
STMicroelectronics

OS21

User manual

7358306 Rev V

August 2010

www.st.com

BLANK

August 2010 7358306 Rev V 1/226

User manual

OS21

Introduction

OS21 is a royalty free, light weight, multitasking operating system. It is based on the existing
OS20 API and is intended for applications where small footprint, and excellent real time
responsiveness are required. It provides a multi-priority preemptive scheduler, with low
context switch and interrupt handling latencies.

OS21 provides portable APIs to handle task, memory, messaging, interrupts, exceptions,
synchronization, and time management. It also provides target specific APIs for various chip
devices.

Multi-tasking is widely accepted as an optimal method of implementing real-time systems.
Applications may be broken down into several independent tasks which co-ordinate their
use of shared system resources, such as memory and CPU time. External events arriving
from peripheral devices are made known to the system through interrupts.

The OS21 real-time kernel provides comprehensive multi-tasking services. Tasks
synchronize their activities and communicate with each other using semaphores and
message queues. Real world events are handled using interrupt routines and
communicated to tasks using semaphores. Memory allocation for tasks is selectively
managed by OS21 or the user. Tasks may be given priorities and are scheduled accordingly.
Timer functions are provided to implement time and delay functions.

Virtual memory provides a way of controlling memory access. Out-of-course events can be
dealt with by exception handlers. A power management framework is provided.

www.st.com

http://www.st.com

Contents OS21

2/226 7358306

Contents

Introduction . 1

Preface . 8

Document identification and control . 8

Conventions used in this guide. 8

1 OS21 overview . 9

1.1 Naming . 10

1.2 How this document is organized . 10

1.3 Differences between OS20 and OS21 . 10

1.4 Classes and objects . 12

1.4.1 Object lifetime . 12

1.5 Defining memory partitions . 13

1.6 Tasks . 13

1.7 Priority . 14

1.8 Semaphores . 14

1.9 Mutexes . 14

1.10 Event flags . 14

1.11 Message queues . 14

1.12 Clocks . 15

1.13 Interrupts . 15

1.14 Virtual memory . 15

1.15 Exceptions . 15

1.16 Caches . 15

1.17 Power management . 15

1.18 Board support packages . 16

2 Kernel . 17

2.1 Kernel implementation . 17

2.2 OS21 kernel . 18

2.3 Kernel API summary . 18

2.4 Kernel function definitions . 19

OS21 Contents

7358306 3/226

3 Memory and partitions . 25

3.1 Partitions . 25

3.2 Allocation strategies . 26

3.3 Predefined partitions . 27

3.4 Obtaining information about partitions . 27

3.5 Creating a new partition type . 27

3.6 Traditional ‘C’ memory management . 28

3.7 Partition API summary . 28

3.8 Memory and partition function definitions . 29

4 Tasks . 44

4.1 OS21 tasks . 44

4.2 OS21 priorities . 44

4.3 Scheduling . 45

4.4 Creating and running a task . 46

4.5 Synchronizing tasks . 46

4.6 Communicating between tasks . 46

4.7 Timed delays . 47

4.8 Rescheduling . 47

4.9 Suspending tasks . 48

4.10 Killing a task . 49

4.11 Getting the current task’s id . 49

4.12 Stack usage . 50

4.13 Task data . 51

4.13.1 Application data . 51

4.13.2 Library data . 52

4.14 Task termination . 52

4.15 Waiting for termination . 53

4.16 Getting a task’s exit status . 54

4.17 Deleting a task . 54

4.18 Enumerating all tasks . 54

4.19 Task API summary . 55

4.20 Task function definitions . 57

Contents OS21

4/226 7358306

5 Callbacks . 89

5.1 Callback API summary . 89

5.2 Callback function definitions . 90

6 Semaphores . 100

6.1 Semaphore overview . 100

6.2 Use of semaphores . 102

6.3 Semaphore API summary . 103

6.4 Semaphore function definitions . 104

7 Mutexes . 110

7.1 Mutexes overview . 110

7.1.1 Priority inversion . 111

7.2 Use of mutexes . 111

7.3 Mutex API summary . 112

7.4 Mutex function definitions . 113

8 Event flags . 119

8.1 Event flags overview . 119

8.1.1 Uses for event flags . 120

8.2 Event API summary . 121

8.3 Event function definitions . 122

9 Message handling . 129

9.1 Message queues . 129

9.2 Creating message queues . 130

9.3 Using message queues . 131

9.4 Message handling API summary . 132

9.5 Message function definitions . 133

10 Real-time clocks . 140

10.1 Reading the current time . 140

10.2 Time arithmetic . 140

10.3 Time API summary . 141

10.4 Timer function definitions . 142

OS21 Contents

7358306 5/226

11 Interrupts . 145

11.1 Chip variants . 145

11.2 Initializing the interrupt handling subsystem . 145

11.3 Obtaining a handle for an interrupt . 146

11.4 Attaching interrupt handlers . 146

11.4.1 Attaching an interrupt handler to a nonshared interrupt 147

11.4.2 Attaching an interrupt handler to a shared interrupt 147

11.5 Interrupt priority . 148

11.6 Enabling and disabling interrupts . 148

11.7 Clearing interrupts . 149

11.8 Polling interrupts . 149

11.9 Raising interrupts . 149

11.10 Masking interrupts . 150

11.11 Contexts and interrupt handler code . 150

11.12 Interrupt API summary . 151

11.13 Interrupt function definitions . 152

12 Caches and memory areas . 163

12.1 Caches and memory overview . 163

12.2 Initializing the cache support system . 163

12.3 Flushing, invalidating and purging D-cache lines 163

12.4 Cache API summary . 164

12.5 Cache function definitions . 165

13 Virtual memory . 173

13.1 Virtual memory overview . 173

13.2 Virtual memory support functions . 174

13.2.1 Creating and deleting mappings . 174

13.2.2 Obtaining information about a mapping . 174

13.2.3 Other information . 174

13.3 Virtual memory API summary . 175

13.4 Virtual memory function definitions . 175

Contents OS21

6/226 7358306

14 Exceptions . 180

14.1 Attaching exception handlers . 181

14.2 Contexts and exception handler code . 182

14.3 Exception API summary . 182

14.4 Exception function definitions . 183

15 Profiling . 184

15.1 Initializing the profiler . 184

15.2 Starting the profiler . 185

15.3 Stopping the profiler . 185

15.4 Writing profile data to the host . 185

15.5 Processing the profile data . 186

15.6 Profile data binary file format . 186

15.7 Profile API summary . 188

15.8 Profile function definitions . 188

16 Power management . 192

16.1 Power levels . 192

16.2 Power callbacks . 192

16.3 Power pCode . 193

16.3.1 Virtual machine . 193

16.3.2 pCode definition . 193

16.3.3 pCode macros . 193

16.3.4 pCode example . 199

16.4 Power management API summary . 201

16.5 Power management function definitions . 202

16.6 Interrupt management in pCode . 206

16.7 Exceptions in pCode . 206

17 Board support package . 207

17.1 Board support package overview . 207

17.2 BSP data . 207

17.3 BSP functions summary . 209

17.4 BSP function definitions . 210

OS21 Contents

7358306 7/226

17.5 BSP interrupt system description . 215

17.6 BSP MMU mappings description . 216

17.6.1 Mapping table . 216

17.7 Level 2 cache support . 217

18 Revision history . 218

Index. 221

Preface OS21

8/226 7358306

Preface

Document identification and control
Each book carries a unique ADCS identifier of the form:

ADCS nnnnnnnx

where nnnnnnn is the document number, and x is the revision.

Whenever making comments on a document, the complete identification ADCS nnnnnnnx
should be quoted.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

● Sample code, keyboard input and file names,

● Variables and code variables,

● code comments,

● Screens, windows and dialog boxes,

● Instructions.

Hardware notation

The following conventions are used for hardware notation:

● REGISTER NAMES and FIELD NAMES,

● PIN NAMES and SIGNAL NAMES.

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

1. Terminal strings of the language, that is, strings not built up by rules of the language,
are printed in teletype font. For example, void.

2. Nonterminal strings of the language, that is, strings built up by rules of the language,
are printed in italic teletype font. For example, name.

3. If a nonterminal string of the language starts with a nonitalicized part, it is equivalent to
the same nonterminal string without that nonitalicized part. For example, vspace-
name.

4. Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘::=’).

5. Alternatives are separated by vertical bars (‘|’).

6. Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

7. Items which may be repeated appear in braces (‘{’ and ‘}’).

OS21 OS21 overview

7358306 9/226

1 OS21 overview

The OS21 kernel features:

● multi-priority preemptive scheduling based on 256 levels of priority

● semaphores

● mutexes

● message queues

● high resolution timers

● memory management

● interrupt handling

● virtual memory

● exception handling

● very small memory requirement

● power management framework

Each OS21 service can be used largely independently of any other service and this division
into different services is seen in several places.

● Each service has its own header file, which defines all the variables, macros, types and
functions for that service, see Table 1.

● All the symbols defined by a service have the service name as the first component of
the name, see Table 1.

Table 1. OS21 include files

Header Description

os21.h Main include file

os21/cache.h Cache functions

os21/callback.h Callback functions

os21/event.h Event flag functions

os21/exception.h Exception functions

os21/interrupt.h Interrupt functions

os21/kernel.h Kernel functions

os21/message.h Message handling functions

os21/mutex.h Mutex functions

os21/ostime.h Timer functions

os21/partition.h Memory functions

os21/power.h Power management

os21/profile.h Profiler functions

os21/semaphore.h Semaphore functions

os21/task.h Task functions

os21/typedefs.h OS21 types

OS21 overview OS21

10/226 7358306

By including the header file os21.h, all the above header files are automatically included.
The target specific API files in Table 1 include typedefs and APIs relating to register contexts
and interrupts.

1.1 Naming
All the functions in OS21 follow a common naming scheme. This is:

service_action[_qualifier]

where service is the service name, which groups all the functions, and action is the
operation to be performed. qualifier is an optional keyword which is used where there
are different styles of operation.

1.2 How this document is organized
The division of OS21 functions into services is also used in this manual. Each of the major
service types is described separately, using a common layout:

● an overview of the service, and the facilities it provides

● a list of the macros, types and functions defined by the service header file

● a detailed description of each of the functions in the service

The remaining sections of this chapter describe the main concepts on which OS21 is
founded.

1.3 Differences between OS20 and OS21
OS20 contains many aspects which relate specifically to the ST20 CPU, in its various
versions. These aspects of the API are not present in OS21 (for example, channels and high
priority processes).

Where parts of the OS20 API have grown to exploit facilities which exist solely on the ST20,
OS21 preserves the interface, but the functionality is the same as the root API call. An
example is the _timeout() functions for semaphores and message queues. These are
generic calls, but OS20 also provides non _timeout() versions, which are mapped
directly to ST20 hardware semaphores. OS21 preserves the API, but the non _timeout()
versions map directly on to the generic calls.

OS20 uses header files with 8.3 names. OS21 is not constrained by this limitation, and uses
meaningful names, which will not clash with other headers.

os21/[target] Target specific files

os21/vmem.h Virtual memory

Table 1. OS21 include files (continued)

Header Description

OS21 OS21 overview

7358306 11/226

The following classes of API calls are common between OS20 and OS21, with OS21
presenting either exactly the same interface, or a super set:

● kernel API

● memory and partitions

● task and scheduler APIs

● semaphore API

● message API

● time API

In all the above APIs there is one notable difference between OS20 and OS21. OS21 no
longer supports the _init() family of calls. OS21 presents an enhanced partition API,
which is a super set of the OS20 API, and provides much of functionality of the _init()
calls. See Chapter 3: Memory and partitions on page 25.

OS21 has also added the following.

● Mutexes, a new class of synchronization object. These offer extra facilities beyond
simple binary semaphores. See Chapter 7: Mutexes on page 110.

● The concept of event flags, which allow tasks to wait on a combination of events
occurring. See Chapter 8: Event flags on page 119.

● A portable interrupt API. See Chapter 11: Interrupts on page 145.

● A portable cache API. See Chapter 12: Caches and memory areas on page 163.

● A portable virtual memory API. See Chapter 13: Virtual memory on page 173.

● A portable exception API. See Chapter 14: Exceptions on page 180.

● A power management API. See Chapter 16: Power management on page 192.

There has been a minor change to the behavior of priority semaphores between OS20 and
OS21. When a task is queued on a priority semaphore in OS20, its position in the queue is
determined statically when the task is queued. Subsequent modification of the task’s priority
will not change its position in the queue, hence the priority queue can become unordered. In
OS21 this has been fixed; changing a task’s priority while it is on a priority ordered queue
moves the task to the appropriate place in the queue, so correct ordering of the queue is
maintained.

OS21’s concept of time differs to that of OS20, however, providing the mandated OS20 time
manipulation functions are used, compatibility is retained. OS20 represents time (in the form
of clock ticks) as a 32-bit quantity. This results in a limited timer range, and the notion of
timer wrapping. In OS21 this range is extended by representing clock ticks as a signed 64-
bit quantity. This eliminates the clock range restrictions of OS20 and also timer wrap.

Cache API calls differ from earlier OS20 versions. Prior to v.3.0.2 of OS21, cache API calls
are defined as target specific. In v.3.0.2 and following, cache API calls are generic across all
platforms.

New target specific APIs may be added to OS21 which are not present in OS20, or OS21 on
other targets.

OS21 uses two symbolic constants to represent success and failure. They are defined as
follows:

OS21_SUCCESS The value 0

OS21_FAILURE The value -1

OS21 overview OS21

12/226 7358306

OS20 used two pre-defined memory partitions which the user could access, the
system_partion and the internal_partion. OS21 does not have any pre-defined
memory partitions. The system heap in OS21 can either be managed by the C runtime
library routines such as malloc() and free(), or by OS21.

1.4 Classes and objects
OS21 uses an object oriented style of programming. This will be familiar to users of C++,
however it is useful to understand how this has been applied to OS21, and how it has been
implemented in the C language.

Each of the major services of OS21 is represented by a class, for example:

● memory partitions

● tasks

● semaphores

● mutexes

A class is a purely abstract concept, which describes a collection of data items and a list of
operations which can be performed on it. An object represents a concrete instance of a
particular class. An object consists of a data structure in memory which describes the
current state of the object, with information to describe how operations applied to that object
will affect it and the rest of the system.

For many classes within OS21, there are different flavors. For example, the semaphore
class has FIFO and priority flavors. When a particular object is created, the flavor required
must be specified by using a qualifier on the object creation function that is fixed for the
lifetime of that object. All the operations specified by a particular class can be applied to all
objects of that class, however, how they behave may depend on the flavor of that class. So,
the exact behavior of semaphore_wait() depends on whether it is applied to a FIFO or
priority semaphore object.

Once an object has been created, all the data which represents that object is encapsulated
within it. Functions are provided to modify or retrieve this data.

To provide this abstraction within OS21, using only standard C language features, most
functions which operate on an object take the address of the object as their first parameter.
This provides a level of type checking at compile time, for example, to ensure that a
message queue operation is not applied to a semaphore. The only functions which are
applied to an object, and which do not take the address of the object as a first parameter are
those where the object in question can be inferred. For example, when an operation can
only be applied to the current task, there is no need to specify its address.

1.4.1 Object lifetime

All objects can be created using the class_create or class_create_p functions. These
allocate whatever memory is required to store the object, and return a pointer to the object.
The pointer can then be used in all subsequent operations on that object.

When using class_create calls, the memory for the object structure is allocated from the
system partition. Therefore this partition must be initialized (by calling
kernel_initialize()) before any class_create calls are made. Chapter 3: Memory
and partitions on page 25 describes the system partition in more detail.

OS21 OS21 overview

7358306 13/226

When using the class_create_p calls, OS21 allocates space from a user nominated
partition.

The number of objects which can be created is only limited to the available memory, there
are no fixed size lists within OS21’s implementation.

When an object is no longer required, it must be deleted by calling the appropriate
class_delete function. If objects are not deleted and memory is reused, OS21 and the
debugger’s knowledge of valid objects becomes corrupted.

Using the appropriate class_delete function has several effects.

● The object is removed from any lists within OS21, so will no longer appear in the
debugger’s list of known objects.

● The memory allocated for the object will be freed back to the appropriate partition.

Note: The objects created using both class_create and class_create_p are deleted using
class_delete.

A deleted object cannot continue to be used. Any attempt to use a deleted object results in
undefined behavior.

1.5 Defining memory partitions
Memory blocks are allocated and freed from memory partitions for dynamic memory
management. OS21 supports three pre-defined types of memory partition, heap, fixed, and
simple, as described in Chapter 3: Memory and partitions on page 25. The different styles
of memory partition allow trade-offs between execution times and memory utilization. In
addition to these pre-defined partition types, OS21 allows for user defined partition types to
be easily created, should a different allocator be more appropriate for an application (for
example, the buddy algorithm).

An important use of memory partitions is for object allocation. When using the
class_create versions of the library functions to create objects, OS21 allocates memory
for the object from the pre-defined memory system partition. This partition must be defined
(by calling kernel_initialize()) before any of the create_ functions are called.
When using the class_create_p versions of the library functions to create objects, the
user can specify which partition to allocate from.

The standard C runtime memory allocation routines (for example, malloc() and free())
can be used, and these work on the system heap as normal.

1.6 Tasks
Tasks are the main elements of the OS21 multi-tasking facilities. A task describes the
behavior of a discrete, separable component of an application. It behaves like a separate
program, except that it can communicate with other tasks. New tasks may be generated
dynamically by any existing task. There is no limit on the number of tasks in the system,
beyond physical memory limitations.

Each task has its own data area in memory, including its own stack and the current state of
the task. These data areas can be allocated by OS21 from the system partition or specified
by the user. The code, global static data area and heap area are all shared between tasks.
Two tasks may use the same code with no penalty. Sharing static data between tasks must

OS21 overview OS21

14/226 7358306

be done with care, and is not recommended as a means of communication between tasks
without explicit synchronization.

Applications can be broken into any number of tasks provided there is sufficient memory.
The overhead for generating and scheduling tasks is small in terms of processor time and
memory.

Tasks are described in more detail in Chapter 4: Tasks on page 44.

1.7 Priority
The order in which tasks are run is governed by each task’s priority. Normally the task
which has the highest priority is the task which runs. All tasks of lower priority are prevented
from running until the highest priority task deschedules.

If desired, when there are two or more tasks of the same priority waiting to run, they can
each be run for a short period, dividing the use of the CPU between them. This is called
timeslicing.

A task’s priority is set when the task is created, although it may be changed later. OS21
provides the user with 256 levels of priority.

To implement multi-priority scheduling, OS21 uses a scheduling kernel which must be
installed and started, before any tasks are created. This is described in Chapter 2: Kernel on
page 17.

1.8 Semaphores
OS21 uses semaphores to synchronize multiple tasks. They are used to ensure mutual
exclusion and control access to a shared resource.

Semaphores are also used for synchronization between interrupt handlers and tasks.
Semaphores are described in more detail in Chapter 6: Semaphores on page 100.

1.9 Mutexes
OS21 uses mutexes to create critical regions. Mutexes can only be owned by one task at a
time, but also allow an owning task to take a mutex multiple times without deadlock. They
provide simple FIFO queuing of tasks, or priority based queuing with priority inversion
correction. Mutexes are described in detail in Chapter 7: Mutexes on page 110.

1.10 Event flags
OS21 provides event flags, which allow tasks to wait for an arbitrary combination of events
to occur. See Chapter 8: Event flags on page 119.

1.11 Message queues
Message queues provide a buffered communication method for tasks, described in
Chapter 9: Message handling on page 129.

OS21 OS21 overview

7358306 15/226

1.12 Clocks
OS21 provides several clock functions to read the current time, to pause the execution of a
task until a specified time and to time-out an input communication. Chapter 10: Real-time
clocks on page 140 provides an overview of how time is handled in OS21. Time-out related
functions are described in Chapter 4: Tasks on page 44, Chapter 6: Semaphores on
page 100 and Chapter 9: Message handling on page 129.

OS21 provides a high resolution timer by efficiently using the hardware timer provided on
the device.

1.13 Interrupts
A comprehensive set of interrupt handling functions is provided by OS21 to enable external
events to interrupt the current task. These functions are described in Chapter 11: Interrupts
on page 145.

1.14 Virtual memory
A set of functions to support virtual memory is supplied. These may be used to control
memory access and create portable device drivers. See Chapter 13: Virtual memory on
page 173.

1.15 Exceptions
An exception is an out of course (unexpected) event which causes the CPU to jump to an
exception handling routine. Many exceptions are fatal, but other exceptions may require
software intervention before the CPU can continue from the PC address where the
exception was generated. Support is provided in OS21 to the user to deal with exceptions.
These functions are described in Chapter 14: Exceptions on page 180.

1.16 Caches
A comprehensive set of cache handling functions is provided by OS21 to enable external
events to gain control of the CPU. Prior to R.3.0.2 of OS21, these functions are described in
the OS21 implementation specific documentation. For R.3.0.2 and following, these functions
are described in this manual. See Chapter 12: Caches and memory areas on page 163.

1.17 Power management
OS21 defines a number of different power levels and a mechanism for transitioning between
power levels, including waking up from standby mode. See Chapter 16: Power management
on page 192.

OS21 overview OS21

16/226 7358306

1.18 Board support packages
Platform specific differences are held within Board Support Package (BSP) libraries. A
board support library should be linked with the application and the OS21 library at final link
time. The source for each BSP library shipped with OS21 is supplied as part of the product,
enabling customers to modify them or create their own as necessary.

The source files are held in a subdirectory tree under the main OS21 directory:

.../os21/src/target_cpu/bsp/*

The bsp directory contains the source and makefiles required to build the BSP.

A BSP library provides target specific data and code. The precise nature of the data in the
BSP is target specific. Every BSP exports two functions: bsp_initialize() and
bsp_start(). bsp_initialize() is called by the OS21 kernel at initialization time, and
provides a place for users to insert code which is executed just before the kernel comes up.
bsp_start() is called when the OS21 kernel starts, and allows users a hook to perform
any final initialization required by the target.

For details of the Board Support Package features that are common to all Board Support
Packages, see Chapter 17: Board support package on page 207. For a description of the
Board Support Packages (BSPs) for each supported OS21 target, see the OS21
implementation specific documentation.

OS21 Kernel

7358306 17/226

2 Kernel

To implement multi-priority scheduling, OS21 uses a small scheduling kernel. This is a piece
of code which makes scheduling decisions based on the priority of the tasks in the system.
The kernel ensures that the current running task is always the one with the highest
scheduling priority.

2.1 Kernel implementation
The kernel maintains two important pieces of information:

● the identity of the currently executing task (and therefore the priority currently being
executed)

● a list of all the tasks which are currently ready to run

The kernel is invoked whenever a scheduling decision has to be made. This is on four
possible occasions.

● When a task is about to be scheduled, the scheduler is called to determine if the new
task is of higher priority than the currently executing task. If it is, the state of the current
task is saved, and the new one is installed in its place, so the new task starts to run.
This is termed pre-emption because the new task has preempted the old one.

● When a task deschedules for example, it waits on a message queue which does not
have any messages available, then the scheduler is invoked to decide which task to run
next. The kernel examines the list of tasks which are ready to run, and picks the one
with the highest priority.

● Periodically the scheduler may be called to timeslice the currently executing task. If
there are other tasks which are of the same priority as the current task, the state of the
current task is saved onto the back of the current priority queue, and the task at the
front of the queue is installed in its place. Therefore all tasks at the same priority have
an opportunity to run.

● When an interrupt has been serviced, and there are no other lower-priority interrupts
being serviced, the kernel is called to see if a reschedule is required. For example, an
interrupt handler may have signalled a semaphore so that a higher priority task
becomes ready to run when the interrupt handler completes.

This ensures that it is always the highest priority task running.

Kernel OS21

18/226 7358306

2.2 OS21 kernel
The only operation which can be performed on the OS21 kernel is its installation and start.
This is done by calling the functions kernel_initialize() and kernel_start()
which is usually performed as the first operation in main():

if (kernel_initialize(&kernel_init_struct) != OS21_SUCCESS) {
 printf ("Error : initialise. kernel_initialize failed\n");
 exit (EXIT_FAILURE);

}

if (kernel_start() != OS21_SUCCESS) {
 printf("Error: initialize. kernel_start failed\n");
 exit(EXIT_FAILURE);

}

2.3 Kernel API summary
All the definitions related to the kernel can be obtained by including the header file os21.h,
which itself includes the header file kernel.h. See Table 2 for a complete list.

The initialize and start functions must be called only once from the main body of the
application.

Table 2. Functions defined in kernel.h

Function Description

kernel_board() Returns the name of the board

kernel_chip() Returns the name of the chip type

kernel_cpu() Returns the name of the CPU type

kernel_idle() Returns the amount of idle time on the CPU

kernel_initialize() Initializer for preemptive scheduling

kernel_printf() Outputs a string

kernel_start() Starts preemptive scheduling regime

kernel_time() Returns amount of kernel up-time

kernel_timeslice() Turns timeslicing on and off

kernel_version() Returns the OS21 version string

OS21 Kernel

7358306 19/226

2.4 Kernel function definitions

kernel_board
Return the name of the board on which the application is running

Definition: #include <os21.h>
const char* kernel_board(void);

Arguments: None

Returns: Returns a pointer to a string describing the board on which the application is running.

Errors: None

Context: Callable from task or system context.

Description: kernel_board() returns a pointer to a string which gives a readable description of
the board on which the application is currently running.

See also: kernel_version, kernel_cpu

kernel_chip
Return the name of the chip type on which the application is
running

Definition: #include <os21.h>
const char* kernel_chip(void);

Arguments: None

Returns: Returns a pointer to a string describing the chip type on which the application is
running.

Errors: None.

Context: Callable from task or system context.

Description: kernel_chip() returns a pointer to a string which gives a readable description of
the chip type on which the application is currently running.

See also: kernel_version, kernel_board, kernel_cpu

Kernel OS21

20/226 7358306

kernel_cpu
Return the name of the CPU type on which the application is
running

Definition: #include <os21.h>
const char* kernel_cpu(void);

Arguments: None

Returns: Returns a pointer to a string describing the CPU type on which the application is
running.

Errors: None.

Context: Callable from task or system context.

Description: kernel_cpu() returns a pointer to a string which gives a readable description of the
CPU type on which the application is currently running.

See also: kernel_version, kernel_board, kernel_chip

kernel_idle
Return the kernel idle time

Definition: #include <os21.h>
osclock_t kernel_idle(void);

Arguments: None

Returns: This function returns a time value indicating the kernel idle time.

Errors: None

Context: Callable from task or system context.

Description: kernel_idle() passes back a time value indicating the amount of time that the
kernel has been idle; that is the time not executing tasks. Idle time occurs when there
is no valid task to run, or interrupt pending.

The idle time is measured by recording the accumulation of intervals between the
time when the kernel becomes idle and the time when it becomes active again.

See also: kernel_time

OS21 Kernel

7358306 21/226

kernel_initialize
Initialize for preemptive scheduling

Definition: #include <os21.h>
int kernel_initialize(
 kernel_initialize_t* init);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: Failure is caused by insufficient space to create the necessary data structures.

Context: Callable from task only.

Description: kernel_initialize() must be called before any tasks are created. It creates and
initializes the task and queue data structures. After the structures are created the
calling task is initialized as the root task in the system. This function should only be
called once. Calling it multiple times has no effect. kernel_initialize() is also
responsible for calling bsp_initialize() to initialize the BSP.

The kernel_initialize_t structure passed to this call provides OS21 with its
required memory regions. If the system_heap_base is NULL, and the
system_heap_size is 0, OS21 uses the usual ‘C’ runtime heap as its system heap
(managed by C runtime library routines such as malloc(), free()). If a system
heap memory region is provided with this structure, OS21 takes over management of
it directly.

If the system_stack_base is NULL, and the system_stack_size is 0, OS21
allocates its system stack from the system heap. The size of the system stack in this
case is a platform-specific default value.

If NULL is specified for either base pointer, with an associated non-zero size, OS21
allocates the required memory from the ‘C’ runtime heap.

If the init parameter is passed as a NULL pointer, OS21 uses the ‘C’ runtime heap
for its system heap, and allocates a default sized system stack.

The definition of a kernel_initialize_t is:

typedef struct {
 unsigned char* system_stack_base;
 size_t system_stack_size;
 unsigned char* system_heap_base,
 size_t system_heap_size,

} kernel_initialize_t;

See also: kernel_start

kernel_initialize_t* init Address of kernel initialization structure, or
NULL

Kernel OS21

22/226 7358306

kernel_printf
Output a string

Definition: #include <os21.h>
void kernel_printf(const char * fmt, ...);

Arguments:

Returns: None.

Errors: None.

Context: Callable from task or system context.

Description: kernel_printf() outputs a string in a similar manner to the C run-time function
printf(). kernel_printf() can be called from any context and is guaranteed
not to block. It is not guaranteed that the message will be output. For example, if
some I/O resource is busy at the point at which the call to kernel_printf() is
made, the message may not be output.

kernel_printf() supports some, but not all, of the familiar printf() formats
(%d, %u,%p, %x, %c, %s and %% are supported). Field width specifiers are not
supported.

kernel_start
Starts preemptive scheduling regime

Definition: #include <os21.h>
int kernel_start(void);

Arguments: None

Returns: OS21_SUCCESS or OS21_FAILURE

Errors: Failure is caused by insufficient memory, or kernel_initialize() not having
been called previously.

Context: Callable from task only.

Description: kernel_start() must be called before any tasks are created. On return from the
function the preemptive scheduler is running. The calling function is installed as the
first OS21 task and is running at MAX_USER_PRIORITY.

kernel_start() is also responsible for calling bsp_start() in the BSP, to allow
any BSP specific start actions to be performed.

Note: Before calling this function, kernel_initialize() must have been called.
kernel_start() should only be called once.

fmt The string to output.

OS21 Kernel

7358306 23/226

kernel_time
Return the kernel up-time

Definition: #include <os21.h>
osclock_t kernel_time(void);

Arguments: None

Returns: A clock value indicating how long has elapsed since the kernel started executing.

Errors: None

Context: Callable from task or system context.

Description: kernel_time() returns the kernel up-time, indicating the elapsed time that the
kernel has been running; that is, the time spent executing code or in idle state.

The kernel up-time is the time from when the kernel was successfully started to the
time when the kernel_time() call is made.

See also: kernel_idle

kernel_timeslice
Turn on or off timeslicing

Definition: #include <os21.h>
void kernel_timeslice(
 int on);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: kernel_timeslice() can be called after kernel_start() has been called and
turns timeslicing on or off. If an application has distinct priorities for each task, there is
no requirement for timeslicing. An application that runs without timeslicing, spends
less time executing OS21 kernel code and is therefore more efficient than one that
uses timeslicing.

See also: kernel_start

int on OS21_TRUE to turn on timeslicing,
OS21_FALSE to turn off timeslicing

Kernel OS21

24/226 7358306

kernel_version
Return the OS21 version number

Definition: #include <os21.h>
const char* kernel_version(void);

Arguments: None

Returns: Returns a pointer to the OS21 version string.

Errors: None

Context: Callable from task or system context.

Description: kernel_version() returns a pointer to a string which gives the OS21 version
number. This string takes the form: {major number}.{minor number}.{patch
number} [text]. That is, a major, minor and release number, separated by
decimal points, and optionally followed by a space and a printable text string.

See also: kernel_initialize

OS21 Memory and partitions

7358306 25/226

3 Memory and partitions

Memory management on many embedded systems is vital, because available memory is
often small and must be used efficiently. Therefore three different styles of memory
management have been provided with OS21, with the ability for users to define their own
memory managers; see Section 3.2: Allocation strategies on page 26. These give the user
flexibility in controlling how memory is allocated, allowing a space/time trade-off to be
performed.

3.1 Partitions
The job of memory management is to allow the application program to allocate and free
blocks of memory from a larger block of memory, which is under the control of a memory
allocator. In OS21 these concepts have been combined into a partition, which has three
properties:

● the block of memory for which the partition is responsible

● the current state of allocated and free memory

● the algorithm to use when allocating and freeing memory

The method of allocating/deallocating memory is the same whatever style of partition is
used, only the algorithm used (and therefore the interpretation of the partition data
structures) changes.

There is nothing special about the memory which a partition manages. It can be a static or
local array, or an absolute address which is known to be free. It can also be a block allocated
from another partition, see the example given in the description of partition_delete on
page 41. This is useful by avoiding having to explicitly free all the blocks allocated:

● allocate a block from a partition, and create a second partition to manage it

● allocate memory from the partition as normal

● when finished, rather than freeing all the allocated blocks individually, free the whole
partition (as a block) back to the partition from which it was first allocated

The OS21 system of partitions can also be exploited to build fault-tolerance into an
application. This is done by implementing different parts of the application, using different
memory partitions. Therefore, if a fault occurs in one part of the application it does not
necessarily effect the whole application.

Memory and partitions OS21

26/226 7358306

3.2 Allocation strategies
Three types of partition are directly supported in OS21:

Heap

Heap partitions use the same style of memory allocator as the traditional C runtime malloc
and free functions. Variable sized blocks can be allocated, with the requested size of
memory being allocated by memory_allocate, and the first available block of memory is
returned to the user. Blocks of memory may be deallocated using memory_deallocate, in
which case they are returned to the partition for re-use. When blocks are freed, if there is a
free block before or after it, it is combined with that block to allow larger allocations.

Although the heap style of allocator is very versatile, it does have some disadvantages. It is
not deterministic, the time taken to allocate and free memory is variable because it depends
on the previous allocations/deallocations performed and lists have to be searched. Also, the
overhead (additional memory which the allocator consumes for its own use) is quite high,
with several additional words being required for each allocation.

Fixed

The fixed partition overcomes some of these problems, by fixing the size of the block which
can be allocated when the partition is created, using partition_create_fixed or
partition_create_fixed_p. This means that allocating and freeing a block takes
constant time (that is, it is deterministic) and there is a very small memory overhead.
Therefore this partition ignores the size argument when an allocation is preformed by
memory_allocate and uses instead the size argument which was specified when the
partition was created using either partition_create_fixed or
partition_create_fixed_p.

Blocks of memory may be deallocated using memory_deallocate, in which case they are
returned to the partition for re-use.

Simple

The simple partition is a trivial allocator, which just increments a pointer to the next
available block of memory. This means that it is impossible to free any memory back to the
partition, but there is no wasted memory when performing memory allocations. Therefore
this partition is ideal for allocating internal memory. Variable sized blocks of memory can be
allocated, with the size of block being defined by the argument to memory_allocate and
the time taken to allocate memory is constant.

The properties of the three partition types are summarized in Table 3.

Table 3. Partition properties

Properties Heap Fixed Simple

Allocation
method

As requested by
memory_allocate or
memory_reallocate

Fixed at creation by
partition_create_fixed or
partition_create_fixed_p

As requested by
memory_allocate or
memory_reallocate

Deallocation
possible

Yes Yes No

Deterministic No Yes Yes

OS21 Memory and partitions

7358306 27/226

OS21 also allows the user to create new partition types which can implement any allocation
scheme. This is supported by the partition_create_any() API, which allows the user
to register a new type of partition manager.

3.3 Predefined partitions
Unlike OS20, OS21 does not have any predefined partitions. The system heap can be
managed by the traditional C runtime routines (such as malloc()), or by OS21. The
system heap is used by all _create() calls to allocate control structures.

3.4 Obtaining information about partitions
When memory is dynamically allocated it is important to have knowledge of how much
memory is used or how much memory is available in a partition. The status of a partition can
be retrieved with a call to the following function:

#include <os21.h>
int partition_status(
 partition_t* partition,
 partition_status_t* status,
 partition_status_flags_t flags);

The information returned includes the total memory used, the total amount of free memory,
the largest block of free memory and whether the partition is in a valid state.

partition_status() returns the status of heap, fixed and simple partitions by storing
the status into the partition_status_t structure which is passed as a pointer to
partition_status().

For fixed partitions the largest free block of memory is always the same as the block size of
the requested partition.

3.5 Creating a new partition type
OS21 allows a user to create partitions with their own allocation strategies. The user
supplies allocate, deallocate, reallocate and status functions to
partition_create_any() or partition_create_any_p(), with the required
amount of extra storage they need for their control structure (private state). These calls
create a partition_t structure that incorporates enough room for their private control
structure. This is allocated either from the system heap, or from the nominated partition if
partition_create_any_p() is used.

The user then calls partition_private_state() passing in the returned
partition_t pointer, to get a pointer to their private state, so it can be initialized.

Any memory requests involving this partition are vectored to the user supplied routines.

Memory and partitions OS21

28/226 7358306

3.6 Traditional ‘C’ memory management
The traditional ‘C’ heap management routines (such as malloc(), realloc() and
free()) are all still available from newlib. The calls are task aware, and can be used to
manage the ‘C’ runtime heap. malloc() can be used to allocate chunks of memory from
the ‘C’ runtime heap, then pass this memory to OS21 (using the kernel_initialize()
call), or to a partition manager for it to manage (using a partition_create_*() call).

3.7 Partition API summary
All the definitions related to memory partitions can be obtained by including the header file,
os21.h, which itself includes the header file partition.h. See Table 4 and Table 5. for a
complete list.

All functions are callable from an OS21 task.

Table 4. Functions defined in partition.h

Function Description

memory_allocate() Allocates a block of memory from a partition

memory_allocate_clear()
Allocates a block of memory from a partition and clear to
zero

memory_deallocate() Frees a block of memory back to a partition

memory_reallocate() Reallocates a block of memory from a partition

partition_create_any() Creates a user partition

partition_create_any_p() Creates a user partition

partition_create_fixed() Creates a fix partition

partition_create_fixed_p() Creates a fix partition

partition_create_heap() Creates a heap partition

partition_create_heap_p() Creates a heap partition

partition_create_simple() Creates a simple partition

partition_create_simple_p() Creates a simple partition

partition_delete() Deletes a partition

partition_private_state() Returns a user partition’s private state pointer

partition_status() Gets the status of a partition

Table 5. Types defined by partition.h

Type Description

memory_allocate_fn Memory allocator function

memory_deallocate_fn Memory deallocator function

memory_reallocate_fn Memory reallocator function

memory_status_fn Memory status function

OS21 Memory and partitions

7358306 29/226

3.8 Memory and partition function definitions

memory_allocate
Allocate a block of memory from a partition

Definition: #include <os21.h>
void* memory_allocate(
 partition_t *part,
 size_t size);

Arguments:

Returns: A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors: If there is insufficient memory for the allocation, it fails and returns NULL.

Context: Callable from task only.

Description: memory_allocate() allocates a block of memory of size bytes from partition part.
It returns the address of a block of memory of the required size, which is suitably
aligned to contain any type.

Note: If a null pointer is specified for part, instead of a valid partition pointer, the C runtime
heap is used.

This function calls the memory allocator associated with the partition part. For a full
description of the algorithm, see the description of the appropriate partition creation
function.

See also: memory_deallocate, memory_reallocate, partition_create_any,
partition_create_any_p, partition_create_fixed,
partition_create_fixed_p, partition_create_heap,
partition_create_heap_p, partition_create_simple,
partition_create_simple_p

partition_t A memory partition

partition_status_flags_t Additional flags for partition_status

Table 5. Types defined by partition.h (continued)

Type Description

partition_t *part The partition from which to allocate memory

size_t size The number of bytes to allocate

Memory and partitions OS21

30/226 7358306

memory_allocate_clear
Allocate and zero a block of memory from a partition

Definition: #include <os21.h>
void* memory_allocate_clear(
 partition_t *part,
 size_t nelem,
 size_t elsize);

Arguments:

Returns: A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors: If there is insufficient memory for the allocation, it fails and returns NULL.

Context: Callable from task only.

Description: memory_allocate_clear() allocates a block of memory large enough for an
array of nelem elements, each of size elsize bytes, from partition part. It returns
the base address of the array, which is suitably aligned to contain any type. The
memory is initialized to zero.

Note: If a null pointer is specified for part, instead of a valid partition pointer, the C runtime
heap is used.

This function calls the memory allocator associated with the partition part. For a full
description of the algorithm, see the description of the appropriate partition creation
function.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_heap_p, partition_create_fixed,
partition_create_fixed_p

partition_t *part The partition from which to allocate memory

size_t nelem The number of elements to allocate

size_t elsize The size of each element in bytes

OS21 Memory and partitions

7358306 31/226

memory_deallocate
Free a block of memory back to a partition

Definition: #include <os21.h>
void memory_deallocate(
 partition_t *part,
 void* block);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: memory_deallocate() returns a block of memory at block, back to partition
part. The memory must have been originally allocated from the same partition to
which it is being freed.

Note: If a null pointer is specified for part, instead of a valid partition pointer, the C runtime
heap is used.

This function calls the memory allocator associated with the partition part. For a full
description of the algorithm, see the description of the appropriate partition creation
function.

See also: memory_allocate, memory_reallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_heap_p, partition_create_fixed,
partition_create_fixed_p

partition_t *part The partition to which memory is freed

void* block The block of memory to free

Memory and partitions OS21

32/226 7358306

memory_reallocate
Reallocate a block of memory from a partition

Definition: #include <os21.h>
void* memory_reallocate(
 partition_t *part,
 void* block,
 size_t size);

Arguments:

Returns: A pointer to the allocated memory, or NULL if there is insufficient memory available.

Errors: If there is insufficient memory for the allocation, it fails and returns NULL.

Context: Callable from task only.

Description: memory_reallocate() changes the size of a memory block allocated from a
partition, preserving the current contents.

If block is NULL, the function behaves like memory_allocate and allocates a block
of memory. If size is 0 and block is not NULL, the function behaves like
memory_deallocate() and frees the block of memory back to the partition.

For fixed and heap partitions, if block is not NULL and size is not 0, the block of
memory is reallocated.

Note: block must have been allocated from part originally.

Note: If a null pointer is specified for part, instead of a valid partition pointer, the C runtime
heap is used.

memory_reallocate() calls the memory allocator associated with the partition
part. For a full description of the algorithm, see the description of the appropriate
partition initialization function.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_heap_p, partition_create_fixed,
partition_create_fixed_p

partition_t *part The partition to reallocate

void* block The current memory block

size_t size The number of bytes to allocate

OS21 Memory and partitions

7358306 33/226

partition_create_any
Create a user defined partition

Definition: #include <os21.h>
partition_t* partition_create_any(
 size_t private_state_size,
 mem_allocate_fn allocate,
 mem_deallocate_fn deallocate,
 mem_reallocate_fn reallocate,
 mem_status_fn status);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If there is insufficient memory to allocate the control structure the routine returns
NULL.

Context: Callable from task only.

Description: partition_create_any() creates a memory partition where the allocation
strategy is user defined. The partition_t describing this partition is allocated from
the system heap.

Memory is allocated and freed back to this partition using memory_allocate(),
memory_deallocate() and memory_reallocate(), which are vectored to the
user supplied routines.

The prototypes for the management routines are:

typedef void* (*memory_allocate_fn) (
 void* state,
 size_t size);

typedef void (*memory_deallocate_fn) (
 void * state,
 void * ptr);

typedef void* (*memory_reallocate_fn) (
 void* state,
 void* ptr,
 size_t size);

typedef int (*mem_status_fn) (
 void* state,
 partition_status_t *status,
 partition_status_flags_t flags);

See also: memory_allocate, memory_deallocate, partition_create_any_p,
partition_create_simple, partition_create_simple_p,
patition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p,
partition_private_state

size_t private_state_size Amount of state this allocator requires

mem_allocate_fn allocate Memory allocation routine

mem_deallocate_fn deallocate Memory deallocate routine

mem_reallocate_fn reallocate Memory reallocate routine

mem_status_fn status Memory status routine

Memory and partitions OS21

34/226 7358306

partition_create_any_p
Create a user defined partition

Definition: #include <os21.h>
partition_t* partition_create_any_p(
 partition_t* partition,
 size_t private_state_size,
 mem_allocate_fn allocate,
 mem_deallocate_fn deallocate,
 mem_reallocate_fn reallocate,
 mem_status_fn status);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If there is insufficient memory to allocate the control structure the routine returns
NULL.

Context: Callable from task only.

Description: partition_create_any_p() creates a memory partition where the allocation
strategy is user defined. The partition_t describing this partition is allocated from
the specified partition.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

Memory is allocated and freed back to this partition using memory_allocate(),
memory_deallocate() and memory_reallocate(), which are vectored to the
user supplied routines.

The prototypes for the management routines are:

typedef void* (*memory_allocate_fn) (
 void* state,
 size_t size);

typedef void (*memory_deallocate_fn) (
 void * state,
 void * ptr);

typedef void* (*memory_reallocate_fn) (
 void* state,
 void* ptr,
 size_t size);

partition_t* partition Partition from which to allocate
partition_t

size_t private_state_size Amount of state this allocator requires

mem_allocate_fn allocate Memory allocation routine

mem_deallocate_fn deallocate Memory deallocate routine

mem_reallocate_fn reallocate Memory reallocate routine

mem_status_fn status Memory status routine

OS21 Memory and partitions

7358306 35/226

typedef int (*mem_status_fn) (
 void* state,
 partition_status_t *status,
 partition_status_flags_t flags);

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_simple, partition_create_simple_p,
patition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p,
partition_private_state

partition_create_fixed
Create a fixed size partition

Definition: #include <os21.h>
partition_t* partition_create_fixed(
 void* memory,
 size_t memory_size,
 size_t block_size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_fixed() creates a memory partition where the size of the
blocks which can be allocated is fixed when the partition is created. Only the amount
of memory requested is allocated, with no overhead for the partition manager.
Allocating and freeing simply involves removing and adding blocks to a linked list, and
so takes constant time.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_allocate() must specify the same or smaller
block size as was used when the partition was created, otherwise the allocation fails.
memory_reallocate() has no effect.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_heap_p, partition_create_fixed_p

void* memory The start address for the memory partition

size_t memory_size The size of the memory block in bytes

size_t block_size The size of the block to allocate from the
partition

Memory and partitions OS21

36/226 7358306

partition_create_fixed_p
Create a fixed size partition

Definition: #include <os21.h>
partition_t* partition_create_fixed_p(
 partition_t* partition,
 void* memory,
 size_t memory_size,
 size_t block_size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_fixed_p() creates a memory partition where the size of the
blocks which can be allocated is fixed when the partition is created. Only the amount
of memory requested is allocated, with no overhead for the partition manager.
Allocating and freeing simply involves removing and adding blocks to a linked list, and
so takes constant time. The partition_t is allocated from the specified partition.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_allocate() must specify the same or smaller
block size as was used when the partition was created, otherwise the allocation fails.
memory_reallocate() has no effect.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_heap_p, partition_create_fixed

partition_t* partition Partition from which to allocate
partition_t

void* memory The start address for the memory partition

size_t memory_size The size of the memory block in bytes

size_t block_size The size of the block to allocate from the
partition

OS21 Memory and partitions

7358306 37/226

partition_create_heap
Create a heap partition

Definition: #include <os21.h>
partition_t* partition_create_heap(
 void* memory,
 size_t size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_heap() creates a memory partition with the semantics of a
heap. This means that variable size blocks of memory can be allocated and freed
back to the memory partition. Only the amount of memory requested is allocated, with
a small overhead on each block for the partition manager. Allocating and freeing
requires searching through lists, and so the length of time depends on the current
state of the heap.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_reallocate() is implemented efficiently.
Reducing the size of a block is always done without copying, and expanding only
results in a copy if the block cannot be expanded because subsequent memory
locations have been allocated.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Memory and partitions OS21

38/226 7358306

partition_create_heap_p
Create a heap partition

Definition: #include <os21.h>
partition_t* partition_create_heap_p(
 partition_t* partition,
 void* memory,
 size_t size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_heap_p() creates a memory partition with the semantics of a
heap. This means that variable size blocks of memory can be allocated and freed
back to the memory partition. Only the amount of memory requested is allocated, with
a small overhead on each block for the partition manager. Allocating and freeing
requires searching through lists, and so the length of time depends on the current
state of the heap. The new partition_t structure is allocated from the specified
existing partition.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

Memory is allocated and freed back to this partition using memory_allocate() and
memory_deallocate(). memory_reallocate() is implemented efficiently.
Reducing the size of a block is always done without copying, and expanding only
results in a copy if the block cannot be expanded because subsequent memory
locations have been allocated.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_simple_p, partition_create_heap,
partition_create_fixed, partition_create_fixed_p

partition_t* partition Partition from which to allocate control
structure

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

OS21 Memory and partitions

7358306 39/226

partition_create_simple
Create a simple partition

Definition: #include <os21.h>
partition_t* partition_create_simple(
 void* memory,
 size_t size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_simple() creates a memory partition with allocation only
semantics. This means that memory can only be allocated from the partition,
attempting to free it back has no effect. Only the amount of memory requested is
allocated, with no overhead. Allocation involves checking if there is space left in the
partition, and incrementing a pointer, so is very efficient and takes constant time.

Memory is allocated from this partition using memory_allocate(). Calling
memory_deallocate() on this partition has no effect. As there is no record of the
original allocation size, memory_reallocate() cannot know whether the block is
growing or shrinking, and so always returns NULL.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple_p,
partition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

Memory and partitions OS21

40/226 7358306

partition_create_simple_p
Create a simple partition

Definition: #include <os21.h>
partition_t* partition_create_simple_p(
 partition_t* partition,
 void* memory,
 size_t size);

Arguments:

Returns: The partition identifier or NULL if an error occurs.

Errors: If the amount of memory is insufficient it fails and returns NULL.

Context: Callable from task only.

Description: partition_create_simple_p() creates a memory partition with allocation only
semantics. This means that memory can only be allocated from the partition,
attempting to free it back has no effect. Only the amount of memory requested is
allocated, with no overhead. Allocation involves checking if there is space left in the
partition, and incrementing a pointer, so is very efficient and takes constant time. The
new partition_t structure is allocated from the specified existing partition.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

Memory is allocated from this partition using memory_allocate(). Calling
memory_deallocate() on this partition has no effect. As there is no record of the
original allocation size, memory_reallocate() cannot know whether the block is
growing or shrinking, and so always returns NULL.

See also: memory_allocate, memory_deallocate, partition_create_any,
partition_create_any_p, partition_create_simple,
partition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p

partition_t* partition Partition from which to allocate control
structure

void* memory The start address for the memory partition

size_t size The size of the memory block in bytes

OS21 Memory and partitions

7358306 41/226

partition_delete
Delete a partition

Definition: #include <os21.h>
void partition_delete(
 partition_t* partition);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: This function allows a partition to be deleted. It frees the data structure used to
manage the partition (partition_t).

Deleting the memory that forms the partition is the responsibility of the user. The
block of memory being managed by the partition is unaffected by
partition_delete().

See also: partition_create_any, partition_create_any_p,
partition_create_simple, partition_create_simple_p,
partition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p

partition_private_state
Return the address of a partition’s private state structure

Definition: #include <os21.h>
void * partition_private_state(
 partition_t* partition);

Arguments:

Returns: The address of the partition’s private state information, or NULL.

Errors: Returns NULL if a null partition is specified.

Context: Callable from task only.

Description: This function allows the address of a partition’s private state data to be returned. This
is required when implementing a new partition management scheme.

See also: partition_create_any, partition_create_any_p

partition_t* partition Partition to delete

partition_t* partition Partition to query

Memory and partitions OS21

42/226 7358306

partition_status
Get status of a partition

Definition: #include <os21.h>
int partition_status(
 partition_t* partition,
 partition_status_t* status,
 partition_status_flags_t flags);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: Returns OS21_FAILURE if status is NULL, or if partition has not been initialized
using one of the _create or _create_p functions. Partitions previously deleted
with partition_delete() also return OS21_FAILURE.

Context: Callable from task only.

Description: partition_status() checks the status of the partition by checking that the
partition is not corrupt and also by calculating the memory usage of the partition.
Memory usage includes the amount of memory used, memory available and largest
available block of memory.

partition is a pointer to a partition which partition_status() references to
calculate memory usage. status is a pointer to a structure which
partition_status() uses to store the results.

Note: If NULL is passed as the partition pointer, the status is filled in as best it can be by
interrogating the C runtime heap manager.

Table 6 shows the layout of the structure partition_status_t.

Table 7 shows all the possible values which are available to the field
partition_status_state.

partition_t* partition A pointer to a partition

partition_status_t* status A pointer to a buffer to save to

partition_status_flags_t flags

Reserved for future use, flags should be set
to zero

Table 6. Layout of structure partition_status_t

Name Description

partition_status_state Partition state (See Table 7)

partition_status_type Type of partition (See Table 8)

partition_status_size Total number of bytes within partition

partition_status_free Total number of bytes free within partition

partition_status_free_largest
Total number of bytes within the largest free block
in partition

partition_status_used
Total number of bytes which are allocated/in use
within the partition

OS21 Memory and partitions

7358306 43/226

Table 8 shows all the possible values which are available to the field
partition_status_type.

If partition_status() returns successfully then the structure pointed to by
status contains statistics about the partition partition.

partition_status_state is set to partition_status_state_valid if the
partition is valid. Otherwise it is set to partition_status_state_invalid.

partition_status_type depending on the type of partition contains one of the
flags as shown in Table 8.

partition_status_size contains the size of the partition in bytes. The size of a
partition is defined when a partition is initialized using the _create/_create_p
functions, therefore partition_status_size does not change with subsequent
calls to partition_status().

partition_status_used is the total number of bytes allocated in the partition.

partition_status_free is the number of free bytes available in the partition.

partition_status_free_largest is the size of the largest free block of memory
in the partition.

partition_status_used is the total number of bytes used in the partition.

The results provided by partition_status() may differ slightly for each partition
type, for example, heap and fixed partitions incur a memory overhead with each
allocation/deallocation, these overheads are taken into account in the results. See
Table 3: Partition properties on page 26.

See also: partition_create_any, partition_create_any_p,
partition_create_simple, partition_create_simple_p,
partition_create_heap, partition_create_heap_p,
partition_create_fixed, partition_create_fixed_p

Table 7. Flag values for partition_status_state

Flag Flag description

partition_status_state_valid Partition is valid

partition_status_state_invalid Partition is corrupt

Table 8. Values for partition_status_type

Flag Flag description

partition_status_type_simple Partition is a simple partition

partition_status_type_fixed Partition is a fixed partition

partition_status_type_heap Partition is a heap partition

partition_status_type_any Partition has user defined semantics

Tasks OS21

44/226 7358306

4 Tasks

Tasks are separate threads of control, which run independently. A task describes the
behavior of a discrete, separable component of an application, behaving like a separate
program, except that it can communicate with other tasks. New tasks may be generated
dynamically by any existing task.

Applications can be broken into any number of tasks provided there is sufficient memory.
When a program starts, there is a single main task in execution. Other tasks can be started
as the program executes. These other tasks can be considered to execute independently of
the main task, but share the processing capacity of the processor.

4.1 OS21 tasks
A task consists of a data structure, stack and a section of code. A task’s data structure is
known as its state and its exact content and structure are processor dependent. This
structure is known as a task_t structure. It includes the task state (being created,
executing, terminated) and the stack range (used for stack checking).

A task is identified by its task_t structure and this should always be used when referring to
the task. A pointer to the task_t structure is called the task’s ID, see Section 4.11 on page
49.

The code for the task to execute is provided by the user function. To create a task, the
task_t data structure must be allocated and initialized and a stack and function must be
associated with them. This is done using the task_create() or task_create_p()
functions depending on whether the user wishes to control the allocation of the data
structures or not. See Section 4.4: Creating and running a task on page 46.

Note: OS21 does not provide the equivalent of OS20 high priority hardware processes. Only the
tasking model of OS20 is preserved in OS21.

4.2 OS21 priorities
The number of OS21 task priorities and the highest and lowest task priorities are defined
using the macros in the header file os21/task.h, see Section 4.19: Task API summary on
page 55. Numerically higher priorities preempt lower priorities for example, 3 is a higher
priority than 2.

A task’s initial priority is defined when it is created, see task_create on page 58. The only
task which does not have its priority defined in this way is the root task, that is, the task
which starts OS21 running by calling kernel_start(). This task starts running with the
highest priority available, MAX_USER_PRIORITY.

If a task needs to know the priority it is running at or the priority of another task, it can call
the following function:

int task_priority (task_t* task)

task_priority() retrieves the OS21 priority of the task specified by task or the priority
of the currently active task if task is NULL.

OS21 Tasks

7358306 45/226

The priority of a task can be changed using the task_priority_set() function:

int task_priority_set (
 task_t* task,
 int priority);

task_priority_set() sets the priority of the task specified by task, or of the currently
active task if task is NULL. If this results in the current task’s priority falling below that of
another task which is ready to run, or a ready task now has a priority higher than the current
task’s, tasks may be rescheduled.

4.3 Scheduling
An active task may either be running or waiting to run. OS21 ensures the following.

● The currently executing task is always the one with the highest priority.
If a task with a higher priority becomes ready to run, the OS21 scheduler saves the
current task’s state and makes the higher priority task the current task. The current task
runs to completion unless it is preempted by a higher priority task, and so on. Once a
task has completed, the next highest priority task starts executing.

● If timeslicing has been enabled, tasks of equal priority are timesliced to ensure they all
get a chance to run. Each task of the same priority level executes in turn for a period of
time known as a timeslice.

The kernel scheduler can be prevented from preempting or timeslicing the current task, by
using the following pair of functions:

void task_lock (void);
void task_unlock (void);

These functions should always be called as a pair and can be used to create a critical region
where one task is prevented from preempting another. Calls to task_lock() can be
nested, and the lock is not released until an equal number of calls to task_unlock() have
been made. Once task_unlock() is called, the scheduler starts running the highest
priority task available. This may not be the task which called task_unlock().

If a task voluntarily deschedules, for example by calling semaphore_wait(), the critical
region is unlocked and normal scheduling resumes. When the task resumes (if for example
it acquired the semaphore), the critical region is reinstated by OS21.

When this lock is in place the task can still be interrupted by interrupt handlers. Interrupts
can be prevented from interrupting the task by using the interrupt_mask() or
interrupt_mask_all() functions. Any task that is made runnable as a result cannot
pre-empt the locked task, even if it is of higher priority. The pre-emption only occurs when
the task_unlock() call is made.

Tasks OS21

46/226 7358306

4.4 Creating and running a task
The following functions are provided for creating and starting a task running:

Both functions set up a task and start the task running at the specified function. This is done
by initializing the data structure task_t and associating a function with it.

Using either task_create() or task_create_p(), the function is passed in as a pointer
to the task’s entry point. Both functions take a single pointer to be used as the argument to
the user function. A cast to void* should be performed to pass in a single word sized
parameter (for example, an int). Otherwise a data structure should be set up.

The functions differ in how the task’s data structure is allocated. task_create() allocates
memory for the task’s stack, control block task_t from the system heap, whereas
task_create_p() enables the user to specify a specific memory partition from which to
allocate.

task_create() and task_create_p() both require the stack size to be specified. Stack
is used for a function’s local variables and parameters and to save the register context when
the task is preempted.

Both functions require an OS21 priority level to be specified for the task and a name to be
associated with the task for use by the debugger. The priority levels are defined in the
header file os21/task.h by the macros OS21_PRIORITY_LEVELS,
MAX_USER_PRIORITY and MIN_USER_PRIORITY, see Section 4.19: Task API summary
on page 55.

4.5 Synchronizing tasks
Tasks synchronize their actions with each other using semaphores and mutexes, as
described in Chapter 6: Semaphores on page 100 and Chapter 7: Mutexes on page 110.

4.6 Communicating between tasks
Tasks communicate with each other using message queues, as described in Chapter 9:
Message handling on page 129.

#include <os21.h>
task_t* task_create (
 void (*function)(void*),
 void* param,
 int stack_size,
 int priority,
 const char* name,
 task_flags_t flags);

#include <os21.h>
task_t* task_create_p(
 partition_t* partition,
 void (*function)(void*),
 void* param,
 partition_t* stack_partition,
 int stack_size,
 int priority,
 const char* name,
 task_flags_t flags);

OS21 Tasks

7358306 47/226

4.7 Timed delays
The following two functions cause a task to wait for a certain length of time measured in ticks
of the timer.

void task_delay(osclock_t delay);
void task_delay_until(osclock_t delay);

Both functions wait for a period of time and then return. task_delay_until() waits until
the given absolute reading of the timer is reached. If the requested time is before the
present time, the task does not wait.

task_delay() waits until the given time has elapsed, that is, it delays execution for the
specified number of timer ticks. If the time given is negative, no delay takes place.

task_delay() or task_delay_until() may be used for data logging or causing an
event at a specific time. A high priority task can wait until a certain time; when it wakes it
preempts any lower priority task that is running and performs the time-critical function.

When initiating regular events, such as for data logging, it may be important not to
accumulate errors in the time between ticks. This is done by repeatedly adding to a time
variable rather than rereading the start time for the delay.

For example, to initiate a regular event every delay ticks:

#include <os21.h>
osclock_t time;
time = time_now();
for (;;)
{
 time = time_plus (time, delay);
 task_delay_until(time);
 initiate_regular_event ();

}

4.8 Rescheduling
Sometimes, a task needs to voluntarily give up control of the CPU so that another task at the
same priority can execute, that is, terminate the current timeslice. This is achieved with the
functions:

void task_reschedule (void);
void task_yield (void);

These provide a clean way of suspending execution of a task in favor of the next task on the
scheduling list, but without losing priority. The task which executes task_reschedule()
or task_yield() is added to the back of the scheduling list and the task at the front of the
scheduling list is promoted to be the new current task.

The only difference between task_reschedule() and task_yield() is that
task_reschedule() has no effect if a task_lock() is in effect, where as
task_yield() will always yield the CPU.

A task may be inadvertently rescheduled when the task_priority_set() function is
used, see task_priority_set on page 73.

Tasks OS21

48/226 7358306

4.9 Suspending tasks
Normally a task only deschedules when it is waiting for an event, such as for a semaphore to
be signalled. This requires that the task calls a function indicating that it is willing to
deschedule at that point (for example, by calling semaphore_wait()). However,
sometimes it is useful to be able to control a task, causing it to forcibly deschedule, without it
explicitly indicating that it is willing to be descheduled. This can be done by suspending the
task.

When a task is suspended, it stops executing immediately. When the task should start
executing again, another task must resume it. When it is resumed the task is unaware it has
been suspended, other than the time delay.

Task suspension is in addition to any other reason that a task is descheduled. Therefore a
task which is waiting on a semaphore, and which is then suspended, does not start
executing again until both the task is resumed, and the semaphore is signalled, although
these can occur in any order.

A task is suspended using the call:

int task_suspend(task_t* task)

where task is the task to be suspended. A task may suspend itself by specifying task as
NULL. The result is OS21_SUCCESS if the task was successfully suspended,
OS21_FAILURE if it failed. This call fails if the task has terminated. A task may be
suspended multiple times by executing several calls to task_suspend(). It does not start
executing again until an equal number of task_resume() calls have been made.

A task is resumed using the call:

int task_resume(task_t* task)

where task is the task to be resumed. The result is OS21_SUCCESS if the task was
successfully resumed, OS21_FAILURE if it failed. The call fails if the task has terminated, or
is not suspended.

It is also possible to specify that when a task is created, it should be immediately
suspended, before it starts executing. This is done by specifying the flag
task_flags_suspended when calling task_create() or task_create_p(). This
can be useful to ensure that initialization is carried out before the task starts running. The
task is resumed in the usual way, by calling task_resume(), and it starts executing from
its entry point.

OS21 Tasks

7358306 49/226

4.10 Killing a task
Normally a task runs to completion and then exits. It may also choose to exit early by calling
task_exit(). However, it is also possible to force a task to exit early, using the function:

int task_kill(
 task_t* task,
 int status,
 task_kill_flags_t flags);

This stops the task immediately, causes it to run the exit handler (if there is one), and exit.

Sometimes it may be desirable for a task to prevent itself being killed temporarily, for
example, while it owns a mutual exclusion semaphore. To do this, the task can make itself
immortal by calling:

void task_immortal(void);

and once it is willing to be killed again calling:

void task_mortal(void);

While the task is immortal, it cannot be killed. However, if an attempt was made to kill the
task while it was immortal, it dies immediately when it makes itself mortal again by calling
task_mortal().

Calls to task_immortal() and task_mortal() nest correctly, so the same number of
calls must be made to both functions before the task becomes mortal.

4.11 Getting the current task’s id
Several functions are provided for obtaining details of a specified task. The following
function returns a pointer to the task structure of the current task:

task_t* task_id (void)

This function may be used with task_wait(), see task_wait on page 87. The function:

const char* task_name(task_t *task);

returns the name of the specified task, or if task is NULL, the current task. (The task’s
name is set when the task is created).

Tasks OS21

50/226 7358306

4.12 Stack usage
A common problem when developing applications is not allocating enough stack for a task,
or the need to tune stack allocation to minimize memory wastage. OS21 provides a couple
of techniques which can be used to address this.

The first technique is to enable stack checking in the compiler. This adds an additional
function call at the start of each of the user’s functions, just before any additional stack is
allocated. The called stack check function can then determine whether there is sufficient
space available for the function which is about to execute.

OS21 does not support GCC stack checking.

Although stack checking has the advantage that a stack overflow is reported immediately it
occurs, it has several problems:

● there is a run time cost incurred every function call to perform the check

● it cannot report on functions which are not recompiled with stack checking enabled

An alternative technique is to determine experimentally, how much stack a task uses by
giving the task a large stack initially, running the code, and then seeing how much stack has
been used. To support this, OS21 normally fills a task’s stack with a known value. As the
task runs it writes its own data into the stack, altering this value, and later the stack can be
inspected to determine the highest address which has not been altered.

To support this, OS21 provides the function:

int task_status(
 task_t* task,
 task_status_t* status,
 task_status_flags_t flags);

This function can be used to determine information about the task’s status, for example the
base and size of the stack specified when the task was created.

Stack filling is enabled by default, however, in some cases the user may want to control it, so
two functions are provided:

int task_stack_fill(task_stack_fill_t* fill);

returns details about the current stack fill settings, and:

int task_stack_fill_set(task_stack_fill_t* fill);

allows them to be altered. Stack filling can be enabled or disabled, or the fill value can be
changed. By default it is enabled, and the fill value set to 0x12345678.

By placing a call to task_stack_fill_set() in a start-up function, before the OS21
kernel is initialized, it is possible to control the filling of the root task’s stack.

To determine how much stack has been used task_status() can be called, with the
flags parameter set to task_status_flags_stack_used. For this to work correctly,
task stack filling must have been enabled when the task was created, and the fill value must
have the same value as the one which was in effect when the task was created.

OS21 Tasks

7358306 51/226

4.13 Task data

4.13.1 Application data

OS21 provides one word of task-data per task. This can be used by the application to store
data which is specific to the task, but which needs to be accessed uniformly from multiple
tasks.

This is typically used to store data which is required by a library, when the library can be
used from multiple tasks but the data is specific to the task. For example, a library which
manages an I/O channel may be called by multiple tasks, each of which has its own I/O
buffers. To avoid having to pass an I/O descriptor into every call it could be stored in
task-data.

Although only one word of storage is provided, this is usually treated as a pointer, which
points to a user defined data structure which can be as large as required.

Two functions provide access to the task-data pointer:

void* task_data_set (task_t* task, void* new_data);

sets the task-data pointer of the task specified by task.

void* task_data (task_t* task);

retrieves the task-data pointer of the task specified by task.

If task is NULL, both functions use the currently active task.

When a task is first created (including the root task), its task-data pointer is set to NULL (0).
For example:

typedef struct {
 char buffer[BUFFER_SIZE];
 char* buffer_next;
 char* buffer_end;

} ptd_t;
char buffer_read(void)
{
 ptd_t *ptd;
 ptd = task_data(NULL);
 if (ptd->buffer_next == ptd->buffer_end) {
 ... fill buffer ...
 }
 return *(ptd->buffer_next++);

}
int main()
{
 ptd_t *ptd;
 task_t *task;
 ... create a task ...
 ptd = memory_allocate(some_partition, sizeof(ptd_t));
 ptd->buffer_next = ptd->buffer_end = ptd->buffer;
 task_data_set(task, ptd);

}

Note: kernel_start() must be called before memory_allocate() to prevent the function
failing.

Tasks OS21

52/226 7358306

4.13.2 Library data

OS21 also provides a facility to manage multiple instances of task private data. This is to
enable libraries to store their own per task private data. Two function calls provide access to
this facility:

void* task_private_data(
 task_t* task,
 void * cookie);

int task_private_data_set(
 task_t* task,
 void* data,
 void* cookie,
 void (*destructor)(void* data));

This API allows a client to allocate and associate a block of data with a given task, under a
unique cookie identifier. The cookie is typically the address of some object in the client
library to guarantee uniqueness.

task_private_data() returns NULL if no data has been registered under the given
cookie, otherwise it returns the address of the private data block.

task_private_data_set() is used to request that a block of data be associated with
the given task under the given cookie. Only one data block can be registered under a
given cookie for a given task. The destructor parameter is the address of a routine which
OS21 calls when the task is deleted. The destructor is called with the address of the task
private data allocated by the library, and it has the responsibility to deallocate this data.

If the task parameter is NULL,the current task is used for the operation.

If task_private_data() or task_private_data_set() are called before kernel
initialization, the operations are performed on the root task.

4.14 Task termination
A task terminates when it returns from the task’s entry point function.

A task may also terminate by using the following function:

void task_exit(int param);

In the latter case an exit status can be specified. When the task returns from its entry point
function, the exit status is 0. If task_exit() is called, the exit status is specified as the
parameter. This value is then made available to the onexit handler if one has been installed
(see the following example), and also by using the task_status() call.

Just before the task terminates (either by returning from its entry point function, or calling
task_exit()), it calls an onexit handler(s). These functions allow any application-specific
tidying up to be performed before the task terminates. onexit handlers are installed by
calling one of these two functions:

task_onexit_fn_t task_onexit_set(
 task_onexit_fn_t fn);

int task_private_onexit_set(
 task_t* task,
 task_onexit_fn_t fn);

OS21 Tasks

7358306 53/226

The onexit handler function must have a prototype of:

void onexit_handler(
 task_t *task,
 int param)

When a handler function is called, task specifies the task which has exited, and param is
the task’s exit status.

task_onexit_set() registers a global onexit handler, which is called when any task
exits. Only one global onexit handler may be registered. This call returns the address of the
previously registered handler.

task_private_onexit_set() registers an onexit handler for the given task. Handlers
registered with this API are only called when the specified task terminates. This API allows
multiple handlers to be registered. OS21 invokes the handlers in the reverse order to the
order they were registered with the task.

All task private onexit handlers are called before the global one.

The following code example shows how a task’s exit code can be stored in its task-data (see
Section 4.13: Task data on page 51), and retrieved later by another task which is notified of
the termination through task_wait().

4.15 Waiting for termination
The following function waits until one of a list of tasks terminates or the specified timeout
period is reached:

int task_wait(
 task_t **tasklist,
 int ntasks,
 const osclock_t *timeout);

Timeouts for tasks are implemented using hardware and do not increase the application’s
code size. Any task can wait for any other asynchronous task to complete. A parent task
should, for example, wait for any children to terminate. In this case, task_wait() can be
used inside a loop.

After task_wait() has indicated that a particular task has completed, any of the task’s
data including any memory dynamically loaded or allocated from the heap and used for the
task’s stack, can be freed. The task’s state that is, its control block task_t may also be
freed. (task_delete can be used to free task_t, see Section 4.17: Deleting a task on
page 54).

The timeout period for task_wait() may be expressed as a certain number of ticks or it
may take one of two values: TIMEOUT_IMMEDIATE indicates that the function should return
immediately, even if no tasks have terminated, and TIMEOUT_INFINITY indicates that the
function should ignore the timeout period, and only return when a task terminates. The
header file os21/ostime.h must be included when using this function, see Section 4.19:
Task API summary on page 55.

Tasks OS21

54/226 7358306

4.16 Getting a task’s exit status
A task’s exit status is available once the task has terminated, through the task_status()
function.

4.17 Deleting a task
A task can be deleted using the task_delete() function:

#include <os21.h>
int task_delete(
 task_t* task);

This removes the task from the list of known tasks and allow its stack and data structures to
be reused.

task_delete() calls memory_deallocate() to free the task’s state and the task’s
stack.

A task must have terminated before it can be deleted, if it has not task_delete fails.

4.18 Enumerating all tasks
All tasks on the system can be enumerated with the task_list_next() function:

#include <os21.h>
task_t* task_list_next(
 task_t* task);

This returns successive OS21 task descriptors for each call, returning NULL when the end
of the list of tasks has been reached. Passing in a NULL pointer returns the first task on the
list.

Note: There is no synchronization with the task list structure implied with this call. The call should
wrap calls to this function with task_lock() and task_unlock() to guarantee a
consistent list of tasks are returned.

OS21 Tasks

7358306 55/226

4.19 Task API summary
All the definitions related to tasks are obtained by including the header file os21.h, which
itself includes the header file task.h. See Table 9, Table 10 and Table 11 for a complete
list.

Table 9. Functions defined in task.h

Function Description

task_context() Returns the current execution context

task_create() Creates an OS21 task

task_create_p() Creates an OS21 task using specific partitions

task_data() Retrieves a task’s data pointer

task_data_set() Sets a task’s data pointer

task_delay() Delays the calling task for a period of time

task_delay_until() Delays the calling task until a specified time

task_delete() Deletes a task

task_exit() Exits the current task

task_id() Returns the current task’s ID

task_immortal() Makes the current task immortal

task_kill() Kills a task

task_list_next() Returns the next task in the list

task_lock() Locks current task to prevent task rescheduling

task_lock_task() Locks any task

task_mortal() Makes the current task mortal

task_name() Returns the task’s name

task_onexit_set() Sets up a function to be called when a task exits

task_priority() Returns a task’s priority

task_priority_set() Sets a task’s priority

task_private_data() Retrieves some task private data

task_private_data_set() Registers some task private data

task_private_onexit_set() Registers a task private onexit handler.

task_reschedule() Current task yields the CPU if not locked

task_resume() Resumes a suspended task

task_stack_fill() Returns the task fill configuration

task_stack_fill_set() Sets the task stack fill configuration

task_stackinfo() Obtain basic task stack information

task_stackinfo_set() Set basic task stack information

task_status() Returns status information about the task

task_suspend() Suspends a task

Tasks OS21

56/226 7358306

task_unlock() Unlocks current task to allow task rescheduling

task_unlock_task() Unlocks any task

task_wait() Waits until one of a list of tasks completes

task_yield() Current task unconditionally yields the CPU

Table 10. Types defined in task.h

Type Description

task_context_t Execution context

task_flags_t
Additional flags for task_create() and
task_create_p()

task_kill_flags_t Additional flags for task_kill

task_onexit_fn_t Function to be called on task exit

task_state_t State of a task (for example, active, deleted)

task_stack_fill_state_t Whether stack filling is enabled or disabled

task_stack_fill_t Stack filling state (specifies enables and value)

task_status_flags_t Additional flags for task_status

task_status_t Result of task_status

task_t A task’s state

Table 11. Macros defined in task.h

Macro Description

OS21_PRIORITY_LEVELS Number of OS21 priority levels (default is 256)

MAX_USER_PRIORITY Highest user task priority (default is 255)

MIN_USER_PRIORITY Lowest task priority (default is 0)

Table 9. Functions defined in task.h (continued)

Function Description

OS21 Tasks

7358306 57/226

4.20 Task function definitions

task_context
Return the current execution context

Definition: #include <os21.h>
task_context_t task_context(
 task_t **task,
 int* interrupt_info);

Arguments:

Returns: Returns whether the function was called from a task or system context, or if the OS21
kernel has not started yet.

Errors: None

Context: Callable from task or system context.

Description: The task_context function returns a description of the context from which it is
called. This can be task context, system context or no context (called before the
kernel has started). This is indicated by one of the following values.

– If the function was called before OS21 has been started (by calling
kernel_start()), it returns task_context_none.

– If the function was called from an OS21 task, it returns task_context_task. If
task is not NULL, the corresponding task_t * is written into the variable
pointed to by task.

– If the function was called from an interrupt handler, it returns
task_context_system. If interrupt_info is not NULL, platform specific
interrupt information is written into the variable pointed to by interrupt_info.
This interrupt information is guaranteed to be non-zero.

– If the function was called from an exception handler, it returns
task_context_system. If interrupt_info is not NULL, 0 is written into the
variable pointed to by interrupt_info.

task_t **task Where to return the task descriptor

int* interrupt_info Where to return the platform specific interrupt
information

Tasks OS21

58/226 7358306

task_create
Create an OS21 task

Definition: #include <os21.h>
task_t* task_create(
 void (*function)(void*),
 void* param,
 size_t stack_size,
 int priority,
 const char* name,
 task_flags_t flags);

Arguments:

Returns: Returns a pointer to the task structure if successful or NULL otherwise. The returned
structure pointer should be assigned to a local variable for future use.

Errors: Returns a NULL pointer if an error occurs because the task’s priority is invalid, the
stack is not big enough, or there is insufficient memory for the task’s data structures
or stack.

Context: Callable from task only.

Description: task_create() sets up a function as an OS21 task and starts the task executing. It
returns a pointer to the task control block, task_t, which is subsequently used to
refer to the task.

function is a pointer to the function which is to be the entry point of the task.

stack_size is the size of the stack space required in bytes. It is important that
enough stack space is requested, if not, the results of running the task are undefined.
task_create automatically allocates the stack from the system heap.

OS21 mandates a minimum task stack on each platform, which is given by the value
OS21_DEF_MIN_STACK_SIZE. Although this value is defined separately for each
platform, the correct value is obtained from the os21.h header file:

#include <os21.h>

If you are sure of your task’s stack requirements, you can override the enforcement of
this check by specifying task_flags_no_min_stack_size in the flags
parameter. With this flag set there is no minimum stack size enforced.

param is a pointer to the arguments to function. If function has several
parameters, these should be combined into a structure and the address of the

void (*function)(void*) Pointer to the task’s entry point

void* param The parameter which is passed into
function

size_t stack_size Required stack size for the task, in bytes

int priority Task’s scheduling priority in the range
MIN_USER_PRIORITY to
MAX_USER_PRIORITY

const char* name The name of the task, to be used by the
debugger

task_flags_t flags Various flags which affect task behavior

OS21 Tasks

7358306 59/226

structure provided as the argument to task_create(). When the task is started it
begins executing as if function were called with the single argument param.

The task’s data structures are also allocated by task_create() from the system
heap.

priority is the task’s scheduling priority.

name is the name of the task, which is passed to the debugger (if present) so that the
task can be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should
be specified as 0, which results in the default behavior, however, the value
task_flags_suspended can be used to create tasks which are initially suspended.
This means that the task does not run until it is resumed using the task_resume()
call.

Current possible values for flags are:

Example: struct sig_params{
 semaphore_t *Ready;
 int Count;

};
void signal_task(void* p)
{
 struct sig_params* Params = (struct sig_params*)p;
 int j;
 for (j = 0; j < Params->Count; j++) {
 semaphore_signal (Params->Ready);
 task_delay(ONE_SECOND);
 }

}
foo(void) {
 task_t* Task;
 struct sig_params params;
 Task = task_create (signal_task, ¶ms,
 USER_WS_SIZE, USER_PRIORITY, "Signal", 0);
 if (Task == NULL) {
 printf ("Error : create. Unable to create task\n");
 exit (EXIT_FAILURE);
 }
 ...

}

0 Create a runnable OS21 task (default).

task_flags_suspended Create a suspended OS21 task.

task_flags_no_min_stack_size Do not enforce minimum stack size checks.

Tasks OS21

60/226 7358306

task_create_p
Create an OS21 task

Definition: #include <os21.h>
task_t* task_create_p(
 partition_t* partition,
 void (*function)(void*),
 void* param,
 partition_t* stack_partition,
 size_t stack_size,
 int priority,
 const char* name,
 task_flags_t flags);

Arguments:

Returns: Returns a pointer to the task structure if successful or NULL otherwise. The returned
structure pointer should be assigned to a local variable for future use.

Errors: Returns a NULL pointer if an error occurs because:

– the task’s priority is invalid

– there is insufficient memory for the task’s data structures or stack

– either of the two partitions contain memory from a non-fixed virtual address
mapping

Context: Callable from task only.

Description: task_create_p() sets up a function as an OS21 task and starts the task
executing. task_create_p() returns a pointer to the task control block task_t,
which is subsequently used to refer to the task.

partition specifies where to allocate the control structures from.

function is a pointer to the function which is to be the entry point of the task.

stack_partition is the partition from which to allocate the stack.

Note: If a null pointer is specified for partition or stack_partition, instead of a valid
partition pointer, the C runtime heap is used.

partition_t* partition The partition from which to allocate control
structures

void (*function)(void*) Pointer to the task’s entry point

void* param The parameter which is passed into
function

partition_t* stack_partition The partition from which to allocate the stack

size_t stack_size Required stack size for the task, in bytes

int priority Task’s scheduling priority in the range
MIN_USER_PRIORITY to
MAX_USER_PRIORITY

const char* name The name of the task, to be used by the
debugger

task_flags_t flags Various flags which affect task behavior

OS21 Tasks

7358306 61/226

Note: task_create_p() will fail and return NULL if either of the two partitions contain
memory from a non-fixed virtual address mapping.

stack_size is the size of the stack space required in bytes. It is important that
enough stack space is requested, if not, the results of running the task are undefined.
task_create_p() calls memory_allocate() to allocate the stack from the
memory partition specified.

OS21 mandates a minimum task stack on each platform, which is given by the value
OS21_DEF_MIN_STACK_SIZE. Although this value is defined separately for each
platform, the correct value is obtained from the os21.h header file:

#include <os21.h>

If you are sure of your task’s stack requirements, you can override the enforcement of
this check by specifying task_flags_no_min_stack_size in the flags
parameter. With this flag set there is no minimum stack size enforced.

param is a pointer to the arguments to function. If function has several
parameters, these should be combined into a structure and the address of the
structure provided as the argument to task_create_p(). When the task is started
it begins executing as if function were called with the single argument param.

The task’s data structures are also allocated by task_create_p() calling
memory_allocate(). The task state (task_t) is allocated from the nominated
memory partition.

priority is the task’s scheduling priority.

name is the name of the task, which is passed to the debugger (if present) so that the
task can be correctly identified in the debugger’s task list.

flags is used to give additional information about the task. Normally flags should
be specified as 0, which results in the default behavior, however, the value
task_flags_suspended can be used to create tasks which are initially suspended.
This means that the task does not run until it is resumed using the task_resume
call.

Possible values for flags are:

0 Create a runnable OS21 task (default).

task_flags_suspended Create a suspended OS21 task.

Tasks OS21

62/226 7358306

Example: struct sig_params{
 semaphore_t *Ready;
 int Count;

};

partition_t* my_partition;

void signal_task(void* p)
{
 struct sig_params* Params = (struct sig_params*)p;
 int j;
 for (j = 0; j < Params->Count; j++) {
 semaphore_signal (Params->Ready);
 task_delay(ONE_SECOND);
 }

}

foo(void) {
 task_t* Task;
 struct sig_params params;
 Task = task_create_p (my_partition, signal_task, ¶ms,
 my_partition, USER_WS_SIZE, USER_PRIORITY, “Signal”,

0);
 if (Task == NULL) {
 printf ("Error : create. Unable to create task\n");
 exit (EXIT_FAILURE);
 }
 ...

}

See also: task_delete

OS21 Tasks

7358306 63/226

task_data
Retrieve a task’s data pointer

Definition: #include <os21.h>
void* task_data(
 task_t* task);

Arguments:

Returns: Returns the task data pointer of the task pointed to by task. If task is NULL, the
return result is the data pointer of the calling task.

Errors: None

Context: Callable from task only.

Description: task_data() retrieves the task-data pointer of the task specified by task, or the
currently active task if task is NULL. See Section 4.13: Task data on page 51.

See also: task_data_set

task_data_set
Set a task’s data pointer

Definition: #include <os21.h>
void* task_data_set(
 task_t* task,
 void* data);

Arguments:

Returns: task_data_set() returns the task's previous data pointer. If task is NULL, the
return result is the data pointer of the calling task.

Errors: None

Context: Callable from task only.

Description: task_data_set() sets the task-data pointer of the task specified by task, or of the
currently active task if task is NULL. See Section 4.13: Task data on page 51.

See also: task_data

task_t* task Pointer to the task structure

task_t* task Pointer to the task structure

void* data New data pointer for the task

Tasks OS21

64/226 7358306

task_delay
Delay the calling task for a period of time

Definition: #include <os21.h>
void task_delay(
 osclock_t delay);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: Delay the calling task for the specified period of time. delay is specified in ticks,
which is an implementation dependent quantity, see Chapter 10: Real-time clocks on
page 140.

See also: task_delay_until

task_delay_until
Delay the calling task until a specified time

Definition: #include <os21.h>
void task_delay_until(
 osclock_t this_time);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: Delay the calling task until the specified time. If this_time is before the current time,
this function returns immediately. this_time is specified in ticks, which is an
implementation dependent quantity, see Chapter 10: Real-time clocks on page 140.

See also: task_delay

osclock_t delay The period of time to delay the calling task

osclock_t this_time The time period during which the calling task
is delayed

OS21 Tasks

7358306 65/226

task_delete
Delete an OS21 task

Definition: #include <os21.h>
int task_delete(
 task_t* task);

Arguments:

Returns: Returns OS21_SUCCESS on success, OS21_FAILURE on failure.

Errors: If the task has not yet terminated, this fails.

Context: Callable from task only.

Description: This function allows a task to be deleted. The task must have terminated (by returning
from its entry point function) before this can be called. Attempting to delete a task
which has not yet terminated fails.

See also: task_create

task_exit
Exit the current task

Definition: #include <os21.h>
void task_exit(
 int param);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: This causes the current task to terminate, after having called the onexit handler. It
has the same effect as the task returning from its entry point function.

See also: task_onexit_set

task_t *task Task to delete

int param Parameter to pass to onexit handler

Tasks OS21

66/226 7358306

task_id
Find current task’s ID

Definition: #include <os21.h>
task_t* task_id(void);

Arguments: None

Returns: Returns a pointer to the OS21 task structure of the calling task.

Errors: None

Context: Callable from task only.

Description: Returns a pointer to the task structure of the currently active task.

See also: task_create

task_immortal
Make the current task immortal

Definition: #include <os21.h>
void task_immortal(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: task_immortal() makes the current task immortal. If an attempt is made to kill a
task while it is immortal, it does not die immediately but continues running until it
becomes mortal again, and dies.

This is callable from tasks only.

See also: task_kill, task_mortal

OS21 Tasks

7358306 67/226

task_kill
Kill a task

Definition: #include <os21.h>
int task_kill(
 task_t* task,
 int status,
 task_kill_flags_t flags);

Arguments:

Returns: Returns OS21_SUCCESS if the task is successfully killed, OS21_FAILURE if it cannot
be killed.

Errors: If the task has been deleted, this call fails.

Context: Callable from a task or system context. Only valid from a system context if task is not
NULL.

Description: task_kill() kills the task specified by task, causing it to stop running, and call its
exit handler. If task is NULL, the current task is killed. If the task was waiting on any
objects when it is killed, it is removed from the list of tasks waiting for that object
before the exit handler is called.

status is the exit status for the task. Therefore task_kill() can be viewed as a
way of forcing the task to call task_exit(status).

Normally flags should have the value 0. However, by specifying the value
task_kill_flags_no_exit_handler, it is possible to prevent the task calling its
exit handler, and so it terminates immediately, never running again.

A task can temporarily make itself immune to being killed by calling
task_immortal(), see Section 4.10: Killing a task on page 49 for more details.
When a task which has made itself immortal is killed, task_kill() returns
immediately, but the killed task does not die until it makes itself mortal again.

Note: task_kill() may return before the task has died. A task_kill() should
normally be followed by a task_wait() to be sure that the task has made itself
mortal again, and completed its exit handler. If the task is mortal, its exit handlers are
called from the killing task’s context; not the context of the task being killed.

task_kill() cannot be called from an interrupt handler.

Example: void tidy_up(task_t* task, int status)
{
 task_kill(task, status, 0);
 task_wait(&task, 1, TIMEOUT_INFINITY);
 task_delete(task);

}

See also: task_delete, task_mortal, task_immortal

task_t* task The task to be killed

int status The task’s exit status

task_kill_flags_t flags Additional flags

Tasks OS21

68/226 7358306

task_list_next
Return the next task in the task list

Definition: #include <os21.h>
task_t* task_list_next(
 task_t* task);

Arguments:

Returns: The task descriptor for the next task on OS21’s task list. NULL if list exhausted.

Errors: None

Context: Callable from task or system context.

Description: This function returns the task descriptor of the next task on OS21’s internal list of
tasks. Passing a NULL parameter returns the first task on the list. This enables the
caller to enumerate all OS21 tasks on the system.

The caller should bracket calls to this function with task_lock() and
task_unlock() to ensure that a consistent list of tasks are returned.

Example: task_t * task = NULL;

task_lock();
while((task = task_list_next(task)) != NULL)
{
 ...process this task descriptor...

}
task_unlock();

task_t* task Previous task descriptor or NULL

OS21 Tasks

7358306 69/226

task_lock
Prevent task rescheduling for current task

Definition: #include <os21.h>
void task_lock(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: This function prevents the kernel scheduler from pre-empting or timeslicing the
current task, although the task can still be interrupted by interrupt handlers.

This function should always be called as a pair with task_unlock(), so that it can
be used to create a critical region in which the task cannot be pre-empted by another
task. If the task deschedules, the lock is terminated while the thread is not running.
When the task is rescheduled the lock is re-instated. Calls to task_lock() can be
nested, and the lock is not released until an equal number of calls to
task_unlock() have been made.

Note: task_lock() and task_unlock() can be called before the kernel is started with
kernel_start(). This allows the C runtime library to use
task_lock()/task_unlock() for its critical sections. These may occur (for
example, calls to malloc()) before the kernel is started.

See also: task_unlock, task_lock_task

Tasks OS21

70/226 7358306

task_lock_task
Prevent task rescheduling

Definition: #include <os21.h>
void task_lock_task(task_t *taskp);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: This function increments the lock count of the given task. If the given task is NULL,
then the lock count of the active task (the caller) is incremented. If a task is running on
the CPU and its lock count is greater than zero, then it cannot be pre-empted. Only
when the count reaches zero again can the task be pre-empted.

The following calls are all equivalent:

task_lock_task(NULL);

task_lock_task(task_id());

task_lock();

Since they all act on the currently executing task, the effect is to lock the task so that it
cannot be pre-empted or switched off the CPU.

Interrupt handling is not locked out by this call.

task_lock_task(taskp) calls (where taskp != NULL and taskp !=
task_id()) cause the lock count of the given task to be incremented, but since
taskp is not on the CPU at the time of the call, pre-emption is not disabled. However,
if taskp gains the CPU, it gains the CPU with pre-emption disabled.

When a task is on the CPU with its lock count greater than zero (pre-emption
disabled), the only way of unlocking it (re-enabling pre-emption) is through it calling
task_unlock(). The fact that pre-emption is disabled prevents another task from
calling task_unlock_task(). However, another task may call
task_unlock_task() to decrement the lock count of a task before that task gains
the CPU.

Note: Great care must be taken when using this function. Misuse can easily result in
program deadlock and undesired behavior. Use of task_lock_task() is not
recommended.

See also: task_lock, task_unlock_task. task_unlock_task()

task_t* taskp Task to lock

OS21 Tasks

7358306 71/226

task_mortal
Make the current task mortal

Definition: #include <os21.h>
void task_mortal(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: task_mortal() makes the current task mortal again. If an attempt had been made
to kill the task while it was immortal, it dies as soon as task_mortal() is called.
Calls to task_immortal() are cumulative. A task makes two calls to
task_immortal(), then two calls to task_mortal() are required before it
becomes mortal again.

task_mortal() is not callable from interrupt handlers

See also: task_immortal, task_kill

task_name
Return the name of the specified task

Definition: #include <os21.h>
const char* task_name(
 task_t *task);

Arguments:

Returns: The name of the specified task.

Errors: None

Context: Callable from task or system context. Only valid from system context if task is not
NULL.

Description: This function returns the name of the specified task, or if task is NULL, the current
task. The task’s name is set when the task is created.

See also: task_create, task_create_p

task_t* task Task to return the name of

Tasks OS21

72/226 7358306

task_onexit_set
Set the global task onexit handler

Definition: #include <os21.h>
task_onexit_fn_t task_onexit_set(
 task_onexit_fn_t fn);

Arguments:

Returns: Returns the previous global onexit handler, or NULL if none had previously been set.

Errors: None

Context: Callable from task or system context.

Description: Sets the global task onexit handler to be fn. This handler is called whenever a task
exits. The handler is called by the task which exits, before the task is marked as
terminated. fn is a pointer to a function which must have the following prototype:

void task_onexit_fn(task_t* task, int param)

where:

The global task onexit handler is called after all task private onexit handlers.

See also: task_exit, task_private_onexit_set

task_priority
Retrieve a task’s priority

Definition: #include <os21.h>
int task_priority(
 task_t* task);

Arguments:

Returns: Returns the OS21 priority of the task pointed to by task. If task is NULL the return
result is the priority of the calling task.

Errors: None

Context: Callable from task or system context. Only valid from system context if task is not
NULL.

Description: task_priority() retrieves the OS21 priority of the task specified by task or the
priority of the currently active task if task is NULL.

If the specified task is currently subject to a temporary priority boost by the priority
inversion logic, the nominal priority is returned, not the boosted priority.

See also: task_priority_set

task_onexit_fn_t fn Task onexit handler to be called

task is the task pointer of the task which has just
exited,

param is the parameter which was passed to
task_exit().

task_t* task Pointer to the task structure

OS21 Tasks

7358306 73/226

task_priority_set
Set a task’s priority

Definition: #include <os21.h>
int task_priority_set(
 task_t* task,
 int priority);

Arguments:

Returns: task_priority_set() returns the task's previous OS21 priority. If task is NULL
the return result is the priority of the calling task.

Errors: None

Context: Callable from task or system context. Only valid from system context if task is not
NULL.

Description: task_priority_set() sets the priority of the task specified by task, or of the
currently active task if task is NULL. If this results in the current task’s priority falling
below that of another task which is ready to run, or a ready task now has a priority
higher than the current task’s, tasks are rescheduled.

If the specified task owns a priority mutex, priority inversion logic is also run. If the
task owns a priority mutex for which a higher priority task is waiting, and the call
attempted to lower the task’s priority, the lowering of the priority is deferred until the
mutex is released.

If the specified task is waiting for a priority mutex or semaphore, its position in the
queue of waiting tasks is re-calculated. If the call attempted to raise the specified
task’s priority, and it was queuing for a priority mutex, priority inversion logic is also
run and may result in the temporary priority boosting of the mutex’s current owning
task. See Section 7.1.1: Priority inversion on page 111.

See also: task_priority

task_t* task Pointer to the task structure

int priority Desired OS21 priority value for the task

Tasks OS21

74/226 7358306

task_private_data
Retrieve a task’s private data pointer

Definition: #include <os21.h>
void* task_private_data(
 task_t* task
 void* cookie);

Arguments:

Returns: Returns the address of the private data registered for the task pointed to by task,
under the unique identifier cookie, or NULL if no data has been registered.

Errors: None

Context: Callable from task only.

Description: task_private_data() retrieves the address of the private data for the task
identified by task, under the unique identifier cookie. If task is NULL the calling
task is used for the operation. This interface is intended to be used by libraries which
have to store private data on a per task basis.

If this API is used before kernel initialization, the operation is performed on the root
task.

See also: task_private_data_set

task_t* task Pointer to the task structure

void* cookie Unique identifier

OS21 Tasks

7358306 75/226

task_private_data_set
Set a task’s private data pointer

Definition: #include <os21.h>
int task_private_data_set(
 task_t* task,
 void* data,
 void* cookie,
 void (*destructor)(void* data));

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure

Errors: If OS21 runs out of memory, or private data for this task already exits under the
specified cookie (and data is not NULL), OS21_FAILURE is returned.

Context: Callable from task only.

Description: task_private_data_set() is used to store private data for the task identified by
task, under the unique identifier cookie. If task is NULL, the calling task is used
for the operation. This interface is intended to be used by libraries which have to store
private data on a per task basis.

The destructor routine is called when the task is deleted, so that the client can free
the memory allocated.

If a piece of data registered with this call is no longer required, call this routine with a
NULL data pointer. This will cause the destructor for the old data to be called and
leaves the task with no data registered under the cookie given.

If this API is used before kernel initialization, the operation is performed on the root
task.

See also: task_private_data

task_t* task Pointer to the task structure

void* data Pointer to task private data

void* cookie Unique identifier

void (*destructor)(void* data)

Deallocation routine

Tasks OS21

76/226 7358306

task_private_onexit_set
Set a per task onexit handler

Definition: #include <os21.h>
int task_private_onexit_set(
 task_t* task,
 task_onexit_fn_t fn);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: If OS21 cannot allocate memory, OS21_FAILURE is returned.

Context: Callable from task only.

Description: Registers fn as a task private onexit handler. This handler is called when the task
exits. The handler is called by the task which exits, before the task is marked as
terminated. fn is a pointer to a function which must have the following prototype:

void task_onexit_fn(task_t* task, int param)

where:

Per task private onexit handlers are called in the reverse of the order they were
registered, and before the global task onexit handler.

See also: task_exit, task_onexit_set

task_t* task Task for which to register handler

task_onexit_fn_t fn Task onexit handler to be called

task is the task pointer of the task which has just
exited,

param is the parameter which was passed to
task_exit().

OS21 Tasks

7358306 77/226

task_reschedule
Reschedule the current task

Definition: #include <os21.h>
void task_reschedule(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: This function reschedules the current task, moving it to the back of the current priority
scheduling list, and selecting the new task from the front of the list. If the scheduling
list was empty before this call, it has no effect, otherwise it performs a timeslice at the
current priority.

If task_reschedule() is called while a task_lock() is in effect, it does not
cause a reschedule.

See also: task_yield

Tasks OS21

78/226 7358306

task_resume
Resume a suspended task

Definition: #include <os21.h>
int task_resume(
 task_t* task);

Arguments:

Returns: Returns OS21_SUCCESS if the task was successfully resumed, or OS21_FAILURE if
it could not be resumed.

Errors: If the task is not suspended, the call fails.

Context: Callable from task or system context.

Description: This function resumes the specified task. The task must previously have been
suspended, either by calling task_suspend(), or created by specifying a flag of
task_flags_suspended to task_create() or task_create_p().

If the task is suspended multiple times, by more than one call to task_suspend(),
an equal number of calls to task_resume() are required before the task starts to
execute again.

If the task was waiting for an object (for example, waiting on a semaphore) when it
was suspended, that event must also occur before the task starts executing. When a
task is resumed it starts executing the next time it is the highest priority task, and so
may preempt the task calling task_resume().

See also: task_suspend

task_t* task Pointer to the task structure

OS21 Tasks

7358306 79/226

task_stack_fill
Retrieve task stack fill settings

Definition: #include <os21.h>
int task_stack_fill(
 task_stack_fill_t* fill);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: Returns OS21_FAILURE if fill is NULL.

Context: Callable from task or system context.

Description: task_stack_fill() retrieves the current settings for task stack filling and writes
them to a structure provided by the pointer fill.

Table 12 on page 80 shows the layout of the structure task_stack_fill_t.

Example: #include <os21/task.h>
int result;
task_stack_fill_t settings;
result = task_stack_fill(&settings);

See also: task_create, task_create_p, task_stack_fill_set

task_stack_fill_t* fill A pointer to the structure to be filled in

Tasks OS21

80/226 7358306

task_stack_fill_set
Set task stack fill settings

Definition: #include <os21.h>
int task_stack_fill_set(
 task_stack_fill_t* fill);

Arguments:

Returns: Returns OS21_SUCCESS on success, OS21_FAILURE if an error occurs.

Errors: Returns OS21_FAILURE if the new settings are invalid.

Context: Callable from task or system context.

Description: task_stack_fill_set() allows task stack fill settings to be changed by reading
the new settings from the structure provided by the pointer fill. Task stack filling
can be enabled/disabled or the fill pattern redefined.

Any subsequent calls to the functions task_create() or task_create_p() use
these settings when initializing the stack.

By default, task stack filling is enabled with a fill pattern of 0x12345678. Any task
that is created using task_create() or task_create_p() has it’s stack
initialized by overwriting the whole contents of the stack with the value 0x12345678.
Table 12 shows the layout of the task_stack_fill_t structure.

Table 13 shows all the flag values which can be used in the field
task_stack_fill_state. Any other value not in the table causes
task_stack_fill_set() to return OS21_FAILURE.

Example: #include <os21.h>

task_stack_fill_t options = {
 task_stack_fill_state_on,
 0x76543210

};

int result = task_stack_fill_set(&options);

See also: task_create, task_create_p, task_stack_fill

task_stack_fill_t* fill A pointer to new settings

Table 12. Layout of structure task_stack_fill_t

Field Description

task_stack_fill_state Enable/disable stack filling (see Table 13)

task_stack_fill_pattern Pattern value used when a stack is initialized

Table 13. Flags used by task_stack_fill_state

Flag Description

task_stack_fill_state_off Disable task stack filling

task_stack_fill_state_on Enable task stack filling

OS21 Tasks

7358306 81/226

task_stackinfo
Obtain task stack information

Definition: #include <os21.h>
int task_stackinfo(
 task_t * taskp,
 char ** stack_basep,
 size_t * stack_sizep);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: Returns OS21_FAILURE if stack_basep or stack_sizep is NULL, taskp is not a
valid task, or if taskp is NULL and the function is called from system context.

Context: Callable from task or system context.

Description: task_stackinfo() retrieves stack information for the given task. If taskp is
NULL, information is provided for the currently executing task.

See also: task_stackinfo_set

taskp A pointer to the task for which stack
information will be returned.

stack_basep A pointer to the location where the address of
the base of the stack for the given task will be
stored.

stack_sizep A pointer to the location where the size of the
stack for the given task will be stored.

Tasks OS21

82/226 7358306

task_stackinfo_set
Set task stack information

Definition: #include <os21.h>
int task_stackinfo_set(
 task_t * taskp,
 char * stack_base,
 size_t * stack_size);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: Returns OS21_FAILURE if an invalid combination of stack_base and stack_size
is specified, taskp is not a valid task, or if taskp is NULL and the function is called
from system context.

Context: Callable from task or system context.

Description: task_stackinfo_set() sets stack information for the given task. If taskp is
NULL, information is provided for the currently executing task.

See also: task_stackinfo

taskp A pointer to the task for which stack
information will be set.

stack_base The address of the base of the stack for the
given task.

stack_size The size of the stack for the given task.

OS21 Tasks

7358306 83/226

task_status
Return information about the specified task

Definition: #include <os21.h>
int task_status(
 task_t* task,
 task_status_t* status,
 task_status_flags_t flags);

Arguments:

Returns: Returns OS21_SUCCESS if status successfully reported, OS21_FAILURE if failed.

Errors: If the task does not exist, the call fails.

Context: Callable from task or system context. Only valid from system context if task is not
NULL.

Description: This function returns information about the specified task. If task is NULL,
information is returned about the current task. Information is returned by filling in the
fields of status, which must be allocated by the user, and is of type
task_status_t. The fields of this structure are shown in Table 14.

The flags parameter is used to indicate which values should be returned. Values
which can be determined immediately (task_stack_base, task_stack_size,
task_state, task_exit_value and task_time) are always returned. If only
these fields are required, flags should be set to 0. However, calculating how much
stack has been used may take a while, and so is only returned when flags is set to
task_status_flags_stack_used. task_exit_value is only valid if
task_state indicates that the task has terminated.

See also: task_stack_fill_set

task_t* task Pointer to the task structure

task_status_t* status Where to return the status information

task_status_flags_t flags What information to return

Table 14. task_status_t fields

Field name Description

task_stack_base Base address of the task’s stack

task_stack_size Size of the task’s stack in bytes

task_stack_used Amount of stack used by the task in bytes

task_stack_pointer
The task’s stack pointer at the time
task_status() was called

task_time CPU time used by the task

task_state Running, terminated, or suspended

task_exit_value Value set when task_exit() was called

Tasks OS21

84/226 7358306

task_suspend
Suspend a specified task

Definition: #include <os21.h>
int task_suspend(
 task_t* task);

Arguments:

Returns: Returns OS21_SUCCESS if the task was successfully suspended, or OS21_FAILURE
if it could not be suspended.

Errors: If the task has been deleted, the call fails.

Context: Callable from task or system context. Only valid from system context if task is not
NULL.

Description: This function suspends the specified task. If task is NULL, this suspends the current
task. task_suspend() stops the task from executing immediately, until it is resumed
using task_resume().

See also: task_resume

task_t* task Pointer to the task structure

OS21 Tasks

7358306 85/226

task_unlock
Allow task rescheduling for current task

Definition: #include <os21.h>
void task_unlock(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: This function allows the scheduler to resume scheduling following a call to
task_lock(). The highest priority task currently available (which may not be the
task that calls this function) continues running.

This function should always be called as a pair with task_lock(), so that it can be
used to create a critical region in which the task cannot be preempted by another
task. As calls to task_lock() can be nested, the lock is not released until an equal
number of calls to task_unlock() have been made.

Note: task_lock() and task_unlock() can be called before the kernel is started with
kernel_start(). This allows the C runtime library to use
task_lock()/task_unlock() for its critical sections. These may occur (for
example, calls to malloc()) before the kernel is started.

See also: task_lock, task_unlock_task

Tasks OS21

86/226 7358306

task_unlock_task
Allow task rescheduling

Definition: #include <os21.h>
void task_unlock_task(task_t * taskp);

Arguments:

Returns: None

Errors: None

Context: Callable from task only.

Description: This function decrements the lock count of the given task. If the given task is NULL,
then the lock count of the active task (the caller) is decremented. If a task is running
on the CPU and its lock count is greater than zero, then it cannot be pre-empted. Only
when the count reaches zero again can the task be pre-empted.

The following calls are all equivalent:

task_unlock_task(NULL);

task_unlock_task(task_id());

task_unlock();

Since they all act on the currently executing task, the effect is to decrement the lock
count, and if as a result it reaches zero then the task is unlocked so that pre-emption
can occur once more.

task_unlock_task(taskp) calls (where taskp != NULL and taskp !=
task_id()) cause the lock count of the given task to be decremented.

When a task is on the CPU with its lock count greater than zero (pre-emption
disabled), the only way of unlocking it (re-enabling pre-emption) is through it calling
task_unlock(). The very fact that pre-emption is disabled prevents another task
from calling task_unlock_task(). Another task may call task_unlock_task()
to decrement the lock count of a task before that task gains the CPU.

Note: Great care must be taking when using this function. Misuse can easily result in
program deadlock and undesired behavior. Use of task_unlock_task() is not
recommended.

See also: task_lock, task_unlock, task_lock_task

task_t* taskp Task to unlock

OS21 Tasks

7358306 87/226

task_wait
Waits until one of a list of tasks completes

Definition: #include <os21.h>
int task_wait(
 task_t** tasklist,
 int ntasks,
 osclock_t* timeout);

Arguments:

Returns: The index into the array of the task which has terminated, or OS21_FAILURE if the
timeout occurs.

Errors: None

Context: Callable from task only.

Description: task_wait() waits until one of the indicated tasks has terminated (by returning
from its entry point function or calling task_exit()), or the timeout period has
passed. Only once a task has been waited for in this way is it safe to free or otherwise
reuse its stack, and task_t data structure.

tasklist is a pointer to a list of task_t structure pointers, with ntasks elements.
Task pointers may be NULL, in which case that element is ignored.

timeout is a pointer to the timeout value. If this time is reached, the function returns
the value OS21_FAILURE.

The timeout value is specified in ticks, which is an implementation dependent
quantity, see Chapter 10: Real-time clocks on page 140.

Two special values can be specified for timeout:

See also: task_create, task_create_p

task_t** tasklist Pointer to a list of task_t pointers

int ntasks The number of tasks in tasklist

const osclock_t* timeout Maximum time to wait for tasks to terminate
Expressed in ticks or as
TIMEOUT_IMMEDIATE or
TIMEOUT_INFINITY

TIMEOUT_IMMEDIATE indicates that the function should return
immediately, even if no tasks have
terminated,

TIMEOUT_INFINITY indicates that the function should ignore the
timeout period, and only return when a task
terminates.

Tasks OS21

88/226 7358306

task_yield
Reschedule the current task

Definition: #include <os21.h>
void task_yield(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task only.

Description: This function reschedules the current task, moving it to the back of the current priority
scheduling list, and selecting the new task from the front of the list. If the scheduling
list was empty before this call, it has no effect, otherwise it performs a timeslice at the
current priority.

task_yield() always causes a reschedule, even if it is called while a
task_lock() is in effect.

See also: task_reschedule

OS21 Callbacks

7358306 89/226

5 Callbacks

The callback API is provided to enable user supplied hook routines to be called whenever a
given OS21 event occurs. These events are scheduler or interrupt events like task creation,
task deletion, task switching and begin/end of interrupt processing. It is the intent of these
callback functions to provide a mechanism by which performance profiling code can be
added to applications.

Note: 1 To improve performance, interrupt handlers may loop to service more than one interrupt
from a device, so it is possible for user interrupt code to run more times than indicated by the
interrupt enter and exit callbacks.

2 The callback API works only if callbacks are enabled. If callbacks are not enabled, OS21
does not call user-specified callbacks. See Section 17.2: BSP data on page 207 for details
of how to enable and disable callbacks.

3 The fact that an interrupt or exception handler is called does not necessarily mean that the
interrupt or the exception occurred. Multiple handlers can share the same exception or
interrupt. See Chapter 11: Interrupts on page 145 and Chapter 14: Exceptions on page 180
for more information.

5.1 Callback API summary
All the definitions related to callbacks can be obtained by including the header file os21.h,
which itself includes the header file callback.h. See Table 15 and Table 16 for a complete
list.

Table 15. Functions defined in callback.h

Function Description

callback_exception_enter() Registers an exception enter callback routine

callback_exception_exit() Registers an exception exit callback routine

callback_exception_install() Registers an exception install callback routine

callback_exception_uninstall() Registers an exception uninstall callback routine

callback_interrupt_enter() Registers an interrupt enter callback routine

callback_interrupt_exit() Registers an interrupt exit callback routine

callback_interrupt_install() Registers an interrupt install callback routine

callback_interrupt_uninstall() Registers an interrupt uninstall callback routine

callback_task_create() Registers a task create callback routine

callback_task_delete() Registers a task delete callback routine

callback_task_exit() Registers a task exit callback routine

callback_task_switch() Registers a task switch callback routine

Callbacks OS21

90/226 7358306

5.2 Callback function definitions

callback_exception_enter
Register a callback routine for exception entry events

Definition: #include <os21.h>
callback_excp_enter_fn_t callback_exception_enter(
 callback_excp_enter_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_exception_enter() registers a function to be called whenever an
exception handler is called.

callback_excp_enter_fn_t is defined in callback.h as follows:

typedef void (*callback_excp_enter_fn_t)(void* handler);

where handler is the address of the exception handler being called.

See also: exception_install()

Note: The fact that an exception handler is called does not necessarily mean that the exception
occurred. Multiple handlers can share the same exception. See Chapter 14: Exceptions on
page 180 for more information.

Table 16. Types defined in callback.h

Type Description

callback_excp_install_fn_t Callback function type for exception install events

callback_excp_uninstall_fn_t Callback function type for exception uninstall events

callback_excp_enter_fn_t Callback function type for exception enter events

callback_excp_exit_fn_t Callback function type for exception exit events

callback_intr_install_fn_t Callback function type for interrupt install events

callback_intr_uninstall_fn_t Callback function type for interrupt uninstall events

callback_intr_enter_fn_t Callback function type for interrupt enter events

callback_intr_exit_fn_t Callback function type for interrupt exit events

callback_task_create_fn_t Callback function type for task create events

callback_task_delete_fn_t Callback function type for task delete events

callback_task_exit_fn_t Callback function type for task exit events

callback_task_switch_fn_t Callback function type for task switch events

callback_excp_enter_fn_t fn Function to be called on exception handler
entry

OS21 Callbacks

7358306 91/226

callback_exception_exit
Register a callback routine for exception exit events

Definition: #include <os21.h>
callback_excp_exit_fn_t callback_exception_exit(
 callback_excp_exit_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_exception_exit() registers a function to be called whenever an
exception handler exits.

callback_excp_exit_fn_t is defined in callback.h as follows:

typedef void (*callback_excp_exit_fn_t)(void* handler);

where handler is the address of the handler being exited.

See also: exception_install()

Note: The fact that an exception handler is called does not necessarily mean that the exception
occurred. Multiple handlers can share the same exception. See Chapter 14: Exceptions on
page 180 for more information.

callback_excp_exit_fn_t fn Function to be called on exception handler
exit

Callbacks OS21

92/226 7358306

callback_exception_install
Register a callback routine for exception install events

Definition: #include <os21.h>
callback_excp_install_fn_t callback_exception_install(
 callback_excp_install_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_exception_install() registers a function to be called whenever an
exception handler install occurs.

callback_excp_install_fn_t is defined in callback.h as follows:

typedef void (*callback_excp_install_fn_t)(void* handler);

where handler is the address of the handler being installed.

See also: exception_install()

callback_excp_install_fn_t fn Function to be called on exception handler
install

OS21 Callbacks

7358306 93/226

callback_exception_uninstall
Register a callback routine for exception delete events

Definition: #include <os21.h>
callback_excp_uninstall_fn_t callback_exception_uninstall(
 callback_excp_uninstall_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_exception_uninstall() registers a function to be called whenever
an exception handler uninstall occurs.

callback_excp_uninstall_fn_t is defined in callback.h as follows:

typedef void (*callback_excp_uninstall_fn_t)(void* handler);

where handler is the address of the handler being uninstalled.

See also: exception_uninstall()

callback_excp_uninstall_fn_t fn

Function to be called on exception handler
uninstall.

Callbacks OS21

94/226 7358306

callback_interrupt_enter
Register a callback routine for interrupt entry events

Definition: #include <os21.h>
callback_intr_enter_fn_t callback_interrupt_enter(
 callback_intr_enter_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_interrupt_enter() registers a function to be called whenever an
interrupt handler is called.

callback_intr_enter_fn_t is defined in callback.h as follows:

typedef void (*callback_intr_enter_fn_t)(void* handler);

where handler is the address of handler being called.

See also: interrupt_install()

Note: The fact that an interrupt handler is called does not necessarily mean that the interrupt
occurred. Multiple handlers can share the same interrupt. See Chapter 11: Interrupts on
page 145 for more information.

callback_intr_enter_fn_t fn Function to be called on interrupt handler
entry

OS21 Callbacks

7358306 95/226

callback_interrupt_exit
Register a callback routine for interrupt exit events

Definition: #include <os21.h>
callback_intr_exit_fn_t callback_interrupt_exit(
 callback_intr_exit_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_interrupt_exit() registers a function to be called whenever an
interrupt handler exits.

callback_intr_exit_fn_t is defined in callback.h as follows:

typedef void (*callback_intr_exit_fn_t)(void* handler);

where handler is the address of the handler being exited.

See also: interrupt_install()

Note: The fact that an interrupt handler is called does not necessarily mean that the interrupt
occured. Multiple handlers can share the same interrupt. See Chapter 11: Interrupts on
page 145 for more information.

callback_intr_exit_fn_t fn Function to be called on interrupt handler exit

Callbacks OS21

96/226 7358306

callback_interrupt_install
Register a callback routine for interrupt install events

Definition: #include <os21.h>
callback_intr_install_fn_t callback_interrupt_install(
 callback_intr_install_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_interrupt_install() registers a function to be called whenever an
interrupt handler install occurs.

callback_intr_install_fn_t is defined in callback.h as follows:

typedef void (*callback_intr_install_fn_t)(void* handler);

where handler is the address of the handler being installed.

See also: interrupt_install()

callback_intr_install_fn_t fn

Function to be called on interrupt handler
install

OS21 Callbacks

7358306 97/226

callback_interrupt_uninstall
Register a callback routine for interrupt delete events

Definition: #include <os21.h>
callback_intr_uninstall_fn_t callback_interrupt_uninstall(
 callback_intr_uninstall_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_interrupt_uninstall() registers a function to be called whenever
an interrupt handler uninstall occurs.

callback_intr_uninstall_fn_t is defined in callback.h as follows:

typedef void (*callback_intr_uninstall_fn_t)(void* handler);

where handler is the address of the handler being uninstalled.

See also: interrupt_uninstall()

callback_intr_uninstall_fn_t fn

Function to be called on interrupt handler
uninstall.

Callbacks OS21

98/226 7358306

callback_task_create
Register a callback routine for task create events

Definition: #include <os21.h>
callback_task_create_fn_t callback_task_create(
 callback_task_create_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_task_create() registers a function to be called whenever a task
create occurs.

callback_task_create_fn_t is defined in callback.h as follows:

typedef void (*callback_task_create_fn_t)(task_t* new_task);

where new_task is the task being created.

See also: task_create()

callback_task_delete
Register a callback routine for task delete events

Definition: #include <os21.h>
callback_task_delete_fn_t callback_task_delete(
 callback_task_delete_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_task_delete() registers a function to be called whenever a task delete
occurs.

callback_task_delete_fn_t is defined in callback.h as follows:

typedef void (*callback_task_delete_fn_t)(task_t* task);

where task is the task being deleted.

See also: task_delete()

callback_task_create_fn_t fn Function to be called on task create

callback_task_delete_fn_t fn Function to be called on task delete

OS21 Callbacks

7358306 99/226

callback_task_exit
Register a callback routine for task exit events

Definition: #include <os21.h>
callback_task_exit_fn_t callback_task_exit(
 callback_task_exit_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_task_exit() registers a function to be called whenever a task exit
occurs.

callback_task_exit_fn_t is defined in callback.h as follows:

typedef void (*callback_task_exit_fn_t)(task_t* task);

where task is the task being exited.

See also: task_exit()

callback_task_switch
Register a callback routine for task switch events

Definition: #include <os21.h>
callback_task_switch_fn_t callback_task_switch(
 callback_task_switch_fn_t fn);

Arguments:

Returns: Pointer to previously installed callback function. NULL if none.

Errors: None

Context: Callable from task or system context.

Description: callback_task_switch() registers a function to be called whenever a task switch
occurs.

callback_task_switch_fn_t is defined in callback.h as follows:

typedef void (*callback_task_switch_fn_t)(
 task_t* old_task,
 task_t* new_task);

where:

Either old_task or new_task can be NULL to indicate that the CPU is either leaving
or entering an idle state.

callback_task_exit_fn_t fn Function to be called on task exit

callback_task_switch_fn_t fn Function to be called on task switch

old_task the task to switch from.

new_task the task to switch to.

Semaphores OS21

100/226 7358306

6 Semaphores

Semaphores provide a simple and efficient way to synchronize multiple tasks. They can also
be used to ensure mutual exclusion and control access to a shared resource.

6.1 Semaphore overview
A semaphore structure semaphore_t contains two pieces of data:

● a count of the number of times the semaphore can be taken

● a queue of tasks waiting to take the semaphore

Semaphores are created using one of the following functions:

semaphore_t* semaphore_create_fifo (
 int value);

semaphore_t* semaphore_create_fifo_p(
 partition_t* partition,
 int value);

semaphore_t* semaphore_create_priority (
 int value);

semaphore_t* semaphore_create_priority_p (
 partition_t* partition,
 int value);

Note: OS20 provides an API which differentiates between timeout and non-timeout semaphores at
creation time. This is because OS20’s target processor, the ST20, supports hardware
semaphores. This feature is not generally available on other processors, hence this API is
not present in OS21. To aid porting from OS20, OS21 presents this interface with a set of
veneer macros in os21/semaphore.h. They are functionally equivalent to the standard
OS21 non-timeout calls.

The semaphores which OS21 provides differ in the way in which tasks are queued. Normally
tasks are queued in the order in which they call semaphore_wait(). This is termed a
FIFO semaphore. Semaphores of this type are created using
semaphore_create_fifo() or semaphore_create_fifo_p() or by using one of the
_timeout versions of these functions.

However, sometimes it is useful to allow higher priority tasks to jump the queue, so that they
are blocked for a minimum amount of time. In this case a second type of semaphore can be
used, a priority based semaphore. For this type of semaphore, tasks are queued based on
their priority first, and the order which they call semaphore_wait() second. Semaphores
of this type are created using semaphore_create_priority() or
semaphore_create_priority_p().

Semaphores may be acquired by the functions:

int semaphore_wait(
 semaphore_t* sem);

and

int semaphore_wait_timeout(
 semaphore_t* sem
 const osclock_t *timeout);

OS21 Semaphores

7358306 101/226

When a task wants to acquire a semaphore, it calls semaphore_wait(). If the semaphore
count is greater than 0, then the count is decremented, and the task continues. If however,
the count is already 0, then the task adds itself to the queue of tasks waiting for the
semaphore and deschedules itself. Eventually another task should release the semaphore,
and the first waiting task can continue. In this way, when the task returns from the function it
has acquired the semaphore.

If you want to make certain that the task does not wait indefinitely for a particular semaphore
then use semaphore_wait_timeout(), which enables a timeout to be specified. If this
time is reached before the semaphore is acquired then the function returns and the task
continues without acquiring the semaphore. Two special values may be specified for the
timeout period.

When a task wants to release the semaphore, it calls semaphore_signal():

void semaphore_signal (semaphore_t* sem);

This looks at the queue of waiting tasks, and if the queue is not empty, removes the first task
from the queue, and starts it running. If there are no tasks waiting, then the semaphore
count is incremented, indicating that the semaphore is available.

An important use of semaphores is for synchronization between interrupt handlers and
tasks. This is possible because while an interrupt handler cannot call
semaphore_wait(), it can call semaphore_signal(), and so cause a waiting task to
start running.

The current value of a semaphore may be queried with the following call:

int semaphore_value (semaphore_t* sem);

This returns the instantaneous value of the given semaphore. Note that the value returned
may be out of date if the calling task is preempted by another task or interrupt service
routine which modifies the semaphore.

TIMEOUT_IMMEDIATE Causes the semaphore to be polled and the function to return
immediately. The semaphore may or may not be acquired and
the task continues.

TIMEOUT_INFINITY Causes the function to behave the same as
semaphore_wait(), that is, the task waits indefinitely for the
semaphore to become available.

Semaphores OS21

102/226 7358306

6.2 Use of semaphores
Semaphores can be defined to allow a given number of tasks simultaneous access to a
shared resource. The maximum number of tasks allowed is determined when the
semaphore is initialized. When that number of tasks have acquired the resource, the next
task to request access to it waits until one of those holding the semaphore relinquishes it.

Semaphores can protect a resource only if all tasks that wish to use the resource also use
the same semaphore. It cannot protect a resource from a task that does not use the
semaphore and accesses the resource directly.

Typically, semaphores are set up to allow at most one task access to the resource at any
given time. This is known as using the semaphore in binary mode, where the count either
has the value zero or one. This is useful for mutual exclusion or synchronization of access to
shared data. Areas of code protected using semaphores are sometimes called critical
regions.

When used for mutual exclusion the semaphore is initialized to 1, indicating that no task is
currently in the critical region, and that at most one can be. The critical region is surrounded
with calls to semaphore_wait at the start and semaphore_signal at the end. Therefore
the first task which tries to enter the critical region successfully takes the semaphore, and
any others are forced to wait. When the task currently in the critical region leaves, it releases
the semaphore, and allows the first of the waiting tasks into the critical region.

Semaphores are also used for synchronization. Usually this is between a task and an
interrupt handler, with the task waiting for the interrupt handler. When used in this way the
semaphore is initialized to zero. The task then performs a semaphore_wait() on the
semaphore, and deschedules. Later the interrupt handler performs a
semaphore_signal(), which reschedules the task. This process can then be repeated,
with the semaphore count never changing from zero.

All the OS21 semaphores can also be used in a counting mode, where the count can be
any positive number. The typical application for this is controlling access to a shared
resource, where there are multiple resources available. Such a semaphore allows N tasks
simultaneous access to a resource and is initialized with the value N. Each task performs a
semaphore_wait() when it wants a device. If a device is available the call returns
immediately having decremented the counter. If no devices are available then the task is
added to the queue. When a task has finished using a device it calls
semaphore_signal() to release it.

OS21 Semaphores

7358306 103/226

6.3 Semaphore API summary
All the definitions related to semaphores can be accessed by including the header file
os21.h, which itself includes the header file semaphore.h. See Table 17, Table 18 and
Table 19 for a complete list.

All semaphore functions are callable from an OS21 task, however only
semaphore_signal() and semaphore_wait_timeout() can be called from an
interrupt service routine.

Note: When using semaphore_wait_timeout() with in an interrupt service routine, the
timeout value must be TIMEOUT_IMMEDIATE.

Table 17. Functions defined in semaphore.h

Function Description

semaphore_create_fifo() Creates a FIFO queued semaphore

semaphore_create_fifo_p() Creates a FIFO queued semaphore

semaphore_create_priority() Creates a priority queued semaphore

semaphore_create_priority_p() Creates a priority queued semaphore

semaphore_delete() Deletes a semaphore

semaphore_signal() Signals a semaphore

semaphore_value() Gets the current value of a semaphore’s count

semaphore_wait_timeout() Waits for a semaphore or a timeout

Table 18. Types define in semaphore.h

Type Description

semaphore_t A semaphore

Table 19. Macros defined in semaphore.h

Macro Description

semaphore_create_fifo_timeout() Creates a FIFO queued semaphore

semaphore_create_priority_timeout() Creates a priority queued semaphore

semaphore_wait() Waits for a semaphore

Semaphores OS21

104/226 7358306

6.4 Semaphore function definitions

semaphore_create_fifo
Create a FIFO queued semaphore

Definition: #include <os21.h>
semaphore_t* semaphore_create_fifo(
 int value);

Arguments:

Returns: The address of an initialized semaphore, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the semaphore.

Context: Callable from task only.

Description: semaphore_create_fifo() creates a counting semaphore, initialized to value.
The memory for the semaphore structure is allocated from the system heap.
Semaphores created with this function have the usual semaphore semantics, except
that when a task calls semaphore_wait() it is always appended to the end of the
queue of waiting tasks, irrespective of its priority.

See also: semaphore_create_fifo_p, semaphore_create_priority,
semaphore_create_priority_p

semaphore_create_fifo_p
Create a FIFO queued semaphore

Definition: #include <os21.h>
semaphore_t* semaphore_create_fifo_p(
 partition_t* partition,
 int value);

Arguments:

Returns: The address of an initialized semaphore, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the semaphore.

Context: Callable from task only.

Description: semaphore_create_fifo_p() creates a counting semaphore, allocated from the
given partition, and initialized to value. Semaphores created with this function
have the usual semaphore semantics, except that when a task calls
semaphore_wait() it is always appended to the end of the queue of waiting tasks,
irrespective of its priority.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

See also: semaphore_create_fifo, semaphore_create_priority,
semaphore_create_priority_p

int value The initial value of the semaphore

partition_t* partition The partition in which to create the
semaphore

int value The initial value of the semaphore

OS21 Semaphores

7358306 105/226

semaphore_create_priority
Create a priority queued semaphore

Definition: #include <os21.h>
semaphore_t* semaphore_create_priority(
 int value);

Arguments:

Returns: The address of an initialized semaphore, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the semaphore.

Context: Callable from task only.

Description: semaphore_create_priority() creates a counting semaphore, initialized to
value. The memory for the semaphore structure is allocated from the system heap.
Semaphores created with this function have the usual semaphore semantics, except
that when a task calls semaphore_wait() it is inserted into the queue of waiting
tasks so that the list remains sorted by the task’s priority, highest priority first. In this
way when a task is removed from the front of the queue by semaphore_signal(),
it is guaranteed to be the task with the highest priority of all those waiting for the
semaphore.

See also: semaphore_create_fifo, semaphore_create_fifo_p,
semaphore_create_priority_p

int value The initial value of the semaphore

Semaphores OS21

106/226 7358306

semaphore_create_priority_p
Create a priority queued semaphore

Definition: #include <os21.h>
semaphore_t* semaphore_create_priority_p(
 partition_t* partition,
 int value);

Arguments:

Returns: The address of an initialized semaphore, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the semaphore.

Context: Callable from task only.

Description: semaphore_create_priority_p() creates a counting semaphore, initialized to
value. The memory for the semaphore structure is allocated from the specified
memory partition. Semaphores created with this function have the usual
semaphore semantics, except that when a task calls semaphore_wait() it is
inserted into the queue of waiting tasks so that the list remains sorted by the task’s
priority, highest priority first. In this way when a task is removed from the front of the
queue by semaphore_signal(), it is guaranteed to be the task with the highest
priority of all those waiting for the semaphore.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

See also: semaphore_create_fifo, semaphore_create_fifo_p,
semaphore_create_priority

semaphore_delete
Delete a semaphore

Definition: #include <os21.h>
int semaphore_delete(
 semaphore_t *sem);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE.

Errors: Fails if sem is NULL.

Context: Callable from task only.

Description: semaphore_delete() deletes the semaphore, sem.

Note: The results are undefined if a task attempts to use a semaphore once it has been
deleted.

See also: semaphore_create_priority, semaphore_create_fifo,
semaphore_create_priority_p, semaphore_create_fifo_p

partition_t* partition Partition in which to allocate semaphore

int value The initial value of the semaphore

semaphore_t *sem Semaphore to delete

OS21 Semaphores

7358306 107/226

semaphore_signal
Signal a semaphore

Definition: #include <os21.h>
void semaphore_signal(
 semaphore_t* sem);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: semaphore_signal() performs a signal operation on the specified semaphore.
The exact behavior of this function depends on the semaphore type. The operation
checks the queue of tasks waiting for the semaphore, if the list is not empty, then the
first task on the list is restarted, possibly preempting the current task. Otherwise the
semaphore count is incremented, and the task continues running.

See also: semaphore_wait, semaphore_wait_timeout

semaphore_value
Return the instantaneous value of semaphore

Definition: #include <os21.h>
int semaphore_value(
 semaphore_t* sem);

Arguments:

Returns: The current value of the semaphore’s count.

Errors: None

Context: Callable from task or system context.

Description: semaphore_value() returns the current value of the given semaphore’s count. The
value returned may be out of date if the calling task is preempted by another task or
ISR which modifies the semaphore.

semaphore_t* sem A pointer to a semaphore

semaphore_t* sem A pointer to a semaphore

Semaphores OS21

108/226 7358306

semaphore_wait
Wait for a semaphore

Definition: #include <os21.h>
int semaphore_wait(
 semaphore_t* sem);

Arguments:

Returns: Always returns OS21_SUCCESS.

Errors: None

Context: Callable from task only.

Description: semaphore_wait() performs a wait operation on the specified semaphore. The
exact behavior of this function depends on the semaphore type. The operation checks
the semaphore counter, and if it is 0, adds the current task to the list of queued tasks,
before descheduling. Otherwise the semaphore counter is decremented, and the task
continues running.

This function is implemented as a macro and evaluates to:

semaphore_wait_timeout(sem, TIMEOUT_INFINITY)

See also: semaphore_signal, semaphore_wait_timeout

semaphore_t* sem A pointer to a semaphore

OS21 Semaphores

7358306 109/226

semaphore_wait_timeout
Wait for a semaphore or a timeout

Definition: #include <os21.h>
int semaphore_wait_timeout(
 semaphore_t* sem
 const osclock_t *timeout);

Arguments:

Returns: Returns OS21_SUCCESS on success, OS21_FAILURE if timeout occurs.

Errors: None

Context: Callable from task or system context. Only valid from system context if timeout is
TIMEOUT_IMMEDIATE.

Description: semaphore_wait_timeout() performs a wait operation on the specified
semaphore (sem). If the time specified by the timeout is reached before a signal
operation is performed on the semaphore, then semaphore_wait_timeout()
returns the value OS21_FAILURE indicating that a timeout occurred, and the
semaphore count is unchanged. If the semaphore is signalled before the timeout is
reached, then semaphore_wait_timeout() returns OS21_SUCCESS.

Note: Timeout is an absolute not a relative value, so if a relative timeout is required this
needs to be made explicit, as shown in the following example.

The timeout value may be specified in ticks, which is an implementation dependent
quantity. Two special time values may also be specified for timeout.
TIMEOUT_IMMEDIATE causes the semaphore to be polled, that is, the function
always returns immediately. This must be the value used if
semaphore_wait_timeout() is called from an interrupt service routine. If the
semaphore count is greater than zero, then it is successfully decremented, and the
function returns OS21_SUCCESS, otherwise the function returns a value of
OS21_FAILURE. A timeout of TIMEOUT_INFINITY behaves exactly as
semaphore_wait().

Example: osclock_t time;
time = time_plus(time_now(), time_ticks_per_sec());
semaphore_wait_timeout(semaphore, &time);

See also: semaphore_signal, semaphore_wait

semaphore_t* sem A pointer to a semaphore

const osclock_t* timeout Maximum time to wait for the semaphore
Expressed in ticks or as
TIMEOUT_IMMEDIATE or
TIMEOUT_INFINITY

Mutexes OS21

110/226 7358306

7 Mutexes

Mutexes provide a simple and efficient way to ensure mutual exclusion and control access to
a shared resource.

7.1 Mutexes overview
A mutex structure mutex_t contains several pieces of data including:

● the current owning task

● a queue of tasks waiting to take the mutex

Mutexes are created using one of the following functions:

mutex_t* mutex_create_fifo(void);
mutex_t* mutex_create_fifo_p(partition_t* partition);
mutex_t* mutex_create_priority(void);
mutex_t* mutex_create_priority_p(partition_t* partition);
mutex_t* mutex_create_priority_noinherit(void);
mutex_t* mutex_create_priority_noinherit_p(
 partition_t* partition);

A mutex can be owned by only one task at time. In this sense they are like OS21
semaphores initialized with a count of 1 (also known as binary semaphores). Unlike
semaphores, once a task owns a mutex, it can re-take it as many times as necessary,
provided that it also releases it an equal number of times. In this situation binary
semaphores would deadlock.

The mutexes which OS21 provide differ in the way in which tasks are queued when waiting
for it. For FIFO mutexes tasks are queued in the order in which they call mutex_lock().
Mutexes of this type are created using mutex_create_fifo() or
mutex_create_fifo_p().

However, sometimes it is useful to allow higher priority tasks to jump the queue, so that they
are blocked for a minimum amount of time. In this case, a second type of mutex can be
used, a priority based mutex. For this type of mutex, tasks are queued based on their priority
first, and the order in which they call mutex_lock() second. Mutexes of this type are
created using mutex_create_priority() or mutex_create_priority_p().

Mutex may be acquired by the functions:

void mutex_lock(mutex_t* mutex);

and

int mutex_trylock(mutex_t* mutex);

When a task wants to acquire a mutex, it calls mutex_lock(). If the mutex is currently
unowned, or already owned by the same task, then the task gets the mutex and continues. If
however, the mutex is owned by another task, then the task adds itself to the queue of tasks
waiting for the mutex and deschedules itself. Eventually another task should release the
mutex, and the first waiting task gets the mutex and can continue. In this way, when the task
returns from the function it has acquired the mutex.

Note: The same task can acquire a mutex any number of times without deadlock, but it must
release it an equal number of times.

OS21 Mutexes

7358306 111/226

To make certain that the task does not wait indefinitely for a mutex, use
mutex_trylock(). This attempts to gain ownership of the mutex, but fails immediately if it
is not available.

A task is automatically made immortal while it has ownership of a mutex.

When a task wants to release the mutex, it calls mutex_release():

int mutex_release(mutex_t* mutex);

This looks at the queue of waiting tasks. If the queue is not empty, it removes the first task
from the queue and, if it is not of a lower priority, it assigns ownership of the mutex to that
task and makes it runnable. If there are no tasks waiting, then the mutex becomes free.

Note: If a task exits while holding a mutex, the mutex remains locked, and a deadlock is inevitable.

7.1.1 Priority inversion

Priority mutexes also provide protection against priority inversion. This can occur when a
low priority task acquires a mutex, and then a high priority task tries to claim it. The high
priority task is then forced to wait for the low priority task to release the mutex before it can
proceed. If an intermediate priority task now becomes ready to run, it preempts the low
priority task. A lower priority task (that is not holding the mutex in question) is therefore
blocking the execution of a higher priority task, this is termed priority inversion. Priority
mutexes are able to detect when this occurs, and correct the situation. This is done by
temporarily boosting the low priority task’s priority to be the same as the priority of the
highest priority waiting task, all the while the low priority task owns the mutex.

Priority inversion detection occurs every time a task has to queue to get a priority mutex,
every time a task releases a priority mutex, and every time a task changes priority.

OS21 also provides priority mutexes that do not protect against priority inversion. Mutexes of
this type are created using mutex_create_priority_noinherit() or
mutex_create_priority_noinherit_p().

7.2 Use of mutexes
Mutexes can only be used to protect a resource if all tasks that wish to use the resource also
use the same mutex. It cannot protect a resource from a task that does not use the mutex
and accesses the resource directly.

Mutexes allow at most one task access to the resource at any given time. Areas of code
protected using mutexes are sometimes called critical regions.

The critical region is surrounded with calls to mutex_lock() at the start and
mutex_release() at the end. Therefore the first task which tries to enter the critical region
successfully takes the mutex, and any others are forced to wait. When the task currently in
the critical region leaves, it releases the mutex, and allows the first of the waiting tasks into
the critical region.

Mutexes OS21

112/226 7358306

7.3 Mutex API summary
All the definitions related to mutexes are in the single header file os21.h, which itself
includes the header file mutex.h. See Table 20 and Table 21 for a complete list.

All mutex functions are callable from OS21 tasks, and not from interrupt handlers.

Table 20. Functions defined in mutex.h

Function Description

mutex_create_fifo() Creates a FIFO queued mutex

mutex_create_fifo_p() Creates a FIFO queued mutex

mutex_create_priority()
Creates a priority queued mutex (with priority
inheritance)

mutex_create_priority_p()
Creates a priority queued mutex (with priority
inheritance)

mutex_create_priority_
noinherit()

Creates a priority queued mutex (without priority
inheritance)

mutex_create_priority_
noinherit_p()

Creates a priority queued mutex (without priority
inheritance)

mutex_delete() Deletes a mutex

mutex_lock() Acquires a mutex, block if not available

mutex_release() Releases a mutex

mutex_trylock() Try to get a mutex, fail if not available

Table 21. Types define in mutex.h

Type Description

mutex_t A mutex

OS21 Mutexes

7358306 113/226

7.4 Mutex function definitions

mutex_create_fifo
Create a FIFO queued mutex

Definition: #include <os21.h>
mutex_t* mutex_create_fifo(void);

Arguments: None

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_fifo() creates a mutex. The memory for the mutex structure is
allocated from the system heap. Mutexes created with this function have the usual
mutex semantics, except that when a task calls mutex_lock() it is always
appended to the end of the queue of waiting tasks, irrespective of its priority.

See also: mutex_create_fifo_p, mutex_create_priority

mutex_create_fifo_p
Create a FIFO queued mutex

Definition: #include <os21.h>
mutex_t* mutex_create_fifo_p(
 partition_t* partition);

Arguments:

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_fifo_p() creates a mutex, allocated from the given partition.
Mutexes created with this function have the usual mutex semantics, except that when
a task calls mutex_lock() it is always appended to the end of the queue of waiting
tasks, irrespective of its priority.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

See also: mutex_create_fifo, mutex_create_priority_p

partition_t* partition The partition in which to create the mutex

Mutexes OS21

114/226 7358306

mutex_create_priority
Create a priority queued mutex (with priority inheritance)

Definition: #include <os21.h>
mutex_t* mutex_create_priority(void);

Arguments: None

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_priority() creates a mutex. The memory for the mutex structure
is allocated from the system heap. Mutexes created with this function have the usual
mutex semantics, except that when a task calls mutex_lock() it is inserted into the
queue of waiting tasks so that the list remains sorted by the task’s priority, highest
priority first. In this way when a task is removed from the front of the queue by
mutex_release(), it is guaranteed to be the task with the highest priority of all
those waiting for the mutex.

Mutexes created with this function also guarantee to detect and correct priority
inversion.

See also: mutex_create_fifo, mutex_create_priority_noinherit,
mutex_create_priority_p

OS21 Mutexes

7358306 115/226

mutex_create_priority_p
Create a priority queued mutex (with priority inheritance)

Definition: #include <os21.h>
mutex_t* mutex_create_priority_p(
 partition_t* partition);

Arguments:

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_priority_p() creates a mutex. The memory for the mutex
structure is allocated from the specified memory partition. Mutexes created with this
function have the usual mutex semantics, except that when a task calls
mutex_lock() it is inserted into the queue of waiting tasks so that the list remains
sorted by the task’s priority, highest priority first. In this way when a task is removed
from the front of the queue by mutex_release(), it is guaranteed to be the task
with the highest priority of all those waiting for the mutex.

Mutexes created with this function also guarantee to detect and correct priority
inversion.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
run-time heap is used.

See also: mutex_create_fifo_p, mutex_create_priority,
mutex_create_priority_noinherit_p

partition_t* partition The partition in which to create the mutex

Mutexes OS21

116/226 7358306

mutex_create_priority_noinherit
Create a priority queued mutex (without priority inheritance)

Definition: #include <os21.h>
mutex_t* mutex_create_priority_noinherit(void);

Arguments: None

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_priority_noinherit() creates a mutex. The memory for the
mutex structure is allocated from the system heap. Mutexes created with this function
have the usual mutex semantics, except that when a task calls mutex_lock() it is
inserted into the queue of waiting tasks so that the list remains sorted by the task’s
priority, highest priority first. In this way when a task is removed from the front of the
queue by mutex_release(), it is guaranteed to be the task with the highest priority
of all those waiting for the mutex.

Mutexes created with this function do not detect and correct priority inversion.

See also: mutex_create_fifo, mutex_create_priority,
mutex_create_priority_noinherit_p

mutex_create_priority_noinherit_p
Create a priority queued mutex (without priority inheritance)

Definition: #include <os21.h>
mutex_t* mutex_create_priority_noinherit_p(
 partition_t* partition);

Arguments:

Returns: The address of an initialized mutex, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the mutex.

Context: Callable from task only.

Description: mutex_create_priority_noinherit_p() creates a mutex. The memory for the
mutex structure is allocated from the specified memory partition. Mutexes created
with this function have the usual mutex semantics, except that when a task calls
mutex_lock() it is inserted into the queue of waiting tasks so that the list remains
sorted by the task’s priority, highest priority first. In this way when a task is removed
from the front of the queue by mutex_release(), it is guaranteed to be the task
with the highest priority of all those waiting for the mutex.

Mutexes created with this function do not detect and correct priority inversion.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
run-time heap is used.

See also: mutex_create_fifo_p, mutex_create_priority_noinherit,
mutex_create_priority_p

partition_t* partition The partition in which to create the mutex

OS21 Mutexes

7358306 117/226

mutex_delete
Delete a mutex

Definition: #include <os21.h>
int mutex_delete(
 mutex_t *mutex);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE.

Errors: Fails if mutex is NULL.

Context: Callable from task only.

Description: mutex_delete() deletes the mutex, mutex.

Note: The results are undefined if a task attempts to use a mutex after it has been deleted.

See also: mutex_create_priority, mutex_create_fifo,
mutex_create_priority_p, mutex_create_fifo_p

mutex_lock
Acquire a mutex, block if not available

Definition: #include <os21.h>
void mutex_lock(
 mutex_t* mutex);

Arguments:

Returns: None

Context: Callable from task only.

Description: mutex_lock() acquires the given mutex. The exact behavior of this function
depends on the mutex type. If the mutex is currently not owned, or is already owned
by the task, then the task acquires the mutex, and carries on running. If the mutex is
owned by another task, then the calling task is added to the queue of tasks waiting for
the mutex, and deschedules.

Once the task acquires the mutex it is made immortal, until it releases the mutex.

See also: mutex_release, mutex_trylock, task_immortal

mutex_t* mutex Mutex to delete

mutex_t* mutex A pointer to a mutex

Mutexes OS21

118/226 7358306

mutex_release
Release a mutex

Definition: #include <os21.h>
int mutex_release(
 mutex_t* mutex);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE

Errors: Returns OS21_FAILURE if the task releasing the mutex does not own it.

Context: Callable from task only.

Description: mutex_release() releases the specified mutex. The exact behavior of this function
depends on the mutex type. The operation checks the queue of tasks waiting for the
mutex, if the list is not empty, then the first task on the list is restarted and granted
ownership of the mutex, possibly preempting the current task. Otherwise the mutex is
released, and the task continues running.

If the releasing task had its priority temporarily boosted by the priority inversion logic,
then once the mutex is released the task’s priority is returned to its correct value.

Once the task has released the mutex, it is made mortal again.

See also: mutex_lock, mutex_trylock, task_mortal

mutex_trylock
Acquire a mutex, return immediately if not available

Definition: #include <os21.h>
int mutex_trylock(
 mutex_t* mutex);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE

Errors: Call fails if the mutex is currently owned by another task.

Context: Callable from task only.

Description: mutex_trylock() checks to see if the mutex is free or already owned by the
current task, and acquires it if it is. If the mutex is not free, then the call fails and
returns OS21_FAILURE.

If the task acquires the mutex it is automatically made immortal, until it releases the
mutex.

See also: mutex_release, mutex_lock, task_immortal

mutex_t* mutex A pointer to a mutex to release

mutex_t* mutex A pointer to a mutex

OS21 Event flags

7358306 119/226

8 Event flags

Event flags provide a means for OS21 tasks to synchronize with multiple events. Tasks are
able to block, waiting for one or more events to occur. The occurrence of events can be
signalled from both tasks and interrupt handlers.

8.1 Event flags overview
Event flags are managed by an event group structure, which is a container object describing
a task wait queue and a collection of event flags. Each event flag corresponds to a single
event, and is represented by an individual bit. When an event flag is set, it is said to be
posted and the associated event is considered to have occurred. Otherwise, the event flag is
said to be unposted, and the associated event is considered to have not yet occurred.

A task can wait for a conjunctive (AND) or disjunctive (OR) subset of events within one event
group. Several tasks may be waiting on the same or different events within an event group.
Waiting tasks are made runnable when the subset of events for which they are waiting
occurs, or a timeout happens.

The number of event flags within an event group is implementation dependent, but is
defined to be the same as the number of bits in an unsigned int on that platform. This
typically yields 32 or 64 bits (event flags) per event group.

An event_group_t is created with one of the following functions:

event_group_t* event_group_create (
 event_option_t options);

event_group_t* event_group_create_p (
 event_option_t options);

The event flags within the newly created group are all initialized to the unposted state. The
options specify whether or not the flags in this group automatically clear.

A task can wait for one or more event flags within an event group to be posted with the
following calls:

int event_wait_any (
 event_group_t* event_group,
 const unsigned int in_mask,
 unsigned int* out_mask,
 const osclock_t* timeout);

int event_wait_all (
 event_group_t* event_group,
 const unsigned int in_mask,
 unsigned int* out_mask,
 const osclock_t* timeout);

event_wait_any() is used to perform a wait on a disjunctive subset of events.
event_wait_all() is used to perform a wait on a conjunctive subset of events.

Event flags OS21

120/226 7358306

in_mask is used to identify which event flags within the group the task wishes to wait for.
out_mask points to a location in memory which receives the state of the event flags at the
point the task was made runnable.

The timeout parameter is used to specify what type of timeout is required. If you want to
make certain that the task does not wait indefinitely for a particular subset of events to
occur, then set timeout to be the time at which the task stops waiting. The time specified is
an absolute one, not a relative one. If this time is reached before the specified events have
occurred, the function returns and the task continues. In this case, the out_mask contains
the events of the subset specified which were posted (if any). Two special values may be
specified for the timeout period:

Note: If in_mask is zero and timeout is TIMEOUT_IMMEDIATE, then this call can effectively poll
the state of the event flags within the event group.

Events are posted with the following function, which is callable by tasks and interrupt service
routines:

void event_post(
 event_group_t* event_group,
 const unsigned int mask);

The events specified by mask are posted. If they satisfy the waiting conditions of any of the
tasks waiting in the event group, then those tasks are made runnable. Following this call, the
event flags specified by mask remain in their posted state until explicitly cleared by a call to
the following function:

void event_clear(
 event_group_t* event_group,
 const unsigned int mask);

Any task which attempts to wait for event flags that are already in the posted state does not
block, since the wait terminating condition is immediately satisfied.

When the event group is no longer required it can be deleted with the function:

void event_group_delete(
 event_group_t* event_group);

8.1.1 Uses for event flags

Event flags provide a useful mechanism for tasks to wait for one or more events to occur
before proceeding. They can be used ‘point to point’, where one task or interrupt service
routine communicates the occurrence of events to just one task, or they can be used to
‘broadcast’ events, where multiple tasks can wait on the occurrence of certain events.

It should be noted that event flags do not nest or count. An event flag that has been posted
once is indistinguishable from one that has been posted many times.

TIMEOUT_IMMEDIATE Causes the event flags to be polled and the function to return
immediately, whatever the state of the event flags.

TIMEOUT_INFINITY Causes the function to wait indefinitely for the events to be
posted.

OS21 Event flags

7358306 121/226

8.2 Event API summary
All the definitions related to events can be obtained by including the header file os21.h,
which itself includes the header file event.h. See Table 22 and Table 23 for a complete list.

Table 22. Functions defined in event.h

Function Description

event_clear() Clears a set of event flags

event_group_create() Creates an event group

event_group_create_p() Creates an event group

event_group_delete() Deletes an event group

event_post() Posts a set of event flags

event_wait_all() Waits for a set of events to occur

event_wait_any() Waits for a set of events to occur

Table 23. Types define in event.h

Type Description

event_option_t Flags to the event group create call

event_group_t A group of event flags

Event flags OS21

122/226 7358306

8.3 Event function definitions

event_clear
Clear a subset of event flags within an event group

Definition: #include <os21.h>
void event_clear(
 event_group_t* event_group,
 const unsigned int mask);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: event_clear() sets the state of the subset of event flags specified by mask in the
event group specified by event_group back to the unposted state.

See also: event_post, event_wait_all, event_wait_any

event_group_create
Create an event group

Definition: #include <os21.h>
event_group_t* event_group_create(
 event_option_t options);

Arguments:

Returns: The address of an initialized event group, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the event group.

Context: Callable from task only.

Description: event_group_create() creates an event group. The memory for the event group
structure is allocated from the system heap.

The created event group contains sizeof(int) * 8 event flags, all initialized to the
unposted state.

options can be one of the following values:

– 0 the event flags stay posted until explicitly cleared by event_clear(),

– event_auto_clear the event flags are automatically cleared once they have
been delivered to all the waiting threads.

See also: event_group_create_p, event_group_delete

event_group_t* event_group The event group in which to clear event flags

unsigned int mask The event flags to clear

event_option_t options Creation flags

OS21 Event flags

7358306 123/226

event_group_create_p
Create an event group

Definition: #include <os21.h>
event_group_t* event_group_create_p(
 partition_t* partition,
 event_option_t options);

Arguments:

Returns: The address of an initialized event group, or NULL if an error occurs.

Errors: NULL if there is insufficient memory for the event group.

Context: Callable from task only.

Description: event_group_create_p() creates an event group. The memory for the event
group structure is allocated from the specified memory partition.

Note: If a null pointer is specified for partition, instead of a valid partition pointer, the C
runtime heap is used.

The created event group contains sizeof(int) * 8 event flags, all initialized to the
unposted state.

options can be one of the following values:

– 0 the event flags stay posted until explicitly cleared by event_clear(),

– event_auto_clear the event flags are automatically cleared once they have
been delivered to all the waiting threads.

See also: event_group_create, event_group_delete

event_group_delete
Delete an event group

Definition: #include <os21.h>
int event_group_delete(
 event_group_t* event_group);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE.

Errors: Fails if event_group is NULL.

Context: Callable from task only.

Description: event_group_delete() deletes an event group, freeing the memory used for it
back to the partition from which it was allocated.

Note: The results are undefined if a task attempts to use an event group once it has been
deleted.

See also: event_group_create, event_group_create_p

partition_t* partition The partition in which to create the event
group

event_option_t options Creation flags

event_group_t* event_group The event group to delete

Event flags OS21

124/226 7358306

event_post
Set the state of event flags to the posted state

Definition: #include <os21.h>
void event_post(
 event_group_t* event_group,
 const unsigned int mask);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: event_post() sets the state of the event flags specified by mask within the event
group given by event_group to the posted state. The event flags remain in the
posted state until explicitly cleared by the function event_clear().

Any tasks which were waiting on the event group, and whose termination condition is
satisfied by the events posted, are made runnable by this call.

See also: event_wait_all, event_wait_any, event_clear

event_group_t* event_group The event group in which to post events

unsigned int mask The subset of events to post

OS21 Event flags

7358306 125/226

event_wait_all
Wait for a subset of events to be posted

Definition: #include <os21.h>
int event_wait_all(
 event_group_t* event_group,
 const unsigned int in_mask,
 unsigned int* out_mask,
 const osclock_t* timeout);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for a timeout

Errors: OS21_FAILURE is returned if the timeout is reached before the wait condition is
satisfied, or the event_group parameter is NULL.

Context: Callable from task or system context. Only valid from system context if timeout is
TIMEOUT_IMMEDIATE.

Description: event_wait_all() allows the calling task to synchronize with the specified subset
of events. If all the event flags specified by in_mask are already in the posted state
then the task returns immediately with OS21_SUCCESS. If the event group was
created with autoclear semantics, then the event flags are also cleared. If this is not
the case, then the calling task is suspended until either all the event flags specified by
in_mask are simultaneously in the posted state, or the timeout limit specified by
timeout is reached.

Note: timeout is an absolute not a relative value, so if a relative timeout is required this
needs to be made explicit, as shown in the following example.

The timeout value is specified in ticks, which is an implementation dependent
quantity. Two special time values may be specified for timeout.
TIMEOUT_IMMEDIATE causes the event flags to be polled, that is, the function
always returns immediately. This must be the value used if event_wait_all() is
called from an interrupt service routine. If the current state of the event flags within the
event group satisfy the conditions given, then the function returns OS21_SUCCESS,
otherwise the function returns a value of OS21_FAILURE. A timeout of
TIMEOUT_INFINITY causes the function to exit only when the event flags satisfy the
conditions specified.

When the caller returns from this function, the location in memory pointed to by
out_mask contains the state of the event flags, before any autoclearing. If the
function succeeded, the event flags passed out to out_mask are guaranteed to
satisfy the conditions specified. If the call failed, then out_mask can be examined to
determine which event flags are set (if any), and which are not. out_mask can be
NULL, if the state of the flags is not required.

event_group_t* event_group Event group to wait on

unsigned int in_mask Mask defining a subset of event flags to wait
on

unsigned int* out_mask Receives mask of posted events on waking

osclock_t timeout Time limit of wait

Event flags OS21

126/226 7358306

If in_mask is 0, then the call always returns immediately, passing back the current
event flags state using out_mask if it is not NULL. This allows the state of the event
flags to be polled.

Example: A task waits for up to one second for two events to occur:
#define EVENT_A 0x00000001
#define EVENT_B 0x00000002

osclock_t time;
event_group_t* my_event_group;
...
time = time_plus(time_now(), time_ticks_per_sec());
event_wait_all (
 my_event_group,
 EVENT_A | EVENT_B,
 &out_mask,
 &time);

See also: event_post, event_clear, event_wait_any

OS21 Event flags

7358306 127/226

event_wait_any
Wait for a subset of events to be posted

Definition: #include <os21.h>
int event_wait_any(
 event_group_t* event_group,
 const unsigned int in_mask,
 unsigned int* out_mask,
 const osclock_t* timeout);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for a timeout

Errors: OS21_FAILURE is returned if the timeout is reached before the wait condition is
satisfied, or event_group is NULL.

Context: Callable from task or system context. Only valid from system context if timeout is
TIMEOUT_IMMEDIATE.

Description: event_wait_any() allows the calling task to synchronize with the specified subset
of events. If any of the event flags specified by in_mask are already in the posted
state then the task returns immediately with OS21_SUCCESS. If the event group was
created with autoclear semantics, then the event flags are also cleared. If this is not
the case, then the calling task is suspended until either at least one of the event flags
specified by in_mask is in the posted state, or the timeout limit specified by timeout
is reached.

Note: timeout is an absolute not a relative value, so if a relative timeout is required this
needs to be made explicit, as shown in the following example.

The timeout value is specified in ticks, which is an implementation dependent
quantity. Two special time values may be specified for timeout.
TIMEOUT_IMMEDIATE causes the event flags to be polled, that is, the function
always returns immediately. This must be the value used if event_wait_any() is
called from an interrupt service routine. If the current state of the event flags within the
event group satisfy the conditions given, then the function returns OS21_SUCCESS,
otherwise the function returns a value of OS21_FAILURE. A timeout of
TIMEOUT_INFINITY causes the function to exit only when the event flags satisfy the
conditions specified.

When the caller returns from this function, the location in memory pointed to by
out_mask contains the state of the event flags, before any autoclearing. If the
function succeeded, the event flags passed out to out_mask are guaranteed to
satisfy the conditions specified. If the call failed, then out_mask can be examined to
determine which event flags are set (if any), and which are not. out_mask can be set
to NULL, if the state of the flags is not required.

event_group_t* event_group Event group on which to wait

unsigned int in_mask Mask defining a subset of event flags on
which to wait

unsigned int* out_mask Receives mask of posted events on waking

osclock_t timeout Time limit of wait

Event flags OS21

128/226 7358306

If in_mask is 0, then the call always returns immediately, passing back the current
event flags state using out_mask if it is not NULL. This allows the state of the event
flags to be polled.

Example: A task waits for up to one second for either of two events to occur:
#define EVENT_A 0x00000001
#define EVENT_B 0x00000002

osclock_t time;
event_group_t* my_event_group;
...
time = time_plus(time_now(), time_ticks_per_sec());
event_wait_any (
 my_event_group,
 EVENT_A | EVENT_B,
 &out_mask,
 &time);

See also: event_post, event_clear, event_wait_all

OS21 Message handling

7358306 129/226

9 Message handling

A message queue provides a buffered communication method for tasks. Message queues
also provide a way to communicate without copying the data, which can save time.

Note: Message queues are subject to a restriction when used from interrupt handlers. For
interrupt handlers, use the timeout versions of the message handling functions with a
timeout period of TIMEOUT_IMMEDIATE (see Section 9.3: Using message queues on
page 131). This prevents the interrupt handler from blocking on a message claim.

9.1 Message queues
An OS21 message queue implements two queues of messages, one for message buffers
which are currently not being used (known as the free queue), and the other holds
messages which have been sent but not yet received (known as the send queue). Message
buffers rotate between these queues, as a result of the user calling the various message
functions.

Figure 1 shows the movement of messages between the two queues.

Figure 1. Message queues

message_release()

message_claim()message_send()

message_receive()

freesend
queue queue

Message handling OS21

130/226 7358306

9.2 Creating message queues
Message queues are created using one of the following functions:

#include <os21.h>
message_queue_t* message_create_queue(
 size_t max_message_size,
 unsigned int max_messages);

message_queue_t* message_create_queue_p (
 partition_t* partition,
 partition_t* message_partition,
 size_t max_message_size,
 unsigned int max_messages);

Note: OS20 implements message queues created with the above calls using the ST20’s hardware
semaphores. Hardware semaphores provide no timeout facility, hence OS20 provides
_timeout() variants of message calls. Since OS21 does not support the notion of non-
timeout or hardware semaphores, it does not provide the non _timeout() message API
directly. These functions are provided as macros in the file os21/message.h to aid porting
from OS20.

These functions create a message queue for a fixed number of fixed sized messages, each
message being preceded by a header, see Figure 2. The user must specify the maximum
size for a message element and the total number of elements required.

Figure 2. OS21 message elements

message_create_queue() allocates the memory for the queue automatically from the
system heap.

message_create_queue_p() allows the user to specify which partition to allocate the
control structures and message buffers from.

message header message

OS21 Message handling

7358306 131/226

9.3 Using message queues
Initially all the messages are on the free queue. The user allocates free message buffers by
calling either of the following functions, which can then be filled in with the required data:

void* message_claim(
 message_queue_t* queue);

void* message_claim_timeout(
 message_queue_t* queue,
 const osclock_t* time);

Both functions claim the next available message in the message queue.
message_claim_timeout() enables a timeout to be specified. If the timeout is reached
before a message buffer is acquired then the function returns NULL. Two special values may
be specified for the timeout period.

● TIMEOUT_IMMEDIATE causes the message queue to be polled and the function to
return immediately. A message buffer may or may not be acquired and the task
continues.

● TIMEOUT_INFINITY causes the function to behave the same as message_claim(),
that is, the task waits indefinitely for a message buffer to become available.

When the message is ready it is sent by calling message_send(), at which point it is
added to the send queue.

Messages are removed from the send queue by a task calling either of the functions:

void* message_receive(
 message_queue_t* queue);

void* message_receive_timeout(
 message_queue_t* queue,
 const osclock_t* time);

Both functions return the next available message. message_receive_timeout()
provides a timeout facility which behaves in a similar manner to
message_claim_timeout() in that it returns NULL if the message does not become
available. If TIMEOUT_IMMEDIATE is specified the task continues whether or not a
message is received and if TIMEOUT_INFINITY is specified the function behaves as
message_receive() and waits indefinitely.

Finally when the receiving task has finished with the message buffer it should free it by
calling message_release(). This function adds it to the free queue, where it is again
available for allocation.

If the size of the message is variable, the user should specify that the message is
sizeof(void*), and then use pointers to the messages as the arguments to the message
functions. The user is then responsible for allocating and freeing the real messages using
whatever techniques are appropriate.

Message queues may be deleted by calling message_delete_queue(). If the message
queue was created using message_create_queue() then this also frees the memory
allocated for the message queue.

Message handling OS21

132/226 7358306

9.4 Message handling API summary
All the definitions related to messages can be accessed by including the header file
os21.h, which itself includes the header file message.h. See Table 24, Table 25 and
Table 26 for a complete list.

Table 24. Functions defined in message.h

Function Description

message_claim_timeout() Claims a message buffer with timeout

message_create_queue() Creates a fixed size message queue

message_create_queue_p() Creates a fixed size message queue

message_delete_queue() Deletes a message queue

message_receive_timeout()
Receives the next available message from a queue
or timeout

message_release() Releases a message buffer

message_send() Sends a message to a queue

Table 25. Types defined in message.h

Types Description

message_queue_t A message queue

Table 26. Macros defined in message.h

Macro Description

message_claim() Claims a message buffer

message_create_queue_timeout() Creates a message queue

message_create_queue_timeout_p() Creates a message queue

message_receive()
Receives the next available message from a queue
with no timeout

OS21 Message handling

7358306 133/226

9.5 Message function definitions

message_claim
Claim a message buffer

Definition: #include <os21.h>
void* message_claim(
 message_queue_t* queue);

Arguments:

Returns: The next available message buffer.

Errors: None

Context: Callable from task only.

Description: message_claim() claims the next available message buffer from the message
queue, and returns its address. If no message buffers are currently available then the
task blocks until one becomes available (by another task calling
message_release()).

This function is not callable from an interrupt handler, and is equivalent to:

message_claim_timeout(queue, TIMEOUT_INFINITY)

See also: message_receive, message_release, message_send

message_queue_t* queue The message queue from which the message
is claimed

Message handling OS21

134/226 7358306

message_claim_timeout
Claim a message buffer or timeout

Definition: #include <os21.h>
void* message_claim_timeout(
 message_queue_t* queue
 const osclock_t* time);

Arguments:

Returns: The next available message buffer, or NULL if a timeout occurs.

Errors: None

Context: Callable from task or system context. Only valid from system context if time is
TIMEOUT_IMMEDIATE.

Description: message_claim_timeout() claims the next available message buffer from the
message queue, and returns its address. If no message buffers are currently
available then the task blocks until one becomes available (by another task calling
message_release()), or the time specified by time is reached.

Note: time is an absolute not a relative value, so if a relative timeout is required this needs
to be made explicit, as shown in the following example.

time is specified in ticks. A tick is an implementation dependent quantity.

Two special time values may also be specified for time. TIMEOUT_IMMEDIATE
causes the message queue to be polled, that is, the function always returns
immediately. If a message is available then it is returned, otherwise the function
returns immediately with a result of NULL. A timeout of TIMEOUT_INFINITY
behaves exactly as message_claim().

message_claim_timeout() can be used from an interrupt handler, as long as
time is TIMEOUT_IMMEDIATE.

Example: osclock_t time;
time = time_plus(time_now(), time_ticks_per_sec());
message_claim_timeout(message_queue, &time);

See also: message_receive_timeout, message_send, message_release

message_queue_t* queue The message queue from which the message
is claimed

const osclock_t* time The maximum time to wait for a message

OS21 Message handling

7358306 135/226

message_create_queue
Create a fixed size message queue

Definition: #include <os21.h>
message_queue_t* message_create_queue(
 size_t max_message_size,
 unsigned int max_messages);

Arguments:

Returns: The message queue identifier, or NULL on failure.

Errors: Returns NULL if there is insufficient memory for the message queue.

Context: Callable from task only.

Description: message_create_queue() creates a message queue with buffering for a fixed
number of fixed size messages. Buffer space for the messages and the
message_queue_t structure, is created automatically by the function from the
system heap.

See also: memory_allocate, message_claim, message_send,
message_delete_queue, message_receive, message_release

size_t max_message_size The maximum size of a message, in bytes

unsigned int max_messages The maximum number of messages

Message handling OS21

136/226 7358306

message_create_queue_p
Create a fixed size message queue

Definition: #include <os21.h>
message_queue_t* message_create_queue_p(
 partition_t* partition,
 partition_t* message_partition,
 size_t max_message_size,
 unsigned int max_messages);

Arguments:

Returns: The message queue identifier, or NULL on failure.

Errors: Returns NULL if there is insufficient memory for the message queue.

Context: Callable from task only.

Description: message_create_queue_p() creates a message queue with buffering for a fixed
number of fixed size messages. Buffer space for the messages and the
message_queue_t structure, is created automatically by the function calling
memory_allocate() on the specified memory partitions.

Note: If a null pointer is specified for partition or memory_partition, instead of a
valid partition pointer, the C runtime heap is used.

See also: memory_allocate, message_claim, message_send,
message_delete_queue, message_receive, message_release,
message_create_queue

partition_t* partition Where to allocate the control structures

partition_t* message_partition

Where to allocate the message buffers

size_t max_message_size The maximum size of a message, in bytes

unsigned int max_messages The maximum number of messages

OS21 Message handling

7358306 137/226

message_delete_queue
Delete a message queue

Definition: #include <os21.h>
int message_delete_queue(
 message_queue_t* message_queue);

Arguments:

Returns: OS21_SUCCESS or OS21_FAILURE.

Errors: Fails if message_queue is NULL.

Context: Callable from task only.

Description: message_delete_queue() deletes the message queue, message_queue, and
frees the memory allocated for it.

Note: The results are undefined if a task attempts to use a message queue after it has been
deleted.
Tasks using message_claim_timeout() or message_receive_timeout() to
wait on the message queue are protected from this possibility by a timeout period,
which enables the task to continue.

See also: message_create_queue, message_create_queue_p,
message_create_queue_timeout

message_receive
Receive the next available message from a queue

Definition: #include <os21.h>
void* message_receive(
 message_queue_t* queue);

Arguments:

Returns: The next available message from the queue.

Errors: None

Context: Callable from task only.

Description: message_receive() receives the next available message from the message
queue, and returns its address. If no messages are currently available then the task
blocks until one becomes available (by another task calling message_send()).

See also: message_claim, message_receive_timeout, message_release,
message_send

message_queue_t* message_queue

The message queue to be deleted

message_queue_t* queue The message queue that delivers the
message

Message handling OS21

138/226 7358306

message_receive_timeout
Receive the next available message from a queue or timeout

Definition: #include <os21.h>
void* message_receive_timeout(
 message_queue_t* queue
 const osclock_t* time);

Arguments:

Returns: The next available message from the queue, or NULL if a timeout occurs.

Errors: None

Context: Callable from task or system context. Only valid from system context if time is
TIMEOUT_IMMEDIATE.

Description: message_receive_timeout() receives the next available message from the
message queue, and returns its address. If no messages are currently available then
the task blocks until one becomes available (by another task calling
message_send()), or the time specified by time is reached.

Note: time is an absolute not a relative value, so if a relative timeout is required this needs
to be made explicit, as shown in the example.

time is specified in ticks. A tick is an implementation dependent quantity.

Two special time values may also be specified for time. TIMEOUT_IMMEDIATE
causes the message queue to be polled, that is, the function always returns
immediately. If a message is available then it is returned, otherwise the function
returns immediately with a result of NULL. A timeout of TIMEOUT_INFINITY
behaves exactly as message_receive().

This function can only be used from an interrupt handler if TIMEOUT_IMMEDIATE is
specified for time.

Example: osclock_t time;
time = time_plus(time_now(), time_ticks_per_sec());
message_receive_timeout(message_queue, &time);

See also: message_claim, message_receive, message_release, message_send

message_queue_t* queue The message queue that delivers the
message

const osclock_t* time The maximum time to wait for a message

OS21 Message handling

7358306 139/226

message_release
Release a message buffer

Definition: #include <os21.h>
void message_release(
 message_queue_t* queue,
 void* message);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: message_release() returns a message buffer to the message queue’s free list.
This function should be called when a message buffer (received by
message_receive()) is no longer required. If a task is waiting for a free message
buffer (by calling message_claim()) this causes the task to be restarted and the
message buffer returned.

See also: message_claim, message_receive, message_send

message_send
Send a message to a queue

Definition: #include <os21.h>
void message_send(
 message_queue_t* queue,
 void* message);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: message_send() sends the specified message to the message queue. This adds
the message to the end of the queue of sent messages, and if any tasks are waiting
for a message they are rescheduled and the message returned.

See also: message_claim, message_receive, message_release

message_queue_t* queue The message queue to which the message is
released

void* message The message buffer

message_queue_t* queue The message queue to which the message is
sent

void* message The message to send

Real-time clocks OS21

140/226 7358306

10 Real-time clocks

Time is a very important issue for real-time systems. OS21 provides some basic functions
for manipulating quantities of time.

Historically, OS20 regarded time as circular. That is, the counters which represent time
could wrap round, with half the time period being in the future, and half of it in the past. This
behavior meant that clock values had to be interpreted with care, and manipulated using
time functions which took account of wrapping. These functions were used to:

● add and subtract quantities of time

● determine if one time is after another

● return the current time

OS21 maintains compatibility with the existing OS20 time API, but has effectively removed
the notion of wrapping time by extending the range of the data types used to represent clock
ticks. Time is represented in clock ticks, with the osclock_t type. This is defined to be a
signed 64-bit integer. Even if the hardware driving the system clock has a one nanosecond
cycle time, this representation of time does not wrap for 293 years; sufficiently far enough
away to be discounted. Using this representation of time for ‘absolute’ time means that only
positive values have any meaning. When subtracting two absolute times for purposes of
comparison, a negative result means that one time is before the other and a positive result
means that it is after the other.

10.1 Reading the current time
The value of system time is read using time_now().

#include <os21.h>
osclock_t time_now(void);

The time at which counting starts is no later than the call to kernel_start().

10.2 Time arithmetic
Arithmetic on timer values in OS21 can be performed directly by the application since
wrapping can be discounted. OS21 still provides the old OS20 time manipulation functions
for backwards compatibility. These routines perform no overflow checking and so allow for
timer values ‘wrapping round’ to the most negative integer on the next tick after the most
positive integer.

osclock_t time_plus(
 const osclock_t time1,
 const osclock_t time2);

osclock_t time_minus(
 const osclock_t time1,
 const osclock_t time2);

int time_after(
 const osclock_t time1,
 const osclock_t time2);

OS21 Real-time clocks

7358306 141/226

time_plus() adds two timer values together and returns the sum. For example, if a
certain number of ticks is added to the current time using time_plus() then the result is
the time after that many ticks.

time_minus() subtracts the second value from the first and returns the difference. For
example, if one time is subtracted from another using time_minus() then the result is the
number of ticks between the two times. If the result is positive then the first time is after the
second. If the result is negative then the first time is before the second.

time_after() determines whether the first time is after the second time. The first time is
considered to be after the second time if the result of subtracting the second time from the
first time is positive. The function returns the integer value 1 if the first time is after the
second, otherwise it returns 0.

The precise time for a tick is implementation specific, but should be in the order of 1 to 10
microseconds. This would give a roll over time on a 63-bit counter of between 293,274 and
2,932,747 years.

For a discussion on the implementation of timers on specific targets, see the OS21
implementation specific documentation.

10.3 Time API summary
All the definitions related to time can be accessed by including the header file os21.h,
which itself includes the header file ostime.h. See Table 27 and Table 28 for a complete
list.

Table 27. Functions defined in ostime.h

Function Description

time_after() Returns whether one time is after another

time_minus() Subtracts two clock values

time_now() Returns the current time

time_plus() Adds two clock values

time_ticks_per_sec() Returns the number of ticks per second

Table 28. Types defined by ostime.h

Type Description

osclock_t Number of processor clock ticks

Real-time clocks OS21

142/226 7358306

10.4 Timer function definitions

time_after
Return whether one time is after another

Definition: #include <os21.h>
int time_after(
 const osclock_t time1,
 const osclock_t time2);

Arguments:

Returns: Returns 1 if time1 is after time2, otherwise 0.

Errors: None

Context: Callable from task or system context.

Description: time_after() returns the relationship between time1 and time2. Returns 1 if
time1 is after time2, otherwise 0.

See also: time_minus, time_now, time_plus

time_minus
Subtract two clock values

Definition: #include <os21.h>
osclock_t time_minus(
 const osclock_t time1,
 const osclock_t time2);

Arguments:

Returns: Returns the result of subtracting time2 from time1.

Errors: None

Context: Callable from task or system context.

Description: time_minus() subtracts one clock value from another. A negative time represents
several clock ticks into the past.

See also: time_plus

const osclock_t time1 A clock value, returned by time_now, for
example

const osclock_t time2 A clock value, returned by time_now, for
example

const osclock_t time1 A clock value, returned by time_now, for
example

const osclock_t time2 A clock value, returned by time_now, for
example

OS21 Real-time clocks

7358306 143/226

time_now
Return the current time

Definition: #include <os21.h>
osclock_t time_now(void);

Arguments: None

Returns: Returns the number of ticks since the system started.

Errors: None

Context: Callable from task or system context.

Description: time_now() returns the number of ticks since the system started running. The exact
time at which counting starts is implementation specific, but it is no later than the call
to kernel_start().

The units of ticks is an implementation dependent quantity, but it is in the range of
1 to 10 microseconds.

See also: task_delay

time_plus
Add two clock values

Definition: #include <os21.h>
osclock_t time_plus(
 const osclock_t time1,
 const osclock_t time2);

Arguments:

Returns: Returns the result of adding time1 to time2.

Errors: None

Context: Callable from task or system context.

Description: time_plus() adds one clock value to another.

See also: time_minus

const osclock_t time1 A clock value, returned by time_now, for
example

const osclock_t time2 A clock value, returned by time_now, for
example

Real-time clocks OS21

144/226 7358306

time_ticks_per_sec
Returns the number of clock ticks per second

Definition: #include <os21.h>
osclock_t time_ticks_per_sec(void);

Arguments: None

Returns: The number of ticks.

Errors: None

Context: Callable from task or system context.

Description: time_ticks_per_sec() returns the number of clock ticks per second.

OS21 Interrupts

7358306 145/226

11 Interrupts

Interrupts provide a mechanism for external events to control the CPU. Normally, as soon as
an interrupt is asserted, the CPU stops executing the current task, and starts executing the
interrupt handler for that interrupt. In this way the program is made aware of external
changes as soon as they occur. This switch is performed completely in hardware, and so is
extremely rapid. Similarly when the interrupt handler has completed, the CPU resumes
execution of the interrupted task, which is unaware that it has been interrupted.

The interrupt handler which the CPU executes in response to the interrupt is called the first
level interrupt handler. This piece of code is supplied as part of OS21, and sets up the
environment so that a normal C function can be called. The OS21 API enables a different
user function to be associated with each interrupt, and this is called when the interrupt
occurs. Each interrupt also has a parameter associated with it, which is passed into the
function when it is called. This allows the same code to be shared between different
interrupt handlers.

OS21 differentiates each interrupt by assigning it a unique name (interrupt_name_t).

11.1 Chip variants
Each version of the CPU can have its own set of peripherals, and these peripherals are
allocated interrupts. There is no guarantee that the assignments will remain the same from
variant to variant. To accommodate this, OS21 requires a table of definitions which
describes the interrupt mappings for a given part. This table is provided to the OS21 kernel
using the board support package (BSP) mechanism. The BSP is a library containing target
specifics, which is linked with the application and the OS21 kernel at final link time. OS21 is
shipped with BSP libraries for all supported variants.

Providing the source for the board support packages enables users to limit the number of
declared interrupts to just those used by the application, and so save memory, if necessary.

OS21 uses the interrupt description table from the BSP to build its own table which is used
to dispatch interrupts from the first level interrupt handler.

Along with the target specific OS21 interrupt code, the BSP describes the interrupt system
to OS21 and together they implement the generic interrupt API.

11.2 Initializing the interrupt handling subsystem
Before interrupts can be used, the OS21 interrupt subsystem must be initialized. This is
done using the BSP, see the OS21 implementation specific documentation.

Interrupts OS21

146/226 7358306

11.3 Obtaining a handle for an interrupt
OS21 abstracts the concept of an interrupt behind a type called “interrupt_t”. Before
programming an interrupt you must therefore obtain the appropriate handle for the interrupt.
The following example shows how to do this for an interrupt called MY_INTERRUPT.

extern interrupt_name_t MY_INTERRUPT;
 /* This is specified in the BSP tables */

interrupt_t * my_interrupt_handle_ptr;
 /* This is my handle to my interrupt */

my_interrupt_handle_ptr = interrupt_handle (MY_INTERRUPT);
if (!my_interrupt_handle_ptr)
{
 printf ("ERROR: Failed to obtain handle for my interrupt\n");

}

Once a valid interrupt handle is obtained you can for example, attach an interrupt handler,
enable it and change its priority.

Note: It is not necessary to declare MY_INTERRUPT as an extern. Instead you can include the
appropriate header file.

#include <os21/processor/variant.h>

For example:

#include <os21/st40/st40gx1.h>

However doing this makes code non-portable, since the name of the include file has to be
changed when the same code is ported to a different platform.

11.4 Attaching interrupt handlers
OS21 supports both shareable and nonshareable interrupts.

OS21 defines an interrupt handler as follows:

typedef int (*interrupt_handler_t)(void * param);

An interrupt handler must return OS21_SUCCESS if it successfully identified and handled an
interrupt or OS21_FAILURE if it did not.

int example_interrupt_handler (void * param)
{
 if (this_is_my_interrupt)
 {
 ... handle and clear the interrupt
 return (OS21_SUCCESS);
 }
 return (OS21_FAILURE);

}

OS21 Interrupts

7358306 147/226

11.4.1 Attaching an interrupt handler to a nonshared interrupt

An interrupt handler is attached to an interrupt, using the interrupt_install()
function:

int result;

result = interrupt_install (my_interrupt_handle_ptr, my_handler,
my_handler_parameter);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to attach handler for my interrupt\n");

}

The handler can be uninstalled as follows:

int result;

result = interrupt_uninstall (my_interrupt_handle_ptr);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to detach handler for my interrupt\n");

}

11.4.2 Attaching an interrupt handler to a shared interrupt

OS21 provides a mechanism for more than one interrupt handler to share an interrupt.
Handlers are chained by interrupt_install_shared() which adds an interrupt
handler to the chain of handlers for a given interrupt. This increases interrupt latency, but
may be required where different hardware interrupts are routed to the same interrupt vector.

When the interrupt occurs OS21 automatically calls all the handlers in the chain until one of
them returns OS21_SUCCESS (indicating that it handled the interrupt). If no handlers in the
chain return OS21_SUCCESS then OS21 panics, because the interrupt is unhandled.

The following shows how to install two handlers that share an interrupt pointed to by ip.

int result1, result2;
result1 = interrupt_install_shared (ip, handler1, param1);
if (result1 != OS21_SUCCESS)
{
 printf ("ERROR: Failed to install shared handler number 1\n");

}
result2 = interrupt_install_shared (ip, handler2, param2);
if (result2 != OS21_SUCCESS)
{
 printf ("Failed to install shared handler number 2\n");

}

The following shows how to uninstall two handlers that share an interrupt pointed to by ip.

int result1, result2;
result1 = interrupt_uninstall_shared (ip, handler1, param1);
if (result1 != OS21_SUCCESS)
{
 printf ("ERROR: Failed to uninstall shared handler number 1\n");

}

Interrupts OS21

148/226 7358306

result2 = interrupt_uninstall_shared (ip, handler2, param2);
if (result2 != OS21_SUCCESS)
{
 printf ("ERROR: Failed to uninstall shared handler number 2\n");

}

11.5 Interrupt priority
It may be possible to program the priority of a given interrupt. If possible this can be done
using the following functions:

result = interrupt_priority_set (my_interrupt_handle_ptr,
required_priority);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to set priority of my interrupt\n");

}

result = interrupt_priority (my_interrupt_handle_ptr,
¤t_priority);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to get priority of my interrupt\n");

}
printf ("Current priority is %d\n", current_priority);

11.6 Enabling and disabling interrupts
Interrupts are enabled at the interrupt controllers using the interrupt_enable() function
and can be disabled using the corresponding interrupt_disable() function:

result = interrupt_enable (my_interrupt_handle_ptr)
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to enable my interrupt\n");

}

result = interrupt_disable (my_interrupt_handle_ptr)
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to disable my interrupt\n");

}

OS21 Interrupts

7358306 149/226

11.7 Clearing interrupts
It is possible to clear an interrupt at the interrupt controllers. This can be achieved using the
following API:

result = interrupt_clear (my_interrupt_handle_ptr);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to clear my interrupt\n");

}

11.8 Polling interrupts
A function is provided for polling interrupts if required:

result = interrupt_poll (my_interrupt_handle_ptr, &value);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to poll my interrupt\n");

}
printf ("My interrupt is %s\n", value ? "high" : "low");

11.9 Raising interrupts
It may be possible to raise interrupts from software for testing or signalling purposes (if
hardware support is available). Similarly it may be possible to unassert a software interrupt.
These can be achieved at the interrupt controller using the following API:

result = interrupt_raise (my_interrupt_handle_ptr);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to raise my interrupt\n");

}

result = interrupt_unraise (my_interrupt_handle_ptr);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to unraise my interrupt\n");

}

Interrupts OS21

150/226 7358306

11.10 Masking interrupts
Interrupts can be selectively masked and unmasked from the CPU with the interrupt
masking API.

int previous_level;

previous_level = interrupt_mask (new_level);
/* Interrupts are now masked to the new level. */
interrupt_unmask (previous_level);
/* Interrupts are now masked to the previous level. */

or

previous_level = interrupt_mask_all ();
/* Interrupts are now masked completely. */
interrupt_unmask (previous_level);
/* Interrupts are now masked to the previous level. */

These functions must always be called in pairs, interrupt_mask() and
interrupt_unmask(), or interrupt_mask_all() and interrupt_unmask(). By
raising the processor’s interrupt priority level, interrupt_mask() is able to block all
interrupts up to and including that level from reaching the CPU, where as
interrupt_mask_all() is able to block all interrupts from reaching the CPU.

Interrupts of a higher priority than that specified are not masked so some higher level
interrupts can still be serviced while interrupt_mask() is in effect.
interrupt_mask(), interrupt_mask_all() and interrupt_unmask() can be
used to create a critical region around code which, for instance, has to manipulate a data
structure shared with an interrupt handler.

A task must not deschedule with interrupts masked, as this causes the scheduler to fail.
When interrupts are masked, calling any function that may not be called by an interrupt
service routine is illegal.

Once interrupt_mask() and interrupt_mask_all() are called from task context, no
preemption can occur. Similarly pre-emption is re-enabled once interrupt_unmask()
finally restores priority back to the base level.

11.11 Contexts and interrupt handler code
Code running under OS21 may run in one of two environments (or contexts). These are
called task context and system context. OS21 interrupt handlers are run from system
context.

The main difference between system context and task context is that code running in
system context is not allowed to block. Undefined behavior occurs if code running in system
context blocks. As a result of this contraint, code running from system context should never
call an OS21 function that may block. Please refer to the individual function descriptions for
details of which contexts the OS21 functions may be run from.

OS21 Interrupts

7358306 151/226

11.12 Interrupt API summary
All the definitions related to interrupts can be obtained by including the header file os21.h,
which itself includes the header file interrupt.h. See Table 29 and Table 30 for a
complete list.

Table 29. Functions defined in interrupt.h

Function Description

interrupt_clear() Clears an interrupt

interrupt_disable() Disables an interrupt

interrupt_enable() Enables an interrupt

interrupt_handle() Obtains an interrupt_t * for an interrupt

interrupt_install() Installs an interrupt handler

interrupt_install_shared()
Installs an interrupt handler and mark the
interrupt source as shared

interrupt_lock() Disables all interrupts (deprecated)

interrupt_mask() Raises the processor's interrupt level

interrupt_mask_all()
Raises the processor's interrupt level to the
maximum possible

interrupt_poll() Polls an interrupt

interrupt_priority() Gets an interrupt’s priority

interrupt_priority_set() Sets an interrupt's priority

interrupt_raise() Raises an interrupt

interrupt_uninstall() Uninstalls an interrupt handler

interrupt_uninstall_shared()
Uninstalls an interrupt handler where the
interrupt source is shared

interrupt_unlock() Enables all interrupts (deprecated)

interrupt_unmask() Lowers the processor's interrupt level

interrupt_unraise() Unraises an interrupt

Table 30. Types defined in interrupt.h

Type Description

interrupt_t An abstract interrupt type

interrupt_init_flags_t(1)

1. This type is only used by the BSP.

Interrupt initialization flags

interrupt_handler_t An interrupt handler

interrupt_name_t A name for an interrupt source

ilc_mode_t(1) Modes for an Interrupt Level Controller

Interrupts OS21

152/226 7358306

11.13 Interrupt function definitions

interrupt_clear
Clears an interrupt

Definition: #include <os21.h>
int interrupt_clear(
 interrupt_t * ip);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt cannot be cleared or is invalid.

Context: Callable from task or system context.

Description: Attempts to clear the specified interrupt. Many interrupts are automatically cleared
when the hardware stops asserting them. Some interrupt controllers however latch
the interrupt, these have to be cleared otherwise the interrupt remains asserted,
causing the processor to take an unwanted interrupt.

See also: interrupt_raise

interrupt_disable
Disable an interrupt

Definition: #include <os21.h>
int interrupt_disable(
 interrupt_t * ip);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt cannot be disabled or is invalid.

Context: Callable from task or system context.

Description: Attempts to disable the specified interrupt. Some interrupts cannot be disabled and in
this case the call fails.

See also: interrupt_enable

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

OS21 Interrupts

7358306 153/226

interrupt_enable
Enable an interrupt

Definition: #include <os21.h>
int interrupt_enable(
 interrupt_t * ip);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt is invalid.

Context: Callable from task or system context.

Description: Attempts to enable the specified interrupt. Some interrupts are always enabled and in
this case the call always succeeds.

See also: interrupt_disable

interrupt_handle
Obtains an interrupt handler for a named interrupt.

Definition: #include <os21.h>
interrupt_t * interrupt_handle (
 interrupt_name_t name);

Arguments:

Returns: Returns a valid interrupt handle for success, or NULL for failure.

Errors: NULL if the interrupt name could not be found.

Context: Callable from task only.

Description: Obtains a handle for a named interrupt. Once an interrupt_t * handle has been
obtained, it can then be passed to the other functions to carry out actions on that
interrupt.

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

interrupt_name_t name The name of the interrupt for which a handle
is required.

Interrupts OS21

154/226 7358306

interrupt_install
Install an interrupt handler and mark the interrupt source as
nonshareable

Definition: #include <os21.h>
int interrupt_install (
 interrupt_t * ip,
 interrupt_handler_t handler,
 void * param);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the interrupt source ip is invalid, is in sharing mode (that is, a call
to interrupt_install_shared() has already been made for ip), or a handler
has already been installed for this interrupt source.

Context: Callable from task only.

Description: This installs the specified user interrupt handler for the interrupt source described by
ip. The handler function is called with its the single parameter set to param. The user
handler should return OS21_SUCCESS if it handled the interrupt, otherwise it should
return OS21_FAILURE. This call allows a single interrupt handler to be registered for
the given source.

Once a handler has been registered with this call, further calls to
interrupt_install() or interrupt_install_shared() for this ip will fail.

See also: interrupt_install_shared, interrupt_uninstall,
interrupt_uninstall_shared

interrupt_t * ip The handle of the interrupt for which a
handler is to be installed.

interrupt_handler_t handler The handler function which is called
when the interrupt is taken.

void * param A parameter which is passed to the
handler when it is called.

OS21 Interrupts

7358306 155/226

interrupt_install_shared
Install an interrupt handler and mark the interrupt source as
shared

Definition: #include <os21.h>
int interrupt_install_shared (
 interrupt_t * ip,
 interrupt_handler_t handler,
 void * param);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the interrupt source ip is invalid or is in non-sharing mode (that is,
a call to interrupt_install() has already been made for ip).

Context: Callable from task only.

Description: This installs the specified user interrupt handler for the interrupt source described by
ip. The handler function is called with its the single parameter set to param. The user
handler returns OS21_SUCCESS if it handled the interrupt, otherwise it returns
OS21_FAILURE. This call allows a multiple interrupt handler to be registered for the
given source, therefore allowing interrupt vector sharing. When an interrupt from
source ip is detected by OS21, it calls each handler that has been registered, until
one returns OS21_SUCCESS. If no handler accepts the interrupt OS21 will panic.

Once any handlers have been registered with the call, any call to
interrupt_install() for this ip will fail, since it is now set for shared use.

See also: interrupt_install, interrupt_uninstall,
interrupt_uninstall_shared

interrupt_t * ip The handle of the interrupt for which a handler
is to be installed.

interrupt_handler_t handler A handler function which is called when the
interrupt is taken.

void * param A parameter which is passed to the handler
when it is called.

Interrupts OS21

156/226 7358306

interrupt_lock
Disable all interrupts

Definition: #include <os21.h>
void interrupt_lock(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function disables all interrupts to the CPU.

Note: This call is deprecated, and will be removed from future releases of OS21. Use
interrupt_mask_all() instead.

This function must always be called as a pair with interrupt_unlock(), so that it
can be used to create a critical region in which the task cannot be preempted by any
other task or interrupt. Calls to interrupt_lock() can be nested, and the lock is
not released until an equal number of calls to interrupt_unlock() are made.

A task must not deschedule while an interrupt lock is in effect. When interrupts are
locked, calling any function that may not be called by an interrupt service routine is
illegal.

See also: interrupt_unlock, interrupt_mask, interrupt_mask_all, task_lock

OS21 Interrupts

7358306 157/226

interrupt_mask
Raise the processor’s interrupt priority level

Definition: #include <os21.h>
int interrupt_mask(
 int priority);

Arguments:

Returns: Returns the old priority level of the processor.

Errors: None

Context: Callable from task or system context.

Description: This function allows the processor to protect itself against interrupts up to a specific
priority level. This can be used when synchronizing with a device driver interrupt
handler for instance.

This call must be used as a pair with interrupt_unmask() to create a critical
region. While in such a critical region the executing task must not deschedule.

Once this function is called from task context, no preemption can occur.

Example: #include <os21.h>

int old_priority;
old_priority = interrupt_mask(4);
... critical section code ...
interrupt_unmask(old_priority);

See also: interrupt_mask_all, interrupt_unmask

int priority Interrupt priority level to set

Interrupts OS21

158/226 7358306

interrupt_mask_all
Raise the processor’s interrupt priority level to its maximum

Definition: #include <os21.h>
int interrupt_mask_all(void);

Arguments: None

Returns: Returns the old priority level of the processor.

Errors: None

Context: Callable from task or system context.

Description: This function allows the processor to protect itself against interrupts to the maximum
priority level. This can be used when synchronizing with a device driver interrupt
handler for instance.

This call must be used as a pair with interrupt_unmask() to create a critical
region. While in such a critical region the executing task must not deschedule.

Once this function is called from task context, no preemption can occur.

Example: #include <os21.h>

int old_priority;
old_priority = interrupt_mask_all();
... critical section code ...
interrupt_unmask(old_priority);

See also: interrupt_mask, interrupt_unmask

interrupt_poll
Polls an interrupt

Definition: #include <os21.h>
int interrupt_poll (
 interrupt_t * ip,
 int * value);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt cannot be polled or is invalid.

Context: Callable from task or system context.

Description: Attempts to poll the specified interrupt. Some interrupts cannot be polled and in this
case the poll fails. For successful calls the result of the poll is placed in the location
pointed to by value.

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

int * value A location to place the result of the poll.

OS21 Interrupts

7358306 159/226

interrupt_priority
Obtains an interrupt’s priority

Definition: #include <os21.h>
int interrupt_priority (
 interrupt_t * ip,
 int * priority);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt is invalid.

Context: Callable from task or system context.

Description: This function is used to query the priority of an interrupt. The current priority of the
given interrupt is written to the location pointed to by priority.

See also: interrupt_priority_set

interrupt_priority_set
Sets an interrupt’s priority

Definition: #include <os21.h>
int interrupt_priority_set (
 interrupt_t * ip,
 int priority);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt is invalid or if the specified priority is invalid.

Context: Callable from task or system context.

Description: This function is used to set the priority of an interrupt. The priority of the given
interrupt is set to the value given by priority.

See also: interrupt_priority

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

int * priority A location to place the priority of the interrupt.

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

int priority The required priority for the interrupt.

Interrupts OS21

160/226 7358306

interrupt_raise
Assert a software interrupt

Definition: #include <os21.h>
int interrupt_raise(
 interrupt_t * ip);

Arguments:

Returns: OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt cannot be raised or is invalid.

Context: Callable from task or system context.

Description: Attempts to raise the specified interrupt. Some interrupts cannot be raised and in this
case the call fails.

See also: interrupt_unraise

interrupt_uninstall
Uninstall an interrupt handler

Definition: #include <os21.h>
int interrupt_uninstall(
 interrupt_t * ip);

Arguments:

Returns: Returns OS21_SUCCESS on success, OS21_FAILURE on failure.

Errors: OS21_FAILURE if the interrupt source ip is invalid, if no handler is currently installed
for this interrupt source, or if the interrupt is marked as shareable.

Context: Callable from task only.

Description: This uninstalls the single interrupt handler associated with interrupt source ip.

See also: interrupt_install, interrupt_install_shared,
interrupt_uninstall_shared

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

interrupt_t * ip The handle of the interrupt for which a handler
is to be uninstalled.

OS21 Interrupts

7358306 161/226

interrupt_uninstall_shared
Uninstall an interrupt handler where the interrupt source is shared

Definition: #include <os21.h>
int interrupt_uninstall_shared (
 interrupt_t * ip,
 interrupt_handler_t handler,
 void * param);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the interrupt source ip is invalid, if the combination of handler
and param are not currently registered for the interrupt source, or if the interrupt has
been marked as nonshareable.

Context: Callable from task only.

Description: Uninstalls an interrupt handler from shared interrupt source ip.

See also: interrupt_install, interrupt_install_shared, interrupt_uninstall

interrupt_unlock
Enable all interrupts

Definition: #include <os21.h>
void interrupt_unlock(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function re-enables all interrupts to the CPU. Any interrupts which have been
prevented from executing start immediately.

Note: This call is deprecated, and will be removed from future releases of OS21. Use
interrupt_unmask() instead.

This function must always be called as a pair with interrupt_lock(), so that it can
be used to create a critical region in which the task cannot be preempted by another
task or interrupt. As calls to interrupt_lock() can be nested, the lock is not
released until an equal number of calls to interrupt_unlock() are made.

See also: interrupt_lock, interrupt_mask, interrupt_mask_all, task_lock

interrupt_t * ip The handle of the interrupt for which a handler
is to be uninstalled.

interrupt_handler_t handler A handler function which is called when the
interrupt is taken.

void * param A parameter which is passed to the handler
when it is called.

Interrupts OS21

162/226 7358306

interrupt_unmask
Lower the processor’s interrupt priority level

Definition: #include <os21.h>
void interrupt_unmask(
 int priority);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function lowers the processor’s interrupt priority level to the level before an
earlier call to interrupt_mask() or interrupt_mask_all(). For instance, this
can be used when synchronizing with a device driver interrupt handler.

This call must always be used as a pair with interrupt_mask() or
interrupt_mask_all() to create a critical region. While in such a critical region
the executing task must not deschedule.

Pre-emption resumes once interrupt_unmask() finally restores the masking level
to the base level.

Example: #include <os21.h>

int old_priority;
old_priority = interrupt_mask(4);
... critical section code ...
interrupt_unmask(old_priority);

See also: interrupt_mask, interrupt_mask_all

interrupt_unraise
Unraises an interrupt.

Definition: #include <os21.h>
int interrupt_unraise (
 interrupt_t * ip);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if the specified interrupt cannot be unraised or is invalid.

Context: Callable from task or system context.

Description: Attempts to unraise the specified interrupt. Some interrupts cannot be raised and in
this case the call fails.

See also: interrupt_raise

int priority Interrupt priority level to set

interrupt_t * ip A handle for the interrupt obtained using
interrupt_handle().

OS21 Caches and memory areas

7358306 163/226

12 Caches and memory areas

12.1 Caches and memory overview
Caches provide a way to reduce the time taken for the CPU to access memory and so can
greatly increase system performance. Most processors provide an instruction cache
(I-cache) and a data (or operand) cache (D-cache). The I-cache is read only, while the
D-cache is read/write. When OS21 is started, both caches are enabled.

There is a risk when using cache that the cache can become incoherent with main
memory, meaning that the contents of the cache conflicts with the contents of main memory.
For example, devices that perform direct memory access (DMA) modify the main memory
without updating the cache, leaving its contents invalid. For this reason extra care must be
taken when performing DMA.

If a level 2 cache is available, then OS21 can (optionally) drive it. In this case, there are no
specific function calls for level 2 cache support. Instead, OS21 maintains the state of the
level 2 cache from within the simple cache management API.

To enable level 2 cache support, OS21 must be handed the base address of the L2 cache
controller. This is done using the Board Support Package. See Chapter 17: Board support
package on page 207.

Note: For full details of the caches provided on a given core, see the appropriate core architecture
manual.

12.2 Initializing the cache support system
When OS21 boots, the default configuration is for both the I-cache and D-cache to be
enabled. Where possible, the cache API allows caches to be disabled, however, this may
not always be possible.

12.3 Flushing, invalidating and purging D-cache lines
The OS21 cache API supports three classes of operation that can be performed on caches.

Purging is required when writing to data structures in memory which are accessed through
the D-cache, but are to be shared with another bus master, for instance another CPU, or
DMA device. OS21 provides the user with the ability to manipulate shared data either by
avoiding the cache altogether, or through the cache with software cache coherency support.
This allows users maximum flexibility.

Flushing This causes any affected cache lines which contain dirty (unwritten)
data to be written back to memory. The cache lines remain in the
cache as clean lines. Flushing only makes sense on D-caches.

Purging This causes any affected cache lines which contain dirty (unwritten)
data to be written back to memory. All affected cache lines are then
invalidated. Purging only makes sense on D-caches.

Invalidating This causes all affected cache lines to be invalidated. Any unwritten
data is lost by this operation. I-cache and D-cache data may be
invalidated.

Caches and memory areas OS21

164/226 7358306

In a similar way, the read-only I-cache can be invalidated in order to safely handle dynamic
code loading.

12.4 Cache API summary
All the definitions relating to the cache API can be obtained by including the header file
os21.h, which itself includes the header file cache.h. See Table 31, Table 32 and
Table 33 for a complete list.

Table 31. Functions defined in cache.h

Function Description

cache_allocate_data() Allocates a range of D-cache

cache_disable_data() Disables the D-cache

cache_disable_instruction() Disables the I-cache

cache_enable_data() Enables the D-cache

cache_enable_instruction() Enables the I-cache

cache_flush_data() Flushes any dirty D-cache lines in range

cache_flush_data_all() Flushes any dirty D-cache

cache_invalidate_data() Invalidates D-cache lines in range

cache_invalidate_data_all() Invalidates all D-cache lines

cache_invalidate_instruction() Invalidates I-cache lines in range

cache_invalidate_instruction_all() Invalidates all I-cache lines

cache_purge_data() Purges D-cache lines in range

cache_purge_data_all() Purges all D-cache lines

cache_status() Returns current cache status information

Table 32. Types defined in cache.h

Type Description

cache_data_mode_t Additional flags for cache_enable_data()

cache_instruction_mode_t
Additional flags for
cache_enable_instruction()

cache_status_t Type for cache status information

cache_status_flags_t Flags for cache_status()

Table 33. Macros defined in cache.h

Macro Description

ICACHE_LINE_SIZE Returns the size of an I-cache line in bytes

DCACHE_LINE_SIZE Returns the size of a D-cache line in bytes

OS21 Caches and memory areas

7358306 165/226

12.5 Cache function definitions

cache_allocate_data
Allocate an address range in the D-cache

Definition: #include <os21.h>
void cache_allocate_data(
 void* base_address,
 size_t length);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: Where possible, this function allocates a range of addresses in the D-cache.
Following this call the cache lines corresponding to the address range given are
marked as valid in the cache, and tagged as belonging to the address range. This is
useful when the caller knows in advance that the entire cache line will be written to, or
only certain words, which the caller will write to, are to be used. This avoids the
penalty of having to fetch the cache line in from memory, when it is known that its
contents are to be overwritten. The effect is to reduce memory bandwidth and the
latency of writing to the cache line. Some cores may not support cache allocation, in
which case this function will have no effect.

Caution: The contents of the D-cache lines affected by this call are undefined. The caller must
not rely on their contents. It is up to the caller to write the desired values to the cache
lines.

ICACHE_LINE_ALIGN(P)
Returns an address which corresponds to the
start of the I-cache line which encapsulates
pointer P

DCACHE_LINE_ALIGN(P)
Returns an address which corresponds to the
start of the D-cache line which encapsulates
pointer P

Table 33. Macros defined in cache.h (continued)

Macro Description

void * base_address Start address of range to allocate

size_t length Length of range in bytes

Caches and memory areas OS21

166/226 7358306

cache_disable_data
Disable the data cache

Definition: #include <os21.h>
int cache_disable_data(
 int flush);

Arguments:

Returns: OS21_SUCCESS for success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if D-cache cannot be disabled.

Context: Callable from task or system context.

Description: Where possible, this function disables the data cache on the processor. If flush is 1,
the cache is flushed prior to disabling to ensure that any dirty cache lines are flushed
back to memory. If flush is 0, the entire content of the data cache is lost. Some
cores may have a D-cache that is permanently enabled.

See also: cache_enable_data

cache_disable_instruction
Disable the instruction cache

Definition: #include <os21.h>
int cache_disable_instruction(void);

Arguments: None

Returns: OS21_SUCCESS for success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if I-cache cannot be disabled.

Context: Callable from task or system context.

Description: This function disables the instruction cache on the processor.

See also: cache_enable_instruction

int flush Indicates whether a flush is required prior to
disabling

OS21 Caches and memory areas

7358306 167/226

cache_enable_data
Enable the data cache

Definition: #include <os21.h>
int cache_enable_data(
 cache_data_mode_t mode);

Arguments:

Returns: OS21_SUCCESS for success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if the specified mode parameter is not supported, or if an invalid
mode is specified.

Context: Callable from task or system context.

Description: This function enables the data cache. mode is currently a reserved parameter which
is ignored and should be set to 0.

See also: cache_disable_data

cache_enable_instruction
Enable the instruction cache

Definition: #include <os21.h>
int cache_enable_instruction(
 cache_instruction_mode_t mode);

Arguments:

Returns: OS21_SUCCESS for success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if the specified mode parameter is not supported, or if an invalid
mode is specified.

Context: Callable from task or system context.

Description: This function enables the instruction cache. As a side effect of enabling the instruction
cache, its contents are invalidated. mode is a bit field parameter which must be given
as zero.

See also: cache_disable_instruction

cache_data_mode_t mode Reserved for future use, set to 0.

cache_instruction_mode_t mode The desired instruction cache mode

Caches and memory areas OS21

168/226 7358306

cache_flush_data
Flushes addresses within the specified range from the data cache

Definition: #include <os21.h>
void cache_flush_data(
 void * base_address,
 size_t length);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function flushes any valid and dirty data cache lines, which fall within the address
range specified, back to memory. Where possible, the cache is not invalidated by
flushing, so the affected lines remain in the cache as valid clean lines.

See also: cache_invalidate_data, cache_purge_data

cache_flush_data_all
Flushes all data cache lines from the D-cache

Definition: #include <os21.h>
void cache_flush_data_all(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function flushes any valid and dirty data cache lines back to memory from the
data cache. Where possible, the cache is not invalidated by flushing, so the affected
lines remain in the cache as valid clean lines.

See also: cache_invalidate_data, cache_purge_data

void * base_address Start address of range to flush

size_t length Length of range in bytes

OS21 Caches and memory areas

7358306 169/226

cache_invalidate_data
Invalidates addresses within the specified range from the data
cache

Definition: #include <os21.h>
void cache_invalidate_data(
 void * base_address,
 size_t length);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function invalidates any valid data cache lines which fall within the address range
specified.

Note: Any dirty cache lines are not guaranteed to be written back to memory by this call.

See also: cache_flush_data, cache_purge_data

cache_invalidate_data_all
Invalidates all lines in the D-cache

Definition: #include <os21.h>
void cache_invalidate_data_all(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function invalidates the entire D-cache.

Note: Calling this function while running from cached memory is extremely dangerous. Any
live data in the data cache is lost, possibly causing a crash.

Note: Any dirty cache lines are not guaranteed to be written back to memory by this call.

See also: cache_flush_data, cache_purge_data

void * base_address Start address of range to invalidate

size_t length Length of range in bytes

Caches and memory areas OS21

170/226 7358306

cache_invalidate_instruction
Invalidates addresses within the specified range from the
instruction cache

Definition: #include <os21.h>
void cache_invalidate_instruction(
 void * base_address,
 size_t length);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function invalidates any valid instruction cache lines which fall within the address
range specified.

See also: cache_invalidate_instruction_all

cache_invalidate_instruction_all
Invalidates the entire instruction cache

Definition: #include <os21.h>
void cache_invalidate_instruction_all(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function invalidates the entire instruction cache.

See also: cache_invalidate_instruction

void * base_address Start address of range to invalidate

size_t length Length of range in bytes

OS21 Caches and memory areas

7358306 171/226

cache_purge_data
Purges addresses within the specified range from the data cache

Definition: #include <os21.h>
void cache_purge_data(
 void * base_address,
 size_t length);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function purges any valid data cache lines which fall within the address range
specified. Any dirty cache lines are first written back to memory, then the cache line is
invalidated.

See also: cache_invalidate_data, cache_flush_data

cache_purge_data_all
Purges the entire D-cache

Definition: #include <os21.h>
void cache_purge_data_all(void);

Arguments: None

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function purges any valid data cache lines within the D-cache. Any dirty cache
lines are first written back to memory, then the cache line is invalidated.

See also: cache_invalidate_data, cache_flush_data

void * base_address Start address of range to purge

size_t length Length of range in bytes

Caches and memory areas OS21

172/226 7358306

cache_status
Get details of the current cache configuration

Definition: #include <os21.h>
void cache_status(
 cache_status_t* status
 cache_status_flags_t flags);

Arguments:

Returns: None

Errors: None

Context: Callable from task or system context.

Description: This function returns information about the current cache configuration. The fields in
status are described in Table 34.

cache_status_t* status Gets cache status information

cache_status_flags_t flags Reserved for future use, set to 0

Table 34. Fields in cache_status_t structure

Field name Description

instruction_cache_size Size of I-cache, 0 if disabled

data_cache_size Size of D-cache, 0 if disabled

instruction_cache_line_size Number of bytes per instruction cache line

instruction_cache_ways Number of ways in the instruction cache

data_cache_line_size Number of bytes per data cache line

data_cache_ways Number of ways in the data cache

data_cache_enabled 1 if the D-cache is enabled, otherwise 0

instruction_cache_enabled 1 if the I-cache is enabled, otherwise 0

OS21 Virtual memory

7358306 173/226

13 Virtual memory

13.1 Virtual memory overview
When devices or memory are accessed over a bus, the processor uses an address to
specify the location that is to be accessed. If this address relates to an actual physical
memory location or device, it is referred to as a physical address.

Both memory and device registers can generally be accessed in several modes (for
example cached or uncached) and it may also be possible to implement protection
mechanisms on memory regions (such as read-only or read/write). For instance, device
registers are usually accessed without going through the processor’s cache, while accesses
to memory are usually done through the cache to give performance benefits. Consequently,
using physical addresses directly may not be a suitable method for accessing memory or
devices.

An alternative way of accessing memory is to use virtual addresses, where the address
used by the processor represents (or is “mapped to”) a physical address. When using this
method of addressing memory, an address translation mechanism translates virtual
addresses into physical addresses before they go out on the bus. The translation
mechanism may also associate the mode of access with the virtual address.

Often these address translations are created dynamically. When a translation has been
created, the physical address is said to be mapped. If no translation exists to enable a given
physical address to be accessed, that physical address is said to be unmapped. A mapping
where the virtual address is the same as the physical address is called an identity mapping.

There are other benefits of virtual memory (such as paging, dynamic loading and so on), but
these are not relevant to this document.

Note: OS21 does not implement paging, although it may overcommit the address translation
mechanism and implement a fault handler.

Various means of address translation exist, one common implementation being a Memory
Management Unit (MMU).

Address translations are generally implemented by using one or more pages of potentially
various sizes. A page is therefore the unit of address translation. Each page of the
translation requires an entry in the translation mechanism. When the processor references a
virtual address, a lookup is performed in the translation mechanism. If a translation is
present, the virtual address is converted to a physical address and accessed using the
mode(s) given in the translation.

If the translation mechanism is overcommitted, the required translation may not be present
in the address translation mechanism when needed. In this case, a page fault is said to have
occurred, and to overcome this, the operating system has to swap translation entries in and
out of the translation mechanism. This process is called fault handling.

When handling a fault, OS21 attempts to find the required translation in a software table. If a
translation is found, it swaps it into the address mechanism before restarting the instruction
that caused the exception. If no translation is found, a fatal exception occurs and program
execution is stopped.

Virtual memory OS21

174/226 7358306

13.2 Virtual memory support functions
OS21 provides support for virtual memory in a way which hides the actual address
translation mechanism. A very simple virtual memory API is provided.

13.2.1 Creating and deleting mappings

In most cases, an address translation only exists if it is created. This is done using the OS21
function vmem_create(). (An exception to this is when the ST40 toolset sets up PMB; this
appears as static mappings and vmem_create() is not required.)

The function vmem_create() returns the base address of a new virtual address range.
The base address can be used to access the indicated physical address range within the
mode specified. Accesses to the virtual address are translated as they go onto the bus.
When the mapping has been created, no further action is needed.

When an address translation is no longer needed, the mapping can be removed using
vmem_delete().

If a virtual address is accessed for which no translation exists, a fatal exception occurs.

One or more mappings are created automatically by the startup process. These mappings
exist for the lifetime of the system.

13.2.2 Obtaining information about a mapping

Given a virtual address, it is often necessary to obtain certain information from it. For
example, it is a common requirement to obtain the physical address to which the virtual
address is translated. Various devices such as DMA engines require the use of physical
addresses. The function vmem_virt_to_phys() may be used to convert a virtual address
to the corresponding physical address.

In a similar way, vmem_virt_mode() can be used to discover the addressing modes used
when the given virtual address is used.

13.2.3 Other information

To minimize faults, memory chunks can be aligned so they straddle the least page
boundaries, since each page in the translation must be aligned on a boundary of its own
size. OS21 supplies a function vmem_min_page_size() as an aid to this technique.

OS21 Virtual memory

7358306 175/226

13.3 Virtual memory API summary
All the definitions relating to virtual memory can be obtained by including the header file
os21.h, which itself includes the header file vmem.h. See Table 35 for a complete list.

13.4 Virtual memory function definitions

vmem_create
Creates an address translation

Definition: #include <os21.h>
void * vmem_create(
 void * pAddr,
 unsigned int length,
 void * vAddr,
 unsigned int mode);

Arguments:

Returns: The virtual address corresponding to pAddr is returned, or NULL if the mapping could
not be created.

Errors: NULL if:

– the mode is invalid

– the requested virtual address is used already or not available

– the physical address is not available for mapping

– out of memory

– out of virtual address space

– the requested virtual address is not aligned to the physical address

– either the physical or virtual address range wraps

Description: vmem_create() attempts to create a mapping using the given parameters. If
successful the virtual address corresponding to the physical address given is

Table 35. Functions defined in vmem.h

Function Description

vmem_create() Create a mapped address range

vmem_delete() Remove a mapped address range

vmem_min_page_size() Return the minimum page size

vmem_virt_mode() Return the actual mode of a mapped address range

vmem_virt_to_phys() Return the physical address of a mapped address range

pAddr Start address of range to map.

length Length of address range to map.

vAddr Required virtual address or NULL to allow
OS21 to return any available address.

mode Required mode for the mapping.

Virtual memory OS21

176/226 7358306

returned. If the mapping cannot be created, NULL is returned (the virtual address
NULL and a page around it is reserved by OS21).

If the mapping matches a fixed mapping which has been created or inherited by
OS21 at start up, that mapping is used to obtain the required virtual address; in this
case no new mapping is created. These fixed mappings exist for the lifetime of the
system. If no fixed mapping exists to satisfy the request, vmem_create() attempts
to create a new one. OS21 allows any physical address range to be mapped, but in
practice slightly more than the given range may be mapped to implement the
requested mapping. All mappings are aligned to the smallest page boundary below
and above the requested address range.

If the required virtual address is specified (non-NULL), OS21 attempts to place the
mapping accordingly. If it cannot do this, the request fails. The translation mechanism
usually requires the virtual address to be mutually aligned to the physical address, so
the bits that address into the minimum page size must match. For example, if the
minimum page size is 4 Kbytes, the bottom 12 bits of the required virtual address
must match the bottom 12 bits of the given physical address.

If no required virtual address is specified (vAddr is NULL), OS21 finds a suitable
virtual address that fulfils the request, places the mapping and then returns that
virtual address.

OS21 may prohibit various address ranges from being mapped; this causes the
request to fail. An example of this might be the translation mechanism registers. A
similar case to this is where the caller requests exclusive access to the memory: all
requests to map any of the same addresses in future requests will fail.

The mode consists of mode flags which can be logically OR-ed. These are described
in Table 36.

If invalid combinations of mode flags are given, the call fails. Some of the mode flags
are taken as hints. The exact mode used for the mapping may be discovered by
calling vmem_virt_mode() on the returned virtual address range from a successful
vmem_create() call.

If no caching mode is specified, the mapping is created uncached by default. For
uncached mappings, if no write buffer mode is specified, no write buffer is used. If no
permissions are specified, the mapping is created to enable read, write, and execute.

Table 36. vmem_create() mode flags

Flag name Description

VMEM_CREATE_CACHED Accesses to the virtual address range are cached.

VMEM_CREATE_UNCACHED Accesses to the virtual address range are uncached.

VMEM_CREATE_WRITE_BUFFER
Only valid when the virtual address range is
uncached. Write accesses go to a write buffer where
possible.

VMEM_CREATE_NO_WRITE_BUFFER
Only valid when the virtual address range is
uncached. Write accesses do not go to a write buffer.

VMEM_CREATE_READ
Read accesses to the virtual memory range are
allowed.

VMEM_CREATE_WRITE
Write accesses to the virtual memory range are
allowed.

OS21 Virtual memory

7358306 177/226

See also: vmem_delete, vmem_min_page_size, vmem_virt_mode

vmem_delete
Removes an address translation

Definition: #include <os21.h>
int vmem_delete(void * vAddr);

Arguments:

Returns: OS21_SUCCESS on success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if:

– the virtual address does not match the address returned by a previous call to
vmem_create()

– the mapping no longer exists because it has already been deleted

– out of memory

Description: This function attempts to remove a previously created address mapping.

For fixed mappings (which are present for the lifetime of the system), any virtual
address in the mapped range may be given to vmem_delete(). The call returns
OS21_SUCCESS, but the fixed mapping still exists. This allows code to be made
portable. The same vmem_create(), vmem_delete() sequence works regardless
of whether the mapping happened to be fixed or not. The cache, if it exists, is not
purged.

For non-fixed mappings, the virtual address passed to vmem_delete() must be the
address returned by the call to vmem_create() that created the mapping. When it
removes a non-fixed, cached mapping, vmem_delete() also purges the data cache
for that mapping.

See also: vmem_create

VMEM_CREATE_EXECUTE
Execute accesses to the virtual memory range are
allowed.

VMEM_CREATE_LOCK
The translation is locked into the translation
mechanism so that it never has to be swapped in.

VMEM_CREATE_EXCL
Further mappings to the physical address range will
not be allowed.

Table 36. vmem_create() mode flags (continued)

Flag name Description

vAddr Virtual address of translation to remove.

Virtual memory OS21

178/226 7358306

vmem_min_page_size
Returns the minimum page size for a given implementation

Definition: #include <os21.h>
unsigned int vmem_min_page_size(void);

Arguments: None.

Returns: The size of the smallest page size for the implementation in use.

Errors: None.

Description: This function returns to the caller, the smallest page size in use for a given
implementation.

See also: vmem_create

vmem_virt_mode
Returns the translation mode for a given virtual address

Definition: #include <os21.h>
int vmem_virt_mode(void * vAddr, unsigned int * modep);

Arguments:

Returns: OS21_SUCCESS on success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if the virtual address is not in use.

Description: This function returns the translation mode in operation for a given virtual address. The
mode is a combination of flags which are OR-ed together and are described in
Table 37. If the virtual address is not in use, an error is returned.

vAddr Virtual address for which mode information is
to be provided.

modep Pointer to a location which receives the mode
information.

Table 37. vmem_virt_mode() mode flags

Flag name Description

VMEM_CREATE_CACHED Accesses to the virtual address range are cached.

VMEM_CREATE_UNCACHED Accesses to the virtual address range are uncached.

VMEM_CREATE_WRITE_BUFFER
Only valid when the virtual address range is
uncached. Write accesses go to a write buffer where
possible.

VMEM_CREATE_NO_WRITE_BUFFER
Only valid when the virtual address range is
uncached. Write accesses do not go to a write buffer.

VMEM_CREATE_READ
Read accesses to the virtual memory range are
allowed.

VMEM_CREATE_WRITE
Write accesses to the virtual memory range are
allowed.

VMEM_CREATE_EXECUTE
Execute accesses to the virtual memory range are
allowed.

OS21 Virtual memory

7358306 179/226

See also: vmem_create

vmem_virt_to_phys
Returns the physical address to which a virtual address translates

Definition: #include <os21.h>
int vmem_virt_to_phys(
 void * vAddr, void ** pAddr);

Arguments:

Returns: OS21_SUCCESS on success, otherwise OS21_FAILURE.

Errors: OS21_FAILURE if the virtual address is not in use.

Description: This function returns the physical address to which the given virtual address is
translated. If no such translation exists, an error is returned.

See also: vmem_create

VMEM_CREATE_LOCK
The translation is locked into the translation
mechanism so that it never has to be swapped in.

VMEM_CREATE_EXCL
Further mappings to the physical address range will
not be allowed.

Table 37. vmem_virt_mode() mode flags (continued)

Flag name Description

vAddr Virtual address for which a physical address
is required.

pAddr Pointer to a location which receives the
physical address to which the virtual address
is translated.

Exceptions OS21

180/226 7358306

14 Exceptions

An exception is an unexpected event which occurs during the execution of an instruction.
When an exception occurs, the CPU jumps to a different address to handle the exception.
The code that it finds at this address is called an exception handler. Many exceptions are
fatal to program operation and in this case the exception handler can at best output a useful
message before processing terminates. Other exceptions may require some remedial
processing to be carried out before the instruction that caused the exception is re-executed.

When an exception occurs, the CPU stops executing the current task, and starts executing
the exception handler for that exception. This switch is performed completely in hardware,
and so is extremely rapid. Similarly, when the exception handler has completed (and
assuming the exception was not fatal), the CPU resumes execution of the task that was
running when the exception occurred. The task is unaware that it has been interrupted.

Note: It is not just tasks that can generate exceptions. Any code (task, interrupt handler or even
exception handler) can generate an exception.

The exception handler that the CPU executes in response to an exception, is called the first
level exception handler. This piece of code is supplied as part of OS21. The first level
exception handler in OS21 dispatches exception handling to an appropriate function, if it is
an exception reserved for use by OS21, or to the toolset. Reserved exceptions include
debug event exceptions or software traps used by OS21 to implement a context switch.

For non-reserved exceptions, OS21 maintains a list of user supplied functions which are
called sequentially with a description of the exception. The function gives the user an
opportunity to process the exception. For example it may correct a misaligned address
before resuming a task that generated a misaligned access instruction, or it may kill a task
that has generated a fatal exception such as a bus error. The function then returns a code
telling OS21 whether it processed the exception and what it requires OS21 to do next. In the
case of a fixed-up misaligned access, OS21 can resume the task that generated the
exception. In the case of a task terminated due to a bus error, OS21 needs to run another
task.

If no user defined function deals with the exception, then OS21 terminates that application
with a message about the unexpected exception. It is up to the user code to add exception
handling functions to the list of functions that OS21 calls on taking an exception.

OS21 Exceptions

7358306 181/226

14.1 Attaching exception handlers
OS21 defines an exception handler as follows:

typedef int (*exception_handler_t)(exception_t * excepp);

The contents of exception_t are hardware specific, please see the appropriate header
files.

An exception handler must return OS21_SUCCESS if it successfully identified and handled
an exception or OS21_FAILURE if it did not.

int example_exception_handler (exception_t * excepp)
{
 if (i_can_handle_this_exception (excepp))
 {
 ... handle the exception
 return (OS21_SUCCESS);
 }
 return (OS21_FAILURE);

}

An exception handler is attached to the list of exception handlers using the
exception_install() function:

int result;
exception_handler_t my_exception_handler;

result = exception_install (my_exception_handler);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to attach exception handler\n");

}

The handler can be uninstalled as follows:

int result;
exception_handler_t my_exception_handler;

result = exception_uninstall (my_exception_handler);
if (result != OS21_SUCCESS)
{
 printf ("ERROR: Failed to detach exception handler\n");

}

Exceptions OS21

182/226 7358306

14.2 Contexts and exception handler code
Code running under OS21 may run in one of two environments (or contexts). These are
called task context and system context. OS21 exception handlers are run from system
context.

The main difference between system context and task context is that code running in
system context is not allowed to block. Undefined behavior occurs if code running in system
context blocks. As a result of this constraint, code running from system context should never
call an OS21 function that may block. Please refer to the individual function descriptions for
details of the context from which the OS21 functions may be run.

14.3 Exception API summary
All the definitions relating to exceptions can be obtained by including the header file
os21.h, which itself includes the header file exception.h. See Table 38 and Table 39 for
a complete list.

Table 38. Functions defined in exception.h

Function Description

exception_install() Installs an exception handler

exception_uninstall() Uninstalls an exception handler

Table 39. Types defined in exception.h

Type Description

exception_t An abstract exception type

exception_handler_t An exception handler

OS21 Exceptions

7358306 183/226

14.4 Exception function definitions

exception_install
Install an exception handler to the chain of exception handlers
called when OS21 takes an exception

Definition: #include <os21.h>
int exception_install (
 exception_handler_t handler);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE for failure.

Errors: OS21_FAILURE if this handler is already attached, or if there is insufficient memory to
complete the operation.

Context: Callable from task only.

Description: This installs the specified user exception handler into the chain of exception handlers
called by OS21 when an exception is taken. The user handler should return
OS21_SUCCESS if it handled the exception, otherwise it should return
OS21_FAILURE.

See also: exception_uninstall

exception_uninstall
Uninstall an exception handler

Definition: #include <os21.h>
int exception_uninstall(
 exception_handler_t handler);

Arguments:

Returns: Returns OS21_SUCCESS on success, OS21_FAILURE on failure.

Errors: OS21_FAILURE if the handler is not attached to the chain of exception handlers
called when OS21 takes an exception.

Context: Callable from task only.

Description: This removes the exception handler from the chain of exception handlers called when
OS21 takes an exception.

See also: exception_install

exception_handler_t handler The handler function which is called when an
exception is taken.

exception_handler_t The handler to be removed from the chain of
exception handlers called when OS21 takes
an exception.

Profiling OS21

184/226 7358306

15 Profiling

OS21 provides a simple, flexible flat profiler that can be used to analyze the performance
characteristics of a target system. The OS21 profiler allows profiling of a single task, a
single interrupt level or the system as a whole. The profiler can be configured, started and
stopped under program control. This means that it can be setup and started when required,
so that only the situation under investigation is analyzed.

Profiling is the term used to describe the gathering and subsequent analysis of a system’s
performance data. The OS21 profiler gathers information about a system by sampling the
program counter (PC) at regular intervals. These samples are collected into ‘buckets’. A
bucket is a counter associated with an address range. Each time a PC sample is taken, the
profiler determines the bucket to which it belongs, and increments the bucket value
accordingly. These samples are accumulated over a period of time, and this profile data is
then written to a file on the host system.

A host application analyses the profile data in the file and cross-references it with the target
application’s symbol table to produce a report. This report identifies where the processor
spent its time during the period being profiled.

15.1 Initializing the profiler
The OS21 profiler is initialized with profile_init(). This call takes two parameters
which control the resolution of the profiler: the number of instructions in each bucket, and
the PC sampling frequency. Fewer instructions per bucket result in more accurate matching
of symbols to PC locations when the profile report is generated and higher PC sampling
frequencies yield more accurate results over a short profile run. However, higher sampling
frequencies also result in the profiler becoming intrusive. Too high a sampling frequency
may impact the real-time responsiveness of a system. Normally a sampling period of a few
hundred hertz is sufficient to get good results, however the best sampling frequency
depends on the particular application.

Note: Due to hardware limitations, the actual sampling frequency used by the profiler may not be
exactly as requested. The profiler endeavors to achieve a sampling frequency as close as
possible to the frequency requested. The actual frequency used is recorded in the profile
data.

To release the resources used by the profiler, profile_deinit() is used,
profile_init() may be called after a call to profile_deinit() to re-initialize the
profiler. Each time the profiler is initialized, it is set up to use the given parameters, any
information previously gathered is lost.

Note: 1 It is not possible to operate the profiler at frequencies less than the timeslice frequency,
regardless of whether timeslicing is enabled or not.

2 It is not possible to operate the profiler if the application has been built to use the GNU
profiler (gprof).

OS21 Profiling

7358306 185/226

15.2 Starting the profiler
The OS21 profiler is started with one of the following calls:

● profile_start_all(),

● profile_start_task(),

● profile_start_interrupt().

profile_start_all() starts the profiler gathering information for the whole system, that
is, every task and interrupt level. profile_start_task() takes a single task_t pointer
as its parameter and starts the profiler gathering information for just the specified task.
profile_start_interrupt() takes an interrupt level as its parameter and starts the
profiler gathering information for that interrupt level.

Note: 1 The valid range of interrupt levels depends on the target.

2 The profiler relies on the timeslice interrupt to trigger a single sample. Therefore it is not
possible to profile code that is run with interrupts masked to a level equal to or higher than
the level of the timeslice interrupt.

The timeslice interrupt is normally at the highest available interrupt level.

Examples of use:

profile_start_all(); /* Profile the whole system */
profile_start_task(my_task); /* Profile just my_task */
profile_start_interrupt(5); /* Profile just interrupt level 5 */

Any profile information already gathered is lost when the profiler is started.

15.3 Stopping the profiler
The profiler is stopped with profile_stop(). This call takes no parameters, and stops the
profiler from gathering any further PC samples. If a task is deleted before the profiler has
been stopped, the task is removed from the profiler data. If the gathered profile information
is not written to the host before the profiler is restarted or re-initialized following a call to
profile_stop(), the data is lost.

15.4 Writing profile data to the host
The gathered profile data is written to the host using profile_write(). This call takes
the name of a host file as its single parameter. The formatted profile data is written to the
specified file. Once the data is written to the host, a new profile session can be started, if
required, by restarting the profiler.

Profiling OS21

186/226 7358306

15.5 Processing the profile data
The profile files written to the host contain binary profile data. This data must be analyzed in
conjunction with the executable file which generated the data. The Perl tool os21prof.pl is
provided with OS21 to perform this analysis. It is located in the bin directory of the toolset
installation directory and is invoked as follows:

os21prof executable-file profile-file

The following example displays a profile report for the application test.out, from the
profile data held in profile.log.

os21prof test.out profile.log

os21prof produces a formatted report of the amount of time spent in each task, interrupt
level and named program location, as appropriate for the type of profile data that has been
collected.

15.6 Profile data binary file format
This section describes the format of the binary files generated by the profile_write()
function. The format is described using a modified Backus-Naur Form (BNF) notation (see
Software notation on page 8 for more details concerning BNF).

format ::= profile-all
| profile-task
| profile-interrupt

profile-all ::= profile-all-magic
frequency
number-interrupts
number-timer-ticks
number-bucket-arrays
bucket-step-size
number-tasks
task-profile-list
interrupt-profile-list
bucket-array-list

profile-all-magic ::= INT32 (0x0521d23c)

profile-task ::= profile-task-magic
frequency
number-timer-ticks
number-bucket-arrays
bucket-step-size
task-profile
bucket-array-list

profile-task-magic ::= INT32 (0x0521d23e)

OS21 Profiling

7358306 187/226

profile-interrupt ::= profile-interrupt-magic
frequency
interrupt-level
number-timer-ticks
number-bucket-arrays
bucket-step-size
bucket-array-list

profile-interrupt-magic ::= INT32 (0x0521d23d)

task-profile-list ::= task-profile
| task-profile-list task-profile

task-profile ::= handle
counter
task-name

interrupt-profile-list ::= interrupt-profile
| interrupt-profile-list interrupt-profile

interrupt-profile ::= counter

bucket-array-list ::= bucket-array
| bucket-array-list bucket-array

bucket-array ::= number-buckets
number-compressed-buckets
address
bucket-list

bucket-list ::= bucket
| bucket-list bucket

bucket ::= counter

frequency ::= INT32

number-interrupts ::= INT32

number-timer-ticks ::= INT32

number-bucket-arrays ::= INT32

bucket-step-size ::= INT32

number-tasks ::= INT32

interrupt-level ::= INT32

number-buckets ::= INT32

number-compressed-buckets ::= INT32

handle ::= INT32

address ::= INT32

counter ::= INT32

task-name ::= BYTE[16]

where INT32 is a 32-bit integer and BYTE[16] is an array made up of 16 char elements.

Profiling OS21

188/226 7358306

15.7 Profile API summary
All the definitions related to the OS21 profiler can be accessed by including the header file
os21.h, which itself includes the header file profile.h. See Table 40 for a complete list.

15.8 Profile function definitions

profile_deinit
De-initialize the profiler

Definition: #include <os21.h>
int profile_deinit (void);

Arguments: None.

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: Fails if not called from task context, if the profiler has not been initialized or if the
profiler is running.

Context: Callable from task only.

Description: profile_deinit() de-initializes the profiler. It releases memory and all resources
allocated during profile_init().

See also: profile_init

Table 40. Functions defined in profile.h

Function Description

profile_deinit() De-initializes the profiler

profile_init() Initializes the profiler

profile_start_all() Starts profiling the whole system

profile_start_interrupt() Starts profiling a single interrupt level

profile_start_task() Starts profiling a single task

profile_stop() Stops the profiler

profile_write() Writes profile data to the host

OS21 Profiling

7358306 189/226

profile_init
Initialize the profiler

Definition: #include <os21.h>
int profile_init (
 const size_t instrs_per_bucket,
 const int hz);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: Fails if the sampling frequency is invalid (less than the timeslicing frequency), the
number of instructions per bucket is zero, if the OS21 kernel has not been started, if
not called from task context, if the profiler has already been initialized, if the GNU
profiler is present or if out of memory.

Context: Callable from task only.

Description: profile_init() initializes the profiler. It allocates memory for the buckets that are
required to cover the application’s static text section, and gets ready to sample at the
frequency specified. The exact sampling frequency requested may not be possible on
every platform, in which case the profiler selects a frequency as close as possible to
the frequency requested. The frequency used by the profiler is given in the profile
data.

See also: profile_deinit

profile_start_all
Start the profiler collecting system wide profile information

Definition: #include <os21.h>
int profile_start_all (void);

Arguments: None

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: The profiler has not been initialized, is already running, or another profiler call was in
progress at the time this call was made.

Context: Callable from task or system context.

Description: profile_start_all() starts the profiler collecting profile information for the whole
system.

See also: profile_start_interrupt, profile_start_task

instrs_per_bucket The number of instructions included in each
bucket.

hz The desired sampling frequency.

Profiling OS21

190/226 7358306

profile_start_interrupt
Start the profiler collecting profile information for an interrupt
level

Definition: #include <os21.h>
int profile_start_interrupt (
 const int level);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: The profiler has not been initialized, the profiler is already running, an illegal interrupt
level was given, or another profiler call was in progress at the time this call was made.

Context: Callable from task or system context.

Description: profile_start_interrupt() starts the profiler collecting profile information for a
single interrupt level. The legal range for level is dependant on the platform.

See also: profile_start_all, profile_start_task

profile_start_task
Start the profiler collecting profile information for a single task

Definition: #include <os21.h>
int profile_start_task (
 task_t *taskp);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: The profiler has not been initialized, is already running, taskp is NULL and this call
was made from system context, or another profile call was in progress at the time this
call was made.

Context: Callable from task or system context.

Description: profile_start_task() starts the profiler collecting profile information for the
given task. If the task pointer is NULL, then the current task is profiled.

See also: profile_start_all, profile_start_interrupt

level The interrupt level to profile.

taskp The task to profile.

OS21 Profiling

7358306 191/226

profile_stop
Stop the profiler collecting profile information

Definition: #include <os21.h>
int profile_stop (void);

Arguments: None

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: The profiler was not running or another profile call was in progress at the time this call
was made.

Context: Callable from task or system context.

Description: profile_stop() stops the profiler collecting profile information. Once the profiler
has been stopped the collected data can be written to the host with
profile_write().

See also: profile_start_all, profile_start_interrupt, profile_start_task,
profile_write

profile_write
Write the collected profile information to the host

Definition: #include <os21.h>
int profile_write (
 const char *filename);

Arguments:

Returns: Returns OS21_SUCCESS for success, OS21_FAILURE if an error occurs.

Errors: No profile data has been collected, the profiler is still running, the profiler has not
been initialized, the call was made from system context, or a file I/O error occurred.

Context: Callable from task only.

Description: profile_write() writes the collected profile data to the given file on the host
system. The collected profile information can then be analyzed with the
os21prof.pl tool, see Section 15.5: Processing the profile data on page 186.

See also: profile_stop

filename The file on the host to receive the profile data.

Power management OS21

192/226 7358306

16 Power management

OS21 provides a support framework for power management. A number of power levels are
defined, along with a mechanism for transitioning between the levels.

Application software may add (and delete) callbacks to be called whenever a transition to a
new power level occurs, with the new power level passed as a parameter to each callback.
There is also a mechanism for performing operations such as RAM power management and
wake up interrupt validation when in standby power mode.

16.1 Power levels
Three power levels are defined:

The OS21 timers run in the OS21_POWER_LEVEL_ON power level only. The OS21 timers
stop whenever OS21 enters a standby power level and restart when OS21 re-enters the
OS21_POWER_LEVEL_ON power level.

16.2 Power callbacks
OS21 maintains a list of callbacks that are called in a defined order when the system
transitions to one of the standby levels, and in the reverse order when the system transitions
back to the OS21_POWER_LEVEL_ON level. The order is controlled by an order number
passed in when the callback is added. The order number must lie between
OS21_POWER_CALLBACK_ORDER_FIRST and OS21_POWER_CALLBACK_ORDER_LAST,
inclusive. When the callback is called, OS21 passes a parameter to identify the power level
that the system is about to enter.

OS21_POWER_LEVEL_ON This is the normal power level, when the
system is running and fully operational. When
running at this power level, call the function
power_level_set() to transition OS21 to
one of the two standby levels. When
power_level_set() returns, the power
level is once again OS21_POWER_LEVEL_ON.

OS21_POWER_LEVEL_ACTIVE_STANDBY The definition of this level is determined by the
application, but it is normally a standby state
where the processor may sleep, but with
clocks and RAM fully active.

OS21_POWER_LEVEL_PASSIVE_STANDBY The definition of this level is determined by the
application, but it is normally a standby state
where the processor may sleep, with the RAM
put into self refresh, and clocks slowed down
to conserve power.

OS21 Power management

7358306 193/226

16.3 Power pCode
OS21 defines a virtual machine that runs pseudo-code (pCode) to perform operations such
as RAM power management and wake up interrupt validation. The pCode to be run on the
virtual machine is specified by calling power_pcode_set(). The pCode supplied in this
way is run when the machine enters one of the standby power levels.

Where possible, the pCode is run entirely from the caches, so it is possible for it to put the
RAM into self refresh to conserve power. However, care must be taken not to access RAM
when this is done.

When pCode execution is complete, the machine transitions back to the
OS21_POWER_LEVEL_ON power level, calling any callbacks in reverse order.

16.3.1 Virtual machine

The virtual machine has three registers, called A, B and C. These registers can be set to any
value, or various mechanisms may be used to load and store values from memory. Basic
arithmetic and logical operations can be performed on, or between the registers.

The virtual machine has some basic logical status flags, which allow comparison and
optional branching to be performed. Two status flags are supported: EQUAL (BEQ and BNE)
and PASSIVE (BPA and BAC).

16.3.2 pCode definition

The pCode to be run when the machine transitions to one of the standby modes is specified
by calling the power_pcode_set() function. The pCode to be executed is passed to this
function as a simple data array.

At the start of pCode execution, register A is initialized with the input parameter. The final
value of register A is passed back as an output parameter.

When pCode execution is completed, the system is brought out of the standby power level
back to the OS21_POWER_LEVEL_ON power level. The pCode can be used to put RAM into
self refresh, switch off unnecessary clocks and sleep until an interrupt is received. Once the
sleep is over, the pCode can be used to check that the interrupt was valid and then bring the
RAM into active mode.

16.3.3 pCode macros

A number of C macros are provided to make construction of the pCode table easier. The
macros are defined by including the OS21 header file:

#include <os21.h>

Power management OS21

194/226 7358306

Table 41 provides a list of the macros.

Table 41. pCode macros

Macro Name Description

SETx pCode Macros

OS21_POWER_PCODE_SETA(VALUE)

Load register x with VALUE.OS21_POWER_PCODE_SETB(VALUE)

OS21_POWER_PCODE_SETC(VALUE)

LDx pCode Macros

OS21_POWER_PCODE_LDA(ADDRESS)

Load data from ADDRESS to register x. Loads
may be 32, 16 or 8 bits wide. LDx is the same as
LDx32.

OS21_POWER_PCODE_LDB(ADDRESS)

OS21_POWER_PCODE_LDC(ADDRESS)

OS21_POWER_PCODE_LDA32(ADDRESS)

OS21_POWER_PCODE_LDB32(ADDRESS)

OS21_POWER_PCODE_LDC32(ADDRESS)

OS21_POWER_PCODE_LDA16(ADDRESS)

OS21_POWER_PCODE_LDB16(ADDRESS)

OS21_POWER_PCODE_LDC16(ADDRESS)

OS21_POWER_PCODE_LDA8(ADDRESS)

OS21_POWER_PCODE_LDB8(ADDRESS)

OS21_POWER_PCODE_LDC8(ADDRESS)

STx pCode Macros

OS21_POWER_PCODE_STA(ADDRESS)

Store data to ADDRESS from register x. Stores
may be 32, 16 or 8 bits wide. STx is the same as
STx32.

OS21_POWER_PCODE_STB(ADDRESS)

OS21_POWER_PCODE_STC(ADDRESS)

OS21_POWER_PCODE_STA32(ADDRESS)

OS21_POWER_PCODE_STB32(ADDRESS)

OS21_POWER_PCODE_STC32(ADDRESS)

OS21_POWER_PCODE_STA16(ADDRESS)

OS21_POWER_PCODE_STB16(ADDRESS)

OS21_POWER_PCODE_STC16(ADDRESS)

OS21_POWER_PCODE_STA8(ADDRESS)

OS21_POWER_PCODE_STB8(ADDRESS)

OS21_POWER_PCODE_STC8(ADDRESS)

OS21 Power management

7358306 195/226

MOVxy pCode Macros

OS21_POWER_PCODE_MOVAB

Copy the contents of register x to register y.

OS21_POWER_PCODE_MOVAC

OS21_POWER_PCODE_MOVBA

OS21_POWER_PCODE_MOVBC

OS21_POWER_PCODE_MOVCA

OS21_POWER_PCODE_MOVCB

NOTx pCode Macros

OS21_POWER_PCODE_NOTA

Perform a logical NOT operation on register x.OS21_POWER_PCODE_NOTB

OS21_POWER_PCODE_NOTC

ANDx(VALUE) pCode Macros

OS21_POWER_PCODE_ANDA(VALUE)
Perform a logical AND between register x and
VALUE. The macro stores the result in register x.

OS21_POWER_PCODE_ANDB(VALUE)

OS21_POWER_PCODE_ANDC(VALUE)

ANDxy pCode Macros

OS21_POWER_PCODE_ANDAB

Perform a logical AND between register x and
register y. The macro stores the result in register
x.

OS21_POWER_PCODE_ANDAC

OS21_POWER_PCODE_ANDBA

OS21_POWER_PCODE_ANDBC

OS21_POWER_PCODE_ANDCA

OS21_POWER_PCODE_ANDCB

ORx(VALUE) pCode Macros

OS21_POWER_PCODE_ORA(VALUE)
Perform a logical OR between register x and
VALUE. The macro stores the result in register x.

OS21_POWER_PCODE_ORB(VALUE)

OS21_POWER_PCODE_ORC(VALUE)

ORxy pCode Macros

OS21_POWER_PCODE_ORAB

Perform a logical OR between register x and
register y. The macro stores the result in register
x.

OS21_POWER_PCODE_ORAC

OS21_POWER_PCODE_ORBA

OS21_POWER_PCODE_ORBC

OS21_POWER_PCODE_ORCA

OS21_POWER_PCODE_ORCB

Table 41. pCode macros (continued)

Macro Name Description

Power management OS21

196/226 7358306

ADDx(VALUE) pCode Macros

OS21_POWER_PCODE_ADDA(VALUE)
Perform an unsigned ADD between register x
and VALUE. The macro stores the result in
register x.

OS21_POWER_PCODE_ADDB(VALUE)

OS21_POWER_PCODE_ADDC(VALUE)

ADDxy pCode Macros

OS21_POWER_PCODE_ADDAB

Perform an unsigned ADD between register x
and register y. The macro stores the result in
register x.

OS21_POWER_PCODE_ADDAC

OS21_POWER_PCODE_ADDBA

OS21_POWER_PCODE_ADDBC

OS21_POWER_PCODE_ADDCA

OS21_POWER_PCODE_ADDCB

SUBx(VALUE) pCode Macros

OS21_POWER_PCODE_SUBA(VALUE)
VALUE is subtracted (unsigned) from register x.
The macro stores the result in register x.

OS21_POWER_PCODE_SUBB(VALUE)

OS21_POWER_PCODE_SUBC(VALUE)

SUBxy pCode Macros

OS21_POWER_PCODE_SUBAB

Register y is subtracted (unsigned) from register
x. The macro stores the result in register x.

OS21_POWER_PCODE_SUBAC

OS21_POWER_PCODE_SUBBA

OS21_POWER_PCODE_SUBBC

OS21_POWER_PCODE_SUBCA

OS21_POWER_PCODE_SUBCB

CMPx(VALUE) pCode Macros

OS21_POWER_PCODE_CMPA(VALUE) Register x is COMPARED (unsigned) with
VALUE, and the status flags are updated. The
status flags can then be used to perform
conditional jump operations.

OS21_POWER_PCODE_CMPB(VALUE)

OS21_POWER_PCODE_CMPC(VALUE)

CMPxy pCode Macros

OS21_POWER_PCODE_CMPAB

Register x is COMPARED (unsigned) with
register y, and the status flags are updated. The
status flags can then be used to perform
conditional jump operations.

OS21_POWER_PCODE_CMPAC

OS21_POWER_PCODE_CMPBA

OS21_POWER_PCODE_CMPBC

OS21_POWER_PCODE_CMPCA

OS21_POWER_PCODE_CMPCB

Table 41. pCode macros (continued)

Macro Name Description

OS21 Power management

7358306 197/226

Bxx pCode Macros

OS21_POWER_PCODE_BRA(LABELNUM) Branch always to LABELNUM.

OS21_POWER_PCODE_BEQ(LABELNUM)
Branch to LABELNUM if the EQUAL status flag is
set.

OS21_POWER_PCODE_BNE(LABELNUM)
Branch to LABELNUM if the EQUAL status flag is
not set.

OS21_POWER_PCODE_BAC(LABELNUM)
Branch to LABELNUM if the ACTIVE STANDBY
status flag is set.

OS21_POWER_PCODE_BPA(LABELNUM)
Branch toLABELNUM if the PASSIVE STANDBY
status flag is set.

LIAx pCode Macros

OS21_POWER_PCODE_LIAB(OFFSET)

Load the data at the address (A + OFFSET) into
register x. Loads may be 32, 16 or 8 bits wide.
LIAx is the same as LIAx32.

OS21_POWER_PCODE_LIAC(OFFSET)

OS21_POWER_PCODE_LIAB32(OFFSET)

OS21_POWER_PCODE_LIAC32(OFFSET)

OS21_POWER_PCODE_LIAB16(OFFSET)

OS21_POWER_PCODE_LIAC16(OFFSET)

OS21_POWER_PCODE_LIAB8(OFFSET)

OS21_POWER_PCODE_LIAC8(OFFSET)

SIAx pCode Macros

OS21_POWER_PCODE_SIAB(OFFSET)

Store register x to the address (A + OFFSET).
Stores may be 32, 16 or 8 bits wide. SIAx is the
same as SIAx32.

OS21_POWER_PCODE_SIAC(OFFSET)

OS21_POWER_PCODE_SIAB32(OFFSET)

OS21_POWER_PCODE_SIAC32(OFFSET)

OS21_POWER_PCODE_SIAB16(OFFSET)

OS21_POWER_PCODE_SIAC16(OFFSET)

OS21_POWER_PCODE_SIAB8(OFFSET)

OS21_POWER_PCODE_SIAC8(OFFSET)

LAMx pCode Macros

OS21_POWER_PCODE_LAMA(MEMORYNUM)

Load register x with the address of MEMORYNUM.OS21_POWER_PCODE_LAMB(MEMORYNUM)

OS21_POWER_PCODE_LAMC(MEMORYNUM)

Table 41. pCode macros (continued)

Macro Name Description

Power management OS21

198/226 7358306

LMx pCode Macros

OS21_POWER_PCODE_LMA(MEMORYNUM)

Load register x from MEMORYNUM. Loads may be
32, 16 or 8 bits wide. LMx is the same as LMx32.

OS21_POWER_PCODE_LMB(MEMORYNUM)

OS21_POWER_PCODE_LMC(MEMORYNUM)

OS21_POWER_PCODE_LMA32(MEMORYNUM)

OS21_POWER_PCODE_LMB32(MEMORYNUM)

OS21_POWER_PCODE_LMC32(MEMORYNUM)

OS21_POWER_PCODE_LMA16(MEMORYNUM)

OS21_POWER_PCODE_LMB16(MEMORYNUM)

OS21_POWER_PCODE_LMC16(MEMORYNUM)

OS21_POWER_PCODE_LMA8(MEMORYNUM)

OS21_POWER_PCODE_LMB8(MEMORYNUM)

OS21_POWER_PCODE_LMC8(MEMORYNUM)

SMx pCode Macros

OS21_POWER_PCODE_SMA(MEMORYNUM)

Store data from register x to MEMORYNUM. Stores
may be 32, 16 or 8 bits wide. SMx is the same as
SMx32.

OS21_POWER_PCODE_SMB(MEMORYNUM)

OS21_POWER_PCODE_SMC(MEMORYNUM)

OS21_POWER_PCODE_SMA32(MEMORYNUM)

OS21_POWER_PCODE_SMB32(MEMORYNUM)

OS21_POWER_PCODE_SMC32(MEMORYNUM)

OS21_POWER_PCODE_SMA16(MEMORYNUM)

OS21_POWER_PCODE_SMB16(MEMORYNUM)

OS21_POWER_PCODE_SMC16(MEMORYNUM)

OS21_POWER_PCODE_SMA8(MEMORYNUM)

OS21_POWER_PCODE_SMB8(MEMORYNUM)

OS21_POWER_PCODE_SMC8(MEMORYNUM)

Control pCode Macros

OS21_POWER_PCODE_SLEEP
Cause the CPU to sleep until the next interrupt
arrives.

OS21_POWER_PCODE_EXIT
Terminate execution of pCode. The virtual
machine returns the value of the A register to the
calling power_level_set() function.

Table 41. pCode macros (continued)

Macro Name Description

OS21 Power management

7358306 199/226

16.3.4 pCode example

The following example is a pCode table that can be used on the ST40 of the STi7111 chip to
put the RAM into self refresh and sleep until the next interrupt arrives. The example uses the
OS21 timeslice timer to wake up the SLEEP. Normally this would be an interrupt from
something like an infra-red remote control.

static pcode_data_t pcode1[] =
{
 /*
 * Skip if we are going into ACTIVE_STANDBY
 */
 OS21_POWER_PCODE_BAC(3),

 /*
 * Send the LMI into self refresh
 */
 OS21_POWER_PCODE_LDA(0xFE001198),/* SYS_CFG38 */
 OS21_POWER_PCODE_ORA(1 << 20),
 OS21_POWER_PCODE_STA(0xFE001198),

 /*
 * Wait for ACK
 */
 OS21_POWER_PCODE_LABEL(1),
 OS21_POWER_PCODE_LDA(0xFE001018),/* SYS_STATUS4 */
 OS21_POWER_PCODE_ANDA(1 << 0),
 OS21_POWER_PCODE_CMPA(1 << 0),
 OS21_POWER_PCODE_BNE(1),

 /*
 * Disable the analogue input buffer of the pads.
 */
 OS21_POWER_PCODE_LDA(0xFE001130),/* SYS_CFG12 */
 OS21_POWER_PCODE_ORA(1 << 10),
 OS21_POWER_PCODE_STA(0xFE001130),

 /*
 * Power down LMI PLL
 */
 OS21_POWER_PCODE_LDA(0xFE00112C),/* SYS_CFG11 */

Label pCode Macros

OS21_POWER_PCODE_LABEL(LABELNUM)
Insert a label at the point of insertion, identified
by LABELNUM (which must be unique).

OS21_POWER_PCODE_MEMORY(MEMORYNUM,
VALUE)

Reserve a word of memory at the point of
insertion, identified by MEMORYNUM (which must
be unique). The word is initialized with VALUE.

Table 41. pCode macros (continued)

Macro Name Description

Power management OS21

200/226 7358306

 OS21_POWER_PCODE_ORA(1 << 12),
 OS21_POWER_PCODE_STA(0xFE00112C),

 /*
 * Wait for ACK
 */
 OS21_POWER_PCODE_LABEL(2),
 OS21_POWER_PCODE_LDA(0xFE001014),/* SYS_STATUS3 */
 OS21_POWER_PCODE_ANDA(1 << 0),
 OS21_POWER_PCODE_CMPA(1 << 0),
 OS21_POWER_PCODE_BNE(2),

 /*
 * Global power down
 */
 OS21_POWER_PCODE_LDA(0xFE00111C),/* SYS_CFG7 */
 OS21_POWER_PCODE_ORA(1 << 23),
 OS21_POWER_PCODE_STA(0xFE00111C),

 OS21_POWER_PCODE_LABEL(3),

 /*
 * Start the timeslice timer - to interrupt and wake us up....
 */
 OS21_POWER_PCODE_LDA8(0xFFD80004),
 OS21_POWER_PCODE_ORA(0x2),
 OS21_POWER_PCODE_STA8(0xFFD80004),

 /*
 * Sleep
 */
 OS21_POWER_PCODE_SLEEP,

 /*
 * Jump to the RAM wakeup code if we are coming out of
 * PASSIVE_STANDBY, otherwise we can exit now.
 */
 OS21_POWER_PCODE_BPA(4),

 /*
 * Set exit argument and exit.
 */
 OS21_POWER_PCODE_SETA(1),
 OS21_POWER_PCODE_EXIT,

 OS21_POWER_PCODE_LABEL (4),
 /*
 * Enable the analogue input buffers of the pads.
 */
 OS21_POWER_PCODE_LDA(0xFE001130),/* SYS_CFG12 */
 OS21_POWER_PCODE_ANDA(~(1 << 10)),
 OS21_POWER_PCODE_STA(0xFE001130),

OS21 Power management

7358306 201/226

 /*
 * Power on LMI PLL
 */
 OS21_POWER_PCODE_LDA(0xFE00112C),/* SYS_CFG11 */
 OS21_POWER_PCODE_ANDA(~(1 << 12)),
 OS21_POWER_PCODE_STA(0xFE00112C),

 /*
 * Wait for ACK
 */
 OS21_POWER_PCODE_LABEL(5),
 OS21_POWER_PCODE_LDA(0xFE001014),/* SYS_STATUS3 */
 OS21_POWER_PCODE_ANDA(1 << 0),
 OS21_POWER_PCODE_CMPA(1 << 0),
 OS21_POWER_PCODE_BEQ(5),

 /*
 * Exit LMI from self refresh
 */
 OS21_POWER_PCODE_LDA(0xFE001198),/* SYS_CFG38 */
 OS21_POWER_PCODE_ANDA(~(1 << 20)),
 OS21_POWER_PCODE_STA(0xFE001198),

 /*
 * Wait for ACK
 */
 OS21_POWER_PCODE_LABEL(6),
 OS21_POWER_PCODE_LDA(0xFE001018),/* SYS_STATUS4 */
 OS21_POWER_PCODE_ANDA(1 << 0),
 OS21_POWER_PCODE_CMPA(1 << 0),
 OS21_POWER_PCODE_BEQ(6),

 OS21_POWER_PCODE_SETA(2),
 OS21_POWER_PCODE_EXIT
};

16.4 Power management API summary
All definitions relating to the power management API are declared by including the header
file os21.h which itself includes the header file power.h. See Table 42 for the functions
and Table 43 for the types defined by power.h .

Table 42. Functions defined in power.h

Function Description

power_callback_add() Function to add a power callback

power_callback_delete() Function to remove a power callback

power_level_set() Function to set the current power level

power_pcode_set() Function to set pCode to be used

Power management OS21

202/226 7358306

16.5 Power management function definitions

power_callback_add
Add a power management callback

Definition: #include <os21.h>

int power_callback_add(
power_callback_fn_t fn,
unsigned int order);

Arguments:

Returns: OS21_SUCCESS for success.

OS21_FAILURE on error.

Errors: fn is NULL.

fn already added.

Order out of range.

Not enough memory.

Order is OS21_POWER_CALLBACK_ORDER_FIRST and a callback has already been
added with the same order.

Order is OS21_POWER_CALLBACK_ORDER_LAST and a callback has already been
added with the same order.

Context: Callable from task context.

Description: Adds a function to be called to the list of functions to be called when OS21 transitions
from one power mode to another. Functions are called in ascending order when going
to a standby power mode, in reverse mode when coming from a standby power mode.
The order must be in the range OS21_POWER_CALLBACK_ORDER_FIRST to
OS21_POWER_CALLBACK_ORDER_LAST inclusive and only one function can be given
the order OS21_POWER_CALLBACK_ORDER_FIRST, and only one function can be
given the order OS21_POWER_CALLBACK_ORDER_LAST.

See Also: power_level_set()

Table 43. Types defined in power.h

Type Description

power_callback_fn_t A power callback function.

pcode_data_t A pseudo-code (pcode) instruction or data.

power_callback_fn_t fn Function to add.

unsigned int order Number specifying order in call chain.

OS21 Power management

7358306 203/226

power_callback_delete
Remove a power management callback

Definition: #include <os21.h>

int power_callback_delete(power_callback_fn_t fn);

Arguments:

Returns: OS21_SUCCESS for success.

OS21_FAILURE on error.

Errors: fn is NULL.

fn not in list.

Context: Callable from task context.

Description: Removes a function from the list of functions to be called when OS21 transitions from
one power mode to another.

See Also: power_level_set()

power_level_set
Set the power level

Definition: #include <os21.h>

int power_level_set(
unsigned int level,
unsigned int pCodeArgIn,
unsigned int * pCodeArgOutp);

Arguments:

Returns: OS21_SUCCESS for success.

OS21_FAILURE on error.

Errors: The function is called from system context.

Level is not one of OS21_POWER_LEVEL_ACTIVE_STANDBY or
OS21_POWER_LEVEL_PASSIVE_STANDBY.

Level is OS21_POWER_LEVEL_PASSIVE_STANDBY, but the caches are disabled, or
there are no caches.

A power callback returns OS21_FAILURE when called.

Context: Callable from task context.

power_callback_fn_t fn Function to remove.

unsigned int level Power level to set.

unsigned int pCodeArgIn Argument to pass to pCode, placed in register
A.

unsigned int * pCodeArgOutp Pointer to location to place pCode result,
taken from register A.

Power management OS21

204/226 7358306

Description: power_level_set() causes the system to transition to the given level. All the
power callbacks are called in order, and then the set pCode (if any) is run, with
ACTIVE and PASSIVE status flags set to correspond with the selected level. The
system then transitions back to OS21_POWER_LEVEL_ON, calling the power level
callbacks in reverse order before returning.

power_level_set() is always called from the power level
OS21_POWER_LEVEL_ON, and the system is back in OS21_POWER_LEVEL_ON when
it returns. Passing OS21_POWER_LEVEL_ON as the level is therefore an error; the
level must always be one of OS21_POWER_LEVEL_ACTIVE_STANDBY or
OS21_POWER_LEVEL_PASSIVE_STANDBY.

It is an error to specify OS21_POWER_LEVEL_PASSIVE_STANDBY if there are no
caches, or the caches are disabled. This is because it is assumed that the RAM will
be put into self refresh, and therefore the pCode (if supplied) must be run entirely
from cache. OS21 loads the pCode and its pCode interpreter into the cache before
executing it, so no action is required by the user in this respect.

The value passed into pCodeArgIn is placed in the register A before pCode
execution starts. When pCode execution is complete, the contents of the register A
are copied to the location specified by pCodeArgOutp, providing that it is non-NULL.

The PASSIVE and ACTIVE flags (see the pCode instructions BPA, BAC) are set up in
line with the specified power level. This allows the pCode to execute code
conditionally based on the power level being entered.

For example, if the power level is OS21_POWER_LEVEL_ACTIVE_STANDBY, the
pCode can use the flags to skip pCode that puts the RAM into self refresh.

The pCode to be executed (if any) is supplied by the user by calling the
power_pcode_set() function.

If a callback fails during the transition to the specified power level, then the other
callbacks called up to that point are called in reverse order with a parameter of
OS21_POWER_LEVEL_ON before returning with a failure.

During a call to power_level_set(), the OS21 timers are stopped and restarted
before the call completes. Therefore, on return from a call to power_level_set(),
it may be necessary to resynchronize with the real time.

See Also: power_callback_add(), power_callback_delete(), power_pcode_set()

OS21 Power management

7358306 205/226

power_pcode_set
Set the pcode to be executed

Definition: #include <os21.h>

int power_pcode_set(
pcode_data_t * pcode,
unsigned int sizePCode);

Arguments:

Returns: OS21_SUCCESS for success.

OS21_FAILURE on error.

Errors: pcode is NULL.

sizePCode is 0.

sizePCode is not a multiple of sizeof(pcode_data_t).

Not enough memory.

Validation checks on the pCode fail.

Context: Callable from task context.

Description: power_pcode_set() installs pcode as the pCode to be executed from
power_level_set(). It performs a number of basic checks on the pCode, and fails
if an error is found.

Errors include invalid instructions, missing labels, and a missing exit instruction. Note
that not all pCode errors can be detected - it is possible to write pCode that can hang,
crash, or produce undefined results.

See Also: power_level_set()

pcode_data_t * pcode Pointer to the pCode, which is an array of
pcode_data_t objects.

unsigned int sizePCode The size of the pcode array in bytes.

Power management OS21

206/226 7358306

16.6 Interrupt management in pCode
When pCode is being run, interrupt handling is disabled. Normal interrupt handling is
resumed only when the system is brought back into the OS21_POWER_LEVEL_ON state. At
this point, any pending interrupts are dispatched to the appropriate handler in the usual way.

The pCode sleep instruction, OS21_POWER_PCODE_SLEEP, waits for an interrupt to occur,
but no handling of the interrupt takes place.

It is possible to poll for interrupts from within pCode, and to deal with them, but take care not
to alter the state or the hardware being maintained by OS21 or other drivers. Failure to do
this may result in undefined behavior.

16.7 Exceptions in pCode
No exception or fault handling is provided when pCode is running. It is up to the user to
ensure that pCode is correct and does not cause any exceptions.

OS21 Board support package

7358306 207/226

17 Board support package

17.1 Board support package overview
OS21 Board Support Packages (BSPs) are supplied for all supported platforms, both as
pre-built libraries and as accompanying sources. A BSP consists of various board, chip and
CPU dependent declarations as well as some generic configuration options. The BSP
declarations provide the following:

● allow customization of OS21

● describe the interrupt subsystem to OS21

● describe any required MMU mappings to OS21

● provide "hooks" to allow the user to insert code to be executed at certain key OS21
events

To achieve this, the BSP exports the following to OS21:

● variables that determine how OS21 operates

● functions, which OS21 can call on key events

● a description of the interrupt system, which is made up of tables and declarations of
interrupt names for these tables

● an optional list of MMU mappings in the form of a mappings table

Many of the functions and variables in OS21 are defined in the supplied BSPs as “weak”,
which means they can easily be overridden in user code.

The source code for each BSP is partitioned into four sections:

● a source file for generic configuration options and hook functions

● a source file for the CPU

● a source file for the chip

● a source file for the board

Combining these four source files provides a complete BSP for a given target.

17.2 BSP data
The BSP can export data to OS21, allowing a degree of customization. The following data is
exported to OS21 on all targets:

● timeslice frequency

● board crystal frequency

● callback enable flag

In addition to these, there may also be other target-specific data items. Target-specific data
items, where they exist, are described in the appropriate OS21 manual for the target.

Board support package OS21

208/226 7358306

OS21 timeslice frequency

unsigned int bsp_timeslice_frequency_hz;

This variable informs OS21 of the desired timeslice frequency in hertz. It is the number of
times per second that a timeslice occurs when timeslicing is switched on.

OS21 panics if you try to set this to either an invalid or an unrealistic value, that is, less than
1 or greater than 500. The default value is 50.

This value is weakly defined and may be changed in any of the following ways.

● Change the value in the supplied source file (src/os21/bsp/bsp.c), recompile the
BSP and relink.

● Change the value in user code before initializing and starting the OS21 kernel. For
example:

extern unsigned int bsp_timeslice_frequency_hz;
bsp_timeslice_frequency_hz = 100;

● Override the weak definition by inserting your own declaration in user code. For
example:

unsigned int bsp_timeslice_frequency_hz = 25;

Timeslicing is switched on or off using the kernel_timeslice() function. See
Section 2.3 on page 18 for information about this function.

Board crystal frequency

unsigned int bsp_xtal_frequency_hz;

This variable informs OS21 of the frequency (in hertz) of the on-board crystal. This value is
not used by OS21 directly, but will be used elsewhere in the BSP when determining the
input clock frequency. Usually the BSP function
bsp_timer_input_clock_frequency_hz() makes use of this value.

This value is weakly defined and may be changed in any of the following ways.

● Change the value in the supplied source file (usually
src/platform/bsp/board_platform.c, where platform is the name of the
reference platform), recompile the BSP and relink.

● Change the value in user code before initializing and starting the OS21 kernel. For
example:

extern unsigned int bsp_xtal_frequency_hz;
bsp_xtal_frequency_hz = 27000000;/* 27 MHz clock */

● Override the weak definition by inserting your own declaration in user code. For
example:

unsigned int bsp_xtal_frequency_hz = 33000000;/* 33 MHz clock */

See Section 17.3 on page 209 for details of the
bsp_timer_input_clock_frequency_hz() function.

OS21 Board support package

7358306 209/226

OS21 callbacks enabled

unsigned int bsp_callbacks_enabled;

This variable informs OS21 whether to enable the callback API. By default the callback API
is enabled, but a small performance benefit can be obtained by switching it off if it is not
required. A zero value switches callbacks off, a non-zero value switches callbacks on.

This value is weakly defined and may be changed in any of the following ways.

● Change the value in the supplied source file (src/os21/bsp/bsp.c), recompile the
BSP and relink.

● Change the value in user code before initializing and starting the OS21 kernel. For
example:

extern unsigned int bsp_callbacks_enabled;
bsp_callbacks_enabled = 0;

● Override the weak definition by inserting your own declaration in user code. For
example:

unsigned int bsp_callbacks_enabled = 0;

Full details of the callback API can be found in Chapter 5: Callbacks on page 89 of this
manual.

17.3 BSP functions summary
The BSP also exports some functions as part of the BSP. These are “hooks” from OS21 into
user defined functions. This allows the user to insert code at key OS21 events. The
functions listed in Table 44 are exported to OS21 on all targets:

There may also be target specific functions. If these exist, they are described in the
appropriate OS21 manual for that target.

Table 44. Functions exported by the board support package

Function Description

bsp_timer_input_clock_frequency_hz Return the frequency of the input clock.

bsp_initialize The OS21 initialize hook function.

bsp_start The OS21 start hook function.

bsp_exp_handler The OS21 exception hook function.

bsp_panic The OS21 panic hook function.

bsp_shutdown The OS21 shutdown hook function.

bsp_terminate The OS21 terminate hook function.

bsp_board_type Returns the board type.

bsp_chip_type Returns the chip type.

bsp_cpu_type Returns the CPU type.

Board support package OS21

210/226 7358306

17.4 BSP function definitions

bsp_timer_input_clock_frequency_hz
OS21 input clock frequency

Definition: #include <os21.h>
unsigned int bsp_timer_input_clock_frequency_hz (void)

Arguments: None.

Returns: The input clock frequency.

Description: OS21 calls this function to discover the input clock frequency to the timer units. The
function may either return the frequency directly, or it may read a series of
configuration registers to determine the value. For example, it may read CLOCKGEN
registers and use these values with the board crystal frequency
(bsp_xtal_frequency_hz) to calculate the actual timer input clock frequency.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file (usually
src/platform/bsp/chip_variant.c, where variant is the name of the
SoC device), recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

unsigned int bsp_timer_input_clock_frequency_hz (void)
{

return (32768);/* Directly return 32.768 kHz clock */
}

The implementation of this function may make use of the
bsp_xtal_frequency_hz value which is normally defined in the BSP. More
information about this variable is given in Section 17.2 on page 207.

OS21 Board support package

7358306 211/226

bsp_initialize
OS21 initialize hook

Definition: #include <os21.h>
void bsp_initialize (void);

Arguments: None.

Returns: None.

Description: OS21 calls this function prior to initialization in kernel_intialize(). It provides
users with the facility to add code to be executed just prior to kernel initialization. It
provides a hook where users can change aspects of kernel behavior, and perform
board specific initialization.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file
(src/os21/bsp/bsp.c), recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_initialize (void)
{

printf ("OS21 initializing\n");
}

bsp_start
OS21 start hook

Definition: #include <os21.h>
void bsp_start (void);

Arguments: None.

Returns: None.

Description: OS21 calls this function following kernel startup in kernel_start(). It provides
users with the facility to add code to be executed just after kernel startup. It provides a
hook where users can add final board initialization code.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file
(src/os21/bsp/bsp.c), recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_start (void)
{

printf ("OS21 starting\n");
}

Board support package OS21

212/226 7358306

bsp_exp_handler
OS21 exception hook

Definition: #include <os21.h>
void bsp_exp_handler (unsigned int exp_code);

Arguments:

Returns: None.

Description: OS21 calls this function whenever it takes an unexpected exception. The function
receives a single parameter describing the exception that occurred. When this routine
returns, the kernel announces the exception to the console and enters a tight spin
with interrupts disabled.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file
(src/os21/bsp/bsp.c), recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_exp_handler (unsigned int exp_code)
{

printf("OS21 took unexpected exception: 0x%x\n",
exp_code);

}

exp_code A code that identifies the exception that has
occurred.

OS21 Board support package

7358306 213/226

bsp_panic
OS21 panic hook

Definition: #include <os21.h>
void bsp_panic (const char * message);

Arguments:

Returns: None.

Description: OS21 calls this function whenever it detects an internal error and panics. The function
receives a single parameter, a pointer to a character string describing the panic that
occurred. When this routine returns, the kernel announces the panic to the console
and enters a tight spin with interrupts disabled.

This function is weakly defined and may be changed in a number of ways.

– Change the implementation in the supplied source file (src/os21/bsp/bsp.c)
and recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_panic (const char * message)
{

printf ("OS21 about to panic: %s\n", message);
}

bsp_shutdown
OS21 shutdown hook

Definition: #include <os21.h>
void bsp_shutdown (void);

Arguments: None.

Returns: None.

Description: OS21 calls this function when it shuts down as a result of exit() being called. When
this routine returns, the kernel proceeds with its shutdown sequence, and finally
enters a tight spin with interrupts disabled.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file
(src/os21/bsp/bsp.c), recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_shutdown (void)
{

printf ("OS21 shutting down\n");
}

message Message to the user to indicate the nature of the
panic.

Board support package OS21

214/226 7358306

bsp_terminate
OS21 terminate hook

Definition: #include <os21.h>
void bsp_terminate (void);

Arguments: None.

Returns: None.

Description: OS21 calls this function when it takes an illegal exception, or detects an internal error,
and it is not connected to a debugger. If this function returns, the kernel enters a tight
spin with interrupts disabled.

This function is weakly defined and may be changed in any of the following ways.

– Change the implementation in the supplied source file (src/os21/bsp/bsp.c)
and recompile the BSP and relink.

– Override the weak function definition with your own implementation. For
example:

void bsp_terminate (void)
{

printf ("OS21 terminating\n");
}

bsp_board_type
Return board type

Definition: #include <os21.h>
const char * bsp_board_type (void);

Arguments: None.

Returns: A string describing the board type.

Description: This function returns a string describing the board type. This is the value returned by
a call to kernel_board ().

The function is not weakly defined. The string may be changed by changing the
source file (usually src/platform/bsp/board_platform.c, where platform is
the name of the reference platform), recompiling the BSP and relinking.

OS21 Board support package

7358306 215/226

bsp_chip_type
Return chip type

Definition: #include <os21.h>
const char * bsp_chip_type (void);

Arguments: None.

Returns: A string describing the chip type.

Description: This function returns a string describing the chip type. This is the value returned by a
call to kernel_chip().

The function is not weakly defined. The string may be changed by changing the
source file (usually src/platform/bsp/chip_variant.c, where variant is
the name of the SoC device), recompiling the BSP and relinking.

bsp_cpu_type
Return CPU type

Definition: #include <os21.h>
const char * bsp_cpu_type (void);

Arguments: None.

Returns: A string describing the CPU type.

Description: This function returns a string describing the CPU type. This will be the value returned
by a call to kernel_cpu().

The function is not weakly defined. The string may be changed by changing the
source file (usually src/platform/bsp/cpu_variant.c, where variant is the
name of the SoC device), recompiling the BSP and relinking.

17.5 BSP interrupt system description
The BSP is responsible for describing the interrupt system to OS21. The BSP interrupt
system description and the platform specific interrupt code together implements OS21's
generic interrupt API.

The BSP interrupt system description is platform specific. Full details are provided in the
OS21 manual for the given target.

Board support package OS21

216/226 7358306

17.6 BSP MMU mappings description
When OS21 starts, it inherits the MMU state and mappings constructed by the toolset. After
any pre-existing mappings have been added to the OS21 page tables, additional mappings
can be created by placing a mapping table in the BSP. The use of this table is optional. Any
mappings in this table are created as fixed mappings and exist for the lifetime of the system.
If OS21 cannot create any of these mappings (this is normally because they interfere with
previous mappings made by the toolset) then the OS21 startup fails.

17.6.1 Mapping table

The mapping table in the BSP is a list of mapping_table_entry_t types. A
mapping_table_entry_t is defined as follows:

typedef struct mapping_table_entry_s
{
 unsigned int pAddr;
 unsigned int vAddr;
 unsigned int size;
 unsigned int mode;

} mapping_table_entry_t;

pAddr is the physical start address of the mapping. vAddr is the virtual start address of the
mapping. size is the size of the mapping, and mode is the mode of the mapping, made up
by logically ORing a series of vmem_create() flags. For details of these flags see the
vmem_create() function description (see vmem_create on page 175).

mapping_table_entry_t bsp_mapping_table [] describes the list of mappings to
be created by OS21 upon startup. For example:

mapping_table_entry_t bsp_mapping_table [] =
{
 { 0x00000000, 0x00000000, 0x08000000, VMEM_CREATE_READ |
VMEM_CREATE_WRITE | VMEM_CREATE_EXECUTE | VMEM_CREATE_CACHED },
 { 0x10000000, 0x10000000, 0x00230000, VMEM_CREATE_READ |
VMEM_CREATE_WRITE | VMEM_CREATE_UNCACHED |
VMEM_CREATE_NO_WRITE_BUFFER },
 { 0x30000000, 0x30000000, 0x02000000, VMEM_CREATE_READ |
VMEM_CREATE_WRITE | VMEM_CREATE_EXECUTE | VMEM_CREATE_CACHED },
 { 0x90000000, 0x90000000, 0x10000000, VMEM_CREATE_READ |
VMEM_CREATE_WRITE | VMEM_CREATE_UNCACHED |
VMEM_CREATE_NO_WRITE_BUFFER }
};

OS21 Board support package

7358306 217/226

17.7 Level 2 cache support
OS21 can drive a level 2 cache controller if one is present and if its base address is provided
to OS21. This is done using the BSP variable bsp_l2cache_base_address.

For example:

void * bsp_l2cache_base_address = 0xFD130000;

If the variable is not defined in the BSP, or if it is set to NULL, OS21 does not attempt to
operate the level 2 cache controller, even if one is present. If the variable is defined and non-
NULL, then OS21 attempts to operate a level 2 cache controller at the given address. If
there is no level 2 cache controller present at the given address, then undefined behavior
will result.

Revision history OS21

218/226 7358306

18 Revision history

Table 45. Document revision history

Date Revision Changes

12-Aug-2010 V Updated vmem_create on page 175 and vmem_delete on page 177.

1-Dec-2009 U

Revised Section 12.1: Caches and memory overview on page 163 to
include level 2 cache.

Added Section 16.6: Interrupt management in pCode on page 206
and Section 16.7: Exceptions in pCode on page 206.

Added Section 17.7: Level 2 cache support on page 217.

2-Jun-2009 T

Updated Chapter 5: Callbacks on page 89 to add four
callback_exception_*() functions.
Added task_lock_task and task_unlock_task to Chapter 4: Tasks on
page 44.
Added Chapter 16: Power management on page 192 and a
reference to the power management facility in Section 1.17: Power
management on page 15.

30-Oct-2008 S

Several minor revisions have been made throughout the manual.

profile.h and cache.h added to Table 1: OS21 include files on
page 9.

Added Section 15.6: Profile data binary file format on page 186.
BSP variable bsp_timelogging_enabled has been removed from
Section 17.2: BSP data.

9-May-2008 R Added Section 17.6: BSP MMU mappings description on page 216.

12-Nov-2007 Q

Updated details of kernel_idle and kernel_time in Chapter 2: Kernel
on page 17.
Updated details of task_status in Chapter 4: Tasks on page 44.
Updated Chapter 5: Callbacks on page 89.

Added new Chapter 17: Board support package on page 207.

17-May-2007 P

Added 12.5: Cache function definitions on page 165 as this is now
generic to both platforms.
Updated Chapter 13: Virtual memory on page 173 in response to
user comments.

18-Jan-2007 O
Added Chapter 13: Virtual memory on page 173.
Throughout:
Edited to include virtual memory.

27-Nov-2006 N Moved to new template. No technical changes.

OS21 Revision history

7358306 219/226

Jul 06 M

Throughout:
Updated function context information.
Introduction:
Added Exceptions section.
Kernel:
Added kernel_printf().
Tasks:
Updated task_context() definition. Added task_stackinfo() and
task_stackinfo_set().

Mutexes:
Added mutex_create_priority_noinherit() and
mutex_create_priority_noinherit_p().
Interrupts:
Added Contexts and interrupt handler code section
Exceptions:
Added as new chapter.
Profiling:
Added profile_deinit() and updated the errors given for the other
functions.

Apr 05 L

Interrupts:
Updated Context section for interrupt_handle().
Profiling:
Added if a task is deleted, before the profiler has been stopped, the
task is removed from the profiler data. Changed the order of the files
provided to perl -w os21prof.pl.

Oct 04 K
Profiling:
Added as new chapter.

Sep 03 J
Interrupts:
Updated Context section for interrupt_unmask().

Jul 03 I

Introduction:
Removed note that some systems do not support long long.

Tasks:
In Scheduling, added details of pre-emption and locked tasks.

Real-time clocks:
Removed note that some systems do not support long long.

Interrupts:
Rephrased the Initializing the interrupt handling subsystem section.
Added to note in Obtaining a handle for an interrupt. Changed
Raising interrupts to include that hardware support is required.

Table 45. Document revision history (continued)

Date Revision Changes

Revision history OS21

220/226 7358306

Apr 03 H

Introduction:
Changed references to “high resolution 64-bit timers” to “high
resolution timers”. Added note that some systems do not support
long long.
Tasks:
Removed references to interrupt_lock() and interrupt_unlock().
Added examples of a platform header file.
Real-time clocks:
Added note that some systems do not support long long.
Interrupts:
Updated overview to remove incorrect statement. In Initializing the
interrupt handling subsystem, change external interrupts to
interrupts. Added note in Obtaining a handle for an interrupt.
Combined the sections Attaching interrupt handlers and Chained
interrupt handlers. Updated results and description of
interrupt_handler(), interrupt_poll() and interrupt_unraise(). Added
note that function is deprecated to interrupt_lock() and
interrupt_unlock(). Updated description of interrupt_mask() and
interrupt_mask_all().

Mar 03 G

Introduction:
Updated chapter to allow for interrupts.

Kernel:
Added new kernel_chip function.

Interrupts:
Added as new chapter.

Aug 02 F
Throughout:
Added Context section to each of the functions.

Aug 02 E

Throughout:
Added note to all relevant functions about null pointers being passed
instead of a valid partition pointer.
Memory and partitions:
Changed the names of the flags available for partition_status_type.
Tasks:
Added task_yield and updated task_reschedule and all references.
Callbacks:
Renamed callback_interrupt_delete to callback_interrupt_uninstall.

May 02 D

Changed the definition of the following functions: semaphore_delete,
mutex_delete, event_group_delete, message_delete_queue and
task_create.
Added the following functions: kernel_board and kernel_cpu.
Corrected minor typing and grammatical errors throughout.

Feb 02 C Clarifications denoted by Change Bars for Beta Release of R2.0.

Dec 01 B Clarifications denoted by Change Bars.

Nov 01 A Initial release.

Table 45. Document revision history (continued)

Date Revision Changes

Index OS21

221/226 7358306

Index

A
accessing memory .163
address range

allocate in data cache165
analyze performance 184
API calls .11
application data .51
assert interrupt .160

B
Backus-Naur Form .8
binary mode .102
BNF. See Backus-naur Form.
board support package 207

board crystal frequency208
OS21 callbacks enabled209
OS21 timeslice frequency208

board support package (BSP) 16
BSP .207
bsp_board_type .214
bsp_exp_handler .212
bsp_initialize .211
bsp_panic .213
bsp_shutdown .213
bsp_start .211
bsp_terminate .214
bsp_timer_input_clock_frequency_hz 210

C
cache configuration .172
cache header file .164
cache support system 163
cache_allocate_data 165
cache_disable_data .166
cache_disable_instruction 166
cache_enable_data .167
cache_enable_instruction 167
cache_flush_data .168
cache_flush_data_all168
cache_invalidate_data169
cache_invalidate_data_all 169
cache_invalidate_instruction 170
cache_invalidate_instruction_all 170
cache_purge_data .171
cache_purge_data_all 171
cache_status .172
caches .15, 163

Callback API Summary 89
callback_interrupt_enter 90, 94
callback_interrupt_exit 91, 95
callback_interrupt_install 92, 96
callback_interrupt_uninstall 93, 97
callback_task_create . 98
callback_task_delete . 98
callback_task_exit . 99
callback_task_switch . 99
callbacks . 89
chip variants . 145
classes . 12
clear interrupt . 152
clock functions . 142
clocks . 15, 140
controlling CPU . 145
counting mode . 102
CPU . 145, 163
creating partitions . 27
critical regions . 102, 111
current time . 140

D
data cache . 163

allocate address range 165
disable . 166
enable . 167
flush address . 168
flush all . 168
invalidate address 169
invalidate all lines . 169
operations . 163
purge . 171
purge address . 171

D-cache
See data cache

de-initializing the profiler 188
deleting tasks . 54
descheduling . 17
descheduling tasks . 150
direct memory access 163
disable interrupt . 152
DMA . 163

E
enable interrupt . 153
enumerating tasks . 54

OS21 Index

7358306 222/226

event flags . 11, 14, 119
event group structure119
event header file .121
event_clear .122
event_group_create .122
event_group_create_p123
event_group_delete .123
event_post .124
event_wait_all .125
event_wait_any .127
events .14, 89
exception handler .180
exception header file 182
exception_install .183
exception_uninstall .183
exceptions

attaching exception handlers 181
install handler .183
uninstall handler 181, 183

exit status .54

F
fixed partitions .26
flushing addresses .168
flushing all dirty line .168
flushing D-cache .163
function naming scheme 10

H
header files .9
heap partitions .26

I
I-cache

See instruction cache
initializing the profiler 184, 189
install exception handlers183
install interrupt handlers 154-155
instruction cache .163

disable .166
enable .167
invalidate address .170
invalidate all .170
invalidating 164, 175, 177-179

interrupt handler .14, 145
interrupt header file .151
interrupt level profiling 190
interrupt priority .159
interrupt source

nonshareable .154

shared . 155
interrupt_clear . 152
interrupt_disable . 152
interrupt_enable . 153
interrupt_handle . 153
interrupt_install . 154
interrupt_install_shared 155
interrupt_lock . 156
interrupt_mask . 157
interrupt_mask_all . 158
interrupt_poll . 158
interrupt_priority . 159
interrupt_priority_set 159
interrupt_raise . 160
interrupt_uninstall . 160
interrupt_uninstall_shared 161
interrupt_unlock . 161
interrupt_unmask . 162
interrupt_unraise . 162
interrupts . 15, 145, 215

assert . 160
attaching interrupt handlers 147
clear . 152
disable . 152
enable . 153
handling subsystem 145
install handler

nonshareable . 154
shared . 155

lower priority level . 162
masking . 150
obtain handler . 153
obtain priority . 159
polling . 158
priority level . 150
raise processor priority level 157-158
set priority . 159
uninstall handler 147, 160-161
unraise . 162

introduction to OS21 . 1
invalidate address

from data cache . 169
from instruction cache 170, 175

invalidate data cache 163, 169
invalidate instruction cache . . 164, 170, 177-179

K
kernel

features . 9
header file . 18
implementation . 17

Index OS21

223/226 7358306

scheduler .45
scheduling .17

kernel_board .19
kernel_chip .19
kernel_cpu .20
kernel_idle .20
kernel_initialize .18, 21
kernel_printf .22
kernel_start .18, 22
kernel_time .23
kernel_timeslice .23
kernel_version .24
killing tasks .49

M
mapped address range, actual mode174
masking interrupts .150
memory .25
memory allocator .25
memory areas .163
memory management 13, 25, 28
memory partitions .13
memory_allocate .29
memory_allocate_clear 30
memory_deallocate .31
memory_reallocate .32
message buffers .129
message handling 129-139
message header file .132
message queues .14, 46

creating .130
overview .129

message_claim 131, 133
message_claim_timeout 131, 134, 137
message_create_queue130, 135
message_create_queue_p136
message_delete_queue131, 137
message_receive .137
message_receive_timeout 131, 137-138
message_release131, 139
message_send .131, 139
MMU mapping table .216
multiple events .119
multi-tasking .13
mutex header file .112
mutex_create_fifo .113
mutex_create_fifo_p .113
mutex_create_priority114
mutex_create_priority_noinherit116
mutex_create_priority_noinherit_p116
mutex_create_priority_p115

mutex_delete . 117
mutex_lock . 117
mutex_release . 118
mutex_trylock . 118
mutexes .11, 14, 46, 110

priority inversion protection 111
mutual exclusion 14, 110

N
naming convention . 10
nonshareable

interrupt source . 154

O
object oriented programming 12
objects . 12

allocation . 13
lifetime . 12

obtain interrupt handler 153
operand cache

See data cache
OS21

compared to OS20 . 10
header files . 9
introduction . 1
kernel . 18
kernel features . 9
priorities . 44
tasks . 44

OS21 profiler . 184
os21/callback.h header file 89
os21/event.h header file 121
os21/message.h header file 132
os21/mutex.h header file 112
os21/ostime.h header file 141
os21/partition.h header file 28
os21/semaphore.h header file 103
os21/st200/mmap.h header file 174
os21/task.h header file 55
os21prof . 186
os21prof.pl . 186

P
partition header file . 28
partition_create_any . 33
partition_create_any_p 34
partition_create_fixed 35
partition_create_fixed_p 36
partition_create_heap 37
partition_create_heap_p 38

OS21 Index

7358306 224/226

partition_create_simple 39
partition_create_simple_p 40
partition_delete .41
partition_private_state 41
partition_status .42
partitions .25

creating .27
fixed .26
heap .26
predefined .27
properties .26
simple .26
status .27
types .26

pCode .193
pCode macros .193
physical address .173
poll interrupts .158
Power level active standby192
Power level on .192
Power level passive standby 192
Power management callbacks192
Power management levels192
predefined partitions .27
pre-emption .17
priority .14
priority inversion .111
priority level 157-158, 162
priority mutexes .111
priority semaphores .11
private data .52
profile data

processing .186
write to host .185, 191

profile header file .188
profile_deinit .188
profile_init .184, 189
profile_start_all .185, 189
profile_start_interrupt185, 190
profile_start_task 185, 190
profile_stop .185, 191
profile_write .185, 191
profiler . 184-191

de-initializing .188
initializing .184, 189
start interrupt level profiling190
start single task profiling 190
start system wide profiling189
stop profiling .191

program counter .184
purge

address from data cache171

data cache . 163, 171

R
reading current time 140
real-time systems . 140
rescheduling . 47

S
scheduling . 45
scheduling kernel . 17
semaphore header file 103
semaphore_create_fifo 104
semaphore_create_fifo_p 104
semaphore_create_priority 105
semaphore_create_priority_p 106
semaphore_delete . 106
semaphore_signal . 107
semaphore_value . 107
semaphore_wait . 108
semaphore_wait_timeout 109
semaphores11, 14, 46, 100

binary mode . 102
counting mode . 102
critical regions . 102
synchronization . 102

shared interrupt source 155
simple partitions . 26
stack usage . 50
start profiling 185, 189-190
state . 44
stop profiling . 185, 191
SuperH SH-Series

documentation suite
notation . 8

suspending tasks . 48
synchronization . 14, 102
synchronizing events 119
system performance 184
system wide profiling 189

T
task header file . 55
task level profiling . 190
task_context . 57
task_create . 58
task_create_p . 60
task_data . 63
task_data_set . 63
task_delay . 64
task_delay_until . 64

Index OS21

225/226 7358306

task_delete .65
task_exit .65
task_id .66
task_immortal .49, 66
task_kill .49, 67
task_list_next .68
task_lock . 69-70
task_mortal .49, 71
task_name .71
task_onexit_set .72
task_priority .72
task_priority_set .73
task_private_data .74
task_private_data_set 75
task_private_onexit_set76
task_reschedule .77
task_resume .78
task_stack_fill .50, 79
task_stack_fill_set 50, 80
task_stackinfo .81
task_stackinfo_set .82
task_status .50, 83
task_suspend .84
task_unlock . 85-86
task_wait .87
task_yield .88
task-data .51
tasks .13, 44

application data .51
communicating .46
creating .46
deleting .54
descheduling .150
details .49
enumerating .54
exit status .54
id .49
killing .49
priorities .14, 44
private data .52
rescheduling .47
resuming .48
starting .46
suspending .48
synchronizing .46
terminating .52
timed delays .47
waiting for termination53

terminating tasks .52
waiting for .53

time . 11, 15, 140
time arithmetic .140

time header file . 141
time_after . 140, 142
time_minus . 140, 142
time_now . 140, 143
time_plus . 140, 143
time_ticks_per_sec . 144
timed delays . 47
timers . 11, 15, 141
timeslicing . 14

U
uninstall exception handler 183
uninstall interrupt handler 160-161
unmasking interrupts 150
unposted event flags 119
unraise interrupts . 162

V
virtual memory . 173
virtual memory address translation

create . 174
delete . 174

virtual memory page size, minimum 174
virtual to physical address conversion 174
vmem_create . 175
vmem_delete . 177
vmem_min_page_size 178
vmem_virt_mode . 178
vmem_virt_to_phys . 179

OS21

226/226 7358306 Rev V

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Introduction
	Preface
	Document identification and control
	Conventions used in this guide

	1 OS21 overview
	Table 1. OS21 include files
	1.1 Naming
	1.2 How this document is organized
	1.3 Differences between OS20 and OS21
	1.4 Classes and objects
	1.4.1 Object lifetime

	1.5 Defining memory partitions
	1.6 Tasks
	1.7 Priority
	1.8 Semaphores
	1.9 Mutexes
	1.10 Event flags
	1.11 Message queues
	1.12 Clocks
	1.13 Interrupts
	1.14 Virtual memory
	1.15 Exceptions
	1.16 Caches
	1.17 Power management
	1.18 Board support packages

	2 Kernel
	2.1 Kernel implementation
	2.2 OS21 kernel
	2.3 Kernel API summary
	Table 2. Functions defined in kernel.h

	2.4 Kernel function definitions
	kernel_board
	kernel_chip
	kernel_cpu
	kernel_idle
	kernel_initialize
	kernel_printf
	kernel_start
	kernel_time
	kernel_timeslice
	kernel_version

	3 Memory and partitions
	3.1 Partitions
	3.2 Allocation strategies
	Table 3. Partition properties

	3.3 Predefined partitions
	3.4 Obtaining information about partitions
	3.5 Creating a new partition type
	3.6 Traditional ‘C’ memory management
	3.7 Partition API summary
	Table 4. Functions defined in partition.h
	Table 5. Types defined by partition.h

	3.8 Memory and partition function definitions
	memory_allocate
	memory_allocate_clear
	memory_deallocate
	memory_reallocate
	partition_create_any
	partition_create_any_p
	partition_create_fixed
	partition_create_fixed_p
	partition_create_heap
	partition_create_heap_p
	partition_create_simple
	partition_create_simple_p
	partition_delete
	partition_private_state
	partition_status

	4 Tasks
	4.1 OS21 tasks
	4.2 OS21 priorities
	4.3 Scheduling
	4.4 Creating and running a task
	4.5 Synchronizing tasks
	4.6 Communicating between tasks
	4.7 Timed delays
	4.8 Rescheduling
	4.9 Suspending tasks
	4.10 Killing a task
	4.11 Getting the current task’s id
	4.12 Stack usage
	4.13 Task data
	4.13.1 Application data
	4.13.2 Library data

	4.14 Task termination
	4.15 Waiting for termination
	4.16 Getting a task’s exit status
	4.17 Deleting a task
	4.18 Enumerating all tasks
	4.19 Task API summary
	Table 9. Functions defined in task.h
	Table 10. Types defined in task.h
	Table 11. Macros defined in task.h

	4.20 Task function definitions
	task_context
	task_create
	task_create_p
	task_data
	task_data_set
	task_delay
	task_delay_until
	task_delete
	task_exit
	task_id
	task_immortal
	task_kill
	task_list_next
	task_lock
	task_lock_task
	task_mortal
	task_name
	task_onexit_set
	task_priority
	task_priority_set
	task_private_data
	task_private_data_set
	task_private_onexit_set
	task_reschedule
	task_resume
	task_stack_fill
	task_stack_fill_set
	task_stackinfo
	task_stackinfo_set
	task_status
	task_suspend
	task_unlock
	task_unlock_task
	task_wait
	task_yield

	5 Callbacks
	5.1 Callback API summary
	Table 15. Functions defined in callback.h
	Table 16. Types defined in callback.h

	5.2 Callback function definitions
	callback_exception_enter
	callback_exception_exit
	callback_exception_install
	callback_exception_uninstall
	callback_interrupt_enter
	callback_interrupt_exit
	callback_interrupt_install
	callback_interrupt_uninstall
	callback_task_create
	callback_task_delete
	callback_task_exit
	callback_task_switch

	6 Semaphores
	6.1 Semaphore overview
	6.2 Use of semaphores
	6.3 Semaphore API summary
	Table 17. Functions defined in semaphore.h
	Table 18. Types define in semaphore.h
	Table 19. Macros defined in semaphore.h

	6.4 Semaphore function definitions
	semaphore_create_fifo
	semaphore_create_fifo_p
	semaphore_create_priority
	semaphore_create_priority_p
	semaphore_delete
	semaphore_signal
	semaphore_value
	semaphore_wait
	semaphore_wait_timeout

	7 Mutexes
	7.1 Mutexes overview
	7.1.1 Priority inversion

	7.2 Use of mutexes
	7.3 Mutex API summary
	Table 20. Functions defined in mutex.h
	Table 21. Types define in mutex.h

	7.4 Mutex function definitions
	mutex_create_fifo
	mutex_create_fifo_p
	mutex_create_priority
	mutex_create_priority_p
	mutex_create_priority_noinherit
	mutex_create_priority_noinherit_p
	mutex_delete
	mutex_lock
	mutex_release
	mutex_trylock

	8 Event flags
	8.1 Event flags overview
	8.1.1 Uses for event flags

	8.2 Event API summary
	Table 22. Functions defined in event.h
	Table 23. Types define in event.h

	8.3 Event function definitions
	event_clear
	event_group_create
	event_group_create_p
	event_group_delete
	event_post
	event_wait_all
	event_wait_any

	9 Message handling
	9.1 Message queues
	Figure 1. Message queues

	9.2 Creating message queues
	Figure 2. OS21 message elements

	9.3 Using message queues
	9.4 Message handling API summary
	Table 24. Functions defined in message.h
	Table 25. Types defined in message.h
	Table 26. Macros defined in message.h

	9.5 Message function definitions
	message_claim
	message_claim_timeout
	message_create_queue
	message_create_queue_p
	message_delete_queue
	message_receive
	message_receive_timeout
	message_release
	message_send

	10 Real-time clocks
	10.1 Reading the current time
	10.2 Time arithmetic
	10.3 Time API summary
	Table 27. Functions defined in ostime.h
	Table 28. Types defined by ostime.h

	10.4 Timer function definitions
	time_after
	time_minus
	time_now
	time_plus
	time_ticks_per_sec

	11 Interrupts
	11.1 Chip variants
	11.2 Initializing the interrupt handling subsystem
	11.3 Obtaining a handle for an interrupt
	11.4 Attaching interrupt handlers
	11.4.1 Attaching an interrupt handler to a nonshared interrupt
	11.4.2 Attaching an interrupt handler to a shared interrupt

	11.5 Interrupt priority
	11.6 Enabling and disabling interrupts
	11.7 Clearing interrupts
	11.8 Polling interrupts
	11.9 Raising interrupts
	11.10 Masking interrupts
	11.11 Contexts and interrupt handler code
	11.12 Interrupt API summary
	Table 29. Functions defined in interrupt.h
	Table 30. Types defined in interrupt.h

	11.13 Interrupt function definitions
	interrupt_clear
	interrupt_disable
	interrupt_enable
	interrupt_handle
	interrupt_install
	interrupt_install_shared
	interrupt_lock
	interrupt_mask
	interrupt_mask_all
	interrupt_poll
	interrupt_priority
	interrupt_priority_set
	interrupt_raise
	interrupt_uninstall
	interrupt_uninstall_shared
	interrupt_unlock
	interrupt_unmask
	interrupt_unraise

	12 Caches and memory areas
	12.1 Caches and memory overview
	12.2 Initializing the cache support system
	12.3 Flushing, invalidating and purging D-cache lines
	12.4 Cache API summary
	Table 31. Functions defined in cache.h
	Table 32. Types defined in cache.h
	Table 33. Macros defined in cache.h

	12.5 Cache function definitions
	cache_allocate_data
	cache_disable_data
	cache_disable_instruction
	cache_enable_data
	cache_enable_instruction
	cache_flush_data
	cache_flush_data_all
	cache_invalidate_data
	cache_invalidate_data_all
	cache_invalidate_instruction
	cache_invalidate_instruction_all
	cache_purge_data
	cache_purge_data_all
	cache_status

	13 Virtual memory
	13.1 Virtual memory overview
	13.2 Virtual memory support functions
	13.2.1 Creating and deleting mappings
	13.2.2 Obtaining information about a mapping
	13.2.3 Other information

	13.3 Virtual memory API summary
	Table 35. Functions defined in vmem.h

	13.4 Virtual memory function definitions
	vmem_create
	vmem_delete
	vmem_min_page_size
	vmem_virt_mode
	vmem_virt_to_phys

	14 Exceptions
	14.1 Attaching exception handlers
	14.2 Contexts and exception handler code
	14.3 Exception API summary
	Table 38. Functions defined in exception.h
	Table 39. Types defined in exception.h

	14.4 Exception function definitions
	exception_install
	exception_uninstall

	15 Profiling
	15.1 Initializing the profiler
	15.2 Starting the profiler
	15.3 Stopping the profiler
	15.4 Writing profile data to the host
	15.5 Processing the profile data
	15.6 Profile data binary file format
	15.7 Profile API summary
	Table 40. Functions defined in profile.h

	15.8 Profile function definitions
	profile_deinit
	profile_init
	profile_start_all
	profile_start_interrupt
	profile_start_task
	profile_stop
	profile_write

	16 Power management
	16.1 Power levels
	16.2 Power callbacks
	16.3 Power pCode
	16.3.1 Virtual machine
	16.3.2 pCode definition
	16.3.3 pCode macros
	Table 41. pCode macros

	16.3.4 pCode example

	16.4 Power management API summary
	Table 42. Functions defined in power.h
	Table 43. Types defined in power.h

	16.5 Power management function definitions
	power_callback_add
	power_callback_delete
	power_level_set
	power_pcode_set

	16.6 Interrupt management in pCode
	16.7 Exceptions in pCode

	17 Board support package
	17.1 Board support package overview
	17.2 BSP data
	17.3 BSP functions summary
	Table 44. Functions exported by the board support package

	17.4 BSP function definitions
	bsp_timer_input_clock_frequency_hz
	bsp_initialize
	bsp_start
	bsp_exp_handler
	bsp_panic
	bsp_shutdown
	bsp_terminate
	bsp_board_type
	bsp_chip_type
	bsp_cpu_type

	17.5 BSP interrupt system description
	17.6 BSP MMU mappings description
	17.6.1 Mapping table

	17.7 Level 2 cache support

	18 Revision history
	Table 45. Document revision history

	Index

