorkbench in
use.

When STWorkbench is launched, the Workspace Launcher dialog is displayed (see
Figure 2). Use this dialog to enter or select the location of the workspace. The workspace is
the directory where the project data, files and directories are stored.

Figure 2. Workspace Launcher

If the workspace directory does not already exist, STWorkbench creates it.

Note: 1 Do not use spaces in the workspace path and name as it may cause problems with the
tools.

2 The workspace can be changed at any time by selecting Switch Workspace from the File
menu.

7379953 Rev 23 69/311

UM1399 Using STWorkbench

74

When STWorkbench is launched for the first time, the C/C++ Projects perspective is
displayed, with only the Welcome to STWorkbench view visible. See Figure 3.

Figure 3. Welcome view

The icons on this screen allow access to documentation about STWorkbench, tutorials and
a registration wizard. If you are a first-time user, take some time to explore the
documentation to learn more about STWorkbench.

Note: If you have not done so already, STMicroelectronics recommend that you register your
installation of STWorkbench. This will add your name to a mailing list that provides help and
advice on using STWorkbench. You will be able to unsubscribe from the mailing list at any
time.

Proceed from the Welcome view to the Workbench by clicking on the curved arrow icon in
the top right corner of the Welcome screen, circled in red in Figure 3. You can return to the
Welcome view at any time by selecting Help > Welcome.

A Workbench provides one or more perspectives. A perspective contains editors and
views, such as the Navigator. Multiple Workbenches can be opened simultaneously.

Using STWorkbench UM1399

70/311 7379953 Rev 23

5.1.1 The STWorkbench workbench

Before using STWorkbench, it is important to become familiar with the various elements of
the workbench. A workbench consists of:

• perspectives

• views

• editors

A perspective is a predefined group of views and editors in the Workbench. A perspective
is designed to include all the views necessary for carrying out a specific task. For example,
the C/C++ perspective contains views required for C/C++ development (including the C/C++
Projects view and the Outline view) and the Debug perspective contains views required
when debugging (including the Debug, Variables and Breakpoints views). One or more
perspectives can exist in a single workbench. Each perspective contains one or more views
and editors. Each perspective may have a different set of views but all perspectives share
the same set of editors.

A view is a window within the workbench. It is typically used to navigate through a hierarchy
of information (such as the resources in the workbench), open an editor, or display
properties for the active editor. Modifications made in a view are saved immediately.

Several views in the Debug perspective can be duplicated to show multiple views of the
same type of information, with each locked into different contexts in the Debug view. For
more information, launch the STWorkbench help system with Help > Help Contents and
then see STWorkbench Help > Pin and Clone.

The title bar of the Workbench indicates which perspective and workspace is active. In
Figure 4, the C/C++ Projects perspective is in use, and the workspace is located at
C:\Tutorial\Workspace.

7379953 Rev 23 71/311

UM1399 Using STWorkbench

74

Figure 4. C/C++ perspective

An editor is a visual component within the workbench. It is typically used to edit or browse a
resource. Multiple instances of an editor may exist within a workbench window.

Depending on the type of file being edited, the appropriate editor appears in the editor area.
For example, if a .txt file is being edited, a text editor appears. The name of the file
appears in the editor tab. If an asterisk (*) appears on the left of the tab, it shows the editor
has unsaved changes. If you try to close the editor or exit the workbench without saving, a
prompt to save the editor's changes appears.

When an editor is active, the workbench menu bar and toolbar contain operations applicable
to the editor. When a view becomes active, the editor operations are disabled. However,
certain operations may be appropriate in a view and remain enabled.

The editors can be stacked in the editor area. Click the tab for a particular editor to use it.
Editors can also be tiled side-by-side in the editor area so their content can be viewed
simultaneously.

Using STWorkbench UM1399

72/311 7379953 Rev 23

Changing a perspective’s views

The views that make up a perspective can be changed. For example, to add the
Disassembly view to the Debug perspective, complete the following steps.

1. If necessary, change to the Debug perspective by selecting Window >
Open Perspective > Debug or Window > Open Perspective > Other... > Debug.

2. Select Window > Show View > Disassembly to display the Disassembly view as part
of this perspective.

3. Select Window > Save Perspective As.... The Save Perspective As... dialog is
displayed.

Figure 5. Save Perspective As... dialog

4. Select Debug in the Existing Perspectives list and click on OK.

You are prompted:

A perspective with the name ‘Debug’ already exists. Do you want to overwrite?

5. Click on Yes, to save the Debug perspective with the currently open views.

7379953 Rev 23 73/311

UM1399 Using STWorkbench

74

5.2 STWorkbench tutorials and reference pages
The on-line help provides a number of tutorials to guide the user through the steps to build,
run and debug an ST40 application. The tutorials are accessed through the STWorkbench
help system by selecting Help > Help Contents > STWorkbench for OS21 and STLinux.

On completion of each of the building and importing tutorials, you will have built an ST40
application ready to run or debug.

Introduction > Getting Started

This set of tutorials provides instructions on how to build, debug and run a simple OS21
“Hello World” C application. The debugging tutorial covers common debugging operations
such as modifying breakpoints, examining variables, call stacks and tasks.

Introduction > STWorkbench concepts

The purpose of this tutorial is to familiarize new users with the various basic elements of the
workbench.

Building > Building a C/C++ application with an automatically generated
makefile

This tutorial describes how to use STWorkbench’s Executable Project (formerly Managed
Build System) to automatically create the makefile for a simple OS21 application.

Building > Building a C/C++ application with a makefile

This tutorial describes how to build a simple application using STWorkbench’s Makefile
project (formerly Standard Build System) facility. This tutorial requires the user to create a
makefile, which STWorkbench uses to build the application.

Building > Building an existing C/C++ application by importing the makefile

This tutorial describes the process of importing existing source code, complete with
makefile, into an STWorkbench project. This tutorial requires the user to create a makefile,
which STWorkbench uses to build the application.

Editing > Navigation

This page describes the source code index and search facilities of STWorkbench.

Execute from Command Line

STWorkbench supports the ability to launch a debug session directly from the command
line. This set of pages describes how to use this facility.

System Monitoring > Branch Trace View

This page describes how to use the Branch Trace view to display the branches that the
program performed before arriving at the place where the debugger is currently stopped.

System Monitoring > Performance Counters

This page describes how to use the ST40 Performance Counters view to examine the data
provided by the ST40 Performance Counters facility.

Using STWorkbench UM1399

74/311 7379953 Rev 23

5.3 ST40 System Analysis tutorials and reference pages
There are several tutorials on how to use the ST System Analysis (formerly the Profiling and
Coverage) features. The tutorials are accessed through the STWorkbench help system by
selecting Help > Help Contents > STWorkbench for OS21 and STLinux.

Profiling and Coverage > ST40 Trace, Profile and Coverage

STWorkbench supports the generation and display of profiling, coverage and OS21 Profiler
data. These features are described in the following tutorials:

• STgprof

This tutorial describes the STgprof profiler and provides a guide on using this tool to
determine which parts of a program take most of the execution time.

• STgcov

This tutorial describes the STgcov profiler and provides a guide on using this tool to
identify the parts of a program that have never been exercised.

• OS21 Profiler

This tutorial describes the operation of the OS21 Profiler profiler to analyze the
performance characteristics of an OS21 application. The OS21 Profiler is described in
Chapter 13: Dynamic OS21 profiling on page 214.

ST40 Interactive Analysis

Interactive support is available for OS21 System Activity, STMC sampling and OS21
Profiler. These features are described in the following help pages.

• System Trace Viewers > OS21 Activity

This tutorial describes the OS21 Activity analyzer and provides a guide for using this
tool to analyze and monitor the life-cycles of interrupts and tasks in an OS21
application that have been captured using OS21Trace. OS21 Trace is described in
Chapter 12: OS21 Trace on page 163.

• Profiling and Coverage > STMC sample profiler

These pages describe the STMC sample profiler, a facility that uses the ST Micro
Connect to obtain profiling data on the application. The generated result is similar to
STgprof. The STMC sample profiler is described in Appendix D: Profiler plugin on
page 270.

• System Monitoring > STMC sample history

These pages describe the STMC sample history, which uses the same approach as
the STMC sample profiler but provides a sequential view of the application’s activities
over a period of time.

7379953 Rev 23 75/311

UM1399 Using Insight

92

6 Using Insight

Insight is a Graphical User Interface for GDB available on all supported host platforms. It
enables the user to execute and debug applications interactively. The command line
interface for GDB is described in Section 4.2: The GNU debugger on page 54.

Insight can display several windows containing source and assembly level code together
with a range of system information. In addition, Insight has a Console Window for entering
GDB commands on the command line.

Insight has the following features.

• Many parts of the window have a context sensitive menu, which is displayed by clicking
the right-hand mouse button.

• A tooltip is displayed when the mouse pointer hovers over a button.

• When Insight launches, it restores the configuration and open windows from the state
saved in the user’s home directory (specified by the HOME environment variable) in a
file named .gdbtkinit on Linux, or gdbtk.ini on Windows. This state is saved
whenever the Insight GUI is closed.

6.1 Launching Insight
To launch the Insight GUI, issue either of the following commands:

sh4gdb -w
sh4insight

Under Windows, Insight can also be launched by clicking on the Start button and selecting
Programs > STM Tools > ST40 Micro Toolset Rn.n.n > Insight, where n.n.n is the ST40
Micro Toolset version number.

When Insight is launched for the first time, the Source Window is displayed. This window is
described in Section 6.2.

Using Insight UM1399

76/311 7379953 Rev 23

6.2 Using the Source Window
The Source Window is the main window that is displayed when Insight is launched (see
Figure 6). The menus on the menu bar are described in Section 6.2.1 and the toolbar
buttons are described in Section 6.2.2.

Figure 6. Source Window

6.2.1 Source Window menus

File menu

Open... Load a program executable.

Close Close the program executable.

Source... Select a GDB command script to source.

Page Setup... Display a dialog to select the paper size, the paper source and
page orientation (landscape or portrait).

Print Source... Display a dialog to select the printer, what to print and the
number of copies to be printed.

Target Settings... Display the Target Selection window to select and configure
the target.

7379953 Rev 23 77/311

UM1399 Using Insight

92

Run menu

View menu

Control menu

Preferences menu

Exit Close the Insight GUI.

Connect to target Connect to the selected target. If no target is selected, the
Target Selection window is displayed so that the target can
be set up as required.

Download Download the program to the target.

Run Download and execute the program. If no target is selected,
the Target Selection window is displayed so that the target
can be set up as required.

Disconnect Close the connection to the target.

Stack Display the Stack window.

Registers Display the Registers window.

Memory Display the Memory window.

Watch Expressions Display the Watch Expressions window.

Local Variables Display the Local Variables window.

Breakpoints Display the Breakpoints window.

Console Display the Console Window.

Function Browser Display the Function Browser window.

Thread List Display the Processes window.

Step Step into the next statement.

Next Step over the next statement.

Finish Step out of the current function.

Continue Continue the program after a breakpoint.

Step Asm Inst Step one instruction.

Next Asm Inst Step one instruction and proceed through subroutine calls.

Global... Display the Global Preferences window.

Source... Display the Source Preferences window.

Using Insight UM1399

78/311 7379953 Rev 23

Help menu

6.2.2 Source Window toolbar

Table 20 provides a brief explanation of each of the buttons available on the Source
Window toolbar.

Advanced Displays the Advanced submenu. This menu has two options:
Edit Color Schemes defines colors that can be used as text
backgrounds, and IPC Support enables the IPC feature that
can be used to control multiple instances of Insight.

Use Color Scheme Selects the color scheme to use in Insight. 16 color schemes
can be defined. They are modified by selecting Edit Color
Schemes from the Advanced menu.

Help Topics Display the online help window.

About GDB... Display version and copyright information for the Insight GUI.

Table 20. The Source Window buttons

Button Name Description

Run (R) Start the program executing.

Step (S) Step into the next statement.

Next (N) Step over the next statement.

Finish (F) Step out of the current function.

Continue (C) Continue the program after a breakpoint.

Step Asm Inst (S) Step one instruction.

Next Asm Inst (N) Step over the next instruction.

Registers (Ctrl+R) Display the Registers window.

Memory (Ctrl+M) Display the Memory window.

Stack (Ctrl+S) Display the Stack window.

Watch Expressions (Ctrl+W) Display the Watch Expressions window.

7379953 Rev 23 79/311

UM1399 Using Insight

92

6.2.3 Context sensitive menus

Many parts of a window have context sensitive menus. To open a context sensitive menu,
click the right-hand mouse button.

For example, right-click in the left margin of any line in the source code where a breakpoint
can be set (indicated by a hyphen) to display a context sensitive menu containing the
options listed below.

Local Variables (Ctrl+L) Display the Local Variables window.

Breakpoints (Ctrl+B) Display the Breakpoints window.

Console (Ctrl+N) Display the Console Window.

Down Stack Frame
Move to the stack frame called by the current
frame.

Up Stack Frame
Move to the stack frame that called the current
frame.

Go To Bottom of Stack Move to the bottom most stack frame.

Table 20. The Source Window buttons (continued)

Button Name Description

Continue to Here Continue the application and stop at the selected line.

Jump to Here Jump directly to the specified line(1). This does not operate in
the same way as the Continue option since only the Program
Counter is modified. This option is advantageous for running a
given code sequence a second time after the contents of a
variable has been manually modified, or for skipping over
defective code.

1. In optimized code, this may not work as expected due to the compiler reordering code.

Set Breakpoint Set a breakpoint on the selected line. The breakpoint is
displayed as a red square.

Set Temporary Breakpoint Set a temporary (one time only) breakpoint on the selected
line. The breakpoint is displayed as an orange square.

Set Breakpoint on Thread(s)...

Set a breakpoint on the thread. If more than one thread is
available the Thread Selection window is displayed to select
the required threads. The breakpoint is displayed as a pink
square.

Using Insight UM1399

80/311 7379953 Rev 23

6.3 Debugging a program
The following procedure demonstrates debugging a program using the mandelbrot
example, see Section 1.5.3: The examples directory on page 28.

1. Launch Insight as described in Section 6.1 on page 75.

2. Click on or select Run from the Run menu. The Load New Executable dialog
opens. See Figure 7.

Figure 7. Load New Executable dialog

3. Select the executable file and click on Open. The Target Selection window opens.

7379953 Rev 23 81/311

UM1399 Using Insight

92

4. Complete this window as described in Section 6.4: Changing the target. The program is
launched and stopped at the breakpoint set at the main() function. See Figure 8.

Figure 8. mandel.c stopped at breakpoint

5. Debug the program using the menu and toolbar options as described in Section 6.2.2
on page 78 and Section 6.2.2 on page 78.

To toggle breakpoints on and off, click on the hyphen symbols to the left of the code.
Breakpoints are shown as red squares.

Using Insight UM1399

82/311 7379953 Rev 23

6.4 Changing the target
1. Select Target Settings... from the File menu. The Target Selection window opens,

see Figure 9.

Figure 9. Target Selection window

2. From the Target drop-down list, select ST Debug Interface.

3. Specify any Options required, for example, enter mb411bypass stmc to run the
example on an STb7100-MBoard connected to an ST Micro Connect with a name of
stmc, or enter mb411sim to run the example on the ST40 simulator configured as an
STb7100-MBoard.

4. Click on OK.

6.5 Configuring breakpoints
When a program runs, it continues as far as the first breakpoint. If Set breakpoint at ‘main’
in the Target Selection window is selected, this is the first real line of the program. See
Figure 10.

Figure 10. Breakpoint examples

The red square in the left-hand margin indicates where a breakpoint has been set. The
hyphens indicate valid positions for potential breakpoints.

7379953 Rev 23 83/311

UM1399 Using Insight

92

The colored background to line 325 indicates the position of the current Program Counter
(PC). Orange highlighting indicates the current position in that stack frame (the real position
is at the top of the stack).

When the mouse pointer hovers over a variable or function name, a tooltip shows the
current value of that variable. Variables and types have a context sensitive menu (available
by right-clicking on the item) that has various actions, for example, setting watchpoints and
dumping memory.

To set a breakpoint, click on the hyphen next to the line of code. The breakpoint is displayed
as a red square.

Right click on a breakpoint position (shown as a hyphen) to display the context sensitive
menu containing the options listed below to configure breakpoints.

To replace the three Set Breakpoint options with Disable Breakpoint and Delete
Breakpoint options, right-click on an existing breakpoint. Disabled breakpoints are
displayed as black squares.

6.5.1 The Breakpoints window

Breakpoints can also be controlled using the Breakpoints window (Figure 11). To open the
Breakpoints window, either:

• click on , or

• select Breakpoints from the View menu in the Source Window

Note: The Breakpoints window does not allow the creation of new breakpoints, but does permit
existing ones to be viewed and edited.

Figure 11. Breakpoints window

Set Breakpoint Set a breakpoint on the selected line. The breakpoint is
shown as a red square.

Set Temporary Breakpoint Set a temporary (one time only) breakpoint on the
selected line. The breakpoint is shown as an orange
square.

Set Breakpoint on Thread(s)... Set a breakpoint on the thread. If more than one thread is
available the Thread Selection window is displayed to
select the required threads. The breakpoint is displayed
as a pink square.

Using Insight UM1399

84/311 7379953 Rev 23

Click on a breakpoint to select it. To change the breakpoint, use the check boxes and the
Breakpoint and Global menus.

6.6 Using the help
Additional information is available in the help files supplied with the Insight GUI. To access
the help files, select Help Topics from the Help menu.

6.7 Using the Stack window
The Stack window (Figure 12) contains a list of all the frames currently on the stack. To
open the Stack window, either:

• click on , or

• select Stack from the View menu in the Source Window.

Figure 12. Stack window

To select a frame, click on the appropriate frame line. The line is highlighted in yellow and
the Registers and Local Variables windows show the associated data. The Source
Window shows the associated source line. See Figure 13 on page 85, Figure 18 on
page 89 and Figure 6 on page 76 respectively.

7379953 Rev 23 85/311

UM1399 Using Insight

92

6.8 Using the Registers window
The Registers window (Figure 13) displays the contents of all the registers.

To open the Registers window, either:

• click on , or

• select Registers from the View menu in the Source Window.

Figure 13. Registers window

Click on a register to select it. A register value can be modified by editing its value in the
Registers window. A register can be operated upon by right clicking on it to display the
context sensitive menu containing the options.

Note: To view only the registers belonging to a specific group (general, float, system, vector,
all), use the Group selection box.

Hex, Decimal, Unsigned Change the format in which the information is displayed.

Open Memory Window Open a Memory window at the location specified by the
currently selected register. See Section 6.9 on page 86.

Add to Watch Add the selected register to the Watch window. See
Section 6.10 on page 88.

Remove from Display Delete the selected register from the window.

Display all Registers Restore all registers that have been removed from the display.

Help Displays the online help window.

Close Close the Registers window.

Using Insight UM1399

86/311 7379953 Rev 23

6.9 Using the Memory window
The Memory window (Figure 14) allows the current state of memory on the target to be
viewed and modified. The window can be resized to view more memory information. To
open the Memory window, either:

• click on , or

• select Memory from the View menu in the Source Window.

Figure 14. Memory window

Click on a memory location to amend the contents. To customize the display, use the
Addresses menu (Figure 15).

Figure 15. Addresses menu

Auto Update If the state of the target changes, the memory information is
updated automatically. (Default.)

Update Now Manually override the auto-update to display the memory state
at that instant.

Preferences... Display the Memory Preferences window (see Figure 16).

This window can be used to select the size of the cells, format
the memory display, select the number of bytes to be
displayed, select or enter (and then press Return) the number
of bytes per row, select whether to display the memory as
ASCII text, and select the character to use for non-ASCII
characters (normally ‘.’).

7379953 Rev 23 87/311

UM1399 Using Insight

92

Right click on a memory location to open the following context-sensitive menu options:

Figure 16. Memory Preferences window

Go To ... Display the selected memory location.

Open New Window at ... Open an additional Memory window displaying the selected
memory location.

Using Insight UM1399

88/311 7379953 Rev 23

6.10 Using the Watch window
Use the Watch window (Figure 17) to set and edit user-specified expressions. Each time
the program halts, the expressions are reevaluated and the result displayed. This allows the
user to see, at a glance, all the program state of interest.

Note: Watch expressions are not the same as watchpoints. Watchpoints must be set through the
console window. See Section B.2.4: Silicon specific commands on page 263.

To open the Watch window, either:

• click on , or

• select Watch Expressions from the View menu in the Source Window.

Figure 17. Watch window

There are two ways to add expressions to the Watch window.

• Type an expression into the field at the bottom of the window and click on Add Watch
(or press Return).

• Select the expression In the Source Window or Registers window, right-click on the
expression to open the context-sensitive menu and select Add to Watch.

Note: The expression must use the same syntax as the language being debugged. For example,
to watch for i being assigned the value 42 when debugging a C application, enter i==42.
Using assignment operators by mistake, for example, i=42, changes the value of the
variable in the program.

Click on a watch expression to select it. It can then be operated upon by right clicking on it to
display the context sensitive menu containing the following options:

Format Change the format to Hex, Decimal, Binary, Octal or Natural
(mantissa and exponent for floating-point values).

Edit Edit the expression value.

Delete Delete the highlighted expression from the list.

7379953 Rev 23 89/311

UM1399 Using Insight

92

The display of values can also be adjusted by normal C type casting. Structures and classes
can be expanded as a tree.

6.11 Using the Local Variables window
The Local Variables window (Figure 18) shows all the variables in the current stack frame.
To open the Local Variables window, either:

• click on , or

• select Local Variables from the View menu in the Source Window.

Figure 18. Local Variables window

Click on a variable to select it. It can then be amended by right clicking on it to display the
context sensitive menu containing the options.

Dump Memory at ... Displays the selected watch expression in the Memory
window.

Help Displays the online help window.

Close Close the Watch window.

Format Change the format of the variable. It can be Hex, Decimal,
Octal, Binary or Natural (mantissa and exponent for float
variables).

Edit Edit the value of the selected variable.

Delete Delete the highlighted expression from the list.

Dump Memory at ... Displays the selected variable in the Memory window.

Help Displays the online help window.

Close Close the Local Variables window.

Using Insight UM1399

90/311 7379953 Rev 23

To expand the structure of a variable, click on the plus (+) sign. To collapse the structure,
click on the minus (-) sign.

6.12 The Console Window
The Console Window (Figure 19) is the underlying GDB console and allows commands to
be issued directly to GDB.

To open the Console Window, either:

• click on , or

• select Console from the View menu in the Source Window.

Figure 19. Console Window

If the Console Window is open when a GDB command is issued, it shows the the output.
For example, note the output of the load command in Figure 19.

Note: Insight GUI commands such as continue or step are not visible in the Console Window
unless they are issued directly at the Console Window prompt.

The display output of the Insight GUI and the GDB console commands are synchronized.

You can issue any GDB command through the Console Window.

Note: 1 The console off command directs the program output to the terminal from which Insight
was launched and not to the Console Window. For this reason, it is better to use
console on in conjunction with Insight.

2 The ST40 simulator instruction trace also appears in the terminal from which Insight was
launched and not in the Console Window.

7379953 Rev 23 91/311

UM1399 Using Insight

92

6.13 Function Browser window
To search for functions in the application and show the source code for that function, use the
Function Browser window (see Figure 20). This makes it easy to add breakpoints
throughout the code.

To open the Function Browser window, from the View menu in the Source Window, select
Function Browser. The following fields are available to search for functions.

The lower section of the window shows the source code for the selected function. To set
breakpoints, use the same method as for the Source Window, see Section 6.5 on page 82.

Figure 20. Function Browser window

Function Filter Use this to search with a specified expression.

starts with lists all functions that start with the expression.

contains lists all functions that contain the expression.

ends with lists all functions that end with the expression.

matches regexp lists all functions that match the regular expression.

Files This shows all of the files within the application. Only the selected files
are searched for using the expression.

Functions This shows all the functions within the selected files. To delete and set
breakpoints at the start of each function, use the Delete BP and Set
BP buttons.

Using Insight UM1399

92/311 7379953 Rev 23

6.14 The Processes window
The Processes window (Figure 21) displays the active threads. To open the Processes
window, go to the Source Window and from the View menu, select Thread List.

Figure 21. Processes window

The Processes window shows the thread number and details of the thread, such as current
status. To set a thread as the current thread, click on it. This causes the debugger to switch
contexts and updates all windows.

7379953 Rev 23 93/311

UM1399 Building open sources

97

7 Building open sources

7.1 Introduction to open sources
The ST40 Micro Toolset is based on a number of open source packages which provide the
compiler tools, base run-time libraries and debug tools.

The main open source packages are as follows:

• GNU binutils

• GNU GCC

• GNU GDB/Insight

• GNU make

• newlib

• zlib

Contact your ST FAE or ST support center to obtain the sources for these packages (and
the other open source packages used in the toolset).

Note: STMicroelectronics does not provide support for users wishing to build these sources,
beyond this short guide.

7.2 Requirements
The open source packages shipped with the ST40 Micro Toolset, have been built for the
following platforms:

• Red Hat Linux Enterprise Workstation 4 and 5

• Microsoft Windows XP, Vista and 7

Note: For all platforms, the minimum version of GCC required to build the sources is 4.0.3.

The following sections describe the environment required in order to build the open source
packages for each of these platforms.

7.2.1 Linux

The Linux platform should be set up for a developer (including X11 development). The
following package is also required to build the open source packages:

• GNU texinfo 4.8 or later

Building open sources UM1399

94/311 7379953 Rev 23

7.2.2 Windows

To build the open source packages for the Windows platform, the Cygwin Unix emulation
environment is required. The Cygwin Unix emulation environment is described in
Section A.11: Using Cygwin on page 243.

Note: Although the Cygwin Unix emulation environment is required to build the packages, the
resulting executables do not use the Cygwin Unix emulation environment. Instead the
resulting executables are standard Win32 executables created using the MinGW toolkit
(Minimum GNU for Windows). The MinGW toolkit is available as a Cygwin package and
should be installed together with the other required Cygwin packages.

By default, the installer for Cygwin installs only the core set of packages suitable for an end
user environment. This core set may not be sufficient to build the open source packages
and so additional packages may need to be installed. The installed packages should include
the following (from the Devel and Doc categories):

• ash

• binutils

• bison

• flex

• gcc

• gcc-mingw

• make

• mingw-runtime

• texinfo

The Red Hat Cygwin Unix emulation environment is available from the Cygwin website
(http://cygwin.com). The MinGW toolkit is also available as a standalone package (that is,
not dependent on Cygwin) from the MinGW website (http://mingw.org).

Note: The installer for Cygwin does not automatically update the Windows PATH environment
variable with the locations for the Cygwin tools. The following sections assume that the
Cygwin tools are available in the Windows environment and therefore the Windows PATH
should be manually updated with the following Cygwin tool locations:

• cygwin-install-directory\usr\local\bin

• cygwin-install-directory\usr\bin

• cygwin-install-directory\bin

• cygwin-install-directory\usr\X11R6\bin

Where cygwin-install-directory is the location of the Cygwin installation directory.

Some of the build scripts do not work correctly when run with the default Cygwin shell
(bash) because text files in Windows have carriage returns at the end of lines. To overcome
this, replace the file cygwin-install-directory/bin/sh.exe with a copy of
cygwin-install-directory/bin/ash.exe. The sh tool used to interpret the build
scripts is now ash, and not the default shell, bash.

7379953 Rev 23 95/311

UM1399 Building open sources

97

Cygwin’s soft links are not compatible with non-Cygwin applications, such as the ST40
Micro Toolset. Therefore the Cygwin ln.exe tool must either be removed or overridden to
prevent soft links being used. We recommend that the following short shell script is installed
as cygwin-install-directory\bin\ln to override the default ln.exe tool.

#!/bin/sh

["$1" = "-s"] && shift

exec /bin/cp -rf "$@"

Note: The above script ln does not overwrite ln.exe, but does take precedence over it.

7.3 Setting up the build environment
The sources of all the open source components of the toolset are contained within a single
compressed tar archive.

Before starting to build the packages, extract this archive to a suitable location and check
that the following files are present:

Before attempting the build, set up an environment that provides the proper set of build tools
and has the correct environment variables set to the proper values. These settings are host
specific; the following instructions provide a guide to setting up the correct build
environment for various host systems.

Linux

The standard Linux developer environment is sufficient; however, the following environment
variables must be set if using a 64-bit version of the operating system.

Windows

Under Windows, it is only possible to build the toolset from within the Cygwin environment. If
Cygwin has been set up in accordance with the instructions in Section 7.2.2 on page 94, it
has most of the proper environment already set up, but the following environment variables
must be set manually:

src The directory containing the source tree.

st40configure A shell script containing the correct configuration options for the
ST40 Micro Toolset.

HOWTO-BUILD A text file containing similar instructions to those given here. This
file also contains some background information on using the
GNU build system.

CC gcc -m32

CXX g++ -m32

CC i686-pc-mingw32-gcc(1)

1. Cygwin cross compiler for creating standard Win32 executables.

CXX i686-pc-mingw32-g++(1)

Building open sources UM1399

96/311 7379953 Rev 23

7.4 Building the packages
When the environment has been set up correctly, the process of building the tools is
identical for all hosts.

Create object directory

First, create an object directory at the same location as the src directory. This is done with
the mkdir command:

mkdir objdir

This directory can have any name, but objdir is suggested. This directory holds all the
intermediate files (object files) created by the build.

Note: The object directory does not have to be in this location. If it is in a different location,
however, the script st40configure must be modified so that the script knows where to
find the src directory.

Configuration

Set the current working directory to the object directory and run the configuration script. This
is done with the following commands:

cd objdir
sh ../st40configure

The script st40configure invokes the GNU configure script with the required
parameters. Any parameters passed to st40configure are passed through to the GNU
configure script. The build can be customized by adding appropriate arguments to the
command line.

Use the --help command line argument when invoking st40configure to obtain a list of
parameters for this script. You can obtain further options by adding the --help command
line argument to the configure script found in each subdirectory of src. Configuration
options that are passed to the top level configure script are also passed to all
subsequently called configure scripts within the build tree.

The parameters for the GNU configure script are also documented as part of the
autoconf documentation, available from http://www.gnu.org.

Make

When the script has completed running, the object directory contains the top-level
configuration files and a Makefile. The toolset is now ready to be built. This is done by
issuing the make command without any parameters.

make traverses the source tree recursively, building every source file. If the build fails (for
whatever reason), restart it from the place where it left off simply by invoking the make
command again.

make creates subdirectories within the object directory to hold the object files for each of the
individual packages that make up the toolset. If required, issue the make command within
any of the subdirectories in order to rebuild any subset of the source, as represented by the
chosen subdirectory.

If part of the build tree cannot be built, the affected subdirectories may be deleted and rebuilt
by running the top level makefile again. make recreates any missing subdirectories and
rebuilds their contents.

7379953 Rev 23 97/311

UM1399 Building open sources

97

Note: Each package under sh-superh-elf is replicated for each of the targets. If one copy has
to be deleted, then all copies must be deleted before this package can be rebuilt.

The entire package can be rebuilt in its entirety by deleting the object directory and starting
the build process again from the configuration step (see Configuration on page 96). As the
build process does not write to the src directory, the original sources are unaffected by the
build process.

It is also possible to initiate multiple builds by creating more than one object directory and
running st40configure and make within each directory. This may be done in order to
create builds with alternative sets of build parameters. The different builds all use the same
set of sources but do not interfere with one another.

Note: If using Cygwin to build the packages in a Windows environment, use the version of make
from the Cygwin tools and not the make that is distributed with the ST40 Micro Toolset. This
can be guaranteed by using the command /bin/make from the Cygwin shell rather than
make.

Installation

When the build is successfully completed, it must be installed. The name of the installation
directory is set up by the st40configure script, and is named install-host, where
host is either linux or windows. The installation directory is located in the same directory
as src and objdir. To install the build, invoke the following make command:

make install

As long as the installation is kept intact, it is possible to move the installation directory tree to
any location.

If multiple builds of the toolset have been created, be aware that these may be configured
with the same installation location, which means that the most recently installed build
overwrites an earlier build. To avoid this, use the command line option --prefix=build
when running st40configure, where build is a path that identifies the location where
the build is to be installed. If each build is configured with a different build path, the
different builds can be kept separate from one another.

To complete the installation, copy the non-open source components of the toolset from the
official release to the equivalent location in the installation tree of the newly built toolset. For
example, the toolset cannot produce executables for a silicon target without the library
libdtf.a from the ST40 Micro Toolset.

Core performance analysis guide UM1399

98/311 7379953 Rev 23

8 Core performance analysis guide

8.1 Introduction to core performance analysis
This chapter describes how to analyze the performance of the ST40 cores using the ST40
simulator. It includes details of how to execute code on the ST40 simulator and produce
statistical and trace information from these execution runs. The tools which perform the
analysis of the generated data are also described.

GDB provides access to two versions of the ST40 simulator.

• The Functional Simulator provides a simulation of the functionality of the core including
full instruction set simulation, memory management (MMU), and system architecture
features such as caches.

• The Performance Simulator provides a simulation of the full functionality of the core. In
addition, it provides cycle-accurate(a) performance information including instruction
latencies, pipeline stalls, and cache behavior. This can be used to generate accurate
performance trace and/or statistical information for use by the performance
visualization tools.

8.2 Running performance models under GDB
This section provides examples of how to execute programs on the simulators, generate
performance data and use the analysis tools.

8.2.1 Example source code

The examples in this chapter use the following program (velocity.c).

#include <stdio.h>
#include <math.h>

/* functions using basic equations of motion */
int distance(int u, int a, int t)
{
 /* s= ut + 1/2at^2 */
 int inter1, inter2;
 inter1 = u*t;
 inter2 = 0.5 * (a * pow((double)t,2.0));
 return inter1 + inter2;

}

a. The performance simulator is not guaranteed to be 100% accurate in all cases.

7379953 Rev 23 99/311

UM1399 Core performance analysis guide

125

int velocity(int u, int a, int t)
{
 /* v = u + at */
 return (u + (a * t));

}

float velocity2(int u, int a, int s)
{
 /* v^2 = u^2 + 2as */
 float inter1, inter2;
 inter1 = pow((double)u,2.0);
 inter2 = 2 * a * s;
 return sqrt(inter1 + inter2);

}

int main(void)
{
 int t = 10;
 int a = 30;
 int u = 5;
 int s,v;
 float v2;

 v = velocity(u,a,t);
 s = distance(u,a,t);
 v2 = velocity2(u,a,s);

 /* should be the same */
 printf("Velocity 1 = %d\nVelocity 2 = %f\n",v,v2);

 return 0;
}

This can be compiled using the command line:

sh4gcc -o velocity.out -mboard=mb411sim velocity.c -lm

For full debugging information to be included, use the -g option:

sh4gcc -g -o velocity.out -mboard=mb411sim velocity.c -lm

8.2.2 Beginning a debug session

To begin a debug session invoke GDB with the command line:

sh4gdb velocity.out

It is then necessary to connect to a simulator target. For example, to use the simulator
configured as an STb7100-MBoard, enter:

mb411psim

Next, load the code to be executed using the command:

load

Core performance analysis guide UM1399

100/311 7379953 Rev 23

With the code loaded into memory and the start address set, GDB leaves the simulator in a
suspended mode.

To run the program use the continue command. This may be abbreviated to c.

8.2.3 Obtaining performance data

GDB creates a flexible platform from which to collect performance information. Performance
logging commands can be controlled from within GDB, therefore it is possible to set
breakpoints or watchpoints to turn the profiling information on or off at specific points.

Getting a trace

The following example generates a performance trace for the velocity2() function (see
the example in Section 8.2.1). This requires passing commands to the ST40 simulation
models using the following command:

sim_trace option

where option can be on, off, open or close.

The following example GDB command script loads the executable, opens a trace file and
saves the trace information to the file specified.

mb411psim
load
break velocity2
continue
break *$pr
sim_trace open:velocity
sim_trace on
continue
sim_trace off
continue
quit

Note: The command break *$pr sets a breakpoint on the PR register which contains the
Program Counter (PC) value for the return of the function, effectively setting a breakpoint at
the end of the function.

The trcview tool is used to view the generated trace information and is described in
Section 8.5: The trace viewer (trcview) on page 120.

To produce an instruction trace other than by using sim_trace, use the sim_insttrace
command. See sim_insttrace command on page 109 for more information.

7379953 Rev 23 101/311

UM1399 Core performance analysis guide

125

Collecting census information

The method for collecting the census information is similar to that for obtaining trace
information: sim_census is used instead of the sim_trace command. The following
example GDB command script illustrates census information being collected for the
distance function:

mb411psim
load
break distance
continue
break *$pr
sim_census open:velocity
sim_census on
continue
sim_census off
sim_census save:results
continue
quit

The censpect tool is used to inspect the generated census information and is described in
Section 8.4: The census inspector (censpect) on page 110.

Using software controls

The following example shows how function calls can be used to dynamically control the
collection of statistical and trace data. It is based on changing the main() function of the
velocity.c example (see Section 8.2 on page 98) to the version below. The set of ST40
simulator dynamic control functions is described in Section 8.3.5: Dynamic control on
page 109.

int main(void)
{
 int t = 10;
 int a = 30;
 int u = 5;
 int s,v;
 float v2;

 TracesOn();
 CensusOn();

 v = velocity(u,a,t);
 s = distance(u,a,t);
 v2 = velocity2(u,a,s);

 CensusOff();
 TracesOff();
 CensusOutput("Velocity statistics");

 done();
 return 0;

}

Core performance analysis guide UM1399

102/311 7379953 Rev 23

The example also needs to #include the include file census.h (which provides
declarations for the dynamic control functions) and to be linked with the compiled source file
census.c (which defines these functions). These files are located in the sh-superh-
elf/examples/census subdirectory of the release installation directory.

For these dynamic control functions to have an effect, trace and census files need to be
opened.

The following GDB command script example shows the velocity example being run with
the version of main to turn the census on and off dynamically:

mb411psim
load
sim_census open:velocity
continue
quit

Using delayed memory models

The ST40 performance simulators support a delayed memory model. This allows the user to
specify the number of cycles taken for an external memory request to be serviced by the
memory system. With the model disabled, it is assumed that all memory requests are
serviced instantly. It should be noted that it is not possible to use this model in conjunction
with an uncached model to get “perfect” caching results. This is because the pipeline
resources needed to make external accesses are still occupied resulting, for example, in
contention between the instruction and data requests for the external bus.

An additional argument can be supplied when connecting to the performance simulators to
enable the delayed memory models, for example:

mb411psim "+DMM 6"

instantiates the delayed memory with a latency of 6 cycles. It is also possible to alter the
number of cycles delay by using the GDB command sim_command, for example:

sim_command "config +DMM.delay=cycles"
sim_reset
mb411stb7100sim_setup

Use of this method requires some care. To confirm that a sequence of configuration
commands have taken effect, a sim_reset is required. More information on sim_reset is
provided in config subcommands on page 106.

The sim_command command above sets the latency but it can also set:

• DMM.bus_width, the bus-width in bytes (default is 8)

• DMM.throughput, the through-put, in the form of the number of cycles of delay per
bus-width word (the default is 1)

However, it is best that these are left at their default values.

Perfect caching

Models with caches enabled support a configuration option that causes the cache to behave
as if all accesses hit the cache. It should be noted that this is the only method of collecting
performance data that eliminates any influence of the cache. For example, using a zero
memory model in conjunction with a cache model does not stop the pipeline interlocks and
stalls that are caused by the occurrence of cache misses.

7379953 Rev 23 103/311

UM1399 Core performance analysis guide

125

As stated in config subcommands on page 106, the sim_reset command must be issued
after all configuration changes. The GDB commands to enable perfect caching (for both I-
cache, and D-cache) are as follows:

sim_command "config +cpu.icache.perfect=true"
sim_command "config +cpu.dcache.perfect=true"

Setting up custom targets

To ease the configuration of the ST40 simulators, a set of custom targets can be created
that contain options for setting-up the caches or enabling census taking.

The following example defines a target that opens files for census and tracing. It also sets
up the model to use a 30 cycle delayed memory model. It should be noted that the method
for setting-up the delayed memory model is different to the other model configuration
options.

define mb411psim_dmm_cns
 mb411psim "+DMM 30"
 sim_census open:census
 sim_trace open:trace
 sim_census autosave:census

end

The following example defines a target that sets up a model that collects tracing information
and uses perfect caches. A sim_command config command is used and therefore must
be followed by a sim_reset command (as described in config subcommands on
page 106) plus any target configuration commands that have been run prior to the
sim_reset command (in this example, mb411stb7100sim_setup).

define mb411psim_perfectc_trc
 mb411psim
 sim_command "config +cpu.icache.perfect=true"
 sim_command "config +cpu.dcache.perfect=true"
 sim_reset
 delete mem
 mb411stb7100sim_setup
 sim_trace open:trace

end

Core performance analysis guide UM1399

104/311 7379953 Rev 23

8.3 ST40 simulator reference
This section provides a reference for all the GDB features specific to ST40 simulator targets.

8.3.1 ST40 simulator targets

A list of all the available simulator targets can be found in the ST40 Micro Toolset GDB
command scripts user manual (8045872).

8.3.2 shsimcmds.cmd

This command script defines the commands to control the configuration and run-time
options of the ST40 simulator shipped with the ST40 Micro Toolset. The commands are
listed below.

8.3.3 ST40 simulator control commands

The ST40 simulator control commands are invoked using sim_command and must be
enclosed in double quotes, for example:

sim_command "census open ’census’"

Several control commands can be specified in the same sim_command command using a
space to separate the commands. For example, to open a census file and turn on census
taking:

sim_command "census open ’census’ census on"

As an abbreviation, subcommands can be combined using curly braces. The previous
command is therefore equivalent to:

sim_command "census { open ’census’ on }"

sim_addmemory Define a memory region for the simulator (see
sim_addmemory command on page 108).

sim_branchtrace Enable/disable branch instruction tracing (see
sim_branchtrace command on page 108).

sim_census Enable/disable census information (see census
subcommands on page 105).

sim_command Send a generic command to the simulator (see
Section 8.3.3: ST40 simulator control commands on
page 104).

sim_config Send a configuration command to the simulator (see
config subcommands on page 106).

sim_insttrace Enable/disable instruction tracing (see sim_insttrace
command on page 109).

sim_reset Resets the internal state of the ST40 simulator. For
correct operation, it is required that this command is
executed after every configuration change.

sim_trace Enable/disable trace information (see trace
subcommands on page 107).

7379953 Rev 23 105/311

UM1399 Core performance analysis guide

125

The details of these commands are described in the following sections.

census subcommands

Use the census subcommands to produce files containing statistical data that are
visualized using the censpect tool. See Section 8.4: The census inspector (censpect) on
page 110.

Table 21. Census subcommands

Command Description

open ’file’

Open a new census file unless a census file is already open.
The file argument is the name of the census file to be created
(without the .cns extension which is added automatically) and
must be enclosed by single quotes.
An alternative for this command is sim_census open:file.

Census taking does not commence until a census on
command.

on

Switch on census taking. Subsequently executed instructions
contribute to the statistical data being collected until an off
command or the program terminates.

An alternative for this command is sim_census on.

off

Switch off census taking. Subsequently executed instructions do
not contribute to the statistical data being collected until an on
command.
It is not essential to switch off census taking before issuing a
save command.
An alternative for this command is sim_census off.

reset
Reset the census counters. Any census information not already
saved is lost. This is required after a config command.

An alternative for this command is sim_census reset.

save ’label’

Save the current state of the census counters to the census file.
label specifies the label for the census record that is
generated and must be enclosed by single quotes.
An alternative for this command is sim_census save:label.

autosave ’label’

Set up a delayed save that is performed when the current
census file is closed. label specifies the label for the census
record that is generated and must be enclosed by single quotes.
An alternative for this command is
sim_census autosave:label.

Core performance analysis guide UM1399

106/311 7379953 Rev 23

config subcommands

Use the config subcommands to review or modify the configuration variables of the
current ST40 simulation.

A sim_reset must be performed after any sequence of these commands in order for
changes to take effect. This has the side-effect of performing a hard-reset of the core: an
operation which modifies the contents of some registers, for example the CCR (cache
control register), which may have been initialized during the target setup. Therefore it is
necessary to follow a sim_reset command with a re-initialization of the target, typically
using a target_setup command (see Setting up custom targets on page 103 for an
example).

A complete list of all configuration variables for the ST40 simulator can be found in
Appendix G: Simulator configuration variables on page 284.

Table 22. Config subcommands

Command Description

+variable=value

Modify a configuration variable associated with the model. The
variables for both the functional simulator and the performance
simulator are listed in Table 72 on page 284. Additional
variables for the performance simulator only are listed in
Table 73 on page 285.

The current values of the configuration variables can be
determined using the save command or by reviewing the
SIM.CONFIG section of a generated census file.

load ’file’

Load the configuration variables stored in file.cfg. The
format of the file is described in Section 8.7: Census file formats
on page 124.
file must be enclosed by single quotes.

It is possible to load several configuration files. If any variable is
defined more than once then the last value specified for a
variable is used.

save ’file’

Save the current value of the configuration variables in
configuration file format (see Section 8.7: Census file formats on
page 124) to file.cfg. The saved state of the configuration
variables can therefore be restored at anytime by reloading
file.

file must be enclosed by single quotes.

7379953 Rev 23 107/311

UM1399 Core performance analysis guide

125

trace subcommands

Use the trace subcommands to produce files containing statistical data that is then
visualized using the trcview tool described in Section 8.5: The trace viewer (trcview) on
page 120.

Table 24 lists the equivalent sim_command commands for the census, config and trace
commands listed in Table 21, Table 22 and Table 23.

Note: The census and trace commands are only available when using the ST40 performance
simulator.

Table 23. Trace subcommands

Command Description

open ’file’

Open a set of trace files with the base name file. Depending
upon the type of simulation being traced, a number of files are
created and various extensions added to the trace base name.
See the description of the trace file format in Section 8.6: Trace
viewer file formats on page 122 for more details.

file must be enclosed by single quotes.
An alternative for this command is sim_trace open:file.
Tracing does not commence until a trace on command.

on
Switch on tracing of the simulation.
An alternative for this command is sim_trace on.

off
Switch off tracing of the simulation.
An alternative for this command is sim_trace off.

close
Flush and close all the files associated with the current trace.
An alternative for this command is sim_trace close.

Table 24. sim_command equivalents

Command sim_command equivalent command

sim_census on|off sim_command "census on|off"

sim_census save:label sim_command "census save 'label'"

sim_census autosave:label sim_command "census autosave 'label'"

sim_census open:file sim_command "census open 'file'"

sim_config "config" sim_command "config +config"

sim_trace on|off sim_command "trace on|off"

sim_trace open:file sim_command "trace open 'file'"

sim_trace close sim_command "trace close"

Core performance analysis guide UM1399

108/311 7379953 Rev 23

8.3.4 Commands in shsimcmds.cmd

The command script shsimcmds.cmd also defines the simulator commands
sim_addmemory, sim_branchtrace and sim_insttrace. These commands are
described here.

sim_addmemory command

Use the sim_addmemory command to add a memory region to the simulator. This
command accepts three arguments:

sim_addmemory address size type

The arguments are as follows:

sim_branchtrace command

Use the sim_branchtrace command to configure branch tracing in the simulator. The
command has the format:

sim_branchtrace option

Table 25 describes the options that can be used with sim_branchtrace.

The following commands open a file called velocity.dat and start branch tracing:

sim_branchtrace open:velocity.dat
sim_branchtrace on

Each branch is recorded in the output file using the following simple format:

source-address -> destination-address

address The address of the memory region, in hexadecimal.

size The size of the memory region in Mbytes.

type One of either RAM, ROM or DEV.

Table 25. branchtrace subcommands

Option Description

open:file

Record the branch trace data in file.
If the open command is not used, then the simulator uses a file
with the default name of brtrace.dat.
If file already exists, new branch trace records are appended
to the end of the file.
Branch tracing does not commence until a branchtrace on
command is issued.
If branch trace is already enabled, the file can be changed
dynamically without the need to disable and then re-enable
branch tracing.

on Turn branch tracing on.

off Turn branch tracing off.

7379953 Rev 23 109/311

UM1399 Core performance analysis guide

125

sim_insttrace command

Use the sim_insttrace command to enable or disable the listing of executed instructions
within the simulation. The list of instructions are displayed on stderr in the terminal from
which GDB was launched.

The command to enable instruction trace is as follows:

sim_insttrace on

The command to disable instruction trace is as follows:

sim_insttrace off

8.3.5 Dynamic control

Dynamic control over the collection of statistical and trace data is performed through a
pseudo-device mapped into the address space of the core. The code needed to drive this
device is encapsulated within C functions that are implemented in census.c located in the
sh-superh-elf/examples/census subdirectory of the release installation directory.

Note: The simulation control is not overly intrusive. Most commands involve executing relatively
few instructions and, in most cases, a single write to the dynamic control device. However,
the CensusOutput() function involves the execution of significant code, particularly when
a string is copied into the dynamic control device. It is therefore highly recommended that
the CensusOff() function is invoked prior to calling the CensusOutput() function. This
avoids the execution of the CensusOutput() function appearing in the statistics.

The associated header file census.h defines the functions listed below.

GetClock Return the current clock cycle

Definition: int GetClock(void)

Description: Return the current clock cycle during a performance simulation and an instruction
count during a functional simulation.

CensusOn Switch on census taking

Definition: void CensusOn(void)

Description: Switch on census taking. It is equivalent to setting a breakpoint at that particular point
in the code and executing a census on command.

CensusOff Switch off census taking

Definition: void CensusOff(void)

Description: Switch off census taking. It is equivalent to setting a breakpoint at that particular point
in the code and executing a census off command.

Core performance analysis guide UM1399

110/311 7379953 Rev 23

CensusClear Reset the census counters

Definition: void CensusClear(void)

Description: Reset the census counters. It is equivalent to setting a breakpoint at that particular
point in the code and executing a census reset command.

CensusOutput Save the census counters

Definition: void CensusOutput(char* label)

Description: Save the census counters to the census file with the label label.

TracesOn Enable tracing

Description: Enable tracing. It is equivalent to setting a breakpoint at that particular point in the
code and executing a trace on command.

Definition: void TracesOn(void)

TracesOff Disable tracing

Description: Disable tracing. It is equivalent to setting a breakpoint at that particular point in the
code and executing a trace off command.

Definition: void TracesOff(void)

8.4 The census inspector (censpect)
The census inspector provides a means of visualizing the contents of census files. This
section describes it in the context of the census information produced by the ST40
simulators, but it can be used to view the content of any census file that adheres to the
format described in Section 8.7: Census file formats on page 124.

The tool is called censpect and takes a single optional argument which is the name of the
configuration file into which configuration data can be loaded and saved. If no argument is
specified then the default configuration file is used, .censpect.v3.cfg, which is found
either in the user’s home directory under Linux or in the root of the C: drive under Windows.

If this is not present, then a configuration file is created based on the default internal
configuration. To select the default configuration explicitly, use - (hyphen) as the argument:

censpect -

If this argument is used, it is not possible to save any configuration changes.

7379953 Rev 23 111/311

UM1399 Core performance analysis guide

125

8.4.1 The Census Inspector window

An example of the Census Inspector window is shown in Figure 22.

Figure 22. Census Inspector window

Core performance analysis guide UM1399

112/311 7379953 Rev 23

The fields listed in Table 26 are available in the Census Inspector window.

To make all census files located below the current directory available for selection, select
Search Subdirectories from the File menu. Selecting the Follow Links check box causes
the search to traverse any symbolic links that it encounters (not applicable to Windows).

To change the working directory of the tool, select Change Directory from the File menu.

Any new census files generated while the tool is running do not automatically appear in the
Unselected Files list. To update this window select Rescan Directory from the File menu.

8.4.2 Creating histograms

Once a group has been defined and a suitable census file loaded, it is then possible to
create a histogram. To do this, double-click on the appropriate entry in the Group list.
Alternatively select the group with a single click and then select Display Histogram from
the Histogram menu.

The Display Histogram function applies each query found in the selected group to the
census database and builds a table of queries and associated counts. These results are
then displayed on the screen in the form of a bar chart (or histogram).

The pre-defined groups supplied with the tool typically aggregate across all the census
records(b) found in the loaded census files. To display specific records from the loaded
census files, select Select Output from the Histogram menu.

The Select Output function lists all the census records in the census database by output
number and label. Arbitrary numbers of the records can then be selected using the same
mechanism as that used for loading files. The results contained within the chosen records
can then be merged (by summing the results of applying the same query to each selected
record) or displayed separately. If only one label is selected these two options have exactly
the same effect.

Table 26. Fields available in the Census Inspector window

Field Description

Unselected Files

This contains a list of all the census files that the tool has located in the
current directory. To load a file into the tool, click on the appropriate entry.
Several files can be loaded at the same time by selecting multiple entries
when clicking.

Selected Files
Loaded files are transferred to Selected Files and prefixed by the name of
the tool or model by which they were generated. To unload a file, click on
the appropriate entry.

Groups

Related queries can be assembled into groups whose results are displayed
as histograms or 2D plots as appropriate. A number of useful groups are
pre-defined and are listed in Groups. Generally, only the pre-defined
groups with a prefix matching the model/tool type specified in the loaded
census file are appropriate. It is recommended that this convention is
adopted when adding user defined groupings. The creation of new groups
is described in Section 8.4.4 on page 116.

b. A census record is defined as the data produced by a simulator each time the CensusOutput() function is
called.

7379953 Rev 23 113/311

UM1399 Core performance analysis guide

125

A number of additional options are also available on the Histogram menu (see Table 27).
These control the way in which the histogram is formatted on the screen.

Table 27. Histogram menu options

Menu option Description

Use Blt Package

Draw the bar charts using a different histogram package. The advantages
of this package are that it is capable of marking the ruler with percentages
instead of counts, and drawing the labels vertically. This allows more
columns to be placed onto the screen.
The disadvantages are that bars can only be displayed vertically, charts
can be no wider than the screen and there is no cut-off facility so that short
bars can be omitted from the display.

Show Zero Bars
If this option is set then a bar continues to be displayed for any queries
that return zero.

Show Count Display the counts returned by the queries as an annotation to each bar.

Show Files
Display the file names of the census files used to produce the histogram at
the top of the window.

Show Query

The histogram viewer takes a table containing the results of queries
applied to the database as its input. It determines the label that appears
next to each bar by stripping any prefix and any suffix common to all the
queries in the table. This option displays these common components of
the queries in the form:

prefixXsuffix

Show Percentage

Annotate each bar with a percentage. Whether this is a percentage of a
summation applied across all the columns or of the highest count is
determined by the Percentage of Sum and Percentage of Max menu
entries.

Unsorted Display the bars in the same order which they appeared in the group.

Sort Labels
Order the bars by breaking up the labels into alphabetic and numeric
sequences. The labels are then sorted from left to right using dictionary-
order for alphabetic strings and value-order for numeric strings.

Sort Increasing Organize the bars with the shortest first.

Sort Decreasing Organize the bars with the tallest first.

Y is Count Mark the ruler with counts.

Y is % of Sum Mark the ruler with a percentage of the column sum.

Y is % of Max Mark the ruler with a percentage of the tallest column.

Y is % of Group
Allow the percentage to be expressed as a count produced when applying
a specified group to the census database.

Horizontal Bars
Display the bars of the histogram horizontally instead of vertically. This
option is not available when Use Blt Package is in use.

Core performance analysis guide UM1399

114/311 7379953 Rev 23

8.4.3 2D plots

The censpect tool supports two modes of graph generation which are selected from the
Plot menu. These can be based on:

• census record labels

• changes to the simulator configuration

Plots based on census record labels

If the X taken from label option is selected, plots are produced that are dependent upon the
contents of the labels associated with each census record. The X co-ordinate of a point is
taken from the label of the record. The Y co-ordinate is produced by using the selected
group to query the census record.

Each member of the group is expected to return a single count value(c) that is used to locate
the Y co-ordinate for the line. A line is plotted on the graph for every query that appears in
the group. When this option is selected, a list of merged labels is supplied. Labels are
merged when they differ by only a single token and the differing tokens are numeric.

The result of a merge is to produce a single label of the form:

prefixXsuffix (for X = token-list)

Wide Results

If this function is selected and the census query returns more results than
can be presented on the screen, a scroll bar is automatically added to the
display. This can then be used to navigate to the appropriate part of the
chart.
If it is not selected, then the counts associated with bars that cannot be
displayed are summed and placed in a bar labelled REST. This option is
not available when Use Blt Package is in use.

Select Cutoff

Display the Set Cutoff Point window. This window can be used to select
the cutoff point by:
– clicking on None to disable the cutoff mechanism,

– clicking on Accumulate into OTHERS to add together all columns
which contribute less than the cutoff percentage to the column sum and
display it in a bar labelled OTHERS,

– clicking on Forget OTHERS to ignore all columns which contribute less
than the cutoff percentage,

– entering the percentage of the maximum to use as the cutoff point in the
Enter cutoff field.

This facility is not available when Use Blt Package is in use.

Table 27. Histogram menu options (continued)

Menu option Description

c. This is achieved by giving the full tag name of a census item and only using a wild card for the
CENSUS.OUTPUTn field; for example CENSUS.+. See Census queries on page 117 for more information on
queries.

7379953 Rev 23 115/311

UM1399 Core performance analysis guide

125

For example, the following set of labels:

Decode Frame 0
Decode Frame 1
Decode Frame 2
Decode Frame 3

would be processed into the following merged list:

Decode Frame X (for X = 0 1 2 3 4 ...)

The required plot is selected by double-clicking on the appropriate entry in the list. The
sample plot shown in Figure 23 displays the range of cycles required to compress a
sequence of MPEG frames.

Figure 23. Cycles required to compress a sequence of MPEG frames

Plots based on changes to the simulator configuration

This plotting function is used when the X taken from configuration option is selected. It
graphically represents the effect of varying the configuration of the simulator on the
execution of an application. This function is provided primarily for observing the effects of
changes in the architecture and micro-architecture. For example, it is possible to observe
the effect of varying the cache size on execution times and miss rates.

Before using this function, it is necessary to generate a set of census files that run the same
application but use different simulator configurations.

Once a set of census files have been generated they should be loaded into the tool and X
taken from configuration selected. This interrogates the configuration information
recorded in each of the census files to determine which configuration parameter is varying.
A plot is not produced if more than one parameter is found to be changing across the set of
census files.

When the varying parameter has been identified, a line is drawn for every result returned by
applying the currently selected census group to one of the selected census files. The X co-

Core performance analysis guide UM1399

116/311 7379953 Rev 23

ordinate identifies the value of the configuration parameter. The Y co-ordinate is the count
returned by the associated query.

Plotting options

The options listed in Table 28 are also available from the Plot menu.

8.4.4 Preparing new groups

The preparation of new groups requires an understanding of the format and content of
census files and also knowledge of how to query the census database.

Census file format

This section discusses the generic format of census files. Detailed information regarding the
content of census files generated by the ST40 simulators can be found in Section 8.7:
Census file formats on page 124.

A census file entry consists of a tag/value pair where the value can be either an integer or a
quoted string of characters. For example:

SIM.TYPE "SH4P"
SIM.DATA.CACHE.BYPASS 0
SIM.DATA.CACHE.SETS 64
SIM.CODE.CACHE.BYPASS 0
SIM.CODE.CACHE.SETS 64

The order in which entries appear in the census file is of no consequence to their
interpretation, although to improve clarity, related information should be grouped together.

Tag names must start with a character from the set:

_ $ # % A-Z a-z

In the body of the tag, plus (+), minus (-) and numerals are also permitted. The census
database is case-insensitive. Therefore, SIM, Sim and sim are all equivalent.

Table 28. Plot menu options

Menu option Description

Unmarked Do not mark the points that are used to draw the plot.

Circular Mark the points that are used to draw the plot as circles.

Square Mark the points that are used to draw the plot as squares.

Diamond Mark the points that are used to draw the plot as diamonds.

Cross Mark the points that are used to draw the plot as crosses.

Y is Count Mark the Y axis ruler in terms of counts.

Y is % of Group
Mark the Y axis ruler in terms of a percentage of a group specified value.
The group used to compute this value is chosen using Select Base Group
on the Groupings menu.

7379953 Rev 23 117/311

UM1399 Core performance analysis guide

125

Census queries

The least complex form of a census query is a dot-separated list of field names. The query
returns every entry that is prefixed by a matching set of field names. Field matching is case-
insensitive. This means that the query sim.data would return the following entries if
applied to the above census database:

SIM.DATA.CACHE.BYPASS 0
SIM.DATA.CACHE.SETS 64

In addition to prefix matching, there are two operators defined for querying the database that
can be used to wildcard a particular field. If the ? operator is used as a field name, the
matching operation on that field is the one that always succeeds. sim.?.cache.sets
returns:

SIM.DATA.CACHE.SETS 64
SIM.CODE.CACHE.SETS 64

The + operator is used in a similar manner except that the counts returned by the matching
entries are summed to return a single result. sim.+.cache.sets returns:

SIM.+.CACHE.SETS 128

Both operators can appear multiple times in any combination within the same query. For
example, sim.+.cache.? returns:

SIM.+.CACHE.BYPASS 0
SIM.+.CACHE.SETS 128

Core performance analysis guide UM1399

118/311 7379953 Rev 23

8.4.5 Creating and modifying groups

To begin creating a new group, select New Group from the Groupings menu. The Add
new group window is displayed, see Figure 24. The fields are described in Figure 29.

Figure 24. Add new group window

7379953 Rev 23 119/311

UM1399 Core performance analysis guide

125

To save the new group of queries, click on the OK button.

To delete a group, select it in the Census Inspector window and then select Delete Group
from the Groupings menu. Modify Group displays the same dialog box as used for adding
a new group, pre-loaded with the contents of the currently selected group. This window can
also be opened by double-clicking on an entry in the Groups list.

Table 29. Add new workgroup window fields

Field Description

Group Name

Enter the name of the group. The recommended convention is to prefix the
group name with the type information for the tool/model that produces the
census files with which it is associated. This information can be found in
the census file’s SIM.TYPE field and prefixes a selected census name.

Current Contents
This lists all of the queries in the group. To delete a query from the group
double-click on the appropriate entry.

Enter Census Query Enter the query to add to the group.

Add Query

Click on this button to add the query entered in the Enter Census Query
field to the group.
The query is applied to the currently loaded census files and a table of
results is displayed in a new window. Any query which has no match
against the loaded census files returns 0. This mechanism is also
advantageous for inspecting the contents of a census file. For example,
testing census.+.cpu0 lists all census file entries associated with CPU
core 0.
Most queries should commence census.+ as this makes the default
behavior of the query merge the results of every census record found in
the database. This behavior can be overridden using the Select Output
option in the Histogram menu to specify arbitrary subsets of the census
records for display.

Test Query

Click on this button to test the query entered in the Enter Census Query
field before adding it to the group. When constructing queries for
processing by the census inspector, only census file entries with numeric
values are appropriate. Attempting to use queries which return strings as
part of a query grouping result in an error.

Or Choose A Query
From

This lists a history of all previously used queries(1). Click on an entry in this
box to transfer it to the Enter Census Query field. Double-click on an
entry to transfer it to the Current Contents field.
The history list also contains queries of the form merge(group-name)
for each of the groups that are currently defined. A query of this form
applies the query group group-name to the census database. The results
of this query are accumulated and returned by the merge query as a single
result.

1. To edit the contents of the history list, select File > Selector Maintenance.

Core performance analysis guide UM1399

120/311 7379953 Rev 23

8.5 The trace viewer (trcview)
The trace viewer is invoked as follows:

trcview file[.trc]

where file is the file name for the trace set to be viewed.

When the trace viewer is invoked, the Trace File Viewer window is displayed, see
Figure 25.

The Trace File Viewer window is able to display the following:

• packet traces

• probe traces

Packet traces are used for time-stamping the flow of an instruction through a core pipeline.

All information regarding the specifics of the trace are encapsulated within the generated
trace files themselves. The number of packet traces generated depends upon the model. A
list of traces is displayed at the bottom of the Options menu. Traces show the flow of the
instructions through each stage of its pipeline. An example of such a trace is given in
Figure 25.

7379953 Rev 23 121/311

UM1399 Core performance analysis guide

125

Figure 25. The Trace File Viewer window

Probe traces are used to monitor the state of individual components of the model on a cycle-
by-cycle basis. All probes are boolean, for example, a probe can be used to indicate when a
queue is empty. However, it cannot be used to indicate how many entries are in the queue
unless a probe is allocated for every possible number of queue entries.

Probes appear at the bottom of the Trace File Viewer window but can be disabled by
unchecking the Probes option in the Options menu.

Additional information regarding all the probes can be displayed by selecting Probe
Configure from the File menu. The dialog box displayed allows probes to be hidden, to
have the color changed and to be placed on the same line as the previous probe. The latter
feature, in combination with a change in color, is advantageous for presenting related

Core performance analysis guide UM1399

122/311 7379953 Rev 23

signals on a single line. An example of this is the treatment of EMI phases which appear, by
default, on a single line with the RAS phase in red, the CAS phase in purple, and any pre-
charge phase in blue.

8.6 Trace viewer file formats
This section describes the format required for the files read by the trace viewer (see
Section 8.5: The trace viewer (trcview) on page 120).

Note: Each file which makes up a trace set has the same file name but with a different extension.
The additional extensions are defined in the .trc file (a member of the trace set).

8.6.1 Trace set files (.trc)

The .trc file gives the general structure of the trace set. The types of packet trace used in
the set are defined, as are the possible stamps(d) which can be used in each packet trace.
The file also contains references to the files containing the values used to construct the
traces.

Definitions of trace types

The following construct defines a trace packet type with an entry for each available stamp:

DEFINE TRACETYPE type-name
{stamp-name} shape color
{stamp-name} shape color
...
END

where:

type-name is the name used to refer to the trace type,

stamp-name is the name that appears in the legend,

shape is the default shape the stamp uses, this can be square, circle, diamond, left
arrow, or right arrow,

color is the default color the stamp uses.

A trace type definition must exist for each referenced trace type.

d. A stamp is an event that can occur zero or more times during the course of the trace. For instruction traces,
there is one stamp for each of the various decode and execute states of the processor pipeline.

7379953 Rev 23 123/311

UM1399 Core performance analysis guide

125

References to associated files

An entry must exist for each packet trace in the set specified by a TRACE statement.

TRACE type-name file-extension "trace-name"

where:

type-name is the name of the trace type (as defined above),

file-extension is the extension of the file containing the data for this trace,

trace-name is the name of the trace as it appears in the view.

Following each TRACE statement there can be any number of TRACETEXT statements that
refer to files containing additional trace information (see Section 8.6.3 on page 123).

TRACETEXT file-extension

There must also exist entries for each probe trace file (see Section 8.6.4 on page 124),
specified by a PROBE statement.

PROBE file-extension

8.6.2 Packet trace files

Packet trace files are referred to in the TRACE statements of a .trc file. They must contain
a line for each object in the trace. Each line should be structured as follows:

: descriptive-text (values)

where:

descriptive-text is any arbitrary string up to the (character that is displayed next
to the trace of the object in the viewer,

values is a list of the time stamps for the object where each stamp can be
represented using:

– a single integer value,

– multiple values (these must be enclosed in braces, for example {1 2 5}),

– empty braces {}.

Each value (or set of braces) must be separated by a space. Using multiple values
causes more than one instance of the stamp in the trace.

Note: There is a deprecated form for an entry which has a value before the colon. In the current
version, everything before the colon is ignored.

8.6.3 Trace text files

Trace text files contain one line of free text for each line in the packet trace file. The trace
viewer displays the text, one line at a time, at the foot of the packet trace. Typically the text
contains the same information as the packet trace descriptive text, but with more information
(such as register contents).

Core performance analysis guide UM1399

124/311 7379953 Rev 23

8.6.4 Probe trace files

Probe trace files contain a header plus the trace data for the probes which are displayed by
the trace viewer window. The performance simulator uses these files to represent pipeline
stalls.

Header

The header starts with a line containing the word PRELUDE and then follows one line for
each probe type:

word bit name description

where:

word is the binary word in which the bit is found. The value should be 0, 1, 2 and so
on.

bit is the binary bit (0, 1, 2 and so on) that represents the probe in the data (see the
trace data below). It must be between 0 and 15 (inclusive). More can be used by using
a different word.

name is the name displayed by the trace viewer.

description is a short description of what triggers the probe.

Trace

The trace follows the header and starts with a line containing the word TRACE and then
follows a series of lines describing the probe data:

value probes ...

where:

value corresponds to the values in the packet trace data (see Section 8.6.2 on page
123).

probes indicates which probes were triggered. This is a hexedecimal number (without
a 0x prefix) in which the binary bits represent the probes (as defined in the probe trace
file header).

... is optional and means that if there are multiple words defined in the header (that is,
more than 16 probes) then these should be listed, separated by spaces.

8.7 Census file formats
Every census file (.cns) generated by the ST40 simulators contains the fields shown in
Table 30. Census files are read by the census inspector (see Section 8.4 on page 110).

Table 30. Census file generic fields

Field Description

SIM.TYPE The type of model which generated census data.

SIM.VERSION The version of the model which generated census data.

SIM.ARCH The model family, usually empty.

SIM.BUILD.DATE The date the model was built.

SIM.RUN.DATE The date the model was run.

7379953 Rev 23 125/311

UM1399 Core performance analysis guide

125

These are followed by a series of model specific configuration fields that contain the settings
for all the run-time configurable components of the model. They are all prefixed by
SIM.CONFIG.

The configuration section is followed by a series of counter descriptions of the form:

DESCRIPTION.<counter id> "<description>"

For example:

DESCRIPTION.cpu.decode.branch_taken "Count of branches predicted
to be taken by the decode pipeline stage"

The description section is followed by a series of output sections, one per counter dump
performed during simulation. Each entry begins:

CENSUS.OUTPUTn

where n begins at 0 and is incremented at the start of each new output section. Each output
section contains a LABEL field describing its contents as specified during the counter dump.
The rest of the entries record the state of all the counters at the time the dump was
requested.

Some of this census data is output in the form of a histogram. This type of entry always
contains the subfields shown in Table 31.

The number, widths and range of bins vary depending upon the data being sampled.

Table 31. Census file subfields

Subfield Description

total Sum of all values entered in the histogram.

samples Number of samples in the histogram.

min Lowest value entered in the histogram.

max Highest value entered in the histogram.

mean Mean of all values entered in the histogram (truncated to an integer).

bins.#-X Number of values below or equal to X entered in the histogram.

bins.#X-Y Number of values between X and Y, inclusive, entered in the histogram.

bins.#X Number of values equal to X entered in the histogram.

bins.#X- Number of values greater than or equal to X entered in the histogram.

OS21 source guide UM1399

126/311 7379953 Rev 23

9 OS21 source guide

The source code for OS21 is included with the toolset release and is located in the sh-
superh-elf/src/os21 subdirectory of the release installation directory.

OS21 may be freely rebuilt for your own purposes, but these uses must be strictly within the
terms and conditions of the OS21 Software License Agreement. A copy of this license
agreement is located in the top level directory of the OS21 source code (LICENSE.htm).

There is a makefile (GNU make compatible) in this directory, which enables OS21 and its
board support libraries to be built by simply issuing the make command.

This top level makefile has three build rules.

The resulting libraries are placed in the directory sh-superh-elf/src/os21/lib/st40.

The source for OS21 is provided so that a user can:

• refer to the OS21 source for a clearer understanding of OS21’s behavior

• refer to the OS21 source to aid debugging

• rebuild OS21 with different compiler options

• enable configurable options within OS21 which are not enabled in the shipped binaries

• build customized board support libraries

Note: To build OS21, GNU make and Perl (version 5.6.1 or later) must be available on the host.

9.1 Configuration options
OS21 supports a number of configuration options. These options are selectively enabled at
build time by defining preprocessor symbols. Table 32 lists the preprocessor symbols that
are available for configuring OS21 for the ST40.

build Build all of OS21 and its board support libraries (the default rule).

buildbsp Build just the OS21 board support libraries.

clean Remove all built files (object files and libraries).

Table 32. OS21 configurable options

Symbol name Description

CONF_DEBUG Enable debug checking within the OS21 kernel.

CONF_DEBUG_ALLOC Enable additional debug checking for memory allocators.

CONF_DEBUG_CHECK_EVT Perform extra validation checks on events.

CONF_DEBUG_CHECK_MTX Perform extra validation checks on mutexes.

CONF_DEBUG_CHECK_SEM Perform extra validation checks on semaphores.

CONF_FINE_GRAIN_CLOCK
Program the system clock to operate at as high a frequency as
possible, hence yielding greater accuracy.

CONF_FPU_SINGLE_BANK
Restrict FPU save and restore to the bank of FPU registers
used by GCC.

7379953 Rev 23 127/311

UM1399 OS21 source guide

134

These configurable options are described in detail in Section 9.1.1.

Note: The file makest40.inc (located in the at the top level of the OS21 source code directory)
can be amended to alter these options. By default, none of the configuration options listed in
Table 32 are enabled in this file.

9.1.1 Configuration options in the standard OS21 libraries

The standard OS21 libraries shipped in the distribution (selected with -mruntime=os21)
are built with CONF_INLINE_FUNCTIONS defined. The debug OS21 libraries (selected with
-mruntime=os21_d) are built with CONF_DEBUG defined. The OS21 libraries selected
when the -m4-nofpu compiler option is specified have also been built with
CONF_NO_FPU_SUPPORT defined.

CONF_DEBUG

To produce a debug OS21 kernel, define the CONF_DEBUG preprocessor symbol. This
kernel contains many checks to ensure internal integrity, and to check that user calls into the
kernel are correct.

CONF_DEBUG_ALLOC

To produce an OS21 kernel with special checks added to the memory management code
(including the detection of heap scribbles, and the freeing of bad pointers), define the
CONF_DEBUG_ALLOC preprocessor symbol.

CONF_DEBUG_CHECK_SEM, CONF_DEBUG_CHECK_MTX and
CONF_DEBUG_CHECK_EVT

To produce an OS21 kernel with extra integrity checks enabled for semaphores, mutexes
and event flags respectively, define these preprocessor symbols. Every time one of these
objects is referenced, OS21 performs extra checks to ensure that its structure is not corrupt,
and that it has not been previously deleted.

CONF_FINE_GRAIN_CLOCK

Defining this preprocessor symbol causes OS21 to program the system clock to operate at
as high a frequency as possible, given the prevailing timer input clock. This increases the
number of ticks per second, and hence yields greater accuracy when reading the system
time, or setting timeouts.

CONF_FPU_SINGLE_BANK

Defining this preprocessor symbol produces an OS21 kernel with a restricted FPU context
save and restore. OS21 only considers the bank of FPU registers which are used by GCC
when saving or restoring a context. This halves the number of FPU registers which need to
be saved or restored on context switch, therefore improving context switch time and
interrupt latency. This option is safe to use provided that no custom FPU routines which
perform FPU bank switching are being used.

CONF_INLINE_FUNCTIONS Inline certain functions.

CONF_NO_FPU_SUPPORT Do not save/restore FPU registers on context switch.

Table 32. OS21 configurable options (continued)

Symbol name Description

OS21 source guide UM1399

128/311 7379953 Rev 23

CONF_INLINE_FUNCTIONS

To produce an OS21 kernel with inlined list manipulation functions, define the
CONF_INLINE_FUNCTIONS preprocessor symbol. This can yield a slight performance
improvement.

CONF_NO_FPU_SUPPORT

Defining this preprocessor symbol produces an OS21 kernel which disregards the FPU
registers when switching context. This improves context switch time and interrupt latency, at
the expense of making the use of the FPU task unsafe. It is therefore important that the
program is built with the -m4-nofpu compiler option to ensure that the FPU is not used at
all, or that the FPU is just used by a single task.

9.2 Building the OS21 board support libraries
The OS21 board support libraries can be built by invoking make from the root of the OS21
source tree (sh-superh-elf/src/os21) with the target buildbsp. Each board support
library consists of four object files:

• one for generic configuration options and for functions that allow the user to insert code
to be executed at certain key OS21 events

• one for ST40 core support

• one for SoC support

• one for target board support

The board support source code is located in the subdirectory sh-superh-elf/src/
os21/src/st40/bsp of the release installation directory.

For more information about the board support libraries, see the chapter entitled “Board
support package” in OS21 User manual (7358306). There is also information related to the
board support libraries in OS21 for ST40 User manual (7358673).

Core support files

There is a core support file for each supported ST40 variant. The convention for naming
these files is cpu_variant.c, where variant is the name of the SoC. For example, the
name of the support file for the ST40 in the STb7100 is cpu_stb7100.c.

A full list of all the core support files can be obtained by listing the contents of the
sh-superh-elf/src/os21/src/st40/bsp directory.

Each file contains:

• declarations of all the interrupts that can be serviced on this core

• tables enumerating all the interrupts and interrupt groups

• base addresses of the interrupt controllers on this core

• interrupt controller initialization flags

• a function, bsp_cpu_type(), to return the name of the core

Platform specific variants of the core support files may also exist to support platforms where
the external interrupts are not priority encoded (the default).

7379953 Rev 23 129/311

UM1399 OS21 source guide

134

SoC support files

There is a SoC support file for each supported ST40 system-on-a-chip device. The
convention for naming these files is chip_variant.c, where variant is the name of the
system-on-a-chip device. For example, the name of the support file for the STb7100 is
chip_stb7100.c.

A full list of all the SoC support files can be obtained by listing the contents of the
sh-superh-elf/src/os21/src/st40/bsp directory.

Each file contains:

• a function, bsp_chip_type(), to return the name of the SoC

• optionally, the function bsp_timer_input_clock_frequency_hz(), and
associated support code to determine the clock frequencies of the part from the on-chip
clock peripheral

Target board support files

There is a target board support file for each supported reference platform. The convention
for naming these files is board_platform.c, where platform is the name of the
reference platform. For example, the name of the support file for the STb7100-MBoard is
board_mb411.c.

A full list of all the board support files can be obtained by listing the contents of the
sh-superh-elf/src/os21/src/st40/bsp directory.

Each file contains a function, bsp_board_type(), that OS21 calls to determine the name
of the target board and a variable that declares the frequency of the external crystal on the
board.

OS21 source guide UM1399

130/311 7379953 Rev 23

9.2.1 Creating a customized board support library

The following steps show the process of creating a new board support library for a fictitious
board called custom.

1. In the sh-superh-elf/src/os21/src/st40/bsp directory, copy one of the
supplied target board support files to use as a template. For example, copy
board_mb411.c to board_custom.c.

2. Edit it to meet the specific requirements of the new board.

3. In the sh-superh-elf/src/os21 directory, edit makest40bsp.inc.

a) Declare a new library name:

BSPLIB_CUSTOM = $(OS21LIBDIR)/libcustom$(LIBSFX).a

b) Add $(BSPLIB_CUSTOM) to the list defined by BSPLIBS.

c) Create a definition of the object files to be put in this library. Choose the
appropriate CPU support file, based on the processor used on the board, for
example:

BSPOBJS_CUSTOM = \
 $(OS21OBJDIR)/os21/bsp/bsp$(OBJSFX).o \
 $(OS21OBJDIR)/st40/bsp/cpu_stb7100$(OBJSFX).o \
 $(OS21OBJDIR)/st40/bsp/chip_stb7100$(OBJSFX).o \
 $(OS21OBJDIR)/st40/bsp/board_custom$(OBJSFX).o

d) Add $(BSPOBJS_CUSTOM) to the list BSPOBJS.

e) Add a rule to build the new library:

$(BSPLIB_CUSTOM): $(BSPOBJS_CUSTOM)
 $(ARBUILD) $(BSPOBJS_CUSTOM)
 $(RANLIB) $@

4. Build the board support library by invoking make from the top level OS21 directory, with
the target buildbsp.

Since by default LIBSFX is empty, the resulting library name is libcustom.a. It is placed
in the sh-superh-elf/src/os21/lib/st40 directory.

7379953 Rev 23 131/311

UM1399 OS21 source guide

134

9.2.2 Using the built libraries

After rebuilding the OS21 libraries, the -L compiler option must be specified to ensure that
the linker picks up the new versions of the libraries:

sh4gcc -Linstall-directory/sh-superh-elf/src/os21/lib/st40

Note: Where install-directory is the location of the release installation directory.

Debugging the libraries

To debug the libraries using GDB, add the following to the GDB initialization file
(.shgdbinit):

directory install-directory/sh-superh-elf/src/os21

This ensures that GDB finds the OS21 source files. If required, optimization can be switched
off or reduced when rebuilding OS21 by specifying -O0 or -O1 as the optimization level, for
example:

make build CCOPTFLAGS=-O0

9.3 Adding support for new boards
When a new board support library has been built as described in Section 9.2.1, it has to be
registered with the toolset. This means creating a new GCC compiler specs file to describe
the memory layout of the board, and to inform the compiler driver of the new board support
library. This specs file can be placed in either:

• the working directory

• the sh-superh-elf/lib/gccscripts subdirectory of the release installation
directory

• in a directory referenced by the -B GCC compiler option

Note: Placing the file in the release installation directory makes it available from wherever the
compiler is invoked.

Continuing the example in Section 9.2.1, create a specs file called customspecs in one of
the above directories, with the following contents:

%rename board_link board_link_custom

*_custom:
--defsym .reservedramsize=0x1000 \
--defsym .physrambase=0x04000000 --defsym ___ramsize=0x02000000 \
--defsym .physrombase=0x00000000 --defsym ___romsize=0x00800000

*customp0:
%(_custom) %(region_p0) %(define_29bit_mem)

*customp1:
%(_custom) %(region_p1) %(define_29bit_mem)

*customp2:
%(_custom) %(region_p2) %(define_29bit_mem)

*customp3:
%(_custom) %(region_p3) %(define_29bit_mem)

*board_link:

OS21 source guide UM1399

132/311 7379953 Rev 23

%{\
mboard=customp0|mboard=customsimp0:%(customp0);\
mboard=customp1|mboard=customsimp1|mboard=custom|mboard=customsim:%(customp1);\
mboard=customp2|mboard=customsimp2:%(customp2);\
mboard=customp3|mboard=customsimp3:%(customp3);\
mboard=custom*:%e-mboard=custom* unrecognised;\
\
:%(board_link_custom)\
}

%rename lib_os21bsp_base lib_os21bsp_base_custom

*lib_os21bsp_base:
%{\
mboard=customsim*:simbsp;\
mboard=custom*:custom;\
\
:%(lib_os21bsp_base_custom)\
}

Where simbsp is the name of the OS21 simulator BSP for the SoC used in the board. For
example, use stb7100chess for an STb7100 SoC.

The specs file is designed to complement (and not replace) the boards already supported by
the toolset. This is achieved using the %rename specs file directive. This renames the
default toolset board_link and lib_os21bsp_base specifications and then refers to
them in the updated definitions.

The updated definitions also use the if-else conditional GCC specs rule to ensure that the
renamed default specifications are only applied if the -mboard option does not specify the
platform being added using the supplementary specs file.

Note: See Section 3.5.2: Linker board support on page 45 for the definition of the region_px and
define_29bit_mem spec strings in the above example. Compiler specs files are very
sensitive to spaces and blank lines; make sure that the specs file looks exactly like the
example above.

To use this new specs file, invoke the compiler with the option -specs=customspecs,
along with an appropriate -mboard option, for example -mboard=customp1.

It is now possible to create OS21 applications targeted for the new board. For example:

sh4gcc -specs=customspecs -o hello.out hello.c -mruntime=os21 -mboard=customp1

Note: Refer to Section 3.5.1: GCC board support setup on page 42 and to the boardspecs file to
see how the above specs file may be extended to add support for 32 bit Space
Enhancement mode.

7379953 Rev 23 133/311

UM1399 OS21 source guide

134

9.4 GDB OS21 awareness support
GDB provides OS21 task aware debugging with the shtdi GDB target. The shtdi target
installs a service which runs on the host and has knowledge of the data structures used in
the OS21 kernel. A dependency therefore exists between the version of OS21 being used
and the version of the shtdi service being used.

OS21 is built with static data tables which expose the layout of certain critical data structures
to the shtdi service. Each data table has a cyclic redundancy check (CRC) calculated for it,
and this too is stored statically. These data tables are auto-generated as part of the OS21
build process. At the same time a header file is also auto-generated which is imported into
the build of the shtdi service. This header file contains the same CRC values, and some key
type definitions.

The data tables are offset/size pairs which identify particular fields within OS21 data
structures. The tables are indexed by enumerated types, which are the types imported by
the shtdi service. There is one data table per OS21 data structure type of which the shtdi
service has to be aware. The CRC value for each table is calculated using the field name,
and since it is a CRC, the order in which the fields appear relative to each other is important.
If a field changes name between releases, or fields alter position within a data structure
(relative to each other), then the CRC for the data table also changes.

When the shtdi service examines a target system to determine if it can debug the target in
OS21 aware mode, it examines the data table CRCs in memory and checks to see if they
match the ones it was built with. If they do, then OS21 awareness is enabled, and the shtdi
service can use the in-memory data tables to determine how to parse the OS21 data
structures. If the CRCs do not match, then the shtdi service and OS21 were not built from
the same source base, and the shtdi service cannot debug the target in OS21 aware mode.

When modifying OS21, take note that changing the relative order of certain fields in key data
structures, or renaming them, may render the shtdi service unable to debug the resulting
OS21 executables in OS21 aware mode.

OS21 source guide UM1399

134/311 7379953 Rev 23

9.4.1 Generation of the shtdi service data tables

The following Perl script (invoked automatically as part of the build process) generates the
data required by the shtdi service:

sh-superh-elf/src/os21/scripts/mkgdb.pl

This Perl script is passed key OS21 header files, which are scanned for special mark-ups.
These mark-ups identify which structures, and which fields in those structures, are to be
exposed to the shtdi service. The mark-ups used are very simple, and are designed to be
invisible to the C compiler when the headers are compiled, by using the C preprocessor.

_OS21_GDB_STRUCT(struct)

Declares this structure as containing information required by the shtdi service. This
decoration triggers the generation of the following data objects:

– a size_t, with the size of the structure, given the name struct_size

– an array of offset and size descriptors, given the name struct_descs

– a size_t, with the number of elements in the above array, given the name
struct_descs_size

– an unsigned int with the value of the calculated CRC for the above array, given
the name struct_descs_crc

_OS21_GDB_FIELD(level, enum_prefix, field)

Declares that a field in the current structure is to be exposed to the shtdi service,
where level is the shtdi compatability level, starting from 0 for the default. An enum
called enum_prefix_field is generated and stored in the export header file and
corresponds to this field’s index in the array of descriptors.

_OS21_GDB_ARRAY_FIELD(level, enum_prefix, field, field_index,
enum_suffix)

Declares that a particular field in the structure array is to be exposed to the shtdi
service, where level is the shtdi compatability level, starting from 0 for the default. An
enum called enum_prefix_field_enum_suffix is generated and stored in the
export header file and corresponds to this field’s index in the array of descriptors.

_OS21_GDB_BEGIN_EXPORT, _OS21_GDB_END_EXPORT

These two markers are used to identify a section of header file which is to be copied
verbatim into the export header file.

7379953 Rev 23 135/311

UM1399 Booting OS21 from Flash ROM

138

10 Booting OS21 from Flash ROM

Examples of booting from Flash ROM are located in the sh-superh-elf/examples/
os21 subdirectory of the release installation directory. Full details can be found in the
readme.txt files in the example directories. Table 33 lists the Flash ROM examples.

The examples romloader and sti5528loader also show how to generate a ROM image
for booting the co-processors only under the control of a separately downloaded ST40
application.

Table 33. Examples of booting from Flash ROM

Example name Description SE Mode

failsafe
Creates a fail-safe (that is, integrity checking and, potentially,
repairing) application in Flash ROM.

?

nandboot

Example of booting from NAND Flash ROM. It also
demonstrates how to create a Flash file system, using
OSPlus, and load and execute applications from that file
system.

?

nandbootblock0

A second example of booting from NAND Flash ROM and
creating a Flash file system using OSPlus. This is for older
ST NAND controllers that do not support multiple block
remapping in boot mode. See Section 10.3 on page 138.

?

rombootanywhere
Demonstrates how to link an application that has some of its
code and data placed in an alternative memory location.

????

1. If the application is located in Flash ROM, this example does not support SE mode.

rombootram
The Flash ROM bootstrap copies the application to RAM
before running.

?

rombootrom The application runs directly from Flash ROM. ?

romdynamic
The application boots from Flash ROM and uses the
Relocatable Loader Library to load and call a dynamic library
from Flash ROM.

?

rommultiboot
The ST40 and ST231 cores on an SoC (other than a
STi5528) boot from Flash ROM.

?

sti5528dualboot
The ST40 and ST20 cores on the STi5528 boot from Flash
ROM.

?

Booting OS21 from Flash ROM UM1399

136/311 7379953 Rev 23

10.1 Overview of booting from Flash ROM
The ST40 Micro Toolset supports both single core and multicore SoCs where each core
boots from the same Flash ROM. This means that the contents of Flash ROM must be
managed so that multiple code and data images can co-exist and, where necessary, can be
separately updated.

10.2 Standard Flash ROM layout
The OS21 examples in the ST40 Micro Toolset that boot from Flash ROM include tools for
laying out the Flash ROM. For most SoCs, the tools lay out the Flash ROM in the same way.
One exception is the STi5528, which has a 1024 byte reserved region at the start of the
Flash ROM, followed by the usual layout. There is also a specialized layout for NAND Flash
ROM for those SoCs that do not have an ST NAND controller supporting multiple block
remapping in boot mode (see Section 10.3 on page 138 for more information).

The layout used by the tools in the examples supports:

• boot vectors for up to eight cores at 0x40 byte offsets from the base of the Flash ROM

• bootstrap information for up to eight cores

• an optional fail-safe application which can run before the main applications to check the
integrity of the Flash ROM and report/fix any problems

• a main application image directory

• main application image-control structures for images in the directory, which point to the
code and data sections located throughout the rest of the Flash ROM

More detail on the Flash ROM layout used can be found in the comments near the start of
the flasher.c or mkbinrom.pl source files found in the Flash ROM example directories
(see Table 33 on page 135).

Applications can be placed in NOR Flash ROM by the flasher Flash ROM programming tool
included in the examples. The flasher tool can either take component image files (for
example, for bootvectors, bootstraps or applications), or a complete Flash ROM image file
such as that created by the mkbinrom.pl tool, as its input.

The flasher tool may also be combined with a Flash ROM image to create a self-flashing
executable tool that programs the NOR Flash ROM from the embedded image.

Note: All NOR Flash ROM examples create a self-flashing executable tool.

The nandflasher tool is provided in the examples that demonstrate booting from NAND
Flash ROM. The nandflasher tool requires a binary ROM image created using the
mkbinrom.pl tool when using the standard Flash ROM layout.

Most examples that boot from Flash ROM also include a tool called flashdir which can
display the contents of Flash ROM.

The mkimage.pl tool converts target executable files into the component image file format.
It can process ST40 and ST200 ELF files (executable files and relocatable libraries), as well
as ST20 hex and S-record ROM format files. Executable files and relocatable libraries are
converted into their constituent sections, which are placed in the component image file.

Note: If mkimage.pl is used to create an image file from an ST40 ELF file that has previously
been stripped of its symbol information, mkimage.pl fails to find the address of the stack
and several other important symbols. In order to avoid this problem, use the option --

7379953 Rev 23 137/311

UM1399 Booting OS21 from Flash ROM

138

keep-symbol when stripping symbol information, and specify the symbols that
mkimage.pl requires to operate correctly. For an ST40 ELF file, these symbols are:

• _SH_DEBUGGER_CONNECTED

• _stack

• .physrambase

• .rombaseoffset

• ___rambase

• ___ramsize

Using the flasher tool with component image files allows updates to the existing contents of
Flash ROM. Any component image file being placed in Flash ROM results in an update to
the image directory pages. Multiple application images can be stored in Flash ROM. Each
image is tagged in the image directory with its associated core. A core can have multiple
application images stored in Flash ROM, but only one is tagged as the boot application for
that core.

The mkbinrom.pl tool provided with the examples creates a complete binary Flash ROM
image in a single file. Like the flasher tool it can take component image files as input, but it
can also take executable and relocatable library ELF files directly (in which case it calls
mkimage.pl automatically to convert them to component image files). The flasher tool or
the nandflasher tool can then be used to program the binary image to Flash ROM.
Complete Flash ROM images cannot be updated, but must be re-created from all
constituent ELF files and/or component image files each time.

The examples provide sample boot vector and bootstrap code for the ST40, which is able to
locate the ST40 application in the Flash ROM, and start it. The flow of execution on booting
is as follows:

1. the ST40 boot vector code runs, jumping to the ST40 bootstrap code

2. the ST40 bootstrap code then:

– configures the clocks, EMI and LMI interfaces

– configures the platform for 32-bit Space Enhancement mode (if required)

– locates the ST40 boot application (or a fail-safe application if one is present)

– moves any sections to RAM that require moving

– zeros any sections in RAM that require zeroing

– transfers control to the ST40 fail-safe or main application

If a fail-safe application is present, it is responsible for loading the main ST40 boot
application. A simple example fail-safe application is included in the failsafe example.

10.2.1 romgen creation of bootstrap code

A tool called romgen can be used to assist in the creation of the bootstrap code for
configuring an SoC. The romgen tool converts an ST TargetPack into a set of ROM
initialization operations that can be included in the assembly language bootstrap code. The
mechanism for doing this is described in the readme.txt file supplied with the
rombootram example.

The romgen tool is part of the ST Micro Connection Package and is described in detail in
the ST TargetPack User manual (8020851), provided with the ST Micro Connection
Package.

Booting OS21 from Flash ROM UM1399

138/311 7379953 Rev 23

10.3 NAND Flash ROM layout
The more recent ST NAND controllers allow a standard Flash ROM layout to be used (see
Section 10.2 on page 136). A special NAND Flash ROM layout is provided for SoCs that
have an older ST NAND controller that does not support multiple block remapping in boot
mode. In this case, only block 0 of the NAND Flash can be relied upon to be reliable without
further software checking. This means that the first boot stage must be from a Flash ROM
boot image that fits within a single NAND Flash block (this is typically 16KB for small page
NAND Flash, or 128KB for large page NAND Flash).

The layout is closely related to the standard Flash ROM layout in some respects, but has
been modified and extended to cope with the special requirements of NAND Flash ROM.
The layout is designed to take advantage of the NAND Flash ROM file-system support
available in OSPlus.(a) (For information about OSPlus, see Section 2.2: OSPlus on
page 33.)

For SoCs that have an ST NAND controller that supports multiple block remapping in boot
mode, STMicroelectronics recommends using the standard Flash ROM layout, as
demonstrated in the nandboot example.

The layout used by the tools in the nandbootblock0 example supports:

• a boot vector for a single core (space is reserved for up to four, but this is not required
for any current NAND Flash ROM enabled SoC)

• a two-stage bootstrap (implemented in assembler and C)

• a payload application

• an OSPlus file-system containing multiple application images for an arbitrary number of
cores

More details on the NAND Flash ROM layout can be found in the readme.txt file of the
nandbootblock0 example.

Applications can be placed in NAND Flash ROM by the nandflasher NAND Flash ROM
programming tool included in the nandbootblock0 example. When using the NAND Flash
layout, the nandflasher tool does not write to fixed locations in NAND Flash ROM, but
rather selects blocks in the NAND Flash ROM that are known to work. The bootstrap code
contains an algorithm to find the data at run time. Because of the dynamic nature of this
Flash ROM layout, there is no way to create a complete binary Flash ROM image. Use the
mknandboot.pl tool for creating a binary image of the contents of block 0 of the NAND
Flash ROM.

Note: Note: Unlike the NOR Flash ROM boot examples, no self-flashing executable tool is
available.

The NAND Flash ROM layout uses component image files of the same format used by the
NOR Flash ROM examples. These are generated using the mkimage.pl tool. See
Section 10.2 on page 136.

a. Booting from NAND Flash ROM does not introduce a dependency on OSPlus for the main application.

7379953 Rev 23 139/311

UM1399 Relocatable loader library

162

11 Relocatable loader library

The relocatable loader library (rl_lib) provides support for the creation and loading of
dynamic shared objects (DSOs) in an embedded environment. rl_lib implements DSOs
(also known as load modules or relocatable libraries) as defined in the standard for
supporting ELF System V Dynamic Linking.

The Unix System V generic ABI may be found at www.sco.com/developers/devspecs.

This relocatable loader library only supports OS21 applications. There is no relocatable
loader support for bare machine applications.

11.1 Run-time model overview
The ELF System V ABI supports several run-time models, of which only some are suitable
for embedded systems without the support of traditional operating system services. The
run-time model for an application dictates the method used for linking and loading. Table 34
lists the different run-time models and Table 35 summarizes the features supported by each
model.

rl_lib only implements the R_Relocatable run-time model.

Table 34. Run-time models

Run-time model Description

R_Absolute
Absolute run-time model. The application is a single module that is statically
linked at a fixed load address.

R_Relocatable

Relocatable run-time model. The application has a main module and several
load modules. The main module is statically linked and loaded as for an
R_Absolute application. The load modules are loaded on demand (by explicit
calls to the loader) at run-time. The load modules are loaded at an arbitrary
address and dynamic symbol binding is applied by the loader for symbols
undefined in the load modules. The dynamic symbol binding traverses the
modules bottom up in the hierarchy of loaded modules. See Section 11.2 for
details.

R_PIC

System V run-time model. The application has a main module and several
load modules. The main module is typically statically linked but may have
references to symbols in the load modules. The main module is loaded with
support from the dynamic loader that also loads load modules and binds
symbols before the application starts. At run-time, the application may also
load other modules on demand. The dynamic symbol binding walks the load
modules in an order which is defined by the static link order and the run-time
loading order. In addition to dynamic loading and linking, the load module’s
segments can be shared between several applications in a multi-process
environment. This model usually relies on file system support and virtual
memory management.

Relocatable loader library UM1399

140/311 7379953 Rev 23

11.2 Relocatable run-time model
The R_Relocatable run-time model as implemented by rl_lib has the following features:

• one main module loaded at application startup by the system

• several load modules that can be loaded at run-time and unloaded after use

• several modules can be resident at the same time

• a loaded module, as for the main module, can load and unload other load modules

• load modules can be loaded anywhere

• access to symbols in loaded modules from the loader through a call to the loader library

• dynamic symbol binding is performed by the loader when loading a module and
symbols are searched in the load modules hierarchy bottom-up (to the main module)

• sharing of code and data objects between modules is achieved by linking to the objects
in a common ancestor

• the loader library is statically linked with the main module

• generally, system support archive library should be linked with the main module

Table 35. Run-time model features

R_Absolute R_Relocatable R_PIC

Application partitioning 1 single program
1 main module +
N load modules

1 main module +
N load modules

Static symbol binding Yes Yes Yes

Dynamic loading No
Startup time: No
Run-time: Yes

Startup time: Yes
Run-time: Yes

Dynamic symbol
binding

No
Main module: No
Load modules: Yes

Main module: Yes
Load modules: Yes

Explicit module
dependencies

N/A No Yes

Dynamic symbol lookup N/A
Bottom up (from loaded
to loader)

Unrestricted order

Symbol preemption N/A No Yes

Segment sharing
(across processes)

N/A No Yes

Performance impact N/A Minimal Yes

Code size impact N/A Minimal Yes

Application writer
impact

N/A Need explicit loading No change by default

Build system impact N/A
Compiler options.
Load modules build.

Compiler options.
Load modules build.

7379953 Rev 23 141/311

UM1399 Relocatable loader library

162

Figure 26 shows an example of application that has four load modules A, B, C and D.

Figure 26. Example of an application with four load modules

In Figure 26, curved arrows (from load modules to parent module) represent load time
symbol binding performed while the load module is loaded and straight arrows (from loader
module to loaded module) represent explicit symbol address resolution performed through
the loader library API.

The following describes a possible scenario.

1. At run-time the main module loads into memory the module A using the
rl_load_file() function.

2. The loader, in the process of loading A into memory, binds the symbol printf
(undefined in A) to the printf function defined in main.

3. The main module uses the rl_sym() function to retrieve a pointer to the function
symbol exec_A in A.

4. For A, the main program loads the module D and references to printf are resolved to
the printf in main. In addition, references to malloc in D are also resolved to the
malloc in main.

5. The main module retrieves a pointer to exec_D in D using the rl_sym() function.

6. The main module (at some point) invokes the function exec_A.

7. The exec_A function loads a further two modules B and C.

8. The undefined reference to printf in B is resolved to the printf in main (the loader
searches first in A, and then in main).

9. The undefined reference to malloc in C is resolved to the malloc in A (the loader
searches for and finds it in A). Note that the malloc function called from D (malloc of
main) is different from the malloc function called from B (or C, or A) which is the
malloc of A.

10. After retrieving symbol addresses using the rl_sym() function, module A can
indirectly call functions or reference data in B and C .

Note: At any time, the main module or the module A may unload one of the loaded modules.

main
printf
malloc

Module A

malloc

Module C

Module D

Module B

*exec_A

*exec_D

*exec_B

*exec_C

malloc

printf

malloc

printf

printf

Relocatable loader library UM1399

142/311 7379953 Rev 23

11.2.1 The relocatable code generation model

The relocatable code generation model is the same as the code generation model for the
System V model with the following differences.

• No symbol can be preempted. Dynamic symbol binding always searches the current
module first. This has the effect that a module containing a symbol definition can be
sure that it will use this definition. This allows inlining in load modules for example.

• Weak references are treated the same way as undefined references in load modules.
Therefore, when traversing the module tree bottom-up, the first definition found is
taken.

11.3 Relocatable loader library API
The relocatable loader library provides support for loading and unloading a module and for
accessing a symbol address in a module by name. The relocatable loader library is provided
as a library librl.a and its associated header file rl_lib.h.

The functions defined in this API are explained in the following sections.

rl_handle_t type

All the functions manipulating a load module use a pointer to the rl_handle_t type. This
is an abstract type for a load module handle.

A load module handle is allocated by the rl_handle_new() function and deallocated by
the rl_handle_delete() function.

The main module handle is statically allocated and initialized in the startup code of the main
module.

A module handle references one loaded module at a time. To load another module from the
same handle, the previous module must first be unloaded.

7379953 Rev 23 143/311

UM1399 Relocatable loader library

162

rl_handle_new Allocate and initialize a new handle

Definition: rl_handle_t *rl_handle_new(
 const rl_handle_t *parent,
 int mode);

Arguments:

Returns: The newly initialized handle or NULL on failure.

Description: The rl_handle_new() function allocates and initializes a new handle that can be
used for loading and unloading a load module.

The handle of the parent module to which the loaded module is connected is
specified by the parent argument.

The mode argument is reserved for future extensions and must be 0.

Generally, a load module will be attached to the module using this function, therefore
a handle will typically be allocated as follows:

rl_handle_t *new_handle = rl_handle_new(rl_this(), 0);

rl_handle_delete Finalize and deallocate a module handle

Definition: int rl_handle_delete(
 rl_handle_t *handle);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_handle_delete() function finalizes and deallocates a module handle.

The handle must not hold a loaded module. The loaded module must have been first
unloaded by rl_unload() before calling this function. If successful, the value
returned is 0. Otherwise, the value returned is -1 and the error code returned by
rl_errno() is set accordingly.

rl_this Return the handle for the current module

Definition: rl_handle_t *rl_this(void);

Arguments: None.

Returns: The handle for the current module.

Description: The rl_this() function returns the handle for the current module. If called from the
main module, it returns the handle of the main module. If called from a loaded
module, it returns the handle that holds the loaded module.

This function is used when allocating a handle with rl_handle_new(). It can also
be used, for example, to retrieve a symbol in the current module:

void *symbolPtr = rl_sym(rl_this(), "_symbol");

parent The handle of the parent module.

mode Reserved for future extensions.

handle The handle to deallocate.

Relocatable loader library UM1399

144/311 7379953 Rev 23

rl_parent Return the handle for the parent of the current handle

Definition: rl_handle_t *rl_parent(void);

Arguments: None.

Returns: The handle for the parent of the current handle, or NULL if there is no parent module.

Description: The rl_parent() function returns the handle for the parent of the current handle
(as returned by rl_this()).

It may be used, for example, to find a symbol in one of the parent modules:

void *parentSymbolPtr = rl_sym_rec(rl_parent(), "_symbol");

rl_load_addr Return the memory load address of a loaded module

Definition: const char *rl_load_addr(
 rl_handle_t *handle);

Arguments:

Returns: The memory load address of the loaded module, or NULL.

Description: The rl_load_addr() function returns the memory load address of a loaded
module. It returns NULL if the handle does not hold a loaded module or if the handle
passed is the main module handle.

rl_load_size Return the memory load size of a loaded module

Definition: unsigned int rl_load_size(
 rl_handle_t *handle);

Arguments:

Returns: The memory load size of the loaded module, or 0.

Description: The rl_load_size() function returns the memory load size of a loaded module. It
returns 0 if the handle does not hold a loaded module or if the handle passed is the
main module handle.

rl_file_name Return the file name associated with the loaded module handle

Definition: const char *rl_file_name(
 rl_handle_t *handle);

Arguments:

Returns: The file name associated with the loaded module handle, or NULL.

Description: The rl_file_name() function returns the file name associated with the loaded
module handle. It returns NULL if no file name is associated with the current loaded
module, if the handle does not hold a loaded module or if the handle passed is the
main program handle.

handle The handle for the loaded module.

handle The handle for the loaded module.

handle The handle for the loaded module.

7379953 Rev 23 145/311

UM1399 Relocatable loader library

162

rl_set_file_name Specify a file name for the handle

Definition: int rl_set_file_name(
 rl_handle_t *handle,
 const char *f_name);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_set_file_name() function is used to specify a file name for the handle.
The file name is attached to the next module that will be loaded. It can be used to
specify a file name for modules loaded from memory or a byte stream, or to force a
different file name for a module loaded from a file.

This function returns 0 if the file name was successfully set, or -1 and the error code
returned by rl_errno() is set accordingly if the module is already loaded or if the
application runs out of memory.

rl_load_buffer Load a load module into memory

Definition: int rl_load_buffer(
 rl_handle_t *handle,
 const char *image);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_buffer() function loads a load module into memory from the image
referenced by image.

The function allocates the space for the loaded module from the heap, loads the
segments from the memory image of the loadable module, links the module to the
parent module of the handle and relocates and initializes the loaded module.

This function calls the action callback functions for the RL_ACTION_LOAD action after
loading and before executing any code in the loaded module.

0 is returned if the loading was successful, -1 is returned on failure and the error
code returned by rl_errno() is set accordingly.

handle The handle for the module.

f_name The file name to specify for the handle.

handle The handle for the module.

image The image of the load module.

Relocatable loader library UM1399

146/311 7379953 Rev 23

rl_load_file Load a load module into memory from a file

Definition: int rl_load_file(
 rl_handle_t *handle,
 const char *f_name);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_file() function loads a load module into memory from the file
specified by f_name.

This function opens the specified file with an fopen() call, allocates space for the
loaded module from the heap, loads the segments from the file, links the module to
the parent module of the handle, relocates and initializes the loaded module. The file
is closed with fclose() before returning. This function calls the action callback
functions for the RL_ACTION_LOAD action after loading and before executing any
code in the loaded module.

0 is returned if the loading was successful, -1 is returned on failure and the error
code returned by rl_errno() is set accordingly.

handle The handle for the module.

f_name The file from which to load the load module.

7379953 Rev 23 147/311

UM1399 Relocatable loader library

162

rl_load_stream Load a load module into memory from a byte stream

Definition: typedef int rl_stream_func_t(
 void *cookie,
 char *buffer,
 int length);

int rl_load_stream(
 rl_handle_t *handle,
 rl_stream_func_t *stream_func,
 void *stream_cookie);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_stream() function loads a load module into memory from a byte
stream provided by a user specified callback function stream_func and the user
specified state stream_cookie.

The callback function must be of type rl_stream_func_t. It is called multiple times
by the loader to retrieve the load module data into the buffer buffer of length
length until the module is loaded into memory. The loader always calls the callback
function with a buffer length strictly greater than 0. The stream_cookie argument
passed to rl_load_stream() is passed to the callback function in its cookie
parameter. The cookie parameter is intended to be used by the callback function to
access private state.

The callback function must return the number of bytes transferred. If the returned
value is less than the specified buffer length or is -1, rl_load_stream() will in turn
return an error and the error code returned by rl_errno() is set accordingly.

The rl_load_stream() function allocates the space for the loaded module from
the heap, loads the segments by calling the callback function, links the module to the
parent module of the handle, relocates and initializes the loaded module. This
function calls the action callback functions for the RL_ACTION_LOAD action after
loading and before executing any code in the loaded module.

0 is returned if the loading was successful, -1 is returned on failure and the error
code returned by rl_errno() is set accordingly.

This function can be used as an alternative to rl_load_buffer() or
rl_load_file() to allow any loading method to be implemented.

The following example illustrates how the rl_load_file() function may be
implemented using the rl_load_stream() function:

/* User implementation of the callback function that reads from
a file. */
static int rl_stream_read(FILE *file, char *buffer, int length)
{
 int nbytes;
 nbytes = fread(buffer, 1, length, file);

handle The handle for the module.

stream_func The user specified callback function.

stream_cookie The user specified state.

Relocatable loader library UM1399

148/311 7379953 Rev 23

 return nbytes;
}
...
{
 /* Loads the module from a file.*/
 FILE *file;
 int status;
 file = fopen(f_name, "rb");
 if (file == NULL) { /* ... error ...*/ }
 status = rl_load_stream(handle,
 (rl_stream_func_t *)rl_stream_read, file);
 if (status == -1) { /* ... error ...*/ }
 fclose(file);

}
...

rl_unload Unload a previously loaded load module

Definition: int rl_unload(
 rl_handle_t *handle);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_unload() function unloads a previously loaded load module. It finalizes,
unlinks, and frees allocated memory for the loaded module. This function calls the
action callback functions for the RL_ACTION_UNLOAD action before unloading and
after having executed finalization code in the module.

The return value is 0 if the unloading is successful, otherwise the return value is -1
and the error code returned by rl_errno() is set accordingly.

handle The handle for the module.

7379953 Rev 23 149/311

UM1399 Relocatable loader library

162

rl_sym Return a pointer reference to a symbol in the loaded module

Definition: void *rl_sym(
 rl_handle_t *handle,
 const char *name);

Arguments:

Returns: The pointer reference to the symbol.

Description: The rl_sym() function returns a pointer reference to the symbol name in the loaded
module specified by handle. It searches the dynamic symbol table of the loaded
module and returns a pointer to the symbol. The handle parameter can be the
handle of any currently loaded module, or the handle of the main module.

If the symbol is not defined in the loaded module, NULL is returned. It is not generally
an error for this function to fail. For example, the user may conditionally call a specific
function only if it is defined in the module.

In this function, as well as for the rl_sym_rec() function, the name parameter must
be the mangled symbol name. For ST40 modules, C names are always mangled by
prefixing the name with an underscore (_). For example, to return a reference to the
printf() function, the symbol name passed to rl_sym() will be “_printf”. Use
the sh4nm tool to obtain the mangled names of C and C++ symbols. Use sh4c++filt
to obtain the demangled names.

rl_sym_rec Return a pointer reference to a symbol in
the loaded module or one of its ancestors

Definition: void *rl_sym_rec(
 rl_handle_t *handle,
 const char *name);

Arguments:

Returns: The pointer reference to the symbol.

Description: The rl_sym_rec() function returns a pointer reference to the symbol named name
found in the loaded module specified by handle or one of its ancestors.

This function searches the dynamic symbol table of the loaded module and returns a
pointer to the symbol if found. If the symbol is not found, the function iteratively
searches in the dynamic symbol table of the parent modules until the symbol is found.
The handle parameter can be the handle of any currently loaded module, or the
handle of the main module.

If the symbol is not defined in the loaded module or one of its ancestors, NULL is
returned.

The name parameter must be the mangled symbol name as for the rl_sym()
function (see rl_sym on page 149).

handle The handle for the loaded module.

name The symbol in the loaded module.

handle The handle for the loaded module.

name The symbol in the loaded module.

Relocatable loader library UM1399

150/311 7379953 Rev 23

rl_foreach_segment Iterate over all the segments of loaded module
and call the supplied function

Definition: typedef rl_segment_info_t_ rl_segment_info_t;

typedef int rl_segment_func_t (
 rl_handle_t *handle,
 rl_segment_info_t *seg_info,
 void *cookie);

int rl_foreach_segment(
 rl_handle_t *handle,
 rl_segment_func_t *callback_fn,
 void *callback_cookie);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_foreach_segment() function iterates over all the segments of the loaded
module specified by handle and calls back the user supplied function. For each
segment the function callback_fn is called with the following parameters:

The segment information returned in seg_info is a pointer to the following structure:

typedef unsigned int rl_segment_flag_t;

#define RL_SEG_EXEC 1
#define RL_SEG_WRITE 2
#define RL_SEG_READ 4

struct rl_segment_info_t_ {
 const char *seg_addr;
 unsigned int seg_size;
 rl_segment_flag_t seg_flags;

};

The user callback function must return 0 on success or -1 on error.

In the case where the callback function returns an error, the
rl_foreach_segment() function returns -1 and the error code returned by
rl_errno() is set to RL_ERR_SEGMENTF.

handle The handle for the module.

callback_fn The user specified callback function.

callback_cookie The user specified state.

handle The handle passed to rl_foreach_segment().

seg_info The current segment information.

cookie The callback_cookie argument passed to
rl_foreach_segment().

7379953 Rev 23 151/311

UM1399 Relocatable loader library

162

rl_add_action_callback Add a user action callback function to the
user action callback list

Definition: typedef unsigned int rl_action_t;

#define RL_ACTION_LOAD 1
#define RL_ACTION_UNLOAD 2
#define RL_ACTION_ALL ((rl_action_t) - 1)

typedef int rl_action_func_t (
 rl_handle_t *handle,
 rl_action_t action,
 void *cookie);

int rl_add_action_callback(
 rl_action_t action_mask,
 rl_action_func_t *callback_fn,
 void *callback_cookie);

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_add_action_callback() function adds a user action callback function to
the user action callback list. It can be called any number of times with different
callback functions. The same callback function cannot be added more than once.

For each defined action, each callback function is called in the order it was added to
the callback list. The callback functions are not attached to a particular module and
are called for any loaded/unloaded modules.

This function returns 0 on success and -1 on failure. No error code is set. This
function can fail if a callback function is already in the callback list or if the program
runs out of memory.

The type rl_action_t defines the action flags for module loading/unloading and is
passed to the action function callback. The action flags can be OR-ed to create an
action mask which can be passed to the function rl_add_action_callback().
The actions defined are:

action_mask The set of actions for which the callback function
must be called.

callback_fn The user specified callback function.

callback_cookie The user specified state.

RL_ACTION_LOAD The callback is called just after the module has been
loaded in memory and the cache has been
synchronized. No module code has been executed.

RL_ACTION_UNLOAD The callback is called just before the module is
unloaded from memory. No module code will be
executed after this point.

RL_ACTION_ALL The callback will be called for any of the above
actions.

Relocatable loader library UM1399

152/311 7379953 Rev 23

The type for the user action callback function is rl_action_func_t. The
parameters passed to the callback function when it is called are:

The callback function returns 0 on success and -1 on failure. In the case of failure,
the loading (or unloading) of the module is undone and the error code returned by
rl_errno() is set to RL_ERR_ACTIONF.

rl_delete_action_callback Remove a user function from
the action callback list

Definition: int rl_delete_action_callback(
 rl_action_func_t *callback_fn);

Arguments:

Returns: Returns 0 for success, -1 if the callback was not present in the callback list.

Description: The rl_delete_action_callback() function removes the specified callback
function from the action callback list. It returns 0 if the callback was removed, or -1 if
it was not present in the callback list. No error code is set.

rl_revision Return the version string of the library

Definition: extern const char * rl_revision(void);

Arguments: None.

Returns: A string containing the version of the library.

Description: Use this function to return the version of the library in use.

handle The handle that performed the action.

action The action performed.

cookie The callback_cookie parameter passed to
rl_add_action_callback().

callback_fn The user specified callback function.

7379953 Rev 23 153/311

UM1399 Relocatable loader library

162

rl_errno Return the error code for the last failed function

Definition: int rl_errno(
 rl_handle_t *handle);

Arguments:

Returns: The error code for the last failed function.

Description: The rl_errno() function returns the error code for the last failed function. Table 36
lists the possible codes.

handle The handle for the module.

Table 36. Errors returned by rl_errno()

Error code Diagnostic
Possible error causing

functions

RL_ERR_NONE No error.

RL_ERR_MEM Ran out of memory.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_ELF The load module is not a valid ELF file.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_DYN The load module is not a dynamic library.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_SEG
The load module has invalid segment
information.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_REL
The load module contains invalid
relocations.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_RELSYM

A symbol was not found a load time.
rl_errarg() returns the symbol
name.

rl_load_buffer(),
rl_load_file(),
rl_load_stream(),
rl_set_file_name()

RL_ERR_SYM

The symbol is not defined in the module.
rl_errarg() returns the symbol
name.

rl_sym(),
rl_sym_rec()

RL_ERR_FOPEN
The file cannot be opened by
rl_fopen().

rl_load_file()

RL_ERR_FREAD
Error while reading the file in
rl_fread().

rl_load_file()

RL_ERR_STREAM
Error while loading the file from a
stream.

rl_load_stream()

Relocatable loader library UM1399

154/311 7379953 Rev 23

rl_errarg Return the name of the symbol that could not be resolved

Definition: const char *rl_errarg(
 rl_handle_t *handle);

Arguments:

Returns: The name of the symbol that could not be resolved.

Description: If rl_errno() returns RL_ERR_RELSYM or RL_ERR_SYM, the rl_errarg()
function returns the name of the symbol that could not be resolved.

rl_errstr Return a string for an error code

Definition: const char *rl_errstr(
 rl_handle_t *handle);

Arguments:

Returns: A string for the error code.

Description: The rl_errstr() function returns a string for the error code reported by
rl_errno(). For example:

...
void *sym = rl_sym(handle, "symbol");
if (sym == NULL) fprintf(stderr, "failed: %s\n", rl_errstr(handle));
...

If symbol is not defined in the module referenced by handle then the following
message is displayed:

failed: symbol not found: symbol

RL_ERR_LINKED Module handle is already linked.

rl_load_file(),
rl_load_buffer(),
rl_load_stream(),
rl_handle_delete()

RL_ERR_NLINKED Module handle is not yet linked.
rl_unload(), rl_sym(),
rl_sym_rec(),
rl_foreach_segment()

RL_ERR_SEGMENTF Error in segment function callback. rl_foreach_segment()

RL_ERR_ACTIONF Error in action function callback.
rl_load_file(),
rl_load_buffer(),
rl_load_stream()

Table 36. Errors returned by rl_errno() (continued)

Error code Diagnostic
Possible error causing

functions

handle The handle for the module.

handle The handle for the module.

7379953 Rev 23 155/311

UM1399 Relocatable loader library

162

11.4 Customization
The relocatable loader library defines a number of functions that it uses internally for
providing services such as heap memory management and file access. To provide custom
implementations of these functions, the application in the main module may override these
functions.

11.4.1 Memory allocation

Table 37 lists the functions used by the relocatable loader library to provide support for heap
memory management.

Note: If providing a custom implementation, override all four functions and link the new functions
with the main module.

11.4.2 File management

Table 38 lists the functions used by the rl_load_file() function to open, read and close
a file handle.

Note: If providing a custom implementation, override all three functions and link them with the
main module.

Table 37. Memory allocation functions

API Default implementation

void *rl_malloc(int size) malloc(size)

void rl_free(void *ptr) free(ptr)

void *rl_memalign(int align, int size) memalign(align, size)

void rl_memfree(void *ptr, int size) free(ptr)

Table 38. File handle functions

API Default implementation

void *rl_fopen(const char *f_name, const char
*mode)

fopen(f_name, mode)

int rl_fread(char *buffer, int eltsize, int
nelts, void *file)

fread(buffer, eltsize,
nelts, file)

int rl_fclose(void *file) fclose(file)

Relocatable loader library UM1399

156/311 7379953 Rev 23

11.5 Writing and building a relocatable library and main module

11.5.1 Example source code

The following sections use the simple relocatable library, rl_hello.c:

#include <stdio.h>

void library_function(void)
{
 printf("Hello World!\n");

}

The following main module, main.c, is used to load the library.

#include <stdio.h>
#include <stdlib.h>
#include <os21.h>
#include <rl_lib.h>

int main(void)
{
 rl_handle_t *lib;
 void (*lib_function)();

 kernel_initialize(NULL);
 kernel_start();

 printf("In main program\n");

 lib = rl_handle_new(rl_this(), 0);
 rl_load_file(lib, "rl_hello.rl");
 lib_function = rl_sym(lib, "_library_function");
 if (!lib_function) {
 printf("Error %d: %s (%s)\n", rl_errno(lib), rl_errstr(lib),
 rl_errarg(lib));
 exit(1);
 }
 lib_function();
 return 0;

}

Note: The library requires the printf symbol to be present in the main module. The printf
symbol is naturally present because the main module also requires the printf symbol. If
this is not the case, then take the necessary steps to ensure that it is linked in, otherwise the
relocatable library will fail to load.

7379953 Rev 23 157/311

UM1399 Relocatable loader library

162

11.5.2 Building a simple relocatable library

To build a relocatable library that can be loaded by the rl_lib loader, additional compiler and
linker options must be used.

To build a loadable module, the -fpic option is required when compiling and the -rlib
option is required when linking.

The following is a simple example of building the hello world loadable module:

sh4gcc -o rl_hello.o -fpic -c rl_hello.c
sh4gcc -o rl_hello.rl -mruntime=os21 -rlib rl_hello.o

Alternatively, the relocatable library can be built using a single command:

sh4gcc -o rl_hello.rl -fpic -mruntime=os21 -rlib rl_hello.c

11.5.3 Building a simple main module

To build a main module suitable for loading a relocatable library, only the -rmain option is
required when linking. No special compile time options are required for the main module.

The following is an example of building a main module capable of loading modules for the
STb7100-MBoard:

sh4gcc -o main.out -mboard=mb411 -mruntime=os21 -rmain main.c

Note: This example assumes that the main module provides all the standard library symbols
required by the relocatable library.

11.5.4 Running and debugging the main module

A main module can be loaded into GDB as normal, for example:

sh4gdb main.out

The debugger does not become aware of symbols in the relocatable libraries until the
module has loaded them.

For example, given the previous example in Section 11.5.1 (compiled with the -g option),
the following command attempts to set a breakpoint on an, as yet, unknown symbol:

(gdb) break library_function
Function "library_function" not defined.
Make breakpoint pending on future shared library load? (y or [n])

Answering y sets the breakpoint on a symbol of that name, if and when one is loaded.

See Section 11.6 on page 160 for details on how to debug issues with relocatable library
loading and linking.

Relocatable loader library UM1399

158/311 7379953 Rev 23

11.5.5 Importing and exporting symbols

For the relocatable loader system to function, the main module (or a loaded module) must
provide services to the other load modules. In order to avoid a load error when loading a
module, the normal strategy is to link the referenced symbols into the main module (or
loaded module). One method of ensuring that the services required by a load module are
provided by the main module (or loaded module) is by linking with an import script.

The sh4rltool tool can be used to generate a list of symbols in the form of an import or
export script from specified input files. The input files are either load modules (relocatable
libraries) or text files specifying a list of symbols, formatted with one symbol on each line.

• An import script is generated from a list of symbols specified in one or more text files or
from one or more load module files. In the latter case, sh4rltool generates an import
script from the set of symbols that the load modules require.

The import script defines the set of symbols that must be linked into a module, so that
they are available to any load module that requires them.

• An export script can also be generated to reduce the size of the dynamic symbol table
in the main module or load modules. An export script is not mandatory, as all global
symbols are exported by default.

The export script defines the set of symbols (and only these symbols) that must be
exported to the other modules through the dynamic symbol table. These symbols are
accessible by the load time symbol binding process and by calls to rl_sym() and
rl_sym_rec().

Note: Specify the -h option to sh4rltool to display help on its command line options.

Import scripts

There are two common scenarios where an import script may be generated.

• When the required services are well defined and the list of symbols can be passed to
sh4rltool in text files.

• When the list of services is not defined, but the load modules are available and can be
passed to sh4rltool. The sh4rltool tool can generate an import script from the set of
symbols required by the load modules.

The following example generates an import script prog_import.ld from a list of symbols
specified in the text file prog_import.lst:

sh4rltool -i -s -o prog_import.ld prog_import.lst

Note: The names contained in the symbol list (prog_import.lst in this example) must be the
external linkage forms of the symbols to be imported, without the leading underscore that
GCC automatically prefixes to identifiers. For C++ language identifiers, this means that the
symbol names are their mangled C language equivalent.

The following example generates an import script prog_import.ld from a list of load
modules, liba.rl and libb.rl, that may be loaded by the main module:

sh4rltool -i -o prog_import.ld liba.rl libb.rl

The main module can then be linked using the import script generated in either of the above
examples. For example:

sh4gcc -mboard=mb411 -mruntime=os21 -rmain
-o main.out prog_import.ld ...

7379953 Rev 23 159/311

UM1399 Relocatable loader library

162

Export scripts

There are two common scenarios where an export script may be generated.

• An export script can be generated at the same time as the import script. This is
because the symbols to export are generally the same as those being imported.

• For a load module that has a clearly defined external interface, the export script can be
generated from a text file specifying the list of symbols to export.

The following example generates a combined export and import script,
prog_import_export.ld, from a list of load modules, liba.rl and libb.rl. The
linker can use the script to link the main module so that only the symbols from liba.rl and
libb.rl are imported into the main module and then exported by it.

sh4rltool -i -e -o prog_import_export.ld liba.rl libb.rl
sh4gcc -mboard=mb411 -mruntime=os21 -rmain

-o main.out prog_import_export.ld ...

The following example generates an export script, liba_export.ld, for a load module,
liba.rl with a well-defined interface specified in the text file liba_export.lst. The
linker can use the script to link the load module so that only the defined interface symbols
are exported by the load module.

sh4rltool -e -s -o liba_export.ld liba_export.lst
sh4gcc -o liba.rl -rlib liba_export.ld ...

11.5.6 Optimization options

When compiling a load module with the -fpic option, some overhead occurs in the
generated code to access functions and data objects. Compiler options and C language
extensions can be used to reduce this overhead.

Since relocatable libraries are not subject to symbol preemption, the
-fvisibility=protected option can be used when generating position independent
code (-fpic). The -fvisibility=protected option enables the inlining of global
functions and can be used as a default option for compiling relocatable libraries. For
example:

sh4gcc -o rl_hello.o -fpic -fvisibility=protected -c rl_hello.c

In addition to this option, fine grain visibility can be specified with the
__attribute__((visibility(...)) GNU C extension at the source code level.

For example, if the external interface of a load module is well defined in a header file, the
__attribute__((visibility("protected")) can be specified for each function of
the external interface. To specify that all other defined functions are internal to the load
module, specify the -fvisibility=hidden compiler option. This combination of options
optimize references from the same file to global objects that are not part of the interface.

For detailed information on the visibility specification refer to Using the GNU Compiler
Collection and to the ELF System V Dynamic Linking ABI.

Relocatable loader library UM1399

160/311 7379953 Rev 23

11.6 Debugging support
This section provides details of the support available for debugging the relocatable libraries.

11.6.1 GDB support

The debugging of dynamically loaded modules is implemented in the same way as for
System V dynamic shared objects. The main module debugging information is loaded at the
load time of the application. The load modules debugging information is loaded at the load
time of the load modules.

To update debugging information, the loader maintains a list of loaded modules together
with their file names (which contain the debugging information) and the load address of the
module. Each time a new module is loaded the loader calls a special function. GDB sets a
breakpoint on this function and traverses the list when this breakpoint occurs to find new
loaded modules and load the debugging information.

To find the file that contains the debug information, the loader must know the location of the
load module file. This is automatic in the case of rl_load_file() as the file name is
specified in the interface. For the rl_load_buffer() and rl_load_stream()
functions, the user must set the file name with a call to the rl_set_file_name()
function.

The following example enables automatic debugging of a load module loaded with
rl_load_buffer():

{
 int status;
 rl_handle_t *handle = rl_handle_new(rl_this(), 0);
 if (handle == NULL) { /* error */ }

#ifdef DEBUG_ENABLED
 rl_set_filename(handle, load-module);

#endif
 status = rl_load_buffer(handle, module_image);
 if (status == -1) { /* error */ }
 ...

}

where load-module is the name of the load module.

A problem may occur with Flash ROM applications that use relocatable libraries, in which
the breakpoint set by GDB to observe when relocatable libraries are loaded and unloaded
may be overwritten when the application is relocated. In order to overcome this problem,
GDB supports the commands enable sharedlibrary and disable sharedlibrary
to either enable or disable the insertion of this breakpoint. (The breakpoint is enabled by
default.) If the command disable sharedlibrary is issued, Flash ROM applications
with relocatable libraries can be run without problem.

7379953 Rev 23 161/311

UM1399 Relocatable loader library

162

11.6.2 Verbose mode

The rl_lib loader library can be configured to print details of its progress at run time. This is
done by setting the RL_VERBOSE environment variable.

For example, place the following statement in the main module before using the rl_lib
loader library functions:

putenv("RL_VERBOSE=1");

11.7 Action callbacks
Action callbacks may be used with a profiling support library, or a user defined package that
needs to be informed that a segment has just been loaded or is on the point of being
unloaded, by using the user action callback interface.

The following is an example that iterates over the segment list and declares the executable
segments to a profiling support library on the loading and unloading of a module.

static int segment_profile(rl_handle_t *handle,
rl_segment_info_t *info,
void *cookie)

{
 rl_action_t action = *((rl_action_t *)cookie);
 const char *file_name = rl_file_name(handle);
 if (file_name != NULL && (info->seg_flags & RL_SEG_EXEC) {
 if (action == RL_ACTION_LOAD) {
 /* Call profiling interface for adding a code region. */
 profiler_add_region(file_name, info->seg_addr,

info->seg_size);
 }
 if (action == RL_ACTION_UNLOAD) {
 /* Call profiling interface for removing a code region. */
 profiler_remove_region(file_name, info->seg_addr,
 info->seg_size);
 }
 }
 return 0;

}

Relocatable loader library UM1399

162/311 7379953 Rev 23

static int module_profile(rl_handle_t *handle,
rl_action_t action,
void *cookie)

{
 rl_foreach_segment(handle, segment_profile, (void *)&action);
 return 0;

}

int main(void)
{
 ...
 if (rl_add_action_callback(RL_ACTION_ALL,

module_profile, NULL) == -1) {
 fprintf(stderr, "rl_add_action_callback failed\n");
 exit(1);
 }
 ...
 status = rl_load_file(handle, file_name);
 ...
 return 0;

}

7379953 Rev 23 163/311

UM1399 OS21 Trace

213

12 OS21 Trace

The ST40 Micro Toolset supports tracing of the OS21 kernel activity and APIs and also user
defined APIs and activities. To trace the OS21 kernel activity and APIs, an application is
linked with instrumented versions of the supplied libraries; this instrumentation writes events
to a memory buffer allocated on the target.

To assist with tracing the user’s application and any user-supplied libraries, the ST40 Micro
Toolset provides the tools os21usertrace and os21usertracegen.

The tool os21usertrace accepts a user-supplied definition file, specifying the APIs and
events to be traced, and then generates all the output files required to build a version of the
application that is instrumented for tracing. The user events are written to the same memory
buffer as the OS21 events. See Section 12.1.1: os21usertrace host tool on page 164.

The tool os21usertracegen accepts an ELF object or executable file and a list of function
names and generates a definition file that can be used by os21usertrace. See
Section 12.1.3: os21usertracegen host tool on page 168.

The trace data is extracted by dumping the trace memory buffer to a file on the host. This file
is then decoded using the os21decodetrace tool. See Section 12.5: Analyzing the results
on page 174.

Support and visualization of OS21 Trace is provided in STWorkbench. For more
information, search for OS21 System Activity in the STWorkbench help system.

In addition, the user may control OS21 Trace using GDB commands (see Section 12.9:
GDB commands on page 183 and Section 12.10: User GDB control commands on
page 188) and by embedding function calls in the application to enable and disable tracing
for specific parts of the application (see Section 12.11: Trace library API on page 192 and
Section 12.13: User trace runtime APIs on page 206).

12.1 User trace records
User APIs and user defined events are organized into a three tier hierarchy: group, class,
and name. For any application, there can be one or more groups, each of which contain one
or more classes, and each class can contain one of more names. name is either the name
of an API that is to be traced, or a reference to a specific event to be traced. The group and
class levels are customizable, and should be chosen to reflect the way in which tracing may
be applied.

Tracing can be controlled at any of the three levels. For instance, all the APIs and events
belonging to a group can be traced as a single entity, or particular classes within a group
can be traced individually. The user can control tracing at runtime, either through
customized GDB commands (see Section 12.10: User GDB control commands on
page 188) or by using APIs linked with the application (see Section 12.13: User trace
runtime APIs on page 206).

OS21 Trace UM1399

164/311 7379953 Rev 23

12.1.1 os21usertrace host tool

The ST40 Micro Toolset provides the os21usertrace tool to help with instrumenting a user
application for tracing with OS21 Trace. os21usertrace accepts one or more definition files
created by the user, and from these it generates a set of output files. These output files
consist of:

• a single GDB command script that defines the control commands for STWorkbench
and GDB (see Section 12.10: User GDB control commands on page 188)

• a single C source and header file containing the implementation of the instrumented
user APIs, custom activity APIs and control APIs to be compiled and linked into the
application

• a single linker script file containing the linker options for wrapping the user APIs

• a single control file describing the user APIs and activities being traced, for use by the
os21decodetrace tool

The structure of the definition files is described in Section 12.1.2: User definition file on
page 165.

The command line for os21usertrace is:

os21usertrace {option} {definition-file}

The command line options are described in Table 39. There is a long form and short form
alternative for each option.

Table 39. os21usertrace command line options

Option Description

--help
Display help.

-h

--decode-script file Create the os21decodetrace control file (passed to the -
user option of os21decodetrace).-d file

--gdb-script file
Create the GDB command script file.

-g file

--link-script file
Create the linker script file.

-l file

--wrap-source file
Create the C source file.

-s file

--user-prefix name
User control name space prefix. Default is user.

-up name

--user-code-base code
User activity and API trace code base. Default is 0.

-ucb code

--user-code-script
FUNCTION@FUNCTION@FILE This option is reserved for STMicroelectronics use only.

-ucs FUNCTION@FUNCTION@FILE

7379953 Rev 23 165/311

UM1399 OS21 Trace

213

Note: The --wrap-source option creates both a C source file and its corresponding header file.
The header file has the same name as the source file but with the .c extension replaced
with .h.

The following example accepts a definition file called myapp.def, and generates an
os21decodetrace control file called myapp.in, a GDB command script called myapp.cmd,
a linker script called myapp-wrap.ld, and a C source file called myapp-wrap.c. Although
the file is not explicitly named on the command line, using the -s option also creates a
header file for myapp-wrap.c called myapp-wrap.h.

os21usertrace -d myapp.in -g myapp.cmd -l myapp-wrap.ld -s myapp-wrap.c myapp.def

12.1.2 User definition file

os21usertrace takes as its input one or more definition files. This file contains details of the
user APIs to be traced by OS21 Trace, and the specifications for the custom activity APIs to
be created for use by the user application.

The tool os21usertracegen can generate a suitable definition file from an ELF object or
executable file and a list of function names. See Section 12.1.3: os21usertracegen host tool
on page 168 for more information.

The structure of a definition file, in modified Backus-Naur Form, is as follows:

format ::= spec-list

spec-list ::= spec
| spec-list spec

spec ::= USER-INCLUDE header-spec
| USER-API group-class-name type-spec-list
| USER-ACTIVITY group-class-name type-spec-list
| # comment

header-spec ::= filename
| <filename>
| "filename"

type-spec-list ::= type-spec
| type-spec-list type-spec

type-spec ::= { type @ format }
| { type }

group-class-name ::= identifier @ identifier @ identifier

where:

• filename is the name of a header file

• identifier is a C identifier

• type is a C type specification, which is either a C basic type (such as unsigned int)
or a typedef defined in an included header file

• format is the format specification for type, and is one of the format codes listed in
Table 40 on page 167

• comment is a comment

• all text in bold is literal and are not part of the modified BNF syntax

• the { and } symbols are literal and not part of the modified BNF syntax

OS21 Trace UM1399

166/311 7379953 Rev 23

In addition:

• a spec definition is terminated by the end of a line (and so cannot be split across
multiple lines)

• group-class-name describes the hierarchy of the API or activity, and always
consists of three components, group, class and name. The group and class
components are reflected in the GDB control commands (see Section 12.10: User
GDB control commands on page 188) and runtime control APIs (see Section 12.13:
User trace runtime APIs on page 206). The final component, name is either the name
of the user function being traced, or is a name used to derive the name of a custom
activity API (see Section 12.13.1: User activity control APIs on page 206).

A typical example of a group-class-name specification is libc@heap@_malloc_r,
which names the _malloc_r API from the class heap in the group libc.

• USER-INCLUDE specifies the name of the include file which defines a type referenced
by a type-spec.

The os21usertrace tool preserves the style of the header-spec used in a USER-
INCLUDE definition when generating the C source file except when the form filename
is used, which is transformed into the <filename> style of header-spec.

• USER-API specifies the API within the application to be traced, and consists of two
parts. The group-class-name provides the name of the API, and the type-spec-
list specifies the prototype for the API.

The order of elements in the type-spec-list is important. The return type for the
API is the first type-spec specified in the type-spec-list. The types of the
parameters of the API are specified by the second and subsequent elements in the
type-spec-list. For example:

USER-API libc@heap@_malloc_r {void*@p} {struct _reent*@p} {size_t*@d}

indicates that the _malloc_r() API returns an object pointer of type void, and
accepts two parameters, the first being a pointer to a _reent structure and the second
being a size_t.

If the return type is void, or if the API takes no parameters, use the form of type-
spec with no format, that is: {type}. For example:

USER-API libc@heap@_free_r {void} {struct_reent*@p} {void*@p}

• USER-ACTIVITY specifies the name of the custom activity API to be created by the
os21usertrace tool. The specification of type-spec-list is the same as for USER-
API, except that it only specifies the type of each parameter for the API as the return
type is always void.

• if type specifies an explicit function pointer type (that is, type is not a typedef), then
a %s placeholder for the parameter name must be inserted into the type definition. This
is to aid os21usertrace in the generation of the C source file. For example, if the
parameter type is int (*)(void), then the type specification must be int
(*%s)(void).

7379953 Rev 23 167/311

UM1399 OS21 Trace

213

Table 40 lists the available format codes used by type-spec:

The following restrictions apply.

• Strings are truncated to 255 characters.

• APIs with variable argument lists are not supported. If possible, convert the API into an
equivalent form that takes a va_list parameter, and define this in the definition file.
For example, replace int TRACE_Print(const char *format, ...) with the
following:

int TRACE_VPrint(const char *format, va_list args)
 {
 ...
 }

 int TRACE_Print(const char *format, ...)
 {
 int result;
 va_list args;

 va_start(args, format);
 result = TRACE_VPrint(format, args);
 va_end(args);

 return result;
 }

Table 40. Format codes

 Code Description

 b 8-bit word

 B pointer to 8-bit word(1)

1. If a NULL pointer is used with these format codes, the de-referenced value is assumed to be zero.

 w 16-bit word

 W pointer to 16-bit word(1)

 d 32-bit word

 D pointer to 32-bit word(1)

 q 64-bit word

 Q pointer to 64 bit word(1)

 s string(2)

2. If a NULL pointer is used with a string, an empty string is assumed.

 p object pointer

 P function pointer

 T OS21 task_t pointer

OS21 Trace UM1399

168/311 7379953 Rev 23

Next, define TRACE_VPrint in the definition file as follows:

USER-API STAPI@TRACE@TRACE_VPrint {int@d} {const char*@s} {va_list@p}

• Non-scalar argument and return types are not supported. If possible, convert the API
into an equivalent form taking a reference to the type and define this in the definition
file.

• Avoid defining USER-ACTIVITY APIs with parameters with a type that is a derived
type (that is, a typedef), unless it can be guaranteed that the derived type is declared
when the header file (created by the --wrap-source option) is included.

Note: The format codes are used by OS21 Trace to decide how to decode and store the return
value and arguments of the user and custom activity APIs.

12.1.3 os21usertracegen host tool

The ST40 Micro Toolset provides the os21usertracegen tool to generate a definition file for
input to the os21usertrace tool. See Section 12.1.2: User definition file on page 165 for
details of the definition file format.

os21usertracegen accepts as input an ELF object or executable file (but not a library
archive file) and uses the DWARF debug information(a) contained within to generate the
definitions required by os21usertrace.

The command line for os21usertracegen is:

os21usertracegen --input | -i file {option | function-name}

where file is an ELF format file and function-name is the name of a global function.
The default is to generate a definition file for all global functions defined by the DWARF
debug information in the ELF format file specified by the --input option. The set of global
functions contributing to the definitions file can be customized by using command line
options to only include functions satisfying a specified criteria.

The command line options are described in Table 41. There is a long form and short form
alternative for each option.

Note: The position of some options within the command line is significant. Also some options can
be specified multiple times.

a. GCC creates an ELF format file with DWARF debug information when the -g compilation option is specified.

Table 41. os21usertracegen command line options

Option Description

General options

--input file Name of the ELF format object or executable input file
containing the DWARF debug information.-i file

--warn Enable warnings. If specified then os21usertracegen issues
a warning for each function definition that specifies an
unsupported parameter or return type.-w

--help
Display help.

-h

7379953 Rev 23 169/311

UM1399 OS21 Trace

213

Output format options

--decl Output definitions using their declared types. The default is to
use compatible base types; this avoids the need to specify C
include files (see --include) declaring the types (required
when compiling the os21usertrace generated source).

-b

--tag Output definitions using C struct or enum tags as their base
types. The default is to use compatible types, void* instead
of struct* and int instead of enum; this avoids the need to
specify C include files (see --include) declaring the types
(required when compiling the os21usertrace generated
source).

-t

--deref Output definitions with format codes to de-reference pointer
types. The default is not to de-reference pointer types. For
example, with this option the type int* is output with the
format code of D instead of the default format code of p.
Only use this option with functions that are known to
reference valid (that is, initialized) pointers and where a de-
reference does not have side effects.

-n

--string Output definitions with the s format code to decode char*
types as a NUL (\0) terminated strings.
Only use this option with functions that are known to
reference valid (that is, NUL terminated) strings.

-s

Function match options

function-name

Specifies that only functions that match the name
function-name are to be included in the definitions file. If
no function-name is specified then the default is to match
all function names.

The interpretation of function-name is dictated by which of
the --regexp and --noregexp options are in force (see
below for details).

--regexp Specifies that the function names following this option contain
a regular expression. This is the default.

For example, specifying -x t1 will match functions with the
names t1, t10 and test1.

This option can be specified more than once.

-x

--noregexp Specifies that the function names following this option do not
contain a regular expression.
For example, specifying -X t1 will only match the function
with the name t1.
This option can be specified more than once.

-X

--file regexp Specifies that only functions with a source file name that
matches regexp are included in the definitions file. The
default is to match all source file names.-f regexp

--dir regexp Specifies that only functions with a compilation directory
name that matches regexp are included in the definitions
file. The default is to match all compilation directories.-d regexp

Table 41. os21usertracegen command line options (continued)

Option Description

OS21 Trace UM1399

170/311 7379953 Rev 23

os21usertracegen output file format

os21usertracegen generates an annotated version of the definition file format (see
Section 12.1.2: User definition file on page 165) where the annotations provide the following
additional information:

• the version of the os21usertracegen tool

• the name of the ELF format input file from which the definitions file is derived

• for each contributing compilation unit: the locations of the compiled source file
(##compile unit annotation) and the compilation directory (##comp_dir
annotation)

• for each matching function name in the compilation unit: the name of the function
(##function annotation), the function prototype (##decl annotation) and an
equivalent function prototype specified with compatible base types (##base_decl
annotation)

• if no function definition can be generated (because its specification is not supported by
OS21 Trace) then the reason is included in the ##function annotation

In addition:

• functions appear in the definitions file in the order that they are defined in the DWARF
debug information, not in the order they are specified on the command line

• a function definition can only be defined once in the definitions file

Output grouping options

--output file Output the generated definitions to file. The default is to
send the output to the console.
Note that this option resets the --group and --class
options to their default values and clears the set of C include
files specified by the --include option (see below for
details).
This option can be specified more than once.

-o file

--group name Specify name as the definition group name for the following
function names until the next --group or --output option
or to the end of the command line, whichever is the sooner.

The default is group_default. This option can be specified
more than once in order to define multiple group names.

-g name

--class name Specify name as the definition class name for the following
function names until the next --class or --output option
or to the end of the command line, whichever is the sooner.

The default is class_default. This option can be specified
more than once in order to define multiple class names.

-c name

--include file Specify the name of a C include file to add to the definitions
file. The set of C include files specified by this option is
cleared by the next --output option.

Note that file can also be specified as "file" or <file>.
This option can be specified more than once.

-I file

Table 41. os21usertracegen command line options (continued)

Option Description

7379953 Rev 23 171/311

UM1399 OS21 Trace

213

12.1.4 os21usertracegen example

This section shows an example using an ELF executable file to demonstrate the flexibility of
the os21usertracegen tool.

1. The first step is to link the application (compiled with DWARF debug information
enabled) to generate an ELF executable file called myapp.out:

sh4gcc application-link-options -g -o myapp.out

2. From the ELF executable file created in step 1., match function names that do not start
with DEBUG_write and have been compiled in a directory ending in debug, and
output their definitions to the file myapp-debug-other.def.

os21usertracegen -i myapp.out -o myapp-debug-other.def
-d 'myapp-directory.*debug$'
-g debug -c other '^(?!DEBUG_write)'

where myapp-directory is the directory containing the source code for myapp.

3. Match function names that start with DEBUG_write and have the same compilation
directory as in step 2., and output their definitions, de-referencing pointer and string
types, to the file myapp-debug-write.def:

os21usertracegen -i myapp.out -o myapp-debug-write.def
-d 'myapp-directory.*debug$' -n -s
-g debug -c write '^DEBUG_write'

4. Match function names that start with OS_, EVENT_ or TRACE_ that have not been
compiled in a directory ending in debug, and output their definitions, de-referencing
pointer and string types, to the file myapp-deref.def:

os21usertracegen -i myapp.out -o myapp-deref.def
-d 'myapp-directory.*(?<!debug)$' -n -s
-g myapp -c OS '^OS_' -c EVENT '^EVENT_' -c TRACE '^TRACE_'

5. Match function names that have the same compilation directory as in step 4. but
excluding those that start with OS_, EVENT_ or TRACE_, and output their definitions to
the file myapp-other.def:

os21usertracegen -i myapp.out -o myapp-other.def
-d 'myapp-directory.*(?<!debug)$'
-g myapp -c other '^(?!(OS_|EVENT_|TRACE_))'

6. Use os21usertrace to process the definition files (generated in steps 2. to 5.) to create
a C source file, called myapp-wrap.c, containing the instrumented functions (as well
as the other companion source files):

os21usertrace -d myapp.in -g myapp.cmd
-l myapp-wrap.ld -s myapp-wrap.c
myapp-debug-other.def
myapp-debug-write.def
myapp-other.def
myapp-deref.def

7. Next compile the source file generated in step 6.:

sh4gcc -mruntime=os21 -fno-zero-initialized-in-bss(b) -g -c
myapp-wrap.c

OS21 Trace UM1399

172/311 7379953 Rev 23

8. The final step is to re-link the application with trace enabled (see Section 12.3: Building
an application for OS21 Trace for details):

sh4gcc application-link-options -g -o myapp.out
myapp-wrap.o -trace -trace-api -trace-api-no-time
-Wl,@myapp-wrap.ld

Note: The use of single quotes (') in the above examples are not required (nor accepted) by the
os21usertracegen tool but are present to illustrate the use of quoting to protect the regular
expressions from being interpreted by a Unix shell. Under Windows, use double quotes (“)
instead of single quotes to protect the regular expressions.

Use of regular expressions

os21usertracegen uses the Perl Compatible Regular Expressions (PCRE) library, which is
more powerful and flexible than many other regular expression libraries. This is an open
source library (see www.pcre.org for details), with many reference and tutorial resources
available on the Internet.

12.2 Print a string to the OS21 Trace buffer
It is possible to invoke a USER-ACTIVITY function to record that the program has reached
a specified point in its execution. It is also possible to print a string to the OS21 Trace buffer
with the OS21_TRACE_PRINT API. See os21_trace_print on page 201 for more information.

12.3 Building an application for OS21 Trace
To enable tracing for an application, link it with the appropriate command line options, -
trace or -trace -trace-api.

Note: Enabling OS21 API tracing also requires OS21 activity tracing to be enabled. Therefore, to
enable OS21 API tracing, the -trace linker command line option must always precede
-trace-api.

Table 42 lists the sh4gcc linker options required to enable the OS21 Trace features.

b. See Building on page 180 for an explanation about the use of the -fno-zero-initialized-in-bss
option.

Table 42. sh4gcc linker options to enable OS21 Trace

sh4gcc options Description

-trace

Initialize OS21 Trace support.

Install OS21 callbacks to monitor kernel events. (See the
“Callbacks” chapter in the OS21 User Manual for more details.)

This option uses the default specs file, os21trace.specs.

-trace-specs=file Use file in place of os21trace.specs.

7379953 Rev 23 173/311

UM1399 OS21 Trace

213

12.4 Running the application
By default, an application built for OS21 Trace initially starts with trace logging disabled. To
enable tracing of the OS21 kernel and API from GDB, invoke the following commands:

source os21trace.cmd
enable_os21_activity_global
enable_os21_api_global

Note: The command script os21trace.cmd automatically creates two breakpoints. One is on the
function that is invoked when the trace buffer is full, and the other is on the function that is
invoked when the task information buffer is full.

To enable tracing for user defined APIs and activities, source the GDB command script that
was generated by the --gdb-script option of os21usertrace. In the following example,
that file is named myapp.cmd. The example also assumes the default prefix of user.

source myapp.cmd
enable_user_activity_global
enable_user_api_global

-trace-api

Use in conjunction with -trace to initialize OS21 API tracing for
all functions in the OS21 API.
When this option is used, all public OS21 functions are wrapped
using the GNU linker --wrap option. The wrapper functions
record the parameters and return values of the OS21 APIs into
the trace buffer.
This option uses the specs file os21wrap.specs (which is
referenced by the default specs file, os21trace.specs).

-trace-api-class

Use in conjunction with -trace to initialize OS21 API tracing for
all functions in the specified class of OS21 API(1) . For example:

-trace -trace-api-event

performs tracing only on the OS21 functions that belong to the
class event.

-trace-api-no-class

Use this option in conjunction with the -trace-api option to
exclude the specified class of API from tracing(1). For example:
-trace -trace-api -trace-api-no-cache

performs tracing on all OS21 functions except those that belong
to the class cache.

-trace-no-constructor
Use this option to disable the automatic initialization of the OS21
Trace buffers.

-trace-no-destructor
Use this option to disable the OS21 Trace destructors on
application exit.

1. Where class is one of the following: cache, callback, event, exception, interrupt, kernel,
memory, message, mutex, partition, power, profile, reset, semaphore, task, time or vmem.

Table 42. sh4gcc linker options to enable OS21 Trace (continued)

sh4gcc options Description

OS21 Trace UM1399

174/311 7379953 Rev 23

12.4.1 Trace buffer

The default for the trace buffer is to wrap. This means that when this buffer is full, tracing
wraps to the start of the buffer and overwrites the oldest existing events. In this case, the
trace buffer full breakpoint does not occur. When the buffer wraps, time stamping
continues from the previously recorded sample.

Note: The time recorded also includes time spent when profiling is disabled either as a result of an
I/O request or because the ST40 is under control of GDB.

With tracing enabled and while the target is running, timestamped events are written to the
trace buffer. To access this data, GDB must take control of the target. To do this, either set a
breakpoint and wait for the break to match, or stop the target, either with a Ctrl+C from
within GDB or the Stop button in STWorkbench or Insight.

When GDB has control of the target, extract the trace data by invoking the following GDB
command:

flush_all_trace_buffers

This command extracts data from the task information and trace buffers, writes them to files
on the host and then resets the buffers. The following binary files are created:

Section 12.8: Structure of trace binary files on page 181 provides a description of the format
for each of these files.

12.5 Analyzing the results
After the OS21 Trace and the task information buffers have been saved on the host, use the
decoder tool os21decodetrace to convert this data into various output formats for viewing
and analysis.

The command line for os21decodetrace is:

os21decodetrace {option} trace-file

The command line options for os21decodetrace are described in Table 43.

os21trace.bin This file contains the contents of the trace buffer.

os21trace.bin.ticks OS21 time information (time_ticks_per_sec value for the
trace timestamps and the absolute time of the last event saved
in the trace buffer).

os21tasktrace.bin This file contains the contents of the task information buffer

Table 43. os21decodetrace command line options

Option Description

-e exe-file
Optional name of target executable file. Required to obtain the
symbolic names of interrupt handlers.

-n task-trace-file
Optional name of the task information data file (for example
os21tasktrace.bin). This file provides the name and other useful
information for each task.

7379953 Rev 23 175/311

UM1399 OS21 Trace

213

-o output-file

Optional output file name. The default is to output to the console.
When generating trace data files for STWorkbench (using the -t
workbench option) the files must be given the extension .osa. This is
to enable them to be opened automatically in STWorkbench. If any
other extension is used, the files must be opened in STWorkbench
using the “Open with...” option.

-os21 file

Optional name of the control file describing the OS21 APIs and
traceable activities. Use this option to override the default definition of
OS21 APIs and traceable activities.
The format of the control file is described in Section 12.5.2 on page
177.

-m mode

Use -m to modify the format selected by the -t option, where mode is
one of the following values.

– details shows detailed information for each task and interrupt
context. This includes the number of trace records associated with
each task or interrupt context, and the time spent (in ticks) executing
in the task or interrupt context. Task priority and stack location
information is provided for each task context.

– metrics shows timing metrics for each recorded task and interrupt
context. The metrics include the number of times a task or interrupt
was scheduled or descheduled, and the minimum, maximum and
average times that the task or interrupt context was active or
inactive.

– zero includes in the report the tasks and interrupt handlers that
have zero time.

– max is equivalent to specifying -m details -m metrics -
m zero.

– min does not show individual task and interrupt handler information.
– simple uses an alternative time accounting regime that is based

upon the context information recorded with each trace record instead
of context changes reported by the OS21 activity monitors. This
option is most useful when API tracing has been enabled.

– ticks to output timing information in ticks.

– usecs to output timing information in real time at microsecond
resolution. This is the default.

Not all of the mode modes are applicable to all output formats. See
Section 12.5.1 on page 176 for more information on the usage of this
option.

-t type

Optional output format, where type is one of the following values.
– summary to display a summary. This is the default.
– workbench to generate output in a format suitable for

STWorkbench.
– text to display one record per line. The first field is the absolute

time. OS21 API trace records also contain the parameters and return
value of each function.

– csv is similar to text except that the token separator is a comma.
The -t option can be followed by an optional -m option to modify the
format of the output of os21decodetrace.

Table 43. os21decodetrace command line options (continued)

Option Description

OS21 Trace UM1399

176/311 7379953 Rev 23

12.5.1 Usage of the -m mode option

The various modes of the -m option are intended to be used with specific output formats.
Table 44 shows how the -m modes can be combined with the different output formats.

“Yes” indicates that the given mode generates meaningful output when used for the given
output format.

“No” indicates that the mode cannot be used for the given output format.

If no -t option precedes the -m mode option, os21decodetrace assumes -t summary.

-user file

Optional name of the control file describing the user APIs and
traceable activities.
The format of the control file is described in Section 12.5.2 on page
177.

trace-file

Trace data file (for example os21trace.bin).

Note that os21decodetrace assumes that the OS21 time information
can be found in the file trace-file.ticks (for example
os21trace.bin.ticks)

Table 43. os21decodetrace command line options (continued)

Option Description

Table 44. Permitted combinations of mode and output format

Mode
(-m option)

Output format (-t option)

summary workbench text csv

details Yes No No No

metrics Yes Yes No No

zero Yes No No No

max Yes No No No

min Yes No No No

simple Yes No No No

ticks Yes Yes Yes Yes

usecs Yes(1)

1. Displays real time in microseconds, milliseconds, seconds, minutes and hours.

Yes Yes Yes

7379953 Rev 23 177/311

UM1399 OS21 Trace

213

12.5.2 os21decodetrace control file

The os21decodetrace options -os21 and -user both require a control file that describes
the APIs and activities being traced. For user-defined APIs and activities, this file is
generated by the --decode-script option of the os21usertrace tool.

The structure of a control file, in modified Backus-Naur Form, is as follows:

file-format ::= spec-list

spec-list ::= spec
 | spec-list spec

spec ::= A = code group-class-name parameter-type-spec
 | P = code group-class-name return-type-spec

parameter-type-spec

return-type-spec ::= format
 | format type-list

parameter-type-spec ::= format
 | format type-list

type-list ::= type
 | type-list type

where:

• code is a number.

• group-class-name, format and type are strings.

• A record of type A specifies an activity and a record of type P specifies an API.

• group-class-name is the same as used in the USER-API and USER-ACTIVITY
specifications, but with all white space removed. See Section 12.1.2 on page 165.

• format is a concatenation of all the format codes specified for the parameters of an
API or activity. It is zero length for a void return type or an empty parameter list, in
which case a type-list is not present.

• type is the the same as used in the USER-API and USER-ACTIVITY specifications,
but with all superfluous white space removed. See Section 12.1.2 on page 165.

OS21 Trace UM1399

178/311 7379953 Rev 23

12.6 Examples

12.6.1 OS21 activity and OS21 API trace

A simple example can be built with both OS21 activity and OS21 API trace capabilities by
using the following command line:

sh4gcc -mboard=platform -mruntime=os21 -trace -trace-api ...

The following GDB session connects to a target (using the ST TargetPack sh4tp
command), loads the program and runs to a breakpoint on main. OS21 Trace is enabled, a
breakpoint is set on func and the target continued. When the target stops the trace data is
extracted and written to the host.

(gdb) file a.out
(gdb) sh4tp stmc:platform:st40
(gdb) load
(gdb) break main
(gdb) continue

... wait for break match on main

(gdb) source os21trace.cmd
(gdb) enable_os21_activity_global
(gdb) enable_os21_api_global
(gdb) break func
(gdb) continue

... wait for break match on func

(gdb) flush_all_trace_buffers

The following command decodes the generated trace data and displays a summary:

os21decodetrace -e a.out -n os21tasktrace.bin os21trace.bin

7379953 Rev 23 179/311

UM1399 OS21 Trace

213

12.6.2 User API and user activity trace

This section provides a simple example of using OS21 Trace to trace APIs and some
custom activity events within a user application.

os21usertrace

The first step is to create a definition file for os21usertrace. This specifies each of the user
API functions and user activity events to trace, using the format described in Section 12.1.2:
User definition file on page 165.

Figure 27. Example definition file, myapp.def

The example definition file in Figure 27, myapp.def, specifies:

• several of the C library heap allocation APIs (_sbrk_r, _malloc_r, _memalign_r,
_calloc_r, _realloc_r and _free_r)

• three custom activity event API definitions (esr_signal, isr_signal and
task_signal)

• three APIs from the user application (esr_api, isr_api and task_api)

Each are defined using an appropriate group-class-name triplet, and each API has its
return value and parameters defined. Several header files are also required, as these define
the types referenced by the APIs.

To generate the source files necessary for building the application, run os21usertrace with
the following command line.

os21usertrace -d myapp.in -g myapp.cmd -l myapp-wrap.ld -s myapp-wrap.c myapp.def

USER-INCLUDE stdlib.h
USER-INCLUDE malloc.h
USER-INCLUDE os21.h
USER-API libc@sys@_sbrk_r {void*@p} {struct _reent*@p} {ptrdiff_t@d}
USER-API libc@heap@_malloc_r {void*@p} {struct _reent*@p} {size_t@d}
USER-API libc@heap@_memalign_r {void*@p} {struct _reent*@p} {size_t@d} {size_t@d}
USER-API libc@heap@_calloc_r {void*@p} {struct _reent*@p} {size_t@d} {size_t@d}
USER-API libc@heap@_realloc_r {void*@p} {struct _reent*@p} {void*@p} {size_t@d}
USER-API libc@heap@_free_r {void} {struct _reent*@p} {void*@p}
USER-ACTIVITY test@esr@esr_signal {unsigned int@d}
USER-ACTIVITY test@isr@isr_signal {unsigned int@d}
USER-ACTIVITY test@task@task_signal {unsigned int@d}
USER-API test@esr@esr_api {const char*@s} {size_t@d}
USER-API test@isr@isr_api {const char*@s} {size_t@d}
USER-API test@task@task_api {const char*@s} [task_t*@T}

OS21 Trace UM1399

180/311 7379953 Rev 23

Building

Use sh4gcc to compile the generated C source file, myapp-wrap.c:

sh4gcc -mruntime=os21 -fno-zero-initialized-in-bss -g -c myapp-wrap.c

Warning: The generated C source file must be compiled using the -
fno-zero-initialized-in-bss option to ensure that the
data structures in target memory used by the generated GDB
command scripts are correctly initialized when the
application is loaded onto the target.

The next step performs the final link of the application with the generated linker script:

sh4gcc -mboard=platform -mruntime=os21 -trace ... myapp-wrap.o -Wl,@myapp-wrap.ld

Execution

Use GDB to load and run the application. The following GDB session uses the ST
TargetPack sh4tp command to connect to the platform.

(gdb) file a.out
(gdb) sh4tp stmc:platform:st40
(gdb) load
(gdb) break main
(gdb) continue

Source the command script myapp.cmd in order to use the GDB commands for controlling
tracing:

(gdb) source myapp.cmd
(gdb) enable_user_activity_global
(gdb) enable_user_api_global

When the trace data has been gathered, use flush_all_trace_buffers to flush the
data to file. Finally, use os21decodetrace to decode the trace file.

os21decodetrace -e a.out -user myapp.in -n os21tasktrace.bin os21trace.bin

Note: The -user myapp.in option is required so that os21decodetrace can interpret the data
for the user defined APIs and activities.

7379953 Rev 23 181/311

UM1399 OS21 Trace

213

12.7 Trace overhead
It should be understood that OS21 Trace is intrusive. The level of intrusiveness depends
upon the choice of linker and runtime options. Therefore, take this into consideration when
analyzing the trace results, as tracing affects the real time behavior of the application.

The following points are some of the costs to consider when using OS21 Trace.

• The default trace buffer requires 2 Mbytes of heap. Use the variable
os21_trace_constructor_size to change the size of the buffer.

• The default trace buffer constructor can be disabled using the
-trace-no-constructor option. The user can then initialize the trace buffer directly
using os21_trace_initialize().

• The default task information buffer requires 64 Kbytes of heap. Use the variable
os21_task_trace_constructor_size to change the size of the buffer.

• The default task information buffer constructor can be disabled using the -trace-no-
constructor option. The user can then initialize the task information buffer directly
using os21_task_trace_initialize().

Note: For more information on the variables and functions named above, see Section 12.11: Trace
library API on page 192.

• For a representative audio and video decode application that contains 4 Mbytes of
code, the approximate increases in code size are as follows:

– OS21 activity tracing adds 3 Kbytes (0.1% increase)

– OS21 API tracing adds 17 Kbytes (0.4% increase), including OS21 activity

• For the same representative application, the approximate times to fill the default sized
trace buffer (the ST40 is actually 50% idle during the run) are as follows:

– OS21 activity tracing takes 25 secs

– OS21 API tracing takes 1.2 secs, including OS21 activity

• For reference, on a 266 MHz ST40-200 series core, consider the following points.

– One trace event takes approximately 5 microseconds. This impacts an
application’s interrupt latency.

– It takes 300 milliseconds for GDB to extract the trace buffer and then continue the
application for full trace coverage.

• The profile of code and data cache utilization is perturbed.

12.8 Structure of trace binary files
As described in Section 12.4: Running the application on page 173, the command
flush_all_trace_buffers outputs the contents of the trace buffer to three binary files.
This section describes the internal structure of each of these files.

In the format column in Table 45, Table 46 and Table 47:

• INT8 is an 8-bit unsigned integer

• INT16 is a 16-bit unsigned integer, little endian format

• INT32 is a 32-bit unsigned integer, little endian format

• INT64 is a 64-bit unsigned integer, little endian format

OS21 Trace UM1399

182/311 7379953 Rev 23

12.8.1 os21trace.bin

This file contains the contents of the trace buffer. It is a sequence of records, where each
record has the structure given in Table 45.

12.8.2 os21trace.bin.ticks

This file contains OS21 time information. It consists of the fields described in Table 46.

Table 45. File format of os21trace.bin

Field Format Comment

time-stamp INT32 Delta from previous trace record

context-code INT8
See os21_context_e in
os21trace/tracecodes.h

context INT32 task_t object pointer or interrupt INTEVT code.

trace-type INT8
See os21_trace_type_e in
os21trace/tracecodes.h

trace-code INTn

n is defined by the code-size field in the
os21trace.bin.ticks format (see Table 46).
See os21_activity_e and os21_api_e in
os21trace/tracecodes.h

options INT32

The following bits are set to indicate which of the
optional fields are included in the record:
0 to 7: number of arguments

8: caller-address field
9: frame-address field

caller-address INT32 Optional

frame-address INT32 Optional

arguments INT32 Optional

Table 46. File format of os21trace.bin.ticks

Field Format Comment

version INT32 For the current version, this is 0x00000003

code-size INT32
Size of the trace-code field in the
os21trace.bin format (see Table 45). The
valid sizes are 1, 2 or 4 bytes.

tick-rate INT64 time_ticks_per_sec()

last-time INT64 time_now() for most recent trace record

7379953 Rev 23 183/311

UM1399 OS21 Trace

213

12.8.3 os21tasktrace.bin

This file contains the contents of the task information buffer. It is a sequence of records,
where each record has the structure given in Table 47.

12.9 GDB commands
This section lists the OS21 Trace GDB commands accessible when the file
os21trace.cmd is sourced within GDB. For more information on a given command, use
the GDB command help command.

12.9.1 Buffer full action

os21_trace_set_mode stop|wrap (Default mode is wrap)
os21_task_trace_set_mode stop|wrap (Default mode is stop)

If either mode is set to stop, then a breakpoint is enabled to signal when the buffer is
full. If set to wrap, this breakpoint is disabled.

If the buffer is not operating in wrap mode, the data is logged into the buffer only while
space is available. When the buffer is full, no more logging occurs until the buffer is
emptied and reset.

When the buffer full breakpoint is raised, a GDB script invokes the appropriate
function to flush the buffer and then continues. The function is one of the following:

– for os21_trace_set_mode, the script calls flush_os21_trace_buffer

– for os21_task_trace_set_mode, the script calls
flush_os21_task_trace_buffer

This means that the contents of the buffer are automatically extracted when full to
provide a complete log. However, the target is stopped for a comparatively long time
during each download.

12.9.2 Enable OS21 Trace

enable_os21_trace

Enable OS21 Trace logging for both OS21 and user trace events. OS21 Trace logging
is enabled by default.

disable_os21_trace

Disable OS21 Trace logging.

show_os21_trace

Display the status of OS21 Trace logging.

Table 47. File format of os21tasktrace.bin

Field Format Comment

handle INT32 Task task_t object pointer

priority INT32 Task priority when created

stack-base INT32 Location of task stack

stack-size INT32 Size of task stack

task-name INT8[16] Task name

OS21 Trace UM1399

184/311 7379953 Rev 23

12.9.3 Enable trace control commands

The following GDB commands control the saving of arguments and context information in
the trace records for both OS21 and user trace events.

enable_os21_trace_control control

Enable the saving of the information indicated by control, where control is one of
the following: save_activity, save_api_enter, save_api_exit,
save_activity_args, save_api_enter_args, save_api_exit_args,
save_caller_address or save_frame_address.

disable_os21_trace_control control

Disable the saving of information indicated by control.

show_os21_trace_control control

Shows whether control is enabled or disabled.

enable_os21_trace_control_all

Enable all controls as a single operation.

disable_os21_trace_control_all

Disable all controls as a single operation.

show_os21_trace_control_all

Display the controls that are enabled or disabled.

12.9.4 Enable OS21 activity

enable_os21_activity_global

Enable the logging of OS21 activity types. Disabled by default.

disable_os21_activity_global

Disable the logging of OS21 activity types.

show_os21_activity_global

Display the logging status of the OS21 activity types.

12.9.5 Enable OS21 API

enable_os21_api_global

Enable the logging of OS21 API types. Disabled by default.

disable_os21_api_global

Disable the logging of OS21 API types.

show_os21_api_global

Display the logging status of the OS21 API types.

12.9.6 Enable OS21 activity event

show_os21_activity_classes

Display the OS21 activity event classes. The supported classes are task, interrupt
and exception.

7379953 Rev 23 185/311

UM1399 OS21 Trace

213

enable_os21_activity_class_all

Enable the logging of all OS21 activity events in all classes.

disable_os21_activity_class_all

Disable the logging of all OS21 activity events in all classes.

show_os21_activity_class_all

Display the logging status of all OS21 activity events in all classes.

enable_os21_activity_class_class

Enable the logging of the OS21 activity events in the class class, where class is one
of the classes listed by show_os21_activity_classes.

disable_os21_activity_class_class

Disable the logging of the OS21 activity events in the class class.

show_os21_activity_class_class

Display the logging status of the OS21 activity events in the class class.

enable_os21_activity code

Enable the logging of the OS21 activity event specified by code. All events are enabled
by default. The command show_os21_activity_class_all lists all valid code
parameters (see Section 12.9.11: Type and event enables on page 187).

For an event to be logged, both the event code and the type (OS21 activity in this
case) must be enabled. Disabling the type prevents logging of all the events that
belong to that type, although it does not disable them.

disable_os21_activity code

Disable the logging of the OS21 activity event specified by code.

show_os21_activity code

Display the logging status of the OS21 activity event specified by code.

12.9.7 Enable OS21 API function

show_os21_api_classes

Display the OS21 API classes. The supported classes are cache, callback, event,
exception, interrupt, kernel, memory, message, mutex, partition, power,
profile, reset, semaphore, task, time or vmem.

enable_os21_api_class_all

Enable logging of all OS21 APIs in all classes.

disable_os21_api_class_all

Disable logging of all OS21 APIs in all classes.

show_os21_api_class_all

Display logging status of all OS21 APIs in all classes.

enable_os21_api_class_class

Enable logging of the OS21 API in the class class, where class is one of classes
reported by show_os21_api_classes.

disable_os21_api_class_class

Disable logging of the OS21 API in the class class.

OS21 Trace UM1399

186/311 7379953 Rev 23

show_os21_api_class_class

Display the logging status of the OS21 API in the class class.

enable_os21_api code

Enable the logging of the OS21 API specified by code. All APIs are enabled by default.
The command show_os21_api_class_all provides the list of valid code
parameters (see Section 12.9.11: Type and event enables on page 187).

For an event to be logged, both the API code and the type (OS21 API in this case)
must be enabled. Disabling the type prevents logging of all the events that belong to
that type, although it does not disable them.

disable_os21_api code

Disable the logging of the OS21 API specified by code.

show_os21_api code

Display the logging status of the OS21 API specified by code.

12.9.8 Enable task information logging

enable_os21_task_trace

Enable logging of task information. Take care to ensure that logging is enabled when
tasks are created, otherwise os21decodetrace and STWorkbench are not able to
associate task names with trace data. Enabled by default.

disable_os21_task_trace

Disable logging of task information.

show_os21_task_trace

Display the logging status of task information.

enable_os21_activity_task_trace

Enable logging of task information by OS21 activity events (task_create and
task_switch). Enabled by default.

disable_os21_activity_task_trace

Disable logging of task information by OS21 activity events.

show_os21_activity_task_trace

Display the status of logging task information by OS21 activity events.

12.9.9 Dump buffer to file

dump_os21_trace_buffer file [0|1]
dump_os21_task_trace_buffer file [0|1]

Dump the contents of the buffer to file.

The optional second parameter is the buffer reset argument. If 1 (the default) then the
buffer is cleared, otherwise it is not reset and the trace data remains intact.

Note: file is created the first time that data is written. Subsequent invocations append data to
the existing file. Take care to always use the same name for the task information buffer as
this holds details of all the tasks created by the application.

A file named file.ticks is also created when dumping the trace buffer.

7379953 Rev 23 187/311

UM1399 OS21 Trace

213

12.9.10 Flush buffers and reset

flush_os21_trace_buffer

is equivalent to invoking

dump_os21_trace_buffer os21trace.bin

flush_os21_task_trace_buffer

is equivalent to invoking

dump_os21_task_trace_buffer os21tasktrace.bin

flush_all_trace_buffers

is equivalent to invoking

flush_os21_trace_buffer
flush_os21_task_trace_buffer

These functions flush the contents of both the trace and task information buffers to
predefined file names and then reset the buffers. They write data to the files (if any data
is extracted) os21trace.bin, os21trace.bin.ticks and
os21tasktrace.bin.

12.9.11 Type and event enables

To support convenient enabling and disabling of related OS21 events with a single
operation, the events are divided into classes; and classes are divided into types. A trace
event is logged (written into the trace buffer) only if the event itself is enabled as well as its
type.

Two types are supported:

• OS21 activity

• OS21 API

For each of these, the following command displays the logging status of the type (see
Section 12.9.4: Enable OS21 activity on page 184 and Section 12.9.5: Enable OS21 API on
page 184):

show_type_global

The following command lists all the classes in a type:

show_type_classes

For example:

(gdb) show_os21_activity_classes
exception
general
interrupt
task

The following command displays the logging status of all the events that belong to a class:

show_type_class_class

OS21 Trace UM1399

188/311 7379953 Rev 23

For example, display the logging status of the OS21 APIs in the time class with the
command:

(gdb) show_os21_api_class_time
time_after = enabled
time_minus = enabled
time_now = enabled
time_plus = enabled
time_ticks_per_sec = enabled

The following command displays the logging status of a specific event:

show_type event

For example, display the status of the OS21 API semaphore_wait event with the
command:

(gdb) show_os21_api semaphore_wait
semaphore_wait = enabled

The following alternative command displays the logging status of all events for a type:

show_type_class_all

Each of the show commands has an enable/disable equivalent, except the
show_type_classes commands. For example:

(gdb) disable_os21_activity task_switch
(gdb) disable_os21_activity_class_interrupt
(gdb) show_os21_activity_class_all
excp_enter = enabled
excp_exit = enabled
excp_install = enabled
excp_uninstall = enabled
general_print = enabled
intr_enter = disabled
intr_exit = disabled
intr_install = disabled
intr_uninstall = disabled
task_create = enabled
task_delete = enabled
task_exit = enabled
task_switch = disabled

12.10 User GDB control commands
When used with the --gdb-script command line option, the tool os21usertrace creates
a GDB command script that defines a set of GDB commands for controlling the generation
of user trace records. These commands are used to show the status of tracing, or to enable
or disable tracing for a given group, class or event.

To make these commands available when debugging the application, source the generated
command script (see Section 12.4: Running the application on page 173).

Note: The element user in the names of the GDB commands listed in the following sections can
be changed with the option --user-prefix of the os21usertrace tool.

7379953 Rev 23 189/311

UM1399 OS21 Trace

213

12.10.1 User activity control commands

os21usertrace creates the following commands for controlling the generation of trace
records for user activities. Use these commands for enabling or disabling tracing for any
group, class or named activity that was specified in the os21usertrace definition file.

Note: If no user activities are defined, then none of the following commands are defined.

show_user_activity_groups

Display all the user activity trace groups in the application as a simple list.

enable_user_activity_group_all
disable_user_activity_group_all

Enable or disable the logging of all the activities for all groups.

show_user_activity_group_all

Display the logging status of all the activities for all groups.

show_user_activity_group_group_classes

Display all the classes of the user trace group group, where group is one of the
groups listed by show_user_activity_groups.

enable_user_activity_group_group_class_all
disable_user_activity_group_group_class_all

Enable or disable the logging of all the activities for all classes of the user trace group
group.

show_user_activity_group_group_class_all

Display the logging status of all the activities for all classes of the user trace group
group.

enable_user_activity_group_group_class_class
disable_user_activity_group_group_class_class

Enable or disable the logging of all the activities within the class class of the user
trace group group, where class is one of the classes listed by
show_user_activity_group_group_classes.

show_user_activity_group_group_class_class

Display the logging status of all the activities within the class class of the user trace
group group.

enable_user_activity code(c)

disable_user_activity code(c)

Enable or disable the logging of the user activity code. All activities are enabled by
default. The command show_user_activity_group_all lists all the valid code
parameters (see Section 12.9.11: Type and event enables on page 187).

For an event to be logged, both the activity code and the type (user activity in this
case) must be enabled. Disabling the type prevents logging of all the events that
belong to that type, although it does not disable them.

show_user_activity code(c)

Display the logging status of the user activity code.

c. These commands are not qualified by class or group since the activity must be unique.

OS21 Trace UM1399

190/311 7379953 Rev 23

enable_user_activity_global
disable_user_activity_global

Enable or disable the logging of user activity types. Disabled by default.

show_user_activity_global

Display the logging status of user activity types.

12.10.2 User API control commands

os21usertrace creates the following commands for controlling the generation of trace
records for user APIs. Use these commands for enabling or disabling tracing for any group,
class or named API that was specified in the os21usertrace definition file.

Note: If no user APIs are defined, then none of the following commands are defined.

show_user_api_groups

Display all the user API trace groups in the application as a simple list.

enable_user_api_group_all
disable_user_api_group_all

Enable or disable the logging of all the APIs for all groups.

show_user_api_group_all

Display the logging status of all the APIs for all groups.

show_user_api_group_group_classes

Display all the classes of the user trace group group, where group is one of the
groups listed by show_user_api_groups.

enable_user_api_group_group_class_all
disable_user_api_group_group_class_all

Enable or disable the logging of all the APIs for all classes of the user trace group
group.

show_user_api_group_group_class_all

Display the logging status of all the APIs for all classes of the user trace group group.

enable_user_api_group_group_class_class
disable_user_api_group_group_class_class

Enable or disable the logging of all the APIs within the class class of the user trace
group group, where class is one of the classes reported by
show_user_api_group_group_classes.

show_user_api_group_group_class_class

Display the status of all the APIs within the class class of the user trace group group.

enable_user_api code(d)

disable_user_api code(d)

Enable or disable the logging of the user API specified by code. All APIs are enabled
by default. The command show_user_api_group_all lists all the valid code
parameters (see Section 12.9.11: Type and event enables on page 187).

For an event to be logged, both the API code and the type (user API in this case) must
be enabled. Disabling the type prevents logging of all the events that belong to that
type, although it does not disable them.

7379953 Rev 23 191/311

UM1399 OS21 Trace

213

show_user_api code(d)

Display the logging status of the user API specified by code.

enable_user_api_global
disable_user_api_global

Enable or disable the logging of user API types. Disabled by default.

show_user_api_global

Display the logging status of user API types.

12.10.3 Miscellaneous commands

The following GDB command is also created by os21usertrace.

show_user_decode_trace

Show the location of the associated os21decodetrace control file (that is, the
argument passed to its -user option).

d. These commands are not qualified by class or group since the API must have global scope and therefore be
unique.

OS21 Trace UM1399

192/311 7379953 Rev 23

12.11 Trace library API
The OS21 Trace library is provided in libos21trace.a and its associated header file is
os21trace.h.

The functions defined by this API are described in the following sections.

os21_trace_initialize Create a trace buffer

Definition: typedef enum os21_trace_mode_e {
 os21_trace_mode_stop = 1,
 os21_trace_mode_wrap = 2

} os21_trace_mode_e;

void os21_trace_initialize(
 void * data,
 unsigned int size,
 os21_trace_mode_e mode);

Arguments:

Returns: Void

Description: This function allocates and initializes a trace buffer specified by the size parameter.
If data is NULL, the API returns the current buffer to the heap and allocates a new
buffer specified by size.

On startup of OS21 Trace, the default constructor invokes this function to create a
buffer of size 2 Mbytes (enough for 128k simple records) in
os21_trace_mode_wrap mode. This default size can be overridden by the user.
See Section 12.12: Variables and APIs that can be overridden on page 205.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

7379953 Rev 23 193/311

UM1399 OS21 Trace

213

os21_trace_initialize_data Replace an existing trace buffer

Definition: void os21_trace_initialize_data(
 void * data,
 unsigned int size);

Arguments:

Returns: Void

Description: Replace the existing trace buffer with the buffer specified by the data and size
parameters. If data is NULL, the API returns the current buffer to the heap and
allocates a new buffer of the specified size.

This function must not be used before os21_trace_initialize() has been
called.

Note: os21_trace_initialize_data() can be used to clear the trace buffer if data
refers to the existing trace buffer.

os21_trace_initialize_activity_monitors Initialize activity monitors

Definition: void os21_trace_initialize_activity_monitors(void);

Arguments: None

Returns: Void

Description: Use this function to initialize the activity monitors.

os21_trace_set_mode Set the action on trace buffer full

Definition: typedef enum os21_trace_mode_e {
 os21_trace_mode_stop = 1,
 os21_trace_mode_wrap = 2

} os21_trace_mode_e;

os21_trace_mode_e os21_trace_set_mode(os21_trace_mode_e mode);

Arguments:

Returns: The previous trace mode.

Description: Set the action to be performed when the task trace buffer is full. The options are stop
or wrap.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

OS21 Trace UM1399

194/311 7379953 Rev 23

os21_trace_overflow User-defined trace overflow function

Definition: void os21_trace_overflow(
 void * data,
 unsigned int size);

Arguments:

Returns: Void

Description: A function with this name is called when the trace buffer overflows (in stop mode) or
before wraparound occurs (in wrap mode). The data and size parameters are the
current trace data buffer and the size of the data saved in the buffer.

The default implementation of this function is a no-op that the user can override with
their own implementation.

os21_task_trace_initialize Create a task information buffer

Definition: void os21_task_trace_initialize(
 void * data,
 unsigned int size,
 os21_task_trace_mode_e mode);

Arguments:

Returns: Void

Description: This function allocates and initializes a task information buffer specified by the size
parameter. If data is NULL, the API returns the current buffer to the heap and
allocates a new buffer specified by size.

On startup of OS21 Trace, the default constructor invokes this function to create a
buffer of size 64 Kbytes (enough for 2k records) in os21_trace_mode_wrap mode.
This default size can be overridden by the user. See Section 12.12: Variables and
APIs that can be overridden on page 205.

data The current trace buffer.

size The size in bytes of data in the buffer.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

7379953 Rev 23 195/311

UM1399 OS21 Trace

213

os21_task_trace_initialize_data Replace an existing task information buffer

Definition: void os21_task_trace_initialize_data(
 void * data,
 unsigned int size);

Arguments:

Returns: Void

Description: Replace the existing task information buffer with the buffer specified by the data and
size parameters. If data is NULL, the API returns the current buffer to the heap and
allocates a new buffer of the specified size.

This function must not be used before os21_task_trace_initialize() has
been called.

Note: os21_task_trace_initialize_data() can be used to clear the task
information buffer if data refers to the existing task information buffer.

os21_task_trace_set_mode Set the action on task information buffer full

Definition: typedef enum os21_trace_mode_e {
 os21_trace_mode_stop = 1,
 os21_trace_mode_wrap = 2

} os21_trace_mode_e;

os21_task_trace_mode_e os21_task_ trace_set_mode
 (os21_trace_mode_e mode);

Arguments:

Returns: The previous trace mode.

Description: Set the action to be performed when the task trace buffer is full. The options are stop
or wrap.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

OS21 Trace UM1399

196/311 7379953 Rev 23

os21_task_trace_overflow User-defined task information overflow function

Definition: void os21_task_trace_overflow(
 void * data,
 unsigned int size);

Arguments:

Returns: Void

Description: A function with this name is called when the task information buffer overflows (in stop
mode) or before wraparound occurs (in wrap mode). The data and size parameters
are the current buffer and the size of the data saved in the buffer.

The default implementation of this function is a no-op that the user can override with
their own implementation.

os21_trace_set_enable Enable trace logging

Definition: int os21_trace_set_enable(
 int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 Trace logging. Initially set to 1.

os21_activity_set_global_enable Enable OS21 activity logging

Definition: int os21_activity_set_global_enable(
 int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 activity logging. Initially set to 0.

data The current task information buffer.

size The size in bytes of data in the buffer.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

7379953 Rev 23 197/311

UM1399 OS21 Trace

213

os21_activity_set_class_enable Enable OS21 activity logging for class

Definition: typedef enum os21_activity_class_e {
os21_activity_class_exception,
os21_activity_class_interrupt,
os21_activity_class_task,
os21_activity_class_general

os21_activity_class_EOF
} os21_activity_class_e;

void os21_activity_set_class_enable(
 os21_activity_class_e code, int mode);

Arguments:

Returns: Void

Description: Enable or disable logging for the specified OS21 activity event class.

os21_activity_set_enable Enable OS21 activity logging for activity

Definition: typedef enum os21_activity_e {
os21_activity_task_switch,
os21_activity_task_create,
os21_activity_task_delete,
os21_activity_task_exit,
os21_activity_intr_install,
os21_activity_intr_uninstall,
os21_activity_intr_enter,
os21_activity_intr_exit,
os21_activity_excp_install,
os21_activity_excp_uninstall,
os21_activity_excp_enter,
os21_activity_excp_exit,
os21_activity_general_print,

os21_activity_EOF
} os21_activity_e;

int os21_activity_set_enable(os21_activity_e code, int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of the specified OS21 activity event type.

code OS21 activity event class.

mode Enable (1) or disable (0).

code OS21 activity event type.

mode Enable (1) or disable (0).

OS21 Trace UM1399

198/311 7379953 Rev 23

os21_activity_set_task_trace_enable Enable OS21 task
information logging

Definition: int os21_activity_set_task_trace_enable(int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of task information by OS21 activity events (task_create
or task_switch).

os21_api_set_global_enable Enable OS21 API logging

Definition: int os21_api_set_global_enable(
 int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 API logging. Initially set to 0.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

7379953 Rev 23 199/311

UM1399 OS21 Trace

213

os21_api_set_class_enable Enable OS21 API logging for class

Definition: typedef enum os21_api_class_e {
os21_api_class_cache,
os21_api_class_callback,
os21_api_class_event,
os21_api_class_exception,
os21_api_class_interrupt,
os21_api_class_kernel,
os21_api_class_memory,
os21_api_class_message,
os21_api_class_mmap,
os21_api_class_mutex,
os21_api_class_partition,
os21_api_class_power,
os21_api_class_profile,
os21_api_class_reset,
os21_api_class_semaphore,
os21_api_class_scu,
os21_api_class_task,
os21_api_class_time,
os21_api_class_vmem,
os21_api_class_xpu,

os21_api_class_EOF
} os21_api_class_e;

void os21_api_set_class_enable(
 os21_api_class_e code, int mode);

Arguments:

Returns: Void

Description: Enable or disable logging for the specified OS21 API class.

code OS21 API class.

mode Enable (1) or disable (0).

OS21 Trace UM1399

200/311 7379953 Rev 23

os21_api_set_enable Enable logging for the given API

Definition: int os21_api_set_enable(os21_api_e code, int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of the specified OS21 API type.

os21_task_trace_set_enable Enable task information logging

Definition: int os21_task_trace_set_enable(
 int mode);

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of task information. Initially set to 1.

os21_trace_get_control Get trace control

Definition: typedef struct os21_trace_control_s {
 unsigned int save_activity:1;
 unsigned int save_api_enter:1;
 unsigned int save_api_exit:1;
 unsigned int save_activity_args:1;
 unsigned int save_api_enter_args:1;
 unsigned int save_api_exit_args:1;
 unsigned int save_caller_address:1;
 unsigned int save_frame_address:1;

} os21_trace_control_t;

void os21_trace_get_control(os21_trace_control_t *control);

Arguments:

Returns: Void

Description: Get the control settings for OS21 Trace.

code OS21 API type.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

control The control settings.

7379953 Rev 23 201/311

UM1399 OS21 Trace

213

os21_trace_set_control Set trace control

Definition: typedef struct os21_trace_control_s {
 unsigned int save_activity:1;
 unsigned int save_api_enter:1;
 unsigned int save_api_exit:1;
 unsigned int save_activity_args:1;
 unsigned int save_api_enter_args:1;
 unsigned int save_api_exit_args:1;
 unsigned int save_caller_address:1;
 unsigned int save_frame_address:1;

} os21_trace_control_t;

void os21_trace_set_control(os21_trace_control_t *control);

Arguments:

Returns: Void

Definition: Set the control settings for OS21 Trace.

os21_trace_print Print a string into the trace buffer

Definition: void OS21_TRACE_PRINT(const char *string)

Arguments:

Returns: Void.

Description: Print a string into the trace buffer.

Use the OS21_TRACE_PRINT() API in preference to the alternative
os21_trace_print() API as the former allows the application to link successfully
when not linked with the OS21 Trace libraries, whereas the latter does not.

os21_trace_write_file Write trace buffer to a file

Definition: int os21_trace_write_file(
 const char *name,
 int reset);

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the trace buffer to the file name.

The second parameter reset is the buffer reset argument. If 1 then the buffer is
cleared, otherwise it is not reset and remains intact.

control The control settings

string The string to be written to the buffer

name File name to create.

reset Clear (1) or keep (0) buffer.

OS21 Trace UM1399

202/311 7379953 Rev 23

os21_trace_status Get trace status

Definition: typedef struct os21_trace_status_s {
 int version;
 unsigned int codesize;
 unsigned int size;
 osclock_t tickrate;
 osclock_t lasttime;

} os21_trace_status_t;

void os21_trace_status(os21_trace_status_t *status);

Arguments: A structure status with the following fields to be filled in by the function:

Returns: Void.

Description: Get the trace buffer status.

os21_trace_write_buffer Write trace data to memory

Definition: int os21_trace_write_buffer(
 void *data,
 int reset);

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the trace buffer to the buffer specified by data. Use
os21_task_status() to obtain the size needed for the destination buffer.

The second parameter reset is the buffer reset argument. If 1 then the trace buffer is
cleared, otherwise it is not reset and the buffer remains intact.

Use this API in conjunction with os21_trace_status(). To ensure that the
information returned by os21_trace_status() remains valid for the call to
os21_trace_write_buffer(), these API calls must be encapsulated within calls
to os21_trace_set_enable(1) and os21_trace_set_enable(0).

version The version number for the trace buffer format.

codesize The size of the trace code field in the trace buffer.
Valid sizes are 1, 2, or 4 bytes (see Section 12.8.1:
os21trace.bin on page 182).

size The current size of the data in the trace buffer.

tickrate The time_ticks_per_sec value.

lasttime The time when the last record was logged to the
trace buffer.

data Destination buffer.

reset Clear (1) or keep (0) buffer.

7379953 Rev 23 203/311

UM1399 OS21 Trace

213

os21_task_trace_write_file Write task information buffer to a file

Definition: int os21_task_trace_write_file(
 const char *name,
 int reset);

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the task information buffer to the file name.

The second parameter reset is the buffer reset argument. If 1 then the buffer is
cleared, otherwise it is not reset and remains intact.

os21_task_trace_status Get task information status

Definition: typedef struct os21_task_trace_status_s {
 int version;
 unsigned int size;

} os21_task_trace_status_t;

void os21_task_trace_status(os21_task_trace_status_t *status);

Arguments: A structure status with the following fields to be filled in by the function:

Returns: Void.

Description: Get the task information buffer status.

name File name to create.

reset Clear (1) or keep (0) buffer.

version The version number for the task information buffer
format.

size The current size of the data in the task information
buffer.

OS21 Trace UM1399

204/311 7379953 Rev 23

os21_task_trace_write_buffer Write task information data to a buffer

Definition: int os21_task_trace_write_buffer(
 void *data,
 int reset);

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the task information buffer to the buffer specified by data. Use
os21_task_trace_status() to obtain the size needed for the destination buffer.

The second parameter reset is the buffer reset argument. If 1 then the buffer is
cleared, otherwise it is not reset and remains intact.

Use this API in conjunction with os21_task_trace_status(). To ensure that the
information returned by os21_task_trace_status() remains valid for the call to
os21_task_trace_write_buffer(), these API calls must be encapsulated
within calls to os21_task_trace_set_enable(1) and
os21_task_trace_set_enable(0).

data Destination buffer.

reset Clear (1) or keep (0) buffer.

7379953 Rev 23 205/311

UM1399 OS21 Trace

213

12.12 Variables and APIs that can be overridden
OS21 Trace provides default constructors for the trace buffer and the task information
buffer. The user may customize the constructors for both buffers by overriding the functions
and variables listed in this section.

The following variables may be overridden by the user.

extern void *os21_trace_constructor_data;

Defaults to NULL, in which case the initial trace buffer is allocated by
os21_trace_initialize(). See also os21_trace_initialize_data on page 193.

extern const unsigned int os21_trace_constructor_size;

The size of the trace buffer in bytes. Defaults to 128k records.

extern void *os21_task_trace_constructor_data;

Defaults to NULL, in which case the initial task information buffer is allocated by
os21_task_trace_initialize(). See also os21_task_trace_initialize_data on
page 195.

extern const unsigned int os21_task_trace_constructor_size;

The size of the task information buffer in bytes. Defaults to 2k records.

The following APIs can be overridden by the user.

os21_trace_constructor_user User-definable trace buffer constructor

Definition: void os21_trace_constructor_user(void);

Returns: Void.

Definition: The default trace buffer constructor calls a function with this name as its final action.
The default implementation of this function is a no-op that the user can override with
their own implementation (see Figure 28 on page 212 for an example).

os21_trace_destructor_user User-definable trace buffer destructor

Definition: void os21_trace_destructor_user(void);

Returns: Void.

Definition: The default trace buffer destructor calls a function with this name as its first action.
The default implementation of this function is a no-op that the user can override with
their own implementation (see Figure 28 on page 212 for an example).

OS21 Trace UM1399

206/311 7379953 Rev 23

os21_task_trace_constructor_user User-definable task
information buffer constructor

Definition: void os21_task_trace_constructor_user(void);

Returns: Void.

Description: The default task information buffer constructor calls a function with this name as its
final action. The default implementation of this function is a no-op that the user can
override with their own implementation.

os21_task_trace_destructor_user User-definable task
information buffer destructor

Definition: void os21_task_trace_destructor_user(void);

Returns: Void.

Description: The default task information buffer destructor calls a function with this name as its
final action. The default implementation of this function is a no-op that the user can
override with their own implementation.

12.13 User trace runtime APIs
When used with the --wrap-source command line option, the os21usertrace tool
creates source code that includes a set of APIs that can be called by the application to
control the generation of user trace records.

Note: The initial element user in the names of the APIs listed in the following sections can be
changed with the option --user-prefix of the os21usertrace tool.

12.13.1 User activity control APIs

The following APIs are created by os21usertrace for controlling the generation of trace
records for custom user activity events.

Note: If no user activities are defined, then none of these APIs are defined.

user_activity_set_group_enable Enable tracing for an activity group

Definition: void user_activity_set_group_enable(
user_activity_group_e code, int mode)

Arguments:

Returns: Void.

Description: Enable or disable the logging of all the activities for all classes of the user trace group
specified by code. The enumeration user_activity_group_e is defined in the
header file generated by os21usertrace.

code Activity group to enable or disable.

mode Enable (1) or disable (0).

7379953 Rev 23 207/311

UM1399 OS21 Trace

213

user_activity_set_group_group_class_enable Enable tracing for
an activity class

Definition: void user_activity_set_group_group_class_enable(
user_activity_group_group_class_e code, int mode)

Arguments:

Returns: Void.

Description: os21usertrace generates a set of APIs for enabling or disabling the logging of
classes of user defined activities within each of the user defined trace groups. There
is one API for each group. For example, if there is a group of user defined activities
called libc, then the API to enable or disable the logging of any given class of
activity within the libc group is
user_activity_set_group_libc_class_enable().

An enumeration with the name user_activity_group_group_class_e, where
group is the name of an activity group, is defined for each activity group in the
header file generated by os21usertrace.

user_activity_set_enable Enable tracing for an activity

Definition: int user_activity_set_enable(user_activity_e code, int mode)

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of the user defined activity specified by code. The
enumeration user_activity_e is defined in the header file generated by
os21usertrace.

user_activity_set_global_enable Enable global tracing for activities

Definition: int user_activity_set_global_enable(int mode)

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of user activity types. Initially set to 0.

code Activity class to enable or disable.

mode Enable (1) or disable (0).

code Activity to enable or disable.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

OS21 Trace UM1399

208/311 7379953 Rev 23

12.13.2 User API control APIs

The following APIs are created by os21usertrace for controlling the generation of trace
records for user APIs.

Note: If no user APIs are defined, then none of these APIs are defined.

user_api_set_group_enable Enable tracing for an API group

Definition: void user_api_set_group_enable(user_api_group_e code, int mode)

Arguments:

Returns: Void.

Description: Enable or disable the logging of all the APIs for all classes of the user trace group
specified by code. The enumeration user_api_group_e is defined in the header
file generated by os21usertrace.

user_api_set_group_group_class_enable Enable tracing for
an API class

Definition: void user_api_set_group_group_class_enable(
user_api_group_group_class_e code, int mode)

Arguments:

Returns: Void.

Description: os21usertrace generates a set of APIs for enabling or disabling the logging of
classes of user defined APIs within each of the user defined trace groups. There is
one API for each group. For example, if there is a group of user defined APIs called
libc, then the API to enable or disable the logging of any given class of API within
the libc group is user_api_set_group_libc_class_enable().

An enumeration with the name user_api_group_group_class_e, where group
is the name of an API group, is defined for each API group in the header file
generated by os21usertrace.

code API group to enable or disable.

mode Enable (1) or disable (0).

code API class to enable or disable.

mode Enable (1) or disable (0).

7379953 Rev 23 209/311

UM1399 OS21 Trace

213

user_api_set_enable Enable tracing for an API

Definition: int user_api_set_enable(user_api_e code, int mode)

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of the user defined API specified by code. The
enumeration user_api_e is defined in the header file generated by os21usertrace.

user_api_set_global_enable Enable global tracing for APIs

Definition: int user_api_set_global_enable(int mode)

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of user API types. Initially set to 0.

code API to enable or disable.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

OS21 Trace UM1399

210/311 7379953 Rev 23

12.13.3 User activity APIs

The os21usertrace tool creates a set of APIs for generating the user defined events
specified in the definition file. These are all named USER_ACTIVITY(), where ACTIVITY
is the name (in upper case letters) of the activity given by the USER-ACTIVITY specification
in the definition file (see Section 12.1.2: User definition file on page 165). The parameters of
the API are determined by the specification given in the definition file.

Note: The preferred version of the API is USER_ACTIVITY(), as this enables the application to
be linked successfully even if it is not linked with the OS21 Trace libraries. There is an
alternative form of the API, with the name in lower case letters, which does not allow the
application to be linked unless it is also linked with the OS21 Trace libraries. Use of the latter
API is not recommended.

12.14 Correspondence between GDB commands and APIs
Table 48 lists the OS21 Trace GDB commands and their equivalent APIs.

Table 48. Correspondence between GDB commands and APIs

GDB command API

os21_trace_set_mode os21_trace_set_mode()

os21_task_trace_set_mode os21_task_trace_set_mode()

enable_os21_trace
os21_trace_set_enable()

disable_os21_trace

enable_os21_activity_global
os21_activity_set_global_enable()

disable_os21_activity_global

enable_os21_api_global
os21_api_set_global_enable()

disable_os21_api_global

enable_os21_activity_class_class
os21_activity_set_class_enable()

disable_os21_activity_class_class

enable_os21_activity
os21_activity_set_enable()

disable_os21_activity

enable_os21_api_class_class
os21_api_set_class_enable()

disable_os21_api_class_class

enable_os21_api
os21_api_set_enable()

disable_os21_api

enable_os21_trace_control

os21_trace_set_control()
enable_os21_trace_control_all

disable_os21_trace_control

disable_os21_trace_control_all

enable_os21_task_trace
os21_task_trace_set_enable()

disable_os21_task_trace

7379953 Rev 23 211/311

UM1399 OS21 Trace

213

Table 49 lists the user GDB commands and their equivalent APIs.

enable_os21_activity_task_trace
os21_activity_set_task_trace_enable()

disable_os21_activity_task_trace

dump_os21_trace_buffer os21_trace_write_file()

dump_os21_task_trace_buffer os21_task_trace_write_file()

Table 48. Correspondence between GDB commands and APIs (continued)

GDB command API

Table 49. Correspondence between GDB commands and APIs

GDB command API

enable_user_activity_group_all

user_activity_set_group_enable()
disable_user_activity_group_all

enable_user_activity_group_group_class_all

disable_user_activity_group_group_class_all

enable_user_activity_group_group_class_class
user_activity_set_group_group_class_enable()

disable_user_activity_group_group_class_class

enable_user_activity
user_activity_set_enable()

disable_user_activity

enable_user_activity_global
user_activity_set_global_enable()

disable_user_activity_global

enable_user_api_group_all

user_api_set_group_enable()
disable_user_api_group_all

enable_user_api_group_group_class_all

disable_user_api_group_group_class_all

enable_user_api_group_group_class_class
user_api_set_group_group_class_enable()

disable_user_api_group_group_class_class

enable_user_api
user_api_set_enable()

disable_user_api

enable_user_api_global
user_api_set_global_enable()

disable_user_api_global

OS21 Trace UM1399

212/311 7379953 Rev 23

12.15 Trace always on
The default is that the OS21 activity and OS21 API logging is disabled at startup. The
expectation is that the user enables them using STWorkbench or GDB. However, it may be
convenient to always run an application with logging enabled from the outset.

The example in Figure 28 on page 212 customizes OS21 Trace without having to change
the application source. To use this example, compile the example code and add the object
to the link command line for the application.

The example defines the following functions.

• os21_trace_constructor_user(). This function is called by the trace buffer
constructor os21_trace_constructor in the OS21 Trace library.

• os21_trace_destructor_user(). This function is called by the trace buffer
destructor os21_trace_destructor in the OS21 Trace library.

Note: The destructor function may not be very useful as embedded applications typically never
terminate.

Figure 28. Example to customize trace
#include <os21trace.h>

#if !defined(TRACE_SIZE)
#define TRACE_SIZE 256 /* Trace buffer size */
#endif

const unsigned int os21_trace_constructor_size = TRACE_SIZE;

/* Run by OS21 Trace constructor */
void os21_trace_constructor_user(void)
{

/* Enable trace */
os21_trace_set_enable(1);
os21_activity_set_global_enable(1);
os21_api_set_global_enable(1);
os21_task_trace_set_enable(1);

}

/* Run by OS21 Trace destructor */
void os21_trace_destructor_user(void)
{

/* Disable trace */
os21_trace_set_enable(0);
os21_task_trace_set_enable(0);

/* Save trace and task information data */
os21_trace_write_file("os21trace.bin", 1);
os21_task_trace_write_file("os21tasktrace.bin", 1);

}

7379953 Rev 23 213/311

UM1399 OS21 Trace

213

12.16 Source directory
The source code for OS21 Trace target library is included with the toolset release. This is
located in the sh-superh-elf/src/os21trace/target subdirectory of the release
installation directory.

There is a makefile (GNU make compatible) in this directory that has two build rules:

all Build lib/st40/libos21trace.a (the default rule).

clean Remove all built files (that is, object files and libraries).

Dynamic OS21 profiling UM1399

214/311 7379953 Rev 23

13 Dynamic OS21 profiling

The ST40 Micro Toolset supports profiling using the OS21 profiler under the control of GDB.
For this, an application is linked with the dynamic OS21 profiler library. This library enables
GDB to control all aspects of the OS21 profiler by sending requests to the application to
configure, start and stop the OS21 profiler using standard OS21 APIs. Also, GDB can write
the data gathered by the OS21 profiler directly to a file on the host without sending a request
to the application. The profile data obtained by GDB can be analyzed using the os21prof
tool. For more information about OS21 profiling, see the OS21 user manual (7358306).

For details of the GDB commands available to control the OS21 profiler, see Section 13.4:
GDB commands on page 215).

13.1 Overview
The dynamic OS21 profiler adds a monitor task to the application(a). The purpose of the
monitor task is to call OS21 profiler APIs on behalf of GDB.

When GDB needs to call an OS21 profiler API, it writes an action request to a structure in
target memory and then raises the OS21 interrupt OS21_INTERRUPT_HUDI (reserved for
exclusive use by GDB). When the target is restarted, the monitor task is woken up, reads
the structure and performs the requested action. On completion of the action, the monitor
task writes the result back to the same structure and calls a signal function to inform GDB.
GDB can (if configured by the user) read the structure and report the result of the request to
the user.

The interface between GDB and the monitor task can be configured by the user. For details
of the configuration options, see Section 13.7.1: Overrides on page 221.

a. The monitor task has the name OS21 Profiler in the OS21 task list.

7379953 Rev 23 215/311

UM1399 Dynamic OS21 profiling

222

13.2 Building an application for dynamic OS21 profiling
Table 50 lists the sh4gcc linker options required to enable the dynamic OS21 profiling
features.

13.3 Running the application
By default, an application built with dynamic OS21 profiling support initially starts with the
OS21 profiler disabled. To enable GDB control of the dynamic OS21 profiler, invoke the
following command:

source os21profiler.cmd

See Section 13.4: GDB commands on page 215 for a complete list of commands.

13.4 GDB commands
This section lists the dynamic OS21 profiler GDB commands accessible when the file
os21profiler.cmd is sourced within GDB. For information on a given command, use the
GDB command help command.

OS21 profiler initialization

Use the following commands to initialize and de-initialize profiling.

os21_profiler_initialize instructions-per-bucket frequency

Configures the OS21 profiler by calling the OS21 API profile_init(). If profiling
has already been configured, this command removes the existing configuration by
calling profiler_deinit() and reconfigures it with the new parameters. If the OS21

Table 50. sh4gcc linker options to enable dynamic OS21 profiling

sh4gcc options Description

-profiler
Initialize dynamic OS21 profile support.
This option uses the default specs file, os21profiler.specs.

-profiler-specs=file Use file in place of os21profiler.specs.

-profiler-no-constructor

Use this option to disable the automatic initialization of the
dynamic OS21 profiler. This option also prevents the destructor
for the dynamic OS21 profiler from being installed.
– The dynamic OS21 profiler constructor is called by the OS21

API kernel_start().
– The dynamic OS21 profiler destructor is called during OS21

shutdown.

Dynamic OS21 profiling UM1399

216/311 7379953 Rev 23

profiler is currently running when this command is issued, the OS21 API
profiler_stop() is called first.

This command accepts two arguments:

– instructions-per-bucket
The number of instructions allocated to each bucket when capturing profile data.
(A bucket is a counter associated with an address range.)

– frequency
Indicates the frequency that samples are to be taken, in hertz.

For example:

os21_profiler_initialize 16 5000

initializes the OS21 profiler to use 16 instructions per bucket and a sampling frequency
of 5 KHz.

os21_profiler_deinitialize

Terminates the OS21 profiler by calling the OS21 API profile_deinit() to release
the memory and resources allocated by profiler_init(). If the OS21 profiler is
currently running when this command is issued, the OS21 API profiler_stop() is
called first.

OS21 profiler start

When the OS21 profiler has been initialized, use one of the following commands to start
profiling. If the OS21 profiler is already running, the OS21 API profiler_stop() is called
first.

os21_profiler_start_all

Starts the system-wide OS21 profiler (that is, profiling every task and interrupt level) by
calling the OS21 API profile_start_all().

os21_profiler_start_interrupt interrupt-level

Starts the OS21 profiler for the specified interrupt level by calling the OS21 API
profile_start_interrupt().

os21_profiler_start_task task-handle

Starts the OS21 profiler for the task specified by task-handle by calling the OS21
API profile_start_task(). The argument task-handle is the address of an
OS21 task_t object. This address can be extracted from the thread list reported by
GDB.

os21_profiler_start_task_number task-number

Starts the OS21 profiler for the task specified by task-number, where task-number
is the OS21 task number, and not the number assigned to the task by GDB.

This command converts task-number into a task-handle by scanning the OS21
task list(b). The command then calls the OS21 API profile_start_task() with
task-handle.

b. Target memory is read when scanning the task list.

7379953 Rev 23 217/311

UM1399 Dynamic OS21 profiling

222

OS21 profiler initialization and start

The OS21 dynamic profiler can be initialized and started using the following combined
commands:

os21_profiler_initialize_and_start_all instructions-per-bucket
frequency

This is equivalent to the following:

os21_profiler_initialize instructions-per-bucket frequency
os21_profiler_start_all

os21_profiler_initialize_and_start_interrupt instructions-per-
bucket frequency level

This is equivalent to the following:

os21_profiler_initialize instructions-per-bucket frequency
os21_profiler_start_interrupt level

os21_profiler_initialize_and_start_task instructions-per-bucket
frequency task

This is equivalent to the following:

os21_profiler_initialize instructions-per-bucket frequency
os21_profiler_start_task task

os21_profiler_initialize_and_start_task_number instructions-per-

bucket frequency task-number

This is equivalent to the following:

os21_profiler_initialize instructions-per-bucket frequency
os21_profiler_start_task_number task-number

OS21 profiler stop

Use the following command to stop profiling.

os21_profiler_stop

Stops the OS21 profiler by calling the OS21 API profile_stop().

OS21 profiler write data

Use the following commands to write the gathered profile data to a file.

os21_profiler_write file

Writes the OS21 profile data to file by calling the OS21 API profiler_write(). If
the OS21 profiler is currently running, the OS21 API profiler_stop() is called first.

os21_profiler_dump file

Writes the OS21 profile data to file. The command does not stop the OS21 profiler if
it is currently running.

After invoking any of the commands listed above, restart the target to perform the requested
action.

Note: The os21_profiler_dump command has immediate effect and therefore the target does
not have to be restarted in this case.

Dynamic OS21 profiling UM1399

218/311 7379953 Rev 23

OS21 profiler cancel

Use the following command to cancel a previous command.

os21_profiler_cancel

Cancel a previous command if that command is still pending (that is, the dynamic
OS21 profiler is not in the BUSY state as reported by the
show_os21_profiler_monitor_status command).

Note: All the commands listed above automatically cancel a previous command if it is still pending,
except for os21_profiler_dump, which has immediate effect.

OS21 profiler status reporting

Use the following commands to enable or disable the reporting of the status of the OS21
profiler requests.

enable_os21_profiler_report_signaled

Enable OS21 profiler request reporting. The target is automatically restarted after
reporting the result of the request.

disable_os21_profiler_report_signaled

Disable OS21 profiler request reporting.

enable_os21_profiler_stop_signaled
disable_os21_profiler_stop_signaled

The same as above, but target remains stopped and must be manually restarted.

show_os21_profiler_monitor_status

Show the status of the OS21 profiler monitor. Table 51 lists the possible states.

show_os21_profiler_status

Show the status of the OS21 profiler (including the type if active). Table 52 lists the
possible states.

Table 51. OS21 profiler monitor state

State Description

INACTIVE The monitor is not initialized.

IDLE The monitor is waiting to perform an action.

PENDING The monitor has yet to start the action.

BUSY The monitor has yet to complete the action.

Table 52. OS21 profiler state

State Description

INACTIVE The profiler is not initialized.

INITIALIZED The profiler is initialized but not started.

STARTED(1)

1. In this state, profile data is available for dumping by the os21_profiler_dump command.

The profiler is running.

STOPPED(1) The profiler is stopped.

7379953 Rev 23 219/311

UM1399 Dynamic OS21 profiling

222

show_os21_profiler_internal_status

This is similar to show_os21_profiler_status except that it shows the internal
status of the OS21 profiler.

13.5 Analyzing the results
After the OS21 profile data has been saved (using the os21_profile_write or
os21_profile_dump commands), use the os21prof tool to perform the analysis.

The command line to invoke the os21prof tool is as follows:

os21prof executable-file profile-file

Information on the os21prof tool can be found in the OS21 user manual (7358306).

13.6 Example
Figure 29 is a listing of an example profiling session controlling the dynamic OS21 profiler
with GDB.

Figure 29. Example dynamic OS21 profiler script
source os21profiler.cmd
load

Initialise the OS21 profiler (stopping after completion)

os21_profiler_initialize 16 5000
enable_os21_profiler_stop_signaled
continue
disable_os21_profiler_stop_signaled

Start system wide profiling and continue until exit

os21_profiler_start_all
break exit
continue

Dump the OS21 profile to the host file profile.dat

os21_profiler_dump profile.dat

Dynamic OS21 profiling UM1399

220/311 7379953 Rev 23

13.7 Profiler library API
The dynamic OS21 profiler library is provided in libos21profiler.a and its associated
header file is os21profiler.h.

The functions defined by this API are described in the following sections.

os21_profiler_initialize Initialize profiling

Definition: typedef struct os21_profiler_init_s {
size_t instrs_per_bucket;
int hz;

} os21_profiler_init_t;

int os21_profiler_initialize(
const os21_profiler_init_t *init);

Arguments: A structure init with the following fields:

Returns: OS21_SUCCESS for success, or OS21_FAILURE if called with invalid parameters, or if
out of memory.

Description: Use this function to initialize the dynamic OS21 profiler. If init is not NULL, then this
function calls the OS21 API profile_init(), using the contents of the
os21_profiler_init_t structure. If init is NULL, then profile_init() is not
called.

The dynamic OS21 profiler constructor invokes this function with a default
initialization parameter of NULL. The user can override this default. See
Section 13.7.1: Overrides.

os21_profiler_deinitialize Deinitialize profiling

Definition: int os21_profiler_deinitialize(void);

Arguments: None

Returns: OS21_SUCCESS for success, or OS21_FAILURE if the dynamic OS21 profiler cannot
be deinitialized.

Definition: Use this function to deinitialize the dynamic OS21 profiler. This function stops the
OS21 profiler (if it is running), releases all memory and resources allocated by
os21_profiler_initialize().

instrs_per_bucket The number of instructions allocated to each bucket.

hz The sampling frequency in hertz.

7379953 Rev 23 221/311

UM1399 Dynamic OS21 profiling

222

os21_profiler_monitor_interrupt_clear
User defined interrupt clear function

Description: If the symbol _os21_profiler_monitor_interrupt is defined, the dynamic
OS21 profiler calls this user defined function to clear the interrupt.

Definition: void os21_profiler_monitor_interrupt_clear(
interrupt_t *handle);

Arguments:

Returns: None.

os21_profiler_signaled User defined signal function

Definition: void os21_profiler_signaled(void);

Arguments: None

Returns: None

Definition: The dynamic OS21 profiler calls a function with this name when it completes an
action requested by the user from GDB.

The default implementation of this function is a no-op that the user can override with
their own implementation.

13.7.1 Overrides

Customizing the constructor

The dynamic OS21 profiler provides constructor and destructor functions. The user may
customize the constructor by overriding the os21_profiler_constructor_init
variable.

os21_profiler_init_t os21_profiler_constructor_init;

The init argument passed to os21_profiler_initialize(). If this variable is
not defined, NULL is passed to the os21_profiler_initialize() function.

handle The handle of the interrupt to clear.

Dynamic OS21 profiling UM1399

222/311 7379953 Rev 23

Configuration of the dynamic OS21 profiler monitor task

The dynamic OS21 profiler uses a dedicated task to monitor for user requests from GDB.
See Section 13.1: Overview on page 214 for details. In the default configuration, GDB uses
the ST40 UDI interrupt to signal the monitor task of a pending action. The user may change
the interrupt used for signalling the monitor task by overriding the following items.

• Define the symbol:

interrupt_name_t _os21_profiler_monitor_interrupt;

to specify the interrupt that GDB uses to signal to the monitor task. The default is
OS21_INTERRUPT_HUDI. This should not normally need changing. This override is
defined using the --defsym linker option when linking the application, as follows:

-Wl,--defsym,_os21_profiler_monitor_interrupt=_OS21_INTERRUPT_name

• If the symbol _os21_profiler_monitor_interrupt is defined, the dynamic OS21
profiler calls os21_profiler_monitor_interrupt_clear to clear the interrupt.

• Define the GDB command os21_profiler_signal_raise to raise the interrupt
specified by the symbol _os21_profiler_monitor_interrupt.

This command is required only if the interrupt to be raised is not the default
(OS21_INTERRUPT_HUDI).

If no interrupt is available, the monitor task can be configured to check periodically if an
action needs to be performed. The dynamic OS21 profiler provides the following variables to
configure this operation.

unsigned int os21_profiler_monitor_wakeup_period;

Use this variable to specify the frequency (in hertz) at which the monitor task is to
check if an action has been requested. The higher the frequency, the greater the
intrusion on the operation of the application. The default is 1 KHz.

unsigned int os21_profiler_monitor_priority;

Use this variable to define the priority at which the monitor task runs. By default, this is
the maximum OS21 priority (OS21_MAX_USER_PRIORITY). It should not be changed
unless the monitor task has been configured to periodically check if an action has been
requested. Reducing the priority of the monitor task increases the latency between the
request being raised and the monitor task performing the action.

7379953 Rev 23 223/311

UM1399 Toolset tips

244

Appendix A Toolset tips

This appendix contains miscellaneous tips and advice for using the toolset.

A.1 Managing memory partitions with OS21
OS21 allows memory partitions to be created in order to manage areas of memory. For
more information, see the OS21 User Manual (7358306). There are several reasons for
creating memory partitions, for example:

• to implement an allocation algorithm that is appropriate to an application (for example,
to apply some alignment constraint to allocated blocks)

• to manage a special area of memory not visible to the normal memory managers (for
example, on-chip RAM or peripheral device RAM)

• to manage a memory region which has special caching issues

To manage a memory partition, do the following.

1. Find the location of the memory and its size. This can be implicitly known; for example,
the address and size of on-chip RAM is a characteristic of the SoC.

To select a pool of memory to manage with an allocator:

– declare it statically:

static unsigned char *my_device_RAM = SOME_ADDRESS;

– allocate it from a buffer:

static unsigned char my_static_pool[65536];

– allocate it from the general heap:

unsigned char *my_heap_pool = malloc(65536);

2. Select the allocation strategy to use with the memory. OS21 has three managers. (See
Section A.2: Memory managers on page 226.):

my_pp = partition_create_simple(my_pool, 65536);
my_pp = partition_create_fixed(my_pool, 65536, block_size);
my_pp = partition_create_heap(my_pool, 65536);

Alternatively, use a special purpose allocator. To use a special purpose allocator, a
partition which uses the required memory management implementation must be
created using the partition_create_any() API. This API takes the size of a
control structure which the allocator uses to manage the memory, and the addresses of
functions which perform allocation, freeing, reallocation and status reporting.

Toolset tips UM1399

224/311 7379953 Rev 23

The following example implements a simple linear allocator, with no free or realloc
methods.

#include <os21.h>
#include <stdio.h>

/*
* Declare memory to be managed by our partition
*/

static unsigned char my_memory[65536];

/*
* Declare the management data we use to control the partition
*/

typedef struct {
 unsigned char *base;
 unsigned char *limit;
 unsigned char *free_ptr;

} my_state_t;

/*
* Allocation routine - really simple!
*/

static void *my_alloc(my_state_t *state, size_t size)
{
 void *ptr = NULL;

 if (size && ((state->free_ptr + size) < state->limit)) {
 ptr = state->free_ptr;
 state->free_ptr = state->free_ptr + size;
 }

 return ptr;
}

/*
* Partition status routine
* Note that status->partition_status_used is not filled
* in here - partition_status sets this field automatically.
*/

static int my_status(my_state_t *state,
partition_status_t *status,
partition_status_flags_t flag)

{
 status->partition_status_state = partition_status_state_valid;
 status->partition_status_type = partition_status_type_user;
 status->partition_status_size = state->limit - state->base;
 status->partition_status_free = state->limit - state->free_ptr;
 status->partition_status_free_largest =

state->limit - state->free_ptr;
}

7379953 Rev 23 225/311

UM1399 Toolset tips

244

/*
* Initialization routine, called when a partition is created
*/

static void my_initialize(partition_t *pp,
unsigned char *base,
size_t size)

{
 my_state_t *state = partition_private_state(pp);

 state->free_ptr = base;
 state->base = base;
 state->limit = base + size;

}

int main(void)
{
 partition_t *pp;
 void *ptr;

 /*
 * Start OS21
 */
 kernel_initialize(NULL);
 kernel_start();

 /*
 * Create new partition
 */
 pp = partition_create_any(sizeof(my_state_t),

(memory_allocate_fn)my_alloc,
 NULL, /* no free method */
 NULL, /* no realloc method */
(memory_status_fn)my_status);

 /*
 * Initialize it
 */
 my_initialize(pp, my_memory, sizeof(my_memory));

 /*
 * Try it out!
 */
 printf("Alloc 16 bytes : %p\n", memory_allocate(pp, 16));
 printf("Alloc 10 bytes : %p\n", memory_allocate(pp, 10));
 printf("Alloc 1 bytes : %p\n", memory_allocate(pp, 1));

 printf("Done\n");

 return 0;
}

Toolset tips UM1399

226/311 7379953 Rev 23

A.2 Memory managers
The run-time libraries provide several memory managers. These provide heap, simple and
fixed block allocators. The OS21 heap algorithm is very simple. It maintains a single free list
of blocks, and allocates from the first one that can satisfy the request. Blocks added to the
free list are coalesced with neighbors to reduce fragmentation.

When OS21 is built with the -DCONF_DEBUG_ALLOC option specified, the partition manager
in OS21 can provide extensive run-time checking for all partitions, including those
maintained by user supplied routines (see Section A.1 on page 223).

With the -DCONF_DEBUG_ALLOC option enabled, the partition manager over allocates and
places scribble guards above and below the block of memory passed back to the user.
These guards are filled with a known pattern when the block is allocated, and are checked
when the block is freed in order to detect writes which have occurred outside of the block
(for example, writing past the end of an array). When OS21 terminates, the partition
manager reports any blocks of memory which have been allocated but not freed.

newlib provides Doug Lea’s heap memory allocator (version 2.6.4). The design of the
allocator is discussed at length in http://g.oswego.edu/dl/html/malloc.html. The design goals
for this widely used allocator include minimizing execution time and memory fragmentation.

newlib can be rebuilt (see Section 7.4: Building the packages on page 96) with debugging
switched on in malloc_r.c (-DDEBUG) to enable extensive run-time checking. With
debugging enabled, calls to malloc_stats() and mallinfo() attempt to check that
every memory block in the heap is consistent.

A.3 OS21 scheduler behavior
The scheduler in OS21 provides priority based preemptive FIFO scheduling, with optional
timeslicing. The following summarizes its behavior.

• 256 priority levels.

• FIFO scheduling within priority level.

• Tasks are pre-empted when higher priority tasks become runnable.

• Pre-emption can be disabled and re-enabled with task_lock() and
task_unlock(), see task_lock() and task_unlock() on page 227.

• Pre-emptions held pending while task_lock() is in effect, occur when
task_unlock() releases the lock.

• Tasks that are pre-empted are placed at the head of the run queue for their priority
level.

• Tasks that yield are placed at the tail of the run queue for their priority level.

• Tasks that become runnable are placed at the tail of the run queue for their priority
level.

• Tasks that are timesliced are placed at the tail of the run queue for their priority level.

• Timeslicing is optional (off by default), and can be enabled or disabled by calling
kernel_timeslice().

• The default timeslice frequency is 50 Hz.

• The timeslice frequency can be set between 1 and 500 Hz by changing the value of the
variable bsp_timeslice_frequency_hz, either before calling
kernel_initialize(), or in the BSP library routine bsp_initialize().

7379953 Rev 23 227/311

UM1399 Toolset tips

244

A.4 Managing critical sections in OS21
A critical section is a region of code where exactly one thread of execution can run at any
one time. There are two forms of critical section to consider:

• task / interrupt

• task / task

A.4.1 task / interrupt critical sections

Within the context of a running task, task / interrupt critical sections are implemented by
masking interrupts to prevent the interrupt handler used for serializing from running. OS21
provides three APIs for interrupt masking and unmasking.

interrupt_mask(), interrupt_mask_all() and interrupt_unmask()

These OS21 APIs enables the priority level of the ST40 core to be raised and lowered. The
ST40’s interrupt level provides a simple mechanism to mask interrupts from signaling the
ST40. Any interrupts which have a priority that is strictly greater than the ST40’s interrupt
priority can interrupt the ST40. Any interrupts which have a priority less than or equal to the
ST40’s interrupt priority are masked out and cannot therefore affect the core.

The ST40’s interrupt level is normally zero, meaning that all interrupts are unmasked. Any
interrupt masked by the ST40’s interrupt level when it becomes active, is signalled to the
ST40 when the ST40’s interrupt priority is lowered below that of the active interrupts.

To serialize with an interrupt handler which is interrupting at level level, only the interrupts
up to level level need to be masked. This stops all interrupts with a priority less than or
equal to level from signalling the ST40, but leaves higher priority interrupts unaffected.

interrupt_mask() sets the ST40’s interrupt level to the value specified, and
interrupt_mask_all() sets the ST40’s interrupt level to its maximum.

To prevent pre-emption, interrupt_mask() and interrupt_mask_all() also perform
an implicit task_lock(). This is because if a context switch occurred whilst under an
interrupt_mask(), the ST40’s interrupt priority would be changed to the value required
by the incoming task, thus breaking the critical section. Care should be taken to ensure that
an explicit deschedule does not occur whilst interrupts are masked (for example, blocking
on a busy semaphore or mutex).

A.4.2 task / task critical sections

OS21 provides a number of mechanisms for achieving task / task critical sections, each of
which has its own cost and benefit.

task_lock() and task_unlock()

These calls provide a lightweight mechanism to prevent pre-emption. With a task_lock()
in effect, the running task is guaranteed that the scheduler will not preempt it if a higher
priority task becomes runnable, or a timeslice interrupt occurs. In addition, any calls to
task_reschedule() have no effect.

It is possible for the running task to explicitly give up the core while a task_lock() is
active. This is the only way another task can be scheduled while the running task holds a

Toolset tips UM1399

228/311 7379953 Rev 23

task_lock(). Explicit yielding of the core occurs when the running task calls
task_yield() or a blocking OS21 API, for example:

• calls to task_delay() or task_delay_until() specifying a time in the future

• waiting on an unposted event flag, busy semaphore or empty message queue with the
timeout period not set to TIMEOUT_IMMEDIATE

• waiting for a busy mutex

When the running task resumes execution, OS21 automatically reinstates task_lock().
Due to the critical section provided by task_lock() and task_unlock() being broken, if
the task blocks, it is weak. If a strong critical section is required when using these calls,
ensure that called functions do not block. This is not always possible, for example, when
calling a library function.

Advantages:

• lightweight

• no need to allocate a synchronization object

• critical sections can nest

Disadvantages:

• critical sections broken if the running task blocks

Mutexes

Mutexes in OS21 provide robust critical sections. The critical section remains in place even
if the task in the critical section blocks. Exactly one task is able to own a mutex at any one
time. OS21 provides two forms of mutex: FIFO and priority.

FIFO mutexes have the simplest semantics. When tasks try to acquire a busy FIFO mutex
they are queued in request order. When a task releases a FIFO mutex, ownership is passed
to the task at the head of the waiting queue, and it is unblocked.

Priority mutexes are more complex. When tasks try to acquire a busy priority mutex, they
are queued on the mutex in order of descending task priority. In this way, the task at the
head of the wait queue is always the one with the highest priority, regardless of when it
attempted to acquire the mutex.

Priority mutexes also implement what is known as priority inheritance. This mechanism
temporarily boosts the priority of the task that owns a mutex to be the same as the priority of
the task at the head of the wait queue. When the owning task releases the mutex, its priority
is returned to its original level. This behavior prevents priority inversion, where a low priority
task can effectively prevent a high priority task from running. This can happen if a low
priority task owns a mutex which a high priority task is waiting for, and a mid level priority
task starts running, the low priority task cannot run, and hence cannot release the mutex,
causing the high priority task to wait.

Ownership of FIFO or priority mutexes has the effect of making the task immortal, that is,
immune to task_kill(). This is intended to prevent deadlock in the event that a task
owning a mutex is killed; the mutex would otherwise be left owned by a dead task, and
hence it would be locked out for ever. If task_kill() is carried out on a mutex owning
task, the task remains running until it releases the mutex, at which point the task_kill()
is actioned.

Both forms of mutex can be recursively taken by the owning task without deadlock.

7379953 Rev 23 229/311

UM1399 Toolset tips

244

Advantages:

• robust critical section

• can be recursively taken without deadlock

• tasks are immortal while holding a mutex

• FIFO mutexes provide strictly fair access to the mutex

• priority mutexes provide priority ordered access, with priority inheritance

Disadvantages:

• mutexes have to be created before they can be used

• more costly than task_lock() and task_unlock()

• priority mutexes have a higher cost than FIFO mutexes, due to priority inheritance logic

• strictly for task / task interlock; cannot be used by interrupt handlers

Semaphores

Semaphores in OS21 can be used for a variety of purposes, as discussed in the OS21 User
Manual (7410372). They can be used to provide a robust critical section, in a similar fashion
to mutexes, but with some major differences.

• Semaphores cannot be taken recursively; any attempt to do this results in deadlocking
the calling task.

• Like mutexes, both FIFO and priority queuing models are provided, but unlike priority
mutexes, priority semaphores do not implement priority inheritance.

• Tasks are not automatically made immortal when they acquire a semaphore.

• Semaphores can be used with care from interrupt handlers.

Advantages

• Robust critical section.

• FIFO and priority queuing models are available, but no priority inheritance.

• No difference in cost between a FIFO and a priority semaphore.

• Due to simpler semantics, slightly lower execution cost compared to mutexes.

• If TIMEOUT_IMMEDIATE is used when trying to acquire, and the interrupt handler is
written to cope with not acquiring the semaphore, semaphores can be used in an
interrupt handler.

Disadvantages

• Semaphores have to be created before they can be used.

• More costly than task_lock() and task_unlock().

• Cannot be taken recursively, since the system would deadlock.

• No immortality whilst holding; killing an owning task would be dangerous.

Disabling timeslicing

When running with timeslicing enabled, and a very lightweight task / task critical section is
required (which does not involve accessing a synchronization object), it is possible to
temporarily disable timeslicing. For example:

kernel_timeslice(0);
...critical section...
kernel_timeslice(1);

Toolset tips UM1399

230/311 7379953 Rev 23

Use this approach carefully as the kernel_timeslice() API has an immediate global
effect. If the task blocks in this region (for example, calls task_delay(), blocks waiting for
a synchronization object, or signals a synchronization object and gets preempted as a
result), then timeslicing remains disabled for all other tasks. This can result in a task not
timeslicing in order to share the core.

A.5 Access to uncached memory
OS21 on the ST40 provides the macro functions:

• ADDRESS_IN_UNCACHED_MEMORY(address)

This translates a P1 memory region address (to provide a cached view of physical
memory) into the equivalent P2 memory region address (to provide an uncached view
of the same physical memory).

• ADDRESS_IN_CACHED_MEMORY(address)

This performs the opposite translation from a P2 to P1 address.

These macro functions only work when an application is executing in non-Space
Enhancement (SE) mode. If called from an SE mode application, the macro function panics
the OS21 kernel and terminates the application. To avoid this, STMicroelectronics
recommend using the virtual memory APIs provided by OS21 to obtain uncached views of
physical memory. The advantage of this method is that it is a portable solution that also
works with non-SE mode applications.

The following sequence of OS21 virtual memory API calls are equivalent to the macro
function ADDRESS_IN_UNCACHED_MEMORY(address).

1. Call vmem_virt_to_phys() to obtain the physical address for the virtual address to
be accessed through an uncached view.

2. Call vmem_create() with the physical address obtained in step 1 with the mode
VMEM_CREATE_UNCACHED|VMEM_CREATE_READ|VMEM_CREATE_WRITE to obtain a
virtual address that gives an uncached view of the physical memory.

Depending on the mode of the P1 and P2 memory regions, the virtual address returned
by vmem_create() can be dynamically mapped through the MMU (in the P0 or P3
memory regions) or a static mapping in P1 or P2.

3. Call vmem_delete() with the virtual address obtained in step 2 to release the virtual
address when it is no longer required.

If the virtual address has been dynamically mapped via the MMU, use
vmem_delete() to release a UTLB entry for reuse. This reduces page faults and
improves performance.

The following example uses the macro function ADDRESS_IN_UNCACHED_MEMORY
(address) in a non-SE mode application to obtain an uncached view of a structure in
memory that is referenced by the pointer dev:

struct device *dev, *dev_uc;

dev_uc = (struct device *) ADDRESS_IN_UNCACHED_MEMORY(dev);

7379953 Rev 23 231/311

UM1399 Toolset tips

244

The following example is the equivalent using the OS21 virtual memory APIs:

void *dev_phys;
struct device *dev, *dev_uc;

result = vmem_virt_to_phys(dev, &dev_phys);
assert(result == OS21_SUCCESS);

dev_uc = (struct device *)
 vmem_create(dev_phys, sizeof(struct device), NULL,
 VMEM_CREATE_UNCACHED|VMEM_CREATE_READ|VMEM_CREATE_WRITE);

assert(dev_uc != NULL);

result = vmem_delete(dev_uc);
assert(result == OS21_SUCCESS);

A.6 Debugging with OS21
Note: Further information on debugging can be found in the Debugging with GDB manual.

A.6.1 Understanding OS21 stack traces

Every time an application enters OS21 through an interrupt or exception, OS21 captures the
context of the core on the current stack. If interrupts nest, it captures multiple contexts, one
for each interrupt. The information stored includes the complete register state of the core,
details of what caused the context to be saved (interrupt or exception) and the task that was
active at the time. More information is reported when the OS21 kernel is built with
CONF_DEBUG defined (which is the case when the -mruntime=os21_d compiler option is
used to build the application).

Whenever an unexpected exception occurs, it produces a stack trace. On the ST40, these
stack traces have the following general form:

OS21: ==
OS21: Stack trace (<n> of <N>)

OS21: Fatal exception detected: ST40 exception code
OS21: Description of exception, possibly with faulting address

* Disassembly of instructions around faulting instruction

+ OS21: Active Task ID : task ID
+ OS21: Active Task Stackp: stack pointer
+ OS21: Active Task name : task name

<Register dump>

Toolset tips UM1399

232/311 7379953 Rev 23

OS21: ===
OS21: Stack trace (<n+1> of <N>)

OS21: Took interrupt : <interrupt EVT code>
+ OS21: Active Task ID : <task ID>
+ OS21: Active Task Stackp: <stack pointer>
+ OS21: Active Task name : <task name>

<Register dump> ...

Note: The lines marked with + are only shown if the stack frame belongs to a task, not if the stack
frame belongs to an interrupt handler; and the line marked with * is only shown when using
an OS21 kernel built with CONF_DEBUG.

The first stack trace shows the state of the core at the time the exception occurred. It should
be possible to ascertain the cause of the exception from the description of the exception,
reported faulting addresses and the register dump.

For example, the program in Figure 30 creates a task that contains a deliberate misaligned
write to memory.

Figure 30. Example program with misaligned write to memory
#include <os21.h>

void my_task (void *p)
{

*((unsigned int *)p) = 0xBA49;
}

int main (void)
{

task_t *t;

kernel_initialize(0);
kernel_start();

t = task_create(my_task, (void *)0x12344321,
OS21_DEF_MIN_STACK_SIZE, OS21_MAX_USER_PRIORITY,
"bang", 0);

task_wait(&t, 1, TIMEOUT_INFINITY);

return 0;
}

7379953 Rev 23 233/311

UM1399 Toolset tips

244

Building this program with the compiler options -g and -mruntime=os21_d, and running it
gives the output shown in Figure 31.

Figure 31. Stack trace from example in Figure 30.
OS21: ==
OS21: Stack trace (1 of 1)

OS21: Fatal exception detected
OS21: Exception Code : 0x00000100
OS21: Exception Address: 0x12344321
OS21: Exception PC : 0x8400183C
OS21: Data write to misaligned address

OS21: 0x84001838 mov.l@(15,r1),r1
OS21: 0x8400183A mov.l(3,pc),r2; (0x84001848) 0x0000BA49
OS21: >>> 0x8400183C mov.lr2,@r1
OS21: 0x8400183E add#4,r14
OS21: 0x84001840 movr14,r15
OS21: Active Task ID : 0x840378D0
OS21: Active Task Stackp: 0x8403B8FC
OS21: Active Task name : bang

OS21: R0: 0x00000000 R1: 0x12344321 R2: 0x0000BA49
OS21: R3: 0x00000003 R4: 0x12344321 R5: 0x12344321
OS21: R6: 0x00000006 R7: 0x00000007 R8: 0x84001828
OS21: R9: 0x12344321 R10: 0x0000000A R11: 0x0000000B
OS21: R12: 0x0000000C R13: 0x0000000D R14: 0x8403B9DC
OS21: R15: 0x8403B9DC

OS21: FR0_0: 0xFFFFBAD0 FR1_0: 0xFFFFBAD0 FR2_0: 0xFFFFBAD0
OS21: FR3_0: 0xFFFFBAD0 FR4_0: 0xFFFFBAD0 FR5_0: 0xFFFFBAD0
OS21: FR6_0: 0xFFFFBAD0 FR7_0: 0xFFFFBAD0 FR8_0: 0xFFFFBAD0
OS21: FR9_0: 0xFFFFBAD0 FR10_0: 0xFFFFBAD0 FR11_0: 0xFFFFBAD0
OS21: FR12_0: 0xFFFFBAD0 FR13_0: 0xFFFFBAD0 FR14_0: 0xFFFFBAD0
OS21: FR15_0: 0xFFFFBAD0

OS21: FR0_1: 0xFFFFBAD1 FR1_1: 0xFFFFBAD1 FR2_1: 0xFFFFBAD1
OS21: FR3_1: 0xFFFFBAD1 FR4_1: 0xFFFFBAD1 FR5_1: 0xFFFFBAD1
OS21: FR6_1: 0xFFFFBAD1 FR7_1: 0xFFFFBAD1 FR8_1: 0xFFFFBAD1
OS21: FR9_1: 0xFFFFBAD1 FR10_1: 0xFFFFBAD1 FR11_1: 0xFFFFBAD1
OS21: FR12_1: 0xFFFFBAD1 FR13_1: 0xFFFFBAD1 FR14_1: 0xFFFFBAD1
OS21: FR15_1: 0xFFFFBAD1

OS21: FPSCR: 0x000C0000 FPUL: 0xDEADBABE

OS21: GBR: 0x00000000 PC: 0x8400183C SR: 0x40000000
OS21: MACH: 0xDEADBABE MACL: 0xDEADBABE PR: 0x84007B86

OS21: Aborted.

Toolset tips UM1399

234/311 7379953 Rev 23

The exception has been decoded as a misaligned write to memory, and the bad address is
0x12344321. It can be seen from the disassembly that the instruction causing the error is:

OS21: >>> 0x8400183C mov.l r2,@r1

Looking at the register state for this stack frame we can see that the register R1 contains
0x12344321, and R2 contains 0x0000BA49 as expected.

A.6.2 Identifying a function that causes an exception

It is not possible to directly identify the function that causes an exception from an OS21
stack trace. However, there are several ways to indirectly establish the function.

Using GDB

To catch the exception in GDB, place a breakpoint on OS21’s unexpected exception
handler. See Figure 32.

Figure 32. Using GDB to find an exception (1)

In this example, the thread that hit the breakpoint is a pseudo thread called OS21 System
Task. This is fabricated by GDB to allow it to present the state of the system.

When the exception occurred, thread 4 is indicated as being interrupted as it was running.
To examine the state of this thread, change context to that thread, as shown in Figure 33.

Figure 33. Using GDB to find an exception (2)

(gdb) b _os21_exception_handler
Breakpoint 1 at 0x8400f18c: file os21/src/os21/exception/exception.c, line 110.
(gdb) c
Continuing.
[Switching to Thread 2147483647]

Breakpoint 1, _os21_exception_handler (exceptionp=0x840349cc)
 at os21/src/os21/exception/exception.c:110
110 {
(gdb) info threads
[New Thread 1]
[New Thread 2]
[New Thread 3]
 Id Target Id Frame
 4 Thread 3 ("bang" (active & interrupted) [0x840378d0]) 0x8400183c
 in my_task (p=0x12344321) at test.c:5
 3 Thread 2 ("Idle Task" (active) [0x84034cc0]) _os21_task_launch (
 entry_point=0x8400201c <_scheduler_idle>, datap=0x0) at os21/src/os21/task/task.c:1702
 2 Thread 1 ("Root Task" (active) [0x8402a4e4]) 0x8400b222 in _md_kernel_syscall ()
* 1 Thread 2147483647 ("OS21 System Task" (active & running) [0 (PSEUDO)])
 _os21_exception_handler (exceptionp=0x840349cc) at os21/src/os21/exception/exception.c:110
(gdb)

(gdb) thread 4
[Switching to thread 4 (Thread 3)]
#0 0x8400183c in my_task (p=0x12344321) at test.c:5
5 *((unsigned int *)p) = 0xBA49;
(gdb) print /x p
$1 = 0x12344321
(gdb)

7379953 Rev 23 235/311

UM1399 Toolset tips

244

Using sh4objdump

From the OS21 stack trace (see Section A.6.1: Understanding OS21 stack traces on
page 231), note the value of the PC register of the first stack trace. In the example above,
this is 0x8400183C. Use sh4objdump to generate a disassembly of the program, starting
before and stopping after this address. This reveals the name of the function that generated
the exception. If it does not, specify an earlier start address. See Figure 34.

Figure 34. Using sh4objdump to find an exception

The command line options given when running sh4objdump determine the nature of the
output that the tool generates. For example, the -d option given in the above example
generates an assembly listing of the machine instructions within the limits specified. For a
full list of sh4objdump command line options, see the entry for objdump in the GNU Binary
Utilities Manual.

sh4objdump -d -j .text --start-address=0x84001828 --stop-address=0x84001848 a.out

a.out: file format elf32-shl

Disassembly of section .text:

84001828 <_my_task>:
84001828: e6 2f mov.l r14,@-r15
8400182a: fc 7f add #-4,r15
8400182c: f3 6e mov r15,r14
8400182e: e3 61 mov r14,r1
84001830: c4 71 add #-60,r1
84001832: 4f 11 mov.l r4,@(60,r1)
84001834: e3 61 mov r14,r1
84001836: c4 71 add #-60,r1
84001838: 1f 51 mov.l @(60,r1),r1
8400183a: 03 d2 mov.l 84001848 <_my_task+0x20>,r2! ba49
8400183c: 22 21 mov.l r2,@r1
8400183e: 04 7e add #4,r14
84001840: e3 6f mov r14,r15
84001842: f6 6e mov.l @r15+,r14
84001844: 0b 00 rts
84001846: 09 00 nop

Toolset tips UM1399

236/311 7379953 Rev 23

Using sh4addr2line

sh4addr2line provides the source file and line number for a specified address. For
example, using the same PC as in Figure 34 (0x8400183C), pass it to sh4addr2line, as
shown in Figure 35.

Figure 35. Using sh4addr2line to find an exception

Note: The program must contain debug information.

A.6.3 Catching program termination with GDB

The normal exit path for an application is to call exit(), so a breakpoint on this function
catches typical application exit scenarios.

However, if OS21 detects an internal error, it panics. When this occurs OS21 calls the
function _os21_kernel_panic() with a string describing the cause. This function is a
good place to set a breakpoint to catch kernel panics. _os21_kernel_panic() calls
bsp_panic(), which provides a hook for a user-defined panic handler.

All exit paths go through the internal run-time library function _SH_posix_Exit_r(), so
setting a breakpoint here catches every exit path.

A.7 General tips for GDB
This section describes a variety of general tips for GDB.

A.7.1 Handling target connections

To avoid typing a sequence of commands when debugging using the GDB command line
interface, use a simple script and invoke it with the -x command line option. For example:

sh4gdb -x script.cmd

To connect to the target, define a user-defined command in the .shgdbinit command
script. The following example defines a command that connects to a board known as
target1 (in this case an STb7100-MBoard), and loads the program specified, ready for
debugging:

define target1
 file $arg0
 mb411bypass stmc
 load

end

To connect to the target from GDB with the executable a.out, invoke target1 with a.out
as its parameter:

(gdb) target1 a.out

sh4addr2line -e a.out -f 0x8400183C
my_task
source-directory/test.c:5

7379953 Rev 23 237/311

UM1399 Toolset tips

244

A.7.2 Windows path names

Although Windows permits spaces to appear within path names, using spaces may cause
some GDB commands to fail. Do not use spaces in path names.

When using autocomplete, GDB does not recognize the usual DOS path name separator,
the backslash (\). Use the Unix style forward slash (/) instead.

Windows permits file names to have 2-byte (wide) characters. Usually, this is not a problem,
because although the tools do not understand them, they pass them through and Windows
still recognizes them. However, some wide characters contain, as one of their two bytes, the
directory separator character ‘\’ or ‘/’. These are correctly interpreted by Windows, but in
some cases are misinterpreted by the GNU tools, leading to malformed paths and
apparently missing files and directories.

Note: The preferred encoding for GNU is UTF-8, and there are no problems with 2 (or more) byte
unicode encodings being misinterpreted as directory separators.

A.7.3 Debugging OS21 boot from ROM applications

When debugging boot from ROM applications built with the flasher and nandflasher tools
supplied with the Flash ROM examples (see Chapter 10: Booting OS21 from Flash ROM on
page 135), it is necessary to disable OS21 awareness while debugging the ROM bootstrap.
This is necessary because before control is passed to the main application by the ROM
bootstrap, the application must be relocated by the bootstrap from Flash ROM to main
memory. Until the application is relocated into main memory, the OS21 awareness support
in GDB extracts an undefined state from the target, resulting in undefined behavior.

The OS21 awareness in GDB may be enabled and disabled using the enable rtos and
disable rtos GDB commands, respectively (see Table 17: SuperH configuration
specific sh4gdb commands on page 63). Therefore to safely debug an OS21 boot from
ROM application, disable rtos should be set until execution has transferred control from
the ROM bootstrap to the start of the application (defined by the symbol _start) at which
point OS21 awareness can be safely enabled using enable rtos.

Note: 1 When debugging boot from ROM applications, it is generally inadvisable to configure the
target using the standard connection command as the ROM bootstraps also configure the
target, and configuring a target twice is not always reliable. GDB therefore provides the sh4
basic connection commands to connect to a target without configuring it.

2 The equivalent when connecting to a target with an ST TargetPack is to specify the
no_pokes=1 parameter in the TargetString. (See the chapter called “Standard TargetString
parameters” in the ST TargetPack User manual 8020851.)

The following example illustrates connecting to a target (in this case an STEspresso-Demo
board) which has been programmed with a boot from ROM application, and debugging the
ROM bootstrap until control is passed to the application.

Toolset tips UM1399

238/311 7379953 Rev 23

1. Connect to a target ready to debug a boot from ROM application and disable OS21
awareness.

(gdb) file a.out Main application
(gdb) disable rtos Disable OS21 awareness
(gdb) sh4 stmc "hardreset" Connect to target stmc

2. Set up the memory mapped registers for the target.

(gdb) source registers40.cmd Define register setup commands
(gdb) source display40.cmd Define register display commands
(gdb) sti5528_si_regs Define registers for the target

3. Debug target initialization and main application loading. Until execution has transferred
into the main application (GDB has jumped to the main application's entrypoint), only
the stepi and hbreak commands can be used for stepping and setting breakpoints.
The following can be useful if the executable files for the initialization stages are
compiled with debug:

(gdb) add-symbol-file elf-file base-address

4. Start debugging the main application. It is possible to set software breakpoints in the
main application at any time (as normal). However, if the debugger inserts the
breakpoint into memory before the ROM bootstrap has completed relocating the
application from ROM to main memory, the bootstrap will overwrite and effectively
disable the breakpoint. This does not apply to hardware breakpoints. The debugger will
reinsert all the software breakpoints the next time the program is interrupted, by a
hardware breakpoint, user interrupt (Ctrl+C) or any other means. The following
procedure demonstrates one way to solve the problem. Re-enable OS21 awareness
after hitting the breakpoint in the main application.

(gdb) hbreak *&start Set hardware breakpoint on the
 first instruction in application

(gdb) continue Continue execution until
 application breakpoint

(gdb) enable rtos Enable OS21 awareness

Note: Only a limited number of hardware breakpoints are available.

Depending on the target platform, different configuration commands may need to be
specified to the sh4 connection command. For example, to connect to an STi5202,
STb7100 or STb7109 target connected to an ST Micro Connect 1 or ST Micro Connect Lite
without an ST TargetPack, use:

(gdb) source stb7100jtag.cmd
(gdb) sh4 stmc "jtagpinout=st40 jtagreset -inicommand stb7100_bypass_setup"

A.7.4 Power up and connection sequence

There should be no problem with the order of power up between the host machine and the
ST Micro Connect. However, STMicroelectronics recommend that the ST Micro Connect is
always powered up before the target board, or that the target is reset after power up of the
ST Micro Connect.

The reason for this is that when the ST Micro Connect is unpowered, the ribbon cable
connection between the target and the ST Micro Connect can create a situation where the
JTAG signals are transiently undefined. If this occurs, a target reset should clear any invalid
state.

Note: This applies to all types of ST Micro Connect (STMC1, STMC2 and STMCLite).

7379953 Rev 23 239/311

UM1399 Toolset tips

244

A.7.5 Using hardware watchpoints

There are some hardware limitations that occur when using hardware watchpoints, for
example, hardware watchpoints have limited capability in the regions they are able to watch.
This is described in Hardware watchpoint support in Section B.2.4: Silicon specific
commands on page 263.

Watch expressions can be used with literal addresses instead of symbols (which may
require more than one hardware watchpoint to implement). For example, the following
watches a 4-Kbyte region at the address 0x84001000 without any access size checking
(and no page alignment issues):

use-watchpoint-access-size off
watch *(unsigned char[4096] *) 0x84001000
continue

GDB supports alternative forms of the watch expression, such as:

watch *(unsigned char *) 0x84001000 @ 4096

and:

watch {unsigned char} 0x84001000 @ 4096

A.8 Polling for keyboard input
To enable host keyboard polling from an application running on the target, use the
_SH_posix_PollKey() function.

_SH_posix_PollKey Enable host keyboard polling

Description: _SH_posix_PollKey() polls the host keyboard for a keypress. If no keypress is
detected, the function returns 0. If a keypress is detected then the function returns 1,
and the int pointed to by keycode receives the ASCII keycode of the key that was
pressed.

Definition: int _SH_posix_PollKey(int *keycode);

Arguments:

Returns: 0 if no key was pressed, 1 if a key was pressed.

keycode The ASCII keycode of the pressed key.

Toolset tips UM1399

240/311 7379953 Rev 23

A.9 Changing ST40 clock speeds using GDB command scripts

Warning: This section describes a method for managing the clocks of
ST40 SoCs that predates the introduction of ST TargetPacks.
Consequently, this information is not compatible with the use
of ST TargetPacks.

The ST40 Micro Toolset provides GDB command scripts that define user commands to
simplify the programming and display of the clock configuration for the subsystems of ST40
SoCs (for example, the CPU, STBus, memory and peripheral subsystems). See Table 53 on
page 241.

The general mechanism by which the user commands change the clock frequencies is as
follows.

1. Stop the PLL.

2. Set the PLL ratios and setup mode.

3. Restart the PLL.

4. Wait for the PLL to lock.

In general, when changing the internal clock frequencies, it is PLL1 of the primary
CLOCKGEN subsystem that is reprogrammed. As a consequence of stopping this PLL, the
ST40 reverts to using the external clock as its reference clock frequency. This has the effect
of setting the internal clock frequencies to be a ratio of the external clock frequency as
defined by the CPG.FRQCR register or the CLOCKGEN.PLL1CR1 register (see the
SoC-specific datasheet for further information).

The effect of stopping PLL1 on the internal clocks may break the constraint that the
frequency of the ST40 UDI clock (DCK) must be less than the peripheral clock frequency.

Since the default UDI clock frequency adopted by the ST40 Micro Toolset (for an ST Micro
Connect 1) is 10 MHz, it is likely that the above constraint will be broken when changing the
internal clock frequencies. This is because the standard external clock frequency on
STMicroelectronics’ boards is 27 MHz and the standard peripheral clock ratios are 1/3, 1/6
and 1/8 of the reference clock frequency, that is, a peripheral clock frequency of 9 MHz,
4.5 MHz or 3.4 MHz respectively.

In order to support the changing of ST40 clock frequencies, the user command linkspeed
is provided to allow the UDI clock frequency used by GDB to be changed in order to comply
with the above constraint.

The linkspeed command is invoked as follows:

linkspeed speed[scale]

where speed is a decimal value of the UDI clock frequency and scale is optional. scale
can be Hz, KHz or MHz. If scale is omitted, Hz is assumed.

Permitted frequencies for an ST Micro Connect 1 are:

25MHz 20MHz 12.5MHz 10MHz 6.25MHz 5MHz

3.125MHz 2.5MHz 1.5625MHz 1.25MHz 781.25KHz 625KHz

390.625KHz 312.5KHz 195.312KHz 156.25KHz 97.656KHz 78.125KHz

7379953 Rev 23 241/311

UM1399 Toolset tips

244

If the specified frequency does not equal one of the permitted frequencies, the nearest,
lower frequency is used. 610 Hz is the minimum permitted for an ST Micro Connect 1.

The following user commands are defined in st40clocks.cmd to set the ST40 clocks to
the standard reset mode frequencies (see the relevant SoC datasheet for details):

• st40_cpu100bus50mem50per25 (mode 0)

• st40_cpu133bus88mem88per44 (mode 1)

• st40_cpu150bus100mem100per50 (mode 2)

• st40_cpu166bus110mem110per55 (mode 3)

• st40_cpu200bus100mem100per50 (mode 4)

• st40_cpu250bus125mem125per62 (mode 5)

The following example changes the clock frequencies of a target to mode 3 (assuming that it
is currently in mode 0):

linkspeed 2.5MHz
st40_cpu166bus110mem110per55
linkspeed 10MHz

Where linkspeed 2.5MHz changes the UDI clock frequency to below that of the
peripheral clock frequency (of 3.4 MHz assuming the target is in mode 0 and a 27 MHz
external clock) and linkspeed 10MHz returns the UDI clock frequency back to the default.

Table 53 lists:

• GDB command scripts that define the user commands for programming the clocks, see
the ST40 Micro Toolset GDB command scripts (8045872)

• the user command that displays the clock configuration for each SoC

• examples of SoCs that use this command

48.828KHz 39.062KHz 24.414KHz 19.531KHz 12.207KHz 9.765KHz

6.103KHz 4.882KHz 3.051KHz 2.441KHz 1.525KHz 1.220KHz

762Hz 610Hz

Table 53. CLOCKGEN commands

Command script Display command Example SoCs

st40clocks.cmd st40_displayclocks ST40RA(1), ST40GX1(1)

1. Legacy platforms

sti5528clocks.cmd sti5528_displayclocks STi5528(1)

stm8000clocks.cmd stm8000_displayclocks STm8000(1)

stb7100clocks.cmd stb7100_displayclocks STi5202, STb7100, STb7109

sti7200clocks.cmd sti7200_displayclocks STi7200

Toolset tips UM1399

242/311 7379953 Rev 23

A.10 Just in time initialization
A common problem when writing a library is performing just in time initialization. It is usually
accepted that the first thread to call a library function is responsible for initializing it. This
often requires allocating memory or synchronization objects like semaphores. The problem
is how to ensure that this is atomic, that is, the initialization is performed precisely once.
Allocation can result in the caller blocking; therefore, special consideration has to be given
as to how to achieve this atomic initialization.

The following describes a simple strategy which guarantees this atomicity.

For a library to initialize, the first caller must create a semaphore to serialize access to the
library resources. The following code, which omits error condition checking to aid clarity,
guarantees that the semaphore is created precisely once:

static semaphore_t *volatile library_sem = NULL;
...

if (library_sem == NULL)
{
 semaphore_t *local_sem = semaphore_create_fifo(1);
 task_lock();
 if (library_sem == NULL)
 {
 library_sem = local_sem;
 }
 task_unlock();
 if (library_sem != local_sem)
 {
 semaphore_delete(local_sem);
 }

}

When this code completes, the library semaphore has been created, if necessary. The first
check, which occurs unlocked, is to see if the semaphore already exists. If it does, then
there is nothing more to do. If it does not, then the code allocates a new semaphore, but
keeps the address of the semaphore in a local variable. If the task is descheduled whilst
creating the semaphore, it is possible for another task to enter this routine. It too would see
that no library semaphore exists, and would similarly attempt to create a new one. When the
task returns from creating the semaphore, it locks the scheduler to prevent preemption.
Under this lock it again checks the library semaphore. If it still does not exist, the library
semaphore is assigned the address of the semaphore just created. The scheduler is now
unlocked.

The lock ensures that precisely one of the competing tasks assigned a non-zero value to the
library semaphore pointer. When out of the lock, the library semaphore is checked against
the local one. If they are identical, then it is known that the local semaphore was used, and
nothing more needs to be done. If they are different, then another task assigned the library
semaphore pointer. In this case, the local semaphore must be discarded; it is not needed as
the library semaphore already exists.

7379953 Rev 23 243/311

UM1399 Toolset tips

244

A.11 Using Cygwin
The ST40 Micro Toolset requires no more than a standard Windows environment for normal
operation. However, if a Unix-like environment is desired, the toolset may be used in
conjunction with Cygwin (www.cygwin.net).

Cygwin provides a number of Unix-like features to its own applications, but cannot extend
this support to other non-Cygwin applications, such as the tools in the ST40 Micro Toolset.

To improve interoperability and to use Cygwin as a build environment, the ST40 Micro
Toolset provides a limited amount of support for Cygwin environments.

Many of the tools accept Cygwin paths according to the ST_CYGPATH_MODE environment
variable, see Table 54.

There are a few limitations:

• paths must be specified in canonical form (that is, /cygdrive///c does not work)

• relative paths cannot pass through these paths (that is, ../../cygdrive/c does not
work)

• Cygwin symbolic links are not understood

The make tool provided by the ST40 Micro Toolset does not accept Cygwin paths. Instead
use the make tool supplied with Cygwin by placing the Cygwin bin directory earlier in the
PATH environment variable than the toolset bin directory.

There are a number of other tools provided with the toolset which also do not accept Cygwin
paths. In these cases, a Windows path must be specified. To convert a path from Cygwin
format to Windows format (and back again), use the Cygwin cygpath tool.

The following tools in the ST40 Micro Toolset do not support Cygwin paths:

• censpect (see Section 8.4 on page 110)

• os21decodetrace (see Section 12.5 on page 174)

• os21usertracegen (see Section 12.1.3 on page 168)

• trcview (see Section 8.5 on page 120)

• GDB branchtrace command (see Section E.2 on page 278)

• GDB profiler command (see Section D.1 on page 271)

• GDB targetpack command (see Section F.1 on page 282)

• ST40 simulator commands (see Section 8.3 on page 104)

Cygwin paths are not supported by ST40 applications linked with the libdtf I/O interface
library (see Section 1.4.3 on page 24).

Table 54. ST_CYGPATH_MODE settings

Environment variable setting Description

ST_CYGPATH_MODE=off No path translation is attempted.

ST_CYGPATH_MODE=normal or
ST_CYGPATH_MODE is not set.

/cygdrive/X is converted to X:/.(1)

1. These modes are supported only when using a version of Cygwin earlier than 1.7. They are not supported
when using version 1.7 or later.

ST_CYGPATH_MODE=full
/cygdrive/X is converted as above and any other Cygwin
mount points (such as /usr) are also converted.(1)

Toolset tips UM1399

244/311 7379953 Rev 23

Note: The following tools, implemented as Perl scripts, do support Cygwin paths if they are run
using the Perl interpreter supplied by Cygwin:

• os21prof

• os21usertrace

• sh4rltool

A.12 Using precompiled headers
In a large project, it is likely that each source file needs to include the same set of header
files. The overhead of the compiler having to process this same set of files for each source
file can account for a large proportion of the build time, therefore GCC(a) provides the ability
to precompile header files in advance of the normal build operation. Builds that use the
precompiled header file instead of normal text header files complete much faster.

To create a precompiled header file, simply compile it in the same mannner as any other
source file. If it has the customary extension that identifies it as a C or C++ header file (that
is, .h, .hh or .H), GCC creates a precompiled header file from this file automatically. The
name of the precompiled header file is the same as the original header file but with a .gch
extension appended; therefore the compiled version of the input file called header.h is
header.h.gch.

If the header file does not have an .h, .hh or .H extension, then use the command line
option -x c-header or -x c++-header (as appropriate) to inform GCC to create a
precompiled header file from the input file.

When compiling a source file, whenever GCC encounters a #include directive, it searches
in the first instance for the precompiled version of the header file before the text version of
the file. For example, if #include “all.h” appears in the source file, and all.h.gch is
located in the same directory as all.h, then GCC uses the precompiled header file
all.h.gch in preference to all.h, as long as certain conditions are met. If these
conditions cannot be met, GCC uses all.h instead.

For more information (including details of the conditions that apply to the use of precompiled
headers), see the section entitled “Using Precompiled Headers” in Using the GNU Compiler
Collection.

a. GCC can be any of the compiler tools, sh4gcc, sh4g++ or sh4c++.

7379953 Rev 23 245/311

UM1399 Development tools reference

265

Appendix B Development tools reference

This appendix provides a reference for the development tools features that are specific to
the ST40 cores.

B.1 Code development tools reference

B.1.1 Preprocessor predefines and asserts

The compiler provides a set of predefined preprocessor macros (built-ins) that are listed in
Table 55. These are in addition to the standard GNU C Compiler (GCC) predefines (such as
defining the version of GCC). For details of these refer to the Using and Porting the GNU
Compiler Collection manual.

Table 55. Preprocessor predefines and asserts

Predefine or Assert Compiler option

cpu=sh (Assert)(1) This is always defined.

machine=sh (Assert)(1) This is always defined.

__BARE_BOARD__ -mruntime=bare (2)

__BIG_ENDIAN__ -mb

__LITTLE_ENDIAN__ -ml (2)

__MOVD__ -mfmovd

__os21__
__OS21_BOARD__

-mruntime=os21
-mruntime=os21_d

__sh__ This is always defined.

__SH_FPU_ANY__

-m4 (2)

-m4-single
-m4-single-only
-m4-100
-m4-100-single
-m4-100-single-only
-m4-200
-m4-200-single
-m4-200-single-only
-m4-300
-m4-300-single
-m4-300-single-only

__sh3__(3)
__SH3__

-m4-nofpu
-m4-100-nofpu
-m4-200-nofpu
-m4-300-nofpu
-m4-400
-m4-500

Development tools reference UM1399

246/311 7379953 Rev 23

Note: All predefined macros in Table 55 can be undefined using the -U option. For example
-U__sh__ undefines __sh__ after it has been defined.

__SH4__

-m4 (2)

-m4-100
-m4-200
-m4-300

__SH4_100__

-m4-100
-m4-100-single
-m4-100-single-only
-m4-100-nofpu

__SH4_200__

-m4-200
-m4-200-single
-m4-200-single-only
-m4-200-nofpu

__SH4_300__

-m4-300
-m4-300-single
-m4-300-single-only
-m4-300-nofpu

__SH4_400__ -m4-400

__SH4_500__ -m4-500

__SH4_NOFPU__

-m4-nofpu
-m4-100-nofpu
-m4-200-nofpu
-m4-300-nofpu
-m4-400
-m4-500

__SH4_SINGLE__

-m4-single
-m4-100-single
-m4-200-single
-m4-300-single

__SH4_SINGLE_ONLY__

-m4-single-only
-m4-100-single-only
-m4-200-single-only
-m4-300-single-only

1. GCC assertions are deprecated, and should not be used.

2. Default option.

3. The ST40 variants without an FPU use the SH-3 ABI (for parameter passing) and define __SH3__ rather
than __SH4__. Programs should not confuse the ABI definition with the processor variant as they are not
the same.

Table 55. Preprocessor predefines and asserts (continued)

Predefine or Assert Compiler option

7379953 Rev 23 247/311

UM1399 Development tools reference

265

B.1.2 SH-4 specific GCC options

The GCC options listed in Table 56 are specific to the SH-4 family of cores (which includes
the ST40).

Table 56. SH-4 specific GCC options

Option Use Supported

-m4 (1) Compile for a generic SH-4 core. Yes

-m4-100 Compile for an ST40-100 series core. Yes

-m4-200 Compile for an ST40-200 series core. Yes

-m4-300 Compile for an ST40-300 series core. Yes

-m4-340

Compile for an ST40-340 series core. All FPU and
MMU related instructions are disallowed, including
those in assembler inserts. Floating-point calculations
are software emulated.

Yes

-m4-400

Compile for an ST40-400 series core. All FPU and
MMU related instructions are disallowed, including
those in assembler inserts. Floating-point calculations
are software emulated.

Yes

-m4-500

Compile for an ST40-500 series core. All FPU
instructions are disallowed, including those in
assembler inserts. Floating-point calculations are
software emulated.

Yes

-m4-nofpu

Compile for a generic SH-4 core with the FPU
disabled. No FPU instructions are allowed, including
those in assembler inserts. Floating-point calculations
are software emulated.

Yes

-m4-100-nofpu
This is the same as -m4-nofpu but for an ST40-100
series core.

Yes

-m4-200-nofpu
This is the same as -m4-nofpu but for an ST40-200
series core.

Yes

-m4-300-nofpu
This is the same as -m4-nofpu but for an ST40-300
series core.

Yes

-m4-single
Compile for a generic SH-4 core with a pervading
precision of single. The default is double precision.

Yes

-m4-100-single
This is the same as -m4-single but for an ST40-100
series core.

Yes

-m4-200-single
This is the same as -m4-single but for an ST40-200
series core.

Yes

-m4-300-single
This is the same as -m4-single but for an ST40-300
series core.

Yes

-m4-single-only
Compile for a generic SH-4 core with double precision
disabled. Double precision arithmetic and variables
are downgraded to single precision.

Yes

-m4-100-single-only
This is the same as -m4-single-only but for an
ST40-100 series core.

Yes

Development tools reference UM1399

248/311 7379953 Rev 23

-m4-200-single-only
This is the same as -m4-single-only but for an
ST40-200 series core.

Yes

-m4-300-single-only
This is the same as -m4-single-only but for an
ST40-300 series core.

Yes

-malign-small-blocks=n

Set the size in bytes to which branch targets are
aligned. The default is n = 16, which is half the size of
the cache line. If n = 0, align all blocks at the start of a
cache line. (This feature only applies to optimization
options -O2 and -O3.)

Yes

-mb Generate big endian code. Yes

-mbigtable

Use 4-byte fields for switch tables.
This only affects the default field length. When
optimizing, the field length is chosen according to
actual requirements.

Yes

-mboard=board Use board support package board. Yes

-mdalign Align doubles on 8-byte boundary. Yes

-mfmovd

Use double (8-byte) floating-point loads and enable
memory block copying using FPU 64-bit data path.
This option assumes -mdalign and a change to the
ABI.

Yes(2)

-mhitachi Hitachi ABI (Differences in save/restore policy). No

-mieee (3) Better IEEE conformance (provides NaN and Inf
support). Equivalent to -fno-finite-math-only.

Yes

-minline-ic_invalidate
Inline code to invalidate instruction cache entries after
setting up nested function trampolines. Depending on
the implementation, this does not always work.

-misize Annotate assembler listing with estimated address. Yes

-ml(3) Generate little endian code. Yes

-mno-ieee
Use SH-4 floating-point instructions with no IEEE
fixup.

Yes

-mnomacsave Do not save mac registers over function calls. No

-mpadstruct Pad structs up to multiples of 4 bytes. Yes

-mprefergot Use GOT not GOTOFF (PIC code). Yes

-mrelax Use linker relaxation. Yes

-mruntime=runtime Use the run-time library runtime. Yes

-musermode
Do not generate supervisor-mode only code. If the
inline code does not work in user mode, this implies
-mno-inline-ic_invalidate.

Yes

1. Default option (see Impact of the -m4 option on the assembler)

2. Supported for ST40-300 series cores only

3. Default option

Table 56. SH-4 specific GCC options (continued)

Option Use Supported

7379953 Rev 23 249/311

UM1399 Development tools reference

265

Impact of the -m4 option on the assembler

If an -m4 option is specified with an ST40 core variant (such as -m4-200 or -m4-300),
GCC instructs the assembler to reject any instructions that are not supported by that core
variant by passing a core specific --isa=isa option to the assembler (such as
--isa=sh4 or --isa=st40-300).

If an -m4 option without an ST40 core variant is specified (such as -m4, -m4-single,
-m4-single-only or -m4-nofpu), GCC does not generate instructions specific to a
particular core variant (for example, the ICBI instruction of the ST40-300 core). However
GCC does instruct the assembler to accept core specific instructions without error by
passing the --isa=sh4-up or --isa=sh4-nofpu-up option to the assembler.

This enables assembly code to be used in generic code that dynamically detects the core
variant, and then uses instructions most appropriate for the core type.

Compiling libraries for a specific core

The standard libraries have been compiled for a generic SH-4 core using the options
-m4 -m4-nofpu -m4-single -m4-single-only. This ensures that these libraries do
not contain any core variant specific instructions and can therefore be linked into
applications that run on any of the ST40 cores.

Although compiling for a specific core may provide improvements in performance, it also
reduces the compatibility of the object files. Object files compiled for a specific variant can
only be linked into applications targeted for that specific variant of the ST40 core.

B.1.3 GCC assembler inserts

GCC enables assembler code to be embedded in C functions by using the asm statement
extension. The format for this statement is:

asm ("code" [: [outputs] [: [inputs] [: clobbers]]])

where code is the assembler code to be inserted in the output file.

The remaining parameters describe the effects of code on the machine and program state.
code uses printf-style parameter names to refer to the parameters that are listed in the
inputs and outputs sections, for example, %0 refers to the first value, and %1 refers to
the second value. outputs is the list of objects modified by code. inputs is the list of
objects read by code. clobbers is the list of values that are modified by code, and are not
listed in the outputs section. For further details (in general, and for the constraints and
qualifiers in particular), refer to the section “Assembler Instructions with C Expression
Operands” in Using and Porting the GNU Compiler Collection manual.

Each operand is of the form qualifier(operand). For example:

asm ("mov %1, %0" : "=r"(i) : "r"(j)); /* i=j; No clobbers */

The set of qualifiers (operand constraints) pertaining to the ST40 are listed in Table 57. The
= means that this operand is write-only for this instruction, the previous value is discarded
and replaced by output data. Any letters that are not listed correspond to “no register”. The
following is an example of the use of these qualifiers:

asm ("or #0xFF, %0" : "+z"(x));
/* x |= 0xff; No inputs or clobbers */

This ensures that x is loaded into R0 as required by the instruction. The + means that the
register is both input (read) and output (written to).

Development tools reference UM1399

250/311 7379953 Rev 23

The SuperH configuration defines special characters that are useful for ST40 code, these
are listed in Table 58 and examples are provided below.

In the following examples, note how the template characters are placed between the % and
the number. They may be used for parameters of any type, whether they be registers or
memory addresses.

Example of %R and %S

This example demonstrates how to express the C expression shreg = shreg << 1 in
assembler, where shreg is of type long long (64-bit).

asm ("shll %R0; rotcl %S0" : "+r" (shreg) : : "t");

Table 57. ST40 qualifiers (operand constraints)

Qualifier

(Assembler register names)

Use

(Corresponding ST40 register)

"c" FPSCR

"d" Double FP register

"f" FP register

"l" PR register

"r" General purpose register

"t" T bit - use to indicate side effecting T bit

"w" FP0 (also known as FR0)

"x" MAC register (MACH and MACL)

"y" FPUL (FP communication register)

"z" R0

Table 58. ST40 inline assembler template characters

Character Description

O

Substitute a constant without the #. This is useful to emit a
constant with .long. The value must be a constant or an
expression that evaluates to a constant. The example
below uses a function pointer.

R
Substitute the register name corresponding to the least
significant 32 bits of a 64-bit value (irrespective of the
endianness).

S
Substitute the register name corresponding to the most
significant 32 bits of a 64-bit value (irrespective of the
endianness).

T
Substitute the register name corresponding to the second
32-bit word of the 64-bit value (the same as R in big endian
mode, and the same as S in little endian mode).

7379953 Rev 23 251/311

UM1399 Development tools reference

265

Example of %T

This example demonstrates the C expression result = flag == 0 in assembler, where
flag is of type long long (64-bit).

asm ("mov %1,%0; or %T1,%0; tst %0,%0 ; movt %0"
 : "=r" (result) : "r" (flag) : "t");

Note: %1 and %T1 both refer to the same 64-bit variable, flag, each corresponding to a different
32-bit word.

Example of %O

This example demonstrates a method of implementing the C expression
for (;;) fun () in assembler.

asm __volatile__ ("mov.l 0f, r1\n\t"
 ".balign 4\n\t"
 "mova 0f, r0\n\t"
 "add r1, r0\n\t"
 "braf r1\n\t"
 "lds r0, pr\n"
 "0: .long %O0 - 0b"
 : : "i" (fun));

B.1.4 Compiler pragmas and attributes

The compiler supports the following pragmas and attributes. Note some pragmas can also
be written as attributes.

Note: These pragmas and attributes should not be used in OS21 applications as OS21 manages
interrupts and traps.

Pragma interrupt

This pragma specifies that a function is an interrupt handler, for example:

#pragma interrupt(fred)
int fred(int i);

The compiler alters the generated code as follows:

• uses RTE as the function return instruction (instead of RTS)

• executes an extended context save and restore to save the registers normally
considered as scratch registers

Note: This pragma must be specified before any of the following interrupt handler related
attributes are used.

interrupt_handler attribute

This is equivalent to the interrupt pragma and is specified as follows:

int fred(int i) __attribute__((interrupt_handler));

Development tools reference UM1399

252/311 7379953 Rev 23

sp_switch attribute

This is used in conjunction with the interrupt_handler attribute to specify that the
handler should be executed on an alternative stack. The compiler generates code to switch
to and from this stack on function entry and exit respectively. The stack is named as a
parameter to the sp_switch attribute as follows:

extern void *VBR_STACK;
int fred(int i) __attribute__((interrupt_handler,

sp_switch("VBR_STACK")));

This specifies that VBR_STACK is to be used as the interrupt stack.

naked attribute

Use this attribute to disable the generation of prologue and epilogue code to save and
restore the callee save registers of a function, as defined by the ABI. See Using the GNU
Compiler Collection for more information.

trap_exit attribute

The compiler generates a TRAPA instruction to exit the function rather than a standard RTE
exit (the trap_exit attribute only applies to interrupt handlers). It also saves all registers
before using them, even registers defined to be caller save.

#pragma interrupt(fred)
int fred(int i) __attribute__((trap_exit(42)));

The number is the parameter to the TRAPA instruction (the trap number).

Pragma trapa

This is equivalent to the interrupt pragma, except that it does not save extra registers.

#pragma trapa(func)
int func(int i);

Pragma GCC optimize

Use this pragma to set global optimization options for all functions defined in the source file
from the point where this pragma is specified to the end of the file.

#pragma GCC optimize (string ...)

where string is a string of optimization options to apply to the functions that follow the
pragma. More than one string can be specified. This is equivalent to adding the
optimize("string") attribute to each function.

This pragma enables frequently executed functions to be compiled with more aggressive
optimization to produce faster (but larger) code, whilst all other functions in the source file
are called with less aggressive optimization to ensure that the code is kept as small as
possible.

7379953 Rev 23 253/311

UM1399 Development tools reference

265

B.1.5 Link time optimization

The Link Time Optimizer (LTO) enables GCC to widen the scope of optimizations across
multiple object files. For example, it allows a function to be inlined anywhere in an
executable or relocatable library.

This section provides a high level view of the LTO in order to understand its limitations. For
more information, see the relevant section of the Using the GNU Compiler Collection
manual.

The LTO operates in two stages. Both stages are invoked using the -flto command line
option.

1. The first stage is when compiling a source file. The resulting object file contains both
the executable code plus the GIMPLE internal representation in dedicated .lto
sections. The .lto sections increase the file size, but are not loaded into memory.
This means that the object file can be used in exactly the same way as any other object
file, including as inputs to relocatable and static libraries. The .lto sections are
ignored unless the -flto option is also specified when linking.

2. The LTO itself is invoked by the linker by passing the -flto option on the link
command line. It is possible to mix object files compiled without the -flto option (such
as system libraries) with objects that were compiled with the -flto option. The
compiler driver organizes the linker and the compiler invocations to construct the
function dependencies, to compile and optimize the code and to perform the final link.
The only difference is that the link takes longer than usual and uses more host memory.

Dead function removal

Function references are seen either from a non -flto compiled object file or from the
GIMPLE internal representation. Consequently, functions that are not referenced are not
emitted. This provides the same advantage as the linker garbage collector option
(--gc-sections) but without the need to compile the functions into different sections.

The original method to perform dead function removal is:

sh4gcc -c -ffunction-sections a1.c a2.c
sh4gcc -mboard=board -Wl,--gc-sections a1.o a2.o

Note: This method is still supported by GCC, although the recommended method is to use LTO.

Dead function removal can now be performed automatically as follows:

sh4gcc -c -flto a1.c a2.c
sh4gcc -mboard=board -flto a1.o a2.o

The linker traverses the call graph starting from all entry points visible to the outside. This
includes:

• the ELF entry point given with the -e linker option (the default is the symbol start) or
the ENTRY directive in the linker script

• functions that are explicitly marked with __attribute__((used))

This may exclude many functions that are needed by the user but do not appear in the call
graph. For example, a dump function that is only required for debugging or functions called
from inline assembly code are not emitted. To force these functions to be emitted, they
should be explicitly marked as such with __attribute__((used)).

Development tools reference UM1399

254/311 7379953 Rev 23

In the following example, the function func would not be emitted without
__attribute__((used)) being specified:

int main(void)
{
 asm("mov.l 1f,r0");
 asm("jmp @r0");
 asm("nop");
 asm(".align 2");
 asm("1: .long _func");

}

void __attribute__((used)) func(void)
{
...
}

Static functions

At the file level, static functions in C are visible inside their compilation unit. Because the
LTO merges multiple compilation units, static functions are renamed to avoid name clashes
and multiple definitions. The mangled name is specific to the implementation only and
cannot be used to reference the function. This means that static functions cannot be
referenced from inline assembly code if they have been compiled with -flto. They must be
declared as global.

Debugging

When an application is linked with -flto, only limited debug information is generated. This
means that only limited debugging is possible when the LTO is used.

The LTO and optimization levels

For the LTO to operate effectively, it is necessary to specify the same optimization options
when linking as well as compiling. This is because the optimizations are performed twice,
once to compile the object files and again to link the executable (by a call back to the
compiler). For example, consider the following sequence:

sh4gcc -O2 -flto -c a1.c a2.c
sh4gcc -mboard=board -flto a1.o a2.o -o a.out

The executable a.out is not optimized because the -O2 option is not specified. In order to
ensure that the executable is optimized, include the -O2 option in the link command line, as
shown below:

sh4gcc -mboard=board -O2 -flto a1.o a2.o -o a.out

This requirement applies to all code generation options that affect optimization; that is, the
-O, -m and -f options.

Note: The optimization option specified when linking object files supersedes the optimization
options used to compile the object files. For example, in the following sequence:

sh4gcc -O3 -flto -c a1.c a2.c
sh4gcc -mboard=board -Os -flto a1.o a2.o -o a.out

the GIMPLE internal representation from files a1.o and a2.o are recompiled at
optimization level -Os rather than -O3 as originally compiled.

7379953 Rev 23 255/311

UM1399 Development tools reference

265

The following pitfalls and limitations must be taken into account.

• If no optimization options are specified when linking, the LTO does not optimize the
resulting executable, even if the object files are compiled with optimization. To avoid
this happening, specify the optimization options when linking.

• Mixing incompatible optimization flags between compiling object files and final link may
result in unpredictable behavior. Examples of incompatible flags are those defining the
ABI (for example, -m4-single) or if they have semantic impacts (such as
-fno-strict-aliasing or -fno-zero-initialized-in-bss).

– For example, the OS21 libraries are compiled with the option
-fno-zero-initialized-in-bss to ensure that OS21 thread awareness is
available immediately after loading the application code. This means that if the
user wishes to debug an OS21 application (even at the basic level supported by
the LTO), that application must either have the option
-fno-zero-initialized-in-bss applied on the final link, or they must
disable RTOS awareness (using the GDB command disable rtos) until main
is called.

– The restriction described above also applies when using OS21 Trace and OS21
Profiler with GDB.

Note: Adding the -fno-zero-initialized-in-bss option has the undesirable effect of
moving all data objects that have been zero initialized from the BSS to the data section,
which increases image size.

Builtin functions

Bultin functions are functions that are known internally by GCC. Such functions can be
generated inline very late in the compilation flow, which means that redefining them in object
files compiled with -flto conflicts with the inlined definition. For this reason, builtin
functions do not appear in the list of functions referenced by the LTO (as this would mean
they would be eliminated) but are still referenced nevertheless.

The functions that cannot be compiled with -flto include all of the functions defined as
reserved in the ISO/IEC standard 9899:1999 Programing languages -- C. In addition, any
functions that these reserved functions are dependent upon (directly or indirectly) cannot be
compiled with -flto.

For this reason, the -flto option is limited to user code that is not used to compile runtime
or system libraries.

Symbol redefinition

It is not possible to redefine a symbol after the LTO compilation stage. For example, the two
methods traditionally used for redefining a symbol do not work for the following reasons.

• The linker --wrap=symbol option resolves any undefined symbol referenced in the
module by __wrap_symbol. As all modules are merged into one by the LTO, the
symbol is already defined and cannot be resolved with __wrap_symbol.

• The sh4objcopy -redefine-sym option allows the user to rename the symbols in
the symbol table. This creates a conflict with the symbol being referenced from the
GIMPLE internal object representation.

Development tools reference UM1399

256/311 7379953 Rev 23

B.1.6 Stack overflow checking

The ST40 Micro Toolset supports the GCC -fstack-protector option to check for stack
buffer overflows. The compiler achieves this by adding guard variables on the stack of
functions with variables that are at risk of buffer overflows (such as functions that call
alloca or have buffers larger than eight bytes). The guard variables are initialized with a
canary value (that is, an arbitrary value that is known before the function is called and can
be checked when the function returns). If the value of the guard variable is different when
the function returns, this indicates that a buffer overflow has occurred and the stack
protection support library raises an error. The error handling (and the initialization of the
canary value) is handled by the libssp stack protection support library.

The version of the libspp library distributed with the ST40 Micro Toolset contains some
modifications to improve its suitability for use in embedded systems. The main changes are
the addition of overrides for initialization and error handling, as described in the following
sections.

__guard_setup_override Initialize the canary value

Definition: void __guard_setup_override(void **guard)

Arguments:

Returns: None.

Description: This function, if defined, is called by __guard_setup in the libssp library. Define
this function to set the canary value required for the guard variable. It can be a
random or a fixed value.

The default is to use a fixed value of 0xFF0A0000

guard A pointer to a variable that contains the canary value.

7379953 Rev 23 257/311

UM1399 Development tools reference

265

__chk_fail_override User defined error handler

Definition: void __chk_fail_override(void)

Arguments: None

Returns: None

Description: This function, if defined, is called by __chk_fail in the libssp library. Define this
function to handle a stack overflow error.

If the function is not defined, or if it returns, __chk_fail calls the GCC builtin
function __builtin_trap. This executes a TRAPA instruction with an operand
value of 42.

__stack_chk_fail_override User defined error handler

Definition: void __stack_chk_fail_override(void)

Arguments: None

Returns: None

Description: This function, if defined, is called by __stack_chk_fail in the libssp library.
Define this function to handle a stack overflow error.

If the function if not defined, or if it returns, __stack_chk_fail calls the GCC builtin
function __builtin_trap. This executes a TRAPA instruction with an operand
value of 42.

Development tools reference UM1399

258/311 7379953 Rev 23

B.1.7 Assembler specifics

The SH-4 assembler recognizes the command line options listed in Table 59 in addition to
the standard assembler options.

Table 59 lists the most useful ST40 --isa options. These options allow the assembler to do
SH-4 specific optimizations (in conjunction with --relax). The assembler might determine
this for itself, but only if there is an SH-4 specific instruction in the code. The --isa option
allows any supported architecture variant to be selected.

When the --isa option is not specified, the assembler selects the most appropriate
architecture for an object file based on the instructions used. Therefore, if no SH-4 specific
instructions are used, it is quite normal for an SH-4 object file to be set as sh4-nofpu, sh3
or an even earlier variant.

Although the assembler may set the architecture for a non SH-4 architecture, it should be
noted that the compiled code still implements the ABI of the originally specified architecture.
In general, it is not the case that two object files purporting to be for the same architecture
are compatible. For example, an object file intended for use with the sh4-nofpu
architecture uses a different ABI to an object file intended for use with an SH-4 with an FPU,
but does not happen to use any floating-point instructions (and is therefore also set to the
sh4-nofpu architecture).

Note: The linker almost always links such object files without error, and in some limited cases, the
resulting application may even execute successfully.

The SH-4 assembler recognizes the pseudo-opcodes listed in Table 60.

Table 59. Assembler command line options

Option Description

--isa=sh4 Assemble for a generic SH-4 core.

--isa=st40-300 Assemble for an ST40-300 series core.

--isa=sh4-nofpu
Assemble for a generic SH-4 core without an FPU. This is useful for
the ST40-500 series cores. Any FPU instructions are rejected with
an error.

--isa=st40-300-nofpu
Assemble for an ST40-300 series core without an FPU. Any FPU
instructions are rejected with an error.

--isa=sh4-nommu-nofpu
As for --isa=sh4-nofpu but MMU instructions are also rejected.
This is useful for the ST40-400 series cores.

Table 60. Specific pseudo-operations

Pseudo opcodes Action

.long value

.int value
Allocate 4 bytes

.word value

.short value
Allocate 2 bytes

.big Specify big endian

.little Specify little endian

.heading "name" Specify name as name of listing file

7379953 Rev 23 259/311

UM1399 Development tools reference

265

The assembler supports the assembler syntax as defined in the ST40 core and instruction
set architecture reference manual (7182230), in addition lower case instructions and
register names are supported. It should be noted that for the SH-4 family of cores, numeric
literals must be prefixed by a #.

Table 61 lists the register names recognized by the assembler.

.page New page in listing file

.uses
Used to label a call instruction for linker relaxation. (Used by
compiler to support -mrelax)

.uaword value

.2byte value
Unaligned 2-byte allocation

.ualong value

.4byte value
Unaligned 4-byte allocation

.uaquad value

.8byte value
Unaligned 8-byte allocation

Table 61. Recognized register names

Register name Use

R0 to R15 General purpose registers

FR0 to FR15 Floating-point registers

DR0, DR2, DR4, DR6, DR8, DR10,
DR12, DR14

Double-precision floating-point registers

SR, GBR, SSR, SPC, SGR, DBR Control registers

R0_BANK to R7_BANK Register in other (non selected) bank

XF0 to XF15 Floating-point extended registers

FV0, FV4, FV8, FV12 Floating-point register vectors, 4-way

XD0, XD2, XD4, XD6, XD8, XD10,
XD12, XD14

Double-precision extended registers

XMTRX 4 x 4 column, single-precision matrix

MACH, MACL, PC, FPUL, PR,
FPSCR

System registers

Table 60. Specific pseudo-operations (continued)

Pseudo opcodes Action

Development tools reference UM1399

260/311 7379953 Rev 23

The assembler supports the following pseudo-instructions.

B.1.8 Linker relaxation

This is a process carried out by the linker to shorten branches between code in different
compilation units. Linker relaxation applies to conditional (with and without delay slots) and
unconditional jumps. This option is used to reduce code size and to improve code
performance.

In order for this optimization to be effective, it is important that the relaxation option
-mrelax is applied to all compilations in addition to the final link.

B.1.9 Floating-point behavior

When executing floating-point instructions, the precision of the operation (either
single-precision or double-precision) is controlled by setting the PR bit in the floating-point
status/control register, FPSCR. This is in contrast to other architectures where the precision
is indicated by the floating-point instructions that are used.

The default C runtime bootstrap sets the initial value of the precision to double. This is
known as the pervading precision. When single-precision operations are required, the
compiler must generate code to switch to single-precision. This behavior is inefficient when
the majority of floating-point operations are single-precision, therefore the default behavior
can be overridden using one of the following options:

-m4-single
-m4-100-single
-m4-200-single
-m4-300-single

When these options are used, the pervading precision is set to single and the compiler
generates code to switch it to double when necessary.

It is also possible to ignore double-precision altogether using one of the following options:

-m4-single-only
-m4-100-single-only
-m4-200-single-only
-m4-300-single-only

These options cause the compiler to convert all variables of double type to float type.
Obviously this can have a serious effect on the accuracy of the calculations, but can also
improve the performance of the program.

mov.l symbol, rn If symbol is a label that is reachable from this instruction, the
instruction is expanded to a PC-relative mov.l instruction. That
is, an instruction in the format:

mov.l @(disp,pc), rn

The symbol must be 4-byte aligned as this is a requirement for
the encoding of this instruction.

mov.w symbol, rn If symbol is a label that is reachable from this instruction, it is
expanded to a PC-relative mov.w instruction. The symbol must
be 2-byte aligned.

7379953 Rev 23 261/311

UM1399 Development tools reference

265

Note: All of these options change the ABI and therefore all object files and libraries in an
application must be compiled with the same option. Additionally, the same options must be
supplied to GCC at link time as well as at compile time to ensure that the correct run-time
libraries are selected.

The default C runtime bootstrap does not set the ENABLE bit in the FPSCR register.
Therefore, by default, no floating-point unit (FPU) exceptions are generated. Instead, the
FPU selects a suitable value, such as INF (infinity) or NaN (not a number). The FPSCR
register may still be queried as described in the architecture manual.

B.1.10 Speed and space optimization options

To obtain the best performing code, use the following compiler and linker options:

For minimal code size, use the following compiler and linker options:

-O3 All compiler global and local optimizations.

-funroll-loops
-funroll-all-loops

(Some experimentation may be required to find which of the
two options is preferable). These options unroll loops and
provide longer straight-line code sequences that are more
suitable for compiler optimization.

-mrelax Used to shorten branches. To be effective, the option must
be used consistently for each of the compile, assemble and
link phases.

-Os This instructs the compiler to optimize for space.

-malign-small-blocks=n Aligns labels on a cache line if the block is larger than n
instructions. The default is 16, so n = 32 will reduce code
size. n = 0 aligns every branch target, and will increase
code size.

-mrelax Used to shorten branches. To be effective, the option must
be used consistently for each of the compile, assemble and
link phases.

Development tools reference UM1399

262/311 7379953 Rev 23

B.2 Cross development tools reference

B.2.1 Command scripts

The GDB command scripts provide the required configuration information so that GDB can
connect to a target (either silicon or simulator).

The command scripts are located in the sh-superh-elf/stdcmd subdirectory of the
release installation directory. For more information on these files, see ST40 Micro Toolset
GDB command scripts (8045872).

B.2.2 ST TargetPack

The ST TargetPack is an alternative method for describing target systems using an ST SoC.
The ST TargetPack for a specific target provides all the information that a host program
(such as a debugger) needs to be able to connect to that target.

For more information on ST TargetPacks, see ST TargetPack user manual (8020851).

B.2.3 Memory mapped registers

The user commands for connecting to a target also define, as GDB convenience variables,
symbolic names for the memory mapped registers of the target. This includes:

• all of the architecturally defined ST40 peripherals

• all the peripherals configured during connection

• a selection of other common peripherals (for example, LMI, EMI and PCI)

These symbolic names may be used interactively or by GDB user defined commands to
read from and write to the memory mapped registers instead of explicitly specifying their
address.

The symbolic names for the memory mapped registers use a standard naming convention,
where the register name is composed of the peripheral group name followed by the register
name (separated by an underscore). For example, the ST40 cache control register CCR,
which is a member of the CCN peripheral group, is defined as $CCN_CCR. The register
name is prefixed with $ to indicate that the symbol is a GDB convenience variable and not a
symbol in the target application.

Note: 1 The list of register names can be found in the register40.cmd GDB command script (see
Section B.2.1: Command scripts on page 262).

2 ST TargetPacks also contain definitions of the SoC registers. See Appendix F: ST
TargetPack plugin on page 282.

3 The GDB show convenience command can be used to display the currently defined
convenience variables.

Reading a memory mapped register

The following example illustrates using the GDB x command to read the ST40 cache control
register via the pre-defined GDB convenience variable.

(gdb) x/wx $CCN_CCR

7379953 Rev 23 263/311

UM1399 Development tools reference

265

Writing to a memory mapped register

The following example illustrates using the GDB set command to change the ST40 cache
control register via the pre-defined GDB convenience variable:

(gdb) set *$CCN_CCR = 0x00000909

The pointer dereference (*) operator is required since the GDB set command has to
dereference the pointer $CCN_CCR and assign a value to it.

Note: The GDB variable containing the address of a memory mapped register is not read-only and
will be changed if the * is omitted.

B.2.4 Silicon specific commands

GDB hardware breakpoints and watchpoints are only supported on silicon and not in a
simulation environment. However, they are limited by the debug hardware available within
the ST40.

Hardware breakpoint support

A hardware breakpoint is set using the hbreak command. The hbreak command is similar
to the break command (that sets software breakpoints):

hbreak function|line|file:line|*address

The ST40 can only support up to three hardware breakpoints at the same time. If used in
conjunction with hardware watchpoints it is only possible to have a combined total of three
hardware breakpoints and watchpoints at any one time.

Note: The number of software breakpoints is not limited by the hardware.

Hardware breakpoints should be used when debugging applications booting from ROM as
software breakpoints are not usable when the ST40 executes code from ROM.

Hardware watchpoint support

To set a hardware watchpoint, use one of the commands listed in Table 62. Where
location is a location expression (for example, an address or a symbolic object name).

The ST40 can only support up to three hardware watchpoints at the same time. If used in
conjunction with hardware breakpoints it is only possible for a combined total of three
hardware breakpoints and watchpoints to be set at any one time.

Additionally, the ST40 hardware watchpoints have the capability to refine a watchpoint to
only report matches when the core accesses the watched address range using a specific
access size and ignoring accesses of other sizes. The core access sizes supported by the
ST40 hardware watchpoints are 1, 2, 4 and 8 bytes. This feature is controlled using the
use-watchpoint-access-size command. Table 63 lists the access size settings of the
use-watchpoint-access-size command.

Table 62. Hardware watchpoint commands

Command When triggered

watch location Write accesses only.

rwatch location Read accesses only.

awatch location Both read and write accesses.

Development tools reference UM1399

264/311 7379953 Rev 23

The access size checking mode set by the use-watchpoint-access-size command is
global and is only applied to the hardware watchpoints when a target is restarted. Therefore,
the order in which the use-watchpoint-access-size and hardware watchpoint
commands (see Table 62) are used is unimportant; the access size checking mode for
hardware watchpoints only takes effect when the target is restarted(a).

Note that the ST40 hardware watchpoints have limited capability in the regions they are able
to watch. If a watch region greater than 4 bytes is requested then the ST40 hardware is only
able to watch a fixed range of memory region sizes and alignments. This is because the
address comparator of the ST40 watchpoint hardware only supports the following options:

• all bits compared

• upper 22 bits compared (1 Kbyte page)

• upper 20 bits compared (4 Kbyte page)

• upper 16 bits compared (64 Kbyte page)

• upper 12 bits compared (1 Mbyte page)

• no bits compared (any address matches)

As a result, if the requested watch region does not match one of the above page sizes and
alignments the GDB implementation selects the page size and alignment that covers the
address range of the watch region. As a consequence, this results in spurious watchpoints
being reported for addresses outside the requested watch region (the worst case being for
watch regions that do not fit within a 1 Mbyte page causing watchpoints to be reported for
every memory access). Note that for watchpoints set using the watch command GDB only
reports a watchpoint if the value of the data in watch region has been changed and not just
written to.

GDB also supports software watchpoints. Using software watchpoints has a significant
impact upon the performance of the target.

Table 63. use-watchpoint-access-size access size modes

Mode Description

off
Access size checking is disabled. Any core access matching the watch conditions
will be reported.

on
Access size is enabled and is derived from the watched region size(1).
This is the default.

1. In this mode, access size checking is only performed if the size of the watched region is 1, 2, or 4 bytes; if
not then access size checking is disabled for the watched region. Checking for 64-bit access sizes for a
watch region of 8 bytes (or any watch region size) is only supported by using the
use-watchpoint-access-size command to set the access size checking mode to 8.

1 Enable 8-bit access size checking (for example, MOV.B Rm, @Rn).

2 Enable 16-bit access size checking (for example, MOV.W Rm, @Rn).

4 Enable 32-bit access size checking (for example, MOV.L Rm, @Rn).

8 Enable 64-bit access size checking (for example, FMOV when FPSCR.SZ=1)(2).

2. See the ST40 Core Architecture Manual for further details.

a. The reason for this is because GDB automatically clears breakpoints and watchpoints when a target stops and
resets them only when a target is restarted (except when the set breakpoint always-inserted option is
set to on). Therefore the use-watchpoint-access-size mode only takes effect when the target is
restarted.

7379953 Rev 23 265/311

UM1399 Development tools reference

265

B.3 Embedded features

B.3.1 Default C run-time bootstrap

The default C run-time bootstrap carries out a number of actions to set-up the ST40 for
program execution and to shut-down the program on termination. The steps below are
carried out by the default C run-time bootstrap.

1. Set up stack pointer (R15) from the value of the symbol _stack.

2. Zero the bss. (Global data is initialized to zero.)

3. Set FPSCR, the floating-point control register, according to the pervading precision.

4. Set up the exception handlers by setting VBR and by setting the status register (SR) to
allow exception handlers to be called. By default, the power on value of the status
register blocks exceptions causing them to raise a manual reset. Trap handlers are set
for general exceptions.

Note: For OS21 applications, once OS21 has started, all exceptions are handled using the OS21
exception handler and these embedded features no longer apply (see also Section B.3.2).

5. Call main.

Note: The C run-time bootstrap does not set up any virtual address mapping.

On return from main(), the exit() function is called with the return code from main().

B.3.2 Trap handling

When a general exception occurs and when it is vectored through the default exception
handlers, the C run-time bootstrap returns the exception code as the exit code of the
program.

It is possible to use the debugger to catch the exception by setting a breakpoint on the
function _superh_trap_handler. The debugger is then able to provide a stack trace to
the location of the exception.

The trap handler function has one parameter that can be examined in the debugger. This is
the value of the EXPEVT register at the point of the exception and provides the reason for
the exception.

__builtin_trap()

The implementation of the GCC built-in function __builtin_trap() has been changed to
issue a TRAPA instruction with an operand value of 42 instead of a call to the abort()
function. This has been done to make the function more suitable for OS21 and bare
machine applications, where the exception can be caught and handled by the user.

Performance counters UM1399

266/311 7379953 Rev 23

Appendix C Performance counters

Performance counters are an ST40 hardware feature to aid the debugging and analysis of
an application, by providing the ability to count execution cycles or the occurrences of
several different kinds of events during the execution of an application.

The ST40 provides a pair of 48-bit counters, designated as counter1 and counter2.
These counters can be configured to count the occurrence of a variety of useful events, or to
count cycles while the ST40 core is in certain states.

The counters can be either started and stopped manually from GDB or automatically by
specifying start and stop triggering addresses, which when the instructions at these
addresses are executed, start and stop the counters.

Each counter can be individually configured to start and stop automatically at these
triggering addresses. However, the ST40 only supports a single pair of start and stop trigger
addresses which are shared between both performance counters. As a consequence, both
counters start and stop at the same triggering addresses.

The counters can be individually configured to count any one of the 34 different events or
states listed in Section C.1, where the type of event or state is identified by either its numeric
code or its corresponding symbolic name (which is a mnemonic for the event).

The counter modes (see Section C.1) in which the counter counts in cycles instead of
discrete events, support the following two forms of cycle counting.

Note: The performance counters do not have any impact on CPU performance.

The performance counter features are accessible though the GDB perfcount command.

CPU The counter counts the number of CPU clock cycles (ICLK)
where the count is incremented by 1 for every CPU clock cycle
while the relevant condition applies.

BUS The counter counts the number of BUS clock cycles. This is
defined as the inverse ratio of the CPU clock (ICLK) to the bus
clock (BCLK) multiplied by 24 (BCLK / ICLK * 24). The BUS
clock increment is therefore dependent on the ICLK to BCLK
ratio and will be 12 for a 2:1 ratio, 8 for a 3:1 ratio, 6 for a 4:1
ratio, 4 for a 6:1 ratio and 3 for an 8:1 ratio. These increments
approximate to real time T where:
T = BCLK / 24 * count.

7379953 Rev 23 267/311

UM1399 Performance counters

269

C.1 Performance counter modes
The performance counter modes and their symbolic names (which are case sensitive) are
listed in Table 64.

Table 64. Performance counter modes

Code Symbol Countable event
Count or

cycle
Notes

0 nop (nop) N/A

1 oar Operand Access (Read with cache) Count

2 oaw Operand Access (Write with cache) Count

3 utlb UTLB miss Count

4 ocrm Operand Cache Read Miss Count

5 ocwm Operand Cache Write Miss Count

6 if Instruction Fetch (with cache) Count
Instructions fetched in
pairs

7 itlb Instruction TLB miss Count

8 icm Instruction Cache miss Count

9 aoa All Operand Access Count

10 aif All Instruction Fetch Count
Instructions fetched in
pairs

11 ram On-chip RAM operand access Count

12 io On-chip IO space access Count

13 oarw
Operand Access (Read & Write with
cache)

Count
Equivalent to oar +
oaw

14 ocrwm Operand Cache (Read & Write) Miss Count
Equivalent to ocrm +
ocwm

15 bi Branch instruction issued Count

16 bt Branch taken Count

17 bsr BSR/BSRF/JSR instruction issued Count

18 ii Instruction issued Count

19 2ii
Two instructions issued
simultaneously

Count

20 fpu FPU instruction issued Count

21 int Interrupt (normal) Count

22 nmi Interrupt (NMI) Count

23 trapa TRAPA instruction executed Count

24 ubca UBC-A channel match Count

25 ubcb UBC-B channel match Count

26 icf Instruction Cache Fill Cycle

Performance counters UM1399

268/311 7379953 Rev 23

The oar, oaw, oarw and if modes are only applicable for accesses and fetches in
cacheable areas of the address map while caches are enabled. They are undefined when a
PMB or TLB controls the caches. (This is not the case for the ST40-300 series cores.)

The icm mode includes fetches from noncacheable memory (effectively this counts
instruction fetches taking > 1 cycle).

The bi and bt modes count all branch instructions (BF, BF/S, BT, BT/S, BRA, BRAF and
JMP), except for the special case of a BF or BT instruction with a displacement of zero.

For the ii and fpu modes, the count is incremented by 2 for a pair of (floating point)
instructions simultaneously dual-issued.

The pfb mode counts all branch instructions regardless of displacement. The count is 1
cycle per branch except when a delay slot instruction avoids the pipeline stall. If the target
instruction is not in the cache, stalls due to instruction cache refill cycles are counted with
pfi.

The pfi and pfo modes also count the wait time for on-chip RAM and I/O space accesses.
The counts also include freeze cycles for accesses and fetches performed without caches.

The pff mode only counts when no instructions are issued due to FPU resource
contention. If one instruction can be issued in a given cycle the count is not incremented.

The counts in all modes must be considered approximate as they may contain errors. For
example, the presence of exceptions causes overestimation in the count. In addition there
may be a mis-counting of events at the start and the end of the performance measurement.
For these reasons, the counts can be unreliable if performed over a short period or
application range.

Note: The oar, oaw, if and oarw counter modes include all accesses, including cache misses
(see Table 64).

27 ocf Operand Cache Fill Cycle

28 time Elapsed TIME Cycle

29 pfi
Pipeline Freeze due to cache miss
Instruction

Cycle

30 pfo
Pipeline Freeze due to cache miss
Operand

Cycle

31 pfb
Pipeline Freeze due to Branch
instruction

Cycle

32 pfr Pipeline Freeze due to CPU register Cycle

33 pff Pipeline Freeze due to FPU resource Cycle

Table 64. Performance counter modes (continued)

Code Symbol Countable event
Count or

cycle
Notes

7379953 Rev 23 269/311

UM1399 Performance counters

269

C.2 The perfcount command
The perfcount command is enabled automatically when the host connects to a target. It
can also be enabled by issuing the GDB command enable_performance_counters (as
defined in the perfcount.cmd GDB command script).

The perfcount command has the following format:

perfcount subcommand options

This command controls the performance counter function specified by subcommand and
options.

The subcommands supported by the perfcount command are listed in Table 65.

Table 65. perfcount subcommands

Subcommand Options Description

help [subcommand]
Display help for the perfcount command. If a
subcommand is specified then more detailed help for
subcommand is displayed.

status counter1|counter2|all
Display the configuration of the specified counter or
all counters.

enable counter1|counter2|all
Enable counting for the specified counter or all
counters.

disable counter1|counter2|all
Disable counting for the specified counter or all
counters.

trigger(1)

1. Do not use this subcommand in conjunction with hardware breakpoints and watchpoints as they use the
same resources and this will cause conflicts.

counter1|counter2|all
 |none start-addr
 stop-addr

Set the start and stop trigger addresses of the
specified counter or all counters to start-addr and
stop-addr. Alternatively, if none is specified,
remove any previously specified addresses. When
none is specified, the counter is always on if enabled
or off if disabled.

mode
counter1|counter2|all
 mode

Set the mode of the specified counter or all counters
to mode, where mode is one of the numeric codes or
its corresponding symbolic name listed in Table 64
on page 267. If mode is not recognized then nop is
assumed.

display counter1|counter2|all
Display the value of the specified counter or all
counters.

reset counter1|counter2|all
Reset the value of the specified counter or all
counters to zero.

return
counter1|counter2
variable

Return the value of the specified counter to a GDB
convenience variable or target variable named
variable.

clock
counter1|counter2|all
 cpu|bus

Set the cycle count mode of the specified counter or
all counters to cpu or bus.

Profiler plugin UM1399

270/311 7379953 Rev 23

Appendix D Profiler plugin

Profiling is a performance analysis technique that identifies the areas in an application
where the CPU spends most time. Having identified these areas, it is then possible to target
optimization efforts on the specific parts of the code that will yield the greatest benefit in
terms of improving performance.

When a connection is made to the target using an ST Micro Connect, commands may be
issued through GDB to instruct the ST Micro Connect to collect sampling information about
a running application. This data is stored in a file and can then be analyzed using a profiling
tool (such as STWorkbench or sh4gprof).

The profiler plugin provides two different types of profiling.

Profiling operates in one of three modes.

The ST Micro Connect profiler features are accessible through the GDB profiler
command.

trace The profiler samples the PC over a given period, time stamping each
sample. This method provides a view of the application’s activities
over a period of time. See Section D.2: Trace profiler output format
on page 273.

range The profiler accumulates the number of times that a particular region
of the application’s code is executed (in the manner of gprof; see
the GNU gprof documentation for more details). See Section D.3:
Range profiler output format on page 274.

none In this mode, the profiler collects samples only when the target stops
at a breakpoint or an I/O request.

udi This mode provides non-intrusive sampling to obtain the current
address on the instruction bus.

interrupt This mode stops the target to read the PC directly before continuing.
This mode has a significant impact on the real-time performance of
the target, but it has the advantage of being able to read the PC
directly.

7379953 Rev 23 271/311

UM1399 Profiler plugin

276

D.1 Profiler plugin reference
The profiler command is enabled automatically when the host connects to a target. It
can also be enabled by issuing the command enable_profiler (defined in the
profiler.cmd GDB command script).

The profiler command has the following format:

profiler subcommand [options]

This command controls the profiler function specified by subcommand and options.

The subcommands supported by the profiler command are listed in Table 66.

Table 66. Profiler subcommands

Subcommand Option Description

help [subcommand]
Display help for the profiler command. If a subcommand is
specified then more detailed help for the subcommand is
displayed.

enable

Start the profiler on the STMC the next time the target is re-
started. Samples are only taken and stored by the STMC while
the target is running. When the target is stopped, no samples
are taken.

disable
Stop the profiler on the STMC. Stopping the profiler implies a
reset.

reset Discard the stored profiler data on the STMC.

display Display the profiler data stored on the STMC.

save|append file Save or append the profiler data stored on the STMC to file.

gmonout file
Save the range profiler data stored on the STMC to file using
the gprof compatible gmon.out file format.

mode none|udi|interrupt

Set the profiler sampling mode:
– none only records samples when the target stops at a

breakpoint or an I/O request (this is the default)
– udi records samples using the non-intrusive method of

sampling the PC
– interrupt records samples by briefly stopping the target to

sample the PC

period delay

Set the minimum sampling period for the profiler. The delay
period can be specified in seconds (s), milliseconds (ms) or
microseconds (us) by using the appropriate suffix. If no suffix is
specified, microseconds are assumed.
If period is not specified, profiling is effectively disabled. It is
therefore mandatory to set the sampling period.

Profiler plugin UM1399

272/311 7379953 Rev 23

type none|trace|range

Set the type of profiler to be used:
– none indicates that no profiler is to be used (this is the

default)
– trace enables the trace profiler where each sample is time

stamped (see Section D.2: Trace profiler output format on
page 273)

– range enables the sampling profiler which increments a
counter for an address range each time a sample is taken
(see Section D.3: Range profiler output format on page 274)

trace size

Set the maximum number of samples to store on the STMC. If
insufficient space is available on the STMC to store the
specified number of samples, profiling is effectively disabled.
When the sample buffer is full, the oldest samples are
discarded; therefore only size most recent samples are
returned.

The trace subcommand is mandatory when the type of the
profiler is set to trace.

range size [startaddr endaddr]

Set the size, in number of instructions, of the slot in the
application's address range to associate with a counter. If
insufficient space is available on the STMC to store the
counters required for the specified address range, profiling is
effectively disabled.
The default address range for an application is determined by
the __stext and __etext symbols (placed by the linker), but
this may be overridden by specifying the start and end
addresses explicitly. The start and end addresses can be
specified symbolically or with absolute addresses.
The range subcommand is mandatory when the type of the
profiler is set to range.

Table 66. Profiler subcommands

Subcommand Option Description

7379953 Rev 23 273/311

UM1399 Profiler plugin

276

D.2 Trace profiler output format
If the profiler type is set to trace (using the command profile type trace), the profiler
trace report consists of a header line followed by a list of timestamped, sampled PC
addresses.

The header line has the following format:

Trace Profiler (saved = saved-records, total = total-records, time = end-time)

where:

• saved-records is the number of records saved in the buffer

• total-records is the number of records captured since this profiling session started

• end-time is the time of the the last record captured since this profiling session started
(profiler reset)

Using the trace profiler between two breakpoints provides a simple way to obtain an
approximation of the elapsed time between two points in an application. To do this, start (or
reset) the profiler at the first breakpoint, then display the profiler data at the second
breakpoint. The end-time value gives the time elapsed between the two breakpoints.

If saved-records is less than total-records, the sample buffer has wrapped. The
number of discarded records is total-records - saved-records.

The remainder of the profiler output is a list of PC samples. The number of samples is equal
to saved-records. The list has the following format:

accumulated-delta address function [at location]

where:

• accumulated-delta is the accumulation of the time delta between samples since
profiling started

• address is the sampled PC address

• function is the name of the function at the given address (?? indicates that the
function name is unknown)

• location is the source location of the given address, if known

Figure 36 provides an example of the output displayed for the profile type trace.

Figure 36. Example profile type trace output
Trace Profiler (saved = 232, total = 232, time = 53393)
0000000000 0x84016f70, fn_0_993 () at fn2_0.c:6956
0000000171 0x84016e68, fn_0_990 () at fn2_0.c:6935

...

0000053206 0x84001bd4, fn_0_5 () at fn2_0.c:42
0000053393 0x84001a24, fn_0_0 () at fn2_0.c:5

Profiler plugin UM1399

274/311 7379953 Rev 23

D.3 Range profiler output format
If the profiler type is set to range (using the command profile type range), the profiler
trace report consists of a header line followed by a list of sample counters, each
representing a range of program memory. For each sample taken, the profiler increments
the counter for the address range (slot) where the PC is currently located.

The header line has the following format:

Range Profiler (range = address..address, step = step, slots = slots, rate = μsus per
sample)

where:

• address..address is the start and end address of the memory range

• step is the size of each slot in bytes (as set by the range subcommand)

• slots is the total number of slots

• μs is the sampling rate, in microseconds per sample

The remainder of the profiler output has the following form:

count address:address, function

where:

• count is the sample count obtained for the given address range (slot)

• address:address is the start and end address of the slot

• function is the name of the function in which the slot is located (?? indicates that the
function name is unknown)

Note: The report displays only non-zero sample counters.

Figure 37 provides an example of the output displayed for the profile type range.

Figure 37. Example profile type range output
Range Profiler (range = 0x88001000..0x880174f2, step = 16, slots = 5713, rate =
128us per sample)
0000000001 0x88001790:0x880017a0, f1 ()
0000002911 0x880017a0:0x880017b0, f1 ()
0000004159 0x880017b0:0x880017c0, f1 ()
0000002182 0x880017c0:0x880017d0, f2 ()
0000001065 0x880017d0:0x880017e0, f2 ()
0000001382 0x880017e0:0x880017f0, f2 ()
0000002129 0x880017f0:0x88001800, f2 ()
0000000468 0x88001800:0x88001810, f3 ()
0000000889 0x88001810:0x88001820, f3 ()
0000001446 0x88001820:0x88001830, f3 ()
0000000433 0x88001830:0x88001840, f4 ()
0000000753 0x88001840:0x88001850, f4 ()
0000001063 0x88001850:0x88001860, f4 ()

7379953 Rev 23 275/311

UM1399 Profiler plugin

276

D.4 ST Micro Connect configuration options
The profiling data is collected by the ST Micro Connect. The profiler can also be controlled
by issuing ST Micro Connect configuration options.

Table 67 lists the ST Micro Connect configuration options and their equivalent profiler sub-
commands, as listed in Table 66 on page 271.

1. Unless overridden, startaddr is the address of the __stext symbol and endaddr is the address of the __etext
symbol. bytes is the size, in bytes, of the number of instructions specified by size. startaddr:endaddr:bytes must
have the form 0xhexvalue:0xhexvalue:0xhexvalue.

Table 67. STMC configuration options

Configuration option Equivalent to

stmcconfigure profiler=on profiler enable

stmcconfigure profiler=off profiler disable

stmcconfigure profiler=reset profiler reset

stmcconfigure profiler.mode=mode profiler mode mode

stmcconfigure profiler.period=delay profiler period delay

stmcconfigure profiler.type=type profiler type type

stmcconfigure profiler.type.trace=size profiler trace size

stmcconfigure
profiler.type.range=startaddr:endaddr:bytes(1)

profiler range size startaddr endaddr

Profiler plugin UM1399

276/311 7379953 Rev 23

D.5 Examples
The following GDB command script shows how to configure the ST Micro Connect to use
the trace profiler in non-intrusive mode, automatically appending the results to a file every
time the program stops and then resetting the profiler:

profiler mode udi
profiler period 1ms
profiler type trace
profiler trace 65536
profiler enable

define hook-stop
profiler append "a.dat"
profiler reset

end

continue

The following script describes a similar example that uses the range profiler, except that the
results file and the gmon.out file are overwritten each time the target stops and the profiler
data continues to accumulate on the ST Micro Connect:

profiler mode udi
profiler period 1ms
profiler type range
profiler range 8
profiler enable

define hook-stop
profiler save "a.dat"
profiler gmonout "gmon.out"

end

continue
profiler disable

To generate a report using the sh4gprof tool, use the following command line:

sh4gprof --no-graph a.out gmon.out

The --no-graph option is required because the gmon.out file produced by the range
profiler does not contain call graph information.

7379953 Rev 23 277/311

UM1399 Branch trace buffer

281

Appendix E Branch trace buffer

The branch trace buffer is an ST40 hardware feature intended to aid debugging, showing
the flow of control during execution of a program by recording the non-sequential updates of
the program counter (PC).

The ST40 branch trace buffer is an eight level deep FIFO buffer, which stores the source
and destination addresses for the last eight branches. The branch trace buffer can be
configured for all branches, a class of branches or a combination of branch classes. The
defined branch classes are general, subroutine and exception (see Section E.1: Branch
trace buffer modes for further details).

Note: The collection of branch information does not have any impact on CPU performance. By
default, the branch trace buffer is enabled and configured to trace all branches.

The branch trace buffer features are accessible though the GDB branchtrace command.

E.1 Branch trace buffer modes
The branch trace buffer can be configured to trace all branches or any combination of the
traceable branch classes. The traceable branch classes and their symbolic names are listed
in Table 68.

When using the branchtrace command, the branch trace classes gn, sb and ex can be
combined with a + operator. For example, use gn+ex to trace general and exception
branches; or sb+gn to trace subroutine branches and general branches.

Note: all is equivalent to gn+sb+ex.

Table 68. Traceable branch classes

Traceable event Symbol Description

General branches gn BF(1), BT(1), BF/S, BT/S, BRAF and JMP.

1. Except for the special case where the displacement is zero; that is, the instructions BF 0 or BT 0 are not
recorded in the buffer. This is a limitation of ST40 branch trace.

Subroutine branches sb BSR, BSRF, JSR and RTS.

Exception branches ex All exceptions, interrupts and RTE.

All branches all All branch classes traced.

No branches none No branches traced.

Branch trace buffer UM1399

278/311 7379953 Rev 23

E.2 The branchtrace command
The branchtrace command is enabled automatically when the host connects to a target.
It can also be enabled by issuing the GDB command enable_branch_trace (defined in
the brtrace.cmd GDB command script).

The branchtrace command has the following format:

branchtrace subcommand options

This command controls the branch trace buffer function specified by subcommand and
options.

Note: For convenience, the branchtrace command is aliased to the brt command.

The subcommands supported by the branchtrace command are listed in Table 69.

Table 69. Branchtrace subcommands

Subcommand Options Description

help [subcommand]
Display help for the branchtrace command. If a
subcommand is specified then more detailed help
for the subcommand is displayed.

append file [reset]

Append the branch trace data to the end of file.
The file is appended in the same format as the
display command.
If reset is specified, then append the initial
branch trace contents instead of the current
contents.

appendsim file [reset]

Append the branch trace data to the end of file,
in the same format as the simulator
sim_branchtrace command (see
sim_branchtrace command on page 108).

If reset is specified, then append the initial
branch trace contents instead of the current
contents.

decode on | off
Switch the decoding of ST40 opcodes on or off
when reporting the branch type. The default is on.

display [reset]

Display the branch trace buffer contents.
If reset is specified, then display the initial branch
trace contents instead of the current contents.

mode mode
Set the mode of the branch trace buffer, where
mode is one of the symbols listed in Table 68 (or a
combination of symbols concatenated with +).

remote
size | on | off |
stopon | stopoff

Configure the continuous capture of ST40 branch
trace information using the ST Micro Connect. See
Section E.2.1: Continuous capture support for
details of the options to this command.

reset Reset the branch trace buffer contents.

save file [reset]

Write the branch trace to file. The file is written
in the same format as the display command.
If reset is specified, then save the initial branch
trace contents instead of the current contents.

7379953 Rev 23 279/311

UM1399 Branch trace buffer

281

When using the append, appendsim, display, save or savesim subcommands, use the
reset option to report the data held in the branch trace buffer immediately after connecting
to the target with GDB. This can be useful as a post-mortem debugging aid when
reconnecting to a target after a crash.

E.2.1 Continuous capture support

Use the following command to configure, enable and disable continuous capture of ST40
branch trace information using the ST Micro Connect:

branchtrace remote size | on | off | stopon | stopoff

The options are as follows:

• size specifies the maximum number of branch trace records to be saved by the ST
Micro Connect. If the number of captured records exceeds this figure, then the STMC
discards the oldest records. The default size is 0.

• on enables the continuous capture of branch trace records. When this feature is
enabled, the branch trace subcommands query the records captured by the STMC
rather than querying the branch trace hardware directly. If size has not been specified,
then no branch trace records are stored by the STMC and the target stops when the
ST40 hardware trace buffer becomes full.

• off disables the continuous capture of branch trace records. Any records saved by the
STMC are discarded. After a branchtrace remote stop command, the branch
trace subcommands revert to querying the ST40 branch trace hardware directly.

• specify the option stopon to cause the target to stop when the STMC branch trace
record buffer is full. When this occurs, GDB reports that the target has stopped due to a
SIGINT (that is, as though the user has pressed Ctrl + C in the GDB command
console). After restarting, the target will stop again when the STMC branch trace buffer
is refilled (discarding its previous contents).

• specify the option stopoff to disable a previous stopon and revert to previous
behavior; that is, to discard the oldest records in the branch trace buffer without
stopping the target. This is the default.

Note: Enabling continuous capture of branch trace information is intrusive because the ST Micro
Connect has to extract the branch trace records from the branch trace hardware whenever
the hardware FIFO is filled.

savesim file [reset]

Write the branch trace to file in the same format
as the simulator sim_branchtrace command
(see sim_branchtrace command on page 108).

If reset is specified, then save the initial branch
trace contents instead of the current contents.

status
Display the configuration of the branch trace
buffer.

Table 69. Branchtrace subcommands

Subcommand Options Description

Branch trace buffer UM1399

280/311 7379953 Rev 23

E.3 Output format
The display, save and append subcommands report the details of the most recently
taken branches, with the details of each branch formatted as follows:

#index to address in function [at location]
 from address in function [at location]
 Mode: type [opcode]

where:

Note: If the reset option of either the append, appendsim, display, save or savesim
subcommands is specified, the type and opcode fields are not reported.

Figure 38 shows an example of a branch trace report.

Figure 38. Example branchtrace output

index This is the record number in the range 0 to n , where 0 is the most
recent branch performed by the target, n the oldest.

address This is the address of the branch source or destination.

function This is the name of the function at the given address. ?? indicates
that the function name is unknown.

location This is the source location of the given address, if known.

type This is the class of branch being recorded, and can be gn, sb, ex or
N/A (if the class is unknown, or if opcode decoding is switched off
with the decode off subcommand). See Table 68 on page 277 for
information on traceable branch classes.

opcode This is the mnemonic of the branch instruction or (if this is not a
branch instruction) a hexadecimal number. The report displays
0xffff if opcode decoding is switched off.

#0 to 0x880017a4 in main () at hello.c:7
from 0x8800186c in _puts_r () at ../../src/newlib/libc/stdio/puts.c:95
Mode: sb [RTS]

#1 to 0x8800185a in _puts_r () at ../../src/newlib/libc/stdio/puts.c:94
from 0x88001d96 in __sfvwrite_r () at ../../src/newlib/libc/stdio/fvwrite.c:271
Mode: sb [RTS]

#2 to 0x88001d80 in __sfvwrite_r () at ../../src/newlib/libc/stdio/fvwrite.c:270
from 0x88001d6a in __sfvwrite_r () at ../../src/newlib/libc/stdio/fvwrite.c:264
Mode: gn [BTS]

#3 to 0x88001d5a in __sfvwrite_r () at ../../src/newlib/libc/stdio/fvwrite.c:257
from 0x88002c8a in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:208
Mode: sb [RTS]

#4 to 0x88002c7e in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:208
from 0x88002c18 in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:208
Mode: gn [BRA]

#5 to 0x88002c18 in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:208
from 0x88001e1c in __libc_lock_release_recursive () at ../../src/newlib/libc/sys/lock.c:53
Mode: sb [RTS]

#6 to 0x88001e14 in __libc_lock_release_recursive () at ../../src/newlib/libc/sys/lock.c:51
from 0x88002c14 in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:206
Mode: sb [JSR]

#7 to 0x88002c12 in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:206
from 0x88002c78 in _fflush_r () at ../../src/newlib/libc/stdio/fflush.c:206
Mode: gn [BRA]

7379953 Rev 23 281/311

UM1399 Branch trace buffer

281

In Figure 38, the most recent branch (index 0) is an RTS from 0x8800186c in the function
_puts_r() (found in puts.c line 95) back to 0x880017a4 in main() (hello.c line 7).

E.4 ST Micro Connect configuration options
If continuous capture support is enabled, the ST Micro Connect collects the branch trace
data. Continuous capture can be configured using the branchtrace remote command
(see Section E.2.1: Continuous capture support) or by issuing ST Micro Connect
configuration options.

Table 70 lists the ST Micro Connect configuration options and their equivalent
branchtrace remote commands.

Table 70. STMC configuration options

Configuration option Equivalent to

stmcconfigure branchtrace=on branchtrace remote on

stmcconfigure branchtrace=off branchtrace remote off

stmcconfigure branchtrace=reset branchtrace reset

stmcconfigure branchtrace.stop=on branchtrace remote stopon

stmcconfigure branchtrace.stop=off branchtrace remote stopoff

stmcconfigure branchtrace.size=size branchtrace remote size

ST TargetPack plugin UM1399

282/311 7379953 Rev 23

Appendix F ST TargetPack plugin

The ST TargetPack plugin provides the following services to GDB.

• It defines the memory mapped registers specified for an SoC by the ST TargetPack as
GDB convenience variables.

• It defines GDB commands that can be used for displaying the contents of the memory
mapped registers in various formats.

The convenience variables and GDB commands are similar to those generated by the
--gdb-mmrs option of the sttpdebug tool provided in the ST Micro Connection Package.
See ST TargetPack user manual (8020851) for information about the sttpdebug tool.

These features are accessible through the GDB targetpack command.

F.1 The targetpack command
When a host connects to a target using an ST TargetPack, the targetpack command is
enabled automatically. It can also be enabled by issuing the GDB command
enable_targetpack (as defined in the targetpack.cmd GDB command script.)

The targetpack command has the following format:

targetpack subcommand options

This command controls the ST TargetPack function specified by subcommand and
options.

The subcommands supported by the targetpack command are listed in Table 71.

Table 71. Targetpack subcommands

Subcommand Options Description

help [subcommand]
Display help for the targetpack command. If
subcommand is specified, then more detailed
help for subcommand is displayed.

import targetstring

Import the ST TargetPack register set associated
with the specified targetstring. If connecting
to a target using the sh4tp (or related)
connection command, then the command
targetpack import is automatically invoked
after connecting to the target.

export [file]

Export the register convenience variables and
commands into GDB. To export the convenience
variables and commands to a GDB command
script for later use, specify the name of the file
with file.

7379953 Rev 23 283/311

UM1399 ST TargetPack plugin

283

For example, when connected to a target, the following command sets up the memory
mapped user commands and convenience variables:

targetpack export

This command also displays further information on how to list the available memory mapped
register names.

The following examples show how to use the memory mapped user commands and
convenience variables.

List all register groups user commands:

help mmrs_component

Display the contents of the ST40 CCN peripheral registers:

mmrs_CCN

List all registers:

help mmrs_register

Decode and display the register contents of entry 0 in the PMB address array:

mmrs_pmb_addr_array_entry0 -v

List all register convenience variables:

help mmrs_convenience

Display the ST40 cache control register:

p/x *$mmrs_CCN_CCR

The targetpack command is available only when connected to a target. However, it is not
necessary to connect to a target using an ST TargetPack in order to to use the targetpack
command, nor is it necessary to import or export the same targetstring used for the
original target connection.

The following example illustrates this. After connecting to a simulated MB448 target, use the
targetpack command to export the corresponding ST TargetPack register set to a GDB
command script called mb448regs.cmd:

mb448sim
enable_targetpack
targetpack import stmc:mb448:st40
targetpack export mb448regs.cmd

Simulator configuration variables UM1399

284/311 7379953 Rev 23

Appendix G Simulator configuration variables

The ST40 simulator can be configured either by setting configuration variables individually,
or by loading a file that defines the variables to set as a series of +variable=value
statements. Both the functional simulator and the performance simulator can be configured
using the variables listed in Table 72.

Table 72. Common configuration variables

Variable Description Default

cprc.disable_ovf_setting
If true, disable the WDT overflow flag so that timing of
interrupts can be controlled externally.

false

cprc.pclks_per_iclk The ratio of pclk to iclk used for WDT. 2

cpu.allow_pmb_reset Allow unmapped PMB reset. false

cpu.branch_trace.queue_size
Number of addresses that can be stored in the
branch trace queue. Can be any value in the range of
16 to 100000000, and must be a multiple of 2.

16

cpu.branch_trace.skip_empty
When true reads from the trace buffer skip any empty
entries.

false

cpu.ccr_emode_initial_value

Select initial value of EMODE (emulation mode) field
in the CCR (cache control register). Set to true for 2-
way caches and false for direct mapped caches. This
variable is only active when the family type is FPU.

false

cpu.ccr_emode_read_only
Set to true to make the EMODE field of the CCR read
only. This variable is only active when the family type
is FPU.

false

cpu.csp_base_address
Programmable CSP base address (must be 2K
aligned).

0xFFC00000

cpu.dcache.nr_partitions Number of partitions (set size) in the data cache. 2

cpu.dcache.lines_per_part Number of cache lines per partition. 512

cpu.dcache.cache_line_size Number of bytes in a cache line. 32

cpu.dcache.perfect
Set to true to get perfect caching (that is, always hit
the cache).

false

cpu.debug_interrupts
Set to true to enable debug message printing for
interrupt launch.

false

cpu.debug_lsu
Set to true to display debug info relating to
load/stores

false

cpu.default_imprecise_trap_delay
Sets the default delay (as an instruction count) for
imprecise traps.

0

cpu.disable_esp Set to true to disable emulation support peripheral. false

cpu.dynacon.enable Set to true to enable the memory region. true

cpu.dynacon.base Base address of the memory region. 0xFFBFFF00

cpu.dynacon.size Size of the memory region in bytes. 256

cpu.enable_experimental_insns Set to true to enable experimental instructions. false

7379953 Rev 23 285/311

UM1399 Simulator configuration variables

287

In addition to the variables listed in Table 72 above, the performance simulator can be
configured using the variables listed in Table 73.

cpu.enable_sh4_mp_isa Set to true to enable multi-processor mode. false

cpu.enable_sh4_300_isa Set to true to enable the ST40-300 series ISA. false

cpu.force_pvr_value Override default PVR value when non-zero. 0

cpu.force_cvr_value Override default CVR value when non-zero. 0

cpu.reset_address_offset Programmable reset address. 0xA0000000

cpu.icache.nr_partitions
Number of partitions (set size) in the instruction
cache.

2

cpu.icache.lines_per_part Number of cache lines per partition. 256

cpu.icache.cache_line_size Number of bytes in a cache line. 32

cpu.icache.perfect
Set to true to get perfect caching (that is, always hit
the cache).

false

cpu.propagate_undefined_values
When set to true, if any source operand is undefined,
then the simulator makes the corresponding output
operand undefined also.

false

cpu.sh4_family

Select processor family:
0: FPU (processor includes floating point unit)
1: MPU (processor excludes floating point unit)
2: MCU (processor excludes floating point unit and
memory management unit)

0

cpu.sh7751_features
Set to true to enable SH7751 specific behavior, such
as store queue behavior.

false

cpu.support_cache_index_modes
Set to true to enable support for cache index modes.
This variable is only active when the family type is
FPU.

true

cpu.ub_bits_reset_value
Reset values of physical address space control
register field PASCR.UB[0..7] .

false

rtc_rate Ratio of SysCLK to RTC clock rate. 12207

tmu.disable_unf_setting
Used to disable setting of the TMU underflow flag so
timing of interrupts can be controlled externally.

false

Table 72. Common configuration variables (continued)

Variable Description Default

Table 73. Configuration variables for the performance simulator

Variable Description Default

cpu.allow_branch_target_pairing
If true, branch can be paired with target instruction
when issuing instructions.

false

cpu.branch_cache.associativity
Associativity of the branch cache. Permitted values
are 1, 2, 4, or 8.

1

Simulator configuration variables UM1399

286/311 7379953 Rev 23

cpu.branch_cache.cache_type

Number of states of branch history in each entry.
0: bi
1: tri
2: quad

tri

cpu.branch_cache.entries
Number of entries in the branch target cache.
Permitted values are 1, 2, 4, 8, 16, 32, 64, 128, 256,
512 or 1024.

512

cpu.branch_cache.reduce_dont_evict
_strong_entries

When set to true, branches do not evict strong
entries but strength reduce them instead.

true

cpu.branch_cache.replacement

Replacement policy of branch cache.
0: lru (least recently used)
1: lrr (least recently replaced)

lru

cpu.branch_cache.write_blocks_read
Set to true if updates prevent a lookup (for example,
for a RAM implementation).

false

cpu.cache_store_on_fill
Set to true to allow cache write hits to take place
while a cache line fill is pending.

false

cpu.delayed_branches_first
If true, delayed branches must come first in the
issue pair.

false

cpu.fetch.fetch_delay
Number of cycles it takes to process an icache fetch
request. Value is in the range of 1 to 3.

1

cpu.fetch.fetch_queue Size of the fetch queue in number of opcodes. 8

cpu.fetch.fetch_width
Number of bytes fetched per request. Permitted
values are 4, 8, 16, or 32.

8

cpu.force_single_issue Set to true to force single issue of all instructions. false

cpu.forward_to_vector_opds If true, enables forwarding to vector operands. false

cpu.mach_forwarding_stage

Define the pipeline stage when multiply MACH
result is forwarded.
0: write_back
1: data_access
2: execute3

write_back

cpu.macl_forwarding_stage

Define the pipeline stage when multiply MACL result
is forwarded.
0: write_back
1: data_access
2: execute3

write_back

cpu.one_cyc_reg_move
Set to true to make the latency of register to register
moves 1 cycle (instead of 0).

false

cpu.one_cyc_const_move
Set to true to make the latency of constant to
register moves 1 cycle (instead of 0).

false

cpu.optimise_zero_disp_branch
If true, implement zero displacement branches as a
conditional instruction.

true

cpu.record_rts_in_branch_cache
If true, RTS instructions are recorded in branch
cache.

true

Table 73. Configuration variables for the performance simulator (continued)

Variable Description Default

7379953 Rev 23 287/311

UM1399 Simulator configuration variables

287

cpu.return_stack
Specifies depth of return stack used to optimize
subroutine returns. Permitted values are any
number between 0 and 16 inclusive.

0

cpu.serialise_pr_load
If true, serialize execution of PR load instruction
(rather than implement interlock)

false

cpu.skew_ex_to_e2
If true, simple EX class instructions (that is,
instructions with no additional resource usage) run
in the E2 stage of the pipeline.

false

cpu.store_depcheck_in_e3
If true, perform a late dependency check on stored
values in the E3 stage of the pipeline.

false

cpu.store_writeback_delay

Specifies delay (in cycles) after writeback store
before dependent loads can progress from the MA
(memory access) stage. Permitted values are any
number between 1 and 5.

1

cpu.take_br_class_branches_in_e1
When false, BR resource usage branches are taken
in the decode stage, when true they are executed in
the E1 stage.

false

cpu.tbit_too_late_to_branch
If true, T bit arrives too late in decode to branch.
(This variable is only relevant if branching from
decode.)

false

cpu.use_branch_cache If true, use the branch cache. false

cpu.use_instruction_freelist
Set to true to use a free list of instruction states to
improve performance.

true

cpu.use_long_pipe
Set to true to enable a three stage integer execute
pipe and a six stage FPU execute pipe.

false

use_tobu
Set to true to use the ST40-100 series type bus
arbitration unit.

false

Table 73. Configuration variables for the performance simulator (continued)

Variable Description Default

GDB os21_time_logging user command UM1399

288/311 7379953 Rev 23

Appendix H GDB os21_time_logging user command

OS21 records the elapsed time that a task has been run on the CPU. This information is
available to an application by using the OS21 task_status() API.

As a convenience, the GDB os21_time_logging command is provided to display the
task list with the elapsed time for each task. This command is defined in the GDB command
script os21timelog.cmd and displays the information with the following format:

task-number [task-name] = time-usus (time-ticks ticks) [*]

where:

task-number is the OS21 task number

task-name is the OS21 task name

time-us is the elapsed time in microseconds

time-ticks is the elapsed time in clock ticks

* indicates the current task

For example:

(gdb) source os21timelog.cmd
(gdb) os21_time_logging
1 [Root Task] = 14607us (22824 ticks) *
2 [Idle Task] = 9985us (15602 ticks)
3 [task0] = 19995us (31243 ticks)
4 [task1] = 39994us (62491 ticks)
5 [task2] = 59992us (93738 ticks)
6 [task3] = 79993us (124990 ticks)

Note: As the CPU clock is still running when the target is under the control of GDB, this time will
be accumulated against the current task (indicated by a *) when the target is restarted.
Using the same example as above but having previously already hit a breakpoint in Root
Task:

1 [Root Task] = 204545us (319602 ticks) *
2 [Idle Task] = 9985us (15602 ticks)
3 [task0] = 19994us (31242 ticks)
4 [task1] = 39985us (62478 ticks)
5 [task2] = 59993us (93740 ticks)
6 [task3] = 79992us (124988 ticks)

The time in each task is comparable except for Root Task which now includes the time
accumulated while the target was under the control of GDB.

7379953 Rev 23 289/311

UM1399 Revision history

300

Revision history

Table 74. Document revision history

Date Revision Changes

10-Jul-2015 23
– Added information about MTT (multi-target trace) in Section 1.1:

Toolset features on page 14, Section 1.3.2: Libraries on page 20
and Section 1.5.3: The examples directory on page 28.

09-Jul-2013 22

Throughout: minor revisions and corrections.
Throughout: removed all references to sh4gdbtui and
sh-superh-elf-gdbtui. as these are no longer distributed with the
ST40 micro toolset.
– Update to Section 1.1: Toolset features on page 14 to include

mention of profile and coverage tools.
– Removed references to the deprecated GDB command regs in

Section 4.2.1: Using GDB on page 54.
– Updates to Table 36: Errors returned by rl_errno() on page 153.
– Updates to Section 11.5.5: Importing and exporting symbols on

page 158.
– Updates to Section 11.5.6: Optimization options on page 159.

– Updates to examples throughout Appendix A: Toolset tips on
page 223.

– Updates to Section B.1.5: Link time optimization on page 253.

Revision history UM1399

290/311 7379953 Rev 23

20-Nov-2012 21

Throughout: minor revisions and corrections.
– Added ST Micro Connection Package documentation suite on

page 12
– Update to Section 1.4.7: Threading on page 25.

– Update to Table 6: sh4gcc command line quick reference on
page 34

– Update to Table 7: sh4gcc SH-4 specific options on page 36
– Update to Table 8: sh4gcc SuperH configuration specific options

on page 37.
– Updated Section 4.1.1: Using an ST TargetPack on page 50.
– Updated Section 4.1.3: Using a GDB script with an STMC2 on

page 51.
– Added Section 4.1.5: Identification of the STMCLite on page 53.

– Update to Section 5.1: Getting started with STWorkbench on
page 68

– Update to Table 16: Additional sh4gdb commands (not SuperH
specific) on page 62.

– Update to Table 42: sh4gcc linker options to enable OS21 Trace
on page 172.

– Added os21_trace_destructor_user on page 205 and
os21_task_trace_destructor_user on page 206.

– Update to Section 12.15: Trace always on on page 212.
– Updates to examples in Section A.6: Debugging with OS21 on

page 231
– Update to Section A.11: Using Cygwin on page 243
– Added Section B.1.5: Link time optimization on page 253

– Updated Section B.2.2: ST TargetPack on page 262
– Added __builtin_trap() on page 265.

12-Oct-2011 20

Minor changes to formatting.
Update to Section 4.1.4: Auto-detect connection on page 53 relating
to auto-detection of STMC type.
Minor update to Section 11.5.5: Importing and exporting symbols on
page 158 relating to the names in the symbol list
Minor update to Table 56: SH-4 specific GCC options on page 247
relating to -mieee option.
Added Section B.1.6: Stack overflow checking on page 256.
Revised List of API functions on page 301 and Index on page 305.

Added List of built-in GDB commands on page 302 and List of GDB
user commands on page 303.

Table 74. Document revision history (continued)

Date Revision Changes

7379953 Rev 23 291/311

UM1399 Revision history

300

5-Oct-2010 S

Throughout: minor revisions and corrections.
Throughout: references to ST Micro Connect Lite added where
appropriate.
Amended list of supported platforms in Section 1.1: Toolset features
on page 14 and Section 7.2: Requirements on page 93.
Amended the location of the boardspecs file in Section 3.5.1: GCC
board support setup on page 42.
Amended the location of the runtimespecs file in Section 3.6.1:
GCC run-time support setup on page 47.
Added Section 4.1.4: Auto-detect connection on page 53.

Amended syntax of disassemble command in Table 15: sh4gdb
command quick reference on page 60.

Added ${variable} to Table 16: Additional sh4gdb commands
(not SuperH specific) on page 62.

Amended the location of the boardspecs file in Section 9.3: Adding
support for new boards on page 131.

Modified specification of Trace user definition file in Section 12.1.2:
User definition file on page 165.

Added new tool os21usertracegen in Section 12.1.3:
os21usertracegen host tool on page 168 and Section 12.1.4:
os21usertracegen example on page 171.
Removed Section 12.6.3: Tips for creating an os21usertrace
definition file.

30-Nov-2009 R

Throughout: minor revisions and corrections.
Added Passing arguments from environment variables on page 19.
Added a reference to version.txt in Section 1.5: Release
directories on page 26.
Revised Section 3.5.1: GCC board support setup on page 42 and
Section 3.6: Run-time support on page 46.
Revised Section 4.2.3: Connecting to a running target on page 58.

Added previously undocumented tutorials to Chapter 5: Using
STWorkbench on page 68.

Added Section 8.3.4: Commands in shsimcmds.cmd on page 108.
Added details of “OS21 Trace user record” throughout Chapter 12:
OS21 Trace on page 163.
Revised Section A.11: Using Cygwin on page 243.
Added Impact of the -m4 option on the assembler on page 249.

Added several new branchtrace commands in Appendix E:
Branch trace buffer on page 277.

Added Section E.2.1: Continuous capture support on page 279.
Added Section E.4: ST Micro Connect configuration options on
page 281.
Corrected os21_time_log to os21_time_logging in Appendix
H: GDB os21_time_logging user command on page 288.

Table 74. Document revision history (continued)

Date Revision Changes

Revision history UM1399

292/311 7379953 Rev 23

21-May-2009 Q

Throughout: minor revisions in style and layout to ensure closer
alignment with ST200 toolset user manual (8063762)
Throughout: minor revisions and corrections.
Added Section 1.4.5: The zlib library on page 24.

Changed section numbering in Chapter 4: Cross development tools
on page 50, promoting some level 3 headings to level 2.

Modified Section 4.1.1: Using an ST TargetPack on page 50.
Added Section 4.2.3: Connecting to a running target on page 58 to
this manual in order to bring it into alignment with the layout of the
ST200 toolset user manual (8063762)

Added continue-after-exit subcommand to Table 18: Subcommands
available with the set shtdi and show shtdi commands on page 64.

Amendments made to Table 19: sh4xrun command line options on
page 65.

Removed menus from Chapter 6: Using Insight on page 75.
Updated Chapter 12: OS21 Trace on page 163.
Added OS21 profiler initialization and start on page 217.

Added OS21 profiler cancel on page 218.
Added two additional commands to OS21 profiler status reporting on
page 218.
Revised instructions to manage a memory partition in Section A.1:
Managing memory partitions with OS21 on page 223.
Revised table of permitted frequencies for an ST Micro Connect 1 in
Section A.9: Changing ST40 clock speeds using GDB command
scripts on page 240.

Added Compiling libraries for a specific core on page 249.
Added details relating to sh4gprof to Section D.5: Examples on
page 276.
Added Appendix H: GDB os21_time_logging user command on
page 288.
Revised Index and created a separate List of API functions on
page 301.

Table 74. Document revision history (continued)

Date Revision Changes

7379953 Rev 23 293/311

UM1399 Revision history

300

26-Nov-2008 P

Throughout: minor revisions and corrections.
Updated feature differences between short form and long form
versions of the tools in Section 1.3: Distribution content on page 17.
Added Section 2.2: OSPlus on page 33 to provide a brief overview of
OSPlus.
Added note relating to linker symbols in Section 3.5.1: GCC board
support setup on page 42.
Added note about updating STMC firmware in Chapter 4: Cross
development tools on page 50.
Removed all references to Solaris in Chapter 7: Building open
sources on page 93.
Added note relating to Cygwin make in Section 7.4: Building the
packages on page 96.
Added Section 12.8: Structure of trace binary files on page 181.

Added Chapter 13: Dynamic OS21 profiling on page 214.
Added footnote to Table 65: perfcount subcommands on page 269.
Added reset option to relevant commands in Section E.2: The
branchtrace command on page 278.
Added decode subcommand in Section E.2: The branchtrace
command on page 278.
Added Section E.3: Output format on page 280.

Added Section D.2: Trace profiler output format on page 273 and
Section D.3: Range profiler output format on page 274.

Added Appendix F: ST TargetPack plugin on page 282.

Table 74. Document revision history (continued)

Date Revision Changes

Revision history UM1399

294/311 7379953 Rev 23

12-Jun-2008 O

Throughout: removed board specific information (several large
multipage tables) and placed this information in HTML files to be
distributed with the toolset.

Added new syscalls functions in Section 1.4.6: The syscalls low-level
I/O interface on page 24.

List of OS21 examples has been updated in Section 1.5.3: The
examples directory on page 28.

Added the -trace options in Section 3.1.2: GCC SuperH
configuration specific options on page 37.

Added information on linking to multicore SoCs with ST200 cores in
Section 3.5.1: GCC board support setup on page 42.

Added several new sh4gdb configuration specific commands in
Section 4.2.6: Additional GDB commands on page 62.

Amended Section 4.3: Using sh4xrun on page 65 in respect of the
-e option.

Added new command line options to sh4xrun in Section 4.3: Using
sh4xrun on page 65.

Some minor amendments to Chapter 6: Using Insight on page 75.
Updated version number of the open source packages in
Section 7.1: Introduction to open sources on page 93.
Updated the list of examples in Chapter 10: Booting OS21 from
Flash ROM on page 135.
Moved OS21 Trace from Appendix G to Chapter 12.
Added -trace option in Chapter 12: OS21 Trace on page 163.

Added four new API functions in Chapter 12: OS21 Trace on
page 163.

Table 74. Document revision history (continued)

Date Revision Changes

7379953 Rev 23 295/311

UM1399 Revision history

300

12-Dec-2007 N

Added several new examples in Section 1.5.3: The examples
directory on page 28.
Added new Section 3.5.3: Alternative placement of sections on
page 46 to describe a new example.
Minor changes to Chapter 4 in relation to ST MicroConnect 2.
Added usage of compare-sections GDB command to Table 15:
sh4gdb command quick reference on page 60.
Changes to usage of enable console, enable rtos and
enable sharedlibrary commands and added set/show
shtdi-wait-timeout in Table 17: SuperH configuration specific
sh4gdb commands on page 63.

Added change to the usage of the sh4xrun -c command line
option in Table 19: sh4xrun command line options on page 65.

Major revision to Chapter 7: Building open sources.
Removed obsolete OS21 configurable options from Chapter 9: OS21
source guide on page 126.
Corrected minor errors in Table 33: Examples of booting from Flash
ROM on page 135.
Added new compile line option -malign-small-blocks in
Table 56: SH-4 specific GCC options on page 247.
Added extra information to Appendix A to assist users of
sh4objdump.
Added information on the use of precompiled headers in Table A.12:
Using precompiled headers on page 244.
Added save subcommand to the branchtrace command, in
Section E.2: The branchtrace command on page 278.
Added Appendix D: Profiler plugin on page 270.
Added Appendix G: Simulator configuration variables on page 284.

Added 12: OS21 Trace on page 163.
Throughout, removed misleading references to Super-H and SH-4.
Corrected other minor, non-technical errors.

Table 74. Document revision history (continued)

Date Revision Changes

Revision history UM1399

296/311 7379953 Rev 23

20-Mar-2007 M

Moved to new template.
A new manual has been added to the ST40 documentation suite;
ST40 Micro Toolset GDB Command Scripts (8045872).
JTAG Control and ST Micro Connect setup appendices have been
removed and incorporated into ST40 Micro Toolset GDB Command
Scripts (8045827).
GDB commands section has been removed and incorporated into
ST40 Micro Toolset GDB Command Scripts (8045872).
Legacy boards have been identified throughout.
Updated, Section 3.1: The GNU compiler (GCC) on page 34.

Updated, Section 3.5: Board support on page 40.
Updated Chapter 4: Cross development tools on page 50.
Updated Section 8.3: ST40 simulator reference on page 104.

Updated Section 9.2: Building the OS21 board support libraries on
page 128.

Updated Section 9.3: Adding support for new boards on page 131.
Updated Section 10: Booting OS21 from Flash ROM on page 135.
Updated A.5: Access to uncached memory on page 230.

Updated A.7.3: Debugging OS21 boot from ROM applications on
page 237.

Updated A.9: Changing ST40 clock speeds using GDB command
scripts on page 240.

Updated B.2.1: Command scripts on page 262.
Updated B.3.1: Default C run-time bootstrap on page 265.

13-Sep-2006 L In Preface, added Acknowledgements on page 13.

Table 74. Document revision history (continued)

Date Revision Changes

7379953 Rev 23 297/311

UM1399 Revision history

300

05-Sep-2006 K

Completely updated for R4.0.1 release of the toolset. Eclipse has
been replaced with STWorkbench which is based on the Eclipse
IDE. Updated the supported targets.

In Preface, updated the documents included in the ST40
documentation suite on page 11.

In Toolset overview, the SuperH configuration now provides support
for the ST40-300 core. Updated Threading on page 25. Added
details of the failsafe example in OS21 examples on page 28. Moved
the installation instructions to the HTML pages on the CD.
In Introducing OS21, OS21 now features user installable exception
handlers.
In Code development tools, updated the board support information in
Board support on page 40.
In Cross development tools, updated the GDB command line
reference on page 59 and the Console settings on page 65.
In Using STWorkbench, renamed the chapter from Using Eclipse
and updated to describe the STWorkbench.
In Using Insight, updated Using the Source Window on page 76.
In Building open sources, updated the version numbers for the list of
open source packages delivered. Updated the requirements
information.
In OS21 source guide, updated the list of Configuration options on
page 126 and the example used in Adding support for new boards
on page 131.

In Booting OS21 from Flash ROM, added details of the failsafe
example and updated the Overview of booting from Flash ROM on
page 136.
In Toolset tips, updated Debugging with OS21 on page 231. Updated
General tips for GDB on page 236, including adding the sections
Power up and connection sequence on page 238 and Using
hardware watchpoints on page 239.

In Development tools reference, updated Hardware watchpoint
support on page 263.

11-Oct-2005 J

Completely updated for R3.1 Product release of the toolset. Updated
to GDB 6.3 and Insight 6.1. Added support for STb7109 and
STb7100-Ref.

In Introducing the ST40 Micro Toolset chapter: Added details of
sh4gdbtui, the text user interface for the debugger. Updated details
of the os21prof and sh4rltool tools.
In Cross development tools chapter: Added details of sh4gdbtui, the
text user interface for the debugger. Updated the list of GDB SuperH
configuration specific options and SuperH specific GDB commands.
The register40.cmd commands no longer require an additional
argument for endianness.
In Using Eclipse: Added new chapter to introduce Eclipse.

In Building open sources chapter: Updated to provide more
information for building sources, particularly on Windows.

In Reloctable loader library chapter: The section on writing and
building a relocatable library or main program has been updated.

Table 74. Document revision history (continued)

Date Revision Changes

Revision history UM1399

298/311 7379953 Rev 23

24-Apr-2005 I
Completely updated for R3.0.3 Product release of the toolset.
All chapters have been updated. The JTAG control appendix has
been completed.

03-Mar-2005 H

Completely updated for R3.0.2 Beta release of the toolset.
All chapters have been updated. The Relocatable loader library
chapter and the Performance counters and Branch trace buffer
appendices have been added. The JTAG control appendix has been
added and will be completed for the product release. The Toolset
changes since R2.0.5 appendix has been moved to the CD-ROM.

29-Sep-2003 G

Minor rephrasing and grammatical changes. Details of the
ST220-Eval development board have been added. Replaced UDI
with H-UDI.

In Code development tools chapter: Updated list of recognized
boards.

26-Sep-2003 F

Carried out minor rephrasing and grammatical changes. Added
details of SH-4 202 support. Updated ST40 version number to 2.1.3.
In Introducing the ST40 Micro Toolset chapter: Added details of the
sti5528loader example.
In OS21 source guide chapter: Replaced GDB_START and
GDB_END with GDB_BEGIN_EXPORT and GDB_END_EXPORT in
the GDB OS21 awareness support section.

In Toolset tips appendix: Added the section Just in time initialization.
In Toolset changes since R2.0.5 appendix: Changed OS21 version
to V2.1.

Table 74. Document revision history (continued)

Date Revision Changes

7379953 Rev 23 299/311

UM1399 Revision history

300

11-Aug-2003 E

The entire manual has been restructured and the following new
chapters and appendices have been added:
– Code development tools, Cross development tools, Core

performance analysis guide, Development tools reference, ST
Micro Connect setup, Toolset changes since R2.0.5.

– In addition the following changes have been made:
– Added Windows XP to the supported Windows versions. Updated

ST40 version number to 2.1.2. Updated GCC version number to
3.2.1. Replaced ST40RA166 with ST40RA. Renamed
STLite/OS20 to OS20.

In Preface: Added the section Conventions used in this guide.

In Introducing the ST40 Micro Toolset chapter: Updated list of
Libraries delivered and added subsections for the C library, C++
library and threading. Added descriptions of the new OS21
examples.
In Using Insight chapter: Chapter has been rewritten.
In OS21 source guide chapter: Updated the options described in the
Configurable options section. Updated details of the support files in
the Building the OS21 board support libraries section.
In Booting OS21 from ROM chapter: Chapter has been rewritten.
In Porting from OS20 chapter: Updated location of interrupt.h OS21
header file. Updated Interrupts and caches.
In Toolset tips appendix: Added the section Memory managers.
Managing critical sections in OS21: The section task / interrupt
critical sections has been rewritten. Debugging with OS21: The
examples have been replaced.

19-Aug-2002 D

Changed document title to ST40 Micro Toolset User’s Guide. Added
the chapters Using sh4xrun, Using Insight, Building open sources
and OS21 for ST40 source guide. Added the appendix, Toolset tips.
Changed the term “include files” to “header files“. Added details of
the simulator.
In Preface: Added License information section.
In Introducing the ST40 Micro Toolset chapter: Changed name from
Introducing the GNU tools. Added details of where the GNU sources
are located on the CD. Added footnote relating to big-endian
versions of the libraries. Added introductory paragraph to the
Installation section. Added sh4chess to list of tools. Expanded note
explaining library locations in the Libraries delivered section.
Changed the description of the getting started examples in the
section, The examples directory. Corrected the location of the
st40.bat file. Added details of Cygwin to the Windows installation
description. Corrected the names of display40.cmd commands.
Updated list of commands in sh4targets.cmd. Added how to access
the help for the GDB command scripts.

20-Jun-2002 C

Added details of os21/soaktest example.

Corrected ST40RA166 Overdrive board to ST40STB1-ODrive board.
Replaced minor typing and grammatical errors.

Table 74. Document revision history (continued)

Date Revision Changes

Revision history UM1399

300/311 7379953 Rev 23

24-May-2002 B

Removed details of unsupported boards. Updated version
numbering.
Added Index.
In Introducing the GNU tools chapter: Added definition of bare
machine application. Updated details of the documents directory.
Added footnotes for boards that are no longer in production.
Replaced board codes with full production names. Removed
references to the bare library directory. Updated the Release
directories section. Renamed connect.cmd to sh4si.cmd.

12-Mar-2002 A Initial release.

Table 74. Document revision history (continued)

Date Revision Changes

UM1399 List of API functions

7379953 Rev 23 301/311

List of API functions

__chk_fail_override .257
__guard_setup_override256
__stack_chk_fail_override.257
_SH_posix_PollKey. .239
CensusClear .110
CensusOff .109
CensusOn .109
CensusOutput .110
GetClock .109
os21_activity_set_class_enable197
os21_activity_set_enable197
os21_activity_set_global_enable 196
os21_activity_set_task_trace_enable198
os21_api_set_class_enable199
os21_api_set_enable 200
os21_api_set_global_enable 198
os21_profiler_deinitialize.220
os21_profiler_initialize.220
os21_profiler_monitor_interrupt_clear 221
os21_profiler_signaled 221
os21_task_trace_constructor_user206
os21_task_trace_destructor_user206
os21_task_trace_initialize194
os21_task_trace_initialize_data 195
os21_task_trace_overflow 196
os21_task_trace_set_enable 200
os21_task_trace_set_mode 195
os21_task_trace_status 203
os21_task_trace_write_buffer204
os21_task_trace_write_file203
os21_trace_constructor_user205
os21_trace_destructor_user205
os21_trace_get_control.200
os21_trace_initialize .192
os21_trace_initialize_activity_monitors193
os21_trace_initialize_data.193
os21_trace_overflow .194
os21_trace_print .201
os21_trace_set_control201
os21_trace_set_enable.196
os21_trace_set_mode.193
os21_trace_status. .202
os21_trace_write_buffer202
os21_trace_write_file 201
rl_add_action_callback151
rl_delete_action_callback152
rl_errarg. .154
rl_errno .153
rl_errstr .154

rl_file_name . 144
rl_foreach_segment . 150
rl_handle_delete . 143
rl_handle_new . 143
rl_load_addr . 144
rl_load_buffer . 145
rl_load_file . 146
rl_load_size . 144
rl_load_stream . 147
rl_parent . 144
rl_revision . 152
rl_set_file_name . 145
rl_sym. 149
rl_sym_rec . 149
rl_this . 143
rl_unload. 148
TracesOff . 110
TracesOn . 110
user_activity_set_enable 207
user_activity_set_global_enable 207
user_activity_set_group_enable. 206
user_activity_set_group_group_class_enable 207
user_api_set_enable 209
user_api_set_global_enable. 209
user_api_set_group_enable 208
user_api_set_group_group_class_enable . . . 208

List of built-in GDB commands UM1399

302/311 7379953 Rev 23

List of built-in GDB commands

console .63
disable console .63
disable rtos .63
disable sharedlibrary .63
enable console .63
enable rtos .63
enable sharedlibrary .63
fork .62
keep-variable. .62
maintenance shtdi .63
msglevel .63
rtos .63
set backtrace abi-sniffer 62
set shtdi .63
show backtrace abi-sniffer 62
show shtdi .63
sleep .62
target shtdi .63

UM1399 List of GDB user commands

7379953 Rev 23 303/311

List of GDB user commands

branchtrace .278
brt .278
disable_os21_activity 185
disable_os21_activity_class_all 185
disable_os21_activity_class_class185
disable_os21_activity_global 184
disable_os21_activity_task_trace186
disable_os21_api .186
disable_os21_api_class_all 185
disable_os21_api_class_class185
disable_os21_api_global.184
disable_os21_profiler_report_signaled218
disable_os21_profiler_stop_signaled218
disable_os21_task_trace 186
disable_os21_trace .183
disable_os21_trace_control 184
disable_os21_trace_control_all.184
disable_user_activity .189
disable_user_activity_global190
disable_user_activity_group_all 189
disable_user_activity_group_group_class_all.189
disable_user_activity_group_group_class_class .
189
disable_user_api .190
disable_user_api_global191
disable_user_api_group_all 190
disable_user_api_group_group_class_all190
disable_user_api_group_group_class_class .190
dump_os21_task_trace_buffer186
dump_os21_trace_buffer 186
enable_branch_trace 278
enable_os21_activity.185
enable_os21_activity_class_all185
enable_os21_activity_class_class 185
enable_os21_activity_global184
enable_os21_activity_task_trace 186
enable_os21_api .186
enable_os21_api_class_all185
enable_os21_api_class_class 185
enable_os21_api_global184
enable_os21_profiler_report_signaled218
enable_os21_profiler_stop_signaled 218
enable_os21_task_trace186
enable_os21_trace .183
enable_os21_trace_control184
enable_os21_trace_control_all184
enable_performance_counters269
enable_profiler .271
enable_targetpack. .282

enable_user_activity. 189
enable_user_activity_global 190
enable_user_activity_group_all 189
enable_user_activity_group_group_class_all. 189
enable_user_activity_group_group_class_class .
189
enable_user_api . 190
enable_user_api_global 191
enable_user_api_group_all 190
enable_user_api_group_group_class_all. . . . 190
enable_user_api_group_group_class_class . 190
flush_all_trace_buffers 187
flush_os21_task_trace_buffer 187
flush_os21_trace_buffer 187
linkspeed . 240
os21_profiler_cancel 218
os21_profiler_deinitialize 216
os21_profiler_dump . 217
os21_profiler_initialize 215
os21_profiler_initialize_and_start_all 217
os21_profiler_initialize_and_start_interrupt . . 217
os21_profiler_initialize_and_start_task 217
os21_profiler_initialize_and_start_task_number .
217
os21_profiler_signal_raise 222
os21_profiler_start_all 216
os21_profiler_start_interrupt. 216
os21_profiler_start_task 216
os21_profiler_start_task_number 216
os21_profiler_stop . 217
os21_profiler_write . 217
os21_task_trace_set_mode 183
os21_time_logging . 288
os21_trace_set_mode 183
perfcount. 269
profiler. 271
show_os21_activity . 185
show_os21_activity_class_all. 185
show_os21_activity_class_class 185
show_os21_activity_classes 184
show_os21_activity_global. 184
show_os21_activity_task_trace 186
show_os21_api. 186
show_os21_api_class_all. 185
show_os21_api_class_class 186
show_os21_api_classes. 185
show_os21_api_global 184
show_os21_profiler_internal_status 219
show_os21_profiler_monitor_status. 218

List of GDB user commands UM1399

304/311 7379953 Rev 23

show_os21_profiler_status218
show_os21_task_trace186
show_os21_trace .183
show_os21_trace_control184
show_os21_trace_control_all184
show_user_activity .189
show_user_activity_global 190
show_user_activity_group_all189
show_user_activity_group_group_class_all . .189
show_user_activity_group_group_class_class . . .
189
show_user_activity_group_group_classes . . .189
show_user_activity_groups.189
show_user_api .191
show_user_api_global 191
show_user_api_group_all190
show_user_api_group_group_class_all 190
show_user_api_group_group_class_class . . .190
show_user_api_group_group_classes190
show_user_api_groups190
show_user_decode_trace191
sim_addmemory .104
sim_branchtrace .104
sim_census .104
sim_command. .104
sim_config .104
sim_insttrace .104
sim_reset. .104
sim_trace. .104
targetpack .282
use-watchpoint-access-size 263

UM1399 Index

7379953 Rev 23 305/311

Index

Symbols
___rambase .42, 137
___ramsize .42, 137
___rombase .42
___romsize .42
.reservedramsize .42, 45
.shgdbinit file .21, 57

A
address conversion .17
allocators

fixed block .32
simple .32
user definable .32

archive .17
generate index .17

archiver .14
ash .94
assembler .17, 38

command line options38, 258
pass options .35

assembly code files .34

B
Backus-Naur Form .13
bare machine examples28
bash .94
big endian

assemble target .38
create programs .36
libraries .23

binutils . 93-94
GNU package .17

bison .94
BNF. See Backus-naur Form.
board support 32, 37, 45, 128, 130

GCC .42
libraries .21, 130
new boards .131

board_link .43
boardspecs file .42
boot from ROM .237

Flash ROM . 135-136
Branch trace buffer .277
branchtrace command278
breakpoints14, 60, 77-78, 82, 234

BSP. See board support
build environment . 95
Bultin functions . 255

C
C / C++

compiler . 18
compiler executables 26
library . 23
preprocessor . 18
run-time libraries 20-22, 30
symbols . 17

C run-time bootstrap 265
cache API . 32
censpect tool . 105, 110
census

collecting information 101
census commands . 105
census inspector . 110

Census Inspector window 111
file formats . 124

clock frequencies . 127
clock speeds . 240
code development tools 34
command line

assembler reference 38, 258
GCC reference 34, 37, 247
GDB reference . 59, 90
linker reference . 39
sh4xrun reference . 65

command script. See GDB command script
compare-sections . 60
compiler . 14, 18, 34

attributes . 251
pragmas . 251

config commands . 106
configuration commands 104
configuration files . 26
configuration scripts . 21
context switching . 128
Control menu . 77
core performance analysis 98
counting semaphores 32
CPU support file . 128
CRC. See cyclic redundancy check
critical sections

task / interrupt . 227
task / task . 227

Index UM1399

306/311 7379953 Rev 23

custom targets .103
customized board support library130
cyclic redundancy check 133
cygpath utility .243
Cygwin . 94-95, 243

D
Data Transfer Format .47
debug information .35
debug kernel .127
debug link .30
debugger . 14, 18, 54
debugging .54

OS21 aware .30
with OS21 .231

default memory region45
delayed memory models 102
disabling timeslicing .229
disassembling code .60
discard symbols .17
documentation set 26-27
double precision FPU support 23
DTF .47
dynamic OS21 profiling 214
dynamic shared objects139

E
Eclipse .68
ELF format files .17
embedded applications

developing .14
environment setup 47, 65, 93
Ethernet .15
event flags .32
examples

applications .21
bare machine .28
Insight .80
OS21 .28
sh4xrun command line 67

exception handlers32, 265
exceptions .234
exit paths .236

F
FIFO message queues32
FIFO mutex .228
FIFO scheduler .32, 226
file formats

census .124

trace viewer . 122
File menu . 76
file size . 17
fixed block allocator 32, 226
Flash ROM . 135-138

examples 15, 135, 237
layout . 136
NAND . 136, 138
NOR . 136
using relocatable libraries 160

flashdir . 136
flasher . 136-137
flex . 94
floating-point instructions 260
FPU

registers . 127-128
restricted context restore 127
restricted context save 127
support . 23

Free Software Foundation 16
FSF . 16
function profiling . 35
functional simulator 15, 98

G
GCC . 21, 34, 93-94

assembler inserts . 249
board support . 42
command line reference 34, 37-38
package . 18
run-time support . 47

gcc-mingw . 94
GDB .14, 54, 93, 234

command line reference 59
command reference 60-64, 183
command script 21, 27, 262
console . 90
general tips . 236
Insight . 75
OS21 aware debugging 30
relocatable linker library 160
running performance models 98
simulator reference 104
ST40 specific commands 62

GDB simulator . 15, 54
GNU

assembler . 17, 38
binutils . 17, 93
C / C++ compiler . 14
C / C++ preprocessor 18
debugger. See GDB.

UM1399 Index

7379953 Rev 23 307/311

development tools .34
GCC . 21, 34, 93
GDB .93
Insight .93
linker .17
make .17, 93
profiler .17, 270
SH-4 simulator .18
target debugger .18

graphical user interface 75
GUI .75

configuration files .26

H
Header files .26
heap allocator .226
heaps .32
help

compiler .35
debugger .78
Insight .84
sh4xrun .65
user-defined GDB commands64

Help menu .78

I
I/O streams .21
index to archive .17
index.htm .26
inlined list manipulation functions128
Insight .75, 93

Breakpoints window 77, 83
Console Window 75, 77, 90
Function Browser window77, 91
Global Preferences window 77
Help .78
Help menu .84
Local Variables window77, 89
Memory Preferences window 86
Memory window 77, 86
Processes window 77, 92
Registers window 77, 85
Source Preferences window77
Source Window .76
Source Window menus76
Source Window toolbar78
Stack window .77, 84
Watch Expressions window 77

integrity checks .127
intermediate files .35
interrupt handlers .32

inter-task communication 32

J
Just in time initialization 242

K
kernel

real-time . 14
real-time library . 21

keyboard input . 239

L
languages supported . 34
libc . 20
libgcc . 21
libgcov . 21
libgloss . 20
libm . 20
libprofile . 20
librarian . 14
library files . 26-27
library header files . 27
librl . 21
libstdc++ . 21, 23

thread-safe operation 25
libz . 21
Link Time Optimizer 253
linker . 14, 17, 39

command line reference 39
optimizations . 36
options . 43, 172, 215
pass options . 35

linking against a library 34
linkspeed command 240
Linux . 14

requirements . 93
version . 93

little endian
assemble target . 38
create programs . 36
libraries . 23

loop unrolling . 36
low-level I/O . 20

M
make 17, 93-94, 96, 243
malloc . 226
man(1) . 26
managing memory . 223

Index UM1399

308/311 7379953 Rev 23

manual pages .26
-mboard option .37, 42
memory

allocation .30
default region .45
delayed models .102
management .32, 127
memory managers 226
memory regions .41
partitions .223
target board .43

MinGW .94
mingw-runtime .94
Minimum GNU for Windows94
mkimage.pl .136
-mruntime option .37, 47
multi-tasking .30, 32
mutexes .32, 228

FIFO .228
priority .228

N
NAND Flash ROM 136, 138
nandflasher .138
nandflasher tool .136
newlib 20, 23, 32, 93, 226

features .23
thread-safe operation 25

non-intrusive sampling270
non-space enhancement mode 230
NOR Flash ROM .136

O
object files

copy .17
information .17
list symbols .17
translate .17

on-chip emulation .14
open sources .93
optimization 35-36, 253, 261
OS21 .14

applications .22
board support libraries 21, 128
configurable options 126
critical sections .227
debugging .231
examples .28
introduction .30
key features .32
libraries .127

library header files . 27
managing memory partitions 223
memory allocation . 30
mutexes . 228
OS21 aware debugging 30
profiling . 37, 214
real-time kernel . 30
real-time kernel library 21
scheduler . 226
source code . 126
source files . 27
stack traces . 231
task aware debugging 133

OS21 configurable options 126
CONF_DEBUG . 127
CONF_DEBUG_ALLOC 127
CONF_DEBUG_CHECK_EVT 127
CONF_DEBUG_CHECK_MTX 127
CONF_DEBUG_CHECK_SEM 127
CONF_FINE_GRAIN_CLOCK 127
CONF_FPU_SINGLE_BANK 127
CONF_INLINE_FUNCTIONS 128
CONF_NO_FPU_SUPPORT 128

OS21 kernel . 127-128
OS21 Trace . 163

binary files . 181
GDB commands . 183
GDB commands example 187-188
GDB control commands 188
user APIs . 163
user defined events 163

OS21 Trace binary files
os21tasktrace.bin . 183
os21trace.bin . 182
os21trace.bin.ticks 182

os21decodetrace 163-164, 174, 176
control file . 177
example . 180

os21prof . 214, 219
os21usertrace . 163-164

definition file . 165
example . 179

os21usertracegen . 163
OSPlus . 33

P
partition manager . 226
path names . 237
peek . 14
perfcount command 266, 269
Performance counters 266

UM1399 Index

7379953 Rev 23 309/311

performance models
obtaining data .100

performance simulator15, 98
performance trace .100
Perl .126, 134
platforms .93
poke .14
precompiled headers 244
Preferences menu .77
preprocessor .18

macros .245
pass options .35
symbols .126

printable strings .17
Priority mutex .228
profiler command .271
profiling .40, 270

dynamic OS21 .214
range .270, 274
trace .270, 273

program coverage .35
program termination .236

R
real-time kernel .14, 30
real-time kernel library 21
Red Hat .14
release directories .26
relocatable loader library 139

run-time model 139-140
requirements .93
rl_lib .139
-rlib option .37
-rmain option .37
Run menu .77
run-time libraries . 20-22
run-time library files .27
run-time support package 37
runtimespecs file .47

S
scheduler .32
scheduler behavior .226
semaphores .32, 229

FIFO .229
priority .229

sh4addr2line .236
sh4as .38
sh4gcov .21, 40
sh4gdb . 21, 54, 57
sh4gprof 20, 40, 270, 276

sh4insight . 21, 54, 57
sh4objdump . 235
sh4rltool . 158
sh4run . 20
sh4xrun . 21, 50-51, 65

command line examples 67
command line reference 65-66
setup . 65

shsimcmds.cmd . 104
sh-superh-elf-gdb . 57
shtdi . 133

data tables . 134
sim_addmemory command 108
sim_branchtrace command 108
sim_insttrace command 109
simple allocator . 226
simulator . 15

back-end commands 104
configuration variables 284
dynamic control . 109
GDB . 15
reference . 104
trace commands . 107

single precision FPU support 23
SoC support file . 129
Software

notation . 13
source files

OS21 . 21, 27
space enhancement mode 41, 135
spec strings . 43
special purpose allocator 223
specifying output file . 34
specs file . 42, 47, 131
ST Micro Connect 15, 238, 270

ST Micro Connect 1 50-51
ST Micro Connect 2 50-51
ST Micro Connect Lite 50-51

ST TargetPack 50, 52, 55, 262, 282-283
connecting to a running target 58

ST40 simulator 14, 54, 284
stack traces . 231, 235
standard templates library 21
stepping through source code 61, 77-78
STL . 21
STMC, see ST Micro Connect
STWorkbench . 68

editor . 70-71
perspective . 70-72
view . 70

superh configuration . 34
support for new boards 131

Index UM1399

310/311 7379953 Rev 23

symbols
discard .17
encoded .17
list .17

synchronization .32
syscalls .25
system heap .32

T
target

board support file .129
changing targets .82
connections .236
debugger .18
loader .18
setting up custom targets 103

targetpack command 282
task / interrupt critical sections227
task / task critical sections 227
task aware debugging 133
Tasks

scheduling .226
texinfo .94
thread-safe operation .25
timeslicing .32

disabling .229
tools configuration .16

differences .16
tools directory .26
toolset introduction .14
Trace File Viewer window 120-121
Trace viewer .120

file formats .122
tracing an application163
translate object files .17
trcview .107, 120

U
uncached memory .230
user debug interface .14
User trace .163

examples .179

V
verbose output mode .35
version number .26
version.txt .26
View menu .77

W
watch expressions . 88
Watch window . 88
watchpoints . 62, 77-78
Windows

7 . 14
platforms . 14
requirements . 94
Vista . 14
XP . 14

Windows 7 . 93
Windows Vista . 93
Windows XP . 93

XYZ
zlib . 24

7379953 Rev 23 311/311

UM1399

311

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	Preface
	Document identification and control
	License information
	ST40 documentation suite
	ST Micro Connection Package documentation suite
	Conventions used in this guide
	Terminology
	Acknowledgements

	1 Toolset overview
	1.1 Toolset features
	1.2 The SuperH configuration
	1.2.1 Traditional and SuperH configuration differences

	1.3 Distribution content
	1.3.1 Tools
	Table 1. sh-superh-elf-tool short and long versions
	Table 2. Tools that accept arguments from an environment variable

	1.3.2 Libraries
	1.3.3 Configuration scripts
	1.3.4 Sources
	1.3.5 Examples

	1.4 Libraries delivered
	Figure 1. The relationship between the libraries
	1.4.1 The C library (newlib)
	1.4.2 The C++ library (libstdc++)
	1.4.3 The data transfer format (DTF) library
	1.4.4 The libgloss library
	1.4.5 The zlib library
	1.4.6 The syscalls low-level I/O interface
	1.4.7 Threading

	1.5 Release directories
	Table 3. The release directories
	1.5.1 GDB command scripts directory
	1.5.2 The documents directory
	Table 4. The HTML files in the doc directory
	Table 5. The doc subdirectories

	1.5.3 The examples directory

	2 Introducing OS21
	2.1 OS21 features
	2.2 OSPlus

	3 Code development tools
	3.1 The GNU compiler (GCC)
	3.1.1 GCC command line quick reference
	Table 6. sh4gcc command line quick reference
	Table 7. sh4gcc SH-4 specific options

	3.1.2 GCC SuperH configuration specific options
	Table 8. sh4gcc SuperH configuration specific options

	3.2 The GNU assembler
	3.2.1 GNU assembler command line quick reference
	Table 9. GNU assembler command line quick reference

	3.3 The GNU linker
	3.3.1 GNU linker command line quick reference
	Table 10. sh4ld command line quick reference

	3.4 Profiling with the sh4gcov and sh4gprof utilities
	3.5 Board support
	Table 11. ST40 memory regions
	3.5.1 GCC board support setup
	3.5.2 Linker board support
	3.5.3 Alternative placement of sections

	3.6 Run-time support
	Table 12. Recognized run-time systems
	3.6.1 GCC run-time support setup

	4 Cross development tools
	4.1 Connecting to the target
	4.1.1 Using an ST TargetPack
	4.1.2 Using a GDB script with an STMC1 or STMCLite
	4.1.3 Using a GDB script with an STMC2
	4.1.4 Auto-detect connection
	Table 13. STMC names assumed to specify USB connections

	4.1.5 Identification of the STMCLite

	4.2 The GNU debugger
	4.2.1 Using GDB
	4.2.2 The .shgdbinit file
	4.2.3 Connecting to a running target
	4.2.4 GDB command line reference
	Table 14. sh4gdb command line options

	4.2.5 GDB command quick reference
	Table 15. sh4gdb command quick reference

	4.2.6 Additional GDB commands
	Table 16. Additional sh4gdb commands (not SuperH specific)
	Table 17. SuperH configuration specific sh4gdb commands
	Table 18. Subcommands available with the set shtdi and show shtdi commands

	4.2.7 Console settings

	4.3 Using sh4xrun
	4.3.1 Setting the environment
	4.3.2 sh4xrun command line reference
	Table 19. sh4xrun command line options

	4.3.3 sh4xrun command line examples

	5 Using STWorkbench
	5.1 Getting started with STWorkbench
	Figure 2. Workspace Launcher
	Figure 3. Welcome view
	5.1.1 The STWorkbench workbench
	Figure 4. C/C++ perspective
	Figure 5. Save Perspective As... dialog

	5.2 STWorkbench tutorials and reference pages
	5.3 ST40 System Analysis tutorials and reference pages

	6 Using Insight
	6.1 Launching Insight
	6.2 Using the Source Window
	Figure 6. Source Window
	6.2.1 Source Window menus
	6.2.2 Source Window toolbar
	Table 20. The Source Window buttons

	6.2.3 Context sensitive menus

	6.3 Debugging a program
	Figure 7. Load New Executable dialog
	Figure 8. mandel.c stopped at breakpoint

	6.4 Changing the target
	Figure 9. Target Selection window

	6.5 Configuring breakpoints
	Figure 10. Breakpoint examples
	6.5.1 The Breakpoints window
	Figure 11. Breakpoints window

	6.6 Using the help
	6.7 Using the Stack window
	Figure 12. Stack window

	6.8 Using the Registers window
	Figure 13. Registers window

	6.9 Using the Memory window
	Figure 14. Memory window
	Figure 15. Addresses menu
	Figure 16. Memory Preferences window

	6.10 Using the Watch window
	Figure 17. Watch window

	6.11 Using the Local Variables window
	Figure 18. Local Variables window

	6.12 The Console Window
	Figure 19. Console Window

	6.13 Function Browser window
	Figure 20. Function Browser window

	6.14 The Processes window
	Figure 21. Processes window

	7 Building open sources
	7.1 Introduction to open sources
	7.2 Requirements
	7.2.1 Linux
	7.2.2 Windows

	7.3 Setting up the build environment
	7.4 Building the packages

	8 Core performance analysis guide
	8.1 Introduction to core performance analysis
	8.2 Running performance models under GDB
	8.2.1 Example source code
	8.2.2 Beginning a debug session
	8.2.3 Obtaining performance data

	8.3 ST40 simulator reference
	8.3.1 ST40 simulator targets
	8.3.2 shsimcmds.cmd
	8.3.3 ST40 simulator control commands
	Table 21. Census subcommands
	Table 22. Config subcommands
	Table 23. Trace subcommands
	Table 24. sim_command equivalents

	8.3.4 Commands in shsimcmds.cmd
	Table 25. branchtrace subcommands

	8.3.5 Dynamic control
	GetClock
	CensusOn
	CensusOff
	CensusClear
	CensusOutput
	TracesOn
	TracesOff

	8.4 The census inspector (censpect)
	8.4.1 The Census Inspector window
	Figure 22. Census Inspector window
	Table 26. Fields available in the Census Inspector window

	8.4.2 Creating histograms
	Table 27. Histogram menu options

	8.4.3 2D plots
	Figure 23. Cycles required to compress a sequence of MPEG frames
	Table 28. Plot menu options

	8.4.4 Preparing new groups
	8.4.5 Creating and modifying groups
	Figure 24. Add new group window
	Table 29. Add new workgroup window fields

	8.5 The trace viewer (trcview)
	Figure 25. The Trace File Viewer window

	8.6 Trace viewer file formats
	8.6.1 Trace set files (.trc)
	8.6.2 Packet trace files
	8.6.3 Trace text files
	8.6.4 Probe trace files

	8.7 Census file formats
	Table 30. Census file generic fields
	Table 31. Census file subfields

	9 OS21 source guide
	9.1 Configuration options
	Table 32. OS21 configurable options
	9.1.1 Configuration options in the standard OS21 libraries

	9.2 Building the OS21 board support libraries
	9.2.1 Creating a customized board support library
	9.2.2 Using the built libraries

	9.3 Adding support for new boards
	9.4 GDB OS21 awareness support
	9.4.1 Generation of the shtdi service data tables

	10 Booting OS21 from Flash ROM
	Table 33. Examples of booting from Flash ROM
	10.1 Overview of booting from Flash ROM
	10.2 Standard Flash ROM layout
	10.2.1 romgen creation of bootstrap code

	10.3 NAND Flash ROM layout

	11 Relocatable loader library
	11.1 Run-time model overview
	Table 34. Run-time models
	Table 35. Run-time model features

	11.2 Relocatable run-time model
	Figure 26. Example of an application with four load modules
	11.2.1 The relocatable code generation model

	11.3 Relocatable loader library API
	rl_handle_new
	rl_handle_delete
	rl_this
	rl_parent
	rl_load_addr
	rl_load_size
	rl_file_name
	rl_set_file_name
	rl_load_buffer
	rl_load_file
	rl_load_stream
	rl_unload
	rl_sym
	rl_sym_rec
	rl_foreach_segment
	rl_add_action_callback
	rl_delete_action_callback
	rl_revision
	rl_errno
	Table 36. Errors returned by rl_errno()
	rl_errarg
	rl_errstr

	11.4 Customization
	11.4.1 Memory allocation
	Table 37. Memory allocation functions

	11.4.2 File management
	Table 38. File handle functions

	11.5 Writing and building a relocatable library and main module
	11.5.1 Example source code
	11.5.2 Building a simple relocatable library
	11.5.3 Building a simple main module
	11.5.4 Running and debugging the main module
	11.5.5 Importing and exporting symbols
	11.5.6 Optimization options

	11.6 Debugging support
	11.6.1 GDB support
	11.6.2 Verbose mode

	11.7 Action callbacks

	12 OS21 Trace
	12.1 User trace records
	12.1.1 os21usertrace host tool
	Table 39. os21usertrace command line options

	12.1.2 User definition file
	Table 40. Format codes

	12.1.3 os21usertracegen host tool
	Table 41. os21usertracegen command line options

	12.1.4 os21usertracegen example

	12.2 Print a string to the OS21 Trace buffer
	12.3 Building an application for OS21 Trace
	Table 42. sh4gcc linker options to enable OS21 Trace

	12.4 Running the application
	12.4.1 Trace buffer

	12.5 Analyzing the results
	Table 43. os21decodetrace command line options
	12.5.1 Usage of the -m mode option
	Table 44. Permitted combinations of mode and output format

	12.5.2 os21decodetrace control file

	12.6 Examples
	12.6.1 OS21 activity and OS21 API trace
	12.6.2 User API and user activity trace
	Figure 27. Example definition file, myapp.def

	12.7 Trace overhead
	12.8 Structure of trace binary files
	12.8.1 os21trace.bin
	Table 45. File format of os21trace.bin

	12.8.2 os21trace.bin.ticks
	Table 46. File format of os21trace.bin.ticks

	12.8.3 os21tasktrace.bin
	Table 47. File format of os21tasktrace.bin

	12.9 GDB commands
	12.9.1 Buffer full action
	12.9.2 Enable OS21 Trace
	12.9.3 Enable trace control commands
	12.9.4 Enable OS21 activity
	12.9.5 Enable OS21 API
	12.9.6 Enable OS21 activity event
	12.9.7 Enable OS21 API function
	12.9.8 Enable task information logging
	12.9.9 Dump buffer to file
	12.9.10 Flush buffers and reset
	12.9.11 Type and event enables

	12.10 User GDB control commands
	12.10.1 User activity control commands
	12.10.2 User API control commands
	12.10.3 Miscellaneous commands

	12.11 Trace library API
	os21_trace_initialize
	os21_trace_initialize_data
	os21_trace_initialize_activity_monitors
	os21_trace_set_mode
	os21_trace_overflow
	os21_task_trace_initialize
	os21_task_trace_initialize_data
	os21_task_trace_set_mode
	os21_task_trace_overflow
	os21_trace_set_enable
	os21_activity_set_global_enable
	os21_activity_set_class_enable
	os21_activity_set_enable
	os21_activity_set_task_trace_enable
	os21_api_set_global_enable
	os21_api_set_class_enable
	os21_api_set_enable
	os21_task_trace_set_enable
	os21_trace_get_control
	os21_trace_set_control
	os21_trace_print
	os21_trace_write_file
	os21_trace_status
	os21_trace_write_buffer
	os21_task_trace_write_file
	os21_task_trace_status
	os21_task_trace_write_buffer

	12.12 Variables and APIs that can be overridden
	os21_trace_constructor_user
	os21_trace_destructor_user
	os21_task_trace_constructor_user
	os21_task_trace_destructor_user

	12.13 User trace runtime APIs
	12.13.1 User activity control APIs
	user_activity_set_group_enable
	user_activity_set_group_group_class_enable
	user_activity_set_enable
	user_activity_set_global_enable

	12.13.2 User API control APIs
	user_api_set_group_enable
	user_api_set_group_group_class_enable
	user_api_set_enable
	user_api_set_global_enable

	12.13.3 User activity APIs

	12.14 Correspondence between GDB commands and APIs
	Table 48. Correspondence between GDB commands and APIs
	Table 49. Correspondence between GDB commands and APIs

	12.15 Trace always on
	Figure 28. Example to customize trace

	12.16 Source directory

	13 Dynamic OS21 profiling
	13.1 Overview
	13.2 Building an application for dynamic OS21 profiling
	Table 50. sh4gcc linker options to enable dynamic OS21 profiling

	13.3 Running the application
	13.4 GDB commands
	Table 51. OS21 profiler monitor state
	Table 52. OS21 profiler state

	13.5 Analyzing the results
	13.6 Example
	Figure 29. Example dynamic OS21 profiler script

	13.7 Profiler library API
	13.7.1 Overrides

	Appendix A Toolset tips
	A.1 Managing memory partitions with OS21
	A.2 Memory managers
	A.3 OS21 scheduler behavior
	A.4 Managing critical sections in OS21
	A.4.1 task / interrupt critical sections
	A.4.2 task / task critical sections

	A.5 Access to uncached memory
	A.6 Debugging with OS21
	A.6.1 Understanding OS21 stack traces
	Figure 30. Example program with misaligned write to memory
	Figure 31. Stack trace from example in Figure 30.

	A.6.2 Identifying a function that causes an exception
	Figure 32. Using GDB to find an exception (1)
	Figure 33. Using GDB to find an exception (2)
	Figure 34. Using sh4objdump to find an exception
	Figure 35. Using sh4addr2line to find an exception

	A.6.3 Catching program termination with GDB

	A.7 General tips for GDB
	A.7.1 Handling target connections
	A.7.2 Windows path names
	A.7.3 Debugging OS21 boot from ROM applications
	A.7.4 Power up and connection sequence
	A.7.5 Using hardware watchpoints

	A.8 Polling for keyboard input
	A.9 Changing ST40 clock speeds using GDB command scripts
	Table 53. CLOCKGEN commands

	A.10 Just in time initialization
	A.11 Using Cygwin
	Table 54. ST_CYGPATH_MODE settings

	A.12 Using precompiled headers

	Appendix B Development tools reference
	B.1 Code development tools reference
	B.1.1 Preprocessor predefines and asserts
	Table 55. Preprocessor predefines and asserts

	B.1.2 SH-4 specific GCC options
	Table 56. SH-4 specific GCC options

	B.1.3 GCC assembler inserts
	Table 57. ST40 qualifiers (operand constraints)
	Table 58. ST40 inline assembler template characters

	B.1.4 Compiler pragmas and attributes
	B.1.5 Link time optimization
	B.1.6 Stack overflow checking
	B.1.7 Assembler specifics
	Table 59. Assembler command line options
	Table 60. Specific pseudo-operations
	Table 61. Recognized register names

	B.1.8 Linker relaxation
	B.1.9 Floating-point behavior
	B.1.10 Speed and space optimization options

	B.2 Cross development tools reference
	B.2.1 Command scripts
	B.2.2 ST TargetPack
	B.2.3 Memory mapped registers
	B.2.4 Silicon specific commands
	Table 62. Hardware watchpoint commands
	Table 63. use-watchpoint-access-size access size modes

	B.3 Embedded features
	B.3.1 Default C run-time bootstrap
	B.3.2 Trap handling

	Appendix C Performance counters
	C.1 Performance counter modes
	Table 64. Performance counter modes

	C.2 The perfcount command
	Table 65. perfcount subcommands

	Appendix D Profiler plugin
	D.1 Profiler plugin reference
	Table 66. Profiler subcommands

	D.2 Trace profiler output format
	Figure 36. Example profile type trace output

	D.3 Range profiler output format
	Figure 37. Example profile type range output

	D.4 ST Micro Connect configuration options
	Table 67. STMC configuration options

	D.5 Examples

	Appendix E Branch trace buffer
	E.1 Branch trace buffer modes
	Table 68. Traceable branch classes

	E.2 The branchtrace command
	Table 69. Branchtrace subcommands
	E.2.1 Continuous capture support

	E.3 Output format
	Figure 38. Example branchtrace output

	E.4 ST Micro Connect configuration options
	Table 70. STMC configuration options

	Appendix F ST TargetPack plugin
	F.1 The targetpack command
	Table 71. Targetpack subcommands

	Appendix G Simulator configuration variables
	Table 72. Common configuration variables
	Table 73. Configuration variables for the performance simulator

	Appendix H GDB os21_time_logging user command
	Revision history
	Table 74. Document revision history

	List of API functions
	List of built-in GDB commands
	List of GDB user commands

