
October 2012 Doc ID 14178 Rev 2 1/67

UM0484
User manual

STBus communication system concepts and definitions

Abstract
This document introduces the concepts and definitions referring to the STBus, the
communication system (interconnect) developed for system-on-chip (SoC) applications and
whose usage inside and outside ST is becoming wider and wider.

The basic terminology, the main concepts and the various available protocols are presented
at a detailed but accessible level, to allow the reader to gain familiarity with the STBus and
gain the background knowledge required to implement an STBus system.

Objectives
The objective of this document is to provide all the information required to understand the
STBus. It covers the communication protocols and the interfaces.

Audience

This document addresses its audience as the interconnect architects, the interconnect
designers, the application engineers and the project leaders.

The document can be used as a complete and concise reference about the STBus
communication system by anyone starting architectural or design activities about the
STBus.

www.st.com

http://www.st.com

Contents UM0484

2/67 Doc ID 14178 Rev 2

Contents

1 Introduction . 4

1.1 STBus overview . 4

1.1.1 Basic terminology . 4

1.1.2 Protocol . 5

1.1.3 Interfaces . 6

1.1.4 Components . 6

2 STBus signals . 8

2.1 Control signals . 8

2.1.1 Initiator to target . 8

2.1.2 Target to initiator . 9

2.2 Transaction signals . 10

2.2.1 Initiator to target . 10

2.2.2 Target to initiator . 13

2.3 Service signals . 14

2.4 Test signals . 15

3 STBus protocols . 16

3.1 Type 1 protocol (peripheral) . 17

3.1.1 Type 1 interface definition . 17

3.1.2 Type 1 signal and timing . 18

3.1.3 Address usage . 19

3.1.4 Byte enables usage . 19

3.1.5 Opcode usage . 20

3.1.6 Response opcode usage . 20

3.1.7 Basic transaction description . 21

3.1.8 Examples . 22

3.1.9 Remarks on response request delay . 24

3.2 Type 2 protocol (basic) . 26

3.2.1 Type 2 interface definition . 27

3.2.2 Type 2 signals and timings . 28

3.2.3 Type 2 enhancements/changes compared to type 1 29

3.2.4 Default grant definition . 30

3.2.5 Address usage . 31

UM0484 Contents

Doc ID 14178 Rev 2 3/67

3.2.6 Byte enables usage . 32

3.2.7 Opcode usage . 32

3.2.8 Response opcode usage . 35

3.2.9 Basic transactions description . 36

3.2.10 Chunk definition . 40

3.2.11 Message definition . 41

3.2.12 Examples . 43

3.3 Type 3 protocol (advanced) . 48

3.3.1 Type 3 interfaces definition . 49

3.3.2 Type 3 signals and timings . 50

3.3.3 Type 3 enhancements/changes compared to type 2 52

3.3.4 Address usage . 52

3.3.5 Byte enables usage . 52

3.3.6 Opcode usage . 53

3.3.7 Response opcode usage . 53

3.3.8 Attribute signal usage . 53

3.3.9 Basic transaction description . 54

3.3.10 Chunks and messages description . 54

3.3.11 Examples . 55

3.4 Error management . 60

3.4.1 Error causes . 60

3.4.2 Error management . 60

3.4.3 Error management in type 1 . 61

3.4.4 Error management in type 2 . 62

3.4.5 Error management in type 3 . 62

3.4.6 Behavior of the STBus building blocks with respect to errors 63

Appendix A Glossary . 64

Revision history . 66

Introduction UM0484

4/67 Doc ID 14178 Rev 2

1 Introduction

The STBus is a set of protocols, interfaces, primitives and architectures specifying an
interconnect subsystem, versatile in terms of performance, architecture and implementation.

The STBus is the result of the evolution of the interconnect subsystem developed for
microcontrollers dedicated to consumer applications such as, set top boxes, ATM networks,
digital still cameras and others. Such an interconnect was born from the accumulation of
ideas converging from different sources, such as the transputer (ST20), the Chameleon
program (ST40, ST50), MPEG video processing and VCI (virtual component interface)
organization.

Today the STBus is not only a communication system characterized by protocol, interfaces,
transaction set and IPs, but also a technology allowing design and implementation of
communication networks for SoCs with the support of a development environment including
tools for system level design and architectural exploration, silicon design, physical
implementation and verification.

1.1 STBus overview

1.1.1 Basic terminology

This section introduces some basic concepts that define a common language to be used
when referring to an STBus based system.

For IPs connected to the STBus, two kinds of blocks are defined:

In terms of data traffic over the interconnect, the following definitions are given:

It is possible to build a more complex data structure using STBus interface signals in
different ways:

initiator Any block able to generate traffic toward the interconnect in order to
access the system resources (memory, peripherals and so on).

target Any block being a resource for the system (memory, peripheral and
so on), accessed by initiators.

transaction An exchange of information between a generic initiator and a generic
target.

cell The basic amount of information that can be transferred within a
clock cycle; the amount of information transmitted depends on the
data bus size.

packet A collection of cells, building an uninterruptible transfer; the number
of cells building the packet depends on the operation size and the
data bus size.

chunk A collection of packets linked together by the LOCK (LCK) signal
(see Section 2.1: Control signals on page 8). Such a data structure
allows locking the target until the transfer is completed. During the
transfer no other initiators can access the target (uninterruptible).

UM0484 Introduction

Doc ID 14178 Rev 2 5/67

1.1.2 Protocol

Three different types of the STBus protocol exist, each having a different level of complexity
in terms of both performance and implementation.

● Type 1 is the simplest protocol and is intended to be used for peripherals registers
access. No pipeline applies. It acts as an RG protocol. Load/store on 1, 2, 4, and
8 bytes are supported.

● Type 2 adds pipeline features. It is equivalent to the “basic” RGV protocol. It supports
all operation code for ordered transactions. The number of the requesting cells (that is,
in a packet) is the same as the number of the response ones.

● Type 3 is an advanced protocol implementing split transactions for high bandwidth
requirements (high performance systems). It supports out of order executions. The
packet response size might be different than the packet request size (the number of
cells differs between request and response). The interfaces map the STBus transaction
set on a physical set of wires defined by this interface.

The STBus protocol can be seen as organized in layers, as shown in Figure 1.

Figure 1. STBus protocol layers

message A collection of chunks linked together by the TID[4] signal (see
Section 2.2: Transaction signals on page 10). Such a data structure
allows the transfer of a huge amount of data and exploits, when
possible, proper routing schemes that optimize memory accesses
and efficiency, particularly when accessing page based memories
(such as DDR SDRAM).

Transaction level

Packet level

Cell level

Physical level
CLOCK

ADDRESS

DATA

CLOCK

ADDRESS

DATA

Transaction

Request packet Response packet

1 2 3 4 5 a b c d e

Requests Responses

Split transaction into
request/response pair

Break each packet into
a number of tokens (cells)
determined by the bus
width

Add framing, flow control
and physical encoding
information

Introduction UM0484

6/67 Doc ID 14178 Rev 2

1.1.3 Interfaces

There are two different types of interfaces: one between the initiator and the interconnect,
the other between the interconnect and the target.

The difference between the interfaces consists of some signals that are used by one
interface and not by the other one, and by some signals that are present in both the
interfaces but whose behavior changes depending on the interface itself (for example, refer
to the GRANT signal in Section 2.1: Control signals on page 8).

1.1.4 Components

The components, or building blocks, of an STBus communication system are:

● node

● write posting handler

● register decoder

● generic converter

The node is responsible for the arbitration and the routing of the transactions. The arbitration
is performed by one or more arbiters, the routing is performed by the datapath through a set
of multiplexers and demultiplexers, driven by the signals generated by the arbiter(s).

The write posting handler is responsible for the management of posted store transactions.

The register decoder is basically a node specific for type 1 IPs. It arbitrates among type 1
initiators, and allows access to type 1 targets, usually peripherals and registers banks.

The generic converter can behave as one or more of the following blocks:

The generic converter can simultaneously perform a set of the operations (that is, size, type
and frequency conversion) when behaving as in the blocks listed above.

Figure 2 shows an example of STBus interconnect where nodes, buffers, size and type
converters are used. In Figure 2 red blocks are type 3 blocks, blue blocks are type 2 blocks
and green blocks are type 1 blocks.

buffer Used as retiming stage and is typically used to break critical paths,
especially between blocks placed far from each other in the system
floorplan.

size converter Used to connect two blocks with different bus sizes to each other.

type converter Used to connect two blocks following different STBus protocols to
each other.

frequency converter Used to connect two blocks working at different frequencies to each
other, when the two clocks are completely uncorrelated
(asynchronous mode) or when a phase relationship between them
exists (semi-synchronous mode).

UM0484 Introduction

Doc ID 14178 Rev 2 7/67

Figure 2. Example of STBus interconnect system

I1

I2

I3

I4

I5

T1

T2

T3

Node

Buffer

Size

converter

Type

converter

STBus signals UM0484

8/67 Doc ID 14178 Rev 2

2 STBus signals

This chapter contains a list of all signals and are defined in the context of the STBus
protocols. Depending on the specific STBus protocol, not all the signals are required.

According to the protocol type, some signals are supported and some are not. In the tables
in the following sections, supported signals are marked with ‘S’, unsupported signals are
marked with ‘U’. Among the supported signals, the mandatory and optional signals are
highlighted in the sections dealing in detail with the three different protocols.

The STBus signals present at any STBus module interface can be grouped into three sets:

● control signals

● transaction signals

● service signals

2.1 Control signals
The control signals determine when a transaction starts, when it finishes, and if two or more
consecutive transactions are linked together to build more complex transactions.

2.1.1 Initiator to target

Table 1. STBus control signals: initiator to target

Signal name Description Protocols

REQ

(request)

The request is the signal used by the initiator interface to
communicate that it wants to start a transaction. Once the
request is asserted, all the signals associated with the packet
to be transmitted must be kept constant until the grant signal
(GNT) is received from the target interface, meaning the
transaction has effectively started.

The cell is actually transferred in correspondence to the clock
rising edge, where both REQ and GNT are high.

Type 1 S

Type 2 S
Type 3 S

GNT

(grant)

The grant is the signal with which a transaction is considered
started after a request has been asserted.
The GNT generated by a node as consequence of the
arbitration is a “causal” grant (grant on request), while the
grant generated by a target module is a “default” grant and is
itself an information signal about the availability of the target
to accept a new request. The cell is actually transferred in
correspondence to the clock rising edge where both REQ
and GNT are high.

Type 1 U
Type 2 S

Type 3 S

EOP

(end of packet)

The end of packet is the signal marking the last cell of a
currently transmitted packet. It is mainly used by the node to
ensure a packet cannot be interrupted.

Type 1 S
Type 2 S

Type 3 S

LCK

(lock)

The lock signal is used to link together two or more packets
to build complex transactions, such as chunks and
READMODIFYWRITE operations (see Reserved operations
on page 33).

Type 1 U
Type 2 S

Type 3 S

UM0484 STBus signals

Doc ID 14178 Rev 2 9/67

2.1.2 Target to initiator

Table 2. STBus control signals: target to initiator

Signal name Description Protocols

R_REQ
(response request)

The response request is the signal used by the target
interface to communicate that it wants to complete a
transaction. Once the R_REQ is asserted, all the signals
associated with the response packet to be transmitted must
be kept constant until R_GNT is received from the initiator
interface, meaning the transaction has completed.

Type 1 S

Type 2 S

Type 3 S

R_GNT

(response grant)

The response grant is the signal with which a transaction is
considered complete after an R_REQ has been asserted.
R_GNT generated by a node as a consequence of the
response arbitration is a “causal” response grant. The
R_GNT generated by a legacy module such as a converter is
a “default” response grant which informs of the availability of
the legacy module to accept a new response.

Pure initiators don’t have the R_GNT signal, since they are
supposed to initiate traffic generation provided that they are
able to handle all the related responses.

Type 1 U
Type 2 S

Type 3 S

R_EOP

(response end of packet

The response end of packet is the signal that marks the last
cell of the currently transmitted response packet. It is mainly
used by the node to ensure a response packet cannot be
interrupted.

Type 1 U

Type 2 S
Type 3 S

R_LCK

(response lock)

The response lock signal is used to link together two or more
response packets during the transmission of complex
transactions, such as responses to chunks.

Type 1 U

Type 2 S
Type 3 S

STBus signals UM0484

10/67 Doc ID 14178 Rev 2

2.2 Transaction signals

2.2.1 Initiator to target

Table 3. STBus transaction signals: initiator to target

Signal name Description Protocols

ADD[31:n]

(address with n = 0, 1,
2, 3, 4, 5 depending on
the data bus size)

This is the address of the memory location which the initiator
wants to access. The address of a transaction must be
transaction-aligned.

For example, an 8-byte operation can be addressed to 0x0,
0x8 and 0x10, but not to addresses 0x4 and 0xC.

Type 1 S

Type 2 S

Type 3 S

DATA[8*2n-1:0]
(data with n = 0, 1, 2, 3,
4, 5 depending on the
data bus size)

This is the data the initiator wants to send to the target in
case of store operations.

Type 1 S
Type 2 S

Type 3 S

BE[2n-1:0]
(byte enables with n =
0, 1, 2, 3, 4, 5
depending on the data
bus size)

The byte enables signal defines which bytes within a cell are
significant. For operations whose size is smaller than the
data width, BE specifies the low order address bits.

For example, with an LD1 in a 32-bit system, address bits
[1:0] are implicitly encoded in the BE signal.

In systems where BE signals are not defined, all cells are
assumed to be valid.

Type 1 S

Type 2 S

Type 3 S

OPC[7:0]

(opcode)

This signal defines the type of operation the initiator wants to
perform. OPC is composed of three parts.

Bits [3:0] indicate the operation type, for example,
load/store/cache operation.

Bits [6:4] specify the size of the operation, for example, the
number of bytes the operation involves.

Bit 7 is reserved and in multiplexed buses/systems is used to
distinguish between request and response packets. The
STBus interconnect is a non-multiplexed system so bit 7
must always be low.

Type 1 S

Type 2 S
Type 3 S

SRC[9:0]
(source identifier)

SRC is used for two reasons: the lowest bits can be used by
the initiator to identify possible internal sub processes, the
highest bits are used by the interconnect to unambiguously
identify the initiator itself.

Type 1 U

Type 2 S

Type 3 S

UM0484 STBus signals

Doc ID 14178 Rev 2 11/67

TID[7:0]
(transaction identifier)

The TID signal is used by the initiator to label a transaction
with additional information.
It is split into two fields: TID[3:0] uniqueness information,
TID[7:4] enhancement information.
The uniqueness information is used by type 3 initiators to
unambiguously identify the transaction. This allows the
correct response to be detected in the case of out of order
traffic. Type 2 initiators don’t have this capability.

The enhancement information is used to enhance the
processing of an operation without changing its
functionality.The following fields are defined:
– TID[4] : not end of message

‘0’ = this transaction has no relationship to the next
transaction (end of message)
‘1’ = the next transaction is related to this transaction
(member of a message)

– TID[5] : not device access
‘0’ = this store operation will not be posted
‘1’ = this store operation may be posted (that is, the system
may choose to return an early response, deleting the true
response when it is returned to improve performance
reducing the latency between grant and response)

– TID[6] : store and forward
‘0’ = each time a cell is received/assembled, it can be
immediately propagated to the target interface
‘1’ = first collect all the cells building a packet and then
send the whole packet to the target interface

– TID[7] : reserved

The message information is used by the initiator to indicate
that the system should attend to keep message components
together. This can increase performance with access to a
page-based memory such as the SDRAM.
The write posting information is used by the initiator to
indicate that the information in response to a write operation
will be ignored so that a 'dummy' response can then be
returned early.

The store and forward information is used to drive the
storage behavior to the buffers.

Type 1 U

Type 2 S

Type 3 S

Table 3. STBus transaction signals: initiator to target (continued)

Signal name Description Protocols

STBus signals UM0484

12/67 Doc ID 14178 Rev 2

PRI[3:0]

(priority)

The PRI signal labels the request packet with an urgency
level which the interconnect may use to implement
preferential arbitration.

The priority is encoded into a 4-bit field (1111 = highest
priority, 0000 = lowest priority).

Type 1 U

Type 2 S
Type 3 S

ATTR[15:0]

(transaction attribute)

The ATTR signal is used by the initiator to label a transaction
with an additional attribute field, according to the following
description.

ATTR[3:0] : protection information (PROT)
ATTR[7:4] : cacheability (CACHE)

ATTR[9:8] : addressing policy type (PTYPE)

ATTR[15:10] : reserved for user-defined applications
The following fields are defined:

– PROT[0] : privilege level (0 = normal, 1 = privileged)

– PROT[1] : security (0 = secure, 1 = non secure)

– PROT[2] : data or instruction (0 = data, 1 = instruction)
– PROT[3] : exclusive lock (0 = disabled, 1 = enabled)

– CACHE[0] : bufferability (0 = non bufferable, 1 = bufferable)

– CACHE[1] : cacheability (0 = non cacheable, 1 =
cacheable)

– CACHE[2] : read allocate (0 = not read allocate, 1 = read
allocate)

– CACHE[3] : write allocate (0 = not write allocate, 1 = write
allocate)

– PTYPE[1:0] : addressing policy (00 = fixed, 01 =
incremental, 10 = wrapped, 11 = reserved)

The explicit addressing POLICY TYPE (PTYPE) signal has
been introduced to allow STBus type 3 initiators to generate
asymmetric load/store commands to AMBA AHB/APB
targets.

Type 1 U

Type 2 U
Type 3 S

Table 3. STBus transaction signals: initiator to target (continued)

Signal name Description Protocols

UM0484 STBus signals

Doc ID 14178 Rev 2 13/67

2.2.2 Target to initiator

Table 4. STBus transaction signals: target to initiator

Signal name Description Protocols

R_DATA[8*2n-1:0]
(response data with
n = 0, 1, 2, 3, 4, 5
depending on the data
bus size)

R_DATA is the data read from memory at a specified
location during a load operation.

Type 1 S

Type 2 S

Type 3 S

R_OPC[7:0]

(response opcode)

The R_OPC signal is used by the target to label a response
to an operation according to the following description:

R_OPC[0] : operation status (0 = success, 1 = failure)
R_OPC[1] : specifies whether the error has been originated
by a target external to the interconnect (when 0) or, by the
interconnect itself (when 1) as a consequence, for example,
of wrong address or security violation. When R_OPC[0] = 0,
R_OPC[1] is meaningless.

R_OPC[2] : reserved
R_OPC[3] : operation type (0 = write, 1 = read)

R_OPC[6:4] : operation type (copy of OPC[6:4])

R_OPC[7] : fixed to 1(1).
Type 1 modules implement only bit 0 of this field.

1. R_OPC[7] is reserved for systems which implement multiplexed request/response transports.

Type 1 S
Type 2 S

Type 3 S

R_SRC[9:0]

(response source)

The R_SRC signal is a copy of the SRC signal associated to
the respective request packet and is used by the interconnect
to identify the initiator to which the response has to be
routed.
For an initiator, the lowest bits can be used to detect the
internal subprocess to which the response is related.

Type 1 U

Type 2 S
Type 3 S

R_TID[7:0]

(response transaction
identifier)

The R_TID signal is a copy of the TID signal sent during the
transmission of the request packet, and is used by type 3
initiators to detect the request packet to which the response
is related.

Type 1 U

Type 2 S

Type 3 S

STBus signals UM0484

14/67 Doc ID 14178 Rev 2

2.3 Service signals

Table 5. STBus service signals

Signal name Description Protocols

CLK

(module clock)

All modules require a clock for the STBus interface.
All STBus signals are synchronous and significant on the
clock rising edge.

Type 1 S

Type 2 S
Type 3 S

RST_N

(module reset)

All STBus modules must be reset, and during reset all STBus
request signals have to be inactive. How the module is reset
depends on the reset methodology used in the specific
design flow. However, unless otherwise indicated, the reset
should be assumed to be asynchronous and active low.

Type 1 S
Type 2 S

Type 3 S

SECURITY[n-1:0]

(target security mode)

This signal is generated by the system security controller (if
one is used).
At most, n equals the number of type 3 targets accessible
through the interconnect system. The signal states whether
the target is secure or non-secure, there by affecting the way
in which requests are routed to it through STBus nodes.
For a given target, 0 = target secure, 1 = target unsecure.

Type 1 U

Type 2 U

Type 3 S

POWER_DOWN[n-1:0]
(target power down
status)

This signal is generated by the system power management
controller (if one is used).

At most, n equals the number of type 3 targets accessible
through the interconnect system. The signal states whether
the target is on or in power-down mode, there by affecting the
routing of requests to it through STBus nodes.
For a given target,: 0 = target in power up mode, 1 = target in
power down mode.

Type 1 U

Type 2 U
Type 3 S

UM0484 STBus signals

Doc ID 14178 Rev 2 15/67

2.4 Test signals
The STBus interconnect is fully scannable for testability reasons. However the test signals
do not appear explicitly at STBus components or interconnect system interfaces, since
application of test methodology is left to the system integration process and is neither
performed at block level nor at interconnect level.

The test signals to be added to STBus interface are the standard ones, as shown in Table 6.

Table 6. STBus test signals

Signal name Description Protocols

TST_SCANENABLE

(scan test enable)

The STBus interconnect can be fully scanned for testability.
The TST_SCANENABLE signal is used to enable the scan
test operation mode.

Type 1 S
Type 2 S

Type 3 S

TST_SCANIN
(scan test input)

This is the scan chain(s) input used during the scan test
operation mode.

Type 1 S

Type 2 S

Type 3 S

TST_SCANOUT
(scan test output)

This is the scan chain(s) output to be monitored during the
scan test operation mode.

Type 1 S

Type 2 S

Type 3 S

STBus protocols UM0484

16/67 Doc ID 14178 Rev 2

3 STBus protocols

The STBus interface family contains a number of interface variants with differing
performances and complexity costs. In selecting which type of STBus interface to use in a
specific design, the designer should consider the module and system costs, and select the
simplest interface with the appropriate features and data width for that system.

To ensure easy availability of third party support and IPs, the STBus interfaces and
protocols are closely related to the industry standards being developed by the open virtual
standard interface alliance (VSIA).

A general concept related to memory addressing is the concept of endianess. The
endianess affects the way in which data is organized in memory. The data field is made up
of a set of byte quantities, each byte being associated uniquely with a specific byte enable
bit. Each byte is organized as a little endian bit quantity. The data field may contain multiple
bytes, these are organized in a byte significant manner. This means modules accessed by
operations which are equal to the interface width of that module do not depend on
endianness. However, the addressing of sub-word quantities is dependent on the endianess
of the module associated with that interface.

Table 7 shows an example of how sub-word quantities are interpreted by differing systems
for a 4-byte system.

The main difference between the two addressing modes is the way in which the bytes of a
word are interpreted within the memory locations: in little endian, a data word is accessed
starting from the least significant byte (LSB) and proceeding toward the most significant byte
(MSB). While in big endian the access starts from the most significant byte and proceeds
toward the least significant byte. This means that, for a write operation to a memory location,
the bytes building a data word are swapped within the data word.

For example, if an IP wants to write the four bytes B1, B2, B3 and B4 starting from address
0x0 (that is, B1 at 0x0, B2 at 0x1, B3 at 0x2 and B4 at 0x3) it has to build the following 4-byte
word in little endian:

B4B3B2B1

and the following one in big endian:

B1B2B3B4.

Table 7. Endianess mechanism

byte
lane

little endian big endian

data 3 2 1 0 3 2 1 0

4 byte, address + 0 MSB +2 +1 LSB MSB +1 +2 LSB

2 byte address + 0 MSB LSB MSB LSB

2 byte address + 2 MSB LSB MSB LSB

1 byte(1), address + 0

1. For a single byte quantity the MSB and LSB are equivalent.

LSB MSB

1 byte, address + 1 LSB MSB

1 byte, address + 2 LSB MSB

1 byte, address + 3 LSB MSB

UM0484 STBus protocols

Doc ID 14178 Rev 2 17/67

The following sections introduce the three different STBus protocols: type 1 (peripheral),
type 2 (basic) and type 3 (advanced).

3.1 Type 1 protocol (peripheral)
The type 1, or peripheral, STBus interface is the simplest of the STBus family. It is targeted
at modules which require a simple, low complexity, medium data rate communication path
with the rest of the system.

This typically includes standalone modules such as general purpose input/outputs (GPIOs)
and UARTS, or modules which require independent control interfaces in addition to their
main memory interface, or internal interfaces which do not require pipelines.

The supported operation subset is targeted at simple memory devices and supports read
and write operations of up to 8 bytes. The interface is organized to minimize the need for the
target device to interpret the operation, allowing the correct operation to be achieved by
handling larger data quantities as if they were a series of smaller accesses.

3.1.1 Type 1 interface definition

Figure 3. Type 1 interfaces

The type 1 interface is a simple handshake interface which supports a limited set of
operations. These operations are mapped onto a packet containing one or more cells at the
interface.

Each request cell contains information on the operation type (OPC), the position of the last
cell in the operation (EOP), the address of the operation (ADD) and the associated data
(DATA) in case of write to memory. This cell is passed to the target, which indicates it has
accepted the cell by asserting a handshake (R_REQ) and passes back a response.This
response is also a packet containing a number of cells, each cell containing data (R_DATA)
and optionally error information (R_OPC).

REQ

ADD

OPC
BE

DATA

R_DATA

R_OPC

EOP

R_REQ

Target

Ta
rg

et
 in

te
rf

ac
e

In
te

rc
on

ne
ct

In
te

rc
on

ne
ct

Initiator

 In
iti

at
or

 in
te

rf
ac

e

RST_N, CLK

Initiator Target
interfaceinterface

REQ

ADD

OPC
BE

DATA

R_DATA

R_OPC

EOP

R_REQ

STBus protocols UM0484

18/67 Doc ID 14178 Rev 2

All type 1 devices are required to instantiate all mandatory signals, however simple devices
may choose to only use a subset of these signals, leaving unused signals existing at the
interface. These unused signals may not be connected if the functionality associated with
the signal is not required.

As most modules are expected to be reused in large SOC systems with complex software, it
is recommended that modules should implement a very basic error model which allows
information on an incorrect operation to be passed back to debug software and helps build
robust systems. The R_OPC field is an optional signal which may be used to achieve this. It
is typically used to indicate that a specific operation is not supported or, that accesses to
some address locations within this device are not allowed. The system (as a whole) is able
to use this information to indicate a potential problem. Devices which do not implement an
error module are always assumed to do the operations correctly.

3.1.2 Type 1 signal and timing

The signals given within Table 8 are defined for type 1 initiators and targets. Signals which
are mandatory for an interface are marked with ‘M’, signals which are optional and should
only be implemented if required are marked with ‘O’.

Note: The STBus interconnect top level and building blocks always have all the signals at each
interface, only external initiator and target IPs can use the optional signals.

Table 8. Type 1 signals and timings

Signal group Full name Signal name Direction
Initiator Target

Timing Type Timing Type

Request flow
control and framing

Request REQ init to targ early(1) M late(2) M

End of packet(3) EOP init to targ early O late O

Request contents

Opcode
OPC[2:0] init to targ early M late M

OPC[3](4) init to targ early O late M

Address ADD[31:size(5)] init to targ early M late M

Byte enable(6) BE[(2size-1):0] init to targ early O late M

Data(7) DATA[(8 * 2size-1):0] init to targ early O late O

Response flow
control

Response request R_REQ targ to init late M early M

Response content
Response opcode R_OPC targ to init late O early M

Response data(8) R_DATA[(8 * 2size-1):0] targ to init late O early O

1. Early is defined as being in the first 20% of the clock cycle.

2. Late is defined as being in the first 80% of the clock cycle.

3. Initiator may not use it if generating single-cell packets only, target may not implement it only if its data size is 8 bytes.

4. Initiator may not use it since it has no defined meaning, target must implement if for reusability reasons.

5. Size defines the width of the interface, it may take a value between 0 and 3 and corresponds to interface widths of 1, 2, 4 or
8 bytes (8, 16, 32 or 64 bits).

6. Initiator may not use it if accessing entire words only.

7. Not used if initiator/target is read-only.

8. Not used if initiator/target is write-only.

UM0484 STBus protocols

Doc ID 14178 Rev 2 19/67

3.1.3 Address usage

As far as the address of a packet is concerned, the following rule applies: the packet
address must be opcode aligned, that is, it has to be a multiple of the number of bytes to be
transferred within the packet. This means that:

● for 1-byte operations valid addresses are 0x0, 0x1, 0x2, 0x3 and so on

● for 2-byte operations valid addresses are 0x0, 0x2, 0x4, 0x6 and so on

● for 4-byte operations valid addresses are 0x0, 0x4, 0x8, 0xC and so on

● for 8-byte operations valid addresses are 0x0, 0x8, 0x10, 0x18 and so on

If the start address of a packet is not transaction aligned, then a wrapping of the address
has to be implemented, in order to keep the cells of the packet within the allowed memory
portion aligned to the transaction. Figure 4 shows the concept of address wrapping through
an example.

Figure 4. Address wrapping example

Note: In type 1 and type 2 systems, the address wrapping for misaligned start addresses has to be
performed by the initiators. In type 3 systems, the address wrapping can be performed by
the targets as for store operations the address can be constant within a packet and for loads
only one cell is generated.

3.1.4 Byte enables usage

Byte enables is a signal (BE), whose size is equal to the number of bytes the data bus is
composed of and may be defined in two ways:

● when the size of the operation (in bytes) is smaller than the data bus size (in bytes) the
BE signal represents the lowest part of the address and must obey the addressing rule
“the packet address must be opcode aligned”

● when the size of the operation is bigger than the data bus size, BE is simply a mask
specifying which bytes of the overall word are affected by the operation

To clarify the second definition: consider a store of a 2-byte operation (STORE2B) in a 32-bit
(4 bytes) context. The address is a 30-bit signal (ADD[31:2]) and BE is a 4-bit signal
(BE[3:0]).

0x00

0x02

0x04

0x06

Cell 1

Cell 2

Cell 3

Cell 4

Cell 1

Cell 2

Cell 3

Cell 4

0x02

0x04

0x06

0x00

Aligned start address Unaligned start address

Data bus = 16 bits
Opcode = store8b

Address wrapping within
a 16 bytes-aligned memory
portion

STBus protocols UM0484

20/67 Doc ID 14178 Rev 2

To write 2 bytes starting from the address 0, use:

ADD = 0x0000 0000

BE = 0011

Only bytes 0 and 1 are written. To write 2 bytes starting from the address 2, use:

ADD = 0x0000 0000

BE = 0xC (0b1100)

Only bytes 2 and 3 are written.

Since the STORE2B operation must obey the rule regarding transaction alignment, valid
addresses for a 2-byte operation are addresses that are 2-byte aligned (0x0, 0x2, 0x4, 0x6,
0x8 and so on). Addresses that are 1-byte aligned (0x1, 0x3, 0x5, 0x7 and so on) are not
legal for this operation.

This implies that the BE signal cannot be “1001” or “0110” for this operation. The same
applies for other bus and opcode sizes.

3.1.5 Opcode usage

The encoding used on the peripheral interface is given in Table 9.

The encoding is not generally interpreted by the interconnect or transport medium. This
information remains constant across all the cells associated with this operation. Large
(greater than 8 bytes) and compound operations are not supported on the peripheral
interface.

If an unsupported operation is presented to a target then, if possible, the target device
should indicate an error to the system. Irrespective of error support the target must always
return a response.

3.1.6 Response opcode usage

The response opcode (R_OPC) field is used by the target to give information about the
status of the operation. When the operation is successfully completed, the R_OPC signal
has the value 0. When the operation fails, either because of a wrong address or an
unsupported opcode, the R_OPC signal has the value 1. Some type 1 targets may assert
the R_OPC when there is a write attempt is performed on read-only registers.

Table 9. Load/store opcode encoding

Operation bit[3] bit[2:1] bit[0]

load byte 0 00 1

load two bytes 0 01 1

load four bytes 0 10 1

load eight bytes 0 11 1

store byte 0 00 0

store two bytes 0 01 0

store four bytes 0 10 0

store eight bytes 0 11 0

reserved 1 -- 1

UM0484 STBus protocols

Doc ID 14178 Rev 2 21/67

3.1.7 Basic transaction description

LOAD m bytes

STORE m bytes

Unsupported operation

Abbreviation LD1, LD2, LD4, LD8

Definition Read a single aligned word of m bytes from the target to the initiator.
Valid sizes for m are defined to be 2n where n is an integer in the
range 0 to 3.

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1:0]: the byte enable indicates which bytes within the word are
significant.

R_DATA [8 x 2n-1:0]: data to be transferred, the significance of bytes
within this field is inferred from the byte enable information.

R_OPC: result of operation.

Comments Load implements a read operation between the initiator and the
target.

Abbreviation ST1, ST2, ST4, ST8

Definition Write a single aligned word of m bytes from the initiator to the target,
overwriting the location at that address with the data transferred.
Valid sizes for m are defined to be 2n where n is an integer in the
range 0 to 3.

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1: 0]: the byte enable indicates which bytes within the word are
significant.

DATA[8 x 2n-1:0]: data to be transferred.

Comments Store implements a write operation between an initiator and a target.

Definition Return a response on reception of the operation.

Comments The target device should always return an error if possible if
presented with an operation which is reserved. This allows the
operation set to be extended for future systems without making
existing IPs redundant. The response will always contain one
response cell for each request cell received.

STBus protocols UM0484

22/67 Doc ID 14178 Rev 2

3.1.8 Examples

Figure 5. Single cell operation

Figure 6. Two cells operation

CLOCK

EOP

OPC

ADD

BE

R_REQ

R_OPC

REQ

DATA

R_OPC

REQUEST

RESPONSE

1 cell operation

R_DATA

SYSTEM

DATA

R_DATA

ADD

BE

OPC

REQUEST

Cell 1 Cell 2

RESPONSE

EOP

OPC

ADD

BE

R_REQ

REQ

DATA

R_DATA

OPCOPC

ADD2ADD1

BE2BE1

2 cells operation

R_OPCR_OPC

CLOCK

R_OPC

RD2RD1

SYSTEM

D2D1

UM0484 STBus protocols

Doc ID 14178 Rev 2 23/67

Figure 7. Four cells operation

Figure 8. Eight cells operation

REQUEST

RESPONSE

Cell 1 Cell 2

OPC

Cell 3

OPC

R_OPC R_OPC R_OPC

CLOCK

EOP

OPC

ADD

BE

R_REQ

R_OPC

REQ

DATA

R_DATA

OPC

R_OPC

RD2 RD3 RD4RD1

Cell 4

4 cells operation

OPC

ADD4ADD2ADD1 ADD3

BE4BE2BE1 BE3

SYSTEM

D4D2D1 D3

REQUEST

RESPONSE

Cell 1 Cell 4

OPCOPC

R_OPC R_OPC R_OPC

CLOCK

EOP

OPC

ADD

BE

R_REQ

R_OPC

REQ

DATA

R_DATA

OPC

Cell 7

8 cells operation

OPC

SYSTEM

OPC OPC OPC OPC

ADD7ADD2ADD1 ADD6ADD3 ADD4 ADD5 ADD8

BE7BE2BE1 BE6BE3 BE4 BE5 BE8

R_OPC R_OPCR_OPC R_OPC R_OPC

RD4 RD6 RD7RD2 RD3RD1 RD5 RD8

D7D2D1 D6D3 D4 D5 D8

Cell 2 Cell 3 Cell 5 Cell 6 Cell 8

STBus protocols UM0484

24/67 Doc ID 14178 Rev 2

3.1.9 Remarks on response request delay

The following four example behavior types are theoretically possible for a multi-cell type 1
transaction consisting of the transmission of a packet composed of four cells.

Example 1

All R_REQ coming with one (or more) cycles of delay with respect to the REQ for each cell
of the packet.

Figure 9. Constant response delay

Example 2

First R_REQ coming with respect to one cycle of delay with respect to the REQ, the others
coming in the same cycle as the REQ.

Figure 10. Initial response delay

EOP

R_REQ

REQ

CLOCK

EOP

R_REQ

REQ

CLOCK

UM0484 STBus protocols

Doc ID 14178 Rev 2 25/67

Example 3

R_REQ coming in the same cycle as the REQ for all the cells of the packet.

Figure 11. Immediate response

Example 4

R_REQ coming before the REQ (default grant behavior, see Section 3.2.4 on page 30).

Figure 12. Default response

Currently, the T3/T1 and T2/T1 converters and the register decoder work in the example
behavior type shown in Example 1, but have not been verified with the other examples. They
might work with the example behavior type shown in Example 2, but it is unlikely that they
will work with the behavior types shown in Example 3 and Example 4.

The T1/T3 converter works with the example shown in Example 2.

Most of the IP having a T1 interface work with the example shown in Example 1.

In terms of protocol specification, Example 3 is a violation of the rule stating that there
cannot be an R_REQ without a REQ, so Example 3 is not allowed in type 1 protocol.

It is also true that, for timing reasons, Example 2 is unlikely, even if it could be useful for slow
peripherals (so slow that timing is easily met).

The example shown in Example 1 is the most likely and currently the most widely supported,
but is inefficient. The example shown in Example 2 represents the optimum solution in
cases of multi-cell packet operations. So the examples shown in Example 1 and Example 2
are the only examples allowed.

EOP

R_REQ

REQ

CLOCK

EOP

R_REQ

REQ

CLOCK

STBus protocols UM0484

26/67 Doc ID 14178 Rev 2

Note: It is possible that an incompatibility among IPs working only following the example shown in
Example 1, and IPs working following the example shown in Example 2, must be solved at
hardware level.

3.2 Type 2 protocol (basic)
The type 2 or basic STBus interface increases the performance and functionality of the
STBus ports. It supports all type 1 functionality and adds split transactions and the ability to
support all transactions including compound operations, source labelling and some priority
and transaction labelling/hint information.

It is targeted at devices which need high performance and pipelined operation but do not
require the additional system efficiency associated with shaped request/response packets
or the ability to re-order outstanding operations to improve performances.

Simple devices are required to support the following signals for a type 2 interface: REG,
GNT, EOP, ADD, OPC, BE, DATA, R_OPC, R_EOP, R_DATA, however, certain operations
also require support for LCK and the initiator may choose to implement additional optional
functionality as shown by the signals described in the following section. The system also
allows a robust error handling model to be implemented. While this is recommended, some
systems may choose not to implement this functionality.

UM0484 STBus protocols

Doc ID 14178 Rev 2 27/67

3.2.1 Type 2 interface definition

Figure 13. Type 2 interfaces

1. VLD is equivalent to R_REQ for initiators and can be assumed to be R_REQ in a system for which R_GNT
is always ‘1’.

TargetInitiator

RST_N, CLK

REQ

GNT

ADD

OPC

BE

DATA

R_DATA

R_OPC

TID

SRC

R_SRC

EOP

R_EOP

R_REQ/VLD(1)

LCK

PRI

REQ

GNT

ADD

OPC

BE

DATA

R_DATA

R_OPC

EOP

R_EOP

R_REQ

R_GNT

In
te

rc
on

ne
ct

 In
iti

at
or

 in
te

rf
ac

e

Ta
rg

et
 in

te
rf

ac
e

R_LCK

In
te

rc
on

ne
ct

STBus protocols UM0484

28/67 Doc ID 14178 Rev 2

3.2.2 Type 2 signals and timings

The signals listed in Table 10 are defined for type 2 initiators and targets. Signals which are
mandatory for an interface are marked with ‘M’, signals which are optional and should only
be implemented if required are marked with ‘O’. Signals marked with ‘-’ are not used.

Table 10. Type 2 signals and timings

Signal group Full name Signal name Direction
Initiator Target

Timing Type Timing Type

Request flow
control and
atomicity and
framing

request REQ init to target early(1) M late M

grant GNT target to init late M early M

end of packet(2) EOP init to target early O late M

lock(3) LCK init to target early O late -

Request cell
content

opcode
OPC[6:0] init to target early M late M

OPC[7](4) init to target early O late M

address ADD[31:size(5)] init to target early M late M

byte enable(6) BE[(2size-1):0] init to target early O late M

data(7) DATA[(8 * 2size-1):0] init to target early O late O

source identity(8) SRC[9:0] init to target early O late -

not end of message(9) TID[4] init to target early O late -

write posting(10) TID[5] init to target early O late -

store and forward(11) TID[6] init to target early O late -

reserved(12) TID[7] init to target early O late -

priority(13) PRI[3:0] init to target early O late -

Response flow
control

response request R_REQ target to init late M early M

response grant R_GNT init to target late - early M

response end of
packet(2) R_EOP target to init late O early M

response lock(3) R_LCK target to init late O early -

Response cell
content

response data(14) R_DATA[(8 * 2size-1):0] target to init late O early O

response source(15) R_SRC[9:0] target to init late O early -

response not end of
message(16) R_TID[4] target to init late O early -

response opcode
R_OPC[0](17) target to init late O early M

R_OPC[7:1](18) target to init late O early M

1. Early is defined as being in the first 20% of the clock cycle, late as being in the first 80% of the clock cycle and mid as being
in the first 40% of the clock cycle.

2. Initiators may not implement it if they generate 1-cell packets only. Targets must implement it if for reusability reasons.

3. Initiators may not implement it if they don’t generate chunks and RMW. Targets do not support it.

4. Initiators may not implement it since its meaning is not defined. Targets must implement if for reusability reasons.

UM0484 STBus protocols

Doc ID 14178 Rev 2 29/67

Note: The STBus building blocks always have all the signals at each interface; only external
initiator and target IPs can use the optional signals. This will affect only the top-level STBus
interconnect interface.

3.2.3 Type 2 enhancements/changes compared to type 1

With respect to the type 1 protocol, the type 2 protocol has the following main
enhancements:

● support for split transactions

● support for pipeline

Support for split transactions means that a transaction is divided into two parts, the request
part and the response part. The former starts with the couple REQ/GNT and ends with the
signals REQ/GNT/EOP, the latter starts with the couple R_REQ/R_GNT and ends with the
signals R_REQ/R_GNT/R_EOP.

Due to this feature, a type 2 initiator is free to do anything else when waiting for a response
packet after the request packet has been completely transmitted.

Pipeline support is a consequence of split transaction support and means that an initiator
can start a second transaction (in terms of a new request packet) without having received
the answer to the first transaction. This can be true for more transactions and the maximum
number of transactions in progress an initiator can have, without receiving a response,
specifies the pipeline capability of the IP.

Independent of comparison with the type 1 protocol, type 2 protocol has two main distinctive
features:

● symmetry

● order

Symmetry determines the equal shape between request and response packets,
independent of the type of operation (for example, store or load). The request and the
response packet are always composed of the same number of cells.

5. Size defines the width of the interface, it may take a value between 0 and 4 and corresponds to interface widths of 1, 2, 4,
8, or 16 bytes (8, 16, 32, 64, or 128 bits).

6. Initiators may not implement it if they take care of entire words only. Targets must implement if for reusability reasons.

7. Not used if the initiator/target is read-only.

8. Initiators can allocate the low order bits if they contain multiple independent sources. If an initiator implements SRC[x:0] it is
expected to also implement R_SRC[x:0]. Targets do not implement it.

9. Initiator can not use it if it doesn’t generate messages. Targets do not implement it.

10. Initiator can not use it if it doesn’t generate posted writes. Targets do not implement it.

11. Initiator can not use it if it doesn’t require store and forward mechanism. Targets do not implement it.

12. Initiator can not use it since its meaning is not defined. Targets do not implement it.

13. Initiator can not use it if external priority based arbitration is not used inside the STBus. Targets do not implement it.

14. Not used if the initiator/target is write-only.

15. Initiators can allocate the low order bits if they contain multiple independent sources. Targets do not implement it.

16. Initiator can not use it if it doesn’t need to have information about responses to messages. Targets do not implement it.

17. Initiators may not implement it if they neglect errors. Targets must implement if for reusability reasons.

18. Initiators may not implement it since its meaning is not defined. Targets must implement if for reusability reasons.

STBus protocols UM0484

30/67 Doc ID 14178 Rev 2

Order means, that if due to the pipeline, more transactions are generated, the sequence
with which the responses are obtained must be exactly the same as the requests generated.
To respect this protocol rule it may be required to add latency in the system, since it is
forbidden for an initiator which has a pending transaction toward one target to start a new
transaction toward a different target. This is because, if this was allowed and the second
target was faster the first one, an order violation would occur.

To prevent this, a filtering mechanism is implemented within the STBus, forbidding an
access toward a target if there is a pending access toward a different target. This filter
introduces latency.

As far as the address is concerned, in case of multi-cell packets the address must be
incremented cell by cell by the initiator, properly performing the address wrapping when
required, in case of unaligned accesses.

3.2.4 Default grant definition

The grant signal (GNT) is defined as: a request has been recognized and the relative
transaction has started. GNT can be generated in two different ways: causal and default (or
early).

The causal grant is a GNT (normally low) asserted high as a reaction to a request. This is
the behavior of the grant generated by a node toward an initiator when doing a request.

The default grant is a GNT (normally high) typically managed by the target interface of
STBus converters and real targets such as type 2 and type 3 memory modules, used to tell
the STBus they are available to get a new request and than manage a new transaction.

The default grant is normally de-asserted when the target (or the converter) has its internal
FIFO full and no other transactions can be managed until at least one of the transactions in
progress is completed by sending the relative response. The default grant is also called
‘early’ because it is generated by a state machine taking into account the status of the target
(available/not available) and outputs directly from a flip-flop).

Note: The default grant is mandatory for all target modules. This allows the STBus node to
ascertain whether a target is available or not to accept a new request. This avoids having to
arbitrate among requests that cannot be serviced due to the unavailability of the addressed
target.

The only case where the grant is generated “on request” in a combination of causal and
default, is when it depends on a request arbitration process. This is because it occurs in the
node in both the request and the response path.

UM0484 STBus protocols

Doc ID 14178 Rev 2 31/67

3.2.5 Address usage

As far as the address of a packet is concerned, the following rule applies: the packet
address must be opcode aligned, that is, it has to be a multiple of the number of bytes to be
transferred within the packet.

This means that:

● for 1-byte operations valid addresses are 0x0, 0x1, 0x2, 0x3 and so on

● for 2-byte operations valid addresses are 0x0, 0x2, 0x4, 0x6 and so on

● for 4-byte operations valid addresses are 0x0, 0x4, 0x8, 0xC and so on

● for 8-byte operations valid addresses are 0x0, 0x8, 0x10, 0x18 and so on

● for 16-byte operations valid addresses are 0x0, 0x10, 0x20, 0x30 and so on

● for 32-byte operations valid addresses are 0x0, 0x20, 0x40, 0x60 and so on

● for 64-byte operations valid addresses are 0x0, 0x40, 0x80, 0xC0 and so on

If the start address of a packet is not transaction aligned, then a wrapping of the address
has to be implemented, in order to keep the cells of the packet within the allowed memory
portion aligned to the transaction. Figure 14 shows the concept of address wrapping
through an example.

Figure 14. Address wrapping example

Note: In type 1 and type 2 systems, the address wrapping for misaligned start addresses has to be
performed by the initiators. In type 3 systems, the address wrapping can be performed by
the targets (see Section 3.3.4: Address usage on page 52) as for store operations the
address can be constant within a packet and for loads only one cell is generated.

0x00

0x04

0x08

0x0C

Cell 1

Cell 2

Cell 3

Cell 4

Cell 1

Cell 2

Cell 3

Cell 4

0x04

0x08

0x0C

0x00

Aligned start address Unaligned start address

Data bus = 32 bits
Opcode = store16b

Address wrapping within
a 16 bytes-aligned memory
portion

STBus protocols UM0484

32/67 Doc ID 14178 Rev 2

3.2.6 Byte enables usage

As already described in Section 3.1.4 on page 19, byte enables (BE) is a signal whose size
is equal to the number of bytes the data bus is composed of and may be defined in two
ways:

● when the size of the operation (in bytes) is smaller than the data bus size (in bytes) the
BE signal represents the lowest part of the address and must obey the addressing rule
“the packet address must be opcode aligned”

● when the size of the operation is bigger than the data bus size, BE is simply a mask
specifying which bytes of the overall word are affected by the operation

3.2.7 Opcode usage

The opcode encoding is spit into three sections.

● Bits [3:0] indicate the operation type: for example, load/store/cache operation.

● Bits [6:4] qualify the operation size: for example, the number of bytes the operation is
on or the specific cache operation.

● Bit 7 is reserved and in multiplexed buses/systems is used to distinguish between
request and response packets. The type 2 STBus is a non-multiplexed system and
therefore bit 7 must be tied low.

For clarity, the possible opcodes are split into four operation types:

● Primitive operations

● Compound operations

● Reserved operations

● Undefined operations

Primitive operations

Primitive operations are the simplest operation types and are always built from a single
request/response pair.

Table 11. Primitive operations

Packet type/operation [7] [6:4] [3:0]

LD1: load byte 0 000 0001

LD2: load two bytes 0 001 0001

LD4: load four bytes 0 010 0001

LD8: load eight bytes 0 011 0001

LD16: load 16 bytes 0 100 0001

LD32: load 32 bytes 0 101 0001

LD64: load 64 bytes 0 110 0001

ST1: store byte 0 000 0010

ST2: store two bytes 0 001 0010

ST4: store four bytes 0 010 0010

ST8: store eight bytes 0 011 0010

UM0484 STBus protocols

Doc ID 14178 Rev 2 33/67

Compound operations

Compound operations are built from one or more primitives and may be constructed from
multiple request/response pairs which may be linked by LCK, or have a causal relationship,
the compound operations are defined in Table 12.

Compound operations called chunks and messages can be built by linking together packets
using the protocol signals lock (LCK) and not end of message (TID[4]), as described in
Section 3.2.9: Basic transactions description on page 36 and Section 3.2.10: Chunk
definition on page 40.

Reserved operations

The operations specified in Table 13 are defined, but not supported, within the current
implementation of the protocols (for example, the group operations were used originally) or
reserved for future implementations.

ST16: store 16 bytes 0 100 0010

ST32: store 32 bytes 0 101 0010

ST64: store 64 bytes 0 110 0010

SWP4: swap 4 bytes 0 010 0101

SWP8: swap 8 bytes 0 011 0101

Table 12. Compound operations

Packet type/operation [7] [6:4] [3:0]

PURGE: purge address 0 000 1000

FLUSH: flush address 0 001 1000

RMW4: READMODWRITE 4 bytes 0 010 0100

RMW8: READMODWRITE 8 bytes 0 011 0100

USER N: user defined 0 N 1111

Table 13. Reserved operations

Packet type/operation [7] [6:4] [3:0]

NOP: no operation 0 --- 0000

EVENT 0 --- 1110

LD128: load 128 bytes 0 111 0001

ST128: store 128 bytes 0 111 0010

RMW1: readmodwrite 1 byte 0 000 0100

RMW2: readmodwrite 2 bytes 0 001 0100

RMW16: readmodwrite 16 bytes 0 100 0100

Table 11. Primitive operations (continued)

Packet type/operation [7] [6:4] [3:0]

STBus protocols UM0484

34/67 Doc ID 14178 Rev 2

SWP1: swap 1 byte 0 000 0101

SWP2: swap 2 bytes 0 001 0101

SWP16: swap 16 bytes 0 100 0101

LDG1: load group of bytes 0 000 1001

LDG2: load group of two byte quantities 0 001 1001

LDG4: load group of 4 byte quantities 0 010 1001

LDG8: load group of 8 byte quantities 0 011 1001

LDG16: load group of 16 byte quantities 0 100 1001

LDG32: load group of 32 byte quantities 0 101 1001

LDG64: load group of 64 byte quantities 0 110 1001

LDG128: load group of 128 byte quantities 0 111 1001

STG1: store group of bytes 0 000 1010

STG2: store group of two byte quantities 0 001 1010

STG4: store group of 4 byte quantities 0 010 1010

STG8: store group of 8 byte quantities 0 011 1010

STG16: store group of 16 byte quantities 0 100 1010

STG32: store group of 32 byte quantities 0 101 1010

STG64: store group of 64 byte quantities 0 110 1010

STG128: store group of 128 byte quantities 0 111 1010

successful response 1 --- ---0

error response 1 --- ---1

Table 13. Reserved operations (continued)

Packet type/operation [7] [6:4] [3:0]

UM0484 STBus protocols

Doc ID 14178 Rev 2 35/67

Undefined operations

The opcode values in Table 14 are undefined.

3.2.8 Response opcode usage

The target uses the response opcode signal to return information about the operation it has
completed in terms of its status (success or failure) and other information characterizing it.
This can include, for example, if it was a read or a write, how many bytes were addressed,
where an error may have originated. It is used by converters to correctly generate the
response traffic when crossing back different STBus domains.

The fields given below make up the response opcode signal.

● R_OPC[0]: The operation status (0 = success, 1 = failure), when R_OPC[0] = 0 then
R_OPC[1] is redundant.

● R_OPC[1]: When R_OPC[1] = 0 the error has been originated by a target external to
the interconnect. When R_OPC[1] = 1 the error has been originated by the
interconnect itself as a result of an incorrect address, a security violation, or access to a
target in power down mode.

● R_OPC[2]: This is reserved for future expansion in terms of error description.

● R_OPC[3]: The operation type (0 = write, 1 = read).

● R_OPC[6:4]: The operation size (copy of OPC[6:4]).

● R_OPC[7]: This is reserved, in multiplexed buses/systems R_OPC[7] is used to
distinguish between request and response packets, since STBus type 2 protocol is a
non-multiplexed system, bit 7 must be tied high.

Table 14. Undefined opcodes

Operation [7] [6:4] [3:0]

undefined

0 --- 0011

0 --- 0110

0 --- 0111

0 --- 1011

0 --- 1100

0 --- 1101

STBus protocols UM0484

36/67 Doc ID 14178 Rev 2

3.2.9 Basic transactions description

A module communicates with the rest of the system using standard communication
operations or transactions. These transactions define the operations which occur when a
module exchanges information with the system. They are typically memory operations such
as reads or writes of various sizes.

The transaction includes all the information required for the system to unambiguously
determine the operation required and define the properties of the operation itself. These
operations are defined in more detail in the following sections.

LOAD m bytes

STORE m bytes

Abbreviation LD1, LD2, LD4, LD8, LD16, LD32, LD64

Definition Read a single aligned word of m bytes from the target to the initiator.

Valid sizes for m are defined to be 2n where n is an integer in the
range [0..6].

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1:0]: the byte enables signal indicates which bytes within the
word are significant.

R_DATA [8 x 2n-1:0]: data to be transferred, the significance of bytes
within this field is inferred from the byte enables information.

R_OPCODE: result of operation.

Comments Load implements a read operation between in the initiator and the
target.

Abbreviation ST1, ST2, ST4, ST8, ST16, ST32, ST64

Definition Write a single aligned word of m bytes from the initiator to the target,
overwriting the location at that address with the data transferred.

Valid sizes for m are defined to be 2n where n is an integer in the
range [0..6].

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1:0]: the byte enables signal indicates which bytes within the
word are significant.

DATA[8 x 2n-1:0]: data to be transferred.

Comments Store implements a write operation between an initiator and a target.

Some systems may use the TID[5] signal to implement write posting
increasing the effective performance of the system.

UM0484 STBus protocols

Doc ID 14178 Rev 2 37/67

READMODWRITE m bytes (Read Modify Write)

Abbreviation RMW4, RMW8

Definition Transfer the value of the aligned word of m bytes from the target to
the initiator, leaving the target device ‘locked’ until a second transfer
from the initiator to the target completes, replacing the information
held at the specified address in the target device.

Valid sizes for m are defined to be 2n where n is an integer in the
range [2..3].

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1:0]: The byte enables signal indicates which bytes within the
word are significant.

DATA[8 x 2m-1:0]: data to be transferred from the initiator to the
target.

R_DATA[8 x 2n-1:0]: data to be transferred from the target to the
initiator.

Comments READMODWRITE is an atomic operation in which the data
manipulation occurs locally to the initiator. The system ensures that
the target is unavailable to the rest of the system during this period
impacting performance in systems with multiple masters, but which
requires minimal support by the initiator.

READMODWRITE has been introduced to have a 1 to 1 mapping to
the test and set assembler instruction.

This simplifies module implementation since both the initiator and the
target may treat the READMODWRITE as a read operation followed
by a write to the same address. This guarantees that once the target
has been locked, it will be unlocked at the end of the transaction.
Allowing the read and the write to be performed at different
addresses implies an access risk to different targets, leaving the
read locked indefinitely.

It is possible to perform an atomic operation consisting of a read
followed by a write at different addresses (but within the same target)
generating a chunk (see Section 3.3.9: Basic transaction description
on page 54).

STBus protocols UM0484

38/67 Doc ID 14178 Rev 2

SWAP m bytes

FLUSH address

Abbreviation SWP4, SWP8

Definition Exchange the value of the single aligned word of m bytes from the
initiator with the data held in the specified target location, returning
the original target data to the initiator.

Valid sizes for m are defined to be 2n where n is an integer in the
range [2..3].

Qualifiers ADD[31:n]: the address of the word to be accessed.

BE[n-1:0]: the byte enables signal indicates which bytes with the
word are significant.

DATA[8 x 2n-1:0]: data to be transferred from the initiator to the
target.

R_DATA[8 x 2n-1:0]: data to be transferred from the target to initiator.

Comments SWAP is an atomic operation in which the data manipulation occurs
locally to the target, replacing the current value with a new value and
returning the old value to the initiator. Both the initiator and the target
remain accessible to the system during this operation.

The implementation of the target is a little more complex due to the
requirement for local storage, but performance is higher due to no
‘dead’ periods existing during which the target is unavailable.

Abbreviation FLUSH

Definition Returns a response when any copies of the data associated with the
physical address (which may be held by the target module) are
coherent with the actual data held at the physical address. The target
device may retain a copy of that data.

Qualifiers ADD[31:0]: the address of the target module potentially holding a
copy of the word to be flushed

DATA[31:0]: physical address of the word to be flushed, organized
MSB to LSB, bit 0 containing the LSB

Comments FLUSH is an operation used to ensure coherence of the main
memory whilst allowing local copies associated with a target to
remain coherent.

Typically this is used in conjunction with a coherent LDm operation
as follows:

● initiator A wants to read a location at address ADD from target C
(a memory) but knows target B (a cache) may have a local copy

● initiator A passes FLUSH ADD to target B

● if target B has no copy it passes a response to initiator A

● if target B has incoherent copy, it performs STm ADD to target C
and passes a response to A on completion

UM0484 STBus protocols

Doc ID 14178 Rev 2 39/67

PURGE address

User operation type m

● initiator A performs LD ADD to target C

● initiator A receives a coherent copy from target C whilst the local
copy in target B also remains coherent

Abbreviation PURGE

Definition Returns a response when any copies of data associated with the
physical address (which may be held by the target module) are
coherent with the actual data held at the physical address, and
removes any copies of the data held within the target module.

Qualifiers ADD[31:0]: the address of the target module potentially holding a
copy of the word to be purged.

DATA[31:0]: physical address of the word to be purged, organized
MSB to LSB, bit 0 containing the LSB.

Comments This operation is used to ensure coherence of main memory whilst
ensuring stale local copies are destroyed. Typically this is used in
conjunction with an STm operation as follows:

● initiator A wants to write to a location at address ADD in target C
(a memory) but knows target B (a cache) may have a local copy

● initiator A passes PURGE ADD to target B

● if target B has no copy it passes a response to initiator A

● if target B has incoherent copy, it performs STm ADD to target
C, destroys it’s local copy and passes a response to A on
completion

● initiator A performs STm ADD to target C

Abbreviation USER 0:7

Definition These opcodes are reserved for special user functions and may be
used to implement functions or communications which are required
in a particular system.

The target device (if it supports that operation in this system) should
return a response to the initiator as defined by the user after
completing the operation.

Comments The target may qualify the user defined operation by examining the
source of the operation and using this information to distinguish
between user operations from different initiators.

Up to eight user operations may be defined for a specific system.

STBus protocols UM0484

40/67 Doc ID 14178 Rev 2

Unsupported operations

3.2.10 Chunk definition

A chunk is a collection of packets linked by the lock (LCK) signal. The following rules
characterize chunks.

● A chunk is a set of packets linked together by the LCK signal.

● LCK is high for all the packets of the chunk except for the last packet.

● LCK has the following meaning: if an initiator generates a packet with the LCK set to ‘1’,
the accessed target can only be accessed by that initiator until it sends a packet with
the LCK set to ‘0’. STBus must guarantee this.

● The initiator may assume that for a locked sequence of operations:

– the operations are maintained by the system as an atomic group

– the order of the response packets is the same as the order of request packets for
that sequence

Implementation is achieved by enforcing the properties described below.

– If LCK is asserted for packet n from initiator A to target B, then that target may only
be accessed by initiator A until it receives a subsequent packet n + 1 from initiator
A with LCK de-asserted. The order of packets n and n + 1 is always maintained.

– If R_LCK is asserted for packet m from target A to initiator B, then that initiator may
only be accessed by target A until it receives a subsequent packet m + 1 from
target A with R_LCK de-asserted. The order of response packet m and m + 1 is
always maintained.

The target module ensures that the generated response packets have the same order
as the request packets presented.

● All operations within a chunk must be from the same initiator (the SRC must be
constant).

● All operations within a chunk should be within an aligned 256-byte address space.
Operations must be transaction aligned and at most they can be 256 bytes aligned.

● For a type 3 system, all operations within a chunk must be uniquely labelled using
TID[3:0](a).

● All operations within a chunk should be of the same type (that is, the opcode should be
constant) in order to guarantee optimum performances from the system. Chunks built
of packets with different opcodes are supported.

● An initiator should not slow send a chunk (that is, there should be no cycle gaps
between operations within a chunk).

● The size of a chunk can be programmable inside an IP and it can range from 1 byte to
256 bytes.

● Within all the packets of a chunk, the same target must always be addressed.

Definition Return a response on reception of the operation.

Comments The target device should always return an error when accessed with
an operation which is reserved. This allows the operation set to be
extended for future systems without making existing IPs redundant.

a. Recommendation.

UM0484 STBus protocols

Doc ID 14178 Rev 2 41/67

● Order between the response packets must be guaranteed for a correct operation of the
IP generating the chunk. The target must guarantee this order.

● The interconnect is not able to recover if the IP, for any reason, stops the transfer
forgetting the lck high. In this case, the target addressed during the chunk transmission
would remain blocked by that initiator and no other initiators can access it. This could
cause the system to stall.

3.2.11 Message definition

A message is a set of chunks linked together by the “not end of message” (TID[4]) signal.
Chunks that build a message can be composed of a single packet. It is therefore possible to
have messages composed of packets linked together by the TID[4] signal.

The concept of a message has been introduced in order to optimize access to memory
devices such as DRAM, SDRAM and DDR SDRAM memory.

Modern computer systems have become increasingly limited by memory performance;
while processor performance increases at a rate of 60% per year, the bandwidth of a
memory chip (DRAM) increases by only 10% per year.

To maximize memory bandwidth, modern DRAM components allow pipelining of memory
accesses by means of a three dimensional structure, based on the concepts of bank, row
(or page) and column (refer to Figure 15).

Banks can be accessed independently and the most recently accessed pages are cached.
As a result, sequential accesses to different pages within one bank have high latency and
cannot be pipelined, while accesses to different banks or different words within a single
page have low latency and can be pipelined.

This three dimensional structure makes it advantageous to reorder memory operations in
order to exploit the non-uniform access times of the DRAM.

STBus protocols UM0484

42/67 Doc ID 14178 Rev 2

Figure 15. DRAM basic structure

For STBus, a page is a portion of memory n bytes wide and aligned on an n-byte boundary,
with n being 64, 128, 256, 512, 1K, 2K, 4K, 8K or 16K.

As previously stated, page data is only accessible if that page has previously been opened.
Each page opening incurs an overhead of several clock cycles before the data can be
accessed.

In order to minimize the number of page openings, the interconnect has to arbitrate on a
larger amount of data than that contained within a single packet. Since a message groups
together operations aimed at the same page of memory, an arbitration scheme based on
messages rather than on packets is suitable to guarantee continuous DRAM/SDRAM/DDR
accesses minimizing the number of page misses and increasing the memory efficiency.

It is important to outline the difference between physical page and logical page.

● The logical page is a portion of the physical page and different logical pages are
usually mapped into different memory banks.

● A physical page is in the same memory bank.

The physical page size is equivalent to, a power of 2 multiple of the logical page size, in the
same memory bank.

In an example system used for video processing: when generating addresses in raster
mode, logical pages are accessed, but with DDR memory accesses this results in jumping
from one part of a physical page to another, the same is usually true for banks.

Bank 0

Row buffer

Column decoder

R
o

w
 d

ec
o

d
er

Bank 0

Row buffer

Column decoder
R

o
w

 d
ec

o
d

er

Bank 0

Row buffer

Column decoder

R
ow

 d
ec

o
d

er
Address

Bank N

Bank 1

Data

UM0484 STBus protocols

Doc ID 14178 Rev 2 43/67

Message characteristics

The following set of rules characterize a message.

● The TID[4] is high for all the chunks of the message except the last one.

● The meaning of the TID[4] is as follows: if an initiator is sending a packet marked by the
TID[4] set to ‘1’, it means the next packet sent by that initiator may be linked to the
current one. The way in which this is handled depends on the particular STBus system
implementation.

● It is strongly recommended that a message is no more than 256 bytes wide (the size of
a memory page). All the packets of a message should address the same memory page
within the same target. The STBus and the accessed target must be able to operate
correctly even if this recommendation is not respected.

● An IP must terminate a message.

● If for any reason (such as a fault) the IP doesn’t terminate a message, the STBus and
the target must be able to manage this occurrence without stalling the system.

● An initiator should not slow send messages (that is, there should be no cycle gaps
between operations within a message).

3.2.12 Examples

Single cell operations

Figure 16. Single cell transfer from an initiator

CLOCK

EOP

REQ

GNT

ADD

SRC/TID

R_EOP

R_REQ/VLD

R_OPC

R
eq

ue
st

 P
ac

ke
t

R_SRC

R_DATA

S
ys

te
m

OPC

DATA/BE

Request cell Response

Complete operation

Initiator port

R
es

po
ns

e
P

ac
ke

t

STBus protocols UM0484

44/67 Doc ID 14178 Rev 2

Figure 17. Single cell transfer to a target

Two cells operations

Figure 18. Two cell transfer from an initiator

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_GNT

R_OPC

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t

R_SRC

R_DATA

S
ys

te
m

OPC

DATA/BE

Request Response

Complete operation

R_REQ

CLOCK

Initiator port

EOP

REQ

GNT

ADD

SRC/TID

R_EOP

R_REQ/VLD

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_DATA
R_DATA

S
ys

te
m

OPC

DATA/BE

Request packet

Cell 1

Complete operation

Cell 1 Cell 2 Cell 2

Response packet

R_SRC/R_TID

UM0484 STBus protocols

Doc ID 14178 Rev 2 45/67

Figure 19. Two cell transfer to a target

Four cells operations

Figure 20. Four cell transfer from an initiator

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_GNT

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ/VLD

Request packet

Cell 1

Complete operation

Cell 1 Cell 2 Cell 2

Response packet

R_SRC

CLOCK

Initiator port

EOP

REQ

GNT

ADD

SRC/TID

R_EOP

R_REQ/VLD

R_OPC

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t

R_SRC
R_DATA
R_DATA

S
ys

te
m

OPC

DATA/BE

Request packet
Cell 1

Complete operation

Cell 1 Cell 2

Cell 2

Response packet

Cell 3 Cell 4

Cell 3 Cell 4

STBus protocols UM0484

46/67 Doc ID 14178 Rev 2

Figure 21. Four cell transfer to a target

Single cell RMW

Figure 22. Single cell RMW transaction from an initiator

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_GNT

R_OPC

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t

R_SRC
R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

Request packet
Cell 1

Complete operation

Cell 1 Cell 2

Cell 2

Response packet

Cell 3 Cell 4

Cell 3 Cell 4

CLOCK

Initiator port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_SRC

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packets R and W

Cell 1 R

Complete operation

Cell 1 R Cell 1 W

Two response packets R and W

Cell 1 W

UM0484 STBus protocols

Doc ID 14178 Rev 2 47/67

Figure 23. Single cell RMW transaction to a target

Two cells RMW

Figure 24. Two cells RMW transaction from initiator

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_SRC

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packets R and W
Cell 1 R

Complete operation

Cell 1 R Cell 1 W

Two response packets R and W

Cell 1 W

R_GNT

CLOCK

Initiator port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_SRC/R_TID

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packet R and W

Cell 1R

Complete operation

Cell 1 R Cell 1 W

Response packet W and W

Cell 1 W

Cell 2 R Cell 2 W

Cell 2 R Cell 2 W

R_DATA

STBus protocols UM0484

48/67 Doc ID 14178 Rev 2

Figure 25. Two cells RMW transaction to target

3.3 Type 3 protocol (advanced)
The type 3 or advanced STBus interface increases the performance and functionality of the
STBus port. As the type 2 protocol, it supports all type 1 functionality and adds split
transactions and the ability to support all transactions including compound operations,
source labelling and some priority and transaction labelling/hint information.

It is targeted at devices which need high performance and pipelined operations and, with
respect to type 2 protocol, gives the additional feature of shaped request/response packets
and the ability to re-order outstanding operations to improve performance.

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_GNT

R_OPC

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t

R_SRC

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packet R and W

Cell 1 R

Complete operation

Cell 1 R Cell 1 W

Response packet R and W
Cell 1 W

Cell 2 R Cell 2 W

Cell 2 W Cell 2 W

UM0484 STBus protocols

Doc ID 14178 Rev 2 49/67

3.3.1 Type 3 interfaces definition

Figure 26. Type 3 interfaces

1. VLD is equivalent to R_REQ for initiators and can be assumed to be R_REQ in a system for which R_GNT
is always ‘1’.

targetinitiator

RST_N, CLK, POWER_DOWN, security

REQ

GNT

ADD

OPC

BE

DATA

R_DATA

R_LCK

TID

SRC

R_SRC

R_TID

EOP

R_EOP

R_REQ//VLD(1)

PRI

LCK

REQ

GNT

ADD

OPC

BE

DATA

R_DATA

R_OPC

EOP

R_EOP

R_REQ

R_GNT

PRI

R_LCK

R_TID

R_SRC

LCK

SRC

TID

R_OPC

In
te

rc
on

ne
ct

ta
rg

et
 in

te
rf

ac
e

ATTR In
te

rc
on

ne
ct

in
iti

at
or

 in
te

rf
ac

e

STBus protocols UM0484

50/67 Doc ID 14178 Rev 2

3.3.2 Type 3 signals and timings

The signals listed in Table 15 are defined for type 3 protocol. Signals which are mandatory
for the interface are marked with ‘M’, signals which are optional and should only be
implemented if required are marked with ‘O’. Signals marked with ‘-’ are not used.

Table 15. Type 3 signals and timings

Signal group Full name Signal name Direction
Initiator Target

Timing Type Timing Type

Request flow
control and

atomicity and
framing

request REQ init to target early(1) M late M

grant GNT target to init late M early M

end of packet(2) EOP init to target early O late M

lock(3) LCK init to target early O late M

Request cell
content

opcode
OPC[6:0] init to target early M late M

OPC[7](4) init to target early O late M

address ADD[31:size(5)] init to target early M late M

byte enable(6) BE[(2size-1):0] init to target early O late M

data(7) DATA[(8 * 2size-1):0] init to target early O late O

source identity(8) SRC[9:0] init to target early O late M

transaction identity TID[3:0] init to target early M late M

not end of message(9) TID[4] init to target early O late M

write posting(10) TID[5] init to target early O late M

store and forward(11) TID[6] init to target early O late M

reserved(12) TID[7] init to target early O late M

priority(13) PRI[3:0] init to target early O - -

protection attribute(14) ATTR[3:0] init to target early O late O

cacheability attribute(15) ATTR[7:4] init to target early O late O

addressing policy
attribute(16) ATTR[9:8] init to target early O late O

user defined attribute(17) ATTR[15:10] init to target early O late O

Response flow
control

response request R_REQ target to init late M early M

response grant R_GNT init to target - - early M

response end of packet(2) R_EOP target to init late O early M

response lock(3) R_LCK target to init late O early M

UM0484 STBus protocols

Doc ID 14178 Rev 2 51/67

Note: The STBus interconnect top level and building blocks always have all the signals at each
interface; only external initiator and target IPs can use the optional signals.

response cell
content

response data(18) R_DATA[(8 * 2size-1):0] target to init late O early O

response opcode R_OPC[7:0] target to init late O early M

response source(19) R_SRC[9:0] target to init late O early M

response transaction
identity

R_TID[3:0] target to init late M early M

response not end of
message(20) R_TID[4] target to init late O early M

response write posting(20) R_TID[5] target to init late O early M

response store and
forward(11) R_TID[6] target to init late O early M

reserved(12) R_TID[7] target to init late O early M

1. Early is defined as being in the first 20% of the clock cycle, late as being in the first 80% of the clock cycle and mid as being
in the first 40% of the clock cycle.

2. Initiators can not implement it if they generate 1-cell packets only. Targets implement it for reusability reasons.

3. Initiators can not implement it if they don’t generate chunks and RMW. Targets implement it for reusability reasons.

4. Initiators can not implement it since its meaning is not defined. Targets implement it for reusability reasons.

5. Size defines the width of the interface, it may take a value between 0 and 4 and corresponds to interface widths of 1, 2, 4,
8, or 16 bytes (8, 16, 32, 64, or 128 bits).

6. Initiators can not implement it if they take care of entire words only.

7. Not used if the initiator/target is read-only. Targets implement it for reusability reasons.

8. Initiators allocate the low order bits if they contain multiple independent sources. If an initiator implements SRC[x:0] it is
expected to also implement R_SRC[x:0]. Targets implement it to generate a copy when responding.

9. Initiators can not use it if it doesn’t generate messages. Targets implement it for reusability reasons.

10. Initiators can not use it if it doesn’t generate posted writes. Targets implement it for reusability reasons.

11. Initiators can not use it if they don’t require store and forward. Targets implement it for reusability reasons.

12. Initiators can not use it since its meaning is not defined. Targets implement it for reusability reasons.

13. Initiators can not use it if external priority based arbitration is not implemented in STBus. Targets do not implement it

14. The ATTR[3:0] bits are optionally implemented to provide protection attribute. Targets do not support them.

15. The ATTR[7:4] bits are optionally implemented to provide cacheability attribute. Targets do not support them.

16. The ATTR[9:8] bits are optionally implemented to provide addressing policy attribute. Targets do not support them.

17. The ATTR[15:10] bits are optionally implemented to provide user defined attributes. Targets do not support them.

18. Not used if the initiator/target is write-only.

19. Initiators can allocate the low order bits if they contain multiple independent sources. Targets implement it for reusability
reasons.

20. Initiators do not use it. Targets implement it for reusability reasons.

Table 15. Type 3 signals and timings (continued)

Signal group Full name Signal name Direction
Initiator Target

Timing Type Timing Type

STBus protocols UM0484

52/67 Doc ID 14178 Rev 2

3.3.3 Type 3 enhancements/changes compared to type 2

The type 3 protocol has two main features differentiating it from the type 2 protocol, these
features are the shaped packets and the out of order management capability.

Shaped packets

Shaped packets allow optimum bandwidth allocation, since the minimum number of clock
cycles to carry out a transaction is used.

A store operation consists of a request packet (composed of a number of cells depending on
the amount of data to store) and a response packet (composed of only one cell) indicating
that the whole store operation has been completed.

A load operation consists of a request packet composed of only one cell, specifying the
amount of data to read from memory (by the opcode) and the first address from which data
must be read, and a response packet composed of a number of cells depending on the
amount of data to read.

Due to this asymmetry between request and response packets, it’s clear that the bandwidth
allocation in a type 3 system is optimized compared to a type 2 system. In a type 2 system,
the number of cycles required to carry out a transaction does not depend on the type of the
operation.

Out of order

The type 3 protocol allows initiators to get responses in a different order to the sequence of
requests.

This allows a gain in terms of latency, because the filtering mechanism required in type 2
nodes (to prevent an initiator having a transaction in progress to access a different target) is
not required.

To manage the out of order type 3 IPs use the transaction identifier signal TID[3:0]. This
means that any IP can have up to 16 different transactions in progress.

3.3.4 Address usage

Asymmetry within the type 3 protocol, leads to a single-cell load request packet. Therefore,
type 3 targets must be able to internally increase the address and (if required for misaligned
accesses) to wrap the address, in order to deliver all the data required with the request
packet generated from the opcode. This mechanism allows the address in the different cells
of a store request packet to be kept constant. This is the opposite of what happens in type 2
systems where it is up to the initiator to correctly increase the address cell by cell.
performing the proper wrapping when there are misaligned accesses.

3.3.5 Byte enables usage

As in type 1 and type 2 protocols, byte enables (BE) is a signal whose size is equal to the
number of bytes the data bus is composed of, and may be defined in two ways:

● when the size of the operation (in bytes) is smaller than the data bus size (in bytes) the
BE signal represents the lowest part of the address and must obey the addressing rule
“the packet address must be opcode aligned”

● when the size of the operation is bigger than the data bus size, the BE is simply a mask
specifying which bytes of the overall word are affected by the operation

UM0484 STBus protocols

Doc ID 14178 Rev 2 53/67

In type 3 systems, load operations are characterized by only one request cell. The BE signal
associated to this request cell is applied only to the first cell of the load operation by the
target. For the other cells to be read, the target assumes that all the bits of the BE signal are
set to ‘1’.

3.3.6 Opcode usage

The usage of the opcode in type 3 is basically the same as for type 2 (refer to Section 3.2.7:
Opcode usage on page 32). The same operations are defined, and the same encoding of
the opcode is used.

3.3.7 Response opcode usage

The usage of the response opcode in type 3 is exactly the same as for type 2 (refer to
Section 3.2.8: Response opcode usage on page 35). The same fields are defined, and the
same meaning is attributed to them.

3.3.8 Attribute signal usage

This signal is used by the initiator to label a transaction with an additional attribute field, in
order to transmit the following information:

● protection (PROT[3:0])

● cacheability (CACHE[3:0])

● addressing policy type (PTYPE[1:0])

In addition, a set of six optional bits is reserved for user-defined applications.

The protection attribute signal is used to propagate to targets, information about the
privilege level (ATTR[0]) and data/instruction fetch (ATTR[2]). The security bit (ATTR[1]) is
instead used by the STBus to apply security instructions.

The exclusive lock (ATTR[3]) is used to implement semaphores: if a target is marked with
the ELCK signal by an initiator and another initiator tries to access it, the target responds
with an error. The ELCK signal is transparent to the STBus interconnect.

The cache attribute (ATTR[7:4]) signal is transparent to the STBus interconnect and is used
simply to propagate cacheability information to targets.

The explicit addressing policy type or PTYPE (ATTR[9:8]) signal allows STBus type 3
initiators to generate asymmetric load/store commands to AMBA AHB/APB bridges. This
offers a gain in terms of bandwidth usage and the bridge’s FIFO size configuration.

Note: AHB/APB devices usually have only one port to access registers and FIFOs and they do
not contain appropriate logic to uncompact/compact data from/to a bus with higher width (for
example, STBus native targets). The appropriate size of transfer must be handled by
initiators and transmitted through the interconnect.

This signal guarantees efficient peripheral FIFO static accesses but it also keeps the
performance of AHB memory controller devices that exploit incremental and wrapped AHB
transfers. AHB/APB bridges have to support the PTYPE signal otherwise the asymmetry
cannot be exploited and transfers similar to those used by type 2 must be generated by
initiators.

STBus protocols UM0484

54/67 Doc ID 14178 Rev 2

In order to reconstruct the AHB/APB transfers correctly, the three following fields must be
coherent: PTYPE, BE, OPC[6:4].

● The PTYPE signal indicates what kind of transfer must be generated: single (static),
incremental, wrapped.

● The BE signal must be coherent with the position of valid bytes (LSB address). For
incremental or wrapped transfers it is mandatory to always have the total number of
asserted be bits coherent with the AHB/APB transfer size, as it is the only way to
reconstruct this information. For "static burst", the number of asserted BE bits must be
enough to allow correct size conversion (done by the AXI/AHB bridge).

● OPCn indicates the number of response cells (n) that must be generated by the
AHB/APB bridges. It is always equal to: n*(bus width/8) for 64-bit initiators.

The optional six attribute bits (ATTR[15:10]) can be used to implement operations specific to
the system, issued by initiators and executed by targets. They are transparent to the STBus
interconnect, whose task is simply to propagate these commands from the originating
initiator to the selected target.

The attribute signal must be kept constant for the duration of the whole transaction
(message, chunk or packet).

3.3.9 Basic transaction description

The transactions in type 3 are described in exactly the same way as for type 2 (refer to
Section 3.2.9: Basic transactions description on page 36), taking into account the different
shape of the request and the response packets.

3.3.10 Chunks and messages description

In type 3 the chunks and the messages are implemented and managed in exactly the same
way as in type 2 (refer to Section 3.2.10: Chunk definition on page 40 and Section 3.2.11:
Message definition on page 41).

UM0484 STBus protocols

Doc ID 14178 Rev 2 55/67

3.3.11 Examples

Single cell operations

The shape of single cell transactions in type 3 is exactly the same as for type 2, for both
store and load (refer to Section 3.2.12: Examples on page 43).

Two cells response

Figure 27. Two cells response at Initiator interface

R_DATA

OPC

CLOCK

EOP

REQ

GNT

ADD

SRC/TID

DATA/BE

Initiator port

R_EOP

R_REQ/VLD

R_OPC

R_SRC

R_DATA

Request packet

Cell 1

Complete operation

Cell 1 Cell 2

Response packet

R
eq

ue
st

 P
ac

ke
t

S
ys

te
m

R
es

po
ns

e
P

ac
ke

t

STBus protocols UM0484

56/67 Doc ID 14178 Rev 2

Figure 28. Two cells response at target interface

Four cells response

Figure 29. Four cells response at initiator interface

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

OPC

DATA/BE

R_EOP

R_GNT

R_OPC

R_SRC
R_DATA
R_DATA

R_REQ/VLD

Request packet

Cell 1

Complete operation

Cell 1 Cell 2

Response packet

R
eq

ue
st

 p
ac

ke
t

S
ys

te
m

R
es

po
ns

e
pa

ck
et

CLOCK

EOP

REQ

GNT

ADD

SRC/TID

R
eq

ue
st

 p
ac

ke
t

OPC

DATA/BE

Initiator port

R_EOP

R_REQ/VLD

R_OPC

R
es

po
ns

e
pa

ck
et

R_SRC
r_data

R_DATA

Request packet
Cell 1

Complete operation

Cell 1

Cell 2
Response packet

Cell 3 Cell 4

S
ys

te
m

UM0484 STBus protocols

Doc ID 14178 Rev 2 57/67

Figure 30. Four cells response at target interface

Two cells request

Figure 31. Two cells request at initiator interface

R_DATA

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R
eq

ue
st

 p
ac

ke
t

S
ys

te
m

OPC

DATA/BE

R_EOP

R_GNT

R_OPC

R
es

po
ns

e
pa

ck
et

R_SRC

R_REQ

Request packet Cell 1

Complete operation

Cell 1

Cell 2

Response packet

Cell 3 Cell 4

CLOCK

Initiator port

EOP

REQ

GNT

ADD

SRC/TID

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t
S

ys
te

m

OPC

DATA/BE

Request packet

Cell 1

Complete operation

Cell 1 Cell 2

Response packet

R_EOP

R_REQ/VLD

R_OPC

R_SRC/
R_DATA

STBus protocols UM0484

58/67 Doc ID 14178 Rev 2

Figure 32. Two cells request at target interface

Four cells request

Figure 33. Four cells request at initiator interface

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

OPC

DATA/BE

Request packet

Cell 1

Complete operation

Cell 1 Cell 2

Response packet

R_EOP

R_GNT

R_OPC

R_SRC

R_DATA

R_REQ

R
eq

ue
st

 p
ac

ke
t

S
ys

te
m

R
es

po
ns

e
pa

ck
et

CLOCK

Initiator port

EOP

REQ

GNT

ADD

SRC/TID

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

S
ys

te
m

OPC

DATA/BE

Request packet

Complete operation

Cell 1 Cell 2

Cell 1

Response packet

Cell 3 Cell 4

R_EOP

R_REQ/VLD

R_OPC

R_SRC

R_DATA

UM0484 STBus protocols

Doc ID 14178 Rev 2 59/67

Figure 34. Four cells request at target interface

Two cells RMW

Figure 35. Two cells RMW at initiator interface

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

S
ys

te
m

OPC

DATA/BE

Request packet
Cell 1

Complete operation

Cell 1 Cell 2

Response packet

Cell 3 Cell 4

R_EOP

R_GNT

R_OPC

R_SRC

R_DATA

R_REQ

CLOCK

Initiator port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_OPC

R
eq

ue
st

 P
ac

ke
t

R
es

po
ns

e
P

ac
ke

t

R_SRC/R_TID

R_DATA

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packet R and W

Cell 1 R

Complete operation

Cell 1 R Cell 1 W

Response packet A and B

Cell 2 W

Cell 2 R Cell 1 W

STBus protocols UM0484

60/67 Doc ID 14178 Rev 2

Figure 36. Two cells RMW at target interface

3.4 Error management

3.4.1 Error causes

An error can be generated within an STBus interconnect as a consequence of the following
events:

● generation of an illegal address

● generation of an unsupported opcode

● access to switched-off (power down) targets

● security policy violation

● unpredictable events

3.4.2 Error management

The management of an error condition depends on the protocol type of the interconnect
domain in which the error occurs, according to the rules in Table 16.

CLOCK

Target port

EOP

GNT

REQ

ADD

SRC/TID

R_EOP

R_GNT

R_OPC

R
eq

ue
st

 p
ac

ke
t

R
es

po
ns

e
pa

ck
et

R_SRC
R_DATA

R_DATA

S
ys

te
m

OPC

DATA/BE

R_REQ

LCK

Locked request packet R and W

Cell 1 R

Complete operation

Cell 1 R Cell 1 W

Response packet A And B

Cell 1W

Cell 2 W

Cell 2 R

UM0484 STBus protocols

Doc ID 14178 Rev 2 61/67

3.4.3 Error management in type 1

From the definitions shown in Table 16, it is possible to summarize the error behavior of a
type 1 target interface.

● As soon as a request cell has a response cell associated with it (marked by
R_OPC = 0x1) an error has occurred, and the type 1 initiator has immediate visibility of
that error. It can take this into account for its subsequent processing, or can ask for
retransmission of that cell or packet as soon as possible.

● For multi-cell packets (of for example, n cells), if an error occurs in correspondence to
the mth cell, all remaining n-m+1 cells are also marked by R_OPC equal to 0x1.

Figure 37. Error management at a type 1 interface

Table 16. Comparison of error management between protocol types

Protocol Error management condition

Type 1

As type 1 protocol does not support pipelines, each request cell has a
response cell associated with it. This response cell is marked by the
R_OPC signal which informs of the operation’s status. This means that,
each request always has immediate visibility of the operation status and all
that is required is to analyze the R_OPC field to understand what to do
next.

Type 2
Due to the symmetry property of the type 2 protocol, the number of
response cells building a response packet always matches the number of
cells building the correspondent request packet.

Type 3

Due to the asymmetry of type 3 protocol, it is possible to rely on this
flexibility to reduce the number of response cells building a response
packet affected by an error. Specifically in type 3, a response packet
relative to a load operation affected by an error is composed of the smallest
possible number of response cells.

cell 1 cell 2

cell 1 cell 2

0x0 0x1

Request packet

Response packet

Correct response Error response

STBus protocols UM0484

62/67 Doc ID 14178 Rev 2

3.4.4 Error management in type 2

From the definitions in Table 16, it is possible to summarize the error behavior of a type 2
target interface.

The following behavior must be obeyed when a response packet is composed of n response
cells. This is independent of the operation type.

If the error occurs in correspondence with the mth response cell (with m < n), n response
cells are sent back with the first m-1 response cell marked by R_OPC equal to 0x80. The
remaining n-m+1 response cells are marked by R_OPC equal to 0x81, and the R_EOP
signal asserted in correspondence with the last (nth) response cell.

Figure 38. Error management at a type 2 interface

3.4.5 Error management in type 3

From the definitions in Table 16, it is possible to summarize the error behavior of a type 3
target interface.

● For a store operation, the response packet is composed of only one response cell,
marked with the R_ROP set to 1 and the R_OPC set to 0x81.

● For a load operation, whose response packet should normally be composed of n
response cells, there are three different behaviors possible (refer to Figure 39).

– Only one response cell is sent (typically if it is possible to detect the error
immediately).

– If the error occurs in correspondence with the mth response cell (where m < n),
only m response cells are sent back. The first m-1 response cells are sent back
with R_OPC equal to 0x80 and the mth response cell sent back with R_EOP
asserted and the R_OPC set to 0x81.

– If the error occurs in correspondence with the mth response cell (where m < n), n
response cells are sent back. The first m-1 response cells marked by R_OPC
equal to 0x80, the remaining n-m+1 response cells marked by R_OPC equal to
0x81. The R_EOP is asserted in correspondence with the last (nth) response cell.

cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

0x80 0x80 0x80 0x81 0x81 0x81 0x81 0x81

Request packet

Response packet

cell 1

UM0484 STBus protocols

Doc ID 14178 Rev 2 63/67

Figure 39. Error management behavior with type 3 interface

3.4.6 Behavior of the STBus building blocks with respect to errors

The behavior of all the STBus building blocks should be consistent with the description
given in Section 3.4.3 to Section 3.4.5, and with the following rule.

The STBus interconnect must not perform any processing on the response packets. In case
of response packet errors, the number of response cells received from the target interface is
propagated back to the initiator together with their size and type.

In case of errors generated by a type 3 node (due to wrong address, security violation or
access to targets in power down mode) only one cell response packet is generated.

cell 1

cell 1

0x81

Request packet

Response packet

cell 1

cell 1 cell 2 cell 3 cell 4

0x80 0x80 0x80 0x81

Request packet

Response packet

1st case

2nd case

cell 1

cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

0x80 0x80 0x80 0x81 0x81 0x81 0x81 0x81

Request packet

Response packet

3rd case

Only one response cell is sent
(possible if the error is detected
immediately)

The number of response cells sent
depends on when the error is detected.
As soon as the error is detected the
R_EOP is asserted, the R_OPC is set to
0x81and the transmission of the
response packet stops.

All the response cells foreseen
by the opcode and the data bus
size are sent. The R_OPC is set to
0x81 as soon as the error is
detected

Glossary UM0484

64/67 Doc ID 14178 Rev 2

Appendix A Glossary

Arbitration The process used to decide which initiator can take possession of
the system buses depending on priority and the implemented (or
selected) arbitration scheme.

Buffer A buffer is a retiming block used to connect together two different
STBus nodes. A buffer acts as a target for the first node and as an
initiator for the second node. It can be also used as generic retiming
stage when retiming is needed.

Cell A cell is the most basic data information which can be transferred
along the bus within a single clock cycle; its size equals the data bus
size.

Chunk A chunk is a set of packets linked together by the LOCK (LCK)
signal. Its last packet is marked by the LCK low. A chunk is not
interruptible.

Frequency converter A frequency converter is a block acting as an adapter between two
blocks working at different clock frequencies to each other, when the
two clocks are completely asynchronous or when a phase
relationship between them exists (semi-synchronous mode).

Initiator An initiator is a device accessing the system resources through the
STBus node; an initiator port sends request packets and receives
response packets.

Message A message is a collection of chunks linked together by the TID[4]
signal (see Section 2.2: Transaction signals on page 10). The last
chunk in a message is marked by TID[4] low.

A message is interruptible if a higher priority initiator is performing a
request. This guarantees the initiator transferring the message has
the required bandwidth and also guarantees a low latency to the
initiator.

Node The STBus node is the simplest interconnect system following the
STBus protocol, to which ports of the same data size are connected.
An STBus node is composed of two main blocks: the control and the
datapath. The former is the block performing the arbitration, the latter
is the routing network through which data flows.

Packet A packet is a set of cells and its last cell is characterized by the end
of packet signal (EOP) high. A packet is not interruptible.

Protocol A protocol is a set of rules that initiators and targets follow during a
transaction. These rules are expressed in terms of signal
management (asserting and de-asserting) during a transaction.

Register decoder The register decoder is a block allowing one or more type 1 initiators
to interface with a number of type 1 targets, usually responsible for
register accesses. If there are more than one type 1 initiators, the
register decoder can be seen as a type 1 node, since an arbitration
mechanism is implemented within it.

UM0484 Glossary

Doc ID 14178 Rev 2 65/67

Size converter A size converter is a block acting as an adapter between two
different systems (such as STBus nodes) each having a different
data bus size.

STBus STBus is a set of protocols, interfaces, primitives and architectures
specifying an interconnect subsystem, versatile in terms of
performance, architecture and implementation.

Target A target is a resource for the system which is accessed by initiators
through the STBus node: a target port receives request packets and
sends response packets.

Transaction A transaction is an exchange of information between an initiator and
a target. It can consist of a request packet and the relative response
packet, a request chunk and the relative response chunk, or a
request message and the relative response message.

Type converter A type converter is a block acting as adapter between two blocks
following different STBus protocol types (such as an initiator and a
node or a node and a target).

Revision history UM0484

66/67 Doc ID 14178 Rev 2

Revision history

Table 17. Document revision history

Date Revision Changes

19-Nov-2007 1 Initial release.

04-Oct-2012 2 Removed erroneous watermark.

UM0484

Doc ID 14178 Rev 2 67/67

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	1.1 STBus overview
	1.1.1 Basic terminology
	1.1.2 Protocol
	Figure 1. STBus protocol layers

	1.1.3 Interfaces
	1.1.4 Components
	Figure 2. Example of STBus interconnect system

	2 STBus signals
	2.1 Control signals
	2.1.1 Initiator to target
	Table 1. STBus control signals: initiator to target

	2.1.2 Target to initiator
	Table 2. STBus control signals: target to initiator

	2.2 Transaction signals
	2.2.1 Initiator to target
	Table 3. STBus transaction signals: initiator to target (continued)

	2.2.2 Target to initiator
	Table 4. STBus transaction signals: target to initiator

	2.3 Service signals
	Table 5. STBus service signals

	2.4 Test signals
	Table 6. STBus test signals

	3 STBus protocols
	Table 7. Endianess mechanism
	3.1 Type 1 protocol (peripheral)
	3.1.1 Type 1 interface definition
	Figure 3. Type 1 interfaces

	3.1.2 Type 1 signal and timing
	Table 8. Type 1 signals and timings

	3.1.3 Address usage
	Figure 4. Address wrapping example

	3.1.4 Byte enables usage
	3.1.5 Opcode usage
	Table 9. Load/store opcode encoding

	3.1.6 Response opcode usage
	3.1.7 Basic transaction description
	3.1.8 Examples
	Figure 5. Single cell operation
	Figure 6. Two cells operation
	Figure 7. Four cells operation
	Figure 8. Eight cells operation

	3.1.9 Remarks on response request delay
	Figure 9. Constant response delay
	Figure 10. Initial response delay
	Figure 11. Immediate response
	Figure 12. Default response

	3.2 Type 2 protocol (basic)
	3.2.1 Type 2 interface definition
	Figure 13. Type 2 interfaces

	3.2.2 Type 2 signals and timings
	Table 10. Type 2 signals and timings

	3.2.3 Type 2 enhancements/changes compared to type 1
	3.2.4 Default grant definition
	3.2.5 Address usage
	Figure 14. Address wrapping example

	3.2.6 Byte enables usage
	3.2.7 Opcode usage
	Table 11. Primitive operations (continued)
	Table 12. Compound operations
	Table 13. Reserved operations
	Table 14. Undefined opcodes

	3.2.8 Response opcode usage
	3.2.9 Basic transactions description
	3.2.10 Chunk definition
	3.2.11 Message definition
	Figure 15. DRAM basic structure

	3.2.12 Examples
	Figure 16. Single cell transfer from an initiator
	Figure 17. Single cell transfer to a target
	Figure 18. Two cell transfer from an initiator
	Figure 19. Two cell transfer to a target
	Figure 20. Four cell transfer from an initiator
	Figure 21. Four cell transfer to a target
	Figure 22. Single cell RMW transaction from an initiator
	Figure 23. Single cell RMW transaction to a target
	Figure 24. Two cells RMW transaction from initiator
	Figure 25. Two cells RMW transaction to target

	3.3 Type 3 protocol (advanced)
	3.3.1 Type 3 interfaces definition
	Figure 26. Type 3 interfaces

	3.3.2 Type 3 signals and timings
	Table 15. Type 3 signals and timings (continued)

	3.3.3 Type 3 enhancements/changes compared to type 2
	3.3.4 Address usage
	3.3.5 Byte enables usage
	3.3.6 Opcode usage
	3.3.7 Response opcode usage
	3.3.8 Attribute signal usage
	3.3.9 Basic transaction description
	3.3.10 Chunks and messages description
	3.3.11 Examples
	Figure 27. Two cells response at Initiator interface
	Figure 28. Two cells response at target interface
	Figure 29. Four cells response at initiator interface
	Figure 30. Four cells response at target interface
	Figure 31. Two cells request at initiator interface
	Figure 32. Two cells request at target interface
	Figure 33. Four cells request at initiator interface
	Figure 34. Four cells request at target interface
	Figure 35. Two cells RMW at initiator interface
	Figure 36. Two cells RMW at target interface

	3.4 Error management
	3.4.1 Error causes
	3.4.2 Error management
	Table 16. Comparison of error management between protocol types

	3.4.3 Error management in type 1
	Figure 37. Error management at a type 1 interface

	3.4.4 Error management in type 2
	Figure 38. Error management at a type 2 interface

	3.4.5 Error management in type 3
	Figure 39. Error management behavior with type 3 interface

	3.4.6 Behavior of the STBus building blocks with respect to errors

	Appendix A Glossary
	Revision history
	Table 17. Document revision history

