
March 2007 Rev 1 1/541

 UM0407
User manual

 ST10F272Zx

Introduction
This manual describes the functionality of the ST10F272Zx devices.

An architectural overview describes the CPU performance, the on-chip system resources,
the on-chip clock generator, the on-chip peripheral blocks and the protected bits.

The operation of the CPU and the on-chip peripherals, and the different operating modes -
such as system reset, power reduction modes, interrupt handling, and system programming
- are described in individual sections.

The explanation of memory configuration has been restricted to that of the internal
addressable memory space. The ST10F272Zx Flash configurations are not discussed in
this manual. Refer to the ST10F272Zx datasheet for detailed information.

The special functional registers are listed both by name and hexadecimal address. The
instruction set is covered in full in the ST10 Family Programming Manual and is, therefore,
not discussed in this manual. However, software programming feature - including constructs
for modularity, loops, and context switching - are described in Section 27: System
programming on page 518.

The DC and AC electrical specifications of the device and the pin description for each
available package, are not covered in this manual but are listed in the specific device
datasheets.

Before starting on a new design, verify the device characteristics and pinout with an up-to-
date copy of the device datasheet.

The ST10F272Zx software and hardware development tools include:

● Compilers (C, C++), macro-assemblers, linkers, locators, library managers, format-
converters from Tasking & Keil

● HLL debuggers

● Real-time operating systems

● In-circuit emulators (based on bond-out ST chips) from Hitex, Lauterbach, Nohau

● Logic analyzer disassemblers

● Evaluation boards with monitor programs from FORTH

● Industrial embedded Flash programming software from PLS

● Network driver software (CAN)

www.st.com

http://www.st.com

UM0407

2/541

Abbreviations used in this book
The following abbreviations and acronyms are used in this user manual:

ABM alternate boot mode

ADC analog digital converter

ALE address latch enable

ALU arithmetic and logic unit

ASC asynchronous/synchronous serial controller

BRG baud rate generator

CAN controller area network (license BoschTM)

CAPCOM capture and compare unit

CISC complex instruction set computing

CMOS complementary metal oxide silicon

CPU central processing unit

DLC data length code

EBC external bus controller

ESFR extended special function register

FIFO first in - first out

Flash non-volatile memory that may be electrically erased

FSM finite state machine

GPR general purpose register

GPT general purpose timer unit

HLL high level language

IRAM on-chip internal dual port RAM

I/O input / output

I2C inter integrated circuit

MCU micro-controller unit

PEC peripheral event controller

PLA programmable logic array

PLL phase locked loop

PWM pulse width modulation

RAM random access memory

RISC reduced instruction set computing

ROM read only memory

RTC real time clock

SFR special function register

SSC synchronous serial controller

TOS top of stack

XBUS internal representation of the external bus

XRAM on-chip extension RAM

UM0407 Contents

 3/541

Contents

1 Architectural overview . 22

1.1 Basic CPU concepts and optimization . 22

1.1.1 High instruction bandwidth / fast execution . 24

1.1.2 High function 8-bit and 16-bit ALU . 24

1.1.3 Extended bit processing and peripheral control 25

1.1.4 High performance branch, call and loop processing 25

1.1.5 Consistent and optimized instruction formats . 25

1.1.6 Programmable multiple priority interrupt system 26

1.2 On-chip system resources . 27

1.2.1 Peripheral event control and interrupt control . 27

1.2.2 Memory areas . 27

1.2.3 External bus interface . 28

1.3 Clock generator . 29

1.3.1 PLL operation . 30

1.3.2 Prescaler operation . 31

1.3.3 Direct drive . 31

1.3.4 Oscillator watchdog (OWD) . 31

1.4 On-chip peripheral blocks . 31

1.4.1 Peripheral interfaces . 32

1.4.2 Peripheral timing . 32

1.4.3 Programming hints . 33

1.4.4 Parallel ports . 33

1.4.5 Serial channels . 34

1.4.6 General purpose timer (GPT) unit . 35

1.4.7 Watchdog timer . 35

1.4.8 Capture / compare (CAPCOM) units . 36

1.4.9 Pulse width modulation unit . 36

1.4.10 A/D converter . 37

1.4.11 CAN module . 37

1.4.12 I2C serial interface . 38

1.5 Real time clock . 38

1.6 Protected bits . 38

2 Memory organization . 40

Contents UM0407

4/541

2.1 Word, byte and bit storage . 41

2.2 On-chip Flash . 42

2.3 IRAM and SFR area . 43

2.3.1 System stack . 45

2.3.2 General purpose registers . 45

2.3.3 PEC source and destination pointers . 46

2.3.4 Special function registers . 47

2.4 The on-chip XRAM . 48

2.4.1 XRAM access via external masters . 49

2.5 External memory space . 49

2.6 Crossing memory boundaries . 50

3 The central processing unit (CPU) . 52

3.1 Instruction pipelines . 54

3.1.1 Sequential instruction processing . 54

3.1.2 Standard branch instruction processing . 55

3.1.3 Cache jump instruction processing . 55

3.1.4 Particular pipeline effects . 56

3.2 Bit-handling and bit-protection . 58

3.3 Instruction execution times . 59

3.4 CPU special function registers . 60

3.4.1 The system configuration register SYSCON . 61

3.4.2 X-Peripherals control register (XPERCON) . 64

3.4.3 XPERCON and XPEREMU registers . 65

3.4.4 Emulation dedicated registers . 66

3.4.5 The processor status word PSW . 66

3.4.6 The instruction pointer IP . 69

3.4.7 The code segment pointer CSP . 70

3.4.8 The data page pointers DPP0, DPP1, DPP2, DPP3 71

3.4.9 The context pointer CP . 72

3.4.10 The stack pointer SP . 74

3.4.11 The stack overflow pointer STKOV . 75

3.4.12 The stack underflow pointer STKUN . 76

3.4.13 The multiply / divide high register MDH . 76

3.4.14 The multiply / divide low register MDL . 77

3.4.15 The multiply / divide control register MDC . 77

UM0407 Contents

 5/541

3.4.16 The constant zeros register ZEROS . 78

3.4.17 The constant ones register ONES . 78

4 Multiply-accumulate unit (MAC) . 80

4.1 MAC features . 80

4.2 MAC operation . 81

4.2.1 Instruction pipelining . 81

4.2.2 Particular pipeline effects with the MAC unit . 82

4.2.3 Address generation . 82

4.2.4 16 x 16 signed/unsigned parallel multiplier . 84

4.2.5 40-bit signed arithmetic unit . 84

4.2.6 The 40-bit signed accumulator register . 85

4.2.7 The 40-bit adder / subtracter . 85

4.2.8 Data limiter . 86

4.2.9 The accumulator shifter . 86

4.2.10 Repeat unit . 86

4.2.11 MAC interrupt . 87

4.2.12 Number representation & rounding . 88

4.3 MAC register set . 88

4.3.1 Address registers . 88

4.3.2 Accumulator & control registers . 89

4.4 MAC instruction set summary . 92

5 Interrupt and trap functions . 93

5.1 Interrupt system structure . 93

5.1.1 Normal interrupt processing and PEC service . 97

5.1.2 Interrupt system register description . 97

5.1.3 Interrupt control registers . 97

5.1.4 Interrupt priority level and group level . 98

5.1.5 Interrupt control functions in the PSW . 100

5.2 Operation of the PEC channels . 101

5.3 Prioritizing interrupt & PEC service requests . 103

5.3.1 Enabling and disabling interrupt requests . 103

5.3.2 Interrupt class management . 104

5.4 Saving the status during interrupt service . 105

5.4.1 Context switching . 106

Contents UM0407

6/541

5.5 Interrupt response times . 106

5.5.1 PEC response times . 108

5.6 External interrupts . 110

5.6.1 Fast external interrupts . 111

5.7 X-Peripheral interrupt . 114

5.8 Trap functions . 125

5.8.1 Software traps . 126

5.8.2 Hardware traps . 126

5.8.3 External NMI trap . 128

5.8.4 Stack overflow trap . 129

5.8.5 Stack underflow trap . 129

5.8.6 Undefined opcode trap . 129

5.8.7 MAC interrupt . 129

5.8.8 Protection fault trap . 130

5.8.9 Illegal word operand access trap . 130

5.8.10 Illegal instruction access trap . 130

5.8.11 Illegal external bus access trap . 130

6 Parallel ports . 131

6.1 Introduction . 131

6.1.1 Open drain mode . 131

6.1.2 Input threshold control . 134

6.1.3 Alternate port functions . 135

6.2 PORT0 . 136

6.2.1 Alternate functions of PORT0 . 137

6.3 PORT1 . 139

6.3.1 Alternate functions of PORT1 . 140

6.3.2 PORT1 analog inputs disturb protection . 141

6.4 Port2 . 142

6.4.1 Alternate functions of Port2 . 143

6.4.2 External interrupts . 144

6.5 Port3 . 147

6.5.1 Alternate functions of Port3 . 147

6.6 Port4 . 150

6.6.1 Alternate functions of Port4 . 151

6.7 Port5 . 158

UM0407 Contents

 7/541

6.7.1 Alternate functions of Port5 . 158

6.7.2 Port5 analog inputs disturb protection . 159

6.8 Port6 . 160

6.8.1 Alternate functions of Port6 . 161

6.9 Port7 . 165

6.9.1 Alternate functions of Port7 . 166

6.10 Port8 . 169

6.10.1 Alternate functions of Port8 . 171

7 Dedicated pins . 177

8 The external bus interface . 179

8.1 Single chip mode . 179

8.2 External bus modes . 180

8.2.1 Multiplexed bus modes . 181

8.2.2 De-multiplexed bus modes . 182

8.2.3 Switching between the bus modes . 183

8.2.4 External data bus width . 184

8.2.5 Disable / enable control for pin BHE (BYTDIS) 185

8.2.6 Segment address generation . 185

8.2.7 CS signal generation . 186

8.2.8 Segment address versus chip select . 187

8.3 Programmable bus characteristics . 187

8.3.1 ALE length control . 188

8.3.2 Programmable memory cycle time . 189

8.3.3 Programmable memory tri-state time . 190

8.3.4 Read / write signal delay . 191

8.3.5 READY polarity . 192

8.3.6 READY / READY controlled bus cycles . 192

8.3.7 Programmable chip select timing control . 194

8.4 Controlling the external bus controller . 194

8.4.1 Definition of address areas . 199

8.4.2 Address window arbitration . 200

8.4.3 Precautions and hints . 201

8.5 EBC idle state . 201

8.6 External bus arbitration . 202

Contents UM0407

8/541

8.6.1 Connecting bus masters . 203

8.6.2 Entering the hold state . 203

8.6.3 Exiting the hold state . 204

8.7 The XBUS interface . 205

8.8 EA functionality . 211

9 The general purpose timer units . 213

9.1 Timer block GPT1 . 213

9.1.1 GPT1 core timer T3 . 215

9.1.2 GPT1 auxiliary timers T2 and T4 . 222

9.1.3 Interrupt control for GPT1 timers . 228

9.2 Timer block GPT2 . 229

9.2.1 GPT2 core timer T6 . 230

9.2.2 Interrupt control for GPT2 timers and CAPREL 240

10 Asynchronous / synchronous serial interface 241

10.1 Asynchronous operation . 244

10.2 Synchronous operation . 246

10.3 Hardware error detection . 248

10.4 ASC0 baud rate generation . 248

10.5 ASC0 interrupt control . 249

11 XBUS asynchronous / synchronous serial interface 252

11.1 Asynchronous operation . 255

11.2 Synchronous operation . 258

11.3 Hardware error detection . 260

11.4 XASC baud rate generation . 260

11.5 XASC interrupt control . 261

12 High-speed synchronous serial interface . 264

12.1 Full-duplex operation . 268

12.2 Half duplex operation . 271

12.2.1 Port control . 272

12.3 Baud rate generation . 273

12.4 Error detection mechanisms . 274

UM0407 Contents

 9/541

12.5 SSC interrupt control . 275

13 XBUS high-speed synchronous serial interface 277

13.1 Full-duplex operation . 283

13.2 Half duplex operation . 285

13.2.1 Port control . 287

13.3 Baud rate generation . 287

13.4 Error detection mechanisms . 288

13.5 XSSC interrupt control . 289

14 Watchdog timer . 290

14.1 Operation of the watchdog timer . 291

15 The bootstrap loader . 295

15.1 Selection among user-code, standard or alternate bootstrap 295

15.1.1 Part 1: . 295

15.1.2 Part 2: . 295

15.2 Standard bootstrap loader . 296

15.2.1 Entering the standard bootstrap loader . 296

15.2.2 Booting steps . 298

15.2.3 Hardware to activate BSL . 299

15.2.4 Memory configuration in bootstrap loader mode 300

15.2.5 Loading the start-up code . 301

15.2.6 Exiting bootstrap loader mode . 301

15.2.7 Hardware requirements . 301

15.3 Standard bootstrap with UART (RS232 or K-Line) 302

15.3.1 Features . 302

15.3.2 Entering bootstrap via UART . 302

15.3.3 ST10 configuration in UART BSL (RS232 or K-Line) 303

15.3.4 Loading the start-up code . 303

15.3.5 Choosing the baud rate for the BSL via UART 304

15.4 Standard bootstrap with CAN . 305

15.4.1 Features . 305

15.4.2 Entering the CAN bootstrap loader . 306

15.4.3 ST10 configuration in CAN BSL . 306

15.4.4 Loading the start-up code via CAN . 307

Contents UM0407

10/541

15.4.5 Choosing the baud rate for the BSL via CAN 308

15.4.6 How to compute the baud rate error . 310

15.4.7 Bootstrap via CAN . 311

15.5 Comparing the old and the new bootstrap loader 311

15.5.1 Software aspects . 311

15.5.2 Hardware aspects . 311

15.6 Selective boot mode . 312

15.6.1 Activation . 312

15.6.2 Memory mapping . 312

15.6.3 User mode signature integrity check . 312

15.6.4 Internal decoding of test modes . 313

15.6.5 Example . 313

16 The capture / compare units . 315

16.1 CAPCOM timers . 318

16.2 CAPCOM unit timer interrupts . 321

16.3 Capture / compare registers . 321

16.4 Capture mode . 324

16.5 Compare modes . 324

16.5.1 Compare mode 0 . 325

16.5.2 Compare mode 1 . 326

16.5.3 Compare mode 2 . 327

16.5.4 Compare mode 3 . 328

16.5.5 Double register compare mode . 329

16.6 Capture / compare interrupts . 331

17 Pulse width modulation module . 332

17.1 Operating modes . 334

17.1.1 Mode 0: standard PWM generation (edge aligned PWM) 334

17.1.2 Mode 1: symmetrical PWM generation (center aligned PWM) 335

17.1.3 Burst mode . 336

17.1.4 Single shot mode . 337

17.2 PWM module registers . 338

17.3 Interrupt request generation . 341

17.4 PWM output signals . 342

UM0407 Contents

 11/541

18 XBUS pulse width modulation module . 344

18.1 Operating modes . 346

18.1.1 Mode 0: standard PWM generation (edge aligned PWM) 346

18.1.2 Mode 1: symmetrical PWM generation (center aligned PWM) 347

18.1.3 Burst mode . 348

18.1.4 Single shot mode . 349

18.2 XPWM module registers . 350

18.3 Interrupt request generation . 354

18.4 XPWM output signals . 355

19 Analog / digital converter . 357

19.1 Mode selection and operation . 359

19.1.1 Fixed channel conversion modes . 361

19.1.2 Auto scan conversion modes . 362

19.1.3 Wait for ADDAT read mode . 363

19.1.4 Channel injection mode . 363

19.1.5 ADC power off (ADOFF) . 366

19.2 Conversion timing control . 367

19.3 A/D converter interrupt control . 368

19.4 Calibration . 369

19.5 A/D conversion accuracy . 369

19.5.1 Total unadjusted error . 370

19.5.2 Analog reference pins . 371

19.5.3 Analog input pins . 371

19.5.4 Example of external network sizing . 375

20 I2C interface . 377

20.1 Register description . 380

21 CAN modules . 384

21.1 Memory and pin mapping . 384

21.1.1 CAN1 mapping . 384

21.1.2 CAN2 mapping . 384

21.1.3 Register summary . 384

21.2 Interrupt . 387

21.3 Configuration support . 387

Contents UM0407

12/541

21.3.1 Configuration examples . 388

21.4 Clock prescaling . 390

21.5 CAN module: functional overview . 390

21.6 Block diagram . 391

21.7 Operating modes . 392

21.7.1 Software initialization . 392

21.7.2 CAN message transfer . 393

21.7.3 Disabled automatic re-transmission . 393

21.7.4 Test mode . 394

21.7.5 Silent mode . 394

21.7.6 Loop back mode . 394

21.7.7 Loop back combined with silent mode . 395

21.7.8 Basic mode . 395

21.7.9 Software control of pin CAN_TxD . 396

21.8 Programmer’s model . 396

21.8.1 Hardware reset description . 398

21.8.2 CAN protocol related registers . 398

21.8.3 Message interface register sets . 403

21.8.4 Message handler registers . 415

21.9 CAN application . 418

21.9.1 Management of message objects . 418

21.9.2 Message handler state machine . 419

21.9.3 Configuration of a transmit object . 422

21.9.4 Updating a transmit object . 422

21.9.5 Configuration of a receive object . 422

21.9.6 Handling of received messages . 423

21.9.7 Configuration of a FIFO buffer . 423

21.9.8 Reception of messages with FIFO buffers . 424

21.9.9 Handling of interrupts . 425

21.9.10 Configuration of the bit timing . 426

22 Real time clock . 438

22.1 RTC registers . 440

22.1.1 RTCCON: RTC control register . 440

22.1.2 RTCPH & RTCPL: RTC prescaler registers . 441

22.1.3 RTCDH & RTCDL: RTC divider counters . 442

UM0407 Contents

 13/541

22.1.4 RTCH & RTCL: RTC programmable counter registers 443

22.1.5 RTCAH & RTCAL: RTC alarm registers . 443

22.2 Programming the RTC . 444

23 System reset . 446

23.1 Input filter . 446

23.2 Asynchronous reset . 447

23.3 Synchronous reset (warm reset) . 451

23.4 Software reset . 457

23.5 Watchdog timer reset . 458

23.6 Bidirectional reset . 459

23.7 Reset circuitry . 463

23.8 Reset application examples . 465

23.9 Reset summary . 468

23.9.1 System start-up configuration . 469

24 Power reduction modes . 475

24.1 Idle mode . 476

24.2 Power down mode . 477

24.2.1 Protected power down mode . 478

24.2.2 Interruptible power down mode . 479

24.2.3 Real time clock and power down mode . 481

24.3 Standby mode . 482

24.3.1 Entering standby mode . 483

24.3.2 Exiting standby mode . 483

24.3.3 Real time clock and standby mode . 484

24.4 Output pin status . 484

25 Programmable output clock divider . 486

26 Register set . 487

26.1 Register description format . 487

26.2 General purpose registers (GPRs) . 488

26.3 Special function registers ordered by name . 489

26.4 Special function registers ordered by address . 497

Contents UM0407

14/541

26.5 X-Registers ordered by name . 504

26.6 X-registers ordered by address . 509

26.7 Flash registers ordered by name . 513

26.8 Flash registers ordered by address . 514

26.9 Special notes . 515

26.10 Identification registers . 515

27 System programming . 518

27.1 Stack operations . 520

27.2 Register banking . 524

27.3 Procedure call entry and exit . 524

27.4 Table searching . 526

27.5 Peripheral control and interface . 527

27.6 Floating point support . 527

27.7 Trap / interrupt entry and exit . 527

27.8 Inseparable instruction sequences . 528

27.9 Overriding the DPP addressing mechanism . 528

27.10 Handling the internal Flash . 529

27.11 Pits, traps and mines . 531

28 Revision history . 532

UM0407 List of tables

 15/541

List of tables

Table 1. Protected bit . 38
Table 2. Memory organization of the 512 Kbytes related to IFlash (ROMEN = ‘1’) 43
Table 3. Stack size . 45
Table 4. Mapping of general purpose registers to RAM addresses . 46
Table 5. Minimum execution times . 60
Table 6. Stack size . 63
Table 7. Shift right rounding error evaluation . 68
Table 8. Pointer post-modification combinations for IDXi and Rwn . 83
Table 9. Parallel data move addressing . 83
Table 10. Limiter output using CoSTORE instruction . 86
Table 11. MAC register address in CoReg addressing mode. 91
Table 12. MAC instruction set summary. 92
Table 13. Interrupt and PEC service request sources . 94
Table 14. Vector locations and status for hardware traps . 96
Table 15. PEC control register addresses . 101
Table 16. Example of software controlled interrupt classes . 104
Table 17. Pins to be used as external interrupt inputs . 110
Table 18. X-Interrupt detailed mapping . 115
Table 19. Trap priorities . 126
Table 20. Port2 alternate functions. 145
Table 21. Port3 alternative functions . 148
Table 22. Port4 alternate functions. 152
Table 23. Port5 alternate functions. 158
Table 24. Port6 alternate functions. 161
Table 25. Port7 alternate functions. 167
Table 26. Port8 alternate functions. 172
Table 27. Summary of dedicated pins . 177
Table 28. Definition of address areas . 199
Table 29. Status of the external bus interface during EBC idle state . 202
Table 30. Definition of XBUS address areas . 206
Table 31. T3CON register description . 215
Table 32. GPT1 core timer T3 count direction control . 216
Table 33. GPT1 timer resolutions . 217
Table 34. GPT1 core timer T3 (counter mode) input edge selection . 219
Table 35. GPT1 core timer T3 (incremental interface mode) input edge selection. 220
Table 36. Incremental interface count with regard to encoder’s inputs . 221
Table 37. T2CON and T4CON registers description . 222
Table 38. GPT1 auxiliary timer (counter mode) input edge selection . 224
Table 39. T6CON register description . 230
Table 40. GPT2 core timer T6 count direction control . 231
Table 41. GPT2 timer resolution. 233
Table 42. GPT2 core timer T6 (counter mode) input edge selection . 234
Table 43. T5CON register description . 235
Table 44. GPT2 auxiliary timer (counter mode) input edge selection . 237
Table 45. S0CON register description . 242
Table 46. XS1CON register description . 253
Table 47. XS1CONSET register description. 254
Table 48. XS1CONCLR register description . 254

List of tables UM0407

16/541

Table 49. SSCCON register bit description when SSCEN = ‘0’ . 266
Table 50. SSCCON register bit description when SSCEN = ‘1’ . 267
Table 51. Port 3 pins configuration for SSC master / slave modes . 273
Table 52. XSSCCON register description with XSSCEN = ‘0’ . 279
Table 53. XSSCCON register with XSSCEN = ‘1’ . 280
Table 54. XSSCCONSET register . 281
Table 55. XSSCCONCLR register . 281
Table 56. Pin configuration for port control . 287
Table 57. WDTCON register description . 291
Table 58. WDTCON bits value on different resets . 292
Table 59. WDTREL reload value . 293
Table 60. Reset events summary . 294
Table 61. ST10F272Z2 boot mode selection . 296
Table 62. Ranges of timer contents in function of BRP value . 309
Table 63. Software topics summary . 311
Table 64. Hardware topics summary . 312
Table 65. Selection of capture modes and compare modes . 323
Table 66. Summary of compare modes . 325
Table 67. Register pairs for double-register compare mode. 329
Table 68. CAPCOM unit interrupt control register addresses. 331
Table 69. PWM frequencies . 339
Table 70. PWM module channel specific register addresses . 340
Table 71. XPWM frequencies . 351
Table 72. XPWM module channel specific register addresses. 352
Table 73. ADC sampling and conversion timing. 368
Table 74. CAN1 register mapping . 385
Table 75. CAN2 register mapping . 386
Table 76. C-CAN register memory space summary . 397
Table 77. IF1 and IF2 message interface register sets . 403
Table 78. Parameters of the CAN bit time . 427
Table 79. Reset event definition . 446
Table 80. Reset events summary . 468
Table 81. PORT0 latched configuration for the different reset events . 469
Table 82. Power reduction modes summary . 476
Table 83. Output pin state during Idle and power down modes . 485
Table 84. General purpose registers (GPRs) . 488
Table 85. General purpose registers (GPRs) bit wise addressing . 488
Table 86. Special function registers ordered by name . 489
Table 87. Special function registers ordered by address . 497
Table 88. X-Registers ordered by name. 504
Table 89. X-Registers ordered by address . 509
Table 90. Flash registers ordered by name . 513
Table 91. Flash registers ordered by address . 514
Table 92. Stack size selection . 522

UM0407 List of figures

 17/541

List of figures

Figure 1. ST10F272Z2 functional block diagram . 23
Figure 2. CPU block diagram. 23
Figure 3. Clock block diagram . 30
Figure 4. ST10F272Z2 memory mapping (user mode: Flash Read operation/XADRS3 = F006h) . . 41
Figure 5. Storage of words, bytes and bits in a byte organized memory . 42
Figure 6. On-chip RAM and SFR/ESFR areas . 44
Figure 7. Location of the PEC pointers . 47
Figure 8. CPU block diagram. 53
Figure 9. Sequential instruction pipelining . 54
Figure 10. Standard branch instruction pipelining . 55
Figure 11. Cache jump instruction pipelining . 55
Figure 12. Addressing via the code segment pointer. 70
Figure 13. Addressing via the data page pointers . 72
Figure 14. Register bank selection via register CP . 74
Figure 15. Implicit CP use by short GPR addressing modes. 74
Figure 16. MAC architecture . 81
Figure 17. Example of parallel data move . 84
Figure 18. Pipeline diagram for MAC interrupt response time . 88
Figure 19. Priority levels and PEC channels . 99
Figure 20. Mapping of PEC pointers into the IRAM . 103
Figure 21. Task status saved on the system stack . 105
Figure 22. Pipeline diagram for interrupt response time . 107
Figure 23. Pipeline diagram for PEC response time . 108
Figure 24. X-Interrupt basic structure . 115
Figure 25. SFRs, XBUS registers and pins associated with the parallel ports. 133
Figure 26. Output drivers in push-pull mode and in open drain mode . 134
Figure 27. Hysteresis concept . 135
Figure 28. PORT0 I/O and alternate functions. 138
Figure 29. Block diagram of a PORT0 pin . 139
Figure 30. PORT1 I/O and alternate functions. 141
Figure 31. Block diagram of input section of a P1L pin . 142
Figure 32. Block diagram of a PORT1 pin . 142
Figure 33. Port2 I/O and alternate functions . 146
Figure 34. Block diagram of a Port2 pin. 146
Figure 35. Port3 I/O and alternate functions . 148
Figure 36. Block diagram of a Port3 pin. 149
Figure 37. Block diagram of P3.15 (CLKOUT) and P3.12 (BHE/WRH) pins 150
Figure 38. Port4 I/O and alternate functions . 152
Figure 39. Block diagram of Port4 pins 3...0 . 153
Figure 40. Block diagram of P4.4 pin. 154
Figure 41. Block diagram of P4.5 pin. 155
Figure 42. Block diagram of P4.6 pin. 156
Figure 43. Block diagram of P4.7 pin. 157
Figure 44. Port5 I/O and alternate functions . 159
Figure 45. Block diagram of a Port5 pin. 159
Figure 46. Port6 I/O and alternate functions . 162
Figure 47. Block diagram of Port6 pins 4...0 . 163
Figure 48. Block diagram of P6.5 pin. 164

List of figures UM0407

18/541

Figure 49. Block diagram of P6.6 and P6.7 pins . 165
Figure 50. Port7 I/O and alternate functions . 167
Figure 51. Block diagram of Port7 pins 3...0 . 168
Figure 52. Block diagram of Port7 pins 7...4 . 169
Figure 53. Port8 I/O and alternate functions . 172
Figure 54. Block diagram of Port8 pins 3...0 . 173
Figure 55. Block diagram of P8.4 and P8.5 pins . 174
Figure 56. Block diagram of P8.6 pin. 175
Figure 57. Block diagram of P8.7 pin. 176
Figure 58. RPD external RC circuit . 178
Figure 59. SFRs and port pins associated with the external bus interface . 180
Figure 60. Multiplexed bus cycle . 182
Figure 61. De-multiplexed bus cycle . 183
Figure 62. Switching from de-multiplexed to multiplexed bus mode . 185
Figure 63. Programmable external bus cycle . 188
Figure 64. ALE length control . 189
Figure 65. Memory cycle time . 190
Figure 66. Memory tri-state time . 191
Figure 67. Read / write delay . 192
Figure 68. READY/READY controlled bus cycles . 193
Figure 69. Chip select delay . 194
Figure 70. Address window arbitration. 200
Figure 71. Sharing external resources using slave mode . 204
Figure 72. External bus arbitration, releasing the bus . 204
Figure 73. External bus arbitration, (regaining the bus) . 205
Figure 74. Memory mapping (User mode (ROMEN = 1) / XADRS = 800Bh (reset value)) 208
Figure 75. Memory mapping (User mode: Flash read operations (ROMEN = 1 / XADRS = F006h) 209
Figure 76. EA / VSTBY external circuit . 212
Figure 77. SFRs and port pins associated with timer block GPT1. 214
Figure 78. GPT1 block diagram . 214
Figure 79. Core timer T3 in timer mode . 217
Figure 80. Core timer T3 in gated timer mode . 218
Figure 81. Core timer T3 in counter mode . 218
Figure 82. Core timer T3 in incremental interface mode . 220
Figure 83. Connection of the encoder to the ST10F272Zx . 220
Figure 84. Evaluation of the incremental encoder signals . 221
Figure 85. Evaluation of the incremental encoder signals . 221
Figure 86. Auxiliary timer in counter mode . 224
Figure 87. Concatenation of core timer T3 and an auxiliary timer . 225
Figure 88. GPT1 auxiliary timer in reload mode . 225
Figure 89. GPT1 timer reload configuration for PWM generation . 227
Figure 90. GPT1 auxiliary timer in capture mode . 228
Figure 91. SFRs and port pins associated with timer block GPT2. 229
Figure 92. GPT2 block diagram . 230
Figure 93. Block diagram of core timer T6 in timer mode . 233
Figure 94. Block diagram of core timer T6 in gated timer mode . 234
Figure 95. Block diagram of core timer T6 in counter mode . 234
Figure 96. Block diagram of auxiliary timer T5 in counter mode . 236
Figure 97. Concatenation of core timer T6 and auxiliary timer T5 . 238
Figure 98. GPT2 register CAPREL in capture mode . 238
Figure 99. GPT2 register CAPREL in reload mode . 239
Figure 100. GPT2 register CAPREL in capture-and-reload mode. 240

UM0407 List of figures

 19/541

Figure 101. SFRs and port pins associated with ASC0 . 241
Figure 102. Asynchronous mode of serial channel ASC0 . 244
Figure 103. Asynchronous 8-bit data frames . 245
Figure 104. Asynchronous 9-bit data frames . 246
Figure 105. Synchronous mode of serial channel ASC0 . 247
Figure 106. ASC0 interrupt generation . 251
Figure 107. XBUS registers and port pins associated with XASC . 252
Figure 108. Asynchronous mode of serial channel XASC . 256
Figure 109. Asynchronous 8-bit data frames . 256
Figure 110. Asynchronous 9-bit data frames . 258
Figure 111. Synchronous mode of serial channel XASC. 259
Figure 112. XASC interrupt generation . 263
Figure 113. SFRs and port pins associated with the SSC . 264
Figure 114. Synchronous serial channel SSC block diagram . 265
Figure 115. Serial clock phase and polarity options . 269
Figure 116. SSC full duplex configuration . 269
Figure 117. SSC half duplex configuration . 272
Figure 118. SSC error interrupt control . 275
Figure 119. XBUS registers and port pins associated with the XSSC . 278
Figure 120. Synchronous serial channel XSSC block diagram . 279
Figure 121. Serial clock phase and polarity options . 283
Figure 122. XSSC full duplex configuration . 284
Figure 123. XSSC half duplex configuration . 286
Figure 124. SFRs and port pins associated with the watchdog timer . 290
Figure 125. Watchdog timer block diagram . 290
Figure 126. ST10F272Zx new standard bootstrap loader program flowST10 configuration in BSL . . 297
Figure 127. Booting steps for ST10F272Z2. 299
Figure 128. Hardware provisions to activate the BSL . 299
Figure 129. Memory configuration after reset . 300
Figure 130. UART bootstrap loader sequence . 302
Figure 131. Baud rate deviation between host and ST10F272Z2 . 304
Figure 132. CAN bootstrap loader sequence. 305
Figure 133. Bit rate measurement over a predefined zero-frame . 308
Figure 134. Reset boot sequence . 314
Figure 135. SFRs and port pins associated with the CAPCOM units . 316
Figure 136. CAPCOM unit block diagram . 317
Figure 137. Block diagram of CAPCOM timers T0 and T7 . 318
Figure 138. Block diagram of CAPCOM timers T1 and T8 . 318
Figure 139. Capture mode block diagram . 324
Figure 140. Compare mode 0 and 1 block diagram. 326
Figure 141. Timing example for compare modes 0 and 1 . 327
Figure 142. Compare mode 2 and 3 block diagram. 327
Figure 143. Timing example for compare modes 2 and 3 . 328
Figure 144. Double register compare mode block diagram . 330
Figure 145. Timing example for double register compare mode . 330
Figure 146. SFRs and port pins associated with the PWM module. 333
Figure 147. PWM channel block diagram . 334
Figure 148. Operation and output waveform in mode 0 . 335
Figure 149. Operation and output waveform in mode 1. 336
Figure 150. Operation and output waveform in burst mode. 337
Figure 151. Operation and output waveform in single shot mode . 338
Figure 152. PWM output signal generation . 343

List of figures UM0407

20/541

Figure 153. XBUS registers and port pins associated with the XPWM module 345
Figure 154. XPWM channel block diagram . 346
Figure 155. Operation and output waveform in mode 0. 347
Figure 156. Operation and output waveform in mode 1. 348
Figure 157. Operation and output waveform in burst mode. 349
Figure 158. Operation and output waveform in single shot mode . 350
Figure 159. XPWM output signal generation . 356
Figure 160. SFRs, XBUS registers and port pins associated with the A/D converter 357
Figure 161. Analog / digital converter block diagram. 358
Figure 162. Auto scan conversion mode example. 362
Figure 163. Wait for read mode example. 363
Figure 164. Channel injection example . 365
Figure 165. Channel injection example with wait for read . 366
Figure 166. A/D conversion characteristic . 371
Figure 167. A/D converter input pins scheme . 372
Figure 168. Charge sharing timing diagram during sampling phase . 373
Figure 169. Anti-aliasing filter and conversion rate . 375
Figure 170. Schematic of internal gates of the XBUS functions . 380
Figure 171. Connection to single CAN bus via separate CAN transceivers . 389
Figure 172. Connection to single CAN bus via one common transceiver . 389
Figure 173. Connection to two different CAN buses (e.g. for gateway application). 389
Figure 174. Connection to one CAN bus with internal parallel mode enabled. 390
Figure 175. Block diagram of the C-CAN. 392
Figure 176. CAN core in silent mode . 394
Figure 177. CAN core in loop back mode . 395
Figure 178. CAN core in loop back combined with silent mode. 395
Figure 179. Data transfer between IFx Registers and Message RAM. 420
Figure 180. CPU handling of a FIFO buffer . 425
Figure 181. Bit timing . 427
Figure 182. The propagation time segment . 428
Figure 183. Synchronization on “late” and “early” edges . 430
Figure 184. Filtering of short dominant spikes . 431
Figure 185. Structure of the CAN core’s can protocol controller . 434
Figure 186. SFRs associated with the RTC. 439
Figure 187. XBUS registers associated with the RTC . 439
Figure 188. RTC block diagram . 440
Figure 189. Prescaler register . 442
Figure 190. Divider counters . 443
Figure 191. Asynchronous power-on RESET (EA = 1) . 448
Figure 192. Asynchronous power-on RESET (EA = 0) . 449
Figure 193. Asynchronous hardware RESET (EA = 1) . 450
Figure 194. Asynchronous hardware RESET (EA = 0) . 451
Figure 195. Synchronous short / long hardware RESET (EA = 1). 454
Figure 196. Synchronous short / long hardware RESET (EA = 0). 455
Figure 197. Synchronous long hardware RESET (EA = 1) . 456
Figure 198. Synchronous long hardware RESET (EA = 0) . 457
Figure 199. SW / WDT unidirectional RESET (EA = 1) . 458
Figure 200. SW / WDT unidirectional RESET (EA = 0) . 459
Figure 201. SW / WDT bidirectional RESET(EA = 1) . 461
Figure 202. SW / WDT bidirectional RESET (EA = 0) . 462
Figure 203. SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET 463
Figure 204. Minimum external reset circuitry . 464

UM0407 List of figures

 21/541

Figure 205. System reset circuit . 465
Figure 206. Internal (simplified) reset circuitry . 465
Figure 207. Example of software or watchdog bidirectional reset (EA = 1) . 466
Figure 208. Example of software or watchdog bidirectional reset (EA = 0) . 467
Figure 209. PORT0 bits latched into the different registers after reset . 470
Figure 210. Transitions between Idle mode and active mode . 477
Figure 211. RPD pin: external circuit to exit power down . 480
Figure 212. Simplified power down exit circuitry . 481
Figure 213. Power down exit sequence using an external interrupt (PLL x 2). 481
Figure 214. Physical stack address generation . 522
Figure 215. Local registers . 526

Architectural overview UM0407

22/541

1 Architectural overview

ST10F272Z2 architecture combines the advantages of both RISC and CISC processors
with an advanced peripheral subsystem. Figure 1: ST10F272Z2 functional block diagram on
page 23 gives an overview of the different on-chip components and of the advanced, high
bandwidth internal bus structure of the ST10F272Z2.

1.1 Basic CPU concepts and optimization
The main core of the CPU includes a 4-stage instruction pipeline, a 16-bit arithmetic and
logic unit (ALU) and dedicated SFRs.

Additional hardware is provided for a separate multiply and divide unit, a bit-mask generator
and a barrel shifter (see Figure 2: CPU block diagram on page 23).

Several areas of the processor core have been optimized for performance and flexibility.
Functional blocks in the CPU core are controlled by signals from the instruction decode
logic. The core improvements are summarized below, and described in detail in the following
sections:

1. High instruction bandwidth / fast execution.

2. High function 8-bit and 16-bit arithmetic and logic unit.

3. Extended bit processing and peripheral control.

4. High performance branch, call and loop processing.

5. Consistent and optimized instruction formats.

6. Programmable multiple priority interrupt structure.

UM0407 Architectural overview

 23/541

Figure 1. ST10F272Z2 functional block diagram

Figure 2. CPU block diagram

E
xt

er
na

l B
us

C
on

tr
ol

le
r

10
-b

it
A

D
C

G
P

T
1

/ G
P

T
2

A
S

C
0

BRG BRG

S
S

C
0

P
W

M

C
A

P
C

O
M

2

C
A

P
C

O
M

1P
or

t 0
P

or
t 1

P
or

t 4

Port 6 Port 5

CPU-Core and MAC Unit

XCAN2

XSSC

XASC

XCAN1

XI2C

XRAM
2K

XRAM
16K

(STBY)

(PEC)

IFlash
256K

32

16

16 16

16 16

16 16

16

PEC

Interrupt Controller

Port 3 Port 7 Port 8

16

Watchdog

IRAM
2K

16

XRTC

Oscillator

PLL

5V-1.8V
Voltage

Regulator

P
or

t 2

16

16

8

8 16 15 8 8

16

16

32kHz
OscillatorXPWM

16

16

16

CPU

SP

STKOV

STKUN

Execution Unit

Instruction Pointer

4-Stage
Pipeline

PSW

SYSCON

MDH

MDL

Multiplication

Bit-Mask

Barrel-Shift

CP

16-bit

ALU

R15

R0

ADDRSEL 1

ADDRSEL 2

ADDRSEL 3

ADDRSEL 4

BUSCON 0

BUSCON 1

BUSCON 2

BUSCON 3

BUSCON 4

Code Segment Data Page

General
Purpose
Registers

2 Kbyte

Bank n

Bank i

Bank 0

16

16

256 Kbyte
IFlash

16 + 2 Kbyte

32 Division Hardware

Generator

PointerPointers

XRAM

IRAM

16

Architectural overview UM0407

24/541

1.1.1 High instruction bandwidth / fast execution

Most of the ST10F272Z2’s instructions are executed in one instruction cycle. For example,
shift and rotate instructions are processed in one instruction cycle independent of the
number of bits to be shifted. Multiple-cycle instructions have been optimized: Branches are
carried out in 2 instruction cycles, 16 x 16 bit multiplication in 5 instruction cycles and a
32/16-bit division in 10 instruction cycles. The jump cache reduces the execution time of
repeatedly performed jumps in a loop, from 2 instruction cycles to 1 instruction cycle.

The instruction cycle time has been reduced by instruction pipelining. This technique allows
the core CPU to process, in parallel, portions of multiple sequential instruction stages. The
following four stage pipeline provides the optimum balancing for the CPU core:

● Fetch: In this stage, an instruction is fetched from the internal Flash or RAM or from the
external memory, based on the current IP value.

● Decode: In this stage, the previously fetched instruction is decoded and the required
operands are fetched.

● Execute: In this stage, the specified operation is performed on the previously fetched
operands.

● Write back: In this stage, the result is written to the specified location.

If this technique is not used, each instruction would require four instruction cycles. Pipelining
offers increased performance.

1.1.2 High function 8-bit and 16-bit ALU

All standard arithmetic and logical operations are performed in a 16-bit ALU. In addition, the
condition flags for byte operations are provided from the sixth and seventh bit of the ALU
result.

Multiple precision arithmetic is provided through a 'CARRY-IN' signal to the ALU, from
previously calculated portions of the desired operation. Most of the internal execution blocks
have been optimized to perform operations on either 8-bit or 16-bit data.

Once the pipeline has been filled, one instruction is completed per instruction cycle, except
for multiply and divide. An advanced Booth algorithm has been incorporated to allow 4 bits
to be multiplied and 2 bits to be divided per instruction cycle. Thus, these operations use two
coupled 16-bit registers, MDL and MDH, and require 4 and 9 instruction cycles, respectively,
to perform a 16-bit by 16-bit (or 32-bit by 16-bit) calculation plus 1 instruction cycle to setup
and adjust the operands and the result.

Even these longer multiply and divide instructions can be interrupted during their execution
to allow very fast interrupt response.

Instructions have also been provided to allow byte packing in memory while providing sign
extension of byte for word wide arithmetic operations.

The internal bus structure also allows transfers of byte or words to or from peripherals based
on the peripheral requirements.

A set of consistent flags is automatically updated in the PSW register after each arithmetic,
logical, shift, or movement operation.

These flags allow branching on specific conditions. Support for both signed and unsigned
arithmetic is provided through user-specifiable branch tests. These flags are also preserved
automatically by the CPU upon entry into an interrupt or trap routine.

All targets for branch calculations are also computed in the central ALU.

UM0407 Architectural overview

 25/541

A 16-bit barrel shifter provides multiple bit shifts in a single instruction cycle. Rotate and
arithmetic shifts are also supported.

1.1.3 Extended bit processing and peripheral control

A large number of instructions are dedicated to bit processing. These instructions provide
efficient control and testing of peripherals and they enhance data manipulation. Unlike other
microcontrollers, these instructions provide direct access to two operands in the bit-
addressable space, without the need to move them into temporary flags.

The same logical instructions available for words and byte, are also supported for bit. This
allows the user to compare and modify a control bit for a peripheral, in one instruction.

Multiple bit shift instructions have been included to avoid long instruction streams of single
bit shift operations. These are also performed in a single instruction cycle. In addition, bit
field instructions have been provided to allow the modification of multiple bit from one
operand in a single instruction.

1.1.4 High performance branch, call and loop processing

Due to the high percentage of branching in controller applications, branch instructions have
been optimized to require one extra instruction cycle only when a branch is taken. This is
implemented by pre-calculating the target address while decoding the instruction.

To decrease loop execution overhead, three enhancements have been provided:

1. Single cycle branch execution is provided after the first iteration of a loop. Therefore,
only one instruction cycle is lost during the execution of the entire loop. In loops which
fall through upon completion, no instruction cycle is lost when exiting the loop. No
special instruction is required to perform loops, and loops are automatically detected
during execution of branch instructions.

2. Detection of the end of a table avoids the use of two compare instructions embedded in
loops. One simply places the lowest negative number at the end of the specific table,
and specifies branching if neither this value nor the compared value have been found.
Otherwise the loop is terminated if either condition has been met. The terminating
condition can then be tested.

3. The third loop enhancement provides a more flexible solution than the decrement and
skip on zero instruction which is found in other microcontrollers. Through the use of
compare and increment or decrement instructions, the user can make comparisons to
any value. This allows loop counters to cover any range. This is particularly powerful in
table searching.

Saving of system state is automatically performed on the internal system stack avoiding the
use of instructions to preserve state upon entry and exit of interrupt or trap routines. Call
instructions push the value of the IP on the system stack, and require the same execution
time as branch instructions.

Instructions have also been provided to support indirect branch and call instructions. This
supports implementation of multiple CASE statement branching in assembler macros and
high level languages.

1.1.5 Consistent and optimized instruction formats

To obtain optimum performance in a pipeline design, an instruction set has been designed
using concepts of Reduced Instruction Set Computing (RISC).

Architectural overview UM0407

26/541

These concepts primarily allow fast decoding of the instructions and operands, while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions, which are required by microcontroller users.

The following goals were used to design the instruction set:

● To provide powerful instructions to perform operations which currently require
sequences of instructions and which are frequently used. To avoid transfer into and out
of temporary registers such as accumulators and carry bit. To perform tasks in parallel
such as saving state upon entry into interrupt routines or subroutines.

● To avoid complex encoding schemes by placing operands in consistent fields for each
instruction. This also avoids complex addressing modes which are not frequently used,
and decreases the instruction decode time, while also simplifying the development of
compilers and assemblers.

● To provide the most frequently used instructions with one-word instruction formats. All
other instructions are placed into two-word formats. This allows all instructions to be
placed on word boundaries, which alleviates the need for complex alignment hardware.
It also has the benefit of increasing the range for relative branching instructions.

The high performance offered by the hardware implementation of the CPU can efficiently be
used by a programmer via the highly functional ST10F272Z2 instruction set. Possible
operand types are bits, bytes and words. Specific instruction support the conversion
(extension) of bytes to words. A variety of direct, indirect or immediate addressing modes
are provided to specify the required operands.

1.1.6 Programmable multiple priority interrupt system

The following enhancements have been included to allow processing of a large number of
interrupt sources:

● Peripheral Event Controller (PEC): This processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single cycle interrupt-driven byte or word data transfers between
any two locations in segment 0 with an optional increment of either the PEC source or
the destination pointer. Just one cycle is 'stolen' from the current CPU activity to
perform a PEC service.

● Multiple Priority Interrupt Controller: This controller allows all interrupts to be placed at
any specified priority. Interrupts may also be grouped, which provides the user with the
ability to prevent similar priority tasks from interrupting each other. For each of the
possible interrupt sources there is a separate control register, which contains an
interrupt request flag, an interrupt enable flag and an interrupt priority bit-field. Once
having been accepted by the CPU, an interrupt service can only be interrupted by a
higher prioritized service request. For standard interrupt processing, each of the
possible interrupt sources has a dedicated vector location.

● Multiple Register Banks: This feature allows the user to specify up to sixteen general
purpose registers located anywhere in the IRAM. A single “one instruction cycle”
instruction is used to switch register banks from one task to another.

● Interruptible Multiple Cycle Instructions: Reduced interrupt latency is provided by
allowing multiple-cycle instructions (multiply, divide) to be interruptible.

With an interrupt response time within a range from just 5 to 12 CPU clock periods, the
ST10F272Z2 is capable of fast reaction to non-deterministic events.

The ST10F272Z2 also provides an excellent mechanism to identify and to process
exceptions or error conditions that arise during run-time, so called ‘Hardware Traps’.

UM0407 Architectural overview

 27/541

Hardware traps cause an immediate non-maskable system reaction which is similar to a
standard interrupt service (branching to a dedicated vector table location).

The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag
register (TFR).

Except for another higher prioritized trap service being in progress, a hardware trap will
interrupt any current program execution. In turn, hardware trap services can normally not be
interrupted by standard or PEC interrupts.

Software interrupts are supported by means of the 'TRAP' instruction in combination with an
individual trap (interrupt) number.

1.2 On-chip system resources
The ST10F272Z2 controllers provide a number of powerful system resources designed
around the CPU. The combination of CPU and these resources results in the high
performance of the members of this controller family.

1.2.1 Peripheral event control and interrupt control

The Peripheral Event Controller (PEC) makes it possible to respond to an interrupt request
with a single data transfer (word or byte) which only consumes one instruction cycle and
does not require a save and restore of the machine status.

Each interrupt source is prioritized in every instruction cycle in the interrupt control block. If a
PEC service is selected, a PEC transfer is started. If CPU interrupt service is requested, the
current CPU priority level stored in the PSW register is tested to determine whether a higher
priority interrupt is currently being serviced.

When an interrupt is acknowledged, the current state of the machine is saved on the internal
system stack and the CPU branches to the system specific vector for the peripheral.

The PEC contains a set of SFRs which store the count value and control bit for eight data
transfer channels. In addition, the PEC uses a dedicated area of RAM which contains the
source and destination addresses. The PEC is controlled similarly to any other peripheral
through SFRs containing the desired configuration of each channel.

An individual PEC transfer counter is implicitly decremented for each PEC service except
forming in the continuous transfer mode. When this counter reaches zero, a standard
interrupt is performed to the vector location related to the corresponding source. PEC
services are very well suited, for example, to move register contents to/from a memory
table. The ST10F272Z2 has 8 PEC channels each of which offers such fast interrupt-driven
data transfer capabilities.

1.2.2 Memory areas

The memory space of the ST10F272Z2 is organized as a unified memory which means that
code memory, data memory, registers and I/O ports are organized within the same linear
address space which covers up to 16 Mbytes. The entire memory space can be accessed
byte wise or word wise. Particular portions of the on-chip memory have additionally been
made directly bit addressable.

A 2 Kbyte 16-bit wide IRAM provides fast access to General Purpose Registers (GPRs),
user data (variables) and system stack. The IRAM may also be used for code. A unique

Architectural overview UM0407

28/541

decoding scheme provides flexible user register banks in the internal memory while
optimizing the remaining RAM for user data.

The CPU contains an actual register context, consisting of up to 16 word wide and/or byte
wide GPRs which are physically located within the IRAM area.

A Context Pointer (CP) register determines the base address of the active register bank to
be accessed by the CPU at a time. The number of register banks is only restricted by the
available IRAM space. For easy parameter passing, one register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system
stack is also located within the IRAM area, and it is accessed by the CPU via the stack
pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared
against the stack pointer value upon each stack access for the detection of a stack overflow
or underflow.

Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.

A 18 Kbyte 16-bit wide on-chip XRAM provides fast access to user data (variables), user
stacks and code. The on-chip XRAM is an X-Peripheral and appears to the software as an
external RAM. Therefore it cannot store register banks and is not bit addressable. The
XRAM allows 16-bit accesses with maximum speed. A portion of the on-chip XRAM (16
Kbytes) represents the standby RAM, which can be maintained biased through EA/VSTBY
pin when main supply VDD is turned off.

A 256 Kbyte on-chip internal Flash (IFlash) provides for both code and constant data
storage. This memory area is connected to the CPU via a 32-bit wide bus. Thus, an entire
double-word instruction can be fetched in just one instruction cycle. Program execution from
the on-chip IFlash is the fastest of all possible alternatives.

For Special Function Registers 1024 bytes of the address space are reserved. The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended Special
Function Register area (ESFR) uses the other 512 bytes. (E)SFRs are word wide registers
which are used for controlling and monitoring functions of the different on-chip units. Unused
ESFR addresses are reserved for future members of the ST10F272Z2 family.

1.2.3 External bus interface

In addition to the internal memory, the application can address up to 16 Mbytes of external
memory via the external bus interface.

The integrated External Bus Controller (EBC) allows flexible access to external memory
and/or peripheral resources. For up to five address areas the bus mode (multiplexed / de-
multiplexed), the data bus width (8-bit / 16-bit) and even the length of a bus cycle (wait-
states, signal delays) can be selected independently.

This allows access to a variety of memory and peripheral components, directly and with
maximum efficiency. If the device does not run in single chip mode, where no external
memory is required, the EBC can control external accesses in one of the following four
different external access modes:

● 16-/18-/20-/24-bit addresses, and 16-bit data, de-multiplexed.

● 16-/18-/20-/24-bit addresses, and 8-bit data, de-multiplexed.

● 16-/18-/20-/24-bit addresses, and 16-bit data, multiplexed.

● 16-/18-/20-/24-bit addresses, and 8-bit data, multiplexed.

UM0407 Architectural overview

 29/541

The de-multiplexed bus modes use PORT1 for addresses and PORT0 for data input/output.
The multiplexed bus modes use PORT0 for both addresses and data input/output.

Important timing characteristics of the external bus interface (wait-states, ALE length and
read/write delay) have been made programmable to support a wide range of different
memory peripheral types. Access to very slow memories or peripherals is supported via a
particular 'Ready' function.

To address more than 64 Kbytes of external memory, Port4 is used to generate the address
lines A16...A23. Otherwise Port4 can be used as standard I/O.

The on-chip XBUS is an internal representation of the external bus and allows access to
integrated application specific peripherals/modules in the same way as external
components. It provides a defined interface for these customized peripherals.

The on-chip XRAM, the on-chip CAN-Modules, the XASC, the XSSC, the XPWM, the I2C
interface, the RTC are all examples for these X-Peripherals.

1.3 Clock generator
The on-chip clock generator provides the ST10F272Z2 with its basic clock signal that
controls the activities of the controller hardware. Its oscillator amplifier can run with an
external crystal and appropriate oscillator circuitry (see Section 7: Dedicated pins on
page 177), or can be driven by an external clock source.

Direct drive mode allows to feed the device with an external clock signal to provide directly
the clock to the CPU, up to maximum internally allowed speed. In this mode, the on-chip
oscillator amplifier is bypassed, so there is no limit imposed by the bandwidth of the
amplifier circuit itself.

On the contrary, for all the other configurations, the on-chip oscillator amplifier is not
bypassed, so the external clock can be provided by a crystal or resonator only, according to
the limited frequency ranges (refer to datasheet for more details).

The resulting internal clock signal is also referred to as “CPU clock”. Two separated clock
signals are generated for the CPU itself and the peripheral part of the chip.

While the CPU clock is stopped during idle mode, the peripheral clock keeps running. Both
clocks are switched off when the power down mode is entered.

The on-chip PLL circuit allows operation of the ST10F272Z2 with a low frequency external
clock while still providing maximum performance.

The PLL multiplies the external clock frequency by a selectable factor F (0.5, 1, 3, 4, 5, 8,
10, 16) and generates a CPU clock signal with 50% duty cycle.

The PLL also provides fail safe mechanisms which allows the detection of frequency
deviations and the execution of emergency actions in case of an external clock failure even
when PLL is bypassed (see Section 1.3.4: Oscillator watchdog (OWD) on page 31).

Architectural overview UM0407

30/541

Figure 3. Clock block diagram

1.3.1 PLL operation

The PLL is enabled except when P0H.[7..5] = ‘011’ or ‘001’ during reset (Direct Drive and
Prescaler modes). At Power-On, the PLL provides a stable clock signal in less than 1ms
after VDD has reached 5V±10%, even if there is no external clock signal (in this case, the
PLL will run on its basic frequency of 750 kHz to 3 MHz). Refer to datasheet for more details
about PLL characteristics.

The PLL starts synchronizing with the external clock signal as soon as it is available. Within
1ms after stable oscillations of the external clock within the specified frequency range, the
PLL will be synchronous with this clock at a frequency of F x fXTAL, and the PLL locks to the
external clock.

Note: The ST10F272Zx is required to operate on the desired CPU clock directly after reset: Make
sure that RSTIN remains active until the PLL has locked. If this is not done, the unlock
detection circuit will, immediately after reset, disconnect the crystal reference clock path
from the PLL input and results in the CPU clock being provided by the PLL free-running
frequency.

The PLL constantly synchronizes to the external clock signal. Due to the fact that the
external frequency is 1/F’th of the PLL output frequency, the output frequency may be
slightly higher or lower than the desired frequency.

This jitter is irrelevant for longer time periods. For short periods (few CPU clock cycles), it
remains below the specified value (refer to datasheet for details).

When the PLL is detected no longer locked (no longer stable), it generates an interrupt
request (on the PLL Unlock interrupt node).

This occurs when the input clock is unstable and especially when the input clock fails
completely (for example due to a broken crystal). In this case, the synchronization
mechanism will reduce the PLL output frequency down to the PLL’s basic frequency
(750 kHz to 3 MHz). The basic frequency is still generated and allows the CPU to execute
emergency actions in case of an external clock loss.

MUX

Oscillator
Circuit

Reset

PWRDN XBUS interrupt

fPLL

fXTAL fCPUXTAL2

XTAL1

Oscillator
Watchdog

Prescaler
(÷ 2) MUX

P0H.7

MUX

P0H.6 P0H.5

PLL Circuit
fPLL = F x fIN

reset sleep
Unlock

Factor

UM0407 Architectural overview

 31/541

1.3.2 Prescaler operation

When pins P0H.[7..5] = ‘001’ during reset, the CPU clock is derived from the internal
oscillator (input clock signal) by a 2:1 prescaler. Note that it is not possible to force a clock
signal through an external clock generator unless Direct Drive is selected.

The frequency of fCPU is half the frequency of fXTAL.

The PLL is still running on its basic frequency of 750 kHz to 3 MHz, and delivers the clock
signal for the Oscillator Watchdog, except if bit OWDDIS is set: In this case the PLL is
switched off.

1.3.3 Direct drive

When pins P0H.[7..5] = ‘011’ during reset, the CPU clock is directly driven from the internal
oscillator with the input clock signal (this means fCPU = fXTAL). The maximum input clock
frequency depends on the clock signal’s duty cycle, because the minimum values for the
clock phases (TCLs) must be respected.

The PLL runs on its basic frequency of 750 kHz to 3 MHz, and delivers the clock signal for
the Oscillator Watchdog, except if bit OWDDIS is set: In this case the PLL is switched off.

1.3.4 Oscillator watchdog (OWD)

In order to provide a fail safe mechanism for the instance of a loss of the external clock, an
oscillator watchdog is implemented when the selected clock option is direct drive or direct
drive with prescaler.

The oscillator watchdog operates as follows:

● The oscillator watchdog (OWD) is enabled by default after reset. To disable the OWD,
set bit OWDDIS of the SYSCON register.

● When the OWD is enabled, the PLL runs on its free-running frequency, and increments
the Oscillator Watchdog counter.

● On each transition of XTAL1 pin, the Oscillator Watchdog counter is cleared.

If an external clock failure occurs, then the Oscillator Watchdog counter overflows (after 16
PLL clock cycles). The CPU clock signal will be switched to the PLL clock signal (in this
case, the PLL will run on its basic frequency of 750 kHz to 3 MHz), and the Oscillator
Watchdog Interrupt Request is flagged.

The CPU clock will not switch back to the external clock even if a valid external clock is
applied on XTAL1 pin. Only a hardware reset can switch the CPU clock source back to
external clock input.

When the OWD is disabled, the CPU clock is always fed from the oscillator input and the
PLL is switched off to decrease power supply current.

1.4 On-chip peripheral blocks
The ST10 family of devices separates peripherals from the core. This allows peripherals to
be added or removed without modifications to the core. Each functional block processes
data independently and communicates information over common buses. Peripherals are
controlled by data written to the respective Special Function Registers (SFRs). These SFRs

Architectural overview UM0407

32/541

are located either within the standard SFR area (00’FE00h...00’FFFFh), or within the
extended ESFR area (00’F000h...00’F1FFh).

The built in peripherals are used for interfacing the CPU to the external world, or to provide
on-chip functions. The ST10F272Z2 generic peripherals are:

● Nine I/O ports with a total of 111 I/O lines,

● Two Serial Interfaces (ASC0 and SSC),

● Two General Purpose Timer Blocks (GPT1 and GPT2),

● A Watchdog Timer,

● Two 16-channel Capture / Compare units (CAPCOM1 and CAPCOM2),

● A 4-channel Pulse Width Modulation unit (PWM),

● A 10-bit Analog / Digital Converter.

Each peripheral also contains a set of Special Function Registers (SFRs), which control the
functionality of the peripheral and temporarily store intermediate data results. Each
peripheral has an associated set of status flags. Individually selected clock signals are
generated for each peripheral from binary multiples of the CPU clock.

In order to enhance the performance of the device, a set of additional on-chip X-Peripherals
are available on ST10F272Z2 and controlled through dedicated set of registers:

● Two CAN interfaces,

● Two additional Serial Interfaces (XASC and XSSC),

● An I2C Serial Interface,

● An additional 4-channel Pulse Width Modulation unit (XPWM),

● A Real Time Clock module.

1.4.1 Peripheral interfaces

The on-chip peripherals generally have two different types of interfaces: an interface to the
CPU and an interface to external hardware. Communication between CPU and peripherals
is performed through Special Function Registers (SFRs) and interrupts. The SFRs serve as
control/status and data registers for the peripherals. Interrupt requests are generated by the
peripherals based on specific events which occur during their operation like end of task, new
event, errors, etc.

Specific pins of the parallel ports are used for interfacing with external hardware when an
input or output function has been selected for a peripheral. During this time, the port pins
are controlled by the peripheral (when used as outputs) or by the external hardware which
controls the peripheral (when used as inputs). This is called the ‘alternate (input or output)
function’ of a port pin, in contrast to its function as a general purpose I/O pin.

Similarly, the on-chip X-Peripherals communicate with the CPU through a dedicated set of
registers and dedicated structure of interrupt management system.

1.4.2 Peripheral timing

Internal operation of CPU and peripherals is based on the CPU clock (fCPU). The on-chip
oscillator derives the CPU clock from the crystal or from the external clock signal.

The clock signal which is gated to the peripherals is independent from the clock signal which
feeds the CPU. During Idle mode the CPU’s clock is stopped while the peripherals continue
their operation.

UM0407 Architectural overview

 33/541

When an SFR is written to by software in the same state where it is also to be modified by
the peripheral, the software write operation has priority. Further details on peripheral timing
are included in the specific sections about each peripheral.

1.4.3 Programming hints

Access to SFRs: All SFRs reside in data page 3 of the memory space. The following
addressing mechanisms are used to access the SFRs:

● Indirect or direct addressing with 16-bit (mem) addresses it must be guaranteed that
the used data page pointer (DPP0...DPP3) selects data in memory space page 3.

● accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx
pointers instead of the data page pointers.

● short 8-bit (reg) addresses to the standard SFR area do not use the data page
pointers but directly access the registers within this 512 byte area.

● short 8-bit (reg) addresses to the extended ESFR area require switching to the 512
byte extended SFR area. This is done via the EXTension instructions EXTR, EXTP(R),
EXTS(R).

Byte write operations to word wide SFRs via indirect or direct 16-bit (mem) addressing or
byte transfers via the PEC, force zeros in the non-addressed byte. Byte write operations via
short 8-bit (reg) addressing can only access the low byte of an SFR and force zeros in the
high byte. It is therefore recommended, to use the bit-field instructions (BFLDL and BFLDH)
to write to any number of bit in either byte of an SFR without disturbing the non-addressed
byte and the unselected bit.

Reserved bit: Some of the bits which are contained in the ST10F272Z2's SFRs are marked
as 'Reserved'. User software must write '0's to reserved bits.

These bits are currently not implemented and may be used in future products to invoke new
functions. In this case, the active state for these functions will be '1', and the inactive state
will be '0'. Therefore writing only ‘0’s to reserved locations provides portability of the current
software to future devices. Read accesses to reserved bits return ‘0’s.

1.4.4 Parallel ports

The ST10F272Z2 provides up to 111 I/O lines which are organized into eight input/output
ports and one input port. All port lines are bit-addressable, and all input/output lines are
individually (bit wise) programmable as inputs or outputs via direction registers. The I/O
ports are true bidirectional ports which are switched to high impedance state when
configured as inputs.

The output drivers of three I/O ports can be configured (pin by pin) for push-pull operation or
open-drain operation via control registers. During the internal reset, all port pins are
configured as inputs.

Architectural overview UM0407

34/541

All pins of I/O ports also support an alternate programmable function:

● PORT0 and PORT1 may be used as data and address lines respectively when
accessing external memory. Four CAPCOM2 input-only lines and additional ADC
channels are also mapped on this port.

● Port2, accepts the fast external interrupt inputs and provides inputs/outputs for
CAPCOM1 unit.

● Port3 includes the alternate functions of timers, serial interfaces, the optional bus
control signal BHE and the system clock output (CLKOUT).

● Port4 outputs the additional segment address bit A16 to A23 in systems where
segmentation is enabled to access more than 64 Kbytes of memory. CAN modules and
I2C serial interface are alternate function on this port also.

● Port5 is used as analog input channels of the A/D converter or as timer control signals.

● Port6 provides optional bus arbitration signals (BREQ, HLDA, HOLD), chip select
signals and XSSC signals.

● Port7 provides the output signals from the PWM unit and inputs/outputs for the
CAPCOM2 unit.

● Port8 provides inputs/outputs for the CAPCOM2 unit, for the XPWM and for the XASC.

All port lines that are not used for alternate functions may be used as general purpose I/O
lines.

1.4.5 Serial channels

Serial communication with other microcontrollers, processors, terminals or external
peripheral components is provided by four serial interfaces with different functionalities: two
Asynchronous/Synchronous Serial Channels (ASC0 and XASC) and two High-Speed
Synchronous Serial Channels (SSC and XSSC).

They support full-duplex asynchronous communication and half-duplex synchronous
communication. The SSC may be configured to interface with serially linked peripheral
components. Two dedicated baud rate generators allow to set up all standard baud rates
without oscillator tuning. For transmission, reception and error handling three separate
interrupt vectors are provided on channel SSC, and four vectors are provided on channel
ASC0.

In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a
start bit and terminated by one or two stop bits. For multiprocessor communication, a
mechanism to distinguish address from data byte has been included (8-bit data plus wake-
up bit mode).

In synchronous mode, the ASC0 transmits or receives byte (8-bit) synchronously to a shift
clock which is generated by the ASC0. The SSC transmits or receives characters of 2...16-
bit length synchronously to a shift clock which can be generated by the SSC (master mode)
or by an external master (slave mode). The SSC can start shifting with the LSB or with the
MSB, while the ASC0 always shifts the LSB first. A loop back option is available for testing
purposes.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on transmission
or be checked on reception. Framing error detection allows to recognize data frames with
missing stop bit. An overrun error will be generated, if the last character received has not
been read out of the receive buffer register at the time the reception of a new character is
complete.

UM0407 Architectural overview

 35/541

The XASC is another USART which is functionally identical with the ASC0. The XASC is an
X-Peripheral (no bit handling) and supports three interrupt vectors. The port line and
interrupt handling is slightly different from that of the ASC0.

Similarly, the XSSC is a Synchronous Serial link functionally identical with the SSC. The
XSSC is an X-Peripheral (no bit handling) and supports three interrupt sources. The port
line and interrupt handling is slightly different from that of the SSC.

1.4.6 General purpose timer (GPT) unit

The GPT unit is a flexible multifunctional timer/counter structure which may be used for time
related tasks, such as event timing and counting, pulse width and duty cycle measurements,
pulse generation, pulse multiplication or incremental interface.

The five 16-bit timers are organized into two separate modules, GPT1 and GPT2. Each
timer in each module may operate independently in a number of different modes, or may be
concatenated with another timer of the same module.

Each timer can be configured individually for one of three basic modes of operation, which
are Timer, Gated Timer, and Counter Mode. In Timer Mode the input clock for a timer is
derived from the internal CPU clock divided by a programmable prescaler, while Counter
Mode allows a timer to be clocked in reference to external events (via TxIN). Pulse width or
duty cycle measurement is supported in Gated Timer Mode where the operation of a timer is
controlled by the ‘gate’ level on its external input pin TxIN.

The count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal (TxEUD) to facilitate for example
position tracking.

The core timers T3 and T6 have output toggle latches (TxOTL) which change their state on
each timer overflow / underflow. The state of these latches may be output on port pins
(TxOUT) or may be used internally to concatenate the core timers with the respective
auxiliary timers resulting in 32/33-bit timers/counters for measuring long time periods with
high resolution.

Various reload or capture functions can be selected to reload timers or capture a timer’s
contents triggered by an external signal or a selectable transition of toggle latch TxOTL.

1.4.7 Watchdog timer

The Watchdog Timer is a fail-safe mechanism. It limits the maximum malfunction time of the
controller.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in
the time interval until the EINIT (end of initialization) instruction has been executed. In this
way the chip’s start-up procedure is always monitored. The software must be designed to
service the Watchdog Timer before it overflows. If, due to hardware or software related
failures, the software fails to do so, the Watchdog Timer overflows and generates an internal
hardware reset and pulls the RSTOUT pin low in order to allow external hardware
components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by
128. The high byte of the watchdog Timer register can be set to a pre-specified reload value
(stored in WDTREL) in order to allow further variation of the monitored time interval. Each
time it is serviced by the application software, the high byte of the Watchdog Timer is
reloaded.

Architectural overview UM0407

36/541

1.4.8 Capture / compare (CAPCOM) units

The two CAPCOM units support generation and control of timing sequences on up to 32
channels. The CAPCOM units are typically used to handle high speed I/O tasks such as
pulse and waveform generation, pulse width modulation (PWM), Digital to Analog (D/A)
conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers, provide two independent time bases
for the capture/compare register array.

The input clock for the timers is programmable to several pre-scaled values of the internal
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.

This provides a wide range of variation for the timer period and resolution and allows precise
adjustments to the application specific requirements. In addition, external count inputs for
CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers
relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/compare
registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7
or T8, respectively), and programmed for capture or compare function.

Each register has one port pin associated with it which is an input pin for triggering the
capture function, or is an output pin (except for CC24...CC27) to indicate the occurrence of a
compare event.

When a capture/compare register has been selected for capture mode, the current contents
of the allocated timer will be latched (captured) into the capture/compare register in
response to an external event at the port pin which is associated with this register.

In addition, a specific interrupt request for this capture/compare register is generated. Either
a positive, a negative, or both a positive and a negative external signal transition at the pin
can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes
are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register,
specific actions will be taken, based on the selected compare mode.

1.4.9 Pulse width modulation unit

The pulse width modulation module can generate up to four PWM output signals using
edge-aligned or centre-aligned PWM. In addition the PWM module can generate PWM burst
signals and single shot outputs.

In Burst Mode two channels can be combined with their output signals ANDed, where one
channel gates the output signal of the other channel. In Single Shot Mode, a single output
pulse is generated (retriggerable) under software control.

Each PWM channel is controlled by an up/down counter with associated reload and
compare registers. The polarity of the PWM output signals may be controlled via the
respective port output latch (combination via EXOR).

The XPWM is an additional 4-channel PWM unit, functionally identical with the standard
PWM. The XPWM is an X-Peripheral (no bit handling) and support one interrupt source. The
port line and interrupt handling is slightly different from that of the standard PWM unit.

UM0407 Architectural overview

 37/541

1.4.10 A/D converter

A 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit has
been integrated on-chip for analog signal measurement. Additional 8 multiplexed channels
are also available on Port1 with a reduced accuracy.

It uses a successive approximation method. The sample time (for loading the capacitors)
and conversion time is programmable and can be modified for the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT).
When the result of a previous conversion has not been read from the result register at the
time the next conversion is complete, either an interrupt request is generated, or the next
conversion is suspended, until the previous result has been read.

For applications which require less than 24 analog input channels, the remaining channel
inputs can be used as digital input/output port pins (note that Port5 is input only, while Port1
is input/output).

The A/D converter of the ST10F272Z2 supports four different conversion modes:

● Standard single channel conversion mode: The analog level on a specified channel is
sampled once and converted to a digital result.

● Single channel continuous mode: The analog level on a specified channel is repeatedly
sampled and converted without software intervention.

● For the auto scan mode: The analog levels on a pre-specified number of channels are
sampled and converted in sequence.

● In the auto scan continuous mode: The number of pre-specified channels is repeatedly
sampled and converted.

In addition, the conversion of a specific channel can be inserted (injected) into a running
sequence without disturbing this sequence. This is called the channel injection mode. The
Peripheral Event Controller (PEC) may be used to automatically store the conversion results
into a table in memory for later evaluation, without the overhead of interrupt routines for
each data transfer.

Also, in the Wait for ADDAT read mode, a conversion will not be started as long as the result
from the previous one has not been read.

1.4.11 CAN module

The integrated CAN Module handles the completely autonomous transmission and
reception of CAN frames in accordance with the CAN specification V2.0 part A and B
(active). The on-chip CAN Module can receive and transmit standard frames with 11-bit
identifiers as well as extended frames with 29-bit identifiers.

The module provides full CAN functionality on up to 32 message objects: Each message
object has its own identifier mask. Message objects may be concatenated in a
Programmable FIFO mode.

All message objects can be updated independent from the other objects and are equipped
for the maximum message length of 8 bytes. The bit timing is derived from the X-Peripheral
clock (XCLK, typically equal to CPU clock, apart from idle mode) and is programmable up to
a data rate of 1Mbaud. The CAN Module uses two pins to interface to a bus transceiver.

Architectural overview UM0407

38/541

1.4.12 I2C serial interface

The integrated I2C serial interface handles the transmission and reception of frames over
the two-line I2C bus in accordance with the I2C bus specification. The on-chip I2C module
can transmit and receive data using 7-bit or 10-bit addressing and it can operate in slave
mode, in master mode or in multi-master mode.

The I2C module uses two pins to interface with the external serial bus. Data can be
transferred at speeds up to 400 Kbit/s. The I2C is an X-Peripheral (no bit handling) and
supports three interrupt sources.

Note: Once I2C module is enabled, the port pins associated with the peripheral feature open drain
drivers only, as required by the standard bus specification.

1.5 Real time clock
The real time clock is an independent timer, which clock is directly derived from the oscillator
clock (either the main on-chip oscillator or the 32 kHz on-chip oscillator), so that it can be
maintained running even in power down mode (if enabled to) or in standby mode (only if
32 kHz oscillator is used). Registers access is implemented onto the XBUS. This module is
designed for the following purposes:

● Generate the current time and date for the system.

● Provide cyclic time based interrupt on Port2 external interrupts every ‘RTC basic clock
tick’ and every n ‘RTC basic clock tick’ (n is programmable) if enabled.

● Long term measurements (thanks to a 58-bit timer).

● Exit the ST10F272Z2 from power down mode (if PWDCFG of SYSCON set) after a
programmed delay.

1.6 Protected bits
The ST10F272Z2 MCU provides up to 106 protected bits. These bits are modified by the on-
chip hardware during special events like power on reset, power failure, application
hardware, etc. These bits cannot be modified by some wrong software accesses.

Table 1. Protected bit

Register Bit name Notes

T2IC, T3IC, T4IC T2IR, T3IR, T4IR GPT1 timer interrupt request flags

T5IC, T6IC T5IR, T6IR GPT2 timer interrupt request flags

CRIC CRIR GPT2 CAPREL interrupt request flag

T3CON, T6CON T3OTL, T6OTL GPTx timer output toggle latches

T0IC, T1IC T0IR, T1IR CAPCOM1 timer interrupt request flags

T7IC, T8IC T7IR, T8IR CAPCOM2 timer interrupt request flags

S0TIC, S0TBIC S0TIR, S0TBIR ASC0 transmit (buffer) interrupt request flags

S0RIC, S0EIC S0RIR, S0EIR ASC0 receive/error interrupt request flags

S0CON S0REN ASC0 receiver enable flag

UM0407 Architectural overview

 39/541

Note: Σ = 106 protected bit.

SSCTIC, SSCRIC SSCTIR, SSCRIR SSC transmit/receive interrupt request flags

SSCEIC SSCEIR SSC error interrupt request flag

SSCCON SSCBSY SSC busy flag

SSCCON SSCBE, SSCPE SSC error flags

SSCCON SSCRE, SSCTE SSC error flags

ADCIC, ADEIC ADCIR, ADEIR ADC end-of-conversion/overrun interrupt request flags

ADCON ADST, ADCRQ ADC start flag / injection request flag

CC31IC...CC16IC CC31IR...CC16IR CAPCOM2 interrupt request flags

CC15IC...CC0IC CC15IR...CC0IR CAPCOM1 interrupt request flags

PWMIC PWMIR PWM module interrupt request flag

TFR TFR.15,14,13 Class A trap flags

TFR TFR.7,3,2,1,0 Class B trap flags

P2 P2.15...P2.0 All bits of Port2

P7 P7.7...P7.0 All bits of Port7

P8 P8.7...P8.0 All bits of Port8

XPyIC (y = 3...0) XPyIR (y = 3...0) X-Peripheral y interrupt request flag

Table 1. Protected bit (continued)

Register Bit name Notes

Memory organization UM0407

40/541

2 Memory organization

The memory space of the ST10F272Z2 is organized as a unified memory. Code memory,
data memory, registers and I/O ports are organized within the same linear address space.

All of the physically separated memory areas, including on-chip IFlash, IRAM, the internal
special function register areas (SFRs and ESFRs), the address areas for integrated XBUS
peripherals and external memory are mapped into one common address space.

The ST10F272Z2 provides a total addressable memory space of 16 Mbytes. This address
space is arranged as 256 segments of 64 Kbytes each, and each segment is again
subdivided into four data pages of 16 Kbytes each (see Figure 4).

UM0407 Memory organization

 41/541

Figure 4. ST10F272Z2 memory mapping (user mode: Flash Read
operation/XADRS3 = F006h)

2.1 Word, byte and bit storage
Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address being followed by the high byte at the
next odd byte address.

Double words (code only) are stored in ascending memory locations as two subsequent
words. Single bit are always stored in the specified bit position at a word address.

 * Blocks B0F0, B0F1, B0F2, B0F3 may be remapped from segment 0 to segment 1 by setting SYSCON-ROMS1 (before EINIT).

 * Absolute Memory Address are hexadecimal values, while Data Page Number are decimal values.

FF FFFF

00 0000

16 MB

255

0

Code Data
Page

1023

0

Data
Page

1

3

5

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

07 FFFF

06 0000
05 FFFF

04 0000
03 FFFF

02 0000
01 FFFF

00 0000

B0F4

B0F5

Reserved

00 C000

00 FFFF

XCAN1

ESFR

SFR

IRAM

Reserved

Ext. Memory

00 DFFF
00 E000

00 E7FF
00 E800

00 FDFF
00 FE00

00 F1FF
00 F200

00 F5FF
00 F600

8K

256

512

1K

2K

512

Data Page 3 (Segment 0) - 16Kbyte

256XCAN2

9

20

21

22

23

0A 0000
09 FFFF

08 0000

11

24

25

26

27

0C 0000
0B FFFF

13

28

29

30

31

0E 0000
0D FFFF

15

32

33

34

35

0F FFFF

00 F000

CAN1

CAN2

00 EFFF
00 F000

00 EEFF
00 EF00

00 EDFF
00 EE00

00 EAFF
00 EB00

256

256

256

256XSSC

00 E7FF
00 E800

XRAM1 2K

14

0F 0000
0E FFFF

12

0D 0000
0C FFFF

10

0B 0000
0A FFFF

8

6

4

05 0000
04 FFFF

07 0000
06 FFFF

09 0000
08 FFFF

2

03 0000
02 FFFF

0
0B0F0

B0F1
B0F2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B0F6

Reserved

Reserved

B0F7

01 0000
00 FFFF

64K

Code
Segment

64

65

66

67

64

65

66

67

16

17

10 0000

10 FFFF
11 0000

11 FFFF

Flash + XRAM - 1Mbyte

Flash Registers

+
FPEC RAM/ROM

RTC

00 EFFF

XSSC

XASC

XI2C

256
256

256

XRTC

XASC

I2C

256

256

00 E8FF
00 E900

00 E9FF
00 EA00

XRAM2 (Stand-by)

256

00 ECFF
00 ED00

256

(IFlash)

(IFlash)

(IFlash)

(IFlash)

XPWM 256

XPWM

256

256

00 EBFF
00 EC00

XMiscellaneous

XMiscellaneous

X-Peripherals (2Kbyte)

Segment

B0F3

Ext. Memory

Ext. Memory

Ext. Memory

 * XRAM2 (Standby Ram) can be re-located on any 16K boundary within memory space marked with
 Refer to Sections 3.4 and 9.7 for details.

Memory organization UM0407

42/541

Bit position 0 is the least significant bit of the byte at an even byte address, and bit position
15 is the most significant bit of the byte at the next odd byte address. Bit addressing is
supported for a part of the special function registers, a part of the IRAM and for the general
purpose registers.

Figure 5. Storage of words, bytes and bits in a byte organized memory

Note: Byte units forming a single word or a double word must always be stored within the same
physical (internal, external, Flash, RAM) and organizational (page, segment) memory area.

2.2 On-chip Flash
The ST10F272Z2 reserves an address area of 512 Kbytes for the Internal Bus (IBUS)
where the on-chip Flash memory is mapped. The Flash itself covers 256 Kbytes.192 Kbytes
are reserved IBUS area. Registers, used to control Flash operations, are mapped in the
remaining 64 Kbytes.

Internal Flash (IFlash) is composed by a unique bank divided in blocks of 8 Kbytes,
32 Kbytes, 64 Kbytes. For a complete memory mapping summary see details in Table 2 on
page 43.

In standard mode (the normal operating mode) the IFlash appears like an on-chip ROM with
the same timing and functionality. The IFlash module offers a fast access time, allowing zero
wait-state access with CPU frequency up to 64 MHz.

Instruction fetches and data operand reads are performed with all addressing modes of the
ST10F272Z2 instruction set.

Write accesses are allowed only in IFlash control registers area. Due to IBUS
characteristics, it is not possible to perform write operations versus IBUS, while fetching
from IBUS. So, write operation commands must be executed from IRAM or XRAM1 or
XRAM2 or external memory, as in ST10F269, that implements a similar architecture.
Moreover, only indirect addressing mode is allowed for write operations to IFlash control
registers.

...

... Bit ...

... Bit ...

Byte

Byte

Word (high byte)

Word (low byte)

15 14 8

7 6 0

xxxx6h

xxxx5h

xxxx4h

xxxx3h

xxxx2h

xxxx1h

xxxx0h

xxxxFh...

UM0407 Memory organization

 43/541

Code fetches are always made on even byte addresses. The last valid code location must
contain a branch instruction (unconditional), because sequential boundary crossing from
internal Flash to external memory is not supported and causes erroneous results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing
modes. There is no short addressing mode for internal Flash operands. Any word data
access is made to an even byte address.

For PEC data transfers the internal Flash can be accessed independently of the contents of
the DPP registers via the PEC source and destination pointers.

The internal Flash is not provided for single bit storage, and therefore it is not bit
addressable.

The first 32Kbytes of the internal Flash may be mapped into segment 0 or segment 1 under
software control. The Section 27.10: Handling the internal Flash on page 529 describes the
mapping procedures and precautions.

Fetch or read accesses to the reserved IBUS areas return the software trap code 0x009B.

Write accesses to the reserved areas have no effects.

2.3 IRAM and SFR area
The IRAM/SFR area is located within data page 3 and provides access to the 2 Kbyte IRAM
(organized as 1K x 16) and to two 512 byte blocks of special function registers (SFRs). The
IRAM is used as:

● System stack (programmable size),

● General purpose register banks (GPRs),

● Source and destination pointers for the peripheral event controller (PEC),

● Variable and other data storage, or code storage

Table 2. Memory organization of the 512 Kbytes related to IFlash (ROMEN = ‘1’)

Block
Addresses

(ROMS1 = ‘0’)
Addresses

(ROMS1 = ‘1’)
Size

B0F0 00’0000h - 00’1FFFh 01’0000h - 00’1FFFh 8K

B0F1 00’2000h - 00’3FFFh 01’2000h - 00’3FFFh 8K

B0F2 00’4000h - 00’5FFFh 01’4000h - 00’5FFFh 8K

B0F3 00’6000h - 00’7FFFh 01’6000h - 00’7FFFh 8K

B0F4 01’8000h - 01’FFFFh 01’8000h - 01’FFFFh 32K

B0F5 02’0000h - 02’FFFFh 02’0000h - 02’FFFFh 64K

B0F6 03’0000h - 03’FFFFh 03’0000h - 03’FFFFh 64K

B0F7 04’0000h - 04’FFFFh 04’0000h - 04’FFFFh 64K

Reserved IBUS area 05’0000h - 05’FFFFh 05’0000h - 05’FFFFh 64K

Reserved IBUS area 06’0000h - 06’FFFFh 06’0000h - 06’FFFFh 64K

Reserved IBUS area 07’0000h - 07’FFFFh 07’0000h - 07’FFFFh 64K

Flash registers 08’0000h - 08’FFFFh 08’0000h - 08’FFFFh 64K

Memory organization UM0407

44/541

Figure 6. On-chip RAM and SFR/ESFR areas

Note: 1 The upper 256 bytes of SFR area, ESFR area and IRAM are bit-addressable.

2 Read or write access in reserved locations may cause unexpected behavior.

Code accesses are always made on even byte addresses. The last valid code location must
contain a branch instruction (unconditional), because sequential boundary crossing from
IRAM to the SFR area is not supported and can causes erroneous results.

Any word and byte data in the IRAM can be accessed via indirect or long 16-bit addressing
modes, if the selected DPP register points to data page 3. Any word data access is made on
an even byte address. For PEC data transfers, the IRAM can be accessed independently of
the contents of the DPP registers via the PEC source and destination pointers.

The upper 256 bytes of the IRAM (00’FD00h through 00’FDFFh) and the GPRs of the
current bank are provided for single bit storage, and therefore, they are bit addressable (see
Figure 6).

FF FFFF

00 0000

16 MB

255

0

Code Data
Page

1023

0

Data
Page

00 C000

00 FFFF

XCAN1

ESFR

SFR

IRAM

Reserved

Ext. Memory

00 DFFF
00 E000

00 E7FF
00 E800

00 FDFF
00 FE00

00 F1FF
00 F200

00 F5FF
00 F600

8K

256

512

1K

2K

512

Data Page 3 (Segment 0) - 16Kbyte

256XCAN2

00 F000

SFR

00 FFFF
01 0000

00 FDFF
00 FE00

512

512

00 EFFF
00 F000

XRAM1 2K

Code
Segment

Flash + XRAM - 1Mbyte

IRAM

00 EFFF

XSSC

XASC

XI2C

256
256

256

XRTC

1K

00 F1FF
00 F200

00 F5FF
00 F600

256
XPWM 256

256

2K

XMiscellaneous

RAM / SFR (4Kbyte)Segment

ESFR

Reserved

Bit-addressable Memory

1

3

5

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

07 FFFF

06 0000
05 FFFF

04 0000
03 FFFF

02 0000
01 FFFF

00 0000

B0F4

B0F5

Reserved

9

20

21

22

23

0A 0000
09 FFFF

08 0000

11

24

25

26

27

0C 0000
0B FFFF

13

28

29

30

31

0E 0000
0D FFFF

15

32

33

34

35

0F FFFF

14

0F 0000
0E FFFF

12

0D 0000
0C FFFF

10

0B 0000
0A FFFF

8

6

4

05 0000
04 FFFF

07 0000
06 FFFF

09 0000
08 FFFF

2

03 0000
02 FFFF

0
0B0F0

B0F1
B0F2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B0F6

Reserved

Reserved

B0F7

01 0000
00 FFFF

64K

64

65

66

67

64

65

66

67

16

17

10 0000

10 FFFF
11 0000

11 FFFF

Flash Registers

+
FPEC RAM/ROM

XRAM2 (Stand-by)

(IFlash)

(IFlash)

(IFlash)

(IFlash)

B0F3

Ext. Memory

Ext. Memory

Ext. Memory

UM0407 Memory organization

 45/541

2.3.1 System stack

The system stack may be defined within the IRAM. The size of the system stack is
controlled by bit-field STKSZ in the SYSCON register (see Table 3).

For all system stack operations the IRAM is accessed via the Stack Pointer (SP) register.
The stack grows downward from higher towards lower IRAM address locations.

Only word accesses are supported by the system stack. A stack overflow (STKOV) and a
stack underflow (STKUN) register are provided to control the lower and upper limits of the
selected stack area.

These two stack boundary registers can be used, not only for protection against data
destruction, but also allow to implement a circular stack with hardware supported system
stack flushing and filling (except for the 2 Kbyte stack option).

The technique of implementing this circular stack is described in Section 27.1: Stack
operations on page 520.

2.3.2 General purpose registers

The general purpose registers (GPRs) use a block of 16 consecutive words within the IRAM.
the context pointer (CP) register determines the base address of the currently active register
bank. This register bank may consist of up to 16 word GPRs (R0, R1, ... , R15) and/or of up
to 16 byte GPRs (RL0, RH0, ... , RL7, RH7) and 8 word registers R8-R15. The 16 byte
GPRs are mapped onto the first eight word GPRs (see Table 4).

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 bytes.

The GPRs are accessed via short 2-, 4- or 8-bit addressing modes using the context pointer
(CP) register as base address (independent of the current DPP register contents).
Additionally, each bit in the currently active register bank can be accessed individually.

The ST10F272Z2 supports fast register bank (context) switching. Multiple register banks
can physically exist within the IRAM at the same time. Only the register bank selected by the
context pointer register (CP) is active at a given time. Selecting a new active register bank is
simply done by updating the CP register.

Table 3. Stack size

(STKSZ) Stack size (words) IRAM addresses (words)

0 0 0b 256 00’FBFEh...00’FA00h (Default after Reset)

0 0 1b 128 00’FBFEh...00’FB00h

0 1 0b 64 00’FBFEh...00’FB80h

0 1 1b 32 00’FBFEh...00’FBC0h

1 0 0b 512 00’FBFEh...00’F800h

1 0 1b --- Reserved. Do not use this combination.

1 1 0b --- Reserved. Do not use this combination.

1 1 1b 1024 00’FDFEh...00’F600h (Note: No circular stack)

Memory organization UM0407

46/541

A particular switch context (SCXT) instruction performs register bank switching and an
automatic saving of the previous context. The number of implemented register banks
(arbitrary sizes) is only limited by the size of the available IRAM.

Details on using, switching and overlapping register banks are described in Section 27.2:
Register banking on page 524.

2.3.3 PEC source and destination pointers

The 16 word locations in the IRAM from 00’FCE0h to 00’FCFEh are provided as source and
destination address pointers for data transfers on the eight PEC channels. Each channel
uses a pair of pointers stored in two subsequent word locations with the source pointer
(SRCPx) on the lower and the destination pointer (DSTPx) on the higher word address (x =
7...0) (see Figure 7).

Whenever a PEC data transfer is performed, the pair of source and destination pointers
selected by the specified PEC channel number is accessed independently of the current
DPP register contents. The locations referred to by these pointers are accessed
independently of the current DPP register contents. If a PEC channel is not used, the
corresponding pointer locates the area available and can be used for word or byte data
storage.

For more details about the use of the source and destination pointers for PEC data transfers
see Section 27: System programming on page 518.

Table 4. Mapping of general purpose registers to RAM addresses

IRAM address Byte registers Word register

(CP) + 1Eh --- R15

(CP) + 1Ch --- R14

(CP) + 1Ah --- R13

(CP) + 18h --- R12

(CP) + 16h --- R11

(CP) + 14h --- R10

(CP) + 12h --- R9

(CP) + 10h --- R8

(CP) + 0Eh RH7, RL7 R7

(CP) + 0Ch RH6, RL6 R6

(CP) + 0Ah RH5, RL5 R5

(CP) + 08h RH4, RL4 R4

(CP) + 06h RH3, RL3 R3

(CP) + 04h RH2, RL2 R2

(CP) + 02h RH1, RL1 R1

(CP) + 00h RH0, RL0 R0

UM0407 Memory organization

 47/541

Figure 7. Location of the PEC pointers

2.3.4 Special function registers

The functions of the CPU, the bus interface, the I/O ports and the on-chip peripherals of the
ST10F272Z2 are controlled via a number of so-called special function registers (SFRs).

These SFRs are arranged within two areas, each of 512 byte size. The first register block, is
called the SFR area, and is located in the 512 byte above the IRAM (00’FFFFh...00’FE00h),
the second register block, the Extended SFR (ESFR) area, is located in the 512 byte below
the IRAM (00’F1FFh...00’F000h).

Special function registers can be addressed via indirect and long 16-bit addressing modes.
Using an 8-bit offset, together with an implicit base address, makes it possible to address
word SFRs and their respective low byte. This does not work for the respective high byte!

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to be cleared!

The upper half of each register block is bit-addressable, so the respective control/status bit
can be directly modified or checked by using bit addressing. When accessing registers in
the ESFR area using 8-bit addresses or direct bit addressing, an extend register (EXTR)
instruction is required before, to switch the short addressing mechanism from the standard
SFR area to the extended SFR area.

This is not required for 16-bit and indirect addresses. The GPRs R15...R0 are duplicated,
and they are accessible within both register blocks via short 2-, 4- or 8-bit addresses without
switching. Example:

00’FCFEh

00’FCFCh

00’FCE2h

00’FCE0h

DSTP7

SRCP7

DSTP0

SRCP0

00’F600h

00’FCDEh
00’FCE0h

00’FCFEh
00’FD00h

00’F5FEh

Internal
RAMPEC

source &
destination
pointers

EXTR #3 ;Switch to ESFR area for the next 3 instructions

MOV ODP2, #data16
;this instruction uses 8-bit reg addressing

;(EXTR mandatory)

BSET DP1h.7
;this instructiion uses direct bit addressing

;(EXTR mandatory)

MOV T8REL, R1

;This instruction uses 16-bit address to access

;ESFR T8REL. R1 is duplicated and also
;accessible via the ESFR mode

;(EXTR is not required for this access)

;----- ;------ ;The scope of the EXTR #3 instruction ends here!

MOV T8REL, R1
;This instruction uses 16-bit address, and does

;not require switching

Memory organization UM0407

48/541

In order to minimize the use of the EXTR instructions, the ESFR area mostly holds registers
which are required for initialization and mode selection. Wherever possible, registers that
need to be accessed frequently are allocated in the standard SFR area.

Note: The tools are equipped to monitor accesses to the ESFR area and will automatically insert
EXTR instructions, or issue a warning in case of missing or excessive EXTR instructions.

2.4 The on-chip XRAM
The 18 Kbytes of on-chip extension RAM (single port XRAM) is provided as a storage for
data, user stack and code. It is made up of two parts: XRAM1 (2 Kbytes), that is located
within data page 3 and XRAM2 (16 Kbytes).

Both the XRAM modules are connected to the internal XBUS and are accessed like an
external memory in 16-bit de-multiplexed bus mode without wait-states or read/write delay
(31.25ns access at 64 MHz CPU clock). Byte and word accesses are allowed.

As the XRAM is connected to the internal XBUS, it is accessed like external memory.
However, no external bus cycles are executed for these accesses.

Even if the XRAM is used as external memory, it does not occupy BUSCONx / ADDRSELx
registers, but it is selected via additional dedicated XBCON / XADRS registers. In general,
these registers are mask-programmed and are not user accessible. After reset, these
registers are configured in a way that the address area 00’E000h to 00’E7FFh is reserved
for XRAM1 accesses, and the address area 08’0000h - 0F’FFFFh is reserved for XRAM2
accesses. In ST10F272Z2 the register XADRS3 used to define XRAM2 memory range is
user programmable: This allows to redefine the size and starting address of the memory
window, making it possible to play with on-chip and external memory resources (refer to
Section 8.7: The XBUS interface on page 205 for details).

XRAM accesses are globally enabled or disabled via bit XPEN in the SYSCON register.
This bit is cleared after reset and may be set via software during the initialization to allow
accesses to the on-chip XRAM. When bit VISIBLE in the SYSCON register is set also,
accesses to the on-chip XRAM are made visible on the external Port pins. Code fetches are
always made on even byte addresses. Any word and byte data read accesses may use the
indirect or long 16-bit addressing modes. There is no short addressing mode for XRAM
operands. Sequential boundary crossing from XRAM to external memory is not supported
and causes erroneous results.

As the XRAM appears like external memory, it cannot be used as system stack or as
register banks. The XRAM is not provided for single bit storage and therefore is not bit
addressable.

Any word and byte data read accesses may use the indirect or long 16-bit addressing
modes. There is no short addressing mode for XRAM operands. Any word data access is
made to an even byte address. For PEC data transfers XRAM1 can be accessed
independently of the contents of the DPP registers, via the PEC source and destination
pointers. XRAM2 is not PEC addressable, since not mapped in code segment 0.

The XRAM1 address range is 00’E000h - 00’E7FFh if XPEN (bit 2 of SYSCON register),
and XRAM1EN (bit 2 of XPERCON register) are set. If XRAM1EN or XPEN is cleared, then
any access in the address range 00’E000h - 00’E7FFh will be directed to external memory
interface, using the BUSCONx register corresponding to address matching ADDRSELx
register.

UM0407 Memory organization

 49/541

The XRAM2 address range is the one selected programming XADRS3 register if XPEN (bit
2 of SYSCON register), and XRAM2EN (bit 3 of XPERCON register) are set. If bit XPEN is
cleared, then any access in the address range programmed for XRAM2 will be directed to
external memory interface, using the BUSCONx register corresponding to address
matching ADDRSELx register.

After Reset, XRAM2 is seen mirrored every 16 Kbytes boundary in the address window
08’0000h-0F’FFFFh. The address range 08’0000h-08’FFFF is overlapped with IFlash
registers space.

The table below summarizes the mapping of Segment 8 (08’0000h-08’FFF) when XADRS3
is left at its reset value, varying ROMEN (related with EA pin status under reset) and XPEN
bits status in SYSCON register and XPERCON (bit XRAM2EN) programming.

The symbol ‘x’ in the table above stands for ‘do not care’.

XRAM2 can be used also as standby RAM, and can be maintained biased through
EA/VSTBY pin when main supply VDD is turned off.

2.4.1 XRAM access via external masters

When bit XPER-SHARE in register SYSCON is set the on-chip XRAM of the ST10F272Z2
can be accessed by an external master during hold mode, via the ST10F272Z2’s bus
interface. These external accesses must use the same configuration as the internally
programmed. No wait-states are required.

The configuration in register SYSCON cannot be changed after the execution of the EINIT
instruction.

External accesses to the others XBUS peripherals are not guaranteed in terms of AC
Timings.

Note: Setting the XPER-SHARE mode affects system configurations. As the bus control functions
BREQ, HLDA and HOLD are mapped as alternate functions of P6(7:5), the XSSC module is
not accessible when arbitration is in use. For similar reasons, in case segment lines
A(23:20) on Port4 have to be used (SALSEL = 10), the CAN1, CAN2 and I2C modules might
not be accessible.

2.5 External memory space
The ST10F272Z2 is capable of using an address space of up to 16 Mbytes. Only parts of
this address space are occupied by internal memory areas. All addresses which are not
used for on-chip memory (Flash) or for registers, may refer to external memory locations.
This external memory is accessed via the ST10F272Z2’s external bus interface.

ROMEN XPEN XRAM2EN Segment 8

0 0 x External Memory

0 1 0 External Memory

0 1 1 XRAM2 mirroring

1 x x IFlash Registers

Memory organization UM0407

50/541

Four memory bank sizes are supported:

● Non-segmented mode: 64 Kbytes with A15...A0 on PORT0 or PORT1

● 2-bit segmented mode: 256 Kbytes with A17...A16 on Port4 and A15...A0 on PORT0 or
PORT1

● 4-bit segmented mode: 1 Mbyte with A19...A16 on Port4 and A15...A0 on PORT0 or
PORT1

● 8-bit segmented mode: 16 Mbytes with A23...A16 on Port4 and A15...A0 on PORT0 or
PORT1

Each bank can be directly addressed via the address bus while the programmable chip
select signals can be used to select various memory banks.

The ST10F272Z2 also supports four different bus types:

● Multiplexed 16-bit Bus with address and data on PORT0 (Default after Reset)

● Multiplexed 8-bit Bus with address and data on PORT0 (P0L)

● De-multiplexed 16-bit Bus with address on PORT1 and data on PORT0

● De-multiplexed 8-bit Bus with address on PORT1 and data on PORT0 (P0L)

Memory model and bus mode are selected during reset by pin EA and PORT0 pins. For
further details about the external bus configuration and control (see Section 8: The external
bus interface on page 179).

External word and byte data can only be accessed via indirect or long 16-bit addressing
modes, using one of the four DPP registers. There is no short addressing mode for external
operands. Any word data access is made to an even byte address.

For PEC data transfers the external memory in segment 0 can be accessed independent of
the contents of the DPP registers via the PEC source and destination pointers.

The external memory is not provided for single bit storage and therefore, it is not bit
addressable.

2.6 Crossing memory boundaries
The address space of the ST10F272Z2 is implicitly divided into equally sized blocks of
different granularity and into logical memory areas. Crossing the boundaries between these
blocks (code or data) or areas requires special attention to ensure that the controller
executes the desired operations.

Memory areas are partitions of the address space that represent different kinds of memory
(if provided at all). These memory areas are the IRAM/SFR area, the internal Flash Memory,
the on-chip X-Peripherals (if integrated) and the external memory.

Accessing subsequent data locations that belong to different memory areas is no problem.
However, when executing code, the different memory areas must be switched explicitly via
branch instructions. Sequential boundary crossing is not supported and leads to erroneous
results.

Note: Changing from the external memory area to the IRAM/SFR area takes place within
segment 0.

Segments are contiguous blocks of 64 Kbytes each. They are referenced via the code
segment pointer CSP for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.

UM0407 Memory organization

 51/541

During code fetching segments are not changed automatically, but rather must be switched
explicitly. The instructions JMPS, CALLS and RETS will do this.

In larger sequential programs make sure that the highest used code location of a segment
contains an unconditional branch instruction to the respective following segment, to prevent
the prefetcher from trying to leave the current segment.

Data pages are contiguous blocks of 16 Kbytes each. They are referenced via the data
page pointers DPP3...0 and via an explicit data page number for data accesses overriding
the standard DPP scheme. Each DPP register can select one of the possible 1024 data
pages. The DPP register that is used for the current access is selected via the two upper
bits of the 16-bit data address. Subsequent 16-bit data addresses that cross the 16 Kbytes
data page boundaries therefore will use different data page pointers, while the physical
locations need not be subsequent within memory.

The central processing unit (CPU) UM0407

52/541

3 The central processing unit (CPU)

The CPU is used to fetch and decode instructions, to supply operands for the arithmetic and
logic unit (ALU), to perform operations on these operands in the ALU, and to store the
previously calculated results.

A four stage pipeline is implemented, where up to four instructions can be processed in
parallel. Most instructions of the ST10F272Z2 are executed in one instruction cycle due to
this parallelism.

This section describes how the pipeline works for sequential and branch instructions in
general, and which hardware provisions have been made to speed the execution of jump
instructions in particular. The general instruction timing is described, including standard and
exceptional timing.

While internal memory accesses are normally performed by the CPU itself, external
peripheral or memory accesses are performed by a particular on-chip external bus
controller (EBC), which is automatically invoked by the CPU whenever a code or data
address refers to the external address space.

If possible, the CPU continues to operate while an external memory access is in progress. If
external data are required but are not yet available, or if a new external memory access is
requested by the CPU, before a previous access has been completed, the CPU will be held
by the EBC until the request can be satisfied. The EBC is described in Section 8: The
external bus interface on page 179.

The on-chip peripheral units of the ST10F272Z2 are almost independent of the CPU, with a
separate clock generator. Data and control information is interchanged between the CPU
and these peripherals via special function registers (SFRs).

Whenever peripherals need a non-deterministic CPU action, an on-chip interrupt controller
compares all pending peripheral interrupt requests and prioritizes one of them.

If the priority of the current CPU operation is lower than the priority of the selected
peripheral request, an interrupt service will occur. There are two types of interrupt
processing:

1. Standard interrupt processing forces the CPU to save the current program status
and return address on the stack before branching to the interrupt vector jump table.

2. PEC interrupt processing steals just one instruction cycle from the current CPU
activity to perform a single data transfer via the on-chip PEC.

System errors detected during program execution (so called hardware traps), or an external
non-maskable interrupt, are also processed as high priority standard interrupts.

There is a close conjunction between the watchdog timer and the CPU. If enabled, the
watchdog timer expects to be serviced by the CPU within a programmable period of time,
otherwise it will reset the chip.

Therefore, the watchdog timer is able to prevent the CPU from going totally astray when
executing erroneous code. After reset, the watchdog timer starts counting automatically, but
if necessary it can be disabled via software.

UM0407 The central processing unit (CPU)

 53/541

Beside its normal operation there are the following particular CPU states:

● RESET state: Any reset (hardware, software, watchdog) forces the CPU into a pre-
defined active state.

● IDLE state: The clock signal to the CPU itself is switched off, while the clocks for the
on-chip peripherals keep running.

● POWER DOWN state: All of the on-chip clocks are switched off.

A transition into an active CPU state is forced by an interrupt (if being IDLE) or by a reset (if
being in POWER DOWN mode).

The IDLE, POWER DOWN and RESET states can be entered by particular ST10F272Z2
system control instructions. A set of Special Function Registers is dedicated to the functions
of the CPU core:

● General system configuration: SYSCON (RP0H)

● CPU status indication and control: PSW

● Code access control: IP, CSP

● Data paging control: DPP0, DPP1, DPP2, DPP3

● GPRs access control: CP

● System stack access control: SP, STKUN, STKOV

● Multiply and divide support: MDL, MDH, MDC

● ALU constants support: ZEROS, ONES

Figure 8. CPU block diagram

CPU

SP

STKOV

STKUN

Execution Unit

Instruction Pointer

4-Stage
Pipeline

PSW

SYSCON

MDH

MDL

Multiplication

Bit-Mask

Barrel-Shift

CP

16-bit

ALU

R15

R0

ADDRSEL 1

ADDRSEL 2

ADDRSEL 3

ADDRSEL 4

BUSCON 0

BUSCON 1

BUSCON 2

BUSCON 3

BUSCON 4

Code Segment Data Page

General
Purpose
Registers

2 Kbyte

Bank n

Bank i

Bank 0

16

16

IROM or
IFlash

32 Division Hardware

Generator

PointerPointers

XRAM

IRAM

16

The central processing unit (CPU) UM0407

54/541

3.1 Instruction pipelines
The instruction pipeline breaks down CPU processing into the four following stages:

● Fetch: An instruction selected by the instruction pointer (IP) and the code segment
pointer (CSP) is fetched from either the internal memory, IRAM, XRAM or external
memory.

● Decode: Instructions are decoded and, if required, the operand addresses are
calculated and the respective operands are fetched.
For all instructions, which implicitly access the system stack, the SP register is either
decremented or incremented, as specified.
For branch instructions the instruction pointer and the code segment pointer are
updated with the desired branch target address (provided that the branch is taken).

● Execute: An operation is performed on the previously fetched operands in the ALU.
Additionally, the condition flags in the PSW register are updated as specified by the
instruction. All explicit writes to the SFR memory space and all auto-increment or auto-
decrement writes to GPRs used as indirect address pointers are performed during the
execute stage of an instruction, too.

● Write back: All external operands and the remaining operands within the IRAM space
are written back.

Injected instructions are generated internally by the machine to provide extra time for
instructions that require more than one instruction cycle. Instructions are automatically
injected into the decode stage of the pipeline, they pass through the remaining stages like
every standard instruction. Program interrupts are performed by the same method of
injecting instructions.

Figure 9. Sequential instruction pipelining

3.1.1 Sequential instruction processing

Each single instruction has to pass through each of the four pipeline stages regardless of
whether all possible stage operations are really performed or not. Since passing through
one pipeline stage takes at least one instruction cycle, any isolated instruction takes at least
four instruction cycles to be completed. Pipelining, however, allows parallel (simultaneous)
processing of up to four instructions. Therefore, as soon as the pipeline has been filled,
most instructions appear to be processed during one instruction cycle (see Figure 9).

Specification of instruction execution time always refers to the average execution time for
pipelined parallel instruction processing (see Figure 9).

1 instruction
cycle

FETCH I2

I1

I3

I2

I1

I4

I3

I2

I1

I6

I5

I4

I3

I5

I4

I3

I2

I1

DECODE

EXECUTE

WRITEBACK

time

UM0407 The central processing unit (CPU)

 55/541

3.1.2 Standard branch instruction processing

When a branch is taken, it is necessary to perform the branched target instruction, before
the current instruction in the pipeline. Therefore, at least one additional instruction cycle is
required to fetch the branch target instruction.

This extra instruction cycle is provided by means of an injected instruction (see Figure 10). If
a conditional branch is not taken, there is no deviation from the sequential program flow, and
thus no extra time is required. In this case the instruction after the branch instruction will
enter the decode stage of the pipeline at the beginning of the next instruction cycle after
decode of the conditional branch instruction.

Figure 10. Standard branch instruction pipelining

3.1.3 Cache jump instruction processing

The ST10F272Z2 incorporates a jump cache. This minimizes the time taken for conditional
jumps which are repeatedly processed in a loop. Whenever a cache jump instruction passes
through the decode stage of the pipeline for the first time (provided that the jump condition is
met), the sequential instruction is fetched as usual, causing a time delay of one instruction
cycle.

If the instruction is repeated in a loop, the target instruction is additionally stored in the
cache. For execution of the repeated cache jump instruction, the jump target instruction is
not fetched from program memory but taken from the cache and immediately injected into
the decode stage of the pipeline (see Figure 11 on page 55).

A time saving jump on cache is always taken after the second and any further occurrence of
the same cache jump instruction, unless an instruction which has the fundamental capability
of changing the CSP register contents (JMPS, CALLS, RETS, TRAP, RETI), or any standard
interrupt has been processed during the period of time between two following occurrences
of the same cache jump instruction.

Figure 11. Cache jump instruction pipelining

1 instruction
cycle

FETCH In+2

BRANCH

In

. . .

ITARGET

(IINJECT)

BRANCH

In

ITARGET+1

ITARGET

(IINJECT)

BRANCH

ITARGET+3

ITARGET+2

ITARGET+1

ITARGET

ITARGET+2

ITARGET+1

ITARGET

(IINJECT)

BRANCH

In

. . .

. . .

DECODE

EXECUTE

WRITEBACK

time

Injection

In+2

Cache

In

. . .

ITARGET+1

ITARGET

Cache Jmp

In

ITARGET+2

ITARGET+1

ITARGET

Cache

In+2

Cache

In

. . .

ITARGET

(IINJECT)

Cache

In

ITARGET+1

ITARGET

(IINJECT)

Cache

1 instruction
cycle

FETCH

DECODE

EXECUTE

WRITEBACK

1st loop iteration

Injection Injection of cached
Target Instruction

Repeated loop iteration

The central processing unit (CPU) UM0407

56/541

3.1.4 Particular pipeline effects

Since up to four different instructions are processed simultaneously, additional hardware
has been included in the ST10F272Z2 to take into account dependencies between
instructions in different stages of the pipeline.

This extra hardware like a forwarding operand read and write values, resolves most of the
possible conflicts like multiple usage of buses.

This prevents delays that would cause the pipeline to become noticeable to the user.
However, there are some cases where allowances must be made by the programmer, for the
pipeline architecture of the ST10F272Z2.

In these cases the delays caused by pipeline conflicts can be used for other instructions in
order to optimize performance.

Context pointer updating

An instruction which calculates a physical GPR operand address via the CP register, is
generally not capable of using a new CP value, which is to be updated by an immediately
preceding instruction. Therefore, to make sure that the new CP value is used, at least one
instruction must be inserted between a CP changing and a subsequent GPR using
instruction, as shown in the example.

Data page pointer updating

An instruction which calculates a physical operand address via a particular DPPn (n = 0 to
3) register, is generally not capable of using a new DPPn register value, which is to be
updated by an immediately preceding instruction. Therefore, to make sure that the new
DPPn register value is used, at least one instruction must be inserted between a DPPn-
changing instruction and a subsequent instruction which implicitly uses DPPn via a long or
indirect addressing mode, as shown in the example.

Explicit stack pointer updating

None of the RET, RETI, RETS, RETP or POP instructions are capable of correctly using a
new SP register value, which is to be updated by an immediately preceding instruction.
Therefore, in order to use the new SP register value without erroneously performed stack
accesses, at least one instruction must be inserted between an explicit SP writing and any
subsequent of the just mentioned implicitly SP using instructions, as shown in the example.

In : SCXT CP, #0FC00h ; select a new context

In+1 : ; must not be an instruction using a GPR

In+2 : MOV R0, #dataX ; write to GPR 0 in the new context

In : MOV DPP0, #4 ; select data page 4 via DPP0

In+1 : ; must not be an instr using DPP0

In+2 : MOV DPP0:0000h, R1 ; move contents of R1 to address loc ; 01’0000h

; (in data page 4) supposed segmentation is; enabled

In : MOV SP, #0FA40h ; select a new top of stack

In+1 : ; must not be an instruction popping
; operands from the system stack

In+2 : POP R0 ; pop Word value from new top of stack
; into R0

UM0407 The central processing unit (CPU)

 57/541

External memory access sequences

The effect described here will only become noticeable, when watching the external memory
access sequences on the external bus by means of a logic analyzer. Different pipeline
stages can simultaneously put a request on the external bus controller (EBC).

The sequence of instructions processed by the CPU may diverge from the sequence of the
corresponding external memory accesses performed by the EBC, due to the predefined
priority of external memory accesses.

Controlling interrupts

Software modifications (implicit or explicit) of the PSW are done in the execute phase of the
respective instructions. In order to maintain fast interrupt responses, however, the current
interrupt prioritization round does not consider these changes. For example an interrupt
request may be acknowledged after the instruction that disables interrupts via IEN or ILVL or
after the following instructions.

Time critical instruction sequences, therefore, should not begin directly after the instruction
disabling interrupts, as shown in the example.

Note: The described delay of one instruction also applies for enabling the interrupts system that
means no interrupt requests are acknowledged until the instruction following the enabling
instruction.

Initialization of port pins

Modifications of the direction of port pins (input or output) become effective only after the
instruction following the modifying instruction. As bit instructions (BSET, BCLR) use internal
read-modify-write sequences accessing the whole port, instructions modifying the port
direction should be followed by an instruction that does not access the same port.

1st Write data

2nd Fetch code

3rd Read data

INT_OFF: BCLR IEN ; globally disable interrupts

IN-1 ; non-critical instruction

CRIT_1ST: IN ; start of non-interruptible critical
; sequence

. . .

CRIT_LAST: IN+x ; end of non-interruptible critical
; sequence

INT_ON: BSET IEN ; globally re-enable interrupts

WRONG: BSET DP3.13 ; change direction of P3.13 to output

BSET P3.5 ; P3.13 is still input, the read-modify-write
; reads pin P3.13

RIGHT: BSET DP3.13 ; change direction of P3.13 to output

NOP ; any instruction not accessing Port3

BSET P3.5 ; P3.13 is now output,

; the read-modify-write reads the P3.13 output
; latch

The central processing unit (CPU) UM0407

58/541

Changing the system configuration

The instruction following an instruction that changes the system configuration via register
SYSCON (like the mapping of the internal memory, like segmentation, like stack size),
cannot use the new resources (memory or stack). This instruction must not access the new
resources.

Code accesses to the new memory area are only possible after an absolute branch to this
area. As a rule, instructions that change memory mapping must be executed from IRAM or
external memory.

BUSCON/ADDRSEL

The (In+1) instruction following an (In) instruction that changes the properties of an external
address area, cannot access operands within the new area.

This instruction (In+1) must not access this memory area. Code accesses to the new
address area must be made after an absolute branch to this area.

Note: As a rule, instructions that change external bus properties must not be executed from the
respective external memory area.

Timing

Pipeline architecture drastically reduces the average instruction processing time. The mean
ratio is about four to one instruction cycle. Some peculiar cases of pipeline configuration
extend the instruction processing time by half or by one cycle.

These cases have to be taken into account for the time critical software routines. Besides a
general execution time description, the following section provides some hints on how to
optimize time-critical program parts with regard to such pipeline-caused timing
particularities.

3.2 Bit-handling and bit-protection
The ST10F272Z2 provides several mechanisms for bit manipulation. These mechanisms,
either handle software flags within the IRAM, control on-chip peripherals via control bits in
their respective SFRs, or control I/O functions via port pins.

The instructions BSET, BCLR, BAND, BOR, BXOR, BMOV and BMOVN, explicitly set or
clear specific bits. The instructions BFLDL and BFLDH make it possible to change up to 8
bits of a specific byte at a time.

The instructions JBC and JNBS implicitly clear or set the specified bit when the jump is
taken. The instructions JB and JNB (also conditional jump instructions that refer to flags)
evaluate the specified bit to determine if the jump is to be taken.

Note: Bit operations on undefined bit locations will always read a bit value of ‘0’, while the write
access will not affect the respective bit location.

UM0407 The central processing unit (CPU)

 59/541

All instructions that change single bit or bit groups internally use a read-modify-write
sequence that accesses the whole word containing the specified bit(s). This method has
several consequences:

● Bit can only be modified within the internal specific address areas (IRAM, SFRs...).
External locations cannot be used with bit instructions.

● The upper 256 bytes of the SFR area, the ESFR area and the IRAM are bit-
addressable (see Section 2: Memory organization on page 40). Those register bits
located within the respective sections can be directly manipulated using bit instructions.
The other SFRs must be accessed byte or word wise.

Note: All GPRs are bit-addressable independently of the allocation of the register bank via the
context pointer CP. Even GPRs which are allocated in not bit-addressable RAM locations
provide this feature.

● The read-modify-write approach may be critical with hardware-effected bits. In these
cases the hardware may change specific bit while the read-modify-write operation is in
progress, where the writeback would overwrite the new bit value generated by the
hardware. The solution is either the implemented hardware protection (see below) or
realized through special programming (see Section 3.1.4: Particular pipeline effects).

Protected bits: As mentioned in Section 1.6: Protected bits on page 38 (hardware set) are
not modified during a read-modify-write sequence, even if an interrupt request rises
between read and write time. The hardware protection logic guarantees that only the
intended bit(s) is/are effected by the write-back operation.

Note: If a conflict occurs between a bit manipulation generated by hardware and an intended
software access the software access has priority and determines the final value of the
respective bit (see Section 1.6: Protected bits on page 38).

3.3 Instruction execution times
Instruction execution time depends on where the instruction is fetched from and where
operands are read from or written to. When a program is fetched from internal memory, most
of the instructions can be processed in one instruction cycle. All external memory accesses
are performed by the on-chip external bus controller (EBC) which works in parallel with the
CPU. This section summarizes the execution times. A detailed description of the execution
times for the various instructions and the specific exceptions can be found in the “ST10
Family Programming Manual”. Table 5 on page 60 shows the minimum execution times
required to process a ST10F272Z2 instruction fetched from the internal IFlash, the IRAM, or
from external memory. The values are in CPU clock cycles and assume no wait-states. Two
CPU clock cycles are equal to one instruction cycle.

These execution times apply to most of the ST10F272Z2 instructions except some of the
branches, the multiplication, the division and a special move instruction. In case of execution
from the internal program memory, there is no execution time dependency on the instruction
length, except for some special branch situations. Because of the short execution time,
execution from on-chip RAM (IRAM and XRAM) is flexible for loadable and modifiable code.
Execution from external memory depends on the selected bus mode and the programming

The central processing unit (CPU) UM0407

60/541

of the bus cycles (wait-states). The operand and instruction accesses listed below can
extend the execution time of an instruction:

● Internal IFlash memory operand reads (same for byte and word operand reads),

● Internal IRAM operand reads via indirect addressing modes,

● Internal SFR operand reads immediately after writing,

● External operand reads,

● External operand writes,

● Jumps to non-aligned double word instructions in the internal IFlash memory space,

● Testing branch conditions immediately after PSW writes.

3.4 CPU special function registers
The CPU requires a set of special function registers (SFRs) to maintain the system state
information, to supply the ALU with register- addressable constants and to control system
and bus configuration, multiply and divide ALU operations, code memory segmentation,
data memory paging, and accesses to the General Purpose Registers and the System
Stack.

The access mechanism for these SFRs in the CPU core is identical to the access
mechanism for any other SFR. Since all SFRs can be controlled by means of any instruction
which is able to address the SFR memory space, a lot of flexibility has been gained without
creating a set of system-specific instructions.

Note, however, that there are user access restrictions for some of the CPU core SFRs to
ensure proper processor operations. The instruction pointer IP and code segment pointer
CSP cannot be accessed directly. They can only be changed indirectly via branch
instructions. The PSW, SP, and MDC registers can be modified, not only explicitly by the
programmer, but also implicitly by the CPU during normal instruction processing.

Table 5. Minimum execution times

Memory area

Instruction fetch

Word instruction
(CPU clock cycles)

Double word instruction
(CPU clock cycles)

Internal Memory (IFlash) 2 2

Internal IRAM 6 8

Internal XRAM 2 4

16-bit De-multiplex Bus 2 4

16-bit Multiplexed Bus 3 6

8-bit De-multiplex Bus 4 8

8-bit Multiplexed Bus 6 12

UM0407 The central processing unit (CPU)

 61/541

Note: 1 Any explicit write request (via software) to an SFR supersedes a simultaneous modification
of the same register, by hardware.

2 Any write operation to a single byte of an SFR clears the non-addressed complementary
byte within the specified SFR.

3 Non-implemented (reserved) SFR bits cannot be modified, and will always supply a read
value of '0'.

3.4.1 The system configuration register SYSCON

This bit-addressable register provides general system configuration and control functions.
The reset value for register SYSCON depends on the state of the PORT0 pins during reset
(see hardware affectable bits).

SYSCON (FF12h / 89h) SFR Reset Value: 0xx0h

Reset Value: 0000 0xx0 x000 0000b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

PWD
CFG

OWD
DIS

BDR
STEN XPEN VISI

BLE
XPER-
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

XPER-
SHARE

XBUS peripheral share mode control

‘0’: External accesses to XBUS peripherals are disabled.
‘1’: XRAM1 and XRAM2 are accessible via the external bus during hold mode.
External accesses to the other XBUS peripherals are not guaranteed in terms of AC
timings. See Section 2.4.1: XRAM access via external masters on page 49 for
additional details.

VISIBLE
Visible mode control

‘0’: Accesses to XBUS peripherals and XRAM are done internally.
‘1’: XBUS peripheral accesses are made visible on the external pins.

XPEN
XBUS peripheral enable bit

‘0’: Accesses to the on-chip X-Peripherals and XRAM are disabled.
‘1’: The on-chip X-Peripherals are enabled.

BDRSTEN

Bidirectional reset enable

‘0’: RSTIN pin is an input pin only. SW Reset or WDT Reset have no effect on this pin.
‘1’: RSTIN pin is a bidirectional pin. This pin is pulled low during internal reset
sequence.

OWDDIS

Oscillator watchdog disable control

‘0’: Oscillator Watchdog (OWD) is enabled. If PLL is bypassed, the OWD monitors
XTAL1 activity. If there is no activity on XTAL1 for at least 1µs, the CPU clock is
switched automatically to PLL’s base frequency (from 750 kHz to 3 MHz).
‘1’: OWD is disabled. If the PLL is bypassed, the CPU clock is always driven by XTAL1
signal. The PLL is turned off to reduce power supply current.

The central processing unit (CPU) UM0407

62/541

Note: Register SYSCON cannot be changed after execution of the EINIT instruction.
The function of bit XPER-SHARE, VISIBLE, WRCFG, BYTDIS, ROMEN and ROMS1 is
described in more detail in Section 8.4: Controlling the external bus controller on page 194.

System clock output enable (CLKEN)

The system clock output function is enabled by setting bit CLKEN in register SYSCON to '1'.
If enabled, port pin P3.15 takes on its alternate function as CLKOUT output pin. The clock
output is a 50 % duty cycle clock whose frequency equals the CPU operating frequency

PWDCFG

Power down mode configuration control

‘0’: power down mode can only be entered during PWRDN instruction execution if NMI
pin is low, otherwise the instruction has no effect. To exit Power Down Mode, an
external reset must occur by asserting the RSTIN pin.

‘1’: power down mode can only be entered during PWRDN instruction execution if all
enabled fast external interrupt EXxIN pins are in their inactive level. Exiting this mode
can be done by asserting one enabled EXxIN pin (or alternate source see
Section 5.6.1: Fast external interrupts on page 111) or with external reset.

CSCFG

Chip select configuration control

‘0’: Latched Chip Select lines, CSx changes 1 TCL after rising edge of ALE.

‘1’: Unlatched Chip Select lines, CSx changes with rising edge of ALE.

WRCFG

Write configuration control (Inverted copy of WRC bit of RP0H)

‘0’: Pins WR and BHE retain their normal function.

‘1’: Pin WR acts as WRL, pin BHE acts as WRH.

CLKEN

System clock output enable (CLKOUT)

‘0’: CLKOUT disabled, pin may be used for general purpose I/O.
‘1’: CLKOUT enabled, pin outputs the system clock signal or a prescaled value of
system clock according to XCLKOUTDIV register setting.

BYTDIS

Disable/enable control for Pin BHE (Set according to data bus width)

‘0’: Pin BHE enabled.

‘1’: Pin BHE disabled, pin may be used for general purpose I/O.

ROMEN

Internal memory enable (Set according to pin EA during reset)

‘0’: Internal memory disabled: accesses to the IFlash Memory area use the external
bus.

‘1’: Internal memory enabled.

SGTDIS

Segmentation disable/enable control

‘0’: Segmentation enabled (CSP is saved/restored during interrupt entry/exit).

‘1’: Segmentation disabled (Only IP is saved/restored).

ROMS1

Internal memory mapping

‘0’: Internal memory area mapped to segment 0 (00’0000h...00’7FFFh).

‘1’: Internal memory area mapped to segment 1 (01’0000h...01’7FFFh).

STKSZ
System stack size

Selects the size of the system stack (in the IRAM) from 32 to 1024 words.

Bit Function

UM0407 The central processing unit (CPU)

 63/541

(fOUT = fCPU). In case XCLKOUTDIV register is used, the fOUT can be equal to the
programmed prescaled value of the fCPU (prescaler factor is programmable from 1 to 256
linearly, default value after reset is 1).

Note: The output driver of port pin P3.15 is switched on automatically, when the CLKOUT function
is enabled. The port direction bit is disregarded.
After reset, the clock output function is disabled (CLKEN = ‘0’).

Segmentation disable/enable control (SGTDIS)

Bit SGTDIS allows to select either the segmented or non-segmented memory mode.

In non-segmented memory mode (SGTDIS='1') it is assumed that the code address
space is restricted to 64 Kbytes (segment 0) and thus 16 bits are sufficient to represent all
code addresses.

For implicit stack operations (CALL or RET) the CSP register is totally ignored and only the
IP is saved to and restored from the stack.

In segmented memory mode (SGTDIS='0') it is assumed that the whole address space is
available for instructions. For implicit stack operations (CALL or RET) the CSP register and
the IP are saved to and restored from the stack. After reset the segmented memory mode is
selected.

Note: Bit SGTDIS controls if the CSP register is pushed onto the system stack in addition to the IP
register before an interrupt service routine is entered, and it is re-popped when the interrupt
service routine is left again.

System stack size (STKSZ)

This bit-field defines the size of the physical system stack, which is located in the IRAM of
the ST10F272Z2. An area of 32...1024 words or all of the IRAM may be dedicated to the
system stack. A so-called “circular stack” mechanism allows to use a bigger virtual stack
than this dedicated IRAM area. These techniques as well as the encoding of bit-field STKSZ
are described in more detail in stack operations (see Section 27.1: Stack operations on
page 520).

Table 6. Stack size

(STKSZ) Stack size (words) IRAM addresses (words)

0 0 0b 256 00’FBFEh...00’FA00h (Default after Reset)

0 0 1b 128 00’FBFEh...00’FB00h

0 1 0b 64 00’FBFEh...00’FB80h

0 1 1b 32 00’FBFEh...00’FBC0h

1 0 0b 512 00’FBFEh...00’F800h

1 0 1b --- Reserved. Do not use this combination.

1 1 0b --- Reserved. Do not use this combination.

1 1 1b 1024 00’FDFEh...00’F600h (Note: No circular stack)

The central processing unit (CPU) UM0407

64/541

3.4.2 X-Peripherals control register (XPERCON)

XPERCON (F024h / 12h) ESFR Reset Value: - 005h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - XMISC
EN

XI2C
EN

XSSC
EN

XASC
EN

XPWM
EN - XRTC

EN
XRAM
2EN

XRAM
1EN

CAN2
EN

CAN1
EN

RW RW RW RW RW - RW RW RW RW RW

Bit Function

CAN1EN

CAN1 Enable Bit

‘0’: Accesses to the on-chip CAN1 X-Peripheral and its functions are disabled (P4.5
and P4.6 pins can be used as general purpose I/Os, but address range 00’EF00h-
00’EFFFh is directed to external memory only if CAN2EN, XRTCEN, XASCEN,
XSSCEN, XI2CEN, XPWMEN an XMISCEN are ‘0’ also).

‘1’: The on-chip CAN1 X-Peripheral is enabled and can be accessed.

CAN2EN

CAN2 Enable Bit

‘0’: Accesses to the on-chip CAN2 X-Peripheral and its functions are disabled (P4.4
and P4.7 pins can be used as general purpose I/Os, but address range 00’EE00h-
00’EEFFh is directed to external memory only if CAN1EN, XRTCEN, XASCEN,
XSSCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also).

‘1’: The on-chip CAN2 X-Peripheral is enabled and can be accessed.

XRAM1EN

XRAM1 Enable Bit

‘0’: Accesses to the on-chip 2 Kbyte XRAM are disabled. Address range 00’EE00h-
00’EEFFh is directed to external memory.
‘1’: The on-chip 2 Kbyte XRAM is enabled and can be accessed.

XRAM2EN

XRAM2 Enable Bit

‘0’: Accesses to the on-chip 64 Kbyte XRAM are disabled, external access performed.
Address range 0F’0000h-0F’FFFFh is directed to external memory.

‘1’: The on-chip 64 Kbyte XRAM is enabled and can be accessed.

XRTCEN

RTC Enable

‘0’: Accesses to the on-chip RTC module are disabled, external access performed.
Address range 00’ED00h-00’EDFF is directed to external memory only if CAN1EN,
CAN2EN, XASCEN, XSSCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.
‘1’: The on-chip RTC module is enabled and can be accessed.

XPWMEN

XPWM Enable

‘0’: Accesses to the on-chip XPWM module are disabled, external access performed.
Address range 00’EC00h-00’ECFF is directed to external memory only if CAN1EN,
CAN2EN, XASCEN, XSSCEN, XI2CEN, XRTCEN and XMISCEN are ‘0’ also.

‘1’: The on-chip XPWM module is enabled and can be accessed.

XASCEN

XASC Enable Bit

‘0’: Accesses to the on-chip XASC are disabled, external access performed. Address
range 00’E900h-00’E9FFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip XASC is enabled and can be accessed.

UM0407 The central processing unit (CPU)

 65/541

When CAN1, CAN2, RTC, XASC, XSSC, I2C, XPWM and the XBUS additional features are
all disabled via XPERCON setting, then any access in the address range 00’E800h -
00’EFFFh will be directed to external memory interface, using the BUSCONx register
corresponding to address matching ADDRSELx register. All pins involved with X-
peripherals, can be used as general purpose I/O whenever the related module is not
enabled.

The default X-peripheral configuration after reset is such that only CAN1 and XRAM1 are
pre-selected: They will be enabled once XPEN bit in SYSCON register is set.

Register XPERCON cannot be changed after the global enabling of X-Peripherals, that is,
after setting of bit XPEN in SYSCON register.

In emulation mode, all the X-peripherals are enabled (XPERCON bits are all set). It is up to
the emulation device to redirect or not an access to external memory or to XBUS. Register
XPEREMU has been created to allow a dynamic selection of this redirection instead of a
static configuration of the emulator at the start-up.

Reserved bits of XPERCON register shall be always written to ‘0’.

3.4.3 XPERCON and XPEREMU registers

As already mentioned, XPERCON register has to be programmed to enable the single
XBUS modules separately. The XPERCON is a read/write ESFR register; the XPEREMU
register is a write-only register mapped on XBUS memory space (address EB7Eh).

Once the XPEN bit of SYSCON register is set and at least one of the X-peripherals (except
memories) is activated, the register XPEREMU must be written with the same content of
XPERCON: This is mandatory in order to allow a correct emulation of the new set of
features introduced on XBUS for the new ST10 generation. The following instructions must
be added inside the initialization routine:

if (SYSCON.XPEN && (XPERCON & 0x07D3))
then { XPEREMU = XPERCON }

XSSCEN

XSSC Enable Bit

‘0’: Accesses to the on-chip XSSC are disabled, external access performed. Address
range 00’E800h-00’E8FFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip XSSC is enabled and can be accessed.

XI2CEN

I2C Enable Bit

‘0’: Accesses to the on-chip I2C are disabled, external access performed. Address
range 00’EA00h-00’EAFFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XSSCEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip I2C is enabled and can be accessed.

XMISCEN

XBUS Additional features enable Bit

‘0’: Accesses to the Additional Miscellaneous Features is disabled. Address range
00’EB00h-00’EBFFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XSSCEN, XPWMEN and XI2CEN are ‘0’ also.

‘1’: The Additional Features are enabled and can be accessed.

Bit Function

The central processing unit (CPU) UM0407

66/541

Of course, XPEREMU must be programmed after XPERCON and after SYSCON, in such a
way the final configuration for X-Peripherals is stored in XPEREMU and used for the
emulation hardware setup.

XPEREMU (EB7Eh) XBUS Reset Value: xxxxh

The bit meaning is exactly the same as XPERCON.

3.4.4 Emulation dedicated registers

Four additional registers are implemented for emulation purpose only. Similarly to
XPEREMU, they are write only registers and reserved for emulator software usage. User
should not write to these registers.

XEMU0 (EB76h) XBUS Reset Value: xxxxh

XEMU1 (EB78h) XBUS Reset Value: xxxxh

XEMU2 (EB7Ah) XBUS Reset Value: xxxxh

XEMU3 (EB7Ch) XBUS Reset Value: xxxxh

3.4.5 The processor status word PSW

This bit-addressable register reflects the current state of the microcontroller. Two groups of
bits represent the current ALU status, and the current CPU interrupt status. A separate bit
(USR0) within register PSW is provided as a general purpose user flag.

PSW (FF10h / 88h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - XMISC
EN

XI2C
EN

XSSC
EN

XASC
EN

XPWM
EN - XRTC

EN
XRAM2

EN
XRAM1

EN
CAN2

EN
CAN1

EN

W W W W W W W W W W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XEMU0(15:0)

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XEMU1(15:0)

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XEMU2(15:0)

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XEMU3(15:0)

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN HLDEN - - - USR0 MULIP E Z V C N

RW RW RW RW RW RW RW RW RW RW

UM0407 The central processing unit (CPU)

 67/541

ALU Status (N, C, V, Z, E, MULIP)

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status due to the last
performed ALU operation. They are set by most of the instructions due to specific rules,
which depend on the ALU or data movement operation performed by an instruction.

After execution of an instruction which explicitly updates the PSW register, the condition
flags cannot be interpreted as described in the following, because any explicit write to the
PSW register supersedes the condition flag values, which are implicitly generated by the
CPU.

Explicitly reading the PSW register supplies a read value which represents the state of the
PSW register after execution of the immediately preceding instruction.

Note: After reset, all of the ALU status bits are cleared.

N-Flag: For most of the ALU operations, the N-flag is set to '1' if the most significant bit of
the result contains a '1', otherwise it is cleared. In the case of integer operations the N-flag
can be interpreted as the sign bit of the result (negative: N = ‘1’, positive: N = ‘0’). Negative
numbers are always represented as the 2's complement of the corresponding positive
number. The range of signed numbers extends from '–8000h' to '+7FFFh' for the word data
type, or from '–80h' to '+7Fh' for the byte data type. For Boolean bit operations with only one
operand the N-flag represents the previous state of the specified bit. For Boolean bit
operations with two operands the N-flag represents the logical XOR of the two specified bits.

C-Flag: After an addition the C-flag indicates that a carry from the most significant bit of the
specified word or byte data type has been generated. After a subtraction or a comparison

Bit Function

N
Negative Result

Set when the result of an ALU operation is negative.

C
Carry Flag

Set when the result of an ALU operation produces a carry bit.

V
Overflow Result

Set when the result of an ALU operation produces an overflow.

Z
Zero Flag

Set when the result of an ALU operation is zero.

E
End of Table Flag

Set when the source operand of an instruction is 8000h or 80h.

MULIP
Multiplication/Division In Progress

‘0’: There is no multiplication/division in progress.
‘1’: A multiplication/division has been interrupted.

USR0
User General Purpose Flag

May be used by the application software.

HLDEN,
ILVL, IEN

Interrupt and EBC Control Fields

Define the response to interrupt requests and enable external bus Arbitration
(Described in Figure 5: Interrupt and trap functions on page 93).

The central processing unit (CPU) UM0407

68/541

the C-flag indicates a borrow, which represents the logical negation of a carry for the
addition.

This means that the C-flag is set to '1' if no carry from the most significant bit of the specified
word or byte data type has been generated during a subtraction, which is performed
internally by the ALU as a 2's complement addition, and the C-flag is cleared when this
complement addition caused a carry. The C-flag is always cleared for logical, multiply and
divide ALU operations, because these operations cannot cause a carry anyhow.

For shift and rotate operations the C-flag represents the value of the bit shifted out last. If a
shift count of zero is specified, the C-flag will be cleared. The C-flag is also cleared for a
prioritize ALU operation, because a '1' is never shifted out of the MSB during the
normalization of an operand. For Boolean bit operations with only one operand the C-flag is
always cleared. For Boolean bit operations with two operands the C-flag represents the
logical ANDing of the two specified bits.

V-Flag: For addition, subtraction and 2's complementation the V-flag is always set to '1' if the
result overflows the maximum range of signed numbers, which are representable by either
16-bit for word operations ('–8000h' to '+7FFFh'), or by 8-bit for byte operations ('–80h' to
'+7Fh'), otherwise the V-flag is cleared. The result of an integer addition, integer subtraction,
or 2's complement is not valid if the V-flag indicates an arithmetic overflow.

For multiplication and division the V-flag is set to '1' if the result cannot be represented in a
word data type, otherwise it is cleared. A division by zero will always cause an overflow. In
contrast to the result of a division, the result of a multiplication is valid regardless of whether
the V-flag is set to '1' or not. Since logical ALU operations cannot produce an invalid result,
the V-flag is cleared by these operations.

The V-flag is also used as 'Sticky bit' for rotate right and shift right operations. With only
using the C-flag, a rounding error caused by a shift right operation can be estimated up to a
quantity of one half of the LSB of the result. In conjunction with the V-flag, the C-flag allows
evaluating the rounding error with a finer resolution (see Table 7). For Boolean bit operations
with only one operand the V-flag is always cleared. For Boolean bit operations with two
operands the V-flag represents the logical ORing of the two specified bits.

Z-Flag: The Z-flag is normally set to '1' if the result of an ALU operation equals zero,
otherwise it is cleared. For the addition and subtraction with carry the Z-flag is only set to '1'
if the Z-flag already contains a '1' and the result of the current ALU operation additionally
equals zero. This mechanism is provided for the support of multiple precision calculations.

For Boolean bit operations with only one operand the Z-flag represents the logical negation
of the previous state of the specified bit. For Boolean bit operations with two operands the Z-
flag represents the logical NORing of the two specified bits. For the prioritize ALU operation
the Z-flag indicates, if the second operand was zero or not.

E-Flag: The E-flag can be altered by instructions, which perform ALU or data movement
operations. The E-flag is cleared by those instructions which cannot be reasonably used for

Table 7. Shift right rounding error evaluation

C-Flag V-Flag Rounding error quantity

0
0
1
1

0
1
0
1

No rounding error
0 <Rounding error< 1/2 LSB
Rounding error= 1/2 LSB
Rounding error> 1/2 LSB

UM0407 The central processing unit (CPU)

 69/541

table search operations. In all other cases the E-flag is set depending on the value of the
source operand to signify whether the end of a search table is reached or not.

If the value of the source operand of an instruction equals the lowest negative number,
which is representable by the data format of the corresponding instruction ('8000h' for the
word data type, or '80h' for the byte data type), the E-flag is set to '1', otherwise it is cleared.

MULIP-Flag: The MULIP-flag is set to '1' by hardware upon the entrance into an interrupt
service routine, when a multiply or divide ALU operation is interrupted before completion.
Depending on the state of the MULIP bit, the hardware decides whether a multiplication or
division must be continued or not after the end of an interrupt service. The MULIP bit is
overwritten with the contents of the stacked MULIP-flag when the return-from-interrupt-
instruction (RETI) is executed. This normally means that the MULIP-flag is cleared again
after that.

Note: The MULIP flag is a part of the task environment. When the interrupting service routine
does not return to the interrupted multiply/divide instruction (for example in case of a task
scheduler that switches between independent tasks), the MULIP flag must be saved as part
of the task environment and must be updated accordingly for the new task before this task is
entered.

CPU Interrupt Status (IEN, ILVL): The Interrupt Enable bit allows to globally enable
(IEN = ‘1’) or disable (IEN = ‘0’) interrupts. The 4-bit Interrupt Level field (ILVL) specifies the
priority of the current CPU activity.

The interrupt level is updated by hardware upon entry into an interrupt service routine, but it
can also be modified via software to prevent other interrupts from being acknowledged. In
case an interrupt level '15' has been assigned to the CPU, it has the highest possible priority,
and thus the current CPU operation cannot be interrupted except by hardware traps or
external non-maskable interrupts. For details refer to Section 5: Interrupt and trap functions
on page 93.

After reset all interrupts are globally disabled, and the lowest priority (ILVL = 0) is assigned
to the initial CPU activity.

3.4.6 The instruction pointer IP

This register determines the 16-bit intra-segment address of the currently fetched instruction
within the code segment selected by the CSP register.

The IP register is not mapped into the MCU address space, and thus it is not directly
accessible by the programmer. The IP can, however, be modified indirectly via the stack by
means of a return instruction.

The IP register is implicitly updated by the CPU for branch instructions and after instruction
fetch operations.

IP (---- / --) --- Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP

(R)(W)

The central processing unit (CPU) UM0407

70/541

3.4.7 The code segment pointer CSP

This non-bit-addressable register selects the code segment being used at run-time to
access instructions. The lower 8 bits of register CSP select one of up to 256 segments of 64
Kbytes each, while the upper 8 bits are reserved for future use.

CSP (FE08h / 04h) SFR Reset Value: 0000h

Figure 12. Addressing via the code segment pointer

Note: When segmentation is disabled, the IP value is used directly as the 16-bit address.

Code memory addresses are generated by directly extending the 16-bit contents of the IP
register by the contents of the CSP register as shown in the Figure 12 on page 70.

In case of the segmented memory mode the selected number of segment address bits
(7...0, 3...0 or 1...0) of register CSP is output on the segment address pins A23...A16 of
Port4 for all external code accesses. For non-segmented memory mode the content of this
register is not significant, because all code accesses are automatically restricted to
segment 0.

Bit Function

IP
Instruction Pointer

Specifies the intra segment offset, from where the current instruction is to be fetched. IP
refers to the current segment (SEGNR bit field of CSP register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - SEGNR

R

Bit Function

SEGNR
Segment number

Specifies the code segment, from where the current instruction is to be fetched. SEGNR
is ignored, when segmentation is disabled.

Code Segment

255

254

1

0

FF’FFFFh

FE’0000h

01’0000h

00’0000h

15 0CSP Register 15 0IP Register

24 / 20 / 18-bit Physical Code Address

UM0407 The central processing unit (CPU)

 71/541

The CSP register can only be read but not written by data operations. It is, however,
modified either directly by means of the JMPS and CALLS instructions, or indirectly via the
stack by means of the RETS and RETI instructions.

Upon the acceptance of an interrupt or the execution of a software TRAP instruction, the
CSP register is automatically set to zero.

3.4.8 The data page pointers DPP0, DPP1, DPP2, DPP3

These four non-bit-addressable registers select up to four different data pages being active
simultaneously at run-time. The lower 10 bits of each DPP register select one of the 1024
possible 16 Kbyte data pages while the upper 6 bits are reserved for future use. The DPP
registers make it possible to access the entire memory space, in pages of 16 Kbytes each.

The DPP registers are implicitly used whenever data accesses to any memory location are
made via indirect, or direct long 16-bit addressing modes (except for override accesses via
EXTended instructions and PEC data transfers). After reset, the data page pointers are
initialized in a way that all indirect or direct long 16-bit addresses result in identical 18-bit
addresses. This allows to access data pages 3...0 within segment 0 as shown in the
Figure 13 on page 72. If the user does not want to use any data paging, no further action is
required.

DPP0 (FE00h / 00h) SFR Reset Value: 0000h

DPP1 (FE02h / 01h) SFR Reset Value: 0001h

DPP2 (FE04h / 02h) SFR Reset Value: 0002h

DPP3 (FE06h / 03h) SFR Reset Value: 0003h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP0PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP1PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP2PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP3PN

RW

Bit Function

DPPxPN
Data Page number of DPPx

Specifies the data page selected via DPPx. Only the 2 least significant bits of DPPx
are used when segmentation is disabled.

The central processing unit (CPU) UM0407

72/541

Data paging is performed by concatenating the lower 14 bits of an indirect or direct long 16
bit address with the contents of the DPP register selected by the upper two bits of the 16-bit
address. The content of the selected DPP register specifies one of the 1024 possible data
pages. This data page base address together with the 14-bit page offset forms the physical
24-/20-/18-bit address. In case of non-segmented memory mode, only the two least
significant bits of the implicitly selected DPP register are used to generate the physical
address. Thus, extreme care should be taken when changing the content of a DPP register,
if a non-segmented memory model is selected, because otherwise unexpected results could
occur.

In case of the segmented memory mode the selected number of segment address bits
(9...2, 5...2 or 3...2) of the respective DPP register is output on the segment address pins
A23/A19/A17/A16 of Port4 for all external data accesses. A DPP register can be updated via
any instruction, which is capable of modifying an SFR.

Due to the internal instruction pipeline, a new DPP value is not yet usable for the operand
address calculation of the instruction immediately following the instruction updating the DPP
register.

Figure 13. Addressing via the data page pointers

3.4.9 The context pointer CP

This non-bit-addressable register is used to select the current register context. This means
that the CP register value determines the address of the first general purpose register
(GPR) within the current register bank of up to 16 word wide and/or byte wide GPRs.

CP (FE10h / 08h) SFR Reset Value: FC00h

Data Pages

1023

1022

1021

3

2

1

0

DPP Registers

DPP3-11

DPP2-10

DPP1-01

DPP0-00

After reset or with segmentation disabled the DPP registers select data pages 3...0.
All of the internal memory is accessible in these cases.

1415 0

16-bit Data Address

9 0

14-bit10-bit

13

DPP register concatenated with 14-bit
Intra-Page Address gives 24-bit address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 CP 0

R R R R RW R

UM0407 The central processing unit (CPU)

 73/541

It is the user's responsibility to ensure that the physical GPR address, specified via the CP
register plus the short GPR address, must always be an IRAM location. If this condition is
not met, unexpected results may occur.

● Do not set CP below the IRAM start address, 00’F600h (2 Kbytes).

● Do not set CP above 00’FDFEh.

● Be careful using the upper GPRs with CP above 00’FDE0h.

The CP register can be updated via any instruction which is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a new CP value is not yet usable for GPR address
calculations of the instruction immediately following the instruction updating the CP register.

The switch context instruction (SCXT) makes it possible to save the content of register CP
on the stack and updating it with a new value in just one instruction cycle.

Several addressing modes use register CP implicitly for address calculations.

Short 4-bit GPR addresses (mnemonic: Rw or Rb) specify an address relative to the
memory location specified by the contents of the CP register, which is the base of the
current register bank.

Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the short
4-bit GPR address is either multiplied by two or not before it is added to the content of
register CP (see Figure 15 on page 74).

Thus, both byte and word GPR accesses are possible in this way. GPRs used as indirect
address pointers are always accessed word wise.

For some instructions only the first four GPRs can be used as indirect address pointers.
These GPRs are specified via short 2-bit GPR addresses. The respective physical address
calculation is identical to that for the short 4-bit GPR addresses.

Short 8-bit register addresses (mnemonic: reg or bitoff) within a range from F0h to FFh
interpret the four least significant bits as short 4-bit GPR address, while the four most
significant bits are ignored.

The respective physical GPR address calculation is identical to that for the short 4-bit GPR
addresses. For single bit accesses on a GPR, the GPR's word address is calculated as just
described, but the position of the bits within the word is specified by a separate additional 4-
bit value.

Bit Function

CP

Modifiable portion of register CP

Specifies the (word) base address of the current register bank. When writing a value
to register CP with bit CP.11...CP.9 = ‘000’, bit CP.11...CP.10 are set to ‘11’ by
hardware, in all other cases all bits of bit-field “CP” receive the written value.

The central processing unit (CPU) UM0407

74/541

Figure 14. Register bank selection via register CP

Figure 15. Implicit CP use by short GPR addressing modes

3.4.10 The stack pointer SP

This non-bit-addressable register is used to point to the top of the internal system stack
(TOS). The SP register is pre-decremented whenever data is to be pushed onto the stack,
and it is post-incremented whenever data is to be popped from the stack. Thus, the system
stack grows from higher toward lower memory locations.

Since the least significant bit of register SP is tied to '0' and bits 15 through 12 are tied to '1'
by hardware, the SP register can only contain values from F000h to FFFEh. This allows to
access a physical stack within the IRAM of the MCU. A virtual stack (usually bigger) can be
realized via software. This mechanism is supported by registers STKOV and STKUN (see
respective descriptions below).

The SP register can be updated via any instruction which is capable of modifying an SFR.

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

(CP) + 30

(CP) + 28

(CP) + 2

(CP)

IRAM

Context
Pointer

Context Pointer 4-bit GPR Address1111

Specified by register or bitoff

+

x2

Control

For byte GPR
accesses

For word GPR
accesses

IRAM

GPRs

Must be
within the
IRAM area

UM0407 The central processing unit (CPU)

 75/541

Note: Due to the internal instruction pipeline, a POP or RETURN instructions must not
immediately follow an instruction updating the SP register.

SP (FE12h / 09h) SFR Reset Value: FC00h

3.4.11 The stack overflow pointer STKOV

This non-bit-addressable register is compared against the SP register after each operation,
which pushes data onto the system stack (PUSH and CALL instructions or interrupts) and
after each subtraction from the SP register. If the content of the SP register is less than the
content of the STKOV register, a stack overflow hardware trap will occur. Since the least
significant bit of register STKOV is tied to '0' and bits 15 through 12 are tied to '1' by
hardware, the STKOV register can only contain values from F000h to FFFEh.

STKOV (FE14h / 0Ah) SFR Reset Value: FA00h

The stack overflow trap (entered when (SP) < (STKOV)) may be used in two different ways:

Fatal error indication treats the stack overflow as a system error through the associated
trap service routine. Under these circumstances data in the bottom of the stack may have
been overwritten by the status information stacked upon servicing the stack overflow trap.

Automatic system stack flushing allows to use the system stack as a 'stack cache' for a
bigger external user stack. In this case register STKOV should be initialized to a value,
which represents the desired lowest top of stack address plus 12 according to the selected
maximum stack size. This considers the worst case that will occur when a stack overflow
condition is detected just during entry into an interrupt service routine. Then, six additional
stack word locations are required to push IP, PSW and CSP for both the interrupt service
routine and the hardware trap service routine.

More details about the stack overflow trap service routine and virtual stack management are
given in Section 27: System programming on page 518.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 SP 0

R R R R RW R

Bit Function

SP
Modifiable portion of register SP

Specifies the top of the internal system stack.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 STKOV 0

R R R R RW R

Bit Function

STKOV
Modifiable portion of register STKOV

Specifies the lower limit of the internal system stack.

The central processing unit (CPU) UM0407

76/541

3.4.12 The stack underflow pointer STKUN

This non-bit-addressable register is compared against the SP register after each operation,
which pops data from the system stack (POP and RET instructions) and after each addition
to the SP register. If the content of the SP register is greater than the content of the STKUN
register, a stack underflow hardware trap will occur.

Since the least significant bit of register STKUN is tied to '0' and bits 15 through 12 are tied
to '1' by hardware, the STKUN register can only contain values from F000h to FFFEh.

STKUN (FE16h / 0Bh) SFR Reset Value: FC00h

The Stack Underflow Trap (entered when (SP) > (STKUN)) may be used in two different
ways:

● Fatal error indication treats the stack underflow as a system error through the
associated trap service routine.

● Automatic system stack refilling allows to use the system stack as a 'stack cache' for
a bigger external user stack. In this case register STKUN should be initialized to a
value, which represents the desired highest bottom of stack address.

More details about the stack underflow trap service routine and virtual stack management
are given in Section 27: System programming on page 518.

Scope of stack limit control

The stack limit control realized by the register pair STKOV and STKUN detects cases where
the stack pointer SP is moved outside the defined stack area either by ADD or SUB
instructions or by PUSH or POP operations (explicit or implicit, CALL or RET instructions).

This control mechanism is not triggered, and no stack trap is generated, when:

● The stack pointer SP is directly updated via MOV instructions.

● The limits of the stack area (STKOV, STKUN) are changed, so that SP is outside of the
new limits.

3.4.13 The multiply / divide high register MDH

This register is a part of the 32-bit multiply/divide register, which is implicitly used by the
CPU, when it performs a multiplication or a division. After a multiplication, this non-bit-
addressable register represents the high order 16 bits of the 32-bit result. For long divisions,
the MDH register must be loaded with the high order 16 bits of the 32-bit dividend before the
division is started. After any division, register MDH represents the 16-bit remainder.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 STKUN 0

R R R R RW R

Bit Function

STKUN
Modifiable portion of register STKUN

Specifies the upper limit of the internal system stack.

UM0407 The central processing unit (CPU)

 77/541

MDH (FE0Ch / 06h) SFR Reset Value: 0000h

Whenever this register is updated via software, the multiply/divide register In Use (MDRIU)
flag in the multiply/divide control register (MDC) is set to '1'. When a multiplication or division
is interrupted before its completion and when a new multiply or divide operation is to be
performed within the interrupt service routine, register MDH must be saved along with
registers MDL and MDC to avoid erroneous results.

A detailed description of how to use the MDH register for programming multiply and divide
algorithms can be found in Section 27: System programming on page 518.

3.4.14 The multiply / divide low register MDL

This register is a part of the 32-bit multiply/divide register, which is implicitly used by the
CPU, when it performs a multiplication or a division. After a multiplication, this non-bit-
addressable register represents the low order 16 bits of the 32-bit result. For long divisions,
the MDL register must be loaded with the low order 16 bits of the 32-bit dividend before the
division is started. After any division, register MDL represents the 16-bit quotient.

MDL (FE0Eh / 07h) SFR Reset Value: 0000h

Whenever this register is updated via software, the multiply/divide register In Use (MDRIU)
flag in the multiply/divide control register (MDC) is set to '1'. The MDRIU flag is cleared,
whenever the MDL register is read via software. When a multiplication or division is
interrupted before its completion and when a new multiply or divide operation is to be
performed within the interrupt service routine, register MDL must be saved along with
registers MDH and MDC to avoid erroneous results.

A detailed description of how to use the MDL register for programming multiply and divide
algorithms can be found in Section 27: System programming on page 518.

3.4.15 The multiply / divide control register MDC

This bit-addressable 16-bit register is implicitly used by the CPU, when it performs a
multiplication or a division. It is used to store the required control information for the
corresponding multiply or divide operation. Register MDC is updated by hardware during
each single cycle of a multiply or divide instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDH

RW

Bit Function

MDH Specifies the high order 16 bits of the 32-bit multiply and divide register MD.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDL

RW

Bit Function

mdl Specifies the low order 16 bits of the 32-bit multiply and divide register MD.

The central processing unit (CPU) UM0407

78/541

MDC (FF0Eh / 87h) SFR Reset Value: 0000h

When a division or multiplication is interrupted before its completion and the multiply/divide
unit is required, the MDC register must first be saved along with registers MDH and MDL (to
be able to restart the interrupted operation later), and then it must be cleared, preparing it for
the new calculation. After completion of the new division or multiplication, the state of the
interrupted multiply or divide operation must be restored. The MDRIU flag is the only portion
of the MDC register which might be of interest for the user. The remaining portions of the
MDC register are reserved for dedicated use by the hardware, and should never be modified
by the user in another way than described above. Otherwise, a correct continuation of an
interrupted multiply or divide operation cannot be guaranteed.

A detailed description of how to use the MDC register for programming multiply and divide
algorithms can be found in Section 27: System programming on page 518.

3.4.16 The constant zeros register ZEROS

All bits of this bit-addressable register are fixed to '0' by hardware. This register is read only.
Register ZEROS can be used as a register-addressable constant of all zeros, for bit
manipulation or mask generation. It can be accessed via any instruction which is capable of
addressing an SFR.

ZEROS (FF1Ch / 8Eh) SFR Reset Value: 0000h

3.4.17 The constant ones register ONES

All bits of this bit-addressable register are fixed to '1' by hardware. This register is read only.
Register ONES can be used as a register-addressable constant of all ones, for bit
manipulation or mask generation. It can be accessed via any instruction which is capable of
addressing an SFR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - MS MS MS MDRIU MS MS MS MS

RW RW RW RW RW RW RW RW

Bit Function

MS
Internal Machine Status

The multiply/divide unit uses these bits to control internal operations.
Never modify these bits without saving and restoring register MDC.

MDRIU

Multiply/Divide Register In Use

‘0’: Cleared, when register MDL is read via software.
‘1’: Set when register MDL or MDH is written via software, or when a multiply

or divide instruction is executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R R R R R R R R R R R R R R R R

UM0407 The central processing unit (CPU)

 79/541

ONES (FF1Eh / 8Fh) SFR Reset Value: FFFFh

Example

Mask for FFFFh values used to increment or decrement memory:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R R R R R R R R R R R R R R R R

sub mem, ones ;mem=mem+1

;increments the memory location in one instruction
;instead of three, as described below

mov R13, mem ;mem -> R13

add R13, #1 ;R13 + 1

mov mem, R13 ;R13 -> mem

Multiply-accumulate unit (MAC) UM0407

80/541

4 Multiply-accumulate unit (MAC)

The MAC is a specialized co-processor added to the ST10F272Z2 CPU core to improve the
performance of signal processing algorithms. It includes:

● A multiply-accumulate unit.

● An address generation unit, able to feed the MAC unit with 2 operands per cycle.

● A repeat unit, to execute a series of multiply-accumulate instructions.

New addressing capabilities enable the CPU to supply the MAC with up to 2 operands per
instruction cycle. MAC instructions (multiply, multiply-accumulate, 32-bit signed arithmetic
operations and the CoMOV transfer instruction) have been added to the standard instruction
set. Full details are provided in the ST10 Family Programming Manual.

4.1 MAC features

Enhanced addressing capabilities

● Double indirect addressing mode with pointer post-modification

● Parallel data move allowing one operand move during multiply-accumulate instructions
without penalty

● CoSTORE instruction (for fast access to the MAC SFRs) and CoMOV (for fast memory
to memory table transfer)

General

● Two-cycle execution for all MAC operations

● 16 x 16 signed/unsigned parallel multiplier

● 40-bit signed arithmetic unit with automatic saturation mode

● 40-bit accumulator

● 8-bit left/right shifter

● Scaler (one-bit left shifter)

● Data limiter

● Full instruction set with multiply and multiply-accumulate, 32-bit signed arithmetic and
compare instructions

● Three 16-bit status and control registers (MSW: MAC Status Word, MCW: MAC Control
Word, MRW: MAC Repeat Word)

The working register of the MAC Unit is a dedicated 40-bit wide Accumulator register. A set
of consistent flags is automatically updated in the MSW register (see Section 4.3.2:
Accumulator & control registers on page 89) after each MAC operation. These flags allow
branching on specific conditions. Unlike the PSW flags, these flags are not preserved
automatically by the CPU upon entry into an interrupt or trap routine. All dedicated MAC
registers must be saved on the stack if the MAC unit is shared between different
tasks and interrupts.

UM0407 Multiply-accumulate unit (MAC)

 81/541

Program control

● Repeat unit allowing some MAC co-processor instructions to be repeated up to 8192
times. Repeated instructions may be interrupted.

● MAC interrupt (Class B Trap) on MAC condition flags.

4.2 MAC operation

Figure 16. MAC architecture

4.2.1 Instruction pipelining

All MAC instructions use the 4-stage pipeline. During each stage the following tasks are
performed:

● FETCH: All new instructions are double-word instructions.

● DECODE: If required, operand addresses are calculated and the resulting operands
are fetched. IDX and GPR pointers are post-modified if necessary.

● EXECUTE: Performs the MAC operation. At the end of the cycle, the accumulator and
the MAC condition flags are updated if required. Modified GPR pointers are written-
back during this stage, if required.

● WRITEBACK: Operand write-back in the case of parallel data move.

Operand 2Operand 1

Control Unit

Repeat Unit

ST10 CPU

Interrupt
Controller

MSW

MRW

MAH MAL

MCW

Flags MAE

Mux

8-bit Left/Right
Shifter

Mux

Mux

Sign Extend

16 x 16

Concatenation

signed/unsigned
Multiplier

40-bit Signed Arithmetic Unit

0h 0h08000h

40

16

40 40

32 32

16

40

40

40

40

40

Scaler

A B

40

GPR Pointers *

IDX0 Pointer
IDX1 Pointer

QR0 GPR Offset Register
QR1 GPR Offset Register

QX0 IDX Offset Register
QX1 IDX Offset Register

Data
Limiter

(MA-bus) (MB-bus)

* Shared with standard ALU

Multiply-accumulate unit (MAC) UM0407

82/541

4.2.2 Particular pipeline effects with the MAC unit

Because the registers used by the MAC are shared with the standard ALU and because of
the MAC instructions pipelining, some care must be taken when switching from the
‘standard instruction set’ to the ‘MAC instruction set’.

Initialization of the pointers and offset registers

The new MAC instructions which use IDXi pointers is mostly not capable of using a new IDXi
register value, which is to be updated by an immediately preceding instruction. Thus, to
make sure that the new IDXi register value is used, at least one instruction must be inserted
between an IDXi-changing instruction and one MAC instruction which explicitly uses IDXi in
its addressing mode as shown in the following example:

In: MOV IDX0, #0F200h ; update IDX0 register
In+1:... ; must not be a CoXXX [IDX0⊗], [Rwm⊗] instruction
In+2:CoXXX [IDX0+QX1], [R2]; first operand read at (IDX0) address

; to provide the MAC function
; parallel data move to (((IDX0))-((QX1))) address (if CoXXX is CoMACM)

; move (R2) content to (IDX0) address (if CoXXX is CoMOV)
; (IDX0) <-- (IDX0) + (QX1) post modification of the pointer

Same requirements between the update of one of the offset reg. QXi & QRi and their next
use.

Read access to MAC registers (CoReg)

At least one instruction which does not use the MAC must be inserted between a MAC
instruction (CoXXX) writing to a MAC register (MAH, MAL, MSW, MRW, MCW) and a
standard instruction reading this register. This is because the accumulator and the status of
the MAC are modified during the execute stage.

Example 1

In this example, the BFLDL instruction performs a read access to the MSW during the
decode stage while the MSW.Z flag is only set at the end of the execute stage of the
CoADD.

4.2.3 Address generation

MAC instructions can use some standard ST10 addressing modes such as GPR direct or
#data4 for immediate shift value.

New addressing modes have been added to supply the MAC with two new operands per
instruction cycle. These allow indirect addressing with address pointer post-modification.

Double indirect addressing requires two pointers. Any GPR can be used for one pointer, the
other pointer is provided by one of two specific SFRs IDX0 and IDX1. Two pairs of offset
registers QR0/QR1 and QX0/QX1 are associated with each pointer (GPR or IDXi). The GPR

Code MSW (before) MSW (after) Comment

MOV MSW, #0 - 0000h

MOV R0, #0 - -

CoADD R0, R0 0000h 0200h MSW.Z set at execute

BFLDL MSW, #FFh, #FFh 0200h 00FFh Error!

UM0407 Multiply-accumulate unit (MAC)

 83/541

pointer allows access to the entire memory space, but IDXi are limited to the internal IRAM,
except for the CoMOV instruction.

The following table shows the various combinations of pointer post-modification for each of
these two new addressing modes. In this document the symbols “[Rwn⊗]” and “[IDXi⊗]”
refer to these addressing modes.

For the CoMACM class of instruction, a parallel data move mechanism is implemented. This
class of instruction is only available with double indirect addressing mode. Parallel data
move allows the operand pointed by IDXi to be moved to a new location in parallel with the
MAC operation. The write-back address of parallel data move is calculated depending on
the post-modification of IDXi. It is obtained by the reverse operation than the one used to
calculate the new value of IDXi. The following table shows these rules.

The parallel data move shifts a table of operands in parallel with a computation on those
operands. Its specific use is for signal processing algorithms like filter computation. The
following figure gives an example of parallel data move with CoMACM instruction.

Table 8. Pointer post-modification combinations for IDXi and Rwn

Symbol Mnemonic Address pointer operation

“[IDXi⊗]” stands for

[IDXi] (IDXi) ← (IDXi) (no-op)

[IDXi+] (IDXi) ← (IDXi) +2 (i = 0,1)

[IDXi -] (IDXi) ← (IDXi) -2 (i = 0,1)

[IDXi + QXj] (IDXi) ← (IDXi) + (QXj) (i, j = 0,1)

[IDXi - QXj] (IDXi) ← (IDXi) - (QXj) (i, j = 0,1)

“[Rwn⊗]” stands for

[Rwn] (Rwn) ← (Rwn) (no-op)

[Rwn+] (Rwn) ← (Rwn) +2 (n = 0-15)

[Rwn-] (Rwn) ← (Rwn) -2 (k = 0-15)

[Rwn+QRj] (Rwn) ← (Rwn) + (QRj) (n = 0-15; j = 0,1)

[Rwn - QRj] (Rwn) ← (Rwn) - (QRj) (n = 0-15; j = 0,1)

Table 9. Parallel data move addressing

Instruction Writeback address

CoMACM [IDXi+],... <IDXi-2>

CoMACM [IDXi-],... <IDXi+2>

CoMACM [IDXi+QXj],... <IDXi-QXj>

CoMACM [IDXi-QXj],... <IDXi+QXj>

Multiply-accumulate unit (MAC) UM0407

84/541

Figure 17. Example of parallel data move

4.2.4 16 x 16 signed/unsigned parallel multiplier

The multiplier executes 16 x 16-bit parallel signed/unsigned fractional and integer multiplies.
The multiplier has two 16-bit input ports, and a 32-bit product output port. The input ports
can accept data from the MA-bus and from the MB-bus. The output is sign-extended and
then feeds a scaler that shifts the multiplier output according to the shift mode bit MP
specified in the co-processor control word (MCW). The product can be shifted one bit left to
compensate for the extra sign bit gained in multiplying two 16-bit signed (2’s complement)
fractional numbers if bit MP is set.

4.2.5 40-bit signed arithmetic unit

The arithmetic unit over 32-bit wide to allow intermediate overflow in a series of
multiply/accumulate operations. The extension flag E, contained in the most significant byte
of MSW, is set when the accumulator has overflowed beyond the 32-bit boundary, that is,
when there are significant (non-sign) bits in the top eight (signed arithmetic) bits of the
accumulator.

The 40-bit arithmetic unit has two 40-bit input ports A and B. The A-input port accepts data
from 4 possible sources: 00’0000’0000h, 00’0000’8000h (round), the sign-extended product,
or the sign-extended data conveyed by the 32-bit bus resulting from the concatenation of
MA- and MB-buses. Product and concatenation can be shifted left by one according to MP
for the multiplier or to the instruction for the concatenation. The B-input port is fed either by
the 40-bit shifted/not shifted and inverted/not inverted accumulator or by 00’0000’0000h. A-
input and B-input ports can receive 00’0000’0000h to allow direct transfers from the B-
source and A-source, respectively, to the accumulator (case of multiplication and shift). The
output of the arithmetic unit goes to the accumulator.

It is also possible to saturate the accumulator on a 32-bit value, automatically after every
accumulation. Automatic saturation is enabled by setting the saturation bit MS in the MCW
register. When the accumulator is in the saturation mode and a 32-bit overflow occurs, the
accumulator is loaded with either the most positive or the most negative value representable
in a 32-bit value, depending on the direction of the overflow. The value of the Accumulator
upon saturation is 00’7FFF’FFFFh (positive) or FF’8000’0000h (negative) in signed
arithmetic. Automatic saturation sets the SL flag MSW. This flag is a sticky flag which means
it stays set until it is explicitly reset by the user.

40-bit overflow of the accumulator sets the SV flag in MSW. This flag is also a sticky flag.

CoMACM [IDX0+], [R2+]

X

n+2

n

n-2

n-4

16-bit

IDX0 X

X

n+2

n

n-2

n-4

IDX0

Parallel Data Move

After ExecutionBefore Execution

UM0407 Multiply-accumulate unit (MAC)

 85/541

4.2.6 The 40-bit signed accumulator register

The 40-bit accumulator consists of three smaller registers, MAL, MAH, and MAE. MAH and
MAL are 16-bit wide, MAE is 8-bit wide. MAE is the most significant byte (MSB) of the 40-bit
accumulator, however it is accessed as the least significant byte (LSB) of the MSW register
and performs guarding function.

On MAH write operations, the value of the accumulator is automatically adjusted to signed
extended 40-bit format. This means:

● MAE is automatically loaded by zeros for positive numbers (MAH has 0 in the most
significant bit). In case the of a negative number (MAH has 1 in the most significant bit)
the MAE is loaded with ones, representing the extended 40-bit negative number in 2’s
complement notation. Then the extended 40-bit value is equal to the 32-bit value
without extension. In other words, after this extension, MAE does not contain significant
bits. Generally, this condition is present when the highest 9 bits of the 40-bit signed
result are the same.

● MAL is automatically loaded with zeros.

During the 40-bit accumulator operations the result may be greater than 32 bits and
therefore, the MAE content changes. The MSW.ME extension flag is set because the signed
result of the 40-bit accumulator has overflown the 32-bit boundary. This condition is right
when the highest 9 bits of the 40-bit signed result are not the same. This also means that
MAE contains significant bits.

Note: Most of the CoXXX operations specify the 40-bit accumulator register as a source or a
destination operand. Operands loaded in 32-bit format are extended to 40-bit signed
numbers with MAE equal to 00h (for positive numbers) or FFh (for negative numbers).

Because writing to MAH forces zero value in MAL and sign extension in MAE, MAH must be
written first and MAL second. Some care must be taken in the order these registers are
handled, for example in saving status stacking as shown in the following example:

PUSH MSW
PUSH MAL
PUSH MAH ; Last one because later impact on MAE, MAL

POP MAH ; First one because impact on MAE, MAL
POP MAL
POP MSW

4.2.7 The 40-bit adder / subtracter

The 40-bit adder/subtracter allows intermediate overflows in a series of multiply/accumulate
operations. The adder/subtracter has two input ports. One input is the feedback of the 40-bit
Signed Accumulator output through the ACCU-Shifter. The second input is the 32-bit
operand coming from the one-bit scaler. The 32-bit operands are sign-extended to 40-bit
before the addition/subtraction is performed.

The output of the adder/subtracter goes to the 40-bit signed accumulator. It is also possible
to round and to saturate the result to 32-bit automatically after every accumulation before to
be loaded into the accumulator. The round operation is performed by adding 00’0000’8000h
to the result. Automatic saturation is enabled by setting the MCW.MS saturation bit.

When the 40-bit signed accumulator is in the overflow saturation mode and an overflow
occurs, the accumulator is loaded with either the most positive or the most negative possible
32-bit value, depending on the direction of the overflow as well as the arithmetic used. The

Multiply-accumulate unit (MAC) UM0407

86/541

value of the accumulator upon saturation is 00’7FFF’FFFFh (positive) or FF’8000’0000h
(negative).

4.2.8 Data limiter

Saturation arithmetic is also provided to selectively limit overflow, when reading the
accumulator by means of a ‘CoSTORE <destination> <MAS> instruction’. Limiting is
performed on the MAC Accumulator. If the contents of the Accumulator can be represented
in the destination operand size without overflow, the data limiter is disabled and the operand
is not modified. If the contents of the accumulator cannot be represented without overflow in
the destination operand size, the limiter will substitute a ‘limited’ data as explained in the
following table.

4.2.9 The accumulator shifter

The accumulator shifter is a parallel shifter with a 40-bit input and a 40-bit output. The
source accumulator shifting operations are:

● No shift (Unmodified)

● Up to 8-bit Arithmetic Left Shift

● Up to 8-bit Arithmetic Right Shift

Notice that MSW.ME, MSW.MSV and MSW.MSL bits (see MSW register description) are
affected by left shifts, therefore, if the saturation detection is enabled (MCW.MS bit is set),
the behavior is similar to the one of the adder/subtracter.

Some precautions are required in case of left shift with enabled saturation. If
MSW.MAE bit-field (most significant byte of the 40-bit signed accumulator) contains
significant bits, then the 32-bit value in the accumulator is generally saturated. However, it is
possible that a left shift may move out of the Accumulator some significant bits. The 40-bit
result will be misinterpreted and will be either not saturated or saturated wrong. There is a
chance that the result of a left shift may produce a result which can saturate an original
positive number to the minimum negative value, or vice versa.

4.2.10 Repeat unit

The MAC includes a repeat unit allowing the repetition of some co-processor instructions up
to 213 (8192) times. The repeat count may be specified either by an immediate value (up to
31 times) or by the content of the repeat count (bits 12 to 0) in the MAC repeat word (MRW).
If the repeat count equals “N” the instruction will be executed “N+1” times. At each iteration
of a cumulative instruction the repeat count is tested for zero. If it is zero the instruction is

Table 10. Limiter output using CoSTORE instruction

ME-flag MN-flag MAS value (saturated MAH value) (2)

0 x Unchanged(1)

1. When the data limiter is disabled, a reading with ‘CoSTORE <destination>, <MAH> instruction’ or
‘CoSTORE <destination>, <MAS> instruction’ gives the same result.

1 0 7FFFh (2)

2. If the data limiter is activated, a read with ‘CoSTORE <destination>, <MAH> instruction’ or ‘CoSTORE
<destination>, <MAS> instruction’ gives different results. MAS gives the saturated value of MAH. The
reading of MAL and MSW (MAE) are not saturated.

1 1 8000h (2)

UM0407 Multiply-accumulate unit (MAC)

 87/541

terminated else the repeat count is decremented and the instruction is repeated. During
such a repeat sequence, the repeat flag in MRW is set until the last execution of the
repeated instruction.

The syntax of repeated instructions is shown in the following examples:

In example 1, the instruction is repeated according to a 5-bit immediate value. The repeat
count in MRW is automatically loaded with this value minus one (MRW = 23).

In this second example, the instruction is repeated according to the repeat count in MRW.
Notice that due to the pipeline processing at least one instruction should be inserted
between the write of MRW and the next repeated instruction.

Repeat sequences may be interrupted. When an interrupt occurs during a repeat sequence,
the sequence is stopped and the interrupt routine is executed. The repeat sequence
resumes at the end of the interrupt routine. During the interrupt, MR remains set, indicating
that a repeated instruction has been interrupted and the repeat count holds the number
(minus 1) of repetition that remains to complete the sequence. If the repeat unit is used in
the interrupt routine, MRW must be saved by the user and restored before the end of the
interrupt routine.

Note: The repeat count should be used with caution. In this case MR should be written as 0. In
general MR should not be set by the user otherwise correct instruction processing can not
be guaranteed.

4.2.11 MAC interrupt

The MAC can generate an interrupt according to the value of the status flags C (carry), SV
(overflow), E (extension) or SL (limit) of the MSW register. The MAC interrupt is globally
enabled when the MIE flag in MCW is set. When it is enabled, the flags C, SV, E or SL can
trigger a MAC interrupt whenever they are set, provided that the corresponding mask flag
CM, VM, EM or LM in MCW is also set. A MAC interrupt request sets the MIR flag in MSW:
This flag must be reset by the user during the interrupt routine, otherwise the interrupt
processing restarts when returning from the interrupt routine.

The MAC interrupt is implemented as a Class B hardware trap (trap number Ah - trap
priority I). The associated Trap Flag in the TFR register is MACTRP, bit #6 of the TFR
(remember that this flag must also be reset by the user in case of a MAC interrupt request).

As the MAC status flags are updated (or eventually written by software) during the Execute
stage of the pipeline, the response time of a MAC interrupt request is three instruction
cycles (see Figure 18). It is the number of instruction cycles required between the time the
request is sent and the time the first instruction located at the interrupt vector location enters
the pipeline. Note that the IP value stacked after a MAC interrupt does not point to the
instruction that triggers the interrupt.

1 Repeat #24 times

CoMAC[IDX0+],[R0+] ; repeated 24 times

2 MOV MRW, #00FFh ; load MRW with 255

NOP ; instruction latency

Repeat MRW times

CoMACM [IDX1-],[R2+] ; repeated 256 times

Multiply-accumulate unit (MAC) UM0407

88/541

Figure 18. Pipeline diagram for MAC interrupt response time

4.2.12 Number representation & rounding

The MAC supports the 2’s-complement representation of binary numbers. In this format, the
sign bit is the MSB of the binary word. This is set to zero for positive numbers and set to one
for negative numbers. Unsigned numbers are supported only by multiply/multiply-
accumulate instructions which specifies whether each operand is signed or unsigned.

In 2’s complement fractional format, the N-bit operand is represented using the 1.[N-1]
format (1 signed bit, N-1 fractional bits). Such a format can represent numbers between -1
and +1-2-[N-1]. This format is supported when MP of MCW is set.

The MAC implements ‘2’s complement rounding’. With this rounding type, one is added to
the bit to the right of the rounding point (bit 15 of MAL), before truncation (MAL is cleared).

4.3 MAC register set

4.3.1 Address registers

The new addressing modes require new (E)SFRs: two address pointers IDX0 / IDX1 and
four offset registers QX0 / QX1 and QR0 / QR1.

IDX0 (FF08h / 84h) SFR Reset Value: 0000h

IDX1 (FF0Ah / 85h) SFR Reset Value: 0000h

QX0 (F000h / 00h) ESFR Reset Value: 0000h

QX1 (F002h / 01h) ESFR Reset Value: 0000h

QR0 (F004h / 02h) ESFR Reset Value: 0000h

N

N

N

I1

I1

N

N+2

N+1

N-1

N-1

N-2

N-3

N+1

N-1

N-2

N+4

TRAP (1)

N+2

N+1

TRAP (1)

N+2

I2

TRAP (2)

TRAP (1)

N+3

N+2

N+1

FETCH

DECODE

EXECUTE

WRITEBACK

MAC Interrupt Request

Response Time

TRAP (2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDXy

RW

Bit Function

IDXy 16-bit IDXy address (y = 0, 1)

UM0407 Multiply-accumulate unit (MAC)

 89/541

QR1 (F006h / 03h) ESFR Reset Value: 0000h

4.3.2 Accumulator & control registers

The MAC unit SFRs include the 40-bit Accumulator (MAL, MAH and the low byte of MSW)
and three control registers: the status word MSW, the control word MCW and the repeat
word MRW.

MAH and MAL are located in the non bit-addressable SFR space.

MAH (FE5Eh / 2Fh) SFR Reset Value: 0000h

MAL (FE5Ch / 2Eh) SFR Reset Value: 0000h

MSW (FFDEh / EFh) SFR Reset Value: 0200h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QXz/QRz 0

RW R

Bit Function

QRz/QXz
16-bit address offset for IDXy pointers (QXz) or GPR pointers (QRz).

As MAC instructions handle word operands, bit 0 of these offset registers is
hardwired to ‘0’.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAH

RW

Bit Function

MAH MAC unit accumulator high (bits [31...16])

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAL

RW

Bit Function

MAL MAC unit accumulator Low (bits [15...0])

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIR - SL E SV C Z N MAE

R RW RW RW RW RW RW RW

Multiply-accumulate unit (MAC) UM0407

90/541

Note: The MAC condition flags are evaluated if required by the instruction being executed. In
particular they are not affected by any instruction of the regular instruction set. In
consequence, their values may not be consistent with the accumulator content. For
example, loading the accumulator with MOV instructions will not modify the condition flags.

MCW (FFDCh / EEh) SFR Reset Value: 0000h

Bit Function

MAE Accumulator extension (bits [39:32])

N
Negative flag

Set when the accumulator is negative at the end of a MAC operation.

Z
Zero flag

Set when the accumulator is zero at the end of a MAC operation.

C
Carry flag

Set when a MAC operation produces a carry or a borrow bit.

SV
Sticky overflow flag

Set when a MAC operation produces a 40-bit arithmetic overflow. It remains set until
it is explicitly reset by software.

E
Extension flag

Set when MAE contains significant bits at the end of a MAC operation

SL

Sticky limit flag

Set when the result of a MAC operation is automatically saturated. Also used for
CoMIN, CoMAX instructions to indicate that the Accumulator has changed. It
remains set until it is explicitly reset by software.

MIR
MAC interrupt request

Set when the MAC Unit generates an interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIE LM EM VM CM MP MS -

RW RW RW RW RW RW RW

Bit Function

MS
Saturation mode

When set, enables automatic 32-bit saturation of the result of a MAC operation.

MP
Product shift mode

When set, enables the one-bit left shift of the multiplier output in case of a signed-
signed multiplication.

CM
C mask

When set, the C Flag can generate a MAC interrupt request.

UM0407 Multiply-accumulate unit (MAC)

 91/541

MRW (FFDAh / EDh) SFR Reset Value: 0000h

Note: As for the CPU Core SFRs, any write operation with the regular instruction set to a single
byte of a MAC SFR clears the non-addressed complementary byte within the specified SFR.
Non-implemented SFR bits cannot be modified and will always supply a read value of ‘0’.

These registers are mapped in the SFR space and can be addressed by the regular
instruction set like any SFR. As mentioned previously, they can also be addressed by the
new instruction CoSTORE. This instruction allows the user to access the MAC registers
without any pipeline side effect. CoSTORE uses a specific 5-bit addressing mode called
CoReg. The following table gives the address of the MAC registers in this CoReg
addressing mode.

VM
SV mask

When set, the SV Flag can generate a MAC interrupt request.

EM
E mask

When set, the E Flag can generate a MAC interrupt request.

LM
SL mask

When set, the SL Flag can generate a MAC interrupt request.

MIE

MAC interrupt enable

‘0’: MAC interrupt globally disabled.
‘1’: MAC interrupt globally enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR - - Repeat Count

RW RW

Bit Function

Repeat
count

13-bit unsigned integer value

Indicates the number of time minus one a repeated instruction must be executed.

MR
Repeat Flag

Set when a repeated instruction is executed.

Bit Function

Table 11. MAC register address in CoReg addressing mode

Registers Description Address

MSW MAC-Unit status word 00000b

MAH MAC-Unit accumulator high 00001b

MAS “limited” MAH /signed 00010b

MAL MAC-Unit Accumulator low 00100b

MCW MAC-Unit control word 00101b

MRW MAC-Unit repeat word 00110b

Multiply-accumulate unit (MAC) UM0407

92/541

4.4 MAC instruction set summary
The following table gives an overview of the MAC instruction set. All the mnemonics are
listed with the addressing modes that can be used with each instruction. For each
combination of mnemonic and addressing mode this table indicates if it is repeatable or not.

For full details of the MAC instruction set, refer to the ST10 Family Programming Manual.

Table 12. MAC instruction set summary

Mnemonic Addressing modes Repeatable

CoMUL(u,s,-,rnd)
Rwn, Rwm
[IDXi⊗], [Rwm⊗]
Rwn, [Rwm⊗]

No

CoMAC(u, s, -, rnd)
CoMACR(u, s, rnd)

Rwn, Rwm

[IDXi⊗], [Rwm⊗]
Rwn, [Rwm⊗]

No

Yes

Yes

CoMACM (u, s, -, rnd)

CoMACMR(u, s, rnd)
[IDXi⊗], [Rwm⊗] Yes

CoNOP

[Rwm⊗]
[IDXi⊗]

[IDXi⊗], [Rwm⊗]
Yes

CoNEG

CoNEG, rnd
CoRND

- No

CoSTORE
Rwn, CoReg
[Rwn⊗], Coreg

No
Yes

CoMOV [IDXi⊗], [Rwm⊗] Yes

CoADD(2)

CoSUB(2)
CoSUB(2)R

CoMax

CoMin

Rwn, Rwm

[IDXi⊗], [Rwm⊗]
Rwn, [Rwm⊗]

No
Yes

Yes

CoLOAD(2, -)

CoCMP

Rwn, Rwm

[IDXi⊗], [Rwm⊗]
Rwn, [Rwm⊗]

No

CoSHL
CoSHR

CoASHR

CoASHR, rnd

Rwm

#data4
[Rwm⊗]

Yes

No
Yes

CoABS

-

Rwn, Rwm

[IDXi⊗], [Rwm⊗]
Rwn, [Rwm⊗]

No

UM0407 Interrupt and trap functions

 93/541

5 Interrupt and trap functions

The architecture of the ST10F272Zx supports several mechanisms for fast and flexible
response to service requests that can be generated from various sources internal or
external to the microcontroller. These mechanisms include:

● Normal interrupt processing: The CPU temporarily suspends the current program
execution and branches to an interrupt service routine in order to service an interrupt
requesting device. The current program status (IP, PSW, in segmentation mode also
CSP) is saved on the internal system stack. A prioritization scheme with 16 priority
levels allows the user to specify the order in which multiple interrupt requests are to be
handled.

● Interrupt processing via the peripheral event controller (PEC): A faster alternative
to normal software controlled interrupt processing is servicing an interrupt requesting
device with the ST10F272Z2's integrated peripheral event controller (PEC). Triggered
by an interrupt request, the PEC performs a single word or byte data transfer between
any two locations in segment 0 (data pages 0 through 3) through one of eight
programmable PEC service channels. During a PEC transfer the normal program
execution of the CPU is halted for just one instruction cycle. No internal program status
information needs to be saved. The same prioritization scheme is used for PEC service
as for normal interrupt processing. PEC transfers share the two highest priority levels.

● Trap functions: Trap functions are activated in response to special conditions that
occur during the execution of instructions. A trap can also be caused externally by the
non-maskable Interrupt pin NMI. Several hardware trap functions are provided for
handling erroneous conditions and exceptions that arise during the execution of an
instruction. Hardware traps always have highest priority and cause immediate system
reaction. The software trap function is invoked by the TRAP instruction, which
generates a software interrupt for a specified interrupt vector. For all types of traps the
current program status is saved on the system stack.

● External interrupt processing: Although the ST10F272Z2 does not provide dedicated
interrupt pins, it allows to connect external interrupt sources and provides several
mechanisms to react on external events, including standard inputs, non-maskable
interrupts and fast external interrupts. These interrupt functions are alternate port
functions, except for the non-maskable interrupt and the reset input.

5.1 Interrupt system structure
The ST10F272Z2 provides 56 separate interrupt nodes that may be assigned to 16 priority
levels. In order to support modular and consistent software design techniques, each source
of an interrupt or PEC request is supplied with a separate interrupt control register and
interrupt vector.

The control register contains the interrupt request flag, the interrupt enable bit, and the
interrupt priority of the associated source. Each source request is activated by one specific
event, depending on the selected operating mode of the respective device.

The only exceptions are the two serial channels of the ST10F272Z2, where an error
interrupt request can be generated by different kinds of error. However, specific status flags
which identify the type of error are implemented in the serial channels’ control registers.

Interrupt and trap functions UM0407

94/541

The ST10F272Z2 provides a vectored interrupt system. In this system specific vector
locations in the memory space are reserved for the reset, trap, and interrupt service
functions.

Whenever a request occurs, the CPU branches to the location that is associated with the
respective interrupt source.

This allows direct identification of the source that caused the request. The only exceptions
are the class B hardware traps, which all share the same interrupt vector.

The status flags in the trap flag register (TFR) can then be used to determine which
exception caused the trap. For the special software TRAP instruction, the vector address is
specified by the operand field of the instruction, which is a seven bit trap number.

The reserved vector locations build a jump table in the low end of the ST10F272Z2’s
address space (segment 0).

The jump table is made up of the appropriate jump instructions that transfer control to the
interrupt or trap service routines, which may be located anywhere within the address space.

The entries of the jump table are located at the lowest addresses in code segment 0 of the
address space. Each entry occupies 2 words, except for the reset vector and the hardware
trap vectors, which occupy 4 or 8 words.

Table 13 lists all sources that are capable of requesting interrupt or PEC service in the
ST10F272Z2, the associated interrupt vectors, their locations and the associated trap
numbers. It also lists the mnemonics of the affected interrupt request flags and their
corresponding interrupt enable flags. The mnemonics are composed of a part that specifies
the respective source, followed by a part that specifies their function (IR = interrupt request
flag, IE = interrupt enable flag).

Each entry of the interrupt vector table provides room for two word instructions or one
double-word instruction. The respective vector location results from multiplying the trap
number by 4 (4 bytes per entry).

Table 13. Interrupt and PEC service request sources

Source of interrupt or
PEC service request

Request
flag

Enable
flag

Interrupt
vector

Vector
location

Trap
number

CAPCOM Register 0 CC0IR CC0IE CC0INT 00’0040h 10h

CAPCOM Register 1 CC1IR CC1IE CC1INT 00’0044h 11h

CAPCOM Register 2 CC2IR CC2IE CC2INT 00’0048h 12h

CAPCOM Register 3 CC3IR CC3IE CC3INT 00’004Ch 13h

CAPCOM Register 4 CC4IR CC4IE CC4INT 00’0050h 14h

CAPCOM Register 5 CC5IR CC5IE CC5INT 00’0054h 15h

CAPCOM Register 6 CC6IR CC6IE CC6INT 00’0058h 16h

CAPCOM Register 7 CC7IR CC7IE CC7INT 00’005Ch 17h

CAPCOM Register 8 CC8IR CC8IE CC8INT 00’0060h 18h

CAPCOM Register 9 CC9IR CC9IE CC9INT 00’0064h 19h

CAPCOM Register 10 CC10IR CC10IE CC10INT 00’0068h 1Ah

CAPCOM Register 11 CC11IR CC11IE CC11INT 00’006Ch 1Bh

UM0407 Interrupt and trap functions

 95/541

CAPCOM Register 12 CC12IR CC12IE CC12INT 00’0070h 1Ch

CAPCOM Register 13 CC13IR CC13IE CC13INT 00’0074h 1Dh

CAPCOM Register 14 CC14IR CC14IE CC14INT 00’0078h 1Eh

CAPCOM Register 15 CC15IR CC15IE CC15INT 00’007Ch 1Fh

CAPCOM Register 16 CC16IR CC16IE CC16INT 00’00C0h 30h

CAPCOM Register 17 CC17IR CC17IE CC17INT 00’00C4h 31h

CAPCOM Register 18 CC18IR CC18IE CC18INT 00’00C8h 32h

CAPCOM Register 19 CC19IR CC19IE CC19INT 00’00CCh 33h

CAPCOM Register 20 CC20IR CC20IE CC20INT 00’00D0h 34h

CAPCOM Register 21 CC21IR CC21IE CC21INT 00’00D4h 35h

CAPCOM Register 22 CC22IR CC22IE CC22INT 00’00D8h 36h

CAPCOM Register 23 CC23IR CC23IE CC23INT 00’00DCh 37h

CAPCOM Register 24 CC24IR CC24IE CC24INT 00’00E0h 38h

CAPCOM Register 25 CC25IR CC25IE CC25INT 00’00E4h 39h

CAPCOM Register 26 CC26IR CC26IE CC26INT 00’00E8h 3Ah

CAPCOM Register 27 CC27IR CC27IE CC27INT 00’00ECh 3Bh

CAPCOM Register 28 CC28IR CC28IE CC28INT 00’00E0h 3Ch

CAPCOM Register 29 CC29IR CC29IE CC29INT 00’0110h 44h

CAPCOM Register 30 CC30IR CC30IE CC30INT 00’0114h 45h

CAPCOM Register 31 CC31IR CC31IE CC31INT 00’0118h 46h

CAPCOM Timer 0 T0IR T0IE T0INT 00’0080h 20h

CAPCOM Timer 1 T1IR T1IE T1INT 00’0084h 21h

CAPCOM Timer 7 T7IR T7IE T7INT 00’00F4h 3Dh

CAPCOM Timer 8 T8IR T8IE T8INT 00’00F8h 3Eh

GPT1 Timer 2 T2IR T2IE T2INT 00’0088h 22h

GPT1 Timer 3 T3IR T3IE T3INT 00’008Ch 23h

GPT1 Timer 4 T4IR T4IE T4INT 00’0090h 24h

GPT2 Timer 5 T5IR T5IE T5INT 00’0094h 25h

GPT2 Timer 6 T6IR T6IE T6INT 00’0098h 26h

GPT2 CAPREL register CRIR CRIE CRINT 00’009Ch 27h

A/D conversion complete ADCIR ADCIE ADCINT 00’00A0h 28h

A/D overrun error ADEIR ADEIE ADEINT 00’00A4h 29h

ASC0 Transmit S0TIR S0TIE S0TINT 00’00A8h 2Ah

ASC0 Transmit Buffer S0TBIR S0TBIE S0TBINT 00’011Ch 47h

Table 13. Interrupt and PEC service request sources (continued)

Source of interrupt or
PEC service request

Request
flag

Enable
flag

Interrupt
vector

Vector
location

Trap
number

Interrupt and trap functions UM0407

96/541

ASC0 Receive S0RIR S0RIE S0RINT 00’00ACh 2Bh

ASC0 Error S0EIR S0EIE S0EINT 00’00B0h 2Ch

SSC Transmit SSCTIR SSCTIE SSCTINT 00’00B4h 2Dh

SSC Receive SSCRIR SSCRIE SSCRINT 00’00B8h 2Eh

SSC Error SSCEIR SSCEIE SSCEINT 00’00BCh 2Fh

PWM Channel 0...3 PWMIR PWMIE PWMINT 00’00FCh 3Fh

See Section 5.7 on page
114

XP0IR XP0IE XP0INT 00’0100h 40h

See Section 5.7 on page
114

XP1IR XP1IE XP1INT 00’0104h 41h

See Section 5.7 on page
114

XP2IR XP2IE XP2INT 00’0108h 42h

See Section 5.7 on page
114

XP3IR XP3IE XP3INT 00’010Ch 43h

Table 14. Vector locations and status for hardware traps

Exception condition
Trap
flag

Trap
Vector

Vector
location

Trap
number

Trap
priority

RESET functions:

Hardware RESET
Software RESET
Watchdog Timer Overflow

RESET
RESET
RESET

00’0000h
00’0000h
00’0000h

00h
00h
00h

MAXIMAL
III
III
III

Class A hardware traps:

Non-Maskable Interrupt
Stack Overflow
Stack Underflow

NMI
STKOF
STKUF

NMITRAP
STOTRAP
STUTRAP

00’0008h
00’0010h
00’0018h

02h
04h
06h

II
II
II

Class B hardware traps:

Undefined Opcode
MAC Interruption
Protected Instruction Fault
Illegal Word Operand
Access
Illegal Instruction Access
Illegal External Bus Access

UNDOPC
MACTRP
PRTFLT
ILLOPA
ILLINA
ILLBUS

BTRAP
BTRAP
BTRAP
BTRAP
BTRAP
BTRAP

00’0028h
00’0028h
00’0028h
00’0028h
00’0028h
00’0028h

0Ah
0Ah
0Ah
0Ah
0Ah
0Ah

I
I
I
I
I
I

MINIMAL

Reserved [2Ch –3Ch] [0Bh – 0Fh]

Software traps

TRAP Instruction

Any
[00’0000h–
00’01FCh]
in steps of

4h

Any
[00h – 7Fh]

Current
CPU

Priority

Table 13. Interrupt and PEC service request sources (continued)

Source of interrupt or
PEC service request

Request
flag

Enable
flag

Interrupt
vector

Vector
location

Trap
number

UM0407 Interrupt and trap functions

 97/541

Table 14 lists the vector locations for hardware traps and the corresponding status flags in
register TFR.

It also lists the priorities of trap service for cases, where more than one trap condition might
be detected within the same instruction.

After any reset (hardware reset, software reset instruction SRST, or reset by watchdog timer
overflow) program execution starts at the reset vector at location 00’0000h.

Reset conditions have priority over every other system activity and therefore have the
highest priority (trap priority III).

Software traps may be initiated to any vector location between 00’0000h and 00’01FCh. A
service routine entered via a software TRAP instruction is always executed on the current
CPU priority level which is indicated in bit-field ILVL in register PSW.

This means that routines entered via the software TRAP instruction can be interrupted by all
hardware traps or higher level interrupt requests.

5.1.1 Normal interrupt processing and PEC service

At each instruction cycle, among all the sources, which require a PEC or an interrupt
processing, only the one with the highest priority is selected. The priority of interrupts and
PEC requests is programmable in two levels. Each requesting source can be assigned to a
specific priority.

A second level (called “group priority”) allows to specify an internal order for simultaneous
requests from a group of different sources on the same priority level.

At the end of each instruction cycle the request with the highest current priority will be
determined by the interrupt system. The request will be serviced. If its priority is higher than
the current CPU priority which is stored in the register PSW.

5.1.2 Interrupt system register description

Interrupt processing is globally controlled by register PSW through a general interrupt
enable bit (IEN) and the CPU priority field (ILVL). Additionally the different interrupt sources
are individually controlled by their specific interrupt control registers (...IC).

Thus, the acceptance of requests by the CPU is determined by both the individual interrupt
control registers and the PSW. PEC services are controlled by the respective PECCx
register and the source and destination pointers, which specify the task of the respective
PEC service channel.

5.1.3 Interrupt control registers

All interrupt control registers are identically organized. The lower 8 bits of an interrupt
control register contain the complete interrupt status information of the associated source,
which is required during one round of prioritization, the upper 8 bits of the respective register
are reserved. All interrupt control registers are bit addressable and all bits can be read or
written via software.

This allows each interrupt source to be programmed or modified with just one instruction.
When accessing interrupt control registers through instructions which operate on word data
types, their upper 8 bits (15...8) will return zeros, when read, and will discard written data.

Interrupt and trap functions UM0407

98/541

The layout of the interrupt control registers shown below applies to each xxIC register,
where xx stands for the mnemonic for the respective source.

xxIC (yyyyh / zzh) SFR Reset Value: - - 00h

The interrupt request flag is set by hardware whenever a service request from the
respective source occurs. It is cleared automatically upon entry into the interrupt service
routine or upon a PEC service. In the case of PEC service the Interrupt Request flag
remains set, if the COUNT field in register PECCx of the selected PEC channel decrements
to zero. This allows a normal CPU interrupt to respond to a completed PEC block transfer.

Note: Modifying the Interrupt Request flag via software causes the same effects as if it had been
set or cleared by hardware.

5.1.4 Interrupt priority level and group level

The four bits of ILVL bit-field specify the priority level of a service request for the arbitration
of simultaneous requests. The priority increases with the numerical value of ILVL, so 0000b
is the lowest and 1111b is the highest priority level.

When more than one interrupt request on a specific level gets active at the same time, the
values in the respective bit fields GLVL are used for second level arbitration to select one
request for being serviced. Again the group priority increases with the numerical value of
GLVL, so 00b is the lowest and 11b is the highest group priority.

Note: All interrupt request sources that are enabled and programmed to the same priority level
must always be programmed to different group priorities. Otherwise an incorrect interrupt
vector will be generated.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - xxIR xxIE ILVL GLVL

RW RW RW RW

Bit Function

GLVL

Group level

Defines the internal order for simultaneous requests of the same priority.
’3h’: Highest group priority
’0h’: Lowest group priority

ILVL

Interrupt priority level

Defines the priority level for the arbitration of requests.
’Fh’: Highest priority level
’0h’: Lowest priority level

xxIE
Interrupt enable control bit (individually enables/disables a specific source)

‘0’: Interrupt Request is disabled
‘1’: Interrupt Request is enabled

xxIR
Interrupt request flag

‘0’: No request pending
‘1’: This source has raised an interrupt request

UM0407 Interrupt and trap functions

 99/541

Upon entry into the interrupt service routine, the priority level of the source that wins the
arbitration and whose priority level is higher than the current CPU level, is copied into ILVL
bit-field of register PSW after pushing the old PSW contents on the stack.

The interrupt system of the ST10F272Z2 allows nesting of up to 15 interrupt service
routines of different priority levels (level 0 cannot be arbitrated).

Interrupt requests that are programmed to priority levels 15 or 14 (ILVL = 111Xb) will be
serviced by the PEC, unless the COUNT field of the associated PECC register contains
zero. In this case the request will instead be serviced by normal interrupt processing.
Interrupt requests that are programmed to priority levels 13 through 1 will always be
serviced by normal interrupt processing.

Note: Priority level 0000b is the default level of the CPU. Therefore a request on level 0 will never
be serviced, because it can never interrupt the CPU. However, an enabled interrupt request
on level 0000b will terminate the ST10F272Z2’s Idle mode and reactivate the CPU.

For interrupt requests which are to be serviced by the PEC, the associated PEC channel
number is derived from the respective ILVL (LSB) and GLVL (see Figure 19). So
programming a source to priority level 15 (ILVL = 1111b) selects the PEC channel group
7...4, programming a source to priority level 14 (ILVL = 1110b) selects the PEC channel
group 3...0. The actual PEC channel number is then determined by the group priority field
GLVL (see again Figure 19).

Simultaneous requests for PEC channels are prioritized according to the PEC channel
number, where channel 0 has lowest and channel 8 has highest priority.

All sources that request PEC service must be programmed to different PEC channels.
Otherwise an incorrect PEC channel may be activated.

Figure 19. Priority levels and PEC channels

The table below shows in a few examples, which action is executed with a given
programming of an interrupt control register.

Priority level Type of service

ILVL GLVL COUNT = 00h COUNT ≠ 00h

1 1 1 1 1 1 CPU interrupt, level 15, group priority 3 PEC service, channel 7

1 1 1 1 1 0 CPU interrupt, level 15, group priority 2 PEC service, channel 6

1 1 1 0 1 0 CPU interrupt, level 14, group priority 2 PEC service, channel 2

1 1 0 1 1 0 CPU interrupt, level 13, group priority 2 CPU interrupt, level 13, group priority 2

0 0 0 1 1 1 CPU interrupt, level 1, group priority 3 CPU interrupt, level 1, group priority 3

0 0 0 1 0 0 CPU interrupt, level 1, group priority 0 CPU interrupt, level 1, group priority 0

0 0 0 0 X X No service! No service!

012345
Interrupt
Control Register

PEC Control

ILVL GLVL

PEC Channel #
012

Interrupt and trap functions UM0407

100/541

Note: All requests on levels 13...1 cannot initiate PEC transfers. They are always serviced by an
interrupt service routine. No PECC register is associated and no COUNT field is checked.

5.1.5 Interrupt control functions in the PSW

The processor status word (PSW) is functionally divided into two parts: The lower byte of the
PSW basically represents the arithmetic status of the CPU; the upper byte of the PSW
controls the interrupt system of the ST10F272Z2 and the arbitration mechanism for the
external bus interface.

Note: Pipeline effects have to be considered when enabling/disabling interrupt requests via
modifications of register PSW (see Section 3: The central processing unit (CPU) on
page 52).

PSW (FF10h / 88h) SFR Reset Value: 0000h

CPU Priority ILVL defines the current level for the operation of the CPU. This bit field
reflects the priority level of the routine that is currently executed. Upon the entry into an
interrupt service routine this bit field is updated with the priority level of the request that is
being serviced. The PSW is saved on the system stack before. The CPU level determines
the minimum interrupt priority level that will be serviced. Any request on the same or a lower
level will not be acknowledged.

The current CPU priority level may be adjusted via software to control which interrupt
request sources will be acknowledged.

PEC transfers do not really interrupt the CPU, but rather “steal” a single cycle, so PEC
services do not influence the ILVL field in the PSW.

Hardware traps switch the CPU level to maximum priority (15) so no interrupt or PEC
requests will be acknowledged while an exception trap service routine is executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN HLD
EN - - - USR0 MUL

IP E Z V C N

RW RW RW RW RW RW RW RW RW RW

Bit Function

N, C, V, Z, E,
MULIP, USR0

CPU status flags (described in “Section 3: The central processing unit (CPU)
on page 52”)

Define the current status of the CPU (ALU, Multiplication Unit).

HLDEN
HOLD enable (enables external bus arbitration)

’0’: Bus arbitration disabled, P6.7...P6.5 may be used for general purpose I/O.
’1’: Bus arbitration enabled, P6.7...P6.5 serve as BREQ, HLDA, HOLD, respectively.

IEN
Interrupt enable control bit (globally enables/disables interrupt requests)

‘0’: Interrupt requests are disabled
‘1’: Interrupt requests are enabled

ILVL

CPU priority level

Defines the current priority level for the CPU.
’Fh’: Highest priority level
’0h’: Lowest priority level

UM0407 Interrupt and trap functions

 101/541

Note: The TRAP instruction does not change the CPU level, so software invoked trap service
routines may be interrupted by higher requests.

Interrupt enable bit IEN globally enables or disables PEC operation and the acceptance of
interrupts by the CPU. When IEN is cleared, no interrupt requests are accepted by the CPU.
When IEN is set to '1', all interrupt sources, which have been individually enabled by the
interrupt enable bit in their associated control registers, are globally enabled.

Note: Traps are non-maskable and are therefore not affected by the IEN bit.

5.2 Operation of the PEC channels
The peripheral event controller (PEC) of the MCU provides 8 PEC service channels, which
move a single byte or word between two locations in segment 0 (data pages 3...0). This is
the fastest possible interrupt response and in many cases is sufficient to service the
respective peripheral request (from serial channels, A/D converter, etc.) Each channel is
controlled by a dedicated PEC channel counter/control register (PECCx) and a pair of
pointers for source (SRCPx) and destination (DSTPx) of the data transfer. The PECC
registers control the action that is performed by the respective PEC channel.

PECCx (FECyh / 6zh, see Table 15) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - INC BWT COUNT

RW RW RW

Bit Function

COUNT
PEC Transfer count

Counts PEC transfers and influences the channel’s action (see table below).

BWT
Byte / word transfer selection

’0’: Transfer a word
’1’: Transfer a byte

INC

Increment control (Modification of SRCPx or DSTPx)

’00’: Pointers are not modified
’01’: Increment DSTPx by 1 or 2 (BWT)
’10’: Increment SRCPx by 1 or 2 (BWT)
’11’: Reserved. Do not use this combination (changed to ‘10’ by hardware).

Table 15. PEC control register addresses

Register Address Reg. space Register Address Reg. space

PECC0 FEC0h / 60h SFR PECC4 FEC8h / 64h SFR

PECC1 FEC2h / 61h SFR PECC5 FECAh / 65h SFR

PECC2 FEC4h / 62h SFR PECC6 FECCh / 66h SFR

PECC3 FEC6h / 63h SFR PECC7 FECEh / 67h SFR

Interrupt and trap functions UM0407

102/541

Byte/word transfer bit BWT controls if a byte or a word is moved during a PEC service
cycle. This selection controls the transferred data size and the increment step for the
modified pointer.

Increment control field INC controls if one of the PEC pointers is incremented after the
PEC transfer. It is not possible to increment both pointers, however. If the pointers are not
modified (INC = ‘00’), the respective channel will always move data from the same source to
the same destination.

Note: The reserved combination ‘11’ is changed to ‘10’ by hardware. Do not to use this
combination.

PEC transfer count field COUNT controls the action of a respective PEC channel, where
the content of bit field COUNT at the time the request is activated selects the action.
COUNT may allow a specified number of PEC transfers, unlimited transfers or no PEC
service at all.

The table below summarizes how the COUNT field itself, the interrupt requests flag IR and
the PEC channel action, depend on the previous content of COUNT.

The PEC transfer counter allows to service a specified number of requests by the respective
PEC channel, and then (when COUNT reaches 00h) activate the interrupt service routine,
which is associated with the priority level. After each PEC transfer the COUNT field is
decremented and the request flag is cleared to indicate that the request has been serviced.

Continuous transfers are selected by the value FFh in bit-field COUNT. In this case
COUNT is not modified and the respective PEC channel services any request until it is
disabled again.

When COUNT is decremented from 01h to 00h after a transfer, the request flag is not
cleared, which generates another request from the same source. When COUNT already
contains the value 00h, the respective PEC channel remains idle and the associated
interrupt service routine is activated instead. This allows to choose, if a level 15 or 14
request is to be serviced by the PEC or by the interrupt service routine.

Note: PEC transfers are only executed if their priority level is higher than the CPU level: For
example, only PEC channels 7...4 are processed while the CPU executes on level 14. All
interrupt request sources that are enabled and programmed for PEC service should use
different channels. Otherwise only one transfer will be performed for all simultaneous
requests. When COUNT is decremented to 00h, and the CPU is to be interrupted, an
incorrect interrupt vector will be generated.

Previous
COUNT

Modified
COUNT

IR after PEC
service

Action of PEC channel
and comments

FFh FFh ‘0’
Move a byte / word
Continuous transfer mode, COUNT is not modified

FEh..02h FDh..01h ‘0’ Move a byte / word and decrement COUNT

01h 00h ‘1’
Move a byte / word
Leave request flag set, which triggers another request

00h 00h (‘1’)
No action!
Activate interrupt service routine rather than PEC
channel.

UM0407 Interrupt and trap functions

 103/541

The source and destination pointers specify the locations between which the data is to be
moved. A pair of pointers (SRCPx and DSTPx) is associated with each of the 8 PEC
channels. These pointers do not reside in specific SFRs, but are mapped into the IRAM of
the ST10F272Z2 just below the bit-addressable area (see Figure 20).

Figure 20. Mapping of PEC pointers into the IRAM

PEC data transfers do not use the data page pointers DPP3...DPP0. The PEC source and
destination pointers are used as 16-bit intra-segment addresses within segment 0, so data
can be transferred between any two locations within the first four data pages 3...0.

The pointer locations for inactive PEC channels may be used for general data storage. Only
the required pointers occupy RAM locations.

Note: If word data transfer is selected for a specific PEC channel (BWT = ‘0’), the respective
source and destination pointers must both contain a valid word address which points to an
even byte boundary. Otherwise the Illegal Word Access trap will be invoked, when this
channel is used.

5.3 Prioritizing interrupt & PEC service requests
Interrupt and PEC service requests from all sources can be enabled, so they are arbitrated
and serviced (if they win), or they may be disabled, so their requests are disregarded and
not serviced.

5.3.1 Enabling and disabling interrupt requests

This may be done in three ways:

● Control bits allow to switch each individual source “ON” or “OFF”, so it may generate a
request or not. The control bits (xxIE) are located in the respective interrupt control
registers. All interrupt requests may be enabled or disabled generally via bit IEN in
register PSW. This control bit is the “main switch” that selects if requests from any
source are accepted or not.
In order to be arbitrated, both dedicated and global enable bits of the interrupt source
must be set.

● The priority Level automatically selects a certain group of interrupt requests that will
be acknowledged, disclosing all other requests. The priority level of the source that
wins the arbitration is compared against the CPU’s current level and only this source is

DSTP7 00’FCFEh

SRCP7 00’FCFCh

DSTP6 00’FCFAh

SRCP6 00’FCF8h

DSTP5 00’FCF6h

SRCP5 00’FCF4h

DSTP4 00’FCF2h

SRCP4 00’FCF0h

DSTP3 00’FCEEh

SRCP3 00’FCECh

DSTP2 00’FCEAh

SRCP2 00’FCE8h

DSTP1 00’FCE6h

SRCP1 00’FCE4h

DSTP0 00’FCE2h

SRCP0 00’FCE0h

Interrupt and trap functions UM0407

104/541

serviced. If its level is higher than the current CPU level. Changing the CPU level to a
specific value via software blocks all requests on the same or a lower level. An interrupt
source that is assigned to level 0 will be disabled and never be serviced.

● The ATOMIC and EXTend instructions automatically disable all interrupt requests for
the duration of the following 1...4 instructions. This is useful for semaphore handling
and does not require to re-enable the interrupt system after the inseparable instruction
sequence (see Section 27: System programming on page 518).

5.3.2 Interrupt class management

An interrupt class covers a set of interrupt sources with the same priority from the system’s
viewpoint. Interrupts of the same class must not interrupt each other. The ST10F272Z2
supports this function with two features:

● Classes with up to 4 members can be established by using the same interrupt priority
(ILVL) and assigning a dedicated group level (GLVL) to each member. This functionality
is built-in and handled automatically by the interrupt controller.

● Classes with more than 4 members can be established by using a number of adjacent
interrupt priorities (ILVL) and the respective group levels (4 per ILVL). Each interrupt
service routine within this class sets the CPU level to the highest interrupt priority within
the class. All requests from the same or any lower level are blocked now, and no
request of this class will be accepted.

The example below establishes 3 interrupt classes which cover 2 or 3 interrupt priorities,
depending on the number of members in a class.

A level 6 interrupt disables all other sources in class 2 by changing the current CPU level to
8 which is the highest priority (ILVL) in class 2. Class 1 or PEC requests will still be serviced.

The 24 interrupt sources (excluding PEC requests) are so assigned to 3 classes of priority
rather than to 7 different levels, as the hardware support would do.

Table 16. Example of software controlled interrupt classes

ILVL (Priority)
GLVL

Interpretation
3 2 1 0

15
PEC service on up to 8 channels

14

13

12 X X X X
Interrupt class 1: 8 sources on 2 levels

11 X X X X

10

9

8 X X X X

Interrupt class 2: 10 sources on 3 levels7 X X X X

6 X X

5 X X X X
Interrupt class 3: 6 sources on 2 levels

4 X X

UM0407 Interrupt and trap functions

 105/541

5.4 Saving the status during interrupt service
Before an interrupt request that has been arbitrated is actually serviced, the status of the
current task is automatically saved on the system stack. The CPU status (PSW) is saved
along with the location where the execution of the interrupted task is to be resumed after
returning from the service routine.

This return location is specified through the instruction pointer (IP) and, in case of a
segmented memory model, the code segment pointer (CSP). Bit SGTDIS in register
SYSCON controls how the return location is stored.

The system stack receives the PSW first, followed by the IP (unsegmented) or followed by
CSP and then IP (segmented mode). This optimizes the usage of the system stack, if
segmentation is disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request that
is to be serviced, so the CPU now executes on the new level. If a multiplication or division
was in progress at the time the interrupt request was acknowledged, bit MULIP in register
PSW is set to ‘1’. In this case the return location that is saved on the stack is not the next
instruction in the instruction flow, but rather the multiply or divide instruction itself, as this
instruction has been interrupted and will be completed after returning from the service
routine.

Figure 21. Task status saved on the system stack

3

2

1

0 No service!

Table 16. Example of software controlled interrupt classes (continued)

ILVL (Priority)
GLVL

Interpretation
3 2 1 0

_ _

_ _

_ _

SP

PSW

IP

_ _

PSW

CSP

IP

SP

Low
Addresses

High
Addresses

Status of
Interrupted

Task

SP

a) System stack before
Interrupt Entry

b) System stack after
Interrupt Entry (unsegmented)

b) System stack after
Interrupt Entry (segmented)

Interrupt and trap functions UM0407

106/541

The interrupt request flag of the source that is being serviced is cleared. The IP is loaded
with the vector associated with the requesting source (the CSP is cleared in case of
segmentation) and the first instruction of the service routine is fetched from the respective
vector location, which is expected to branch to the service routine itself. The data page
pointers and the context pointer are not affected.

When the interrupt service routine is left (RETI is executed), the status information is
popped from the system stack in the reverse order, taking into account the value of bit
SGTDIS.

5.4.1 Context switching

An interrupt service routine usually saves all the registers it uses on the stack, and restores
them before returning. The more registers a routine uses, the more time is wasted with
saving and restoring. The ST10F272Z2 allows to switch the complete bank of CPU registers
(GPRs) with a single instruction, so the service routine executes within its own, separate
context.

The instruction “SCXT CP, #New_Bank” pushes the content of the context pointer (CP) on
the system stack and loads CP with the immediate value “New_Bank”, which selects a new
register bank. The service routine may now use its “own registers”. This register bank is
preserved, when the service routine terminates its contents are available on the next call.
Before returning (RETI) the previous CP is simply POPped from the system stack, which
returns the registers to the original bank.

Note: The first instruction following the SCXT instruction must not use a GPR.

Resources that are used by the interrupting program must eventually be saved and restored
(the DPPs and the registers of the MUL/DIV unit).

5.5 Interrupt response times
The interrupt response time defines the time from an interrupt request flag of an enabled
interrupt source being set until the first instruction (I1) being fetched from the interrupt vector
location. The basic interrupt response time for the ST10F272Z2 is three instruction cycles
(see Figure 22 on page 107).

All instructions in the pipeline including instruction N (during which the interrupt request flag
is set) are completed before entering the service routine. The actual execution time for these
instructions (wait-states) therefore influences the interrupt response time.

In Figure 22 the respective interrupt request flag is set in cycle 1 (fetching of instruction N).
The indicated source wins the prioritization round (during cycle 2). In cycle 3 a TRAP
instruction is injected into the decode stage of the pipeline, replacing instruction N+1 and
clearing the source's interrupt request flag to '0'. Cycle 4 completes the injected TRAP
instruction (save PSW, IP and CSP, if segmented mode) and fetches the first instruction (I1)
from the respective vector location.

All instructions that entered the pipeline after setting of the interrupt request flag (N+1, N+2)
will be executed after returning from the interrupt service routine.

UM0407 Interrupt and trap functions

 107/541

Figure 22. Pipeline diagram for interrupt response time

The minimum interrupt response time is five CPU clock cycles. This requires program
execution from the internal Flash, no external operand read requests and setting the
interrupt request flag during the last CPU clock cycle of an instruction. When the interrupt
request flag is set during the first CPU clock cycle of an instruction, the minimum interrupt
response time is six CPU clock cycles.

The interrupt response time is increased by all delays of the instructions in the pipeline that
are executed before entering the service routine (including N).

● When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, or
instruction N explicitly writes to the PSW or the SP, the minimum interrupt response
time may be extended by one CPU clock cycle for each of these conditions.

● When instruction N reads an operand from the internal memory, or when N is a CALL,
RETURN, TRAP, or MOV Rn, [Rm+ #data16] instruction, the minimum interrupt
response time may additionally be extended by two CPU clock cycles during internal
Flash program execution.

In case instruction N reads the PSW and instruction N-1 has an effect on the condition flags,
the interrupt response time may additionally be extended by two CPU clock cycles.

The worst case interrupt response time during internal Flash program execution adds to 12
CPU clock cycles.

Any reference to external locations increases the interrupt response time due to pipeline
related access priorities. The following conditions have to be considered:

● Instruction fetch from an external location

● Operand read from an external location

● Result write-back to an external location

Depending on where the instructions, source and destination operands are located, there is
a number of combinations. Note, however, that only access conflicts contribute to the delay.

A few examples illustrate these delays:

● The worst case interrupt response time including external accesses, occurs when
instructions N, N+1 and N+2 are executed from external memory, instructions N-1 and
N require external operand read accesses, instructions N-3 to N write back external
operands, and the interrupt vector also points to an external location. In this case the
interrupt response time is the time to perform 9 word bus accesses, because

Pipeline stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 I1

DECODE N - 1 N TRAP (1) TRAP (2)

EXECUTE N - 2 N - 1 N TRAP

WRITEBACK N - 3 N - 2 N - 1 N

Interrupt Response Time

1
0

IR-Flag

Interrupt and trap functions UM0407

108/541

instruction I1 cannot be fetched via the external bus until all write, fetch and read
requests of preceding instructions in the pipeline are terminated.

● When the above example has the interrupt vector pointing into the internal Flash, the
interrupt response time is 7 word bus accesses plus 2 CPU clock cycles, because
fetching of instruction I1 from internal Flash can start earlier.

● When instructions N, N+1 and N+2 are executed out of external memory and the
interrupt vector also points to an external location, but all operands for instructions N-3
through N are in internal memory, then the interrupt response time is the time to
perform three word bus accesses.

● When the above example has the interrupt vector pointing into the internal Flash, the
interrupt response time is one word bus access plus four CPU clock cycles.

After an interrupt service routine has been terminated by executing the RETI instruction,
and if further interrupts are pending, the next interrupt service routine will not be entered
until at least two instruction cycles have been executed of the program that was interrupted.

In most cases two instructions will be executed during this time. Only one instruction will
typically be executed if the first instruction following the RETI instruction is a branch
instruction (without cache hit), or if it reads an operand from internal Flash, or if it is
executed out of the IRAM.

Note: A bus access in this context also includes delays caused by an external READY signal or by
bus arbitration (HOLD mode).

5.5.1 PEC response times

The PEC response time defines the time from an interrupt request flag of an enabled
interrupt source being set until the PEC data transfer being started. The basic PEC
response time for the ST10F272Z2 is two instruction cycles.

Figure 23. Pipeline diagram for PEC response time

In Figure 23 the respective interrupt request flag is set in cycle 1 (fetching of instruction N).
The indicated source wins the prioritization round (during cycle 2). In cycle 3 a PEC transfer
“instruction” is injected into the decode stage of the pipeline, suspending instruction N+1
and clearing the source's interrupt request flag to '0'. Cycle 4 completes the injected PEC
transfer and resumes the execution of instruction N+1. All instructions that entered the
pipeline after setting of the interrupt request flag (N+1, N+2) will be executed after the PEC
data transfer.

Pipeline stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 N + 2

DECODE N - 1 N PEC N + 1

EXECUTE N - 2 N - 1 N PEC

WRITEBACK N - 3 N - 2 N - 1 N

PEC Response Time

1
0

IR-Flag

UM0407 Interrupt and trap functions

 109/541

Note: When instruction N reads any of the PEC control registers PECC7...PECC0, while a PEC
request wins the current round of prioritization, this round is repeated and the PEC data
transfer is started one cycle later.

The minimum PEC response time is three CPU clock cycles. This requires program
execution from the internal Flash, no external operand read requests and setting the
interrupt request flag during the last CPU clock cycle of an instruction. When the interrupt
request flag is set during the first CPU clock cycle of an instruction, the minimum PEC
response time is four CPU clock cycles. The PEC response time is increased by all delays of
the instructions in the pipeline that are executed before starting the data transfer (including
N):

● When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, the
minimum PEC response time may be extended by one CPU clock cycle for each of
these conditions.

● When instruction N reads an operand from the internal Flash, or when N is a CALL,
RETURN, TRAP, or MOV Rn, [Rm+ #data16] instruction, the minimum PEC response
time may additionally be extended by two CPU clock cycles during internal Flash
program execution.

● In case instruction N reads the PSW and instruction N-1 has an effect on the condition
flags, the PEC response time may additionally be extended by two CPU clock cycles.

The worst case PEC response time during internal Flash program execution adds to nine
CPU clock cycles. Any reference to external locations increases the PEC response time due
to pipeline related access priorities. The following conditions have to be considered:

● Instruction fetch from an external location

● Operand read from an external location

● Result write-back to an external location

Depending on where the instructions, source and destination operands are located, there is
a number of combinations. Note, however, that only access conflicts contribute to the delay.

A few examples illustrate these delays:

● The worst case PEC response time including external accesses will occur, when
instructions N and N+1 are executed out of external memory, instructions N-1 and N
require external operand read accesses and instructions N-3, N-2 and N-1 write back
external operands. In this case the PEC response time is the time to perform seven
word bus accesses.

● When instructions N and N+1 are executed out of external memory, but all operands for
instructions N-3 through N-1 are in internal memory, then the PEC response time is the
time to perform one word bus access plus two CPU clock cycles.

Once a request for PEC service has been acknowledged by the CPU, the execution of the
next instruction is delayed by two CPU clock cycles plus the additional time it might take to
fetch the source operand from internal Flash or external memory and to write the destination
operand over the external bus in an external program environment.

Note: A bus access in this context also includes delays caused by an external READY signal or by
bus arbitration (HOLD mode).

Interrupt and trap functions UM0407

110/541

5.6 External interrupts
Although the ST10F272Z2 has no dedicated interrupt input pins, it provides many
possibilities to react on external asynchronous events by using a number of I/O lines for
interrupt input. The interrupt function may either be combined with the pin’s main function or
may be used instead of it, if the main pin function is not required. Interrupt signals may be
connected to:

● CC31IO...CC0IO, the capture input / compare output lines of the CAPCOM units,

● T4IN, T2IN, the timer input pins,

● CAPIN, the capture input of GPT2.

For each of these pins either a positive, a negative, or both a positive and a negative
external transition can be selected to cause an interrupt or PEC service request. The edge
selection is performed in the control register of the peripheral device associated with the
respective port pin.

The peripheral must be programmed to a specific operating mode to allow generation of an
interrupt by the external signal. The priority of the interrupt request is determined by the
interrupt control register of the respective peripheral interrupt source, and the interrupt
vector of this source will be used to service the external interrupt request.

Note: In order to use any of the listed pins as external interrupt input, it must be switched to input
mode via its direction control bit DPx.y in the respective port direction control register DPx
(see Table 17).

When port pins CCxIO are used as external interrupt input pins, bit field CCMODx in the
control register of the corresponding capture/compare register CCx must select capture
mode.

When CCMODx is programmed to 001b, the interrupt request flag CCxIR in register CCxIC
will be set on a positive external transition at pin CCxIO.

When CCMODx is programmed to 010b, a negative external transition will set the interrupt
request flag. When CCMODx = 011b, both a positive and a negative transition will set the
request flag. In all three cases, the contents of the allocated CAPCOM timer will be latched
into capture register CCx, independent whether the timer is running or not. When the
interrupt enable bit CCxIE is set, a PEC request or an interrupt request for vector CCxINT
will be generated (see Table 17).

Pins T2IN or T4IN can be used as external interrupt input pins when the associated auxiliary
timer T2 or T4 in block GPT1 is configured for capture mode. This mode is selected by
programming the mode control fields T2M or T4M in control registers T2CON or T4CON to
101b.

Table 17. Pins to be used as external interrupt inputs

Port pin Original function Control register

P2.0-15/CC0-15IO CAPCOM Register 0-15 Capture Input CC0-CC15

P8.0-7/CC16-23IO CAPCOM Register 16-23 Capture Input CC16-CC23

P1H.4-7/CC24-27I CAPCOM Register 24-27 Capture Input CC24-CC27

P7.4-7/CC28-31IO CAPCOM Register 28-31 Capture Input CC28-CC31

P3.7/T2IN Auxiliary timer T2 input pin T2CON

UM0407 Interrupt and trap functions

 111/541

The active edge of the external input signal is determined by bit-fields T2I or T4I. When
these fields are programmed to X01b, interrupt request flags T2IR or T4IR in registers T2IC
or T4IC will be set on a positive external transition at pins T2IN or T4IN, respectively. When
T2I or T4I are programmed to X10b, then a negative external transition will set the
corresponding request flag. When T2I or T4I are programmed to X11b, both a positive and a
negative transition will set the request flag.

In all three cases, the contents of the core timer T3 will be captured into the auxiliary timer
registers T2 or T4 based on the transition at pins T2IN or T4IN. When the interrupt enable
bit T2IE or T4IE are set, a PEC request or an interrupt request for vector T2INT or T4INT will
be generated.

Pin CAPIN differs slightly from the timer input pins as it can be used as external interrupt
input pin without affecting peripheral functions.

When the capture mode enable bit T5SC in register T5CON is cleared to '0', signal
transitions on pin CAPIN will only set the interrupt request flag CRIR in register CRIC, and
the capture function of register CAPREL is not activated.

So register CAPREL can still be used as reload register for GPT2 timer T5, while pin CAPIN
serves as external interrupt input. Bit field CI in register T5CON selects the effective
transition of the external interrupt input signal.

When CI is programmed to 01b, a positive external transition will set the interrupt request
flag. CI = 10b selects a negative transition to set the interrupt request flag, and with
CI = 11b, both a positive and a negative transition will set the request flag.

When the interrupt enable bit CRIE is set, an interrupt request for vector CRINT or a PEC
request will be generated.

Note: The non-maskable interrupt input pin NMI and the reset input pin RSTIN provide another
possibility for the CPU to react on an external input signal. NMI and RSTIN are dedicated
input pins, which cause hardware traps.

5.6.1 Fast external interrupts

The input pins that may be used for external interrupts are sampled every eight CPU clock
cycles: This means that the external events are scanned and detected in timeframes of eight
CPU clock cycles.

The ST10F272Z2 provides eight interrupt inputs that are sampled every CPU clock cycle so
external events are captured faster than with standard interrupt inputs.

The upper eight pins of Port2 (CC8-15IO on P2.8-P2.15) can individually be programmed to
this fast interrupt mode. In this mode the trigger transition (rising, falling or both) can also be
selected. The external interrupt control register EXICON controls this feature for all eight
pins. In addition, these fast interrupt inputs feature programmable edge detection (rising
edge, falling edge or both edges).

Fast external interrupts may also have interrupt sources selected from other peripherals; for
example the CANx controller receive signal (CANx_RxD) can be used to interrupt the

P3.5/T4IN Auxiliary timer T4 input pin T4CON

P3.2/CAPIN GPT2 capture input pin T5CON

Table 17. Pins to be used as external interrupt inputs

Port pin Original function Control register

Interrupt and trap functions UM0407

112/541

system. The same is valid for I2C interface serial clock line (alternative to CAN2 receive
line), and for real time clock (internally managed). This function is controlled using the
‘External Interrupt Source Selection’ register EXISEL.

The EXxIN pins (P2.8-P2.15) can also be used to exit power down mode if bit PWDCFG in
the SYSCON register is set. Power reduction modes are detailed in Section 24 on page 475.

EXICON (F1C0h / E0h) ESFR Reset Value: 0000h

These fast external interrupts use the interrupt nodes and vectors of the CAPCOM channels
CC8-CC15, so the capture/compare function cannot be used on the respective Port2 pins
(with EXIxES ≠ 00b). However, general purpose I/O is possible in all cases.

Note: The fast external interrupt inputs are sampled every CPU clock cycle: The interrupt request
arbitration and processing is executed every four CPU clock cycles.

While for CAN and I2C the EXICON programming depends on the customer application
(even though inactive state of both CAN and I2C protocols is the high level, so a new activity
on the bus can be detected by a falling edge observed at the related pins), for RTC the
internal hardware circuitry is such that the interrupts are generated on the positive edge, so
the EXICON register must be programmed accordingly.

Note: The I2C interface implements an input analog filter to avoid spurious spikes are assumed as
valid bus transitions. For this reason, a pulse on SCL line shall be long enough to be
recognized as valid pulse: This is in the range of 500ns (minimum). All pulses shorter than
50ns are certainly filtered: A pulse longer than 50ns but shorter than 500ns could either
trigger or not trigger the exit from power down mode.

EXISEL (F1DAh / EDh) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

RW RW RW RW RW RW RW RW

Bit Function

EXIxES
(x = 7...0)

External Interrupt x Edge Selection Field (x = 3...0)

’00’: Fast external interrupts disabled: standard mode.
EXxIN pin not taken into account for entering/exiting Power Down mode.

’01’: Interrupt on positive edge (rising).
Enter power down mode if EXxIN = ‘0’, exit if EXxIN = ‘1’ (ref as ‘high’ active level).

’10’: Interrupt on negative edge (falling).
Enter power down mode if EXxIN = ‘1’, exit if EXxIN = ‘0’ (ref as ‘low’ active level).

’11’: Interrupt on any edge (rising or falling).
Always enter Power Down mode, exit if EXxIN level changed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7SS EXI6SS EXI5SS EXI4SS EXI3SS 2 EXI2SS 3 EXI1SS EXI0SS

RW RW RW RW RW RW RW RW

EXIxSS Port2 pin Alternate source

0 P2.8 CAN1_RxD P4.5

1 P2.9 CAN2_RxD / SCL P4.4

UM0407 Interrupt and trap functions

 113/541

CAN and I2C interrupt mapping need some considerations to exploit all possible
configurations of the pin mapping and function enabling. In particular, when a module is not
enabled, even though the interrupt source is enabled (see for example EXIxSS = ‘01’) an
event on the pin does not generate any request to the CPU.

In the next table, all the possible pin configurations are summarized (considering I2C and
CAN2 pin sharing and CAN parallel mode). In the table, the bits of XPERCON register (used
to enable/disable each module) and the bit CANPAR of XMISC register (used to
enable/disable the CAN parallel mode) are reported. The table indicates when the interrupt
(or Power Down exiting) can be generated by the three modules (supposing to have properly
set register EXISEL).

The two general rules are the following:

● CAN parallel mode is enabled only when both CAN modules are enabled (if not, it has
no effect).

● When I2C is enabled, CAN2 enabling has no effect.

EXxIN inputs are normally sampled interrupt inputs. However, the interrupt handler circuitry
uses them as level-sensitive inputs. An EXxIN (x = 7...0) Interrupt Enable bit (bit CCxIE in

2 P2.10 RTCSI (Second) Internal MUX

3 P2.11 RTCAI (Alarm) Internal MUX

4...7 P2.12...15 Not used (zero) -

Bit Function

EXIxSS

External interrupt x source selection (x = 7...0)

‘00’: Input from associated Port2 pin.

‘01’: Input from “alternate source”.

‘10’: Input from Port2 pin ORed with “alternate source”.
‘11’: Input from Port2 pin ANDed with “alternate source”.

CANPAR XI2CEN CAN2EN CAN1EN Interrupt P4.5 Interrupt P4.4

x 0 0 0 No No

x 0 0 1 Yes (CAN1) No

x 0 1 0 No Yes (CAN2)

0 0 1 1 Yes (CAN1) Yes (CAN2)

1 0 1 1 Yes (CAN1/2) No

x 1 0 0 No Yes (I2C)

x 1 0 1 Yes (CAN1) Yes (I2C)

x 1 1 0 No Yes (I2C)

0 1 1 1 Yes (CAN1) Yes (I2C)

1 1 1 1 Yes (CAN1/2) Yes (I2C)

EXIxSS Port2 pin Alternate source

Interrupt and trap functions UM0407

114/541

respective CCxIC register) needs not to be set to properly serve the interrupt request (or
exiting from Power Down mode).

If the Interrupt was enabled (bit CCxIE = ‘1’ in the respective CCxIC register) before entering
Power Down mode, the device executes the interrupt service routine, and then resumes
execution after the PWRDN instruction. If the interrupt was disabled, the device executes
the instruction following PWRDN instruction, and the Interrupt Request Flag (bit CCxIR in
the respective CCxIC register) remains set until it is cleared by software.

Note: For CAN1 (and CAN2 when parallel mode is set) the related interrupt control register is
CC8IC; for CAN2 and I2C the register is CC9IC.

5.7 X-Peripheral interrupt
The limited number of X-Bus interrupt lines of the present ST10 architecture, imposes some
constraints on the implementation of the new functionality. In particular, the additional X-
Peripherals XSSC, XASC, I2C, XPWM and RTC need some resources to implement
interrupt capabilities. For this reason, a sophisticated but very flexible multiplexed structure
for the interrupt management is proposed. In the next Figure 24, the principle is explained
through a simple diagram, which shows the basic structure replicated for each of the four X-
interrupt available vectors (XP0INT, XP1INT, XP2INT and XP3INT).

It is based on a set of 16-bit registers XIRxSEL (x = 0,1,2,3), divided in two portions each:

● Byte HighXIRxSEL[15:8] Interrupt Enable bits

● Byte LowXIRxSEL[7:0] Interrupt Flag bits

When different sources submit an interrupt request, the enable bits (Byte High of XIRxSEL
register) define a mask which controls which sources will be associated with the unique
available vector. If more than one source is enabled to issue the request, the service routine
will have to take care to identify the real event to be serviced. This can easily be done by
checking the flag bits (Byte Low of XIRxSEL register). Note that the flag bits can also
provide information about events which are not currently serviced by the interrupt controller
(since masked through the enable bits), allowing an effective software management also in
absence of the possibility to serve the related interrupt request: A periodic polling of the flag
bits may be implemented inside the user application.

Note: The XIRxSEL registers are mapped into the XMiscellaneous area. Therefore they can be
accessed only if the XMISCEN bit is set in XPERCON register and if bit XPEN is set in
SYSCON register.

UM0407 Interrupt and trap functions

 115/541

Figure 24. X-Interrupt basic structure

Table 18 summarizes the mapping of the different interrupt sources which shares the four X-
interrupt vectors. For details on bits inside the XIRxSEL registers, refer to register
description section reported just after the table itself.

Since the XIRxSEL registers are not bit addressable, another pair of registers (a couple for
each XIRxSEL) is provided to allow setting and clearing the bits of XIRxSEL without risking
to overwrite requests coming after reading the register and before writing it. These registers
are described in this section as well.

Table 18. X-Interrupt detailed mapping

XP0INT XP1INT XP2INT XP3INT

CAN1 Interrupt x x

CAN2 Interrupt x x

I2C Receive x x x

I2C Transmit x x x

I2C Error x

XSSC Receive x x x

XSSC Transmit x x x

XSSC Error x

XASC Receive x x x

XASC Transmit x x x

XASC Transmit buffer x x x

XASC Error x

PLL Unlock / OWD x

PWM1 Channel 3...0 x x

XIRxSEL[7:0] (x = 0, 1, 2, 3)

XIRxSEL[15:8] (x = 0, 1, 2, 3)

XPxIC.XPxIR (x = 0, 1, 2, 3)

7 0

15 8

IT Source 7

IT Source 6

IT Source 5

IT Source 4

IT Source 3

IT Source 2

IT Source 1

IT Source 0

Enable[7:0]

Flag[7:0]

Interrupt and trap functions UM0407

116/541

XIR0SEL (EB10h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0 FL.7 FL.6 FL.5 FL.4 FL.3 FL.2 FL.1 FL.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

FL.0
Interrupt flag 0: CAN1 interrupt

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.1
Interrupt flag 1: I2C transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.2
Interrupt flag 2: I2C receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.3
Interrupt Flag 0: XSSC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.4
Interrupt Flag 4: XSSC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.5
Interrupt Flag 5: XASC Transmit Buffer

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.6
Interrupt Flag 6: XASC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.7
Interrupt Flag 7: XASC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

IE.0
Interrupt Enable 0: CAN1 Interrupt

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.1
Interrupt Enable 1: I2C Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.2

Interrupt Enable 2: I2C Receive

‘0’: Interrupt request disabled.

‘1’: Interrupt request enabled.

UM0407 Interrupt and trap functions

 117/541

All bits of XIR0SEL register are set by hardware when an interrupt is coming from the
peripheral, and/or by writing a logic ‘1’ in the corresponding bit of XIR0SET register.
All bits of XIR0SEL register are cleared by writing a logic ‘1’ in the corresponding bit of
XIR0CLR register. In any case, the register can also be written directly by the software.

XIR0SET (EB12h) XBUS Reset Value: 0000h

XIR0CLR (EB14h) XBUS Reset Value: 0000h

IE.3
Interrupt Enable 3: XSSC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.4
Interrupt Enable 4: XSSC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.5
Interrupt Enable 5: XASC Transmit Buffer

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.6
Interrupt Enable 6: XASC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.7
Interrupt Enable 7: XASC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IESET[7:0] FLSET[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLSET.x

Interrupt Flag x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR0SEL register.
Writing a ‘0’ has no effect.

IESET.x

Interrupt Enable x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR0SEL register.
Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IECLR[7:0] FLCLR[7:0]

W W W W W W W W W W W W W W W W

Bit Function

Interrupt and trap functions UM0407

118/541

To enable the interrupt in the interrupt controller, the interrupt control register XP0IC has to
be initialized. The associated interrupt vector is called XP0INT located at address 100h (trap
number 40h).

XP0IC (F186h / C3h) ESFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

XIR1SEL (EB20h) XBUS Reset Value: 0000h

Bit Function

FLCLR.x

Interrupt Flag x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR0SEL register.

Writing a ‘0’ has no effect.

IECLR.x

Interrupt Enable x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR0SEL register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
XP0
IR

XP0
IE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0 FL.7 FL.6 FL.5 FL.4 FL.3 FL.2 FL.1 FL.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

FL.0
Interrupt Flag 0: CAN2 Interrupt

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.1
Interrupt Flag 1: I2C Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.2
Interrupt Flag 2: I2C Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.3
Interrupt Flag 0: XSSC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.4
Interrupt Flag 4: XSSC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

UM0407 Interrupt and trap functions

 119/541

All bits of XIR1SEL register are set by hardware when an interrupt is coming from the
peripheral, and/or by writing a logic ‘1’ in the corresponding bit of XIR1SET register.
All bits of XIR1SEL register are cleared by writing a logic ‘1’ in the corresponding bit of
XIR1CLR register. In any case, the register can also be written directly by the software.

FL.5
Interrupt Flag 5: XASC Transmit Buffer

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.6
Interrupt Flag 6: XASC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.7
Interrupt Flag 7: XASC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

IE.0
Interrupt Enable 0: CAN2 Interrupt

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.1
Interrupt Enable 1: I2C Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.2
Interrupt Enable 2: I2C Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.3
Interrupt Enable 3: XSSC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.4
Interrupt Enable 4: XSSC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.5
Interrupt Enable 5: XASC Transmit Buffer

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.6
Interrupt Enable 6: XASC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.7
Interrupt Enable 7: XASC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

Bit Function

Interrupt and trap functions UM0407

120/541

XIR1SET (EB22h) XBUS Reset Value: 0000h

XIR1CLR (EB24h) XBUS Reset Value: 0000h

To enable the interrupt in the interrupt controller, the interrupt control register XP1IC has to
be initialized. The associated interrupt vector is called XP1INT located at address 104h (trap
number 41h).

XP1IC (F18Eh / C7h) ESFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

XIR2SEL (EB30h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IESET[7:0] FLSET[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLSET.x

Interrupt Flag x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR1SEL register.

Writing a ‘0’ has no effect.

IESET.x

Interrupt Enable x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR1SEL register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IECLR[7:0] FLCLR[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLCLR.x

Interrupt Flag x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR1SEL register.

Writing a ‘0’ has no effect.

IECLR.x

Interrupt Enable x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR1SEL register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - XP1I
R

XP1I
E ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0 FL.7 FL.6 FL.5 FL.4 FL.3 FL.2 FL.1 FL.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

UM0407 Interrupt and trap functions

 121/541

Bit Function

FL.0
Interrupt Flag 0: XPWM Channel 3...0

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.1
Interrupt Flag 1: I2C Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.2
Interrupt Flag 2: I2C Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.3
Interrupt Flag 0: XSSC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.4
Interrupt Flag 4: XSSC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.5
Interrupt Flag 5: XASC Transmit Buffer

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.6
Interrupt Flag 6: XASC Transmit

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.7
Interrupt Flag 7: XASC Receive

‘0’: No interrupt request.
‘1’: Interrupt request pending.

IE.0
Interrupt Enable 0: XPWM Channel 3...0

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.1
Interrupt Enable 1: I2C Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.2
Interrupt Enable 2: I2C Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.3
Interrupt Enable 3: XSSC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.4
Interrupt Enable 4: XSSC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

Interrupt and trap functions UM0407

122/541

All bits of XIR2SEL register are set by hardware when an interrupt is coming from the
peripheral, and/or by writing a logic ‘1’ in the corresponding bit of XIR2SET register.
All bits of XIR2SEL register are cleared by writing a logic ‘1’ in the corresponding bit of
XIR2CLR register. In any case, Tthe register can also be written directly by the software.

XIR2SET (EB32h) XBUS Reset Value: 0000h

XIR2CLR (EB34h) XBUS Reset Value: 0000h

IE.5
Interrupt Enable 5: XASC Transmit Buffer

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.6
Interrupt Enable 6: XASC Transmit

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.7
Interrupt Enable 7: XASC Receive

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IESET[7:0] FLSET[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLSET.x

Interrupt Flag x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR2SEL register.

Writing a ‘0’ has no effect.

IESET.x

Interrupt Enable x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR2SEL register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IECLR[7:0] FLCLR[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLCLR.x

Interrupt Flag x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR2SEL register.

Writing a ‘0’ has no effect.

IECLR.x

Interrupt Enable x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR2SEL register.

Writing a ‘0’ has no effect.

Bit Function

UM0407 Interrupt and trap functions

 123/541

To enable the interrupt in the interrupt controller, the Interrupt Control Register XP2IC has to
be initialized. The associated interrupt vector is called XP2INT located at address 108h (trap
number 42h).

XP2IC (F196h / CBh) ESFR Reset Value: - - 00h

Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

XIR3SEL (EB40h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - XP2IR XP2IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0 FL.7 FL.6 FL.5 FL.4 FL.3 FL.2 FL.1 FL.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

FL.0
Interrupt Flag 0: CAN1 Interrupt

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.1
Interrupt Flag 1: CAN2 Interrupt

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.2
Interrupt Flag 2: I2C Error

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.3
Interrupt Flag 0: XSSC Error

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.4
Interrupt Flag 4: XASC Error

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.5
Interrupt Flag 5: PLL Unlock / Oscillator Watchdog

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.6
Interrupt Flag 6: XPWM Channel 3...0

‘0’: No interrupt request.
‘1’: Interrupt request pending.

FL.7 Interrupt Flag 7: No interrupt source associated.

Interrupt and trap functions UM0407

124/541

All bits of XIR3SEL register are set by hardware when an interrupt is coming from the
peripheral, and/or by writing a logic ‘1’ in the corresponding bit of XIR3SET register.
All bits of XIR3SEL register are cleared by writing a logic ‘1’ in the corresponding bit of
XIR3CLR register. In any case, the register can also be written directly by the software.

XIR3SET (EB42h) XBUS Reset Value: 0000h

IE.0
Interrupt Enable 0: CAN1 Interrupt

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.1
Interrupt Enable 1: CAN2 Interrupt

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.2
Interrupt Enable 2: I2C Error

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.3
Interrupt Enable 3: XSSC Error

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.4
Interrupt Enable 4: XASC Error

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.5
Interrupt Enable 5: PLL Unlock / Oscillator Watchdog

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.6
Interrupt Enable 6: XPWM Channel 3...0

‘0’: Interrupt request disabled.
‘1’: Interrupt request enabled.

IE.7 Interrupt Enable 7: No interrupt source associated.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IESET[7:0] FLSET[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLSET.x

Interrupt Flag x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR3SEL register.

Writing a ‘0’ has no effect.

IESET.x

Interrupt Enable x SET (x = 7...0)

Writing a ‘1’ will set the corresponding bit x in XIR3SEL register.

Writing a ‘0’ has no effect.

Bit Function

UM0407 Interrupt and trap functions

 125/541

XIR3CLR (EB44h) XBUS Reset Value: 0000h

To enable the interrupt in the interrupt controller, the Interrupt Control Register XP3IC has to
be initialized. The associated interrupt vector is called XP3INT located at address 10Ch
(trap number 43h).

XP3IC (F19Eh / CFh) ESFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

5.8 Trap functions
Traps interrupt the current execution like standard interrupts do. However, trap functions
offer the possibility to bypass the interrupt system prioritization process in cases where
immediate system reaction is required. Trap functions are not maskable and always have
priority over interrupt requests on any priority level.

The ST10F272Z2 provides two different kinds of trap mechanisms:

● Hardware traps are triggered by events that occur during program execution (like
illegal access or undefined opcode);

● Software traps are initiated via an instruction within the current execution flow.

The trap priorities are summarized in Table 19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IECLR[7:0] FLCLR[7:0]

W W W W W W W W W W W W W W W W

Bit Function

FLCLR.x

Interrupt Flag x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR3SEL register.

Writing a ‘0’ has no effect.

IECLR.x

Interrupt Enable x CLEAR (x = 7...0)

Writing a ‘1’ will clear the corresponding bit x in XIR3SEL register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - XP3IR XP3IE ILVL GLVL

RW RW RW RW

Interrupt and trap functions UM0407

126/541

5.8.1 Software traps

The TRAP instruction is used to cause a software call to an interrupt service routine. The
trap number that is specified in the operand field of the trap instruction determines which
vector location in the address range from 00’0000h through 00’01FCh will be branched to.

Executing a TRAP instruction causes the same effect as servicing the interrupt at the same
vector. PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack
and a jump is taken to the specified vector location.

When segmentation is enabled and a trap is executed, the CSP for the trap service routine
is set to code segment 0. No Interrupt Request flags are affected by the TRAP instruction.

The interrupt service routine called by a TRAP instruction must be terminated with a RETI
(return from interrupt) instruction to ensure correct operation.

Note: The CPU level in register PSW is not modified by the TRAP instruction, so the service
routine is executed on the same priority level from which it was invoked. Therefore, the
service routine entered by the TRAP instruction can be interrupted by other traps or higher
priority interrupts, other than when triggered by a hardware trap.

5.8.2 Hardware traps

Hardware traps are issued by faults or specific system states that occur during the runtime
of a program (not identified at assembly time). A hardware trap may also be triggered

Table 19. Trap priorities

Exception condition
Trap
flag

Trap
vector

Vector
location

Trap
number

Trap
priority

RESET functions:

Hardware RESET
Software RESET
Watchdog Timer Overflow

RESET
RESET
RESET

00’0000h
00’0000h
00’0000h

00h
00h
00h

MAXIMAL

III
III
III

Class A hardware traps:

Non-Maskable Interrupt
Stack Overflow
Stack Underflow

NMI
STKOF
STKUF

NMITRAP
STOTRAP
STUTRAP

00’0008h
00’0010h
00’0018h

02h
04h
06h

II
II
II

Class B hardware traps:

Undefined Opcode
MAC Interruption
Protected Instruction Fault
Illegal Word Operand Access
Illegal Instruction Access
Illegal External Bus Access

UNDOPC
MACTRP
PRTFLT
ILLOPA
ILLINA
ILLBUS

BTRAP
BTRAP
BTRAP
BTRAP
BTRAP
BTRAP

00’0028h
00’0028h
00’0028h
00’0028h
00’0028h
00’0028h

0Ah
0Ah
0Ah
0Ah
0Ah
0Ah

I
I
I
I
I
I

MINIMAL

Reserved [2Ch –3Ch] [0Bh – 0Fh]

Software traps

TRAP Instruction

Any
[00’0000h–
00’01FCh]
in steps of

4h

Any
[00h – 7Fh]

Current
CPU

Priority

UM0407 Interrupt and trap functions

 127/541

intentionally, for example to emulate additional instructions by generating an Illegal Opcode
trap.

The ST10F272Z2 distinguishes nine different hardware trap functions. When a hardware
trap condition has been detected, the CPU branches to the trap vector location for the
respective trap condition.

Depending on the trap condition, the instruction which caused the trap is either completed or
cancelled (it has no effect on the system state) before the trap handling routine is entered.

Hardware traps are non-maskable and always have priority over every other CPU activity. If
several hardware trap conditions are detected within the same instruction cycle, the highest
priority trap is serviced (see Section 5.1: Interrupt system structure on page 93).

PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack and the
CPU level in register PSW is set to the highest possible priority level (level 15), disabling all
interrupts. The CSP is set to code segment zero, if segmentation is enabled. A trap service
routine must be terminated with the RETI instruction.

The nine hardware trap functions of the ST10F272Z2 are divided into two classes:

● Class A traps: Share the same trap priority, but have an individual vector address.

● External Non-Maskable Interrupt (NMI)

● Stack Overflow

● Stack Underflow trap

● Class B traps: Share the same trap priority, and the same vector address.

● Undefined Opcode

● MAC Interruption

● Protection Fault

● Illegal Word Operand Access

● Illegal Instruction Access

● Illegal External Bus Access

The bit-addressable trap flag register (TFR) allows a trap service routine to identify the kind
of trap which caused the exception. Each trap function is indicated by a separate request
flag. When hardware trap occurs, the corresponding request flag in register TFR is set to 1.

TFR (FFACh / D6h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI STK
OF

STK
UF - - - - - UND

OPC
MAC
TRP - - PRT

FLT
ILL

OPA
ILL
INA

ILL
BUS

RW RW RW RW RW RW RW RW RW

Bit Function

ILLBUS
Illegal External Bus Access Flag

An external access has been attempted with no external bus defined.

ILLINA
Illegal Instruction Access Flag

A branch to an odd address has been attempted.

ILLOPA
Illegal Word Operand Access Flag

A word operand access (read or write) to an odd address has been attempted.

Interrupt and trap functions UM0407

128/541

Note: The trap service routine must clear the respective trap flag, otherwise a new trap will be
requested after exiting the service routine. Setting a trap request flag by software causes the
same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be regarded as a type of trap.
Reset functions have the highest system priority (trap priority III).

Class A traps have the second highest priority (trap priority II), on the 3rd rank are class B
traps, so a class A trap can interrupt a class B trap. If more than one class A trap occur at a
time, they are prioritized internally, with the NMI trap on the highest priority followed by the
stack overflow trap; the stack underflow trap has the lowest priority.

All class B traps have the same trap priority (trap priority I). When several class B traps get
active at a time, the corresponding flags in the TFR register are set and the trap service
routine is entered. Since all class B traps have the same vector, the priority to service
simultaneous class B traps is determined by the software in the trap service routine.

If a class A trap occurs during the execution of a class B trap service routine, class A trap
will be serviced immediately. During the execution of a class A trap service routine, no class
B trap will be serviced until the class A trap service routine is exited with a RETI instruction.
In this case, the occurrence of the class B trap condition is stored in the TFR register, but
the IP value of the instruction which caused this trap is lost.

If an undefined opcode trap (class B) occurs simultaneously with an NMI trap (class A), both
the NMI and the UNDOPC flags are set, the IP of the instruction with the undefined opcode
is pushed onto the system stack, but the NMI trap is executed. After return from the NMI
service routine, the IP is popped from the stack and immediately pushed again because of
the pending UNDOPC trap.

5.8.3 External NMI trap

Whenever a high to low transition on the dedicated external NMI pin (non-maskable
Interrupt) is detected, the NMI flag in register TFR is set and the CPU will enter the NMI trap
routine. The IP value pushed on the system stack is the address of the instruction following
the one after which normal processing was interrupted by the NMI trap.

PRTFLT
Protection Fault Flag

A protected instruction with an illegal format has been detected.

MACTRP
MAC Interrupt Flag

The MAC co-processor has generated an interruption.

UNDOPC
Undefined Opcode Flag

The currently decoded instruction has no valid ST10F272Z2 opcode.

STKUF
Stack Underflow Flag

The current stack pointer value exceeds the content of register STKUN.

STKOF
Stack Overflow Flag

The current stack pointer value falls below the content of register STKOV.

NMI
Non Maskable Interrupt Flag

A negative transition (falling edge) has been detected on pin NMI.

Bit Function

UM0407 Interrupt and trap functions

 129/541

Note: The NMI pin is sampled with every CPU clock cycle to detect transitions.

5.8.4 Stack overflow trap

Whenever the stack pointer is decremented to a value which is less than the value in the
stack overflow register STKOV, the STKOF flag in register TFR is set and the CPU will enter
the stack overflow trap routine. Which IP value will be pushed onto the system stack
depends on which operation caused the decrement of the SP.

When an implicit decrement of the SP is made through a PUSH or CALL instruction, or upon
interrupt or trap entry, the IP value pushed is the address of the following instruction. When
the SP is decremented by a subtract instruction, the IP value pushed represents the
address of the instruction after the instruction following the subtract instruction.

For recovery from stack overflow it must be ensured that there is enough excess space on
the stack for saving the current system state (PSW, IP, in segmented mode also CSP) twice.
Otherwise, a system reset should be generated.

5.8.5 Stack underflow trap

Whenever the stack pointer is incremented to a value which is greater than the value in the
stack underflow register STKUN, the STKUF flag is set in register TFR and the CPU will
enter the stack underflow trap routine. Again, the IP value pushed onto the system stack
depends on which operation caused the increment of the SP. When an implicit increment of
the SP is made through a POP or return instruction, the IP value pushed is the address of
the following instruction.

When the SP is incremented by an add instruction, the pushed IP value represents the
address of the instruction after the instruction following the add instruction.

5.8.6 Undefined opcode trap

When the instruction currently decoded by the CPU does not contain a valid ST10F272Z2
opcode, the UNDOPC flag is set in register TFR and the CPU enters the undefined opcode
trap routine. The IP value pushed onto the system stack is the address of the instruction that
caused the trap.

This can be used to emulate non-implemented instructions. The trap service routine can
examine the faulting instruction to decode operands for non-implemented opcodes based on
the stacked IP. In order to resume processing, the stacked IP value must be incremented by
the size of the undefined instruction, which is determined by the user, before a RETI
instruction is executed.

5.8.7 MAC interrupt

The MAC can generate an interrupt according to the value of the status flags C (carry), SV
(overflow), E (extension) or SL (limit) of the MSW. The MAC interrupt is globally enabled
when the MIE flag in MCW is set. When it is enabled the flags C, SV, E or SL can trigger a
MAC interrupt when they are set, provided that the corresponding mask flag CM, VM, EM or
LM in MCV is also set. A MAC interrupt request sets the MIR flag in MSW: This flag must be
reset by the user during the interrupt routine, otherwise the interrupt processing restarts
when returning from the interrupt routine.

Interrupt and trap functions UM0407

130/541

5.8.8 Protection fault trap

The format of the protected instructions is 4 byte wide. Bytes 1 and 2 are complementary
values. Bytes 3 and 4 are identical to byte 1. For example the format of SRST instruction is
B7h 48h B7h B7h. If the format of a protected instruction going to be executed does not fulfill
this coding, the PRTFLT flag in register TFR is set and the CPU enters the protection fault
trap routine. The protected instructions include DISWDT, EINIT, IDLE, PWRDN, SRST and
SRVWDT. When the protection fault trap occurs, the IP value pushed onto the system stack
is the address of the faulty instruction.

5.8.9 Illegal word operand access trap

Whenever a word operand read or write access is attempted to an odd byte address, the
ILLOPA flag in register TFR is set and the CPU enters the illegal word operand access trap
routine. The IP value pushed onto the system stack is the address of the instruction
following the one which caused the trap.

5.8.10 Illegal instruction access trap

Whenever a branch is made to an odd byte address, the ILLINA flag in register TFR is set
and the CPU enters the illegal instruction access trap routine. The IP value pushed onto the
system stack is the illegal odd target address of the branch instruction.

5.8.11 Illegal external bus access trap

Whenever the CPU requests an external instruction fetch, data read or data write, and no
external bus configuration has been specified, the ILLBUS flag in register TFR is set and the
CPU enters the illegal bus access trap routine. The IP value pushed onto the system stack
is the address of the instruction following the one which caused the trap.

UM0407 Parallel ports

 131/541

6 Parallel ports

6.1 Introduction
The ST10F272Z2 has up to 111 parallel I/O lines, organized into:

● Eight 8-bit I/O ports (PORT0 made of P0H and P0L, PORT1 made of P1H and P1L,
Port4, Port6, Port7, Port8),

● One 15-bit I/O port (Port3),

● One 16-bit input port (Port5),

● One 16-bit I/O port (Port2).

These port lines may be used for general purpose input/output, controlled via software, or
may be used implicitly by ST10F272Z2’s integrated peripherals or the external bus
controller.

All port lines are bit addressable, and all input/output lines are individually (bit wise)
programmable as inputs or outputs via direction registers (except Port5). The I/O ports are
true bidirectional ports which are switched to high impedance state when configured as
inputs.

The output drivers of six I/O ports (2, 3, partially 4, 6, 7, 8) can be configured (pin by pin) for
push-pull operation or open-drain operation via control registers. The logic level of a pin is
clocked into the input latch once per CPU clock cycle, regardless whether the port is
configured for input or output.

A write operation to a port pin configured as an input causes the value to be written into the
port output latch, while a read operation returns the latched state of the pin itself. A read-
modify-write operation reads the value of the pin, modifies it, and writes it back to the output
latch.

Writing to a pin configured as an output (DPx.y=‘1’) causes the output latch and the pin to
have the written value, since the output buffer is enabled. Reading this pin returns the value
of the output latch. A read-modify-write operation reads the value of the output latch,
modifies it, and writes it back to the output latch, thus also modifying the level at the pin.

Note: A set of registers mapped on XBUS is implemented on ST10F272Z2 to manage the data,
direction and open-drain mode for those pins where the new X-Peripherals (XPWM, XASC
and XSSC) are mapped: The standard Port register bits for these pins are working when the
X-Peripherals are not enabled (see XPERCON register); vice versa, when the X-Peripherals
are enabled, the new registers take the control of the pins, and the standard registers
content is ignored.

6.1.1 Open drain mode

Some of I/O Ports of ST10F272Z2 provide open drain control. It is used to switch the output
driver of a port pin from a push-pull configuration to an open drain configuration. In push-pull
mode a port output driver has an upper and a lower transistor, thus it can actively drive the
line either to a high or a low level. In open drain mode the upper transistor is always
switched off, and the output driver can only actively drive the line to a low level. When writing
a ‘1’ to the port latch, the lower transistor is switched off and the output enters a high-
impedance state.

Parallel ports UM0407

132/541

The high level must then be provided by an external pull-up device. With this feature, it is
possible to connect several port pins together to a AND-wired configuration, saving external
glue logic and/or additional software overhead for enabling/disabling output signals.

This feature is implemented for ports P2, P3, P4 (partially), P6, P7 and P8 (see respective
sections), and is controlled through the respective open drain control registers ODPx.

These registers allow the individual bit wise selection of the open drain mode for each port
line. If the respective control bit ODPx.y is ‘0’ (default after reset), the output driver is in the
push / pull mode. If ODPx.y is ‘1’, the open drain configuration is selected. Note that all
ODPx registers are located in the ESFR space (see Figure 25 on page 133).

Note: When XPWM, XASC and XSSC are used (enabled through XPERCON) the open-drain
mode of the related pins is controlled by a set of XBUS registers (XPWMPORT, XS1PORT,
XSSCPORT).
When I2C is enabled (through XPERCON), the related pins of Port4 are automatically set to
open-drain mode (ODP4 register is bypassed when I2C is active; besides CAN2 is not
accessible when I2C is active unless remapped in parallel to CAN1).

UM0407 Parallel ports

 133/541

Figure 25. SFRs, XBUS registers and pins associated with the parallel ports

D
at

a
In

pu
t /

 O
ut

pu
t R

eg
is

te
r

15 -

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y
P

0L

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
0H

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
1L

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
1H

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

P
2

Y
-

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

P
3

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
4

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

P
5

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
6

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
7

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
8

D
ire

ct
io

n
C

on
tr

ol
 R

eg
is

te
rs

15 -

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y
D

P
0L

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

0H

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

1L

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

1H

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

D
P

2

Y
-

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

D
P

3

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

4

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

6

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

7

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

8

T
hr

es
ho

ld
 /

O
pe

n
D

ra
in

 C
on

tr
ol

15 -

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y
P

IC
O

N

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
2

-
-

Y
-

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
3

-
-

-
-

-
-

-
-

Y
Y

Y
Y

-
-

-
-

O
D

P
4

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
6

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
7

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
8

Y
:

B
it

ha
s

an
 I/

O
 fu

nc
tio

n
-

:
B

it
ha

s
no

 I/
O

 d
ed

ic
at

ed
 fu

nc
tio

n
or

 is
 n

ot
 im

pl
em

en
te

d
R

eg
is

te
r

be
lo

ng
s

to
 E

S
F

R
 a

re
a

E
:

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

P
5D

ID
IS

P
IC

O
N

:
P

2L
IN

 P
2H

IN
P

3L
IN

 P
3H

IN
P

4L
IN

P
6L

IN
P

7L
IN

P
8L

IN

E E E E

E E E E E E E

X
B

U
S

 R
eg

is
te

rs

15 -

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y
X

S
S

C
P

O
R

T

-
-

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

X
S

1P
O

R
T

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

X
W

P
M

P
O

R
T

-
-

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

X
P

IC
O

N

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

X
P

1D
ID

IS

X
P

IC
O

N
:

P
0L

IN
 P

0H
IN

P
1L

IN
 P

1H
IN

P
5L

IN
 P

5H
IN

Parallel ports UM0407

134/541

Figure 26. Output drivers in push-pull mode and in open drain mode

6.1.2 Input threshold control

The standard inputs of the ST10F272Z2 determine the status of input signals according to
TTL levels.

In order to accept and recognize noisy signals, CMOS input thresholds can be selected
instead of the standard TTL thresholds for all pins of all Ports. These CMOS configuration
features also a higher hysteresis, to prevent the inputs from toggling while the respective
input signal level is near the thresholds.

Two port input control registers (PICON and XPICON) are used to select these thresholds
for each byte of the indicated ports: The 8-bit ports P4, P6, P7 and P8 are controlled by one
bit each while ports P0, P1, P2, P3 and P5 are controlled by two bits each.

PICON (F1C4h / E2h) ESFR Reset Value: - - 00h

XPICON (EB26h) XBUS Reset Value: - - 00h

Note: PICON is an ESFR register, while XPICON is an XBUS register. To access XPICON register
bit XMISCEN of register XPERCON and bit XPEN of register SYSCON must be set.

Q

Push-Pull Output Driver

Q

Open Drain Output Driver

External
Pull-up

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
P8LI

N
P7LI

N
P6LI

N
P4LI

N
P3H
IN

P3LI
N

P2H
IN

P2LI
N

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - -
P5H
IN

P5LI
N

P1H
IN

P1LI
N

P0H
IN

P0LI
N

RW RW RW RW RW RW

Bit Function

PxLIN
Port x Low Byte Input Level Selection
‘0’:Pins Px.7...Px.0 switch on standard TTL input levels.

‘1’:Pins Px.7...Px.0 switch on standard CMOS input levels.

PxHIN

Port x High Byte Input Level Selection
‘0’:Pins Px.15...Px.8 switch on standard TTL input levels.

‘1’:Pins Px.15...Px.8 switch on standard CMOS input levels.

UM0407 Parallel ports

 135/541

All options for individual direction and output mode control are available for each pin,
independent of the selected input threshold. The input hysteresis (different according to TTL
or CMOS selection) provides stable inputs from noisy or slowly changing external signals.

Figure 27. Hysteresis concept

6.1.3 Alternate port functions

Each port line has one or more associated programmable alternate input or output function.
PORT0 and PORT1 may be used as the address and data lines when accessing external
memory. Besides, PORT1 provides also input capture lines and additional (8) analog input
channels to the A/D Converter.

Port4 outputs the additional segment address bit A23...A16 in systems where more than
64Kbytes of memory are to be accessed directly. In addition, CAN1, CAN2 and I2C lines are
provided.

Port6 provides the optional chip select outputs, the bus arbitration lines, and the XSSC lines.

Port2, Port7 and Port8 are associated with the capture inputs or compare outputs of the
CAPCOM units and/or with the outputs of the PWM module, of the XPWM module and of
the XASC.
Port2 is also used for fast external interrupt inputs and for timer 7 input.

Port3 includes alternate input/output functions of timers, standard serial interfaces (SSC
and ASC), the optional bus control signal BHE/WRH and the system clock output
(CLKOUT). Port5 is used for the analog input channels (16) to the A/D converter or timer
control signals.

If the alternate output function of a pin is to be used, the direction of this pin must be
programmed for output (DPx.y=‘1’), except for some signals that are used directly after reset
and are configured automatically. Otherwise the pin remains in the high-impedance state
and is not effected by the alternate output function. The respective port latch should hold a
‘1’, because its output is ANDed with the alternate output data (except for PWM output
signals).

If the alternate input function of a pin is used, the direction of the pin must be programmed
for input (DPx.y=‘0’) if an external device is driving the pin. The input direction is the default
after reset. If no external device is connected to the pin, however, one can also set the
direction for this pin to output. In this case, the pin reflects the state of the port output latch.
Thus, the alternate input function reads the value stored in the port output latch. This can be
used for testing purposes to allow a software trigger of an alternate input function by writing
to the port output latch.

On most of the port lines, the user software is responsible for setting the proper direction
when using an alternate input or output function of a pin.

This is done by setting or clearing the direction control bit DPx.y of the pin before enabling
the alternate function.

Input level

Bit state

Hysteresis

Parallel ports UM0407

136/541

There are port lines, however, where the direction of the port line is switched automatically.

For instance, in the multiplexed external bus modes of PORT0, the direction must be
switched several times for an instruction fetch in order to output the addresses and to input
the data.

Obviously, this cannot be done through instructions. In these cases, the direction of the port
line is switched automatically by hardware if the alternate function of such a pin is enabled.

To determine the appropriate level of the port output latches check how the alternate data
output is combined with the respective port latch output.

There is one basic structure for all port lines with only an alternate input function. Port lines
with only an alternate output function, however, have different structures due to the way the
direction of the pin is switched and depending on whether the pin is accessible by the user
software or not in the alternate function mode.

All port lines that are not used for these alternate functions may be used as general purpose
I/O lines. When using port pins for general purpose output, the initial output value should be
written to the port latch prior to enabling the output drivers, in order to avoid undesired
transitions on the output pins. This applies to single pins as well as to pin groups (see
examples below).

Note: When using several BSET pairs to control more pins of one port, these pairs must be
separated by instructions, which do not reference the respective port (see Section 3.1.4:
Particular pipeline effects on page 56.

6.2 PORT0
The two 8-bit ports P0H and P0L represent the higher and lower part of PORT0,
respectively. Both halves of PORT0 can be written (for example via a PEC transfer) without
effecting the other half.

If this port is used for general purpose I/O, the direction of each line can be configured via
the corresponding direction registers DP0H and DP0L.

P0L (FF00h / 80h) SFR Reset Value: - - 00h

P0H (FF02h / 81h) SFR Reset Value: - - 00h

SINGLE_Bit: BSET P4.7 ; Initial output level is "high"

BSET DP4.7 ; Switch on the output driver

Bit_GROUP: BFLDH P4, #24H, #24H ; Initial output level is "high"

BFLDH DP4, #24H, #24H ; Switch on the output drivers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
P0L.

7
P0L.

6
P0L.

5
P0L.

4
P0L.

3
P0L.

2
P0L.

1
P0L.

0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
P0H
.7

P0H
.6

P0H
.5

P0H
.4

P0H
.3

P0H
.2

P0H
.1

P0H
.0

RW RW RW RW RW RW RW RW

UM0407 Parallel ports

 137/541

DP0L (F100h / 80h) ESFR Reset Value: - - 00h

DP0H (F102h / 81h) ESFR Reset Value: - - 00h

6.2.1 Alternate functions of PORT0

When an external bus is enabled, PORT0 is used as data bus or address/data bus.

Note that an external 8-bit de-multiplexed bus only uses P0L, while P0H is free for I/O
(provided that no other bus mode is enabled).

PORT0 is also used to select the system start-up configuration. During reset, PORT0 is
configured to input, and each line is held high through an internal pull-up device.

Each line can now be individually pulled to a low level (see DC-level specifications in the
respective datasheets) through an external pull-down device. A default configuration is
selected when the respective PORT0 lines are at a high level. Through pulling individual
lines to a low level, this default can be changed according to the needs of the applications.

The internal pull-up devices are designed such that an external pull-down resistors (see
datasheet specification) can be used to apply a correct low level.

These external pull-down resistors can remain connected to the PORT0 pins also during
normal operation: However, care has to be taken such that they do not disturb the normal
function of PORT0 (this might be the case, for example, if the external resistor is too strong).

With the end of reset, the selected bus configuration will be written to the BUSCON0
register. The configuration of the high byte of PORT0, will be copied into the special register
RP0H.

This read-only register holds the selection for the number of chip selects and segment
addresses. Software can read this register in order to react according to the selected
configuration, if required. When the reset is terminated, the internal pull-up devices are
switched off, and PORT0 will be switched to the appropriate operating mode.

Bit Function

P0X.y Port data register P0H or P0L bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP0L

.7
DP0L

.6
DP0L

.5
DP0L

.4
DP0L

.3
DP0L

.2
DP0L

.1
DP0L

.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP0
H.7

DP0
H.6

DP0
H.5

DP0
H.4

DP0
H.3

DP0
H.2

DP0
H.1

DP0
H.0

RW RW RW RW RW RW RW RW

Bit Function

DP0X.y
Port direction register DP0H or DP0L bit y
‘0’: Port line P0X.y is an input (high-impedance).

‘1’: Port line P0X.y is an output.

Parallel ports UM0407

138/541

During external accesses in multiplexed bus modes PORT0 first outputs the 16-bit intra-
segment address as an alternate output function. PORT0 is then switched to high-
impedance input mode to read the incoming instruction or data.

In 8-bit data bus mode, two memory cycles are required for word accesses, the first for the
low byte and the second for the high byte of the word. During write cycles PORT0 outputs
the data byte or word after outputting the address. During external accesses in de-
multiplexed bus modes PORT0 reads the incoming instruction or data word or outputs the
data byte or word (see Figure 28).

When an external bus mode is enabled, the direction of the port pin and the loading of data
into the port output latch are controlled by the bus controller hardware. The input of the port
output latch is disconnected from the internal bus and is switched to the line labeled
“alternate data output” via a multiplexer. The alternate data can be the 16-bit intra-segment
address or the 8/16-bit data information. The incoming data on PORT0 is read on the line
“alternate data input”. While an external bus mode is enabled, the user software should not
write to the port output latch, otherwise unpredictable results may occur. When the external
bus modes are disabled, the contents of the direction register last written by the user
becomes active.

Figure 28. PORT0 I/O and alternate functions

Figure 29 on page 139 shows the structure of a PORT0 pin.

PORT0

P0H

P0L

Alternate functions a) b) c) d)

General
Purpose

Input / Output

8-bit
De-multiplexed

Bus

16-bit
De-multiplexed

Bus

8-bit
Multiplexed

Bus

16-bit
Multiplexed

Bus

D7

D6

D5

D4

D3

D2

D1

D0

P0L.7

P0L.6

P0L.5

P0L.4

P0L.3

P0L.2

P0L.1

P0L.0

P0H.7

P0H.6

P0H.5

P0H.4

P0H.3

P0H.2

P0H.1

P0H.0

D7

D6

D5

D4

D3

D2

D1

D0

D15

D14

D13

D12

D11

D10

D9

D8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

A15

A14

A13

A12

A11

A10

A9

A8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

AD15

AD14

AD13

AD12

AD11

AD10

AD9

AD8

UM0407 Parallel ports

 139/541

Figure 29. Block diagram of a PORT0 pin

6.3 PORT1
The two 8-bit ports P1H and P1L represent the higher and lower part of PORT1,
respectively. Both halves of PORT1 can be written (for example via a PEC transfer) without
effecting the other half. If this port is used for general purpose I/O, the direction of each line
can be configured via the corresponding direction registers DP1H and DP1L.

P1L (FF04h / 82h) SFR Reset Value: - - 00h

P1H (FF06h / 83h) SFR Reset Value: - - 00h

Direction
Latch

Write DP0H.y / DP0L.y

Read DP0H.y / DP0L.y

Port Output
Latch

Write P0H.y / P0L.y

Read P0H.y / P0L.y

In
te

rn
al

 B
us

MUX

0

1

MUX

0

1

Alternate
Data
Output

MUX

0

1Alternate
Direction

Input
Latch

Clock

P0H.y
P0L.yOutput

Buffer

y = 7...0

Alternate
Function
Enable

Port Data
Output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
P1L.

7
P1L.

6
P1L.

5
P1L.

4
P1L.

3
P1L.

2
P1L.

1
P1L.

0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
P1H
.7

P1H
.6

P1H
.5

P1H
.4

P1H
.3

P1H
.2

P1H
.1

P1H
.0

RW RW RW RW RW RW RW RW

Bit Function

P1X.y Port data register P1H or P1L bit y

Parallel ports UM0407

140/541

DP1L (F104h / 82h) ESFR Reset Value: - - 00h

DP1H (F106h / 83h) ESFR Reset Value: - - 00h

6.3.1 Alternate functions of PORT1

When a de-multiplexed external bus is enabled, PORT1 is used as address bus.
Note that de-multiplexed bus modes use PORT1 as a 16-bit port. Otherwise all 16 port lines
can be used for general purpose I/O. The upper four pins of PORT1 (P1H.7...P1H.4) are
also capture input lines for the CAPCOM2 unit (CC27-24 I).

As all other capture inputs, the capture input functions of pins P1H.7...P1H.4 can also be
used as external interrupt inputs with a sample rate of 8 CPU clock cycles.

As a side effect, the capture input capability of these lines can also be used in the address
bus mode. Hereby changes of the upper address lines could be detected and trigger an
interrupt request in order to perform some special service routines. External capture signals
can only be applied if no address output is selected for PORT1.

During external accesses in de-multiplexed bus modes PORT1 outputs the 16-bit intra-
segment address as an alternate output function.

During external accesses in multiplexed bus modes, when no BUSCON register selects a
de-multiplexed bus mode, PORT1 is not used and is available for general purpose I/O.

The lower 8 bit of PORT1 (P1L) also serve as input lines for the 8 additional analog
channels for the A/D converter: General purpose I/O or external memory bus functions must
be properly disabled in order to avoid data conflicts when using P1L pins as analog input
lines. General purpose I/O and analog input functionality can be mixed without any problem
along P1L pins, that is some of P1L pins can be used as general purpose I/O, others as
analog input lines; it is also possible (if meaningful at application level) to use the same pin
as analog input and general purpose I/O line.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP1
L.7

DP1
L.6

DP1
L.5

DP1
L.4

DP1
L.3

DP1
L.2

DP1
L.1

DP1
L.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP1
H.7

DP1
H.6

DP1
H.5

DP1
H.4

DP1
H.3

DP1
H.2

DP1
H.1

DP1
H.0

RW RW RW RW RW RW RW RW

Bit Function

DP1X.y

Port direction register DP1H or DP1L bit y
’0’: Port line P1X.y is an input (high-impedance).

’1’: Port line P1X.y is an output.

UM0407 Parallel ports

 141/541

Figure 30. PORT1 I/O and alternate functions

When an external bus mode is enabled, the direction of the port pin and the loading of data
into the port output latch are controlled by the bus controller hardware. The input of the port
output latch is disconnected from the internal bus and is switched to the line labeled
“alternate data output” via a multiplexer. The alternate data is the 16-bit intra-segment
address.

While an external bus mode is enabled, the user software should not write to the port output
latch, otherwise unpredictable results may occur. When the external bus modes are
disabled, the contents of the direction register last written by the user becomes active.

The Figure 32 on page 142 shows the structure of a PORT1 pin.

6.3.2 PORT1 analog inputs disturb protection

A new register is provided for additional disturb protection support on analog inputs for P1L.
In particular it allows to disable both the digital input and output sections of the I/O structure.
To access this register the bit XMISCEN of register XPERCON and bit XPEN of register
SYSCON must be set. Once a bit of the register is set, the corresponding pin can no longer
be used as general purpose I/O.

XP1DIDIS (EB36h) XBUS Reset Value: 0000h

PORT1

P1H

P1L

Alternate functions a)

General Purpose
Input/Output

8/16-bit
De-multiplexed Bus

b)

CAPCOM2
Capture Inputs

P1H.7

P1H.6

P1H.5

P1H.4

P1H.3

P1H.2

P1H.1

P1H.0

P1L.7

P1L.6

P1L.5

P1L.4

P1L.3

P1L.2

P1L.1

P1L.0

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

CC27I

CC26I

CC25I

CC24I

c)

AN23

AN22

AN21

AN20

AN19

AN18

AN17

AN16

ADC
Analog Inputs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - XP1DI
DIS.7

XP1DI
DIS.6

XP1DI
DIS.5

XP1DI
DIS.4

XP1DI
DIS.3

XP1DI
DIS.2

XP1DI
DIS.1

XP1DI
DIS.0

RW RW RW RW RW RW RW RW

Bit Function

XP1DIDIS.y

PORT1 Digital Disable register bit y
‘0’: Port line P1.y digital input and output are not disabled: The port pin is defined
through the corresponding bits of the standard registers P1L/DP1L. General Purpose
Input/Output functionality is available, as well as the external memory interface
functionality.

‘1’: Port line P1.y digital input and output are disabled (necessary for input leakage
current reduction and to avoid undesired conflict between output driver configuration
and analog input signal). Once this bit is set, P1L/DP1L corresponding bits are no
longer effective and the external memory interface functionality is masked on the
single bit.

Parallel ports UM0407

142/541

Figure 31. Block diagram of input section of a P1L pin

Figure 32. Block diagram of a PORT1 pin

6.4 Port2
If this 16-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP2. Each port line can be switched into push-pull
or open drain mode via the open drain control register ODP2.

Read Port P1L.x
In

te
rn

al
 B

us

Input
Latch

Clock

P1L.x/ANy

Read
Buffer

to Sample + Hold
Circuit

Channel
Select

Analog
Switch

x = 7...0

XP1DIDIS.x

y = 23 ...16

Direction
Latch

Write DP1H.y / DP1L.y

Read DP1H.y / DP1L.y

Port Output
Latch

Write P1H.y / P1L.y

Read P1H.y / P1L.y

In
te

rn
al

 B
us

MUX

0

1

MUX

0

1

MUX

0

1“1”

Input
Latch

Clock

P1H.y
P1L.yOutput

Buffer

y = 7...0

Alternate
Function
Enable

Port Data
Output

Alternate
Data
Output

XP1DIDIS.y

UM0407 Parallel ports

 143/541

P2 (FFC0h / E0h) SFR Reset Value: 0000h

DP2 (FFC2h / E1h) SFR Reset Value: 0000h

ODP2 (F1C2h / E1h) ESFR Reset Value: 0000h

6.4.1 Alternate functions of Port2

All Port2 lines (P2.15...P2.0) can be configured capture inputs or compare outputs
(CC15IO...CC0IO) for the CAPCOM1 unit.

When a Port2 line is used as a capture input, the state of the input latch, which represents
the state of the port pin, is directed to the CAPCOM unit via the line “Alternate Pin Data
Input”. If an external capture trigger signal is used, the direction of the respective pin must
be set to input. If the direction is set to output, the state of the port output latch will be read
since the pin represents the state of the output latch. This can be used to trigger a capture
event through software by setting or clearing the port latch. Note that in the output
configuration, no external device may drive the pin, otherwise conflicts would occur.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P2.15 P2.14 P2.13 P2.12 P2.11
P2.1

0
P2.
9

P2.
8

P2.
7

P2.
6

P2.
5

P2.
4

P2.
3

P2.
2

P2.
1

P2.
0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

P2.y Port data register P2 bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP2
.15

DP2
.14

DP2
.13

DP2
.12

DP2
.11

DP2
.10

DP2
.9

DP2
.8

DP2.
7

DP2.
6

DP2.
5

DP2.
4

DP2.
3

DP2.
2

DP2.
1

DP2.
0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

DP2.y
Port direction register DP2 bit y
‘0’: Port line P2.y is an input (high-impedance).

‘1’: Port line P2.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OD
P2

.15

OD
P2

.14

OD
P2

.13

OD
P2

.12

OD
P2

.11

OD
P2

.10

OD
P2

.9

OD
P2

.8

ODP
2

.7

ODP
2

.6

ODP
2

.5

ODP
2

.4

ODP
2

.3

ODP
2

.2

ODP
2

.1

ODP
2

.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

ODP2.y
Port Open Drain control register ODP2 bit y
‘0’: Port line P2.y output driver in push-pull mode.

‘1’: Port line P2.y output driver in open-drain mode.

Parallel ports UM0407

144/541

When a Port2 line is used as a compare output (compare modes 1 and 3), the compare
event (or the timer overflow in compare mode 3) directly effects the port output latch. In
compare mode 1, when a valid compare match occurs, the state of the port output latch is
read by the CAPCOM control hardware via the line “Alternate Latch Data Input”, inverted,
and written back to the latch via the line “alternate data output”. The port output latch is
clocked by the signal “Compare Trigger” which is generated by the CAPCOM unit. In
compare mode 3, when a match occurs, the value '1' is written to the port output latch via
the line “alternate data output”. When an overflow of the corresponding timer occurs, a '0' is
written to the port output latch. In both cases, the output latch is clocked by the signal
“Compare Trigger”. The direction of the pin should be set to output by the user, otherwise
the pin will be in the high-impedance state and will not reflect the state of the output latch.

As can be seen from the port structure (Figure 34 on page 146), the user software always
has free access to the port pin even when it is used as a compare output. This is useful for
setting up the initial level of the pin when using compare mode 1 or the double-register
mode. In these modes, unlike in compare mode 3, the pin is not set to a specific value when
a compare match occurs, but is toggled instead.

When the user wants to write to the port pin at the same time a compare trigger tries to
clock the output latch, the write operation of the user software has priority. Each time a CPU
write access to the port output latch occurs, the input multiplexer of the port output latch is
switched to the line connected to the internal bus. The port output latch will receive the value
from the internal bus and the hardware triggered change will be lost.

As all other capture inputs, the capture input function of pins P2.7...P2.0 can also be used
as external interrupt inputs with a sample rate of 8 CPU clock cycles.

For pins P2.15 to P2.8, the sampling rate is 8 CPU clock cycle when used as capture input,
and 1 CPU clock cycle if used as fast external input.

6.4.2 External interrupts

These interrupt inputs are provided to service external interrupts with high precision
requirements. These fast interrupt inputs feature programmable edge detection (rising edge,
falling edge or both edges).

Fast external interrupts may also have interrupt sources selected from other peripherals; for
example the CANx controller receive signal (CANx_RxD) can be used to interrupt the
system. This new function is controlled using the ‘External Interrupt Source Selection’
register EXISEL.

EXISEL (F1DAh / EDh) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7SS EXI6SS EXI5SS EXI4SS EXI3SS 2 EXI2SS 3 EXI1SS EXI0SS

RW RW RW RW RW RW RW RW

Bit Function

EXIxSS

External Interrupt x Source Selection (x = 7...0)
‘00’: Input from associated Port2 pin.

‘01’: Input from “alternate source”.

‘10’: Input from Port2 pin ORed with “alternate source”.
‘11’: Input from Port2 pin ANDed with “alternate source”.

UM0407 Parallel ports

 145/541

The upper eight Port2 lines (P2.15...P2.8) also support Fast External Interrupt inputs
(EX7IN...EX0IN).

P2.15 in addition is the input for CAPCOM2 timer T7 (T7IN).

Table 20 summarizes the alternate functions of Port2.

EXIxSS Port2 pin Alternate source

0 P2.8 CAN1_RxD P4.5

1 P2.9 CAN2_RxD / SCL P4.4

2 P2.10 RTCSI (Second) Internal MUX

3 P2.11 RTCAI (Alarm) Internal MUX

4...7 P2.12...15 Not used (zero) -

Table 20. Port2 alternate functions

P2 pin
Alternate function

a) b) c)

P2.0

P2.1
P2.2

P2.3

P2.4
P2.5

P2.6

P2.7
P2.8

P2.9

P2.10
P2.11

P2.12

P2.13
P2.14

P2.15

CC0IO

CC1IO
CC2IO

CC3IO

CC4IO
CC5IO

CC6IO

CC7IO
CC8IO

CC9IO

CC10IO
CC11IO

CC12IO

CC13IO
CC14IO

CC15IO

-

-
-

-

-
-

-

-
EX0IN Fast External Interrupt 0 Input

EX1IN Fast External Interrupt 1 Input

EX2IN Fast External Interrupt 2 Input
EX3IN Fast External Interrupt 3 Input

EX4IN Fast External Interrupt 4 Input

EX5IN Fast External Interrupt 5 Input
EX6IN Fast External Interrupt 6 Input

EX7IN Fast External Interrupt 7 Input

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

T7IN Timer T7 External Count Input

Parallel ports UM0407

146/541

Figure 33. Port2 I/O and alternate functions

The pins of Port2 combine internal capture input bus data with compare output alternate
data output before the port latch input.

Figure 34. Block diagram of a Port2 pin

Port2

Alternate functions a)

General Purpose
Input/Output

CAPCOM1
Capture Input / Compare Output

b)

Fast External
Interrupt Input

c)

CAPCOM2
Timer T7 Input

CC7IO

CC6IO

CC5IO

CC4IO

CC3IO

CC2IO

CC1IO

CC0IO

CC15IO

CC14IO

CC13IO

CC12IO

CC11IO

CC10IO

CC9IO

CC8IO

EX7IN

EX6IN

EX5IN

EX4IN

EX3IN

EX2IN

EX1IN

EX0IN

T7IN

P2.7

P2.6

P2.5

P2.4

P2.3

P2.2

P2.1

P2.0

P2.15

P2.14

P2.13

P2.12

P2.11

P2.10

P2.9

P2.8

Open Drain
Latch

Write ODP2.y

Read ODP2.y

Direction
Latch

Write DP2.y

Read DP2.y

In
te

rn
al

 B
us

MUX

0

1

Alternate data input

Input
Latch

Clock

P2.y
CCyIO

Output
Buffer

x = 7...0

Alternate
Data
Output

MUX

0

1
Output
Latch

≥ 1Write Port P2.y
Compare Trigger

Read P2.y

Fast external interrupt input

y = 15...0

EXxIN

UM0407 Parallel ports

 147/541

6.5 Port3
If this 15 bit port is used for general purpose I/O, the direction of each line can be configured
by the corresponding direction register DP3. Most port lines can be switched into push-pull
or open-drain mode by the open-drain control register ODP3 (pins P3.15 and P3.12 do not
support open drain mode).

Due to pin limitations, register bit P3.14 is not connected to any output pin.

P3 (FFC4h / E2h) SFR Reset Value: 0000h

DP3 (FFC6h / E3h) SFR Reset Value: 0000h

ODP3 (F1C6h / E3h) ESFR Reset Value: 0000h

6.5.1 Alternate functions of Port3

The pins of Port3 are used for various functions which include external timer control lines,
the two serial interfaces and the control lines BHE / WRH and CLKOUT.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P3.
15

-
P3.
13

P3.
12

P3.
11

P3.
10

P3.
9

P3.
8

P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

P3.y Port data register P3 bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP3
.15

-
DP3
.13

DP3
.12

DP3
.11

DP3
.10

DP3
.9

DP3
.8

DP3.
7

DP3.
6

DP3.
5

DP3.
4

DP3.
3

DP3.
2

DP3.
1

DP3.
0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

DP3.y

Port direction register DP3 bit y
‘0’: Port line P3.y is an input (high-impedance).
‘1’: Port line P3.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- -
ODP
3.13

-
ODP
3.11

ODP
3.10

OD
P3.
9

OD
P3.
8

ODP
3.7

ODP
3.6

ODP
3.5

ODP
3.4

ODP
3.3

ODP
3.2

ODP
3.1

ODP
3.0

RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

ODP3.y
Port Open Drain control register ODP3 bit y
‘0’: Port line P3.y output driver in push-pull mode.

‘1’: Port line P3.y output driver in open drain mode.

Parallel ports UM0407

148/541

Figure 35. Port3 I/O and alternate functions

The structure of the Port3 pins depends on their alternate function (see Figure 36 on
page 149).

When the on-chip peripheral associated with a Port3 pin is configured to use the alternate
input function, it reads the input latch, which represents the state of the pin, via the line
labeled “Alternate Data Input”. Port3 pins with alternate input functions are: T0IN, T2IN,
T3IN, T4IN, T3EUD and CAPIN.

When the on-chip peripheral associated with a Port3 pin is configured to use the alternate
output function, its “alternate data output” line is ANDed with the port output latch line. When

Table 21. Port3 alternative functions

Port3
pin

Alternate function

P3.0

P3.1
P3.2

P3.3

P3.4
P3.5

P3.6

P3.7
P3.8

P3.9

P3.10
P3.11

P3.12

P3.13

P3.14
P3.15

T0INCAPCOM1 Timer 0 Count Input

T6OUTTimer 6 Toggle Output
CAPINGPT2 Capture Input

T3OUTTimer 3 Toggle Output

T3EUDTimer 3 External Up/Down Input
T4INTimer 4 Count Input

T3INTimer 3 Count Input

T2INTimer 2 Count Input
MRST0SSC Master Receive / Slave Transmit

MTSR0SSC Master Transmit / Slave Receive

TxD0ASC0 Transmit Data Output
RxD0ASC0 Receive Data Input (/ Output in synchronous mode)

BHE/WRHByte High Enable / Write High Output

SCLK0SSC Shift Clock Input/Output

---No pin assigned
CLKOUTSystem Clock Output (either prescaled or not through register XCLKOUTDIV)

Port3

No Pin

Alternate functions a) b)

General Purpose
Input/Output

P3.7

P3.6

P3.5

P3.4

P3.3

P3.2

P3.1

P3.0

P3.15

P3.13

P3.12

P3.11

P3.10

P3.9

P3.8

T2IN

T3IN

T4IN

T3EUD

T3OUT

CAPIN

T6OUT

T0IN

CLKOUT

SCLK0

BHE

RxD0

TxD0

MTSR0

MRST0

WRH

UM0407 Parallel ports

 149/541

using these alternate functions, the user must set the direction of the port line to output
(DP3.y = 1) and must set the port output latch (P3.y = 1). Otherwise the pin is in its high-
impedance state (when configured as input) or the pin is stuck at '0' (when the port output
latch is cleared). When the alternate output functions are not used, the “alternate data
output” line is in its inactive state, which is a high level ('1'). Port3 pins with alternate output
functions are: T6OUT, T3OUT, TxD0, BHE and CLKOUT.

When the on-chip peripheral associated with a Port3 pin is configured to use both the
alternate input and output function, the descriptions above apply to the respective current
operating mode. The direction must be set accordingly. Port3 pins with alternate input/output
functions are: MTSR0, MRST0, RxD0 and SCLK0.

Note: Enabling the CLKOUT function automatically enables the P3.15 output driver. Setting bit
DP3.15 = ’1’ is not required.

Figure 36. Block diagram of a Port3 pin

Pin P3.12 (BHE/WRH) is another pin with an alternate output function; however, its structure
is slightly different (see Figure 37 on page 150). After reset the BHE or WRH function must
be used depending on the system start-up configuration. In either of these cases, there is no
possibility to program any port latches before. Thus, the appropriate alternate function is

Open Drain
Latch

Write ODP3.y

Read ODP3.y

Direction
Latch

Write DP3.y

Read DP3.y

In
te

rn
al

 B
us

MUX

0

1

Alternate Data Input

Input
Latch

Clock

P3.y
Output
Buffer

y = 13, 11...0

Port Output
Latch

Read P3.y

Write P3.y

&

Alternate
Data Input

Port Data
Output

Parallel ports UM0407

150/541

selected automatically. If BHE/WRH is not used in the system, this pin can be used for
general purpose I/O by disabling the alternate function (BYTDIS = ‘1’ / WRCFG = ‘0’).

Note: Enabling the BHE or WRH function automatically enables the P3.12 output driver. Setting bit
DP3.12 = ‘1’ is not required.
During bus hold pin P3.12 is switched back to its standard function and is then controlled by
DP3.12 and P3.12. Keep DP3.12 = ‘0’ in this case to ensure floating in hold mode.

Figure 37. Block diagram of P3.15 (CLKOUT) and P3.12 (BHE/WRH) pins

6.6 Port4
If this 8-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP4.

P4 (FFC8h / E4h) SFR Reset Value: - - 00h

Direction
Latch

Write DP3.x

Read DP3.x

Port Output
Latch

Write P3.x

Read P3.x

In
te

rn
al

 B
us

MUX

0

1

MUX

0

1
Alternate
Data
Output

MUX

0

1“1”

Input
Latch

Clock

P3.12/BHE
P3.15/CLKOUTOutput

Buffer

x = 15, 12

Alternate
Function
Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0

RW RW RW RW RW RW RW RW

Bit Function

P4.y Port data register P4 bit y

UM0407 Parallel ports

 151/541

DP4 (FFCAh / E5h) SFR Reset Value: - - 00h

ODP4 (F1CAh / E5h) SFR Reset Value: - - 00h

Only bits 4 to 7 are implemented, all other bits will be read as “0”.

When I2C is enabled by setting bit XPEN of the register SYSCON and bit XI2CEN of register
XPERCON, pins P4.4 and P4.7 becomes fully dedicated to I2C interface, and all the other
alternate functions are bypassed (external memory and CAN2 functions). The pins are also
automatically configured as open-drain as requested by the I2C bus standard. The Port4
control registers P4, DP4 and ODP4 can no longer control the P4.7 and P4.4 pins
configuration: Writing in the bits corresponding to P4.4 and P4.7 in these registers has no
effect on pins behavior.

6.6.1 Alternate functions of Port4

During external bus cycles that use segmentation (for address space above 64Kbytes) a
number of Port4 pins may output the segment address lines. The number of pins that is
used for segment address output determines the external address space which is directly
accessible. The other pins of Port4 (if any) may be used for general purpose I/O. If segment
address lines are selected, the alternate function of Port4 may be necessary to access for
external memory directly after reset. For this reason Port4 will be switched to this alternate
function automatically.

The number of segment address lines is selected via PORT0 during reset. The selected
value can be read from bit-field SALSEL in register RP0H (read only) in order to check the
configuration during run time.

The CAN interfaces use 2 or 4 pins of Port4 to interface the CAN module to the external
CAN transceiver. In this case the number of possible segment address lines is reduced.
Same shall be applied, when I2C interface module is used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP4.

7
DP4.

6
DP4.

5
DP4.

4
DP4.

3
DP4.

2
DP4.

1
DP4.

0

RW RW RW RW RW RW RW RW

Bit Function

DP4.y

Port direction register DP4 bit y
‘0’: Port line P4.y is an input (high-impedance).

‘1’: Port line P4.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
ODP4

.7
ODP4

.6
ODP4

.5
ODP4

.4
- - - -

RW RW RW RW

Bit Function

ODP4.y

Port Open drain control register ODP4 bit y
‘0’: Port line P4.y output driver in push/pull mode.
‘1’: Port line P4.y output driver in open drain mode if P4.y is not a segment address
line output.

Parallel ports UM0407

152/541

The Table 22 summarizes the alternate functions of Port4 depending on the number of
selected segment address lines (coded via bit-field SALSEL).

Relative priority of Port4 alternate functions

When SALSEL = ‘10’, CAN1 and CAN2 cannot be used: It means that external memory has
higher priority on CAN alternate function. On the contrary, once I2C is enabled, P4.4 and
P4.7 are dedicated to I2C: It means that I2C has higher priority on CAN alternate functions
and segment address functions as well. If SALSEL = ‘10’ (8 segment address lines are
enabled) and I2C is enabled then:

● P4.4 and P4.7 are dedicated to I2C and used as SCL and SDA respectively

● P4.5 and P4.6 continues to output address lines.

Figure 38. Port4 I/O and alternate functions

Table 22. Port4 alternate functions

Port4
Standard function

SALSEL = 01
64 Kbytes

Alternate function
SALSEL = 11
256 Kbytes

Alternate function
SALSEL = 00

1 Mbyte

Alternate function
SALSEL = 10

16 Mbytes

P4.0

P4.1
P4.2

P4.3

P4.4
P4.5

P4.6

P4.7

GPIO

GPIO
GPIO

GPIO

GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD

GPIO/CAN1_TxD

GPIO/CAN2_TxD/SDA

Segment address A16

Segment address A17
GPIO

GPIO

GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD

GPIO/CAN1_TxD

GPIO/CAN2_TxD/SDA

Segment address A16

Segment address A17
Segment address A18

Segment address A19

GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD

GPIO/CAN1_TxD

GPIO/CAN2_TxD/SDA

Segment address A16

Segment address A17
Segment address A18

Segment address A19

Segment address A20/SCL
Segment address A21

Segment address A22

Segment address A23/SDA

Port4

Alternate functions a) b)

P4.7

P4.6

P4.5

P4.4

P4.3

P4.2

P4.1

P4.0

-

-

-

-

-

-

-

-

A23

A22

A21

A20

A19

A18

A17

A16

-

-

-

-

-

-

-

-

CAN2_TxD / SDA

CAN1_TxD

CAN1_RxD

CAN2_RxD / SCL

A19

A18

A17

A16

-

-

-

-

-

-

-

-

General purpose Segment address
linesinput / output

CAN / I2C I/O and segment
address lines

UM0407 Parallel ports

 153/541

Figure 39. Block diagram of Port4 pins 3...0

Direction
Latch

Write DP4.y

Read DP4.y

Port Output
Latch

Write P4.y

Read P4.y

In
te

rn
al

 B
us

MUX

0

1

MUX

0

1
Ext. Memory
Data
Output

MUX

0

1“1”

Input
Latch

Clock

P4.y
Output
Buffer

y = 3...0

Ext. Memory
Function
Enable

Parallel ports UM0407

154/541

Figure 40. Block diagram of P4.4 pin

Note: When SALSEL = ‘10’, that is, 8-bit segment address lines are selected, P4.4 is dedicated to
output the address: Any attempt to use the CAN2 on P4.4 is masked. On the contrary,
enabling the I2C, also the segment function is masked; the pin P4.4 is automatically
configured as open-drain and used to input and output SCL alternate function.
When CAN parallel mode is selected, CAN2_RxD is remapped on P4.5: This occurs only if
CAN1 is enabled as well. On the contrary, if CAN1 is disabled, no remapping occurs.

P4.4

Direction
Latch

Write DP4.4

Read DP4.4

Port Output
Latch

Write P4.4

Read P4.4

MUX

1

0

MUX

1

0

Ext. Memory
Data Output

MUX

1

0

‘1’

Ext. Memory
Function

Output
Buffer

MUX

0

1

Input
Latch

Clock

XPERCON.1
(CAN2EN)

SCL
Data Input

I
n
t
e
r
n
a
l

B
u
s

Enable

SCL
Data Output

XPERCON.9
(I2CEN)

MUX

1

0

MUX

0

1

CAN2_RxD
Data Input

XMISC.1
(CANPAR)

P4.5

‘0’

&

&
XPERCON.0
(CAN1EN)

MUX

1

0

‘1’

MUX

0

1

Open Drain
Latch

Write ODP4.4

Read ODP4.4 ‘0’ MUX

0

1‘1’

UM0407 Parallel ports

 155/541

Figure 41. Block diagram of P4.5 pin

Note: When SALSEL = ‘10’, that is 8-bit segment address lines are selected, P4.5 is dedicated to
output the address: Any attempt to use the CAN1 on P4.5 is masked. When CAN parallel
mode is selected, CAN2_RxD is remapped on P4.5: This occurs only if CAN1 is enabled as
well. On the contrary, if CAN1 is disabled, no remapping occurs.

P4.5

Direction
Latch

Write DP4.5

Read DP4.5

Port Output
Latch

Write P4.5

Read P4.5

MUX

1

0

Input
Latch

Clock

XPERCON.0
(CAN1EN)

CAN1_RxD
Data Input

I
n
t
e
r
n
a
l

B
u
s

MUX

1

0

Ext. Memory
Data Output

MUX

1

0

‘1’

Ext. Memory
Function

MUX

0

1

Enable

‘0’

MUX

1

0
CAN2_RxD
Data Input

XMISC.1
(CANPAR)

P4.4&

&

XPERCON.1
(CAN2EN)

&

MUX

0

1

Open Drain
Latch

Write ODP4.5

Read ODP4.5 ‘0’

Output
Buffer

Parallel ports UM0407

156/541

Figure 42. Block diagram of P4.6 pin

Note: When SALSEL = ‘10’, that is 8-bit segment address lines are selected, P4.6 is dedicated to
output the address: Any attempt to use the CAN1 on P4.6 is masked. When CAN parallel
mode is selected, CAN2_TxD is remapped on P4.6: This occurs only if CAN1 is enabled as
well. On the contrary, if CAN1 is disabled, no remapping occurs.

MUX

0

1

P4.6

Open Drain
Latch

Write ODP4.6

Read ODP4.6

Direction
Latch

Write DP4.6

Read DP4.6

Port Output
Latch

Write P4.6

Read P4.6

MUX

1

0

MUX

1

0

‘0’

CAN2_TxD
Data Output

Output
Buffer

Input
Latch

Clock

XMISC.1
(CANPAR)

I
n
t
e
r
n
a
l

B
u
s

&
MUX

1

0

CAN1_TxD
Data Output

XPERCON.0
(CAN1EN)

MUX

1

0

Ext. Memory
Data Output

MUX

1

0

‘1’

Ext. Memory
Function

MUX

0

1

Enable

‘1’

XPERCON.1
(CAN2EN) &

UM0407 Parallel ports

 157/541

Figure 43. Block diagram of P4.7 pin

Note: When SALSEL = ‘10’, that is 8-bit segment address lines are selected, P4.7 is dedicated to
output the address: Any attempt to use the CAN2 on P4.7 is masked. On the contrary,
enabling the I2C, also the segment function is masked; the pin P4.7 is automatically
configured as open-drain and used to input and output SDA alternate function.
When CAN parallel mode is selected, CAN2_TxD is remapped on P4.6: This occurs only if
CAN1 is enabled as well. On the contrary, if CAN1 is disabled, no remapping occurs.

MUX

0

1

P4.7

Open Drain
Latch

Write ODP4.7

Read ODP4.7

Direction
Latch

Write DP4.7

Read DP4.7

Port Output
Latch

Write P4.7

Read P4.7

MUX

1

0

MUX

1

0

MUX

1

0

Ext. Memory
Data Output

MUX

1

0

‘1’

Ext. Memory
Function

‘0’

CAN2_TxD
Data Output

Output
Buffer

MUX

0

1

Input
Latch

Clock

XPERCON.1
(CAN2EN)

SDA
Data Input

I
n
t
e
r
n
a
l

B
u
s

Enable

MUX

1

0

SDA
Data Output

XPERCON.9
(I2CEN)

MUX

0

1‘1’

‘1’
MUX

0

1‘1’

&

XMISC.1
(CANPAR)

Parallel ports UM0407

158/541

6.7 Port5
This 16-bit input port can only read data. There is no output latch and no direction register.
Data written to P5 will be lost.

P5 (FFA2h / D1h) SFR Reset Value: xxxxh

6.7.1 Alternate functions of Port5

Each line of Port5 is also connected to the input multiplexer of the analog/digital converter.
All port lines (P5.15...P5.0) can accept analog signals (AN15...AN0) that can be converted
by the ADC. No special programming is required for pins that shall be used as analog inputs.
The upper six pins of Port5 also serve as external timer control lines for GPT1 and GPT2.

The Table 23 summarizes the alternate functions of Port5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P5.
15

P5.
14

P5.
13

P5.
12

P5.
11

P5.
10

P5.
9

P5.
8

P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0

R R R R R R R R R R R R R R R R

Bit Function

P5.y Port data register P5 bit y (read only)

Table 23. Port5 alternate functions

Port5 pin Alternate function a) Alternate function b)

P5.0

P5.1

P5.2
P5.3

P5.4

P5.5
P5.6

P5.7

P5.8
P5.9

P5.10

P5.11
P5.12

P5.13

P5.14
P5.15

Analog Input AN0

Analog Input AN1

Analog Input AN2
Analog Input AN3

Analog Input AN4

Analog Input AN5
Analog Input AN6

Analog Input AN7

Analog Input AN8
Analog Input AN9

Analog Input AN10

Analog Input AN11
Analog Input AN12

Analog Input AN13

Analog Input AN14
Analog Input AN15

-

-

-
-

-

-
-

-

-
-

T6EUD Timer 6 external up/down input

T5EUD Timer 5 external up/down input
T6IN timer 6 count input

T5IN timer 5 count input

T4EUD timer 4 external up/down input
T2EUD timer 2 external up/down input

UM0407 Parallel ports

 159/541

Figure 44. Port5 I/O and alternate functions

Port5 pins have a special port structure (see Figure 45), first because it is an input only port,
and second because the analog input channels are directly connected to the pins rather
than to the input latches.

Figure 45. Block diagram of a Port5 pin

6.7.2 Port5 analog inputs disturb protection

A Schmitt trigger protection can be activated on each pin of Port5 by setting the dedicated
bit of register P5DIDIS.

P5DIDIS (FFA4h / D2h) SFR Reset Value: 0000h

P5.15

P5.14

P5.13

P5.12

P5.11

P5.10

P5.9

P5.8

P5.7

P5.6

P5.5

P5.4

P5.3

P5.2

P5.1

P5.0

Port5

AN15

AN14

AN13

AN12

AN11

AN10

AN9

AN8

AN7

AN6

AN5

AN4

AN3

AN2

AN1

AN0

Alternate functions a)

General Purpose Input

T2EUD

T4EUD

T5IN

T6IN

T5EUD

T6EUD

b)

A/D Converter Input Timer Inputs

Read Port P5.y

In
te

rn
al

 B
us

Input
Latch

Clock

P5.y/ANy

Read
Buffer

to Sample + Hold
Circuit

Channel
Select

Analog
Switch

y = 15...0

P5DIDIS.y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P5DI
DIS.1

5

P5DI
DIS.1

4

P5DI
DIS.1

3

P5DI
DIS.1

2

P5DI
DIS.1

1

P5DI
DIS.1

0

P5DI
DIS.9

P5DI
DIS.8

P5DI
DIS.7

P5DI
DIS.6

P5DI
DIS.5

P5DI
DIS.4

P5DI
DIS.3

P5DI
DIS.2

P5DI
DIS.1

P5DI
DIS.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Parallel ports UM0407

160/541

6.8 Port6
If this 8-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP6. Each port line can be switched into push-pull
or open-drain mode via the open-drain control register ODP6.

Since in ST10F272Z2 the XSSC is implemented on P6.5...P6.7, when the module is
enabled through the XPERCON register, the corresponding bits of P6, DP6 and ODP6 are
overwritten by the new XSSCPORT register (mapped on XBUS), which again allows the
user to program pin P6.5...P6.7 according to the XSSC configuration.

P6 (FFCCh / E6h) SFR Reset Value: - - 00h

DP6 (FFCEh / E7h) SFR Reset Value: - - 00h

ODP6 (F1CEh / E7h) ESFR Reset Value: - - 00h

Bit Function

P5DIDIS.y

Port5 digital disable register bit y
‘0’: Port line P5.y digital input is enabled (Schmitt trigger enabled).

‘1’: Port line P5.y digital input is disabled (Schmitt trigger disabled, necessary for
input leakage current reduction).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0

RW RW RW RW RW RW RW RW

Bit Function

P6.y Port data register P6 bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP6.7 DP6.6 DP6.5 DP6.4 DP6.3 DP6.2 DP6.1 DP6.0

RW RW RW RW RW RW RW RW

Bit Function

DP6.y

Port direction register DP6 bit y
‘0’: Port line P6.y is an input (high-impedance).
‘1’: Port line P6.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ODP6.7 ODP6.6 ODP6.5 ODP6.4 ODP6.3 ODP6.2 ODP6.1 ODP6.0

RW RW RW RW RW RW RW RW

Bit Function

ODP6.y

Port Open-Drain control register ODP6 bit y
‘0’: Port line P6.y output driver in push-pull mode.
‘1’: Port line P6.y output driver in open drain mode.

UM0407 Parallel ports

 161/541

XSSCPORT (E880h) XBUS Reset Value: 0000h

This register is enabled and visible only when bit XPEN of SYSCON is set, and bit XSSCEN
in XPERCON is set as well. On the contrary, the standard P6, DP6 and ODP6 registers
must be used to configure pins P6.5, P6.6 and P6.7 when XSSC is disabled.

6.8.1 Alternate functions of Port6

A programmable number of chip select signals (CS4...CS0) derived from the bus control
registers (BUSCON4...BUSCON0) can be output on 5 pins of Port6. The other 3 pins may
be used for bus arbitration to accommodate additional masters in a ST10F272Z2 system.
The number of chip select signals is selected via PORT0 during reset. The selected value
can be read from bit-field CSSEL in register RP0H (read only) in order to check the
configuration during run time.

The Table 24 on page 161 summarizes the alternate functions of Port6 depending on the
number of selected chip select lines (coded via bit-field CSSEL).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- XOD
P6.7

XP6
.7

XDP6
.7

XOD
P6.6

XP6
.6

XDP6
.6

XOD
P6.5

XP6
.5

XDP6
.5

RW RW RW RW RW RW RW RW RW

Bit Function

XDP6.y

Port direction register XDP6 bit y (y = 5, 6, 7 only)
‘0’: Port line P6.y is an input (high-impedance).
‘1’: Port line P6.y is an output.

XP6.y Port data register bit XP6 y (y = 5, 6, 7 only)

XODP6.y

Port Open Drain control register XODP6 bit y (y = 5, 6, 7 only)
‘0’: Port line P6.y output driver in push/pull mode.

‘1’: Port line P6.y output driver in open drain mode.

Table 24. Port6 alternate functions

Port6 Pin
Alternate function

CSSEL = 10
Alternate function

CSSEL = 01
Alternate function

CSSEL = 00
Alternate function

CSSEL = 11

P6.0

P6.1

P6.2
P6.3

P6.4

General purpose I/O

General purpose I/O

General purpose I/O
General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

General purpose I/O
General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

Chip select CS2
General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

Chip select CS2
Chip select CS3

Chip select CS4

P6.5

P6.6

P6.7

HOLD External hold request input / SCLK1

HLDA Hold acknowledge output / MTSR1

BREQ Bus request output / MRST1

Parallel ports UM0407

162/541

Figure 46. Port6 I/O and alternate functions

The chip select lines of Port6 have an internal weak pull-up device. This device is switched
on under the following conditions:

● Always during reset

● If the Port6 line is used as a chip select output, and the ST10F272Z2 is in Hold mode
(invoked through HOLD pin), and the respective pin driver is in push-pull mode
(ODP6.x = ‘0’).

This feature is implemented to drive the chip select lines high during reset in order to avoid
multiple chip selection, and to allow another master to access the external memory via the
same chip select lines (AND-wired), while the ST10F272Z2 is in Hold mode.
With ODP6.x = ‘1’ (open-drain output selected), the internal pull-up device will not be active
during Hold mode; external pull-up devices must be used in this case. When entering Hold
mode the CS lines are actively driven high for one clock phase, then the output level is
controlled by the pull-up devices (if activated).

After reset the CS function must be used, if selected so. In this case there is no possibility to
program any port latches before. Thus the alternate function (CS) is selected automatically
in this case.

Note: The open drain output option can only be selected via software earliest during the
initialization routine; at least signal CS0 will be in push-pull output driver mode directly after
reset (see Figure 47).

The bus arbitration signals HOLD, HLDA and BREQ are selected with bit HLDEN in register
PSW. When the bus arbitration signals are enabled via HLDEN, also these pins are
switched automatically to the appropriate direction. Note that the pin drivers for HLDA and
BREQ are automatically enabled, while the pin driver for HOLD is automatically disabled
(see Figure 48 and Figure 50).

Port6

Alternate function a)
-

-

-

-

-

-

-

-

P6.7

P6.6

P6.5

P6.4

P6.3

P6.2

P6.1

P6.0

-

-

-

-

-

-

-

-

BREQ

HLDA

HOLD

CS4

CS3

CS2

CS1

CS0

General Purpose Input / Output

b)
-

-

-

-

-

-

-

-

MRST1

MTSR1

SCLK1

CS4

CS3

CS2

CS1

CS0

XSSC Input/OutputBus Arbitration

UM0407 Parallel ports

 163/541

Figure 47. Block diagram of Port6 pins 4...0

MUX

0

1

"0"

Open Drain
Latch

Write ODP6.y

Read ODP6.y

Direction
Latch

Write DP6.y

Read DP6.y

In
te

rn
al

 B
us

MUX

0

1

Input
Latch

Clock

P6.y
Output
Buffer

y = (4...0)

Port Output
Latch

Read P6.y

Write P6.y
Alternate
Data
Output MUX

0

1

MUX

0

1"1"

MUX

Alternate
Function
Enable

Parallel ports UM0407

164/541

Figure 48. Block diagram of P6.5 pin

P6.5

Open Drain
Latch

Write ODP6.5

Read ODP6.5

Direction
Latch

Write DP6.5

Read DP6.5

Port Output
Latch

Write P6.5

Read P6.5

MUX

1

0

MUX

1

0

Open Drain
Latch

Write XODP6.5

Read XODP6.5

Direction
Latch

Write XDP6.5

Read XDP6.5

Port Output
Latch

Write XP6.5

Read XP6.5

&
SCLK1

Data Output

Output
Buffer

MUX

0

1

MUX

0

1

Input
Latch

Clock

XPERCON.8
(XSSCEN)

HOLD / SCLK1
Data Input

I
n
t
e
r
n
a
l

B
u
s

I
n
t
e
r
n
a
l

X
b
u
s

UM0407 Parallel ports

 165/541

Figure 49. Block diagram of P6.6 and P6.7 pins

6.9 Port7
If this 8-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP7. Each port line can be switched into push-pull
or open-drain mode via the open-drain control register ODP7.

MUX

1

0

P6.y

Open Drain
Latch

Write ODP6.y

Read ODP6.y

Direction
Latch

Write DP6.y

Read DP6.y

Port Output
Latch

Write P6.y

Read P6.y

MUX

1

0

MUX

1

0

MUX

1

0

HLDA / BREQ
Data Output

MUX

1

0

‘1’

HLDA / BREQ
Enable

‘0’

Open Drain
Latch

Write XODP6.y

Read XODP6.y

Direction
Latch

Write XDP6.y

Read XDP6.y

Port Output
Latch

Write XP6.y

Read XP6.y

&
MTSR1 / MRST1

Data Output

Output
Buffer

MUX

0

1

MUX

0

1

Input
Latch

Clock

XPERCON.8
(XSSCEN)

MTSR1 / MRST1
Data Input

(y = 7, 6)

I
n
t
e
r
n
a
l

B
u
s

I
n
t
e
r
n
a
l

X
b
u
s

Parallel ports UM0407

166/541

P7 (FFD0h / E8h) SFR Reset Value: - - 00h

DP7 (FFD2h / E9h) SFR Reset Value: - - 00h

ODP7 (F1D2h / E9h) ESFR Reset Value: - - 00h

6.9.1 Alternate functions of Port7

The upper four lines of Port7 (P7.7...P7.4) are used as capture inputs or compare outputs
(CC31IO...CC28IO) for the CAPCOM2 unit.

How CAPCOM2 unit is connected to Port7 lines and how to handle them by software is
similar to the Port2 lines description.

As all other capture inputs, the capture input function of pins P7.7...P7.4 can also be used
as external interrupt inputs with a sample rate of eight CPU clock cycles.

The lower four lines of Port7 (P7.3...P7.0) supports outputs of the PWM module
(POUT3...POUT0). At these pins the value of the respective port output latch is XORed with
the value of the PWM output rather than ANDed, as the other pins do. This allows to use the
alternate output value either as it is (port latch holds a ‘0’) or invert its level at the pin (port
latch holds a ‘1’).
Note that the PWM outputs must be enabled via the respective PENx bit in PWMCON1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0

RW RW RW RW RW RW RW RW

Bit Function

P7.y Port data register P7 bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP7.

7
DP7.

6
DP7.

5
DP7.

4
DP7.

3
DP7.

2
DP7.

1
DP7.

0

RW RW RW RW RW RW RW RW

Bit Function

DP7.y

Port direction register DP7 bit y
‘0’: Port line P7.y is an input (high-impedance).

‘1’: Port line P7.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
ODP
7.7

ODP
7.6

ODP
7.5

ODP
7.4

ODP
7.3

ODP
7.2

ODP
7.1

ODP
7.0

RW RW RW RW RW RW RW RW

Bit Function

ODP7.y
Port Open Drain control register ODP7 bit y
‘0’: Port line P7.y output driver in push-pull mode.

‘1’: Port line P7.y output driver in open-drain mode.

UM0407 Parallel ports

 167/541

The Table 25 summarizes the alternate functions of Port7.

Figure 50. Port7 I/O and alternate functions

The structure of Port7 differs in the way the output latches are connected to the internal bus
and to the pin driver (see Figure 51 and Figure 52 on page 169).

Pins P7.3...P7.0 (POUT3...POUT0) XOR the alternate data output with the port latch output,
which allows to use the alternate data directly or inverted at the pin driver.

Table 25. Port7 alternate functions

Port7 Pin Alternate function

P7.0

P7.1

P7.2
P7.3

P7.4

P7.5
P7.6

P7.7

POUT0PWM mode channel 0 output

POUT1 PWM mode channel 1 output

POUT2PWM mode channel 2 output
POUT3PWM mode channel 3 output

CC28 I/OCapture input / compare output channel 28

CC29 I/O Capture input / compare output channel 29
CC30 I/OCapture input / compare output channel 30

CC31 I/OCapture input / compare output channel 31

Port7

-

-

-

-

-

-

-

-

CC31IO

CC30IO

CC29IO

CC28IO

POUT3

POUT2

POUT1

POUT0

Alternate functionGeneral Purpose Input/Output

-

-

-

-

-

-

-

-

P7.7

P7.6

P7.5

P7.4

P7.3

P7.2

P7.1

P7.0

Parallel ports UM0407

168/541

Figure 51. Block diagram of Port7 pins 3...0

Pins P7.7...P7.4 (CC31IO...CC28IO) combine internal bus data and alternate data output
before the port latch input, as do the Port2 pins.

Open Drain
Latch

Write ODP7.y

Read ODP7.y

Direction
Latch

Write DP7.y

Read DP7.y

In
te

rn
al

 B
us

MUX

0

1

Input
Latch

Clock

P7.y / POUTy
Output
Buffer

y = (3...0)

Port Output
Latch

Read P7.y

Write P7.y

=1
Port Data
Output

XOR

Alternate
Data
Output

UM0407 Parallel ports

 169/541

Figure 52. Block diagram of Port7 pins 7...4

6.10 Port8
If this 8-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP8. Each port line can be switched into push-pull
or open-drain mode via the open-drain control register ODP8.

Since in ST10F272Z2 the XPWM (or PWM1) and XASC (or ASC1) are implemented on
P8.0-P8.3 and P8.6-P8.7 respectively, when these modules are enabled through the
XPERCON register, the corresponding bits of P8, DP8 and ODP8 are overwritten by the
new XPWMPORT and XS1PORT registers (mapped on XBUS) which again allows the user
to program pin P8.0-P8.3 and P8.6-P8.7 respectively, according to the XPWM an XASC
configurations.

Open Drain
Latch

Write ODP7.y

Read ODP7.y

Direction
Latch

Write DP7.y

Read DP7.y

In
te

rn
al

 B
us

MUX

0

1

Alternate Latch Data Input

Input
Latch

Clock

P7.y
CCzIOOutput

Buffer

Alternate
Data
Output

MUX

0

1
Output
Latch

≥ 1
Write Port P7.y

Compare Trigger

Read P7.y

y = (7...4)
z = (31...28)

Alternate Pin Data Input

Parallel ports UM0407

170/541

P8 (FFD4h / EAh) SFR Reset Value: - - 00h

DP8 (FFD6h / EBh) SFR Reset Value: - - 00h

ODP8 (F1D6h / EBh) ESFR Reset Value: - - 00h

XPWMPORT (EC80h) XBUS Reset Value: 0000h

This register is enabled and visible only when bit XPEN of SYSCON is set, and bit
XPWMEN in XPERCON is set as well. On the contrary, the standard P8, DP8 and ODP8
registers must be used to configure pins P8.0, P8.1, P8.2 and P8.3 when XPWM is
disabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P8.7 P8.6 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0

RW RW RW RW RW RW RW RW

Bit Function

P8.y Port data register P8 bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
DP8.

7
DP8.

6
DP8.

5
DP8.

4
DP8.

3
DP8.

2
DP8.

1
DP8.

0

RW RW RW RW RW RW RW RW

Bit Function

DP8.y

Port direction register DP8 bit y
‘0’: Port line P8.y is an input (high-impedance).

‘1’: Port line P8.y is an output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
ODP
8.7

ODP
8.6

ODP
8.5

ODP
8.4

ODP
8.3

ODP
8.2

ODP
8.1

ODP
8.0

RW RW RW RW RW RW RW RW

Bit Function

ODP8.y
Port open drain control register ODP8 bit y
‘0’: Port line P8.y output driver in push-pull mode.

‘1’: Port line P8.y output driver in open drain mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- XOD
P8.3

XP8
.3

XDP
8
.3

XOD
P8.2

XP8
.2

XDP8
.2

XOD
P8.1

XP8
.1

XDP8
.1

XOD
P8.0

XP8
.0

XDP8
.0

- RW RW RW RW RW RW RW RW RW RW RW RW

UM0407 Parallel ports

 171/541

XS1PORT (E980h) XBUS Reset Value: 0000h

This register is enabled and visible only when bit XPEN of SYSCON is set, and bit XASCEN
in XPERCON is set as well. On the contrary, the standard P8, DP8 and ODP8 registers
must be used to configure pins P8.6 and P8.7 when XASC is disabled.

6.10.1 Alternate functions of Port8

All Port8 lines (P8.7...P8.0) support capture inputs or compare outputs (CC23IO...CC16IO)
for the CAPCOM2 unit (see Table 26 on page 172). The use of the port lines by the
CAPCOM unit, its accessibility via software and the precautions are the same as described
for the Port2 lines.

As all other capture inputs, the capture input function of pins P8.7...P8.0 can also be used
as external interrupt inputs with a sample rate of eight CPU clock cycles.

Bit Function

XDP8.y Port direction register bit y (y = 0, 1, 2, 3 only)
‘0’: Port line P8.y is an input (high-impedance).

‘1’: Port line P8.y is an output.

XP8.y Port data register bit y (y = 0, 1, 2, 3 only)

XODP8.y Port open drain control register bit y (y = 0, 1, 2, 3 only)
‘0’: Port line P8.y output driver in push/pull mode.

‘1’: Port line P8.y output driver in open drain mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- XOD
P8.7

XP8
.7

XDP8
.7

XOD
P8.6

XP8
.6

XDP8
.6

- RW RW RW RW RW RW

Bit Function

XDP8.y
Port direction register bit y (y = 6, 7 only)
‘0’: Port line P8.y is an input (high-impedance)

‘1’: Port line P8.y is an output

XP8.y Port data register bit y (y = 6, 7 only)

XODP8.y
Port open drain control register bit y (y = 6, 7 only)
‘0’: Port line P8.y output driver in push/pull mode

‘1’: Port line P8.y output driver in open drain mode

Parallel ports UM0407

172/541

Figure 53. Port8 I/O and alternate functions

The pins of Port8 combine internal bus data and alternate data output before the port latch
input, as do the Port2 pins.

Table 26. Port8 alternate functions

Port8 pin Alternate function a) Alternate function b)

P8.0
P8.1

P8.2

P8.3
P8.4

P8.5

P8.6
P8.7

CC16IOCapture input / compare output ch. 16
CC17IOCapture input / compare output ch. 17

CC18IOCapture input / compare output ch. 18

CC19IOCapture input / compare output ch. 19
CC20IOCapture input / compare output ch. 20

CC21IOCapture input / compare output ch. 21

CC22IOCapture input / compare output ch. 22
CC23IOCapture input / compare output ch. 23

XPOUT0XPWM channel 0 output
XPOUT1XPWM channel 1 output

XPOUT2XPWM channel 2 output

XPOUT3XPWM channel 3 output
-

-

RxD1XASC Receive Data Input/Output
TxD1XASC Transmit Data Output

Port8

-

-

-

-

-

-

-

-

CC23IO

CC22IO

CC21IO

CC20IO

CC19IO

CC18IO

CC17IO

CC16IO

Alternate function a)

General Purpose
Input / Output

-

-

-

-

-

-

-

-

P8.7

P8.6

P8.5

P8.4

P8.3

P8.2

P8.1

P8.0

b)

-

-

-

-

-

-

-

-

TxD1

RxD1

-

-

XPOUT3

XPOUT2

XPOUT1

XPOUT0

XASC / XPWM
Input / Output

CAPCOM2
Input / Output

UM0407 Parallel ports

 173/541

Figure 54. Block diagram of Port8 pins 3...0

P8.y

Open Drain
Latch

Write ODP8.y

Read ODP8.y

Direction
Latch

Write DP8.y

Read DP8.y

Port Output
Latch

Write P8.y

Read P8.y

MUX
1

0

MUX

1

0

Open Drain
Latch

Write XODP8.y

Read XODP8.y

Direction
Latch

Write XDP8.y

Read XDP8.y

Port Output
Latch

Write XP8.y

Read XP8.y

EXOR

XPOUTy
Data Output

Output
Buffer

Input
Latch

Clock

XPERCON.6
(XPWMEN)

CCzIO
Data Input

I
n
t
e
r
n
a
l

B
u
s

I
n
t
e
r
n
a
l

X
b
u
s

= 1

(y = 3 ... 0)

MUX

0

1

MUX

0

1

MUX

1

0

 Š 1

CCzIO
Data Output

Compare Trigger

(z = 19 ... 16)

CCzIO
Latch Data Input

Parallel ports UM0407

174/541

Figure 55. Block diagram of P8.4 and P8.5 pins

P8.y

Open Drain
Latch

Write ODP8.y

Read ODP8.y

Direction
Latch

Write DP8.y

Read DP8.y

Port Output
Latch

Write P8.y

Read P8.y

MUX
1

0

Output
Buffer

Input
Latch

Clock

CCzIO
Data Input

I
n
t
e
r
n
a
l

B
u
s

(y = 5, 4)

MUX
1

0

 ≥ 1

CCzIO
Data Output

Compare Trigger

(z = 21, 20)

CCzIO
Latch Data Input

UM0407 Parallel ports

 175/541

Figure 56. Block diagram of P8.6 pin

P8.6

Open Drain
Latch

Write ODP8.6

Read ODP8.6

Direction
Latch

Write DP8.6

Read DP8.6

Port Output
Latch

Write P8.6

Read P8.6

MUX
1

0

MUX

1

0

Open Drain
Latch

Write XODP8.6

Read XODP8.6

Direction
Latch

Write XDP8.6

Read XDP8.6

Port Output
Latch

Write XP8.6

Read XP8.6

Output
Buffer

Input
Latch

Clock

XPERCON.7
(XASCEN)

CC22IO
Data Input

I
n
t
e
r
n
a
l

B
u
s

I
n
t
e
r
n
a
l

X
b
u
s

&

MUX

0

1

MUX

0

1

MUX

1

0

 ≥ 1

CC22IO
Data Output

Compare Trigger

CC22IO
Latch Data Input

RxD1
Data Input

RxD1
Data Output

Parallel ports UM0407

176/541

Figure 57. Block diagram of P8.7 pin

P8.7

Open Drain
Latch

Write ODP8.7

Read ODP8.7

Direction
Latch

Write DP8.7

Read DP8.7

Port Output
Latch

Write P8.7

Read P8.7

MUX
1

0

MUX

1

0

Open Drain
Latch

Write XODP8.7

Read XODP8.7

Direction
Latch

Write XDP8.7

Read XDP8.7

Port Output
Latch

Write XP8.7

Read XP8.7

TxD1
Data Output

Output
Buffer

Input
Latch

Clock

XPERCON.7
(XASCEN)

CC23IO
Data Input

I
n
t
e
r
n
a
l

B
u
s

I
n
t
e
r
n
a
l

X
b
u
s

&

MUX

0

1

MUX

0

1

MUX

1

0

 ≥ 1

CCzIO
Data Output

Compare Trigger

CC23IO
Latch Data Input

UM0407 Dedicated pins

 177/541

7 Dedicated pins

Most of the input/output or control signals of the ST10F272Z2 are realized as alternate
functions of pins of the parallel ports. There is, however, a number of signals that use
separate pins, including the oscillator, special control signals and the power supply.

The Table 27 summarizes the dedicated pins of the ST10F272Z2.

Table 27. Summary of dedicated pins

Pin(s) Function

ALE

Address latch enable: controls external address latches that provide a stable
address in multiplexed bus modes. ALE is activated for every external bus cycle
independent of the selected bus mode. It is also activated for bus cycles with a de-
multiplexed address bus. When an external bus is enabled (if one or more of the
BUSACT bit is set) also X-Peripheral accesses will generate an active ALE signal.
ALE is not activated for internal accesses, like accesses to IFlash, to the IRAM
and to the special function registers. In single chip mode, when no external bus is
enabled (no BUSACT bit set), ALE will also remain inactive for X-Peripheral
accesses. During reset, during Hold mode and during Adapt mode an internal pull-
down ensures an inactive (low) level on the ALE output.

RD

External read strobe: controls the output drivers of external memory or
peripherals when the ST10F272Z2 reads data from these external devices. During
reset, during Hold mode and during Adapt mode an internal pull-up ensures an
inactive high level on the RD output.

WR/WRL

External write/write low strobe: controls the data transfer from the ST10F272Z2
to an external memory or peripheral device. This pin may either provide a general
WR signal activated for both byte and word write accesses, or specifically control
the low byte of an external 16-bit device (WRL) together with the signal WRH
(alternate function of P3.12/BHE). During reset, during Hold mode and during
Adapt mode an internal pull-up ensures an inactive (high) level on the WR/WRL
output.

READY/READY

Ready input: receives a control signal from an external memory or peripheral
device that is used to terminate an external bus cycle, provided that this function is
enabled for the current bus cycle. READY/READY may be used as synchronous
READY/READY or may be evaluated asynchronously. The polarity can be set to
READY or READY by setting bit 13 in the BUSCON register.

EA / VSTBY

External access enable: determines, if the ST10F272Z2 after reset starts
fetching code from the internal Memory area (EA = ‘1’) or via the external bus
interface (EA = ‘0’).
This pin is also used (when standby mode is entered, that is ST10F272Z2 under
reset and main VDD turned off) to bias the 32 kHz oscillator amplifier circuit and to
provide a reference voltage for the low-power embedded voltage regulator, which
generates the internal 1.8V supply for the RTC module (when not disabled) and to
retain data inside the standby portion of the XRAM (16 Kbyte).
It can range from 4.5 to 5.5V (6V for a reduced amount of time during the device
life, 4.0V when RTC and 32 kHz on-chip oscillator amplifier are turned off). In
running mode, this pin can be tied low during reset without affecting 32 kHz
oscillator, RTC and XRAM activities, since the presence of a stable VDD
guarantees the proper biasing of all those modules.

Dedicated pins UM0407

178/541

Figure 58. RPD external RC circuit

Note: RPD external RC circuit is used for exiting power down mode with external interrupt and for
Power-on with an asynchronous reset.

NMI
Non-maskable interrupt input: allows to trigger a high priority trap via an
external signal. It can be used as power fail input or to validate the PWRDN
instruction that switches the ST10F272Z2 into Power Down mode.

RSTIN

Reset input: puts the ST10F272Z2 into the reset default configuration either at
Power-On or external events like a hardware failure or manual reset. The input
circuitry of the RSTIN pin implements an analog filter in order to minimize the
noise sensitivity of the reset input.

RSTOUT

Reset output: provides a special reset signal for external circuitry. RSTOUT is
activated at the beginning of the reset sequence, triggered via RSTIN, a watchdog
timer overflow or by the SRST instruction. RSTOUT remains active (low) until the
EINIT instruction is executed. This allows to initialize the controller before the
external circuitry is activated.

XTAL1, XTAL2
Main oscillator input/output: connect the internal clock oscillator to the external
crystal. An external clock signal may be fed to the input XTAL1, leaving XTAL2
open (only when Direct Drive configuration is selected).

XTAL3, XTAL4

32 kHz oscillator input/output: connect the 32 kHz internal clock oscillator to the
external crystal. When not used XTAL3 shall be tied to ground to avoid spurious
consumption, while XTAL4 shall be left unconnected; besides, bit OFF32 in
RTCCON register shall be set. 32 kHz oscillator can only be driven by an external
crystal, and not by a different external clock source.

VAREF, VAGND

ADC reference supplies: provide the reference voltage and ground for the
Analog to Digital Converter. Besides, these pins provide also the power supply to
analog circuitry of the ADC module itself.

VDD, VSS

Digital power supply and ground: provides the power supply for the digital logic
of the ST10F272Z2. All VDD (8) pins and all VSS (9) pins must be connected to the
power supply and ground, respectively.

RPD

Exit from power down: If a Fast External Interrupt pin (EX7IN...EX0IN) is used to
exit from Power Down mode, an external RC circuit should be connected to the
RPD pin. The discharging of the external capacitor causes a delay that allows the
oscillator and PLL circuits to stabilize before the clock signal is delivered to the
CPU and peripherals (see Figure 58). For more information on exiting power down
mode refer to Section 24: Power reduction modes on page 475.

V18
1.8V decoupling pin: A decoupling capacitor must be connected between this pin
and nearest VSS pin.

Table 27. Summary of dedicated pins (continued)

Pin(s) Function

RPD

VDD

C1

R1 200kΩ-1MΩ typical

1µF typical

UM0407 The external bus interface

 179/541

8 The external bus interface

The on-chip peripherals and the on-chip RAM and Flash Memory only cover a small fraction
of the ST10F272Z2 address space. The external bus interface gives access to external
peripherals and additional volatile and non-volatile memory. It provides a number of
configurations and can be tailored to fit perfectly into a given application system.

Accesses to external memory or peripherals are executed by the integrated External Bus
Controller (EBC). The function of the EBC is controlled via the SYSCON register and the
BUSCONx and ADDRSELx registers. The BUSCONx registers specify the external bus
cycles in terms of address (mux/demux), data (16-bit/8-bit), chip selects and length (wait-
states / READY control / ALE / RW delay). These parameters are used for accesses within a
specific address area which is defined via the corresponding register ADDRSELx. The four
pairs BUSCON1/ADDRSEL1...BUSCON4/ADDRSEL4 allow to define four independent
“address windows”, while all external accesses outside these windows are controlled via
register BUSCON0.

8.1 Single chip mode
Single chip mode is entered, when pin EA is high during reset. In this case register
BUSCON0 is initialized with 0000h, which also resets bit BUSACT0, so no external bus is
enabled.

In single chip mode the ST10F272Z2 operates only with and out of internal resources. No
external bus is configured and no external peripherals and/or memory can be accessed.
Also no port lines are occupied for the bus interface.

When running in single chip mode, however, external access may be enabled by configuring
an external bus under software control. Single chip mode allows the ST10F272Z2 to start
execution out of the internal Flash program memory.

Any attempt to access a location in the external memory space in single chip mode results
in the hardware trap ILLBUS.

The external bus interface UM0407

180/541

Figure 59. SFRs and port pins associated with the external bus interface

8.2 External bus modes
When the external bus interface is enabled (bit BUSACTx = ‘1’ of BUSCONx register) and
configured (bit-field BTYP), the ST10F272Z2 uses a subset of its port lines together with
some control lines to build the external bus.

Ports & direction control alternate functions

Address registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YP0L/P0H

ADDRSEL1

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP1L/P1H

- - - Y - - - - - - - - - - - -DP3

- - - Y - - - - - - - - - - - -P3

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP4

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YODP6 E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YDP6

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP6

ADDRSEL2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ADDRSEL3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ADDRSEL4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

P0L/P0H PORT0 Data Registers
P1L/P1H PORT1 Data Registers
DP3 Port3 Direction Control Register
P3 Port3 Data Register
P4 Port4 Data Register
ODP6 Port6 Open Drain Control Register
DP6 Port6 Direction Control Register
P6 Port6 Data Register

ADDRSELx Address Range Select Register 1...4
BUSCONx Bus Mode Control Register 0...4
SYSCON System Control Register
RP0H Port P0H Reset Configuration Register

PORT0 EA
PORT1 RSTIN
ALE READY
RD
WR/WRL
BHE/WRH

Y : Bit is linked to a function
- : Bit has no function or is not implemented
E : Register is in ESFR internal memory space

Mode registers

Control registers

15

Y

14

Y

13

Y

12

Y

11

-

10

Y

9

Y

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YBUSCON0

Y Y Y Y - Y Y - Y Y Y Y Y Y Y YBUSCON1

Y Y Y Y - Y Y - Y Y Y Y Y Y Y YBUSCON2

Y Y Y Y - Y Y - Y Y Y Y Y Y Y YBUSCON3

Y Y Y Y - Y Y - Y Y Y Y Y Y Y YBUSCON4

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YSYSCON

- - - - - - - - Y Y Y Y Y Y Y YRP0H

UM0407 The external bus interface

 181/541

The bus configuration (BTYP) for the address windows (BUSCON4...BUSCON1) is selected
by software, usually during the initialization of the system.

The bus configuration (BTYP) for the default address range (BUSCON0) is selected via
PORT0 during reset, provided that pin EA is low during reset. Otherwise BUSCON0 may be
programmed via software just like the other BUSCON registers.

The 16 Mbyte address space of the ST10F272Z2 is divided into 256 segments of 64 Kbytes
each. The 16-bit intra-segment address is output on PORT0 for multiplexed bus modes or
on PORT1 for de-multiplexed bus modes.

When segmentation is disabled, only one 64 Kbyte segment can be used and accessed.
Otherwise, additional address lines may be output on Port4, and/or several chip select lines
may be used to select different memory banks or peripherals. These functions are selected
during reset via bit-fields SALSEL and CSSEL of register RP0H, respectively.

Note: Bit SGTDIS of register SYSCON defines, if the CSP register is saved during interrupt entry
(segmentation active) or not (segmentation disabled).

8.2.1 Multiplexed bus modes

In the multiplexed bus modes the 16-bit intra-segment address and data use PORT0. The
address is time-multiplexed with the data and has to be latched externally.

The width of the required latch depends on the selected data bus width, an 8-bit data bus
requires a byte latch (the address bit A15...A8 on P0H do not change, while P0L multiplexes
address and data), a 16-bit data bus requires a word latch (the least significant address line
A0 is not relevant for word accesses).

The upper address lines (An...A16) are permanently output on Port4 (if segmentation is
enabled) and do not require latches.

The EBC initiates an external access by generating the Address Latch Enable signal (ALE)
and then placing an address on the bus. The falling edge of ALE triggers an external latch to
capture the address.

After a period of time during which the address must have been latched externally, the
address is removed from the bus. The EBC now activates the respective command signal
(RD, WR, WRL, WRH). Data is driven onto the bus either by the EBC (for write cycles) or by
the external memory/peripheral (for read cycles). After a period of time, which is determined
by the access time of the memory/peripheral, data become valid.

Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the bus which is then tri-stated again.

Write cycles: The command signal is now deactivated. The data remain valid on the bus
until the next external bus cycle is started.

BTYP encoding External data bus width External address bus mode

0 0 8-bit Data De-multiplexed Addresses

0 1 8-bit Data Multiplexed Addresses

1 0 16-bit Data De-multiplexed Addresses

1 1 16-bit Data Multiplexed Addresses

The external bus interface UM0407

182/541

Figure 60. Multiplexed bus cycle

8.2.2 De-multiplexed bus modes

In the de-multiplexed bus modes the 16-bit intra-segment address is permanently output on
PORT1, while the data uses PORT0 (16-bit data) or P0L (8-bit data).

The upper address lines are permanently output on Port4 (if selected via SALSEL during
reset). No address latches are required.

The EBC initiates an external access by placing an address on the address bus. After a
programmable period of time the EBC activates the respective command signal (RD, WR,
WRL, WRH).

Data is driven onto the data bus, either by the EBC (for write cycles), or by the external
memory/peripheral (for read cycles). After a period of time which is determined by the
access time of the memory/peripheral, data become valid.

Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the data bus which is then tri-stated
again.

Write cycles: The command signal is now deactivated. If a subsequent external bus cycle
is required, the EBC places the respective address on the address bus. The data remain
valid on the bus until the next external bus cycle is started.

Bus Cycle

Address

Address Data/Instr.

Address Data

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

UM0407 The external bus interface

 183/541

Figure 61. De-multiplexed bus cycle

8.2.3 Switching between the bus modes

The EBC allows dynamic switching between different bus modes: This means that
subsequent external bus cycles may be executed in different ways. Certain address areas
may use multiplexed or de-multiplexed buses or use READY control or predefined wait-
states.

A change of the external bus characteristics can be initiated in two different ways:

● Reprogramming the BUSCON and/or ADDRSEL registers allows to either change
the bus mode for a given address window, or change the size of an address window
that uses a certain bus mode. Reprogramming allows to use a great number of different
address windows (more than BUSCONs are available) on the expense of the overhead
for changing the registers and keeping appropriate tables.

● Switching between predefined address windows automatically selects the bus
mode that is associated with the respective window. Predefined address windows allow
to use different bus modes without any overhead, but restrict their number to the
number of BUSCONs. However, as BUSCON0 controls all address areas, which are
not covered by the other BUSCONs, this allows to have gaps between these windows,
which use the bus mode of BUSCON0.

PORT1 will output the intra-segment address when any of the BUSCON registers selects a
de-multiplexed bus mode, even if the current bus cycle uses a multiplexed bus mode. This
means that an external address decoder can be connected to PORT1 only, while using it for
all kinds of bus cycles.

Note: Never change the configuration for an address area that currently supplies the instruction
stream. Due to the internal pipeline it is very difficult to determine the first instruction fetch
that will use the new configuration. Only change the configuration for address areas that are
not currently accessed. This applies to BUSCON registers as well as to ADDRSEL
registers.

The use of the BUSCON/ADDRSEL registers is controlled via the issued addresses. When
an access (code fetch or data) is initiated, the respective generated physical address, if the
access is made internally, uses one of the address windows defined by ADDRSEL4...1, or
uses the default configuration in BUSCON0. After initializing the active registers, they are

Bus Cycle

Address

Data/Instr.

Data

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

Segment (P1)

The external bus interface UM0407

184/541

selected and evaluated automatically by interpreting the physical address. No additional
switching or selecting is necessary during run time, except when more than the four address
windows plus the default is to be used.

Switching from de-multiplexed to multiplexed bus mode represents a special case. The
bus cycle is started by activating ALE and driving the address to Port4 and PORT1 as usual,
if another BUSCON register selects a de-multiplexed bus. However, in the multiplexed bus
modes the address is also required on PORT0. In this special case the address on PORT0
is delayed by one CPU clock cycle, which delays the complete (multiplexed) bus cycle and
extends the corresponding ALE signal (see Figure 62 on page 185).

This extra time is required to allow the previously selected device (via de-multiplexed bus) to
release the data bus, which would be available in a de-multiplexed bus cycle.

8.2.4 External data bus width

The EBC can operate on 8-bit or 16-bit wide external memory/peripherals. A 16-bit data bus
uses PORT0, while an 8-bit data bus only uses P0L, the lower byte of PORT0. This saves
on address latches, bus transceivers, bus routing and memory cost on the expense of
transfer time. The EBC can control word accesses on an 8-bit data bus as well as byte
accesses on a 16-bit data bus.

Word accesses on an 8-bit data bus are automatically split into two subsequent byte
accesses, where the low byte is accessed first, then the high byte. The assembly of byte to
words and the disassembly of words into byte is handled by the EBC and is transparent to
the CPU and the programmer.

Byte accesses on a 16-bit data bus require that the upper and lower half of the memory
can be accessed individually. In this case the upper byte is selected with the BHE signal,
while the lower byte is selected with the A0 signal. So the two bytes of the memory can be
enabled independent from each other, or together when accessing words.

When writing byte to an external 16-bit device, which has a single CS input, but two WR
enable inputs (for the two bytes), the EBC can directly generate these two write control
signals. This saves the external combination of the WR signal with A0 or BHE. In this case
pin WR serves as WRL (write low byte) and pin BHE serves as WRH (write high byte). Bit
WRCFG in register SYSCON selects the operating mode for pins WR and BHE. The
respective byte will be written on both data bus halves.

When reading byte from an external 16-bit device, whole words may be read and the
ST10F272Z2 automatically selects the byte to be input and discards the other. However,
care must be taken when reading devices that change state when being read, like FIFOs,
interrupt status registers, etc. In this case individual byte should be selected using BHE and
A0.

UM0407 The external bus interface

 185/541

Figure 62. Switching from de-multiplexed to multiplexed bus mode

Note: PORT1 gets available for general purpose I/O, when none of the BUSCON registers selects
a de-multiplexed bus mode.

8.2.5 Disable / enable control for pin BHE (BYTDIS)

Bit BYTDIS is provided for controlling the active low Byte High Enable (BHE) pin. The
function of the BHE pin is enabled, if the BYTDIS bit contains a '0'. Otherwise, it is disabled
and the pin can be used as standard I/O pin. The BHE pin is implicitly used by the External
Bus Controller to select one of two byte-organized memory chips, which are connected to
the ST10F272Z2 via a word-wide external data bus. After reset the BHE function is
automatically enabled (BYTDIS = '0'), if a 16-bit data bus is selected during reset, otherwise
it is disabled (BYTDIS = ‘1’). It may be disabled, if byte access to 16-bit memory is not
required, and the BHE signal is not used.

8.2.6 Segment address generation

During external accesses the EBC generates a (programmable) number of address lines on
Port4, which extend the 16-bit address output on PORT0 or PORT1, and so increase the
accessible address space. The number of segment address lines is selected during reset
and coded in bit-field SALSEL in register RP0H (see table below)

Bus mode
Transfer rate

(Speed factor for
byte/word/Dword access)

System requirements
Free I/O

lines

8-bit multiplexed Very low(1.5 / 3 / 6) Low (8-bit latch, byte bus) P1H, P1L

8-bit de-multiplexed Low(1 / 2 / 4) Very low (no latch, byte bus) P0H

16-bit multiplexed High(1.5 / 1.5 / 3) High (16-bit latch, word bus) P1H, P1L

16-bit de-multiplexed Very high(1 / 1 / 2) Low (no latch, word bus) ---

Address

AddressData Data

De-multiplexed
Bus Cycle Idle State

Multiplexed
Bus Cycle

Address (P1)
Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

Address Address

Data/Instr. Data/Instr.

The external bus interface UM0407

186/541

Note: The total accessible address space may be increased by accessing several banks which are
distinguished by individual chip select signals.

8.2.7 CS signal generation

During external accesses the EBC can generate a (programmable) number of CS lines on
Port6, which allows to directly select external peripherals or memory banks without requiring
an external decoder. The number of CS lines is selected during reset and coded in bit field
CSSEL in register RP0H (see table below).

The CS outputs are associated with the BUSCONx registers and are driven active (low) for
any access within the address area defined for the respective BUSCON register.

For any access outside this defined address area the respective CS signal will go inactive
(high). At the beginning of each external bus cycle the corresponding valid CS signal is
determined and activated. All other CS lines are deactivated (driven high) at the same time.

Note: The CS signals will not be updated for an access to any internal address area (for example
when no external bus cycle is started), even if this area is covered by the respective
ADDRSELx register. An access to an on-chip X-Peripheral deactivates all external CS
signals. Upon accesses to address windows without a selected CS line all selected CS lines
are deactivated.

The chip select signals allow to operate in four different modes, which are selected via bit
CSWENx and CSRENx in the respective BUSCONx register.

Address chip select signals remain active until an access to another address window. An
address chip select becomes active with the falling edge of ALE and becomes inactive with

SALSEL Segment address lines Directly accessible address space

1 1 Two: A17...A16 256 Kbytes (Default without pull-downs on P0)

1 0 Eight: A23...A16 16 Mbytes (Maximum)

0 1 None 64 Kbytes (Minimum)

0 0 Four: A19...A16 1 Mbyte

CSSEL Chip select lines Note

1 1 Five: CS4...CS0 Default without pull-downs on P0

1 0 None Port6 pins free for I/O

0 1 Two: CS1...CS0

0 0 Three: CS2...CS0

CSWENx CSRENx Chip select mode

0 0 Address chip select (default after reset, mode for CS0)

0 1 Read chip select

1 0 Write chip select

1 1 Read/write chip select

UM0407 The external bus interface

 187/541

the falling edge of ALE of an external bus cycle that accesses a different address area. No
spikes will be generated on the chip select lines.

Read or write chip select signals remain active only as long as the associated control
signal (RD or WR) is active.

This also includes the programmable read/write delay. Read chip select is only activated for
read cycles, write chip select is only activated for write cycles, read/write chip select is
activated for both read and write cycles (write cycles are assumed, if any of the signals
WRH or WRL becomes active).

These modes save external glue logic, when accessing external devices like latches or
drivers that only provide a single enable input.

Note: CS0 provides an address chip select directly after reset (except for single chip mode) when
the first instruction is fetched.

Internal pull-up devices hold all CS lines high during reset. After the end of a reset sequence
the pull-up devices are switched off and the pin drivers control the pin levels on the selected
CS lines. Not selected CS lines will enter the high-impedance state and are available for
general purpose I/O.

The pull-up devices are also active during bus hold on the selected CS lines, while HLDA is
active and the respective pin is switched to push-pull mode. Open drain outputs will float
during bus hold. In this case external pull-up devices are required or the new bus master is
responsible for driving appropriate levels on the CS lines.

8.2.8 Segment address versus chip select

The external bus interface supports many configurations for the external memory. By
increasing the number of segment address lines, a linear address space of 256 Kbytes, 1
Mbyte or 16 Mbytes can be addressed.

It is possible to implement a large memory area and to access a great number of external
devices using an external decoder. By increasing the number of CS lines, accesses can be
made to memory banks or peripherals without external glue logic.

These two features may be combined to optimize the overall system performance. Enabling
4 segment address lines and 5 chip select lines to give access to five memory banks of 1
Mbyte each, so the available address space is 5 Mbytes (without glue logic).

Note: Bit SGTDIS of register SYSCON defines whether the CSP register is saved during interrupt
entry (segmentation active) or not (segmentation disabled).

8.3 Programmable bus characteristics
Important timing characteristics of the external bus interface have been made user
programmable to allow to adapt it to a wide range of different external bus and memory
configurations with different types of memories and/or peripherals.

The external bus interface UM0407

188/541

The following parameters of an external bus cycle are programmable:

● ALE control defines the ALE signal length and the address hold time after its falling
edge

● Memory cycle time (extendable with 1...15 wait-states) defines the allowable access
time

● Memory tri-state time (extendable with 1 wait-state) defines the time for a data driver
to float

● Read / write delay time defines when a command is activated after the falling edge of
ALE

● READY polarity is programmable

● READY control defines, if a bus cycle is terminated internally or externally

● Programmable chip select timing control

Note: Internal accesses are executed with maximum speed and therefore are not programmable.
External accesses use the slowest possible bus cycle after reset. The bus cycle timing may
then be optimized by the initialization software.

Figure 63. Programmable external bus cycle

8.3.1 ALE length control

The length of the ALE signal and the address hold time after its falling edge are controlled
by the ALECTLx bit in the BUSCON registers. When bit ALECTL is set to ‘1’, external bus
cycles accessing the respective address window will have their ALE signal prolonged by half
a CPU clock cycle. Also the address hold time after the falling edge of ALE (on a multiplexed
bus) will be prolonged by half a CPU clock, so the data transfer within a bus cycle refers to
the same CLKOUT edges as usual (the data transfer is delayed by one CPU clock cycle).
This allows more time for the address to be latched.

Note: ALECTL0 is ‘1’ after reset to select the slowest possible bus cycle, the other ALECTLx are
‘0’ after reset.

ALE

ADDR

RD / WR

DATA

ALECTL MCTC MTTC

ALE

ADDR

RD / WR

DATA

UM0407 The external bus interface

 189/541

Figure 64. ALE length control

8.3.2 Programmable memory cycle time

The ST10F272Z2 allows the user to adjust the controller's external bus cycles to the access
time of the respective memory or peripheral. This access time is the total time required to
move the data to the destination. It represents the period of time during which the
controller’s signals do not change.

The external bus cycles of the ST10F272Z2 can be extended for a memory or a peripheral
which cannot keep pace with the controller’s maximum speed: some wait-states are
introduced during the access (see Figure 65 on page 190). During these memory cycle time
wait-states, the CPU is idle, if this access is required for the execution of the current
instruction. The memory cycle time wait-states can be programmed in increments of one
CPU clock within a range from 0 to 15 (default after reset) via the MCTC fields of the
BUSCON registers. 15-[MCTC] wait-states will be inserted.

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

Normal Multiplexed Bus Cycle Lengthened Multiplexed Bus Cycle

Address Address

Address Data/Instr. Address Data/Instr.

Data

1 Setup

2 Hold

1 Setup

2 Hold

AddressDataAddress

The external bus interface UM0407

190/541

Figure 65. Memory cycle time

8.3.3 Programmable memory tri-state time

The ST10F272Z2 allows the user to adjust the time between two subsequent external
accesses to address slow external devices. The tri-state time MTTC starts when the external
device has released the bus after deactivation of the read command (RD).

The output of the next address on the external bus can be delayed for a memory or
peripheral which needs more time to switch off its bus drivers, by introducing a wait-state
after the previous bus cycle (see Figure 66 on page 191).

During this memory tri-state time wait-state, the CPU is not idle, so CPU operations will only
be slowed down if a subsequent external instruction or data fetch operation is required
during the next instruction cycle.

The memory tri-state time wait-state requires one CPU clock and is controlled via the
MTTCx bit of the BUSCON registers. A wait-state will be inserted, if bit MTTCx is ‘0’ (default
after reset).

External bus cycles in multiplexed bus modes implicitly add one tri-state time wait-state in
addition to the programmable MTTC wait-state. Any MTTC wait-states are applicable to both
read and write cycles.

Data/Instr.

MCTC Wait States (1...15)

Bus Cycle

Segment

ALE

BUS (P0)

RD

BUS (P0)

WR

Address

Address

Address

Data

UM0407 The external bus interface

 191/541

Figure 66. Memory tri-state time

8.3.4 Read / write signal delay

The ST10F272Z2 allows the user to adjust the timing of the read and write commands to
account for timing requirements of external peripherals.

The read/write delay controls the time between the falling edge of ALE and the falling edge
of the command. Without read/write delay the falling edges of ALE and command(s) are
coincident (except for propagation delays). With the delay enabled, the command(s)
become active half a CPU clock cycle after the falling edge of ALE.

The read/write delay does not extend the memory cycle time, and does not slow down the
controller in general.

In multiplexed bus modes, however, the data drivers of an external device may conflict with
the ST10F272Z2’s address, when the early RD signal is used. Therefore multiplexed bus
cycles should always be programmed with read/write delay.

The read/write delay is controlled via the RWDCx bit in the BUSCON registers. The
command(s) will be delayed, if bit RWDCx is ‘0’ (default after reset).

Data/instr.

Address

Address

MTTC Wait State

Bus Cycle

Segment

ALE

BUS (P0)

RD

The external bus interface UM0407

192/541

Figure 67. Read / write delay

8.3.5 READY polarity

The active level of the ready pin can be set to READY or READY by the RDYPOL bit 13 in
the BUSCON register.

8.3.6 READY / READY controlled bus cycles

The active level of the ready pin can be set to READY or READY by the RDYPOL bit in the
BUSCON register.

For situations where the programmable wait-states are not enough, or where the response
(access) time of a peripheral is not constant, the ST10F272Z2 provides external bus cycles
that are terminated by a READY or READY input signal (synchronous or asynchronous). In
this case the ST10F272Z2 first inserts a programmable number of wait-states (0...7) and
then monitors the READY or READY line to determine the actual end of the current bus
cycle. The external device drives READY or READY low in order to indicate that data have
been latched (write cycle) or are available (read cycle).

When the READY or READY function is enabled for a specific address window, each bus
cycle in this window must be terminated with the active level defined by the RDYPOL bit in
the associated BUSCON register (see Figure 68 on page 193).

The READY/READY function is enabled by the RDYENx bit in the BUSCON registers. When
this function is selected (RDYENx = ‘1’), only the lower 3 bits of the respective MCTC bit-
field define the number of inserted wait-states (0...7), while the MSB of bit-field MCTC
selects the READY operation:

MCTC.3 = ‘0’: Synchronous READY/READY, the READY/READY signal must meet setup
and hold times. MCTC.3 = ‘1’: Asynchronous READY/READY, the READY/READY signal is
synchronized internally.

The synchronous READY/READY (SREADY / SREADY) provides the fastest bus cycles,
but requires setup and hold times to be met. The CLKOUT signal should be enabled and
may be used by the peripheral logic to control the READY/READY timing in this case.

1) The data drivers from the previous bus cycle should be disabled when the RD signal becomes active.

Read / Write

Bus Cycle

Segment

ALE

BUS (P0)

RD

BUS (P0)

WR

Address

Address

Data/Instr.

Data

1)

Delay

UM0407 The external bus interface

 193/541

The asynchronous READY/READY (AREADY / AREADY) is less restrictive, but requires
additional wait-states caused by the internal synchronization. As the asynchronous
READY/READY is sampled earlier (see Figure 68) programmed wait-states may be
necessary to provide proper bus cycles (see also notes on “normally-ready” peripherals
below).

Figure 68. READY/READY controlled bus cycles

A READY/READY signal (especially asynchronous READY/READY) that has been activated
by an external device may be deactivated in response to the trailing (rising) edge of the
respective command (RD or WR).

Note: When the READY/READY function is enabled for a specific address window, each bus cycle
within this window must be terminated with an active READY/READY signal. Otherwise the
controller hangs until the next reset. A time-out function is only provided by the watchdog
timer.

Combining the READY function with predefined wait-states is advantageous in two
cases:

● Memory components with a fixed access time and peripherals operating with
READY/READY may be grouped into the same address window. The (external) wait-
state control logic in this case would activate READY/READY either upon the memory’s
chip select or with the peripheral’s READY/READY output. After the predefined number
of wait-states the ST10F272Z2 will check its READY/READY line to determine the end
of the bus cycle. For a memory access it will be low already (see Figure 68), for a
peripheral access it may be delayed. As memories tend to be faster than peripherals,
there should be no impact on system performance.

● When using the READY/READY function with so-called “normally-ready” peripherals, it
may lead to erroneous bus cycles, if the READY/READY line is sampled too early.
These peripherals pull their READY/READY output low, while they are idle. When they
are accessed, they deactivate READY/READY until the bus cycle is complete, then
drive it low again. If, however, the peripheral deactivates READY/READY after the first
sample point of the ST10F272Z2, the controller samples an active READY/READY and
terminates the current bus cycle, which, of course, is too early. By inserting predefined

ALE

RD/WR

SREADY

AREADY

SREADY

AREADY

Bus Cycle with active READY or READY Bus Cycle Extended via READY or READY

1.WS 2.WS 1.WS 2.WS

Evaluation (sampling) of the READY/READY input

The external bus interface UM0407

194/541

wait-states the first READY/READY sample point can be shifted to a time, where the
peripheral has safely controlled the READY/READY line (after 2 wait-states in the
Figure 68 on page 193).

8.3.7 Programmable chip select timing control

The position of the CS lines can be changed. By default (after reset), the CS lines change
half a CPU clock cycle after the rising edge of ALE. With the CSCFG bit set in the SYSCON
register, the CS lines change with the rising edge of ALE, therefore the CS lines change at
the same time that the address lines are changed.

Figure 69. Chip select delay

8.4 Controlling the external bus controller
A set of registers controls the functions of the EBC. General features like the usage of
interface pins (WR, BHE), segmentation and internal Memory mapping are controlled by the
SYSCON register.

The properties of a bus cycle like chip select mode, usage of READY, length of ALE,
external bus mode, read/write delay and wait-states are controlled by
BUSCON4...BUSCON0 registers. Four of these registers (BUSCON4...BUSCON1) have an
associated address select register (ADDRSEL4...ADDRSEL1) which allows to specify up to
four address areas and the individual bus characteristics within these areas. All accesses
that are not covered by these four areas are then controlled via BUSCON0. This allows to

Normal CS

RD

Address (P1)

ALE

Segment (P4)

Normal De-multiplexed

Bus Cycle

ALE Lengthen De-multiplexed

Bus Cycle

Early CS

WR

Read/Write

Delay

Data Data

Data DataBUS (P0)

BUS (P0)

Read/Write

Delay

UM0407 The external bus interface

 195/541

use memory components or peripherals with different interfaces within the same system,
while optimizing accesses to each of them.

BUSCON4...BUSCON0 bit SGTDIS controls the correct stack operation (push/pop of CSP
or not) during traps and interrupts.

SYSCON (FF12h / 89h) SFR Reset Value: 0xx0h

Reset Value: 0000 0xx0 x000 0000b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

PWD
CFG

OWD
DIS

BDR
STEN

XPEN VISI
BLE

XPER
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

XPER-
SHARE

XBUS Peripheral Share Mode Control

‘0’: External accesses to XBUS peripherals are disabled.
‘1’: XRAM1 and XRAM2 are accessible via the external bus during hold mode.
External accesses to the other XBUS peripherals are not guaranteed in terms of AC
timings. See Section 2.4.1: XRAM access via external masters on page 49 for
additional details.

VISIBLE
Visible Mode Control

‘0’: Accesses to XBUS peripherals are done internally.
‘1’: XBUS peripheral accesses are made visible on the external pins.

XPEN
XBUS Peripheral Enable bit

‘0’: Accesses to the on-chip X-Peripherals and XRAM are disabled.
‘1’: The on-chip X-Peripherals are enabled.

BDRSTEN

Bidirectional Reset Enable

‘0’: RSTIN pin is an input pin only. SW Reset or WDT Reset have no effect on this pin.
‘1’: RSTIN pin is a bidirectional pin. This pin is pulled low during internal reset
sequence.

OWDDIS

Oscillator Watchdog Disable Control

‘0’: Oscillator Watchdog (OWD) is enabled. If PLL is bypassed, the OWD monitors
XTAL1 activity. If there is no activity on XTAL1 for at least 1µs, the CPU clock is
switched automatically to PLL’s base frequency (from 750 kHz to 3 MHz).
‘1’: OWD is disabled. If the PLL is bypassed, the CPU clock is always driven by XTAL1
signal. The PLL is turned off to reduce power supply current.

PWDCFG

Power Down Mode Configuration Control

‘0’: power down mode can only be entered during PWRDN instruction execution if NMI
pin is low, otherwise the instruction has no effect. To exit Power Down Mode, an
external reset must occur by asserting the RSTIN pin.
‘1’: power down mode can only be entered during PWRDN instruction execution if all
enabled fast external interrupt EXxIN pins are in their inactive level. Exiting this mode
can be done by asserting one enabled EXxIN pin or with external reset.

CSCFG
Chip Select Configuration Control

‘0’: Latched Chip Select lines, CSx changes 1 TCL after rising edge of ALE.
‘1’: Unlatched Chip Select lines, CSx changes with rising edge of ALE.

The external bus interface UM0407

196/541

The layout of the five BUSCON registers is identical. Registers BUSCON4...BUSCON1,
which control the selected address windows, are completely under software control, while
register BUSCON0, which is also used for the very first code access after reset, is partly
controlled by hardware, and it is initialized via PORT0 during the reset sequence.

This hardware control allows to define an appropriate external bus for systems, where no
internal program memory is provided.

BUSCON0 (FF0Ch / 86h) SFR Reset Value: 0xx0h

BUSCON0 Reset Value: 0000 0xx0 xx00 0000b

BUSCON1 (FF14h / 8Ah) SFR Reset Value: 0000h

WRCFG
Write Configuration Control (Inverted copy of WRC bit of RP0H)

‘0’: Pins WR and BHE retain their normal function.
‘1’: Pin WR acts as WRL, pin BHE acts as WRH.

CLKEN

System Clock Output Enable (CLKOUT)

‘0’: CLKOUT disabled, pin may be used for general purpose I/O.
‘1’: CLKOUT enabled, pin outputs the system clock signal or a prescaled value of
system clock according to XCLKOUTDIV register setting.

BYTDIS
Disable/Enable Control for Pin BHE (Set according to data bus width)

‘0’: Pin BHE enabled.
‘1’: Pin BHE disabled, pin may be used for general purpose I/O.

ROMEN

Internal Memory Enable (Set according to pin EA during reset)

‘0’: Internal memory disabled: Accesses to the IFlash Memory area use the external
bus.
‘1’: Internal memory enabled.

SGTDIS
Segmentation Disable/Enable Control

‘0’: Segmentation enabled (CSP is saved/restored during interrupt entry/exit).
‘1’: Segmentation disabled (Only IP is saved/restored).

ROMS1
Internal Memory Mapping

‘0’: Internal memory area mapped to segment 0 (00’0000h...00’7FFFh).
‘1’: Internal memory area mapped to segment 1 (01’0000h...01’7FFFh).

STKSZ
System Stack Size

Selects the size of the system stack (in the IRAM) from 32 to 1024 words.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWE
N0

CSREN
0

RDYPO
L0

RDYEN
0 - BUSAC

T0
ALECT

L0 - BTYP MTTC
0

RWDC
0 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN1 CSREN
1

RDYPO
L1

RDYEN
1 - BUSAC

T1
ALECTL

1 - BTYP MTTC
1

RWDC
1 MCTC

RW RW RW RW RW RW RW RW RW RW

Bit Function

UM0407 The external bus interface

 197/541

BUSCON2 (FF16h / 8Bh) SFR Reset Value: 0000h

BUSCON3 (FF18h / 8Ch) SFR Reset Value: 0000h

BUSCON4 (FF1Ah / 8Dh) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN2 CSREN
2

RDYPOL
2 RDYEN2 - BUSACT

2
ALECTL

2 - BTYP MTTC
2

RWDC
2 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN3 CSREN
3

RDYPOL
3

RDYEN
3 - BUSACT

3
ALECTL

3 - BTYP MTTC
3

RWDC
3 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN4 CSREN
4

RDYPOL
4

RDYEN
4 - BUSACT

4
ALECTL

4 - BTYP MTTC
4

RWDC
4 MCTC

RW RW RW RW RW RW RW RW RW

Bit Function

MCTC
Memory Cycle Time Control (Number of memory cycle time wait-states)

‘0000’: 15 wait-states (Number of wait-states = 15 - [MCTC]).
‘1111’: No wait-states.

RWDCx

Read/Write Delay Control for BUSCONx

‘0’: With read/write delay, the CPU inserts 1 TCL after falling edge of ALE.

‘1’: No read/write delay, RW is activated after falling edge of ALE.

MTTCx
Memory Tristate Time Control

‘0’: 1 wait-state.
‘1’: No wait-state.

BTYP

External Bus Configuration

‘00’: 8-bit De-multiplexed Bus
‘01’: 8-bit Multiplexed Bus
‘10’: 16-bit De-multiplexed Bus
‘11’: 16-bit Multiplexed Bus
Note: For BUSCON0 BTYP is defined via PORT0 during reset.

ALECTLx
ALE Lengthening Control

‘0’: Normal ALE signal.
‘1’: Lengthened ALE signal.

BUSACTx
Bus Active Control

‘0’: External bus disabled.
‘1’: External bus enabled (within the respective address window, see ADDRSEL).

RDYENx
READY Input Enable

‘0’: External bus cycle is controlled by bit field MCTC only.
‘1’: External bus cycle is controlled by the READY input signal.

The external bus interface UM0407

198/541

Note: BUSCON0 is initialized with 0000h, if pin EA is high during reset. If pin EA is low during
reset, bit BUSACT0 and ALECTL0 are set (1) and bit-field BTYP is loaded with the bus
configuration selected via PORT0.

ADDRSEL1 (FE18h / 0Ch) SFR Reset Value: 0000h

ADDRSEL2 (FE1Ah / 0Dh) SFR Reset Value: 0000h

ADDRSEL3 (FE1Ch / 0Eh) SFR Reset Value: 0000h

ADDRSEL4 (FE1Eh / 0Fh) SFR Reset Value: 0000h

RDYPOLx

Ready Active Level Control

‘0’: Active level on the READY pin is low, bus cycle terminates with a ‘0’ on READY pin.
‘1’: Active level on the READY pin is high, bus cycle terminates with a ‘1’ on READY
pin.

CSRENx
Read Chip Select Enable

‘0’: The CS signal is independent of the read command (RD).
‘1’: The CS signal is generated for the duration of the read command.

CSWENx
Write Chip Select Enable

‘0’: The CS signal is independent of the write command (WR, WRL, WRH).
‘1’: The CS signal is generated for the duration of the write command.

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

UM0407 The external bus interface

 199/541

Note: Register BUSCON0 controls the complete external address space, except for the 4 windows
supported by BUSCON1 to BUSCON4. So there is no need of ADDRSEL0 register.

8.4.1 Definition of address areas

The four register pairs BUSCON4/ADDRSEL4...BUSCON1/ADDRSEL1 allow to define 4
separate address areas within the address space of the ST10F272Z2. Within each of these
address areas external accesses can be controlled by one of the four different bus modes,
independent of each other and of the bus mode specified in register BUSCON0. Each
ADDRSELx register in a way cuts out an address window, within which the parameters in
register BUSCONx are used to control external accesses.

The range start address of such a window defines the upper address bit, which are not used
within the address window of the specified size (see Table 28: Definition of address areas on
page 199).

For a given window size, only those upper address bits of the start address are used
(marked “R”), which are not implicitly used for addresses inside the window. The lower bits
of the start address (marked “x”) are disregarded.

Bit Function

RGSZ
Range Size Selection

Defines the size of the address area controlled by the respective
BUSCONx/ADDRSELx register pair. See Table 28 on page 199.

RGSAD
Range Start Address

Defines the upper bit of the start address (A23...) of the respective address area.
See Table 28 on page 199.

Table 28. Definition of address areas

Bit-field RGSZ
Resulting

window size
Relevant bit (R) of start address (A23...A12)

0 0 0 0
0 0 0 1

0 0 1 0

0 0 1 1
0 1 0 0

0 1 0 1

0 1 1 0
0 1 1 1

1 0 0 0

1 0 0 1
1 0 1 0

1 0 1 1

1 1 x x

4 Kbytes
8 Kbytes

16 Kbytes

32 Kbytes
64 Kbytes

128 Kbytes

256 Kbytes
512 Kbytes

1 Mbyte

2 Mbytes
4 Mbytes

8 Mbytes

Reserved

A23 A12

RR R R R R R R R R R R
RR R R R R R R R R R x

RR R R R R R R R R x x

RR R R R R R R R x x x
RR R R R R R R x x x x

RR R R R R R x x x x x

RR R R R R x x x x x x
RR R R R x x x x x x x

RR R R x x x x x x x x

RR R x x x x x x x x x
RR x x x x x x x x x x

Rx x x x x x x x x x x

The external bus interface UM0407

200/541

8.4.2 Address window arbitration

For each access the EBC compares the current address with all address select registers
(programmable ADDRSELx and hard-wired XADRSx - Note that XADRS3 is programmable
also). This comparison is done in four levels.

● The hard-wired XADRSx registers are evaluated first. A match with one of these
registers directs the access to the respective X-Peripheral using the corresponding
XBCONx register and ignoring all other ADDRSELx registers.

● Registers ADDRSEL2 and ADDRSEL4 are evaluated before ADDRSEL1 and
ADDRSEL3, respectively. A match with one of these registers directs the access to the
respective external area using the corresponding BUSCONx register and ignoring
registers ADDRSEL1/3 (see Figure 70).

● A match with registers ADDRSEL1 or ADDRSEL3 directs the access to the respective
external area using the corresponding BUSCONx register.

● If there is no match with any XADRSx or ADDRSELx register the access to the external
bus uses register BUSCON0.

Figure 70. Address window arbitration

Note: Only the indicated overlaps are defined. All other overlaps lead to erroneous bus cycles.
ADDRSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The hard-wired (or
programmable) XADRSx registers are defined non-overlapping.

RP0H (F108h / 84h) SFR Reset Value: - - xxh

Active
Window

Inactive
Window

BUSCON0

BUSCON1

BUSCON2

XBCONx

BUSCON3

BUSCON4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CLKCFG SALSEL CSSEL
WR
C

R R R R

Bit Function

WRC 1
Write Configuration Control (Set according to pin P0H.0 during reset)

‘0’: Pins WR acts as WRL, pin BHE acts as WRH.

‘1’: Pins WR and BHE retain their normal function.

CSSEL 1

Chip Select Line Selection (Number of active CS outputs)

0 0: 3 CS lines: CS2...CS0

0 1: 2 CS lines: CS1...CS0

1 0: No CS lines at all

1 1: 5 CS lines: CS4...CS0 (Default without pull-downs)

UM0407 The external bus interface

 201/541

Note: 1 RP0H.[7...0] bits are loaded only during a long hardware reset.

2 Refer to datasheet for more details about input clock ranges

8.4.3 Precautions and hints

● The external bus interface is enabled as long as at least one of the BUSCON registers
has its BUSACT bit set.

● PORT1 will output the intra-segment address as long as at least one of the BUSCON
registers selects a de-multiplexed external bus, even for multiplexed bus cycles.

● Not all address areas defined via registers ADDRSELx may overlap each other. The
operation of the EBC will be unpredictable in such a case.

● The address areas defined via registers ADDRSELx may overlap internal address
areas. Internal accesses will be executed in this case.

● For any access to an internal address area the EBC will remain inactive (see EBC Idle
State).

8.5 EBC idle state
When the external bus interface is enabled, but no external access is currently executed, the
EBC is idle. As long as only internal resources (from an architecture point of view) like
IRAM, GPRs or SFRs, etc. are used the external bus interface does not change (see
Table 29).

Accesses to on-chip X-Peripherals are also controlled by the EBC. However, even though an
X-Peripheral appears like an external peripheral to the controller, the respective accesses
do not generate valid external bus cycles.

SALSEL 1

Segment Address Line Selection (Number of active segment address outputs)

0 0: 4-bit segment address: A19...A16
0 1: No segment address lines at all

1 0: 8-bit segment address: A23...A16

1 1: 2-bit segment address: A17...A16 (Default without pull-downs on P0)

CLKCFG 1, 2

P0H.7-
5

CPU Frequency
fCPU = fXTAL x F

Notes

111 fXTAL x 4 Default configuration without pull-downs on P0

110 fXTAL x 3

101 fXTAL x 8

100 fXTAL x 5

011 fXTAL x 1 Direct drive 2

010 fXTAL x 10

001 fXTAL x 0.5 CPU clock via prescaler 2

000 fXTAL x 16

Bit Function

The external bus interface UM0407

202/541

Due to timing constraints address and write data of an XBUS cycle are reflected on the
external bus interface (see Table 29). The address mentioned above includes Port1, Port4,
BHE and ALE which also pulses for an XBUS cycle. The external CS signals on Port6 are
driven inactive (high) because the EBC switches to an internal XCS signal.

The external control signals (RD and WR or WRL/WRH if enabled) remain inactive
(high) (see Table 29).

8.6 External bus arbitration
In high performance systems it may be efficient to share external resources like memory
banks or peripheral devices among more than one controller. The ST10F272Z2 supports
this approach with the possibility to arbitrate the access to its external bus, and to the
external devices.

This bus arbitration allows an external master to request the ST10F272Z2’s bus via the
HOLD input. The ST10F272Z2 acknowledges this request via the HLDA output and will float
its bus lines in this case. The CS outputs provide internal pull-up devices.

The new master may now access the peripheral devices or memory banks via the same
interface lines as the ST10F272Z2. During this time the ST10F272Z2 can keep on
executing, as long as it does not need access to the external bus. All actions that just require
internal resources like instruction or data memory and on-chip peripherals, may be executed
in parallel.

When the ST10F272Z2 needs access to its external bus while it is occupied by another bus
master, it demands it via the BREQ output.

The external bus arbitration is enabled by setting (to ‘1’) bit HLDEN in register PSW. In this
case the three bus arbitration pins HOLD, HLDA and BREQ are automatically controlled by
the EBC independent of their I/O configuration. This is not true when XSSC is enabled
(setting bit XSSCEN in XPERCON register): The functions HLDA and BREQ are masked,

Table 29. Status of the external bus interface during EBC idle state

Pins Internal accesses only XBUS accesses

PORT0 Tristate (floating)
Tristate (floating) for read accesses
XBUS write data for write accesses

PORT1
Last used external address
(if used for the bus interface)

Last used XBUS address
(if used for the bus interface)

Port4
Last used external segment address
(on selected pins)

Last used XBUS segment address
(on selected pins)

Port6
Active external CS signal corresponding to
last used address

Inactive (high) for selected CS signals

BHE Level corresponding to last external access Level corresponding to last XBUS access

ALE Inactive (low) Pulses as defined for X-Peripheral

RD Inactive (high) Inactive (high)

WR/WRL Inactive (high) Inactive (high)

WRH Inactive (high) Inactive (high)

UM0407 The external bus interface

 203/541

and the related pins are controlled by the XSSCPORT register. Bit HLDEN may be cleared
during the execution of program sequences, where the external resources are required but
cannot be shared with other bus masters. In this case the ST10F272Z2 will not answer to
HOLD requests from other external masters. If HLDEN is cleared while the ST10F272Z2 is
in hold state (code execution from IRAM/IFlash): This hold state is left only after HOLD has
been deactivated again. In this case the current hold state continues and only the next
HOLD request is not answered.

Connecting two ST10F272Z2’s in this way would require additional logic to combine the
respective output signals HLDA and BREQ. This can be avoided by switching one of the
controllers into slave mode where pin HLDA is switched to input.

This allows to directly connect the slave controller to another master controller without glue
logic. The slave mode is selected by setting bit DP6.7 to’1’. DP6.7 = ‘0’ (default after reset)
selects the Master Mode.

Note: The pins HOLD, HLDA and BREQ keep their alternate function (bus arbitration) even after
the arbitration mechanism has been switched off by clearing HLDEN.
All three pins are used for bus arbitration after bit HLDEN was set once.

8.6.1 Connecting bus masters

When multiple ST10F272Z2’s or a ST10F272Z2 and another bus master shall share
external resources some glue logic is required that defines the currently active bus master
and also enables a ST10F272Z2 which has surrendered its bus interface to regain control of
it in case it must access the shared external resources.

This glue logic is required if the other bus master does not automatically remove its hold
request after having used the shared resources.

When two ST10F272Z2 are connected in this way the external glue logic can be left out. In
this case one of the controllers must be operated in its master mode (default after reset,
DP6.7 = ‘0’) while the other one must be operated in its slave mode (selected with
DP6.7 = ‘1’).

In slave mode the ST10F272Z2 inverts the direction of its HLDA pin and uses it as an input,
while the master’s HLDA pin remains an output. This approach does not require any
additional glue logic for the bus arbitration (see Figure 71).

When the bus arbitration is enabled (HLDEN = ‘1’) the three corresponding pins are
automatically controlled by the EBC. Normally the respective port direction register bit retain
their reset value which is ‘0’. This selects master mode where the device operates
compatible with earlier versions. Slave mode is enabled by intentionally switching pin BREQ
to output (DP6.7 = ‘1’) which is neither required for Master Mode nor for earlier devices.

8.6.2 Entering the hold state

Access to the ST10F272Z2’s external bus is requested by driving its HOLD input low. After
synchronizing this signal the ST10F272Z2 will complete a current external bus cycle (if any
is active), release the external bus and grant access to it by driving the HLDA output low.
During hold state the ST10F272Z2 treats the external bus interface as follows:

● Address and data bus(es) float to tri-state

● ALE is pulled low by an internal pull-down device

● Command lines are pulled high by internal pull-up devices (RD, WR/WRL, BHE/WRH)

● CSx outputs are pulled high (push-pull mode) or float to tri-state (open drain mode)

The external bus interface UM0407

204/541

Should the ST10F272Z2 require access to its external bus during hold mode, it activates its
bus request output BREQ to notify the arbitration circuitry. BREQ is activated only during
hold mode. It will be inactive during normal operation (see Figure 72 on page 204).

Figure 71. Sharing external resources using slave mode

Figure 72. External bus arbitration, releasing the bus

Note: The ST10F272Z2 will complete the currently running bus cycle before granting bus access
as indicated by the broken lines. This may delay hold acknowledge compared to this figure.
The figure above shows the first possibility for BREQ to get active. During bus hold pin
P3.12 is switched back to its standard function and is then controlled by DP3.12 and P3.12.
Keep DP3.12 = ‘0’ in this case to ensure floating in hold mode.

8.6.3 Exiting the hold state

The external bus master returns the access rights to the ST10F272Z2 by driving the HOLD
input high. After synchronizing this signal the ST10F272Z2 will drive the HLDA output high,
actively drive the control signals and resume executing external bus cycles if required.
Depending on the arbitration logic, the external bus can be returned to the ST10F272Z2
under two circumstances:

● The external master does no more require access to the shared resources and gives
up its own access rights.

● The ST10F272Z2 needs access to the shared resources and demands this by
activating its BREQ output.

BREQ

HLDA

HOLD

BREQ

HLDA

HOLD

ST10F272Z2 in

Slave Mode

ST10F272Z2 in

Master Mode

HOLD

HLDA

BREQ

CSx

Other
Signals

UM0407 The external bus interface

 205/541

The arbitration logic may then deactivate the other master’s HLDA and so free the external
bus for the ST10F272Z2, depending on the priority of the different masters.

Note: The hold state is not terminated by clearing bit HLDEN.

Figure 73. External bus arbitration, (regaining the bus)

Note: The falling BREQ edge shows the last chance for BREQ to trigger the indicated regain-
sequence. Even if BREQ is activated earlier the regain-sequence is initiated by HOLD going
high. BREQ and HOLD are connected via an external arbitration circuitry. Note that HOLD
may also be deactivated without the ST10F272Z2 requesting the bus.

8.7 The XBUS interface
The ST10F272Z2 provides an on-chip interface (the XBUS interface), which allows to
connect integrated costumer / application specific peripherals to the standard controller
core.

The XBUS is an internal representation of the external bus interface, it works in the same
way.

The current XBUS interface is prepared to support up to 3 X-Peripherals: for each peripheral
on the XBUS (X-Peripheral) there is a separate address window controlled by an XBCON
and an XADRS registers.

As an interface to a peripheral in many cases is represented by just a few registers, the
XADRS registers select smaller address windows than the standard ADDRSEL registers.

X-Peripheral accesses provide the same choices as external accesses, so these peripherals
may be byte wide or word wide, with or without a separate address bus.

As the register pairs control integrated peripherals rather than externally connected ones,
they are typically fixed by mask programming rather than being user programmable.
Nevertheless, on ST10F272Z2, the XADRS3 register is available and programmable for the
user. It defines the memory range for XRAM2 accesses.

XADRS3 (F01Ch / 0Eh) ESFR Reset Value: 800Bh

HOLD

HLDA

BREQ

CSx

Other
Signals

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

The external bus interface UM0407

206/541

The register functionality is the same as the one of ADDRSELx registers used for external
address range selection. However, it is a protected register and it can only be written before
EINIT instruction execution. Note that the range start address can be only on boundaries
specified by the selected range size. The following table gives a definition of range size
selection and range start address.

Upon Reset, XADRS3 register is programmed so that address range 08’0000h-0F’FFFFh is
accessed with the internal XBUS chip select. So, upon reset, the 16Kbytes XRAM2 is seen
as mirrored on every 16Kbytes boundary in the address space 08’0000h-0F’FFFFh. The
range 08’0000h-08’FFFFh is overlapped by IFlash memory space, which have higher
priority on XBUS space.

The address range defined by XADRS3 can be reduced by reprogramming it before EINIT
execution: The area which is no longer inside the new address range becomes external
memory space (again, apart from range 08’0000h-08’FFFFh dedicated to IFlash, as long as
ROMEN bit in SYSCON register is set).

The address range defined by XADRS3 has priority over any external address range
defined through ADDRSELx (x = 1...4) registers.

XRAM2 can be remapped on any 16 Kbytes boundary within 00’8000h-00’BFFF address
range and within 09’0000h-0F’FFFFh address range.

An example of XADRS3 modification with respect to the default (Figure 74 on page 208)
value is shown in next Figure 75 on page 209: programming XADRS3 with the value

Bit Function

RGSZ
Range Size Selection

Defines the size of the address area controlled by the respective XBCONx/XADRSx
register pair. See Table 30.

RGSAD
Range Start Address

Defines the upper bit of the start address (A19...) of the respective address area.
See Table 30.

Table 30. Definition of XBUS address areas

Bit-field RGSZ
Resulting

window size
Relevant bit (R) of start address (A19...A8)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 x x

256 bytes
512bytes

1 Kbyte
2 Kbytes
4 Kbytes
8 Kbytes

16 Kbytes
32 Kbytes
64 Kbytes

128 Kbytes
256 Kbytes
512 Kbytes

Reserved

A19 A8

RR R R R R R R R R R R
RR R R R R R R R R R x
RR R R R R R R R R x x
RR R R R R R R R x x x
RR R R R R R R x x x x
RR R R R R R x x x x x
RR R R R R x x x x x x
RR R R R x x x x x x x
RR R R x x x x x x x x
RR R x x x x x x x x x
RR x x x x x x x x x x
Rx x x x x x x x x x x

UM0407 The external bus interface

 207/541

0xF006h, XRAM2 is located in page 60, starting address at 0F’000 and size of 16Kbytes.
This configuration is compatible with ST10F276 XRAM mapping.

Visibility of XBUS peripherals

In order to keep the ST10F272Z2 compatible with the ST10F269, the XBUS peripherals can
be selected to be visible and / or accessible on the external address / data bus. Different bits
for X-Peripheral enabling in XPERCON register must be set. If these bits are cleared before
the global enabling with XPEN-bit in SYSCON register, the corresponding address space,
port pins and interrupts are not occupied by the peripheral, thus the peripheral is not visible
and not available. Refer to Section 26: Register set on page 487.

The external bus interface UM0407

208/541

Figure 74. Memory mapping (User mode (ROMEN = 1) / XADRS = 800Bh (reset value))

FF FFFF

00 0000

16 MB

255

0

Code Data
Page

1023

0

Data
Page

1

3

5

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

07 FFFF

06 0000
05 FFFF

04 0000
03 FFFF

02 0000
01 FFFF

00 0000

B0F4

B0F5

Reserved

00 C000

00 FFFF

XCAN1

ESFR

SFR

IRAM

Reserved

00 DFFF
00 E000

00 E7FF
00 E800

00 FDFF
00 FE00

00 F1FF
00 F200

00 F5FF
00 F600

8K

256

512

1K

2K

512

Data Page 3 (Segment 0) - 16Kbyte

256XCAN2

9

20

21

22

23

0A 0000
09 FFFF

08 0000

11

24

25

26

27

0C 0000
0B FFFF

13

28

29

30

31

0E 0000
0D FFFF

15

32

33

34

35

0F FFFF

00 F000

SFR

00 FFFF
01 0000

00 FDFF
00 FE00

512

512

00 EFFF
00 F000

XRAM1 2K

14

0F 0000
0E FFFF

12

0D 0000
0C FFFF

10

0B 0000
0A FFFF

8

6

4

05 0000
04 FFFF

07 0000
06 FFFF

09 0000
08 FFFF

2

03 0000
02 FFFF

0
0B0F0

B0F1
B0F2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B0F6

Reserved

Reserved

B0F7

01 0000
00 FFFF

Code
Segment

64

65

66

67

64

65

66

67

16

17

10 0000

10 FFFF
11 0000

11 FFFF

Flash + XRAM - 1Mbyte

IRAM

00 EFFF

XSSC

XASC

XI2C

256
256

256

XRTC

1K

00 F1FF
00 F200

00 F5FF
00 F600

256

(IFlash)

(IFlash)

(IFlash)

(IFlash)

XPWM 256
256

2K

XMiscellaneous

RAM / SFR (4Kbyte)Segment

B0F3

ESFR

Reserved

Bit-addressable Memory

X
A

D
R

S
3

=
 8

00
B

h
(5

12
K

)

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

* Blocks B0F0, B0F1, B0F2, B0F3 may be remapped from segment 0 to segment 1 by setting SYSCON-ROMS1 (before EINIT).
Absolute Memory Address are hexadecimal values, while Data Page Number are decimal values.

IFlash Registers

+
FPEC RAM/ROM

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

XRAM2

Address Area, where XRAM2
is mirrored every 16Kbytes
boundary after reset

XRAM2

XRAM2

XRAM2

XRAM2

UM0407 The external bus interface

 209/541

Figure 75. Memory mapping (User mode: Flash read operations (ROMEN = 1 / XADRS = F006h)

FF FFFF

00 0000

16 MB

255

0

Code Data
Page

1023

0

Data
Page

1

3

5

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

07 FFFF

06 0000
05 FFFF

04 0000
03 FFFF

02 0000
01 FFFF

00 0000

B0F4

B0F5

Reserved

00 C000

00 FFFF

XCAN1

ESFR

SFR

IRAM

Reserved

Ext. Memory

00 DFFF
00 E000

00 E7FF
00 E800

00 FDFF
00 FE00

00 F1FF
00 F200

00 F5FF
00 F600

8K

256

512

1K

2K

512

Data Page 3 (Segment 0) - 16Kbyte

256XCAN2

9

20

21

22

23

0A 0000
09 FFFF

08 0000

11

24

25

26

27

0C 0000
0B FFFF

13

28

29

30

31

0E 0000
0D FFFF

15

32

33

34

35

0F FFFF

00 F000

SFR

00 FFFF
01 0000

00 FDFF
00 FE00

512

512

00 EFFF
00 F000

XRAM1 2K

14

0F 0000
0E FFFF

12

0D 0000
0C FFFF

10

0B 0000
0A FFFF

8

6

4

05 0000
04 FFFF

07 0000
06 FFFF

09 0000
08 FFFF

2

03 0000
02 FFFF

0
0B0F0

B0F1
B0F2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B0F6

Reserved

Reserved

B0F7

01 0000
00 FFFF

XRAM2

Code
Segment

64

65

66

67

64

65

66

67

16

17

10 0000

10 FFFF
11 0000

11 FFFF

Flash + XRAM - 1Mbyte

IRAM

00 EFFF

XSSC

XASC

XI2C

256
256

256

XRTC

1K

00 F1FF
00 F200

00 F5FF
00 F600

256

(IFlash)

(IFlash)

(IFlash)

(IFlash)

XPWM 256
256

2K

XMiscellaneous

RAM / SFR (4Kbyte)Segment

B0F3

ESFR

Reserved

Bit-addressable Memory

X
A

D
R

S
3

=
 F

00
6

h
(1

6K
)

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

* Blocks B0F0, B0F1, B0F2, B0F3 may be remapped from segment 0 to segment 1 by setting SYSCON-ROMS1 (before EINIT).
Absolute Memory Address are hexadecimal values, while Data Page Number are decimal values.

IFlash Registers

+
FPEC RAM/ROM

Ext. Memory

Ext. Memory

Ext. Memory

Ext. Memory

The external bus interface UM0407

210/541

XPERCON (F024h / 12h) ESFR Reset Value: - 005h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - XMIS
CEN

XI2C
EN

XSSC
EN

XASC
EN

XPW
MEN - XRTC

EN
XRAM2

EN
XRAM1

EN
CAN2

EN
CAN1

EN

- - - - - RW RW RW RW RW - RW RW RW RW RW

Bit Function

CAN1EN

CAN1 Enable Bit

‘0’: Accesses to the on-chip CAN1 X-Peripheral and its functions are disabled (P4.5
and P4.6 pins can be used as general purpose I/Os, but address range 00’EC00h-
00’EFFFh is directed to external memory only if CAN2EN, XRTCEN, XASCEN,
XSSCEN, XI2CEN, XPWMEN an XMISCEN are ‘0’ also).
‘1’: The on-chip CAN1 X-Peripheral is enabled and can be accessed.

CAN2EN

CAN2 Enable Bit

‘0’: Accesses to the on-chip CAN2 X-Peripheral and its functions are disabled (P4.4
and P4.7 pins can be used as general purpose I/Os, but address range 00’EC00h-
00’EFFFh is directed to external memory only if CAN1EN, XRTCEN, XASCEN,
XSSCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also).

‘1’: The on-chip CAN2 X-Peripheral is enabled and can be accessed.

XRAM1EN

XRAM1 Enable Bit

‘0’: Accesses to the on-chip 2 Kbyte XRAM are disabled. Address range 00’E000h-
00’E7FFh is directed to external memory.

‘1’: The on-chip 2 Kbyte XRAM is enabled and can be accessed.

XRAM2EN

XRAM2 Enable Bit

‘0’: Accesses to the on-chip 64 Kbyte XRAM are disabled, external access performed.
Address range 0F’0000h-0F’FFFFh is directed to external memory.
‘1’: The on-chip 64 Kbyte XRAM is enabled and can be accessed.

XRTCEN

RTC Enable

‘0’: Accesses to the on-chip RTC module are disabled, external access performed.
Address range 00’ED00h-00’EDFF is directed to external memory only if CAN1EN,
CAN2EN, XASCEN, XSSCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip RTC module is enabled and can be accessed.

XPWMEN

XPWM Enable

‘0’: Accesses to the on-chip XPWM module are disabled, external access performed.
Address range 00’EC00h-00’ECFF is directed to external memory only if CAN1EN,
CAN2EN, XASCEN, XSSCEN, XI2CEN, XRTCEN and XMISCEN are ‘0’ also.

‘1’: The on-chip XPWM module is enabled and can be accessed.

XASCEN

XASC Enable Bit

‘0’: Accesses to the on-chip XASC are disabled, external access performed. Address
range 00’E900h-00’E9FFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.
‘1’: The on-chip XASC is enabled and can be accessed.

UM0407 The external bus interface

 211/541

Note: 1 When CAN1, CAN2, RTC, XASC, XSSC, I2C, XPWM and the XBUS Additional Features are
all disabled via XPERCON setting, then any access in the address range 00’E800h -
00’EFFFh will be directed to external memory interface, using the BUSCONx register
corresponding to address matching ADDRSELx register. All pins involved with X-
Peripherals, can be used as General Purpose I/O whenever the related module is not
enabled.

2 The default XPER selection after Reset is identical to XBUS configuration of
ST10F168/ST10F269: CAN1 is enabled, CAN2 is disabled, XRAM1 (2 Kbyte compatible
XRAM) is enabled, XRAM2 (new 16 Kbyte XRAM) is disabled; all the other X-Peripherals
are disabled after Reset.

3 Register XPERCON cannot be changed after the global enabling of X-Peripherals, that is,
after setting of bit XPEN in SYSCON register.

4 In Emulation mode, all the X-Peripherals are enabled (XPERCON bits are all set). It is up to
the bondout chip to redirect or not an access to external memory or to XBUS.

5 Reserved bits of XPERCON register shall be always written to ‘0’.

8.8 EA functionality
In ST10F272Z2 the EA pin is shared with VSTBY supply pin. When main VDD is on and
stable, VSTBY can be temporary grounded: The logic that in standby mode is powered by
VSTBY (that is, 16K portion of XRAM, 32 kHz oscillator, standby voltage regulator and real
time clock module), is powered by the main VDD. This allows to drive low EA pin during reset
as requested to configure the system to start from the external memory.

An appropriate external circuit must be provided to manage dynamically both the
functionalities associated with the pin: during reset and with stable VDD, the pin can be tied
low, while after reset (or anyway before turning off the main VDD to enter in standby mode)
the VSTBY supply shall be applied.

Refer to Section 24.3: Standby mode on page 482 for more details.

XSSCEN

XSSC Enable Bit

‘0’: Accesses to the on-chip XSSC are disabled, external access performed. Address
range 00’E800h-00’E8FFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XI2CEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip XSSC is enabled and can be accessed.

XI2CEN

I2C Enable Bit

‘0’: Accesses to the on-chip I2C are disabled, external access performed. Address
range 00’EA00h-00’EAFFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XSSCEN, XPWMEN and XMISCEN are ‘0’ also.

‘1’: The on-chip I2C is enabled and can be accessed.

XMISCEN

XBUS Additional Features Enable Bit

‘0’: Accesses to the Additional Miscellaneous Features is disabled. Address range
00’EB00h-00’EBFFh is directed to external memory only if CAN1EN, CAN2EN,
XRTCEN, XASCEN, XSSCEN, XPWMEN and XI2CEN are ‘0’ also.

‘1’: The Additional Features are enabled and can be accessed.

Bit Function

The external bus interface UM0407

212/541

Figure 76. EA / VSTBY external circuit

In Figure 76 the diagram of a possible external circuit is reported. Attention should be paid
in implementing the resistance for current limitation of bipolar: The same resistance shall
not disturb the standby mode when some current (in the order of hundreds of µA) is
provided to the device by the VSTBY voltage supply source: the voltage at the pin of
ST10F272Z2 shall not become lower than 4.5 Volt (4.0V when RTC and 32 kHz on-chip
oscillator amplifier are turned off).

In order to reduce the effect of the current consumption transients on VSTBY pin (refer to ISB3
in the electrical characteristics section of datasheet) it is suggested to add an external
capacitance which can filter the eventual current peaks, which could create potential
problems of voltage drops in case a very low power external voltage regulator is used.
Additional care must be paid on external hardware to limit the current peaks due to the
presence of the capacitance (when EA functionality is used and the external bipolar is
turned on, see Figure 76).

VSTBY

VSS

4 - 5.5 Volt

EA function

EA / VSTBY

ST10F272Z2

VSS

UM0407 The general purpose timer units

 213/541

9 The general purpose timer units

The general purpose timer units GPT1 and GPT2 are flexible multifunctional timer
structures which may be used for timing, event counting, pulse width measurement, pulse
generation, frequency multiplication, and other purposes. They incorporate five 16-bit timers
that are grouped into the two timer blocks GPT1 and GPT2.

Block GPT1 contains 3 timers/counters with a maximum resolution of 8 CPU clock cycles,
while block GPT2 contains 2 timers/counters with a maximum resolution of 4 CPU clock
cycles and a 16-bit Capture/Reload register (CAPREL). Each timer in each block may
operate independently in a number of different modes such as gated timer or counter mode,
or may be concatenated with another timer of the same block.

The auxiliary timers of GPT1 may optionally be configured as reload or as capture registers
for the core timer. In the GPT2 block, the additional CAPREL register supports capture and
reload operation with extended functionality, and its core timer T6 may be concatenated with
timers of the CAPCOM units (T0, T1, T7 and T8). Each block has alternate input/output
functions and specific interrupts associated with it.

9.1 Timer block GPT1
From a programmer's point of view, the GPT1 block is composed of a set of SFRs. Those
portions of port and direction registers which are used for alternate functions by the GPT1
block are named by ‘Y’ in Figure 77 on page 214.

All three timers of block GPT1 (T2, T3, T4) can run in three basic modes: timer, gated timer,
and counter mode, and all timers can count either up or down. Each timer has an associated
alternate input function pin on Port3, which serves as the gate control in gated timer mode,
or as the count input in counter mode. The count direction (Up / Down) can be programmed
by software or can be dynamically altered by a signal at an external control-input pin. Each
overflow/underflow of core timer T3 can be indicated on an alternate output function pin.
The auxiliary timers T2 and T4 can, additionally, be concatenated with the core timer, or
used as capture or reload registers for the core timer.

In incremental interface mode, the GPT1 timers (T2, T3, T4) can be directly connected to
the incremental position sensor signals A and B by their respective inputs TxIN and TxEUD.
Direction and count signals are internally derived from these two input signals - so the
contents of the respective timer Tx corresponds to the sensor position. The third position
sensor signal TOP0 can be connected to an interrupt input.

The current contents of each timer can be read or modified by the CPU by accessing the
corresponding timer registers T2, T3, or T4 located in the non bit-addressable SFR space.
When any of the timer registers is written to by the CPU in the state immediately before a
timer increment, decrement, reload, or capture, the CPU write operation has priority. This is
to guarantee correct results.

The general purpose timer units UM0407

214/541

Figure 77. SFRs and port pins associated with timer block GPT1

Figure 78. GPT1 block diagram

Ports & direction control alternate functions Data registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

-

1

-

0

-ODP3 E T2

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - Y Y Y Y Y - - -DP3

- - - - - - - - Y Y Y Y Y - - -P3

Y Y - - - - - - - - - - - - - -P5

T3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control registers Interrupt control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YT2CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT3CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT4CON

151413121110 9 8 7 6 5 4 3 2 1 0

T2IC

- - - - - - - - Y Y Y Y Y Y Y YT3IC

T2 GPT1 Timer 2 Register
T3 GPT1 Timer 3 Register
T4 GPT1 Timer 4 Register
T2IC GPT1 Timer 2 Interrupt Control Register
T3IC GPT1 Timer 3 Interrupt Control Register
T4IC GPT1 Timer 4 Interrupt Control Register

T2IN/P3.7 T2EUD/P5.15
T3IN/P3.6 T3EUD/P3.4
T4IN/P3.5 T4EUD/P5.14
T3OUT/P3.3

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
P3 Port3 Data Register
T2CON GPT1 Timer 2 Control Register
T3CON GPT1 Timer 3 Control Register
T4CON GPT1 Timer 4 Control Register

- - - - - - - - Y Y Y Y Y Y Y YT4IC

- - - - - - - - Y Y Y Y Y Y Y Y

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

2n n=3...10

2n n=3...10

2n n=3...10

T2EUD

T2IN

CPU Clock

CPU Clock

CPU Clock

T3EUD

T4IN

T3IN

T4EUD

GPT1 Timer T2

GPT1 Timer T3

GPT1 Timer T4

T3OTL

Reload
Capture

U/D

U/D

Reload

Capture

Interrupt
Request

Interrupt
Request

Interrupt
Request

T3OUT

U/D

P5.15

P3.7

P3.6

P3.4

P3.5

P5.14

P3.3

T2 Mode
Control

T3 Mode
Control

T4 Mode
Control

UM0407 The general purpose timer units

 215/541

9.1.1 GPT1 core timer T3

The core timer T3 is configured and controlled via its bit-addressable control register
T3CON.

T3CON (FF42h / A1h) SFR Reset Value: 0000h

Note: For the effects of bit T3UD and T3UDE refer to the direction Table 32: GPT1 core timer T3
count direction control on page 216.

Timer 3 run bit

The timer can be started or stopped by software through bit T3R (Timer T3 Run bit). If
T3R=‘0’, the timer stops. Setting T3R to ‘1’ will start the timer.
In gated timer mode, the timer will only run if T3R=‘1’ and the gate is active (high or low, as
programmed).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - T3OTL T3OE T3UDE T3UD T3R T3M T3I

RW RW RW RW RW RW RW RW RW RW RW

Table 31. T3CON register description

Bit Function

T3I
Timer 3 Input Selection - Depends on the operating mode, see respective
sections.

T3M

Timer 3 Mode Control (Basic Operating Mode)

0 0 0:Timer Mode
0 0 1:Counter Mode
0 1 0:Gated Timer with Gate active low
0 1 1:Gated Timer with Gate active high
1 0 X:Reserved (do not use this combination)
1 1 0:Incremental interface mode
1 1 1:Reserved (do not use this combination)

T3R

Timer 3 Run bit

‘0’:Timer / Counter 3 stops
‘1’:Timer / Counter 3 runs

T3UD Timer 3 Up / Down Control 1

T3UDE Timer 3 External Up/Down Enable 1

T3OE

Alternate Output Function Enable

‘0’:Alternate Output Function Disabled

‘1’:Alternate Output Function Enabled

T3OTL
Timer 3 Output Toggle Latch

Toggles on each overflow / underflow of T3. Can be set or reset by software.

The general purpose timer units UM0407

216/541

Count direction control

The count direction of the core timer can be controlled either by software or by the external
input pin T3EUD (Timer T3 External Up/Down Control Input), which is the alternate input
function of port pin P3.4.

These options are selected by bit T3UD and T3UDE in control register T3CON. When the
up/down control is done by software (bit T3UDE=‘0’), the count direction can be altered by
setting or clearing bit T3UD.

When T3UDE=‘1’, pin T3EUD is selected to be the controlling source of the count direction.
However, bit T3UD can still be used to reverse the actual count direction, as shown in the
Table 32.

If T3UD=‘0’ and pin T3EUD is at low level, the timer is counting up. With a high level at
T3EUD the timer is counting down.

If T3UD=‘1’, a high level at pin T3EUD specifies counting up, and a low level specifies
counting down. The count direction can be changed regardless of whether the timer is
running or not.

When pin T3EUD/P3.4 is used as external count direction control input, it must be
configured as input, its corresponding direction control bit DP3.4 must be set to ‘0’.

Note: The direction control works the same for core timer T3 and for auxiliary timers T2 and T4.
Therefore the pins and bits are named Tx...

Timer 3 output toggle latch

An overflow or underflow of timer T3 will clock the toggle bit T3OTL in control register
T3CON. T3OTL can also be set or reset by software.

Bit T3OE (Alternate Output Function Enable) in register T3CON enables the state of T3OTL
to be an alternate function of the external output pin T3OUT/P3.3. For that purpose, a ‘1’
must be written into port data latch P3.3 and pin T3OUT/P3.3 must be configured as output
by setting direction control bit DP3.3 to ‘1’. If T3OE=‘1’, pin T3OUT then outputs the state of
T3OTL. If T3OE=‘0’, pin T3OUT can be used as general purpose I/O pin.

In addition, T3OTL can be used in conjunction with the timer over/underflows as an input for
the counter function or as a trigger source for the reload function of the auxiliary timers T2
and T4.

For this purpose, the state of T3OTL does not have to be available at pin T3OUT, because
an internal connection is provided for this option.

Table 32. GPT1 core timer T3 count direction control

Pin TxEUD Bit TxUDE Bit TxUD Count direction

X 0 0 Count up

X 0 1 Count down

0 1 0 Count up

1 1 0 Count down

0 1 1 Count down

1 1 1 Count up

UM0407 The general purpose timer units

 217/541

Timer 3 in timer mode

Timer mode for the core timer T3 is selected by setting bit-field T3M in register T3CON to
‘000b’. In this mode, T3 is clocked with the internal system clock (CPU clock) divided by a
programmable pre-scaler, which is selected by bit-field T3I.

The input frequency fT3 for timer T3 and its resolution rT3 are scaled linearly with lower clock
frequencies fCPU, as can be seen from the following formula:

Figure 79. Core timer T3 in timer mode

The timer resolutions which result from the selected pre-scaler option are listed in the
Table 33. This table also applies to the Gated Timer Mode of T3 and to the auxiliary timers
T2 and T4 in timer and gated timer mode.

Refer to the device datasheet for a table of timer input frequencies, resolution and periods
for the range of pre-scaler options.

Timer 3 in gated timer mode

Gated timer mode for the core timer T3 is selected by setting bit-field T3M in register
T3CON to ‘010b’ or ‘011b’. Bit T3M.0 (T3CON.3) selects the active level of the gate input. In
gated timer mode the same options for the input frequency as for the timer mode are
available.

Table 33. GPT1 timer resolutions

Timer Input Selection T2I / T3I / T4I

000b 001b 010b 011b 100b 101b 110b 111b

Pre-scaler factor 8 16 32 64 128 256 512 1024

Resolution in CPU clock
cycles

8 16 32 64 128 256 512 1024

fT3 =
fCPU

8 x 2(T3I)

rT3 [ms] =
fCPU [MHz]
8 x 2(T3I)

X

T3l

CPU
Clock

T3R

MUX

T3UDE

Core Timer T3 T3IR Interrupt
Request

T3OTL

T3OE

T3OUT
Up/Down

XOR 1

0

T3UD

T3EUD
P3.4

P3.3

The general purpose timer units UM0407

218/541

However, the input clock to the timer in this mode is gated by the external input pin T3IN
(Timer T3 External Input), which is an alternate function of P3.6. To enable this operation pin
T3IN/P3.6 must be configured as input, and direction control bit DP3.6 must contain ‘0’ (see
Figure 80). If T3M.0=‘0’, the timer is enabled when T3IN shows a low level. A high level at
this pin stops the timer. If T3M.0=‘1’, pin T3IN must have a high level in order to enable the
timer. In addition, the timer can be turned on or off by software using bit T3R. The timer will
only run, if T3R=‘1’ and the gate is active. It will stop, if either T3R=‘0’ or the gate is inactive.

Note: A transition of the gate signal at pin T3IN does not cause an interrupt request.

Timer 3 in counter mode

Counter mode for the core timer T3 is selected by setting bit-field T3M in register T3CON to
‘001b’. In counter mode timer T3 is clocked by a transition at the external input pin T3IN,
which is an alternate function of P3.6.

The event causing an increment or decrement of the timer can be a positive, a negative, or
both a positive and a negative transition at this pin. Bit-field T3I in control register T3CON
selects the triggering transition (see Table 34 on page 219).

Figure 80. Core timer T3 in gated timer mode

Figure 81. Core timer T3 in counter mode

X

T3l

CPU
Clock

T3R

MUX

T3UDE

Core Timer T3 T3IR Interrupt
Request

T3OTL

T3OE

T3OUTUp/Down

XOR 1

0

T3UD

T3EUD

T3M

T3IN

P3.3

P3.4

P3.6

T3l T3R

MUX

T3UDE

Core Timer T3 T3IR Interrupt
Request

T3OTL

T3OE

T3OUT
Up/Down

XOR 1

0

T3UD

T3EUD

T3IN

Edge
Select

P3.6

P3.4

P3.3

UM0407 The general purpose timer units

 219/541

For counter operation, pin T3IN / P3.6 must be configured as input, and direction control bit
DP3.6 must be ‘0’. The maximum input frequency which is allowed in counter mode is
fCPU / 16.

To ensure that a transition of the count input signal which is applied to T3IN is correctly
recognized, its level should be held high or low for at least 8 CPU clock cycles before it
changes.

Timer 3 in incremental interface mode

Incremental interface mode for the core timer T3 is selected by setting bit-field T3M in
register T3CON to ‘110b’. In incremental interface mode the two inputs associated with
timer T3 (T3IN T3EUD) are used to interface to an incremental encoder. T3 is clocked by
each transition on one or both of the external input pins which gives 2-fold or 4-fold
resolution to the encoder input (see Figure 82 on page 220).

Bit-field T3I in control register T3CON selects the triggering transitions (see Table 35 on
page 220). In this mode the sequence of the transitions of the two input signals is evaluated
and generates count pulses as well as the direction signal.

So T3 is modified automatically according to the speed and the direction of the incremental
encoder and its contents, therefore, always represent the encoder’s current position.

The incremental encoder can be connected directly to the MCU without external interface
logic. In a standard system, however, comparators will be employed to convert the encoder’s
differential outputs (as A and A) to digital signals (as A) digital signals. This greatly
increases noise immunity.

The third encoder output ‘T0 T0’ which indicates the mechanical zero position, may be
connected to an external interrupt input and trigger a reset timer T3 (for example, via PEC
transfer from ZEROS) (see Figure 83 on page 220).

Table 34. GPT1 core timer T3 (counter mode) input edge selection

T3I Triggering edge for counter increment / decrement

0 0 0 None. Counter T3 is disabled

0 0 1 Positive transition (rising edge) on T3IN

0 1 0 Negative transition (falling edge) on T3IN

0 1 1 Any transition (rising or falling edge) on T3IN

1 X X Reserved. Do not use this combination

The general purpose timer units UM0407

220/541

Figure 82. Core timer T3 in incremental interface mode

Figure 83. Connection of the encoder to the ST10F272Zx

For incremental interface operation the following conditions must be met

● Bit-field T3M must be ‘110b’

● Both pins T3IN and T3EUD must be configured as input, at the respective direction
control bit with ‘0’.

● Bit T3EUD must be ‘1’ to enable automatic direction control.

The maximum allowed input frequency in incremental interface mode is fCPU / 16. To ensure
correct recognition of the transition of any input signal, its level should be held high or low for
at least 8 CPU clock cycles.

In incremental interface mode, the count direction is automatically derived from the
sequence in which the input signals change.

This corresponds to the rotation direction of the connected sensor. The table below
summarizes the possible combinations.

Table 35. GPT1 core timer T3 (incremental interface mode) input edge selection

T3I Triggering edge for counter increment/decrement

000 None. Counter stops

001 Any transition (rising or falling edge) on T3IN

010 Any transition (rising or falling edge) on T3EUD

011 Any transition (rising or falling edge) on T3 input (T3IN or T3EUD)

1XX Reserved. Do not use this combination

edge detect

phase detect

T3

MUX

T3IR

T3OTL

T3R

T3OUT

T3OE

XOR

Up/Down

T3UD

T3EUD

T3IN
P3.6

P3.4

P3.3

T3input

T3input

Interrupt

ST10F272Zx

A

B

T0

A

A

B

B

T0

T0

E
N

C
O

D
E

R

Signal Conditioning

UM0407 The general purpose timer units

 221/541

The Figure 84 gives examples of T3’s operation, visualizing count signal generation and
direction control.

It also shows how input jitter is compensated. This might occur if the sensor stays near to
one of the switching points.

Figure 84. Evaluation of the incremental encoder signals

Figure 85. Evaluation of the incremental encoder signals

Table 36. Incremental interface count with regard to encoder’s inputs

Level on
respective other

input

T3IN Input T3EUD Input

Rising Falling Rising Falling

High Down Up Up Down

Low Up Down Down Up

forward jitter backward jitter forward

T3IN

T3EUD

Contents
of T3

up down up

Note: This example shows the timer behavior assuming that T3 counts upon any transition on any input, T3I = ‘011b’

forward jitter backward jitter forward

T3IN

T3EUD

Contents
of T3

up down up

Note: This example shows the timer behavior assuming that T3 counts upon any transition on T3IN input, T3I = ‘011b’

The general purpose timer units UM0407

222/541

Note: Timer 3 operating in incremental interface mode automatically provides information on the
sensor’s current position. Dynamic information (speed, acceleration, deceleration) may be
obtained by measuring the incoming signal periods. This is facilitated by an additional
special capture mode for timer T5.

9.1.2 GPT1 auxiliary timers T2 and T4

Both auxiliary timers T2 and T4 have exactly the same functionality. They can be configured
like timer, gated timer, or counter mode with the same options for the timer frequencies and
the count signal as the core timer T3. In addition to these 3 counting modes, the auxiliary
timers can be concatenated with the core timer, or they may be used as reload or capture
registers in conjunction with the core timer. The auxiliary timers have no output toggle latch
and no alternate output function.

The individual configuration for timers T2 and T4 is determined by their bit-addressable
control registers T2CON and T4CON, which are both organized identically.

Note that functions which are present in all the 3 timers of block GPT1 are controlled in the
same bit positions and in the same manner in each of the specific control registers.

T2CON (FF40h / A0h) SFR Reset Value: 0000h

T4CON (FF44h / A2h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - T2UDE T2UD T2R T2M T2I

RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - T4UDET4UD T4R T4M T4I

RW RW RW RW RW

Table 37. T2CON and T4CON registers description

Bit Function

TxI
Timer x Input Selection

Depends on the Operating Mode, see respective sections.

TxM

Timer x Mode Control (Basic Operating Mode)

0 0 0:Timer Mode
0 0 1:Counter Mode
0 1 0:Gated Timer with Gate active low
0 1 1:Gated Timer with Gate active high
1 0 0:Reload Mode
1 0 1:Capture Mode
1 1 0:Incremental interface mode
1 1 1:Reserved (do not use this combination)

TxR
Timer x Run bit

‘0’:Timer / Counter x stops
‘1’:Timer / Counter x runs

UM0407 The general purpose timer units

 223/541

Count direction control for auxiliary timers

The count direction of the auxiliary timers can be controlled in the same way as for the core
timer T3. The description and the table apply accordingly.

Timers T2 and T4 in timer mode or gated timer mode

When the auxiliary timers T2 and T4 are programmed to timer mode or gated timer mode,
their operation is the same as described for the core timer T3. The descriptions, figures and
tables apply accordingly with one exception: There is no output toggle latch and no alternate
output pin for T2 and T4.

Timers T2 and T4 in counter mode

Counter mode for the auxiliary timers T2 and T4 is selected by setting bit-field TxM in the
respective register TxCON to ‘001b’. In counter mode timers T2 and T4 can be clocked
either by a transition at the respective external input pin TxIN, or by a transition of timer T3’s
output toggle latch T3OTL (see Figure 86 on page 224).

The event causing an increment or decrement of a timer can be a positive, a negative, or
both a positive and a negative transition at either the respective input pin, or at the toggle
latch T3OTL. Bit-field TxI in the respective control register TxCON selects the triggering
transition (see Table 38 on page 224).

Note: Only transitions of T3OTL which are caused by the overflows/underflows of T3 will trigger
the counter function of T2 / T4. Modifications of T3OTL via software will NOT trigger the
counter function of T2 / T4.

For counter operation, pin TxIN must be configured as input, the respective direction control
bit must be ‘0’. The maximum input frequency which is allowed in counter mode is fCPU / 8.
To ensure that a transition of the count input signal which is applied to TxIN is correctly
recognized, its level should be held for at least 8 CPU clock cycles before it changes.

TxUD Timer x Up / Down Control (1)

TxUDE Timer x External Up/Down Enable (1)

1. For the effects of bit TxUD and TxUDE refer to the direction Table 35 on page 220 in T3 section.

Table 37. T2CON and T4CON registers description (continued)

Bit Function

The general purpose timer units UM0407

224/541

Figure 86. Auxiliary timer in counter mode

Timer concatenation

Using the toggle bit T3OTL as a clock source for an auxiliary timer in counter mode
concatenates the core timer T3 with the respective auxiliary timer. Depending on which
transition of T3OTL is selected to clock the auxiliary timer, this concatenation forms a 32-bit
or a 33-bit timer/counter.

● 32-bit timer/counter: If both a positive and a negative transition of T3OTL is used to
clock the auxiliary timer, this timer is clocked on every overflow/underflow of the core
timer T3. Thus, the two timers form a 32-bit timer.

● 33-bit timer/counter: If either a positive or a negative transition of T3OTL is selected to
clock the auxiliary timer, this timer is clocked on every second overflow/underflow of the
core timer T3. This configuration forms a 33-bit timer (16-bit core timer+T3OTL+16-bit
auxiliary timer).

The count directions of the two concatenated timers are not required to be the same. This
offers a wide variety of different configurations.

T3 can operate in timer, gated timer or counter mode in this case (see Figure 87 on
page 225).

Auxiliary timer in reload mode

Reload mode for the auxiliary timers T2 and T4 is selected by setting bit-field TxM in the
respective register TxCON to ‘100b’. In reload mode the core timer T3 is reloaded with the

Table 38. GPT1 auxiliary timer (counter mode) input edge selection

T2I / T4I Triggering edge for counter increment / decrement

X 0 0 None. Counter Tx is disabled

0 0 1 Positive transition (rising edge) on TxIN

0 1 0 Negative transition (falling edge) on TxIN

0 1 1 Any transition (rising or falling edge) on TxIN

1 0 1 Positive transition (rising edge) of output toggle latch T3OTL

1 1 0 Negative transition (falling edge) of output toggle latch T3OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T3OTL

Txl TxR

MUX

TxUDE

Auxiliary Timer Tx TxIR Interrupt
Request

Up/Down

XOR 1

0

TxUD

TxEUD

TxIN

x = 2,4

Edge
Select

P3.7,
P3.5

P5.15,
P5.14

UM0407 The general purpose timer units

 225/541

contents of an auxiliary timer register, triggered by one of two different signals. The trigger
signal is selected the same way as the clock source for counter mode (see Table 38 on
page 224). A transition of the auxiliary timer’s input or the output toggle latch T3OTL may
trigger the reload.

Note: When programmed for reload mode, the respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

Figure 87. Concatenation of core timer T3 and an auxiliary timer

Figure 88. GPT1 auxiliary timer in reload mode

Upon a trigger signal T3 is loaded with the contents of the respective timer register (T2 or
T4) and the interrupt request flag (T2IR or T4IR) is set.

Note: When a T3OTL transition is selected for the trigger signal, also the interrupt request flag
T3IR will be set upon a trigger, indicating T3’s overflow or underflow.
Modifications of T3OTL via software will NOT trigger the counter function of T2/T4.

Txl TxR

Auxiliary Timer Tx TxIR Interrupt
Request

T3OTL

Edge
Select

x = 2,4

T3OE

T3IR Interrupt

1)

Core Timer T3

T3R Up/Down

X

T3l

CPU
Clock

Request

T3OUT
P3.3

1): Line only affected by over/underflows of T3 but NOT by software modifications of T3OTL bit

Txl

Reload Register Tx

TxIR Interrupt
Request

Source/Edge
Select

x = 2, 4

Core Timer T3

Up/Down

Input
Clock T3IR Interrupt

Request

T3OTL

T3OE

T3OUT
P3.3

TxIN
P3.7

1)

P3.5

1): Line only affected by over/underflows of T3 but NOT by software modifications of T3OTL bit

The general purpose timer units UM0407

226/541

The reload mode triggered by T3OTL can be used in a number of different configurations.
Depending on the selected active transition the following functions can be performed:

● If both a positive and a negative transition of T3OTL is selected to trigger a reload, the
core timer will be reloaded with the contents of the auxiliary timer each time it overflows
or underflows. This is the standard reload mode (reload on overflow/underflow).

● If either a positive or a negative transition of T3OTL is selected to trigger a reload, the
core timer will be reloaded with the contents of the auxiliary timer on every second
overflow or underflow.

● Using this “single-transition” mode for both auxiliary timers allows to perform very
flexible pulse width modulation (PWM). One of the auxiliary timers is programmed to
reload the core timer on a positive transition of T3OTL, the other is programmed for a
reload on a negative transition of T3OTL. With this combination the core timer is
alternately reloaded from the two auxiliary timers.

Figure 89 on page 227 shows an example for the generation of a PWM signal using the
alternate reload mechanism.

T2 defines the high time of the PWM signal (reloaded on positive transitions) and T4 defines
the low time of the PWM signal (reloaded on negative transitions).

The PWM signal can be output on T3OUT with T3OE = ‘1’, P3.3 = ‘1’ and DP3.3 = ‘1’. With
this method the high and low time of the PWM signal can be varied in a wide range.

Note: The output toggle latch T3OTL is software accessible and may be changed, if required, to
modify the PWM signal. However, this will NOT trigger the reload of T3.

Avoid selecting the same reload trigger event for both auxiliary timers as both reload
registers will try to load the core timer at the same time. If this happens, T2 is disregarded
and the contents of T4 is reloaded.

UM0407 The general purpose timer units

 227/541

Figure 89. GPT1 timer reload configuration for PWM generation

Auxiliary timer in capture mode

Capture mode for the auxiliary timers T2 and T4 is selected by setting bit-field TxM in the
respective register TxCON to ‘101b’.

In capture mode the contents of the core timer are latched into an auxiliary timer register in
response to a signal transition at the respective auxiliary timer's external input pin TxIN.

The capture trigger signal can be a positive, a negative, or both a positive and a negative
transition.

The two least significant bit of bit-field TxI are used to select the active transition (see table
in the counter mode section), while the most significant bit TxI.2 is irrelevant for capture
mode. It is recommended to keep this bit cleared (TxI.2 = ‘0’).

Note: When programmed for capture mode, the respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

T2l

T4l

Reload Register T2

T2IR
Interrupt

Core Timer T3

Up/Down

Input
Clock T3OTL

Interrupt
T3IR

T3OE

T3OUT
P3.3

Reload Register T4

T4IR Interrupt

1)

1) Request

Request

Request

1): Lines only affected by over/underflows of T3, but NOT by software modifications of T3OTL bit.

The general purpose timer units UM0407

228/541

Figure 90. GPT1 auxiliary timer in capture mode

Upon a trigger (selected transition) at the corresponding input pin TxIN the contents of the
core timer are loaded into the auxiliary timer register and the associated interrupt request
flag TxIR will be set.

Note: The direction control bit DP3.7 (for T2IN) and DP3.5 (for T4IN) must be set to '0', and the
level of the capture trigger signal should be held high or low for at least 8 CPU clock cycles
before it changes to ensure correct edge detection.

9.1.3 Interrupt control for GPT1 timers

When a timer overflows from FFFFh to 0000h (when counting up), or when it underflows
from 0000h to FFFFh (when counting down), its interrupt request flag (T2IR, T3IR or T4IR)
in register TxIC will be set. This will cause an interrupt to the respective timer interrupt
vector (T2INT, T3INT or T4INT) or trigger a PEC service, if the respective interrupt enable
bit (T2IE, T3IE or T4IE in register TxIC) is set. There is an interrupt control register for each
of the three timers.

T2IC (FF60h / B0h) SFR Reset Value: - - 00h

T3IC (FF62h / B1h) SFR Reset Value: - - 00h

T4IC (FF64h / B2h) SFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

Txl

Capture Register Tx

TxIR Interrupt
Request

Edge
Select

x = 2, 4

Core Timer T3

Up/Down

Input
Clock T3IR Interrupt

Request

T3OTL

T3OE

T3OUT
P3.3

TxIN
P3.7
P3.5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T2IR T2IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T3IR T3IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T4IR T4IE ILVL GLVL

RW RW RW RW

UM0407 The general purpose timer units

 229/541

9.2 Timer block GPT2
From a programmer's point of view, the GPT2 block is represented by a set of SFRs. The I/O
of port and direction registers which are used for alternate functions by the GPT2 block are
noted ‘Y’ in Figure 91.

Timer block GPT2 supports high precision event control with a maximum resolution of 4
CPU clock cycles. It includes the two timers T5 and T6, and the 16-bit capture/reload
register CAPREL. Timer T6 is referred to as the core timer, and T5 is referred to as the
auxiliary timer of GPT2.

Each timer has an alternate associated input pin which serves as the gate control in gated
timer mode, or as the count input in counter mode. The count direction (Up / Down) may be
programmed via software or may be dynamically altered by a signal at an external control
input pin. An overflow/underflow of T6 is indicated by the output toggle bit T6OTL whose
state may be output on an alternate function port pin. In addition, T6 may be reloaded with
the contents of CAPREL.

The toggle bit also supports the concatenation of T6 with auxiliary timer T5, while
concatenation of T6 with the timers of the CAPCOM units is provided through a direct
connection.

Triggered by an external signal, the contents of T5 can be captured into register CAPREL,
and T5 may optionally be cleared. Both timer T6 and T5 can count up or down, and the
current timer value can be read or modified by the CPU in the non bit-addressable SFRs T5
and T6.

Figure 91. SFRs and port pins associated with timer block GPT2

Ports & Direction Control Alternate functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

-

6

-

5

-

4

-

3

-

2

Y

1

Y

0

-ODP3 E T5

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - - - - - - Y Y -DP3

- - - - - - - - - - - - - Y Y -P3

- - Y Y Y Y - - - - - - - - - -P5

T6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CAPREL Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers

Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YT5CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT6CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5IC

- - - - - - - - Y Y Y Y Y Y Y YT6IC

- - - - - - - - Y Y Y Y Y Y Y YCRIC

- - - - - - - - Y Y Y Y Y Y Y Y

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
P3 Port3 Data Register
P5 Port5 Data Register
T5CON GPT2 Timer 5 Control Register
T6CON GPT2 Timer 6 Control Register

T5IN/P5.13 T5EUD/P5.11
T6IN/P5.12 T6EUD/P5.10
CAPIN/P3.2 T6OUT/P3.1

T5 GPT2 Timer 5 Register
T6 GPT2 Timer 6 Register
CAPREL GPT2 Capture/Reload Register
T5IC GPT2 Timer 5 Interrupt Control Register
T6IC GPT2 Timer 6 Interrupt Control Register
CRIC GPT2 CAPREL Interrupt Control Register

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

The general purpose timer units UM0407

230/541

Figure 92. GPT2 block diagram

9.2.1 GPT2 core timer T6

The operation of the core timer T6 is controlled by its bit-addressable control register
T6CON.

T6CON (FF48h / A4h) SFR Reset Value: 0000h

2n n=2...9

2n n=2...9

T5EUD

T5IN

CPU Clock

CPU Clock

T6IN

T6EUD

T5
Mode
Control

T5
Mode
Control

GPT2 Timer T5

GPT2 Timer T6

U/D

Interrupt

Request

Up/Down

GPT2 CAPREL

T6OTL T6OUT

CAPIN

Reload Interrupt

Request

to CAPCOM

Timers

Capture

Clear

Interrupt

Request

P5.11

P5.13

P5.12

P3.2

P5.10

P3.1

T0, T1, T7, T8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T6SR - - - - T6OTL T6OET6UDET6UD T6R T6M T6I

RW RW RW RW RW RW RW RW

Table 39. T6CON register description

Bit Function

T6I
Timer 6 Input Selection

Depends on the Operating Mode, see respective sections.

T6M

Timer 6 Mode Control (Basic Operating Mode)

0 0 0:Timer Mode
0 0 1:Counter Mode
0 1 0:Gated Timer with Gate active low
0 1 1:Gated Timer with Gate active high
1 X X:Reserved. Do not use this combination.

UM0407 The general purpose timer units

 231/541

Note: 1 For the effects of bit T6UD and T6UDE refer to Table 40 on page 231.

Timer 6 run bit

The timer can be started or stopped by software through bit T6R (Timer T6 Run bit). If
T6R = ‘0’, the timer stops. Setting T6R to ‘1’ will start the timer. In gated timer mode, the
timer will only run if T6R = ‘1’ and the gate is active (high or low, as programmed).

Count direction control

The count direction of the core timer can be controlled either by software, or by the external
input pin T6EUD (Timer T6 External Up/Down Control Input), which is the alternate input
function of port pin P5.10. These options are selected by bit T6UD and T6UDE in control
register T6CON. When the up/down control is done by software (bit T6UDE = ‘0’), the count
direction can be altered by setting or clearing bit T6UD. When T6UDE = ‘1’, pin T6EUD is
selected to be the controlling source of the count direction.

However, bit T6UD can still be used to reverse the actual count direction, as shown in the
Table 40. If T6UD = ‘0’ and pin T6EUD shows a low level, the timer is counting up. With a
high level at T6EUD the timer is counting down. If T6UD = ‘1’, a high level at pin T6EUD
specifies counting up, and a low level specifies counting down. The count direction can be
changed regardless of whether the timer is running or not.

T6R
Timer 6 Run bit

‘0’:Timer / Counter 6 stops
‘1’:Timer / Counter 6 runs

T6UD Timer 6 Up / Down Control 1

T6UDE Timer 6 External Up/Down Enable 1

T6OE
Alternate Output Function Enable

T6OE = ‘0’:Alternate Output Function Disabled
T6OE = ‘1’:Alternate Output Function Enabled

T6OTL
Timer 6 Output Toggle Latch

Toggles on each overflow / underflow of T6. Can be set or reset by software.

T6SR
Timer 6 Reload Mode Enable

T6SR = ‘0’:Reload from register CAPREL Disabled
T6SR = ‘1’:Reload from register CAPREL Enabled

Table 39. T6CON register description (continued)

Bit Function

Table 40. GPT2 core timer T6 count direction control

Pin TxEUD Bit TxUDE Bit TxUD Count direction

X 0 0 Count up

X 0 1 Count down

0 1 0 Count up

1 1 0 Count down

The general purpose timer units UM0407

232/541

Note: The direction control works the same for core timer T6 and for auxiliary timer T5. Therefore
the pins and bit are named Tx...

Timer 6 output toggle latch

An overflow or underflow of timer T6 will clock the toggle bit T6OTL in control register
T6CON. T6OTL can also be set or reset by software. Bit T6OE (Alternate Output Function
Enable) in register T6CON enables the state of T6OTL to be an alternate function of the
external output pin T6OUT / P3.1. For that purpose, a ‘1’ must be written into port data latch
P3.1 and pin T6OUT / P3.1 must be configured as output by setting direction control bit
DP3.1 to ‘1’. If T6OE = ‘1’, pin T6OUT then outputs the state of T6OTL. If T6OE = ‘0’, pin
T6OUT can be used as general purpose I/O pin.

In addition, T6OTL can be used in conjunction with the timer over/underflows as an input for
the counter function of the auxiliary timer T5. For this purpose, the state of T6OTL does not
have to be available at pin T6OUT, because an internal connection is provided for this
option.

An overflow or underflow of timer T6 can also be used to clock the timers in the CAPCOM
units. For this purpose, there is a direct internal connection between timer T6 and the
CAPCOM timers.

Timer 6 in timer mode

Timer mode for the core timer T6 is selected by setting bit-field T6M in register T6CON to
‘000b’. In this mode, T6 is clocked with the internal system clock divided by a programmable
pre-scaler, which is selected by bit-field T6I. The input frequency fT6 for timer T6 and its
resolution rT6 are scaled linearly with lower clock frequencies fCPU, as can be seen from the
following formula:

0 1 1 Count down

1 1 1 Count up

Table 40. GPT2 core timer T6 count direction control

Pin TxEUD Bit TxUDE Bit TxUD Count direction

fT6 =
fCPU

4 x 2(T6I) rT6 [ms] =
fCPU [MHz]
4 x 2(T6I)

UM0407 The general purpose timer units

 233/541

Figure 93. Block diagram of core timer T6 in timer mode

The timer resolutions which result from the selected pre-scaler option are listed in the
Table 41. This table also applies to the Gated Timer Mode of T6 and to the auxiliary timer T5
in timer and gated timer mode.

Refer to the device datasheet for a table of timer input frequencies, resolution and periods
for the range of pre-scaler options.

Timer 6 in gated mode

Gated timer mode for the core timer T6 is selected by setting bit-field T6M in register
T6CON to ‘010b’ or ‘011b’. Bit T6M.0 (T6CON.3) selects the active level of the gate input. In
gated timer mode the same options for the input frequency as for the timer mode are
available. However, the input clock to the timer in this mode is gated by the external input pin
T6IN (Timer T6 External Input), which is an alternate function of P5.12 (see Figure 94 on
page 234). If T6M.0 = ‘0’, the timer is enabled when T6IN shows a low level. A high level at
this pin stops the timer. If T6M.0 = ‘1’, pin T6IN must have a high level in order to enable the
timer. In addition, the timer can be turned on or off by software using bit T6R. The timer will
only run, if T6R = ‘1’ and the gate is active. It will stop, if either T6R = ‘0’ or the gate is
inactive.

Note: A transition of the gate signal at pin T6IN does not cause an interrupt request.

Timer 6 in counter mode

Counter mode for the core timer T6 is selected by setting bit-field T6M in register T6CON to
‘001b’. In counter mode timer T6 is clocked by a transition at the external input pin T6IN,
which is an alternate function of P5.12. The event causing an increment or decrement of the

Table 41. GPT2 timer resolution

Timer Input Selection T5I / T6I

000b 001b 010b 011b 100b 101b 110b 111b

Pre-scaler factor 4 8 16 32 64 128 256 512

Resolution in CPU clock
cycles

4 8 16 32 64 128 256 512

T6R

MUX

T6UDE

Core Timer T6 T6IR Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6l

Edge
Select

T6IN

P5.10

P5.12

P3.1

The general purpose timer units UM0407

234/541

timer can be a positive, a negative, or both a positive and a negative transition at this pin.
Bit-field T6I in control register T6CON selects the triggering transition (see Table 40 on
page 231).

Figure 94. Block diagram of core timer T6 in gated timer mode

Figure 95. Block diagram of core timer T6 in counter mode

The maximum input frequency which is allowed in counter mode is fCPU / 8. To ensure that a
transition of the count input signal which is applied to T6IN is correctly recognized, its level
should be held high or low for at least 4 CPU clock cycles before it changes.

Table 42. GPT2 core timer T6 (counter mode) input edge selection

T6I Triggering edge for counter increment / decrement

0 0 0 None. Counter T6 is disabled

0 0 1 Positive transition (rising edge) on T6IN

0 1 0 Negative transition (falling edge) on T6IN

0 1 1 Any transition (rising or falling edge) on T6IN

X

T6l

CPU
Clock

T6R

MUX

T6UDE

Core Timer T6 T6IR Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6M

T6IN
P5.12

P5.10

P3.1

Gate
Control

Edge
Select

T6R

MUX

T6UDE

Core Timer T6 T6IR Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6M

T6IN
P5.12

P5.10

P3.1

UM0407 The general purpose timer units

 235/541

GPT2 auxiliary timer T5

The auxiliary timer T5 can be configured for timer, gated timer, or counter mode with the
same options for the timer frequencies and the count signal as the core timer T6. In addition
to these 3 counting modes, the auxiliary timer can be concatenated with the core timer. The
auxiliary timer has no output toggle latch and no alternate output function. The individual
configuration for timer T5 is determined by its bit-addressable control register T5CON. Note
that functions which are present in both timers of block GPT2 are controlled in the same bit
positions and in the same manner in each of the specific control registers.

T5CON (FF46h / A3h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5SC T5CLR CI - - CT3 T5UDE T5UD T5R - T5M T5I

RW RW RW RW RW RW RW RW RW

Table 43. T5CON register description

Bit Function

T5I
Timer 5 Input Selection

Depends on the Operating Mode, see respective sections.

T5M

Timer 5 Mode Control (Basic Operating Mode)

0 0:Timer Mode
0 1:Counter Mode
1 0:Gated Timer with Gate active low
1 1:Gated Timer with Gate active high

T5R
Timer 5 Run bit

T5R = ‘0’:Timer / Counter 5 stops
T5R = ‘1’:Timer / Counter 5 runs

T5UD Timer 5 Up / Down Control (1)

1. For the effects of bit TxUD and TxUDE refer to the direction Table 40 on page 231.

T5UDE Timer 5 External Up/Down Enable (1)

CT3
Capture Trigger 3

0:Inactive
1:Capture on Timer3 events

CI

Register CAPREL Input Selection

0 0:Capture disabled
0 1:Positive transition (rising edge) on CAPIN
1 0:Negative transition (falling edge) on CAPIN
1 1:Any transition (rising or falling edge) on CAPIN

T5CLR
Timer 5 Clear bit

‘0’:Timer 5 not cleared on a capture
‘1’:Timer 5 is cleared on a capture

T5SC
Timer 5 Capture Mode Enable

‘0’:Capture into register CAPREL Disabled
‘1’:Capture into register CAPREL Enabled

The general purpose timer units UM0407

236/541

Count direction control for auxiliary timer

The count direction of the auxiliary timer can be controlled in the same way as for the core
timer T6. The description and the table apply accordingly.

Timer T5 in timer mode or gated timer mode

When the auxiliary timer T5 is programmed to timer mode or gated timer mode, its operation
is the same as described for the core timer T6. The descriptions, figures and tables apply
accordingly with one exception: There is no output toggle latch and no alternate output pin
for T5.

Timer T5 in counter mode

Counter mode for the auxiliary timer T5 is selected by setting bit-field T5M in register
T5CON to ‘001b’. In counter mode timer T5 can be clocked either by a transition at the
external input pin T5IN, or by a transition of timer T6’s output toggle latch T6OTL.

The event causing an increment or decrement of the timer can be a positive, a negative, or
both a positive and a negative transition at either the input pin, or at the toggle latch T6OTL
(see Figure 96 on page 236).

Bit-field T5I in control register T5CON selects the triggering transition (see Table 44 on
page 237).

Note: Only state transitions of T6OTL which are caused by the overflows/underflows of T6 will
trigger the counter function of T5. Modifications of T6OTL via software will NOT trigger the
counter function of T5.

The maximum input frequency allowed in counter mode is fCPU / 4. To ensure that a
transition of the count input signal which is applied to T5IN is correctly recognized, its level
should be held high or low for at least 4 CPU clock cycles before it changes.

Figure 96. Block diagram of auxiliary timer T5 in counter mode

T5R

MUX

T5UDE

Auxiliary Timer T5 T5IR Interrupt
Request

Up/Down

XOR 1

0

T5UD

T5EUD

T5l

Edge
Select

T5IN
P5.13

P5.11

UM0407 The general purpose timer units

 237/541

Timer concatenation

Using the toggle bit T6OTL as a clock source for the auxiliary timer in counter mode
concatenates the core timer T6 with the auxiliary timer. Depending on which transition of
T6OTL is selected to clock the auxiliary timer, this concatenation forms a 32-bit or a 33-bit
timer / counter.

● 32-bit Timer/Counter: If both a positive and a negative transition of T6OTL is used to
clock the auxiliary timer, this timer is clocked on every overflow/underflow of the core
timer T6. Thus, the two timers form a 32-bit timer.

● 33-bit Timer/Counter: If either a positive or a negative transition of T6OTL is selected to
clock the auxiliary timer, this timer is clocked on every second overflow/underflow of the
core timer T6. This configuration forms a 33-bit timer (16-bit core timer+T6OTL+16-bit
auxiliary timer).

The count directions of the two concatenated timers are not required to be the same. This
offers a wide variety of different configurations. T6 can operate in timer, gated timer or
counter mode in this case (see Table 97 on page 238).

GPT2 capture / reload register CAPREL in capture mode

This 16-bit register can be used as a capture register for the auxiliary timer T5. This mode is
selected by setting bit T5SC = ‘1’ in control register T5CON. Bit CT3 selects the external
input pin CAPIN or the input pins of timer T3 as the source for a capture trigger. Either a
positive, a negative, or both a positive and a negative transition at this pin can be selected to
trigger the capture function or transitions on input T3IN or input T3EUD or both inputs T3IN
and T3EUD. The active edge is controlled by bit-field CI in register T5CON. The maximum
input frequency for the capture trigger signal at CAPIN is fCPU / 4. To ensure that a transition
of the capture trigger signal is correctly recognized, its level should be held for at least four
CPU clock cycles before it changes.

When the timer T3 capture trigger is enabled (CT3 = ‘1’) the CAPREL register captures the
contents of T5 upon transitions of the selected input(s). These values can be used to
measure T3’s input signals. This is useful when T3 operates in incremental interface mode,
in order to derive dynamic information (speed, acceleration, deceleration) from the input
signals.

When a selected transition at the external input pin (CAPIN, T3IN, T3EUD) is detected, the
contents of the auxiliary timer T5 is latched into register CAPREL, and interrupt request flag
CRIR is set. With the same event, timer T5 can be cleared to 0000h. This option is
controlled by bit T5CLR in register T5CON. If T5CLR = ‘0’, the contents of timer T5 are not

Table 44. GPT2 auxiliary timer (counter mode) input edge selection

T5I Triggering edge for counter increment / decrement

X 0 0 None. Counter T5 is disabled

0 0 1 Positive transition (rising edge) on T5IN

0 1 0 Negative transition (falling edge) on T5IN

0 1 1 Any transition (rising or falling edge) on T5IN

1 0 1 Positive transition (rising edge) of output toggle latch T6OTL

1 1 0 Negative transition (falling edge) of output toggle latch T6OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T6OTL

The general purpose timer units UM0407

238/541

affected by a capture. If T5CLR = ‘1’, timer T5 is cleared after the current timer value has
been latched into register CAPREL.

Note: Bit T5SC only controls whether a capture is performed or not. If T5SC = ‘0’, the input pin
CAPIN can still be used to clear timer T5 or as an external interrupt input. This interrupt is
controlled by the CAPREL interrupt control register CRIC (see Figure 98 on page 238).

Figure 97. Concatenation of core timer T6 and auxiliary timer T5

Figure 98. GPT2 register CAPREL in capture mode

GPT2 capture / reload register CAPREL in reload mode

This 16-bit register can be used as a reload register for the core timer T6. This mode is
selected by setting bit T6SR = ‘1’ in register T6CON. The event causing a reload in this
mode is an overflow or underflow of the core timer T6.

When timer T6 overflows from FFFFh to 0000h or when it underflows from 0000h to FFFFh,
the value stored in register CAPREL is loaded into timer T6. This will not set the interrupt
request flag CRIR associated with the CAPREL register. However, interrupt request flag
T6IR will be set indicating the overflow / underflow of T6.

T5l T5R

Auxiliary Timer T5 T5IR Interrupt
Request

T6OTL

Edge
Select

T6OE

T6IR
Interrupt

1)

Core Timer T6

T6R Up/Down

X

T6l

CPU
Clock

T6OUT

Request

P3.1

1): Line only affected by over/underflows of T6 but NOT by software modifications of T6OTL.

Cl

Edge
Select

T5CLR

CAPIN
P3.2

T5SC

Auxiliary Timer T5

CAPREL Register

CRIR

T5IR
Interrupt
Request

Interrupt
Request

Up/Down

Input
Clock

T3IN
P3.6

T3EUD
P3.4

UM0407 The general purpose timer units

 239/541

Figure 99. GPT2 register CAPREL in reload mode

GPT2 capture / reload register CAPREL in capture-and-reload mode

Since the reload function and the capture function of register CAPREL can be enabled
individually by bit T5SC and T6SR, the two functions can be enabled simultaneously by
setting both bits. This feature can be used to generate an output frequency that is a multiple
of the input frequency (see Figure 100 on page 240).

This combined mode can be used to detect consecutive external events which may occur
periodically, but where a finer resolution, that means, more 'ticks' within the time between
two external events is required.

For this purpose, the time between the external events is measured using timer T5 and the
CAPREL register.

For example, Timer T5 runs in timer mode counting up with a frequency of fCPU / 32. The
external events are applied to pin CAPIN. When an external event occurs, the timer T5
contents are latched into register CAPREL, and timer T5 is cleared (T5CLR = ‘1’).

Thus, register CAPREL always contains the correct time between two events, measured in
timer T5 increments. Timer T6, which runs in timer mode counting down with a frequency of
fCPU / 4, uses the value in register CAPREL to perform a reload on underflow. This means,
the value in register CAPREL represents the time between two underflows of timer T6, now
measured in timer T6 increments. Since timer T6 runs 8 times faster than timer T5, it will
underflow 8 times within the time between two external events.

Thus, the underflow signal of timer T6 generates 8 'ticks'. Upon each underflow, the interrupt
request flag T6IR will be set and bit T6OTL will be toggled. The state of T6OTL may be
output on pin T6OUT. This signal has 8 times more transitions than the signal which is
applied to pin CAPIN.

The underflow signal of timer T6 can furthermore be used to clock one or more of the timers
of the CAPCOM units, which gives the user the possibility to set compare events based on a
finer resolution than that of the external events.

T6SR

CAPREL Register

T6OTL

InterruptCore Timer T6

Up/Down

Input
Clock T6IR

T6OE

To CAPCOM

T6OUT
P3.1

Request

Timers

The general purpose timer units UM0407

240/541

Figure 100. GPT2 register CAPREL in capture-and-reload mode

9.2.2 Interrupt control for GPT2 timers and CAPREL

When a timer overflows from FFFFh to 0000h (when counting up), or when it underflows
from 0000h to FFFFh (when counting down), its interrupt request flag (T5IR or T6IR) in
register TxIC will be set. Whenever a transition according to the selection in bit-field CI is
detected at pin CAPIN, interrupt request flag CRIR in register CRIC is set.

Setting any request flag will cause an interrupt to the respective timer or CAPREL interrupt
vector (T5INT, T6INT or CRINT) or trigger a PEC service, if the respective interrupt enable
bit (T5IE or T6IE in register TxIC, CRIE in register CRIC) is set. There is an interrupt control
register for each of the two timers and for the CAPREL register.

T5IC (FF66h / B3h) SFR Reset Value: - - 00h

T6IC (FF68h / B4h) SFR Reset Value: - - 00h

CRIC (FF6Ah / B5h) SFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers for an explanation of the control fields.

Cl

Edge
Select T5CLR

CAPIN
P3.2

T5SC

Auxiliary Timer T5

CAPREL Register

CRIR

T5IR
Interrupt
Request

Interrupt
Request

Up/Down

Input
Clock

Core Timer T6

T6OTL
T6OUT
P3.1

T6IR
Interrupt
Request
To CAPCOM
Timers

Up/Down

Input
Clock

T6SR T6OE

T0, T1, T7, T8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T5IR T5IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T6IR T6IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CRIR CRIE ILVL GLVL

RW RW RW RW

UM0407 Asynchronous / synchronous serial interface

 241/541

10 Asynchronous / synchronous serial interface

The asynchronous / synchronous serial interface ASC0 provides serial communication
between the ST10F272Z2 and other microcontrollers, microprocessors or external
peripherals.

In synchronous mode, data are transmitted or received synchronously to a shift clock which
is generated by the ST10F272Z2. In asynchronous mode, 8- or 9-bit data transfer, parity
generation, and the number of stop bits can be selected. Parity, framing, and overrun error
detection is provided to increase the reliability of data transfers. Transmission and reception
of data is double-buffered.

For multiprocessor communication, a mechanism to distinguish address from data byte is
included. Testing is supported by a loop-back option. A 13-bit baud rate generator provides
the ASC0 with a separate serial clock signal.

Figure 101. SFRs and port pins associated with ASC0

The operating mode of the serial channel ASC0 is controlled by its bit-addressable control
register S0CON. This register contains control bit for mode and error check selection, and
status flags for error identification.

S0CON (FFB0h / D8h) SFR Reset Value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0R S0LB S0BRS S0ODD - S0OE S0FE S0PE S0OEN S0FEN S0PEN S0REN S0STP S0M

RW RW RW RW RW RW RW RW RW RW RW RW RW

Ports & Direction Control Alternate functions Data Registers

15

-

14

-

13

-

12

-

11

Y

10

Y

9

-

8

-

7

-

6

-

5

-

4

-

3

-

2

-

1

-

0

-ODP3 E S0BG

15

-

14

-

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - Y Y - - - - - - - - - -DP3

- - - - Y Y - - - - - - - - - -P3

S0TBUF - - - - - - - Y Y Y Y Y Y Y Y Y

S0RBUF - - - - - - - Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

-

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YS0CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0TIC

- - - - - - - - Y Y Y Y Y Y Y YS0RIC

- - - - - - - - Y Y Y Y Y Y Y YS0EIC

- - - - - - - - Y Y Y Y Y Y Y Y

RXD0 / P3.11
TXD0 / P3.10

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
S0BG ASC0 Baud Rate Generator/Reload Register
S0TBUF ASC0 Transmit Buffer Register
S0TIC ASC0 Transmit Interrupt Control Register
S0TBIC ASC0 Transmit Buffer Interrupt Control Register

P3 Port3 Data Register
S0CON ASC0 Control Register
S0RBUF ASC0 Receive Buffer Register (read only)
S0RIC ASC0 Receive Interrupt Control Register
S0EIC ASC0 Error Interrupt Control Register

- - - - - - - - Y Y Y Y Y Y Y YS0TBIC E

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

Asynchronous / synchronous serial interface UM0407

242/541

Table 45. S0CON register description

Bit Function

S0M

ASC0 Mode Control

0 0 0:8-bit datasynchronous operation
0 0 1:8-bit dataasynchronous operation
0 1 0:Reserved. Do not use this combination
0 1 1:7-bit data + parity asynchronous operation
1 0 0:9-bit dataasynchronous operation
1 0 1:8-bit data + wake up bit asynchronous operation
1 1 0:Reserved. Do not use this combination
1 1 1:8-bit data + parity asynchronous operation

S0STP
Number of Stop bit Selection asynchronous operation

0: One stop bit
1: Two stop bit

S0REN

Receiver Enable bit

0: Receiver disabled
1: Receiver enabled

(Reset by hardware after reception of byte in synchronous mode)

S0PEN
Parity Check Enable bit asynchronous operation

0: Ignore parity
1: Check parity

S0FEN
Framing Check Enable bit asynchronous operation

0: Ignore framing errors
1: Check framing errors

S0OEN
Overrun Check Enable bit

0: Ignore overrun errors
1: Check overrun errors

S0PE
Parity Error Flag

Set by hardware on a parity error (S0PEN = ‘1’). Must be reset by software.

S0FE
Framing Error Flag

Set by hardware on a framing error (S0FEN = ‘1’). Must be reset by software.

S0OE
Overrun Error Flag

Set by hardware on an overrun error (S0OEN = ‘1’). Must be reset by software.

S0ODD
Parity Selection bit

0: Even parity (parity bit set on odd number of ‘1’s in data)
1: Odd parity (parity bit set on even number of ‘1’s in data)

S0BRS
Baud Rate Selection bit

0: Divide clock by reload-value + constant (depending on mode)
1: Additionally reduce serial clock to 2/3rd

UM0407 Asynchronous / synchronous serial interface

 243/541

A transmission is started by writing to the transmit buffer register S0TBUF (via an instruction
or a PEC data transfer).

Only the number of data bit which is determined by the selected operating mode will actually
be transmitted. Bits written to positions 9 through 15 of register S0TBUF are always
insignificant. After a transmission has been completed, the transmit buffer register is cleared
to 0000h.

Data transmission is double-buffered, so a new character may be written to the transmit
buffer register, before the transmission of the previous character is complete. This allows the
transmission of characters back-to-back without gaps.

Data reception is enabled by the receiver enable bit S0REN. After reception of a character
has been completed, the received data and, if provided by the selected operating mode, the
received parity bit can be read from the (read-only) Receive Buffer register S0RBUF.

Bits in the upper half of S0RBUF which are not valid in the selected operating mode will be
read as zeros.

Data reception is double-buffered, so that reception of a second character may already
begin before the previously received character has been read out of the receive buffer
register.

In all modes, receive buffer overrun error detection can be selected through bit S0OEN.
When enabled, the overrun error status flag S0OE and the error interrupt request flag
S0EIR will be set when the receive buffer register has not been read by the time reception of
a second character is complete. The previously received character in the receive buffer is
overwritten.

The Loop-Back option (selected by bit S0LB) allows the data currently being transmitted to
be received simultaneously in the receive buffer.

This may be used to test serial communication routines at an early stage without having to
provide an external network. In loop-back mode the alternate input/output functions of the
Port3 pins are not necessary.

Note: Serial data transmission or reception is only possible when the Baud Rate Generator Run
bit S0R is set to ‘1’. Otherwise the serial interface is idle.
Do not program the mode control field S0M in register S0CON to one of the reserved
combinations to avoid unpredictable behavior of the serial interface.

S0TBUF (FEB0h / 58h) SFR Reset Value: 0000h

S0LB
Loopback Mode Enable bit

0: Standard transmit/receive mode
1: Loopback mode enabled

S0R
Baud Rate Generator Run bit

0: Baud rate generator disabled (ASC0 inactive)
1: Baud rate generator enabled

Table 45. S0CON register description (continued)

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - Transmit Data Buffer

RW

Asynchronous / synchronous serial interface UM0407

244/541

S0RBUF (FEB2h / 59h) SFR Reset Value: 0xxxh

10.1 Asynchronous operation
Asynchronous mode supports full-duplex communication, where both transmitter and
receiver use the same data frame format and the same baud rate. Data is transmitted on pin
TXD0 / P3.10 and received on pin RXD0 / P3.11. These signals are alternate functions of
Port3 pins.

Figure 102. Asynchronous mode of serial channel ASC0

Asynchronous data frames

8-bit data frames either consist of 8 data bit D7...D0 (S0M = ‘001b’), or of 7 data bit D6...D0
plus an automatically generated parity bit (S0M = ’011b’). Parity may be odd or even,
depending on bit S0ODD in register S0CON. An even parity bit will be set, if the modulo-2-
sum of the 7 data bit is ‘1’. An odd parity bit will be cleared in this case. Parity checking is
enabled via bit S0PEN (always OFF in 8-bit data mode). The parity error flag S0PE will be
set along with the error interrupt request flag, if a wrong parity bit is received. The parity bit
itself will be stored in bit S0RBUF.7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - Received Data

RW

2CPU
Clock

S0R

Baud Rate Timer

Reload Register

16

Clock

Serial Port Control

Shift Clock

S0M S0STP S0FE S0OES0PE

S0REN
S0FEN
S0PEN
S0OEN
S0LB

S0RIR

S0TIR

S0EIR

Receive Interrupt
Request

Transmit Interrupt
Request

Error Interrupt
Request

Transmit Shift
Register

Receive Shift
Register

TXD0 Output

Transmit Buffer
Register S0TBUF

Receive Buffer
Register S0RBUF

SamplingMUX
0

1

RXD0 Input

Internal Bus

P3.10

P3.11

UM0407 Asynchronous / synchronous serial interface

 245/541

Figure 103. Asynchronous 8-bit data frames

9-bit data frames either consist of 9 data bits D8...D0 (S0M = ‘100b’), of 8 data bits D7...D0
plus an automatically generated parity bit (S0M = ‘111b’) or of 8 data bits D7...D0 plus
wake-up bit (S0M = ‘101b’). Parity may be odd or even, depending on bit S0ODD in register
S0CON. An even parity bit will be set, if the modulo-2-sum of the 8 data bits is ‘1’. An odd
parity bit will be cleared in this case. Parity checking is enabled via bit S0PEN (always OFF
in 9-bit data and wake-up mode). The parity error flag S0PE will be set along with the error
interrupt request flag, if a wrong parity bit is received. The parity bit itself will be stored in
bit 8 of S0RBUF.

In wake-up mode received frames are only transferred to the receive buffer register, if the
9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated
and no data will be transferred.

This feature may be used to control communication in multi-processor system when the
master processor wants to transmit a block of data to one of several slaves, it first sends out
an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional 9th bit is a '1' for an address byte and a '0' for a data byte, so no slave will
be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data
+ wake-up bit mode), so each slave can examine the 8 LSBs of the received character (the
address).

The addressed slave will switch to 9-bit data mode (by clearing bit S0M.0), which enables it
to also receive the data byte that will be coming (having the wake-up bit cleared). The slaves
that were not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data byte (see Figure 104).

Asynchronous transmission begins at the next overflow of the divide-by-16 counter (see
Figure 104), provided that S0R is set and data has been loaded into S0TBUF. The
transmitted data frame consists of three basic elements:

● the start bit,

● the data field (8 or 9 bit, LSB first, including a parity bit, if selected),

● the delimiter (1 or 2 stop bit).

Data transmission is double buffered. When the transmitter is idle, the transmit data loaded
into S0TBUF is immediately moved to the transmit shift register thus freeing S0TBUF for the
next data to be sent. This is indicated by the transmit buffer interrupt request flag S0TBIR
being set. S0TBUF may now be loaded with the next data, while transmission of the
previous one is still going on.

The transmit interrupt request flag S0TIR will be set before the last bit of a frame is
transmitted, that means before the first or the second stop bit is shifted out of the transmit
shift register.
The transmitter output pin TXD0 / P3.10 must be configured for alternate data output,
P3.10 = ’1’ and DP3.10 = ’1’.

Asynchronous reception is initiated by a falling edge (1-to-0 transition) on pin RXD0,
provided that bit S0R and S0REN are set. The receive data input pin RXD0 is sampled at
16 times the rate of the selected baud rate. A majority decision of the 7th, 8th and 9th

2nd
Stop
bit

Start
bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 D7 /
Parity

(1st)
Stop
Bit

Asynchronous / synchronous serial interface UM0407

246/541

sample determines the effective bit value. This avoids erroneous results that may be caused
by noise.

If the detected value is not a '0' when the start bit is sampled, the receive circuit is reset and
waits for the next 1-to-0 transition at pin RXD0. If the start bit proves valid, the receive circuit
continues sampling and shifts the incoming data frame into the receive shift register.

Figure 104. Asynchronous 9-bit data frames

When the last stop bit has been received, the content of the receive shift register is
transferred to the receive data buffer register S0RBUF. Simultaneously, the receive interrupt
request flag S0RIR is set after the 9th sample in the last stop bit time slot (as programmed),
regardless whether valid stop bit have been received or not. The receive circuit then waits
for the next start bit (1-to-0 transition) at the receive data input pin.

The receiver input pin RXD0/P3.11 must be configured for input, using direction control
register DP3.11 = ’0’.

Asynchronous reception is stopped by clearing bit S0REN. A currently received frame is
completed including the generation of the receive interrupt request and an error interrupt
request, if appropriate. Start bit that follow this frame will not be recognized.

Note: In wake-up mode received frames are only transferred to the receive buffer register, if the
9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated
and no data will be transferred.

10.2 Synchronous operation
Synchronous mode supports half-duplex communication, basically for simple I/O expansion
via shift registers. Data is transmitted and received via pin RXD0 / P3.11, while pin
TXD0 / P3.10 outputs the shift clock. These signals are alternate functions of Port3 pins.
Synchronous mode is selected with S0M = ’000b’.

8 data bits are transmitted or received synchronous to a shift clock generated by the internal
baud rate generator. The shift clock is only active as long as data bits are transmitted or
received.

2nd

Stop
bit

Start
bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 9th
bit

(1st)

Stop
bit

D7

• Data bit D8

• Parity

• Wake-up bit

UM0407 Asynchronous / synchronous serial interface

 247/541

Figure 105. Synchronous mode of serial channel ASC0

Synchronous transmission begins within 4 CPU clock cycles after data has been loaded
into S0TBUF, provided that S0R is set and S0REN = ‘0’ (half-duplex, no reception). Data
transmission is double buffered. When the transmitter is idle, the transmit data loaded into
S0TBUF is immediately moved to the transmit shift register thus freeing S0TBUF for the
next data to be sent. This is indicated by the transmit buffer interrupt request flag S0TBIR
being set. S0TBUF may now be loaded with the next data, while transmission of the
previous one is still going on. The data bits are transmitted synchronous with the shift clock.
After the bit time for the 8th data bit, both pins TXD0 and RXD0 will go high, the transmit
interrupt request flag S0TIR is set, and serial data transmission stops.

Pin TXD0 / P3.10 must be configured for alternate data output, P3.10 = ’1’ and DP3.10 = ’1’,
in order to provide the shift clock. Pin RXD0 / P3.11 must also be configured for output
(P3.11 = ’1’ and DP3.11 = ’1’) during transmission.

Synchronous reception is initiated by setting bit S0REN = ’1’. If bit S0R = 1, the data
applied at pin RXD0 are clocked into the receive shift register synchronous to the clock
which is output at pin TXD0. After the 8th bit has been shifted in, the content of the receive
shift register is transferred to the receive data buffer S0RBUF, the receive interrupt request
flag S0RIR is set, the receiver enable bit S0REN is reset, and serial data reception stops.

Pin TXD0 / P3.10 must be configured for alternate data output, P3.10 = ’1’ and DP3.10 = ’1’,
in order to provide the shift clock. Pin RXD0 / P3.11 must be configured as alternate data
input (DP3.11 = ’0’).

Synchronous reception is stopped by clearing bit S0REN. A currently received byte is
completed including the generation of the receive interrupt request and an error interrupt
request, if appropriate. Writing to the transmit buffer register while a reception is in progress
has no effect on reception and will not start a transmission.

2CPU
Clock

S0R

Baud Rate Timer

Reload Register

4

Clock

Serial Port Control

Shift Clock

S0M = 000b S0OE

S0REN
S0OEN
S0LB

S0RIR

S0TIR

S0EIR

Receive
Interrupt

Transmit
Interrupt

Error
Interrupt

Transmit Shift
Register

Receive Shift
Register

Transmit Buffer
Register S0TBUF

Receive Buffer
Register S0RBUF

MUX
0

1

Internal Bus

Receive

Output

Transmit

RXD0

TDX0

P3.11

Input / Output

P3.10

Request

Request

Request

Asynchronous / synchronous serial interface UM0407

248/541

If a previously received byte has not been read out of the receive buffer register at the time
the reception of the next byte is complete, both the error interrupt request flag S0EIR and
the overrun error status flag S0OE will be set, if the overrun check has been enabled by
S0OEN.

10.3 Hardware error detection
To improve the safety of the serial data exchange, the serial channel ASC0 provides an error
interrupt request flag, which indicates the presence of an error, and three (selectable) error
status flags in register S0CON, which indicate which error has been detected during
reception. Upon completion of a reception, the error interrupt request flag S0EIR will be set
simultaneously with the receive interrupt request flag S0RIR, if one or more of the following
conditions are met:

● If the framing error detection enable bit S0FEN is set and any of the expected stop bit is
not high, the framing error flag S0FE is set, indicating that the error interrupt request is
due to a framing error (Asynchronous mode only).

● If the parity error detection enable bit S0PEN is set in parity bit receive modes, and the
parity check on the received data bit proves false, the parity error flag S0PE is set,
indicating that the error interrupt request is due to a parity error (Asynchronous mode
only).

● If the overrun error detection enable bit S0OEN is set and the last character received
was not read out of the receive buffer by software or PEC transfer at the time the
reception of a new frame is complete, the overrun error flag S0OE is set indicating that
the error interrupt request is due to an overrun error (Asynchronous and synchronous
mode).

10.4 ASC0 baud rate generation
The serial channel ASC0 has its own dedicated 13-bit baud rate generator with 13-bit reload
capability, allowing baud rate generation independent of the GPT timers. The baud rate
generator is clocked by fCPU / 2. The timer is counting downwards and can be started or
stopped through the Baud Rate Generator Run bit S0R in register S0CON. Each underflow
of the timer provides one clock pulse to the serial channel. The timer is reloaded with the
value stored in its 13-bit reload register each time it underflows. The resulting clock is again
divided according to the operating mode and controlled by the Baud Rate Selection bit
S0BRS. If S0BRS = ’1’, the clock signal is additionally divided to 2/3rd of its frequency (see
formulas and table). So the baud rate of ASC0 is determined by the CPU clock, the reload
value, the value of S0BRS and the operating mode (asynchronous or synchronous).

Register S0BG is the dual-function Baud Rate Generator/Reload register. Reading S0BG
returns the content of the timer (bit 15...13 return zero), while writing to S0BG always
updates the reload register (bit 15...13 are insignificant).

An auto-reload of the timer with the content of the reload register is performed each time
S0BG is written to. However, if S0R = ’0’ at the time the write operation to S0BG is
performed, the timer will not be reloaded until the first instruction cycle after S0R = ’1’.

UM0407 Asynchronous / synchronous serial interface

 249/541

S0BG (FEB4h / 5Ah) SFR Reset Value: 0000h

Asynchronous mode baud rates

For asynchronous operation, the baud rate generator provides a clock with 16 times the rate
of the established baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of
this clock. The baud rate for asynchronous operation of serial channel ASC0 and the
required reload value for a given baud rate can be determined by the following formulas:

(S0BRL) represents the content of the reload register, taken as unsigned 13-bit integer,
(S0BRS) represents the value of bit S0BRS (‘0’ or ‘1’), taken as integer.

Using the above equation, the maximum baud rate can be calculated for any given clock
speed. The device datasheet gives a table of values for baud rate vs. reload register value
for S0BRS = 0 and S0BRS = 1.

Synchronous mode baud rates

For synchronous operation, the baud rate generator provides a clock with 4 times the rate of
the established baud rate. The baud rate for synchronous operation of serial channel ASC0
can be determined by the following formula:

(S0BRL) represents the content of the reload register, taken as unsigned 13-bit
integers,
(S0BRS) represents the value of bit S0BRS (‘0’ or ‘1’), taken as integer.

Using the above equation, the maximum baud rate can be calculated for any given clock
speed.

10.5 ASC0 interrupt control
Four bit addressable interrupt control registers are provided for serial channel ASC0.
Register S0TIC controls the transmit interrupt, S0TBIC controls the transmit buffer interrupt,
S0RIC controls the receive interrupt and S0EIC controls the error interrupt of serial channel
ASC0. Each interrupt source also has its own dedicated interrupt vector. S0TINT is the
transmit interrupt vector, S0TBINT is the transmit interrupt vector, S0RINT is the receive
interrupt vector, and S0EINT is the error interrupt vector.

The cause of an error interrupt request (framing, parity, overrun error) can be identified by
the error status flags in control register S0CON.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - Baud rate

RW

BAsync =
fCPU

16 x [2 + (S0BRS)] x [(S0BRL) + 1]

S0BRL = (
fCPU

16 x [2 + (S0BRS)] x BAsync
) - 1

BSync =

S0BRL = (
fCPU

4 x [2 + (S0BRS)] x BSync
) - 1

fCPU

4 x [2 + (S0BRS)] x [(S0BRL) + 1]

Asynchronous / synchronous serial interface UM0407

250/541

Note: In contrary to the error interrupt request flag S0EIR, the error status flags S0FE/S0PE/S0OE
are not reset automatically upon entry into the error interrupt service routine, but must be
cleared by software.

S0TIC (FF6Ch / B6h) SFR Reset Value: - - 00h

S0RIC (FF6Eh / B7h) SFR Reset Value: - - 00h

S0EIC (FF70h / B8) SFR Reset Value: - - 00h

S0TBIC (F19Ch / CEh) ESFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

Using the ASC0 interrupts

For normal operation (besides the error interrupt) the ASC0 provides three interrupt
requests to control data exchange via this serial channel:

● S0TBIR is activated when data is moved from S0TBUF to the transmit shift register.

● S0TIR is activated before the last bit of an asynchronous frame is transmitted, or after
the last bit of a synchronous frame has been transmitted.

● S0RIR is activated when the received frame is moved to S0RBUF.

While the task of the receive interrupt handler is quite clear, the transmitter is serviced by
two interrupt handlers. This provides advantages for the servicing software.

For single transfers is sufficient to use the transmitter interrupt (S0TIR), which indicates
that the previously loaded data has been transmitted, except for the last bit of an
asynchronous frame.

For multiple back-to-back transfers it is necessary to load the following piece of data at
last until the time the last bit of the previous frame has been transmitted. In asynchronous
mode this leaves just one bit-time for the handler to respond to the transmitter interrupt
request, in synchronous mode it is impossible at all.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0TIR S0TIE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0RIR S0RIE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0EIR S0EIE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0TBIR S0TBIE ILVL GLVL

RW RW RW RW

UM0407 Asynchronous / synchronous serial interface

 251/541

Using the transmit buffer interrupt (S0TBIR) to reload transmit data gives the time to
transmit a complete frame for the service routine, as S0TBUF may be reloaded while the
previous data is still being transmitted.

As shown in the Figure 106, S0TBIR is an early trigger for the reload routine, while S0TIR
indicates the completed transmission. Software using handshake therefore should rely on
S0TIR at the end of a data block to make sure that all data has really been transmitted.

Figure 106. ASC0 interrupt generation

Idle Idle

S
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

S0TBIR S0TBIR S0TBIR

S0TIR S0TIR S0TIR

S0RIR S0RIR S0RIR

Idle Idle

S0TBIR S0TBIR S0TBIR

S0TIR S0TIR S0TIR

S0RIR S0RIR S0RIR

Asynchronous Mode

Synchronous Mode

XBUS asynchronous / synchronous serial interface UM0407

252/541

11 XBUS asynchronous / synchronous serial interface

A second asynchronous/synchronous serial interface (XASC) is implemented on
ST10F272Z2. It is mapped on XBUS interface (Address range 00’E900h - 00’E9FFh) and
provides serial communication between the ST10F272Z2 and other microcontrollers,
microprocessors or external peripherals. The XASC is enabled by setting XPEN bit 2 of
SYSCON register and bit 7 of XPERCON register.

In synchronous mode, data are transmitted or received synchronously to a shift clock which
is generated by the ST10F272Z2. In asynchronous mode, 8- or 9-bit data transfer, parity
generation, and the number of stop bits can be selected. Parity, framing, and overrun error
detection is provided to increase the reliability of data transfers. Transmission and reception
of data is double-buffered.

For multiprocessor communication, a mechanism to distinguish address from data byte is
included. Testing is supported by a loop-back option. A 13-bit baud rate generator provides
the XASC with a separate serial clock signal.

The main differences between ASC0 and XASC are restricted to the programming model
and interrupt management, due to the constraints imposed by the XBUS with respect to the
standard ST10 peripheral bus (registers are not bit addressable, XBUS interrupt channels
sharing with other X-Peripherals). In terms of general functionality and performance, the two
modules are completely equivalent.

Figure 107. XBUS registers and port pins associated with XASC

Ports & Direction Control Alternate functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

-

6

-

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXS1PORT XS1BG

15

-

14

-

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

XS1TBUF - - - - - - - Y Y Y Y Y Y Y Y Y

XS1RBUF - - - - - - - Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

-

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXS1CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XIRxSEL

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXIRxSET

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXIRxCLR

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

RXD1 / P8.6
TXD1 / P8.7

XS1PORT XASC Port Control Register
XS1BG XASC Baud Rate Generator/Reload Register
XS1CON XASC Control Register
XS1CONSET XASC Control Register bit set (write only)
XS1CONCLR XASC Control Register bit clear (write only)

XS1TBUF XASC Transmit Buffer Register
XS1RBUF XASC Receive Buffer Register (read only)
XIRxSEL XPxINT Interrupt Selection Control Register
XIRxSET XPxINT Interrupt Selection Control Reg. Bit Set
XIRxCLR XPxINT Interrupt Selection Control Reg. Bit Clear

Bit is linked to a function
Bit has no function or is not implemented

Y
-

:
:

Y Y Y Y - Y Y Y Y Y Y Y Y Y Y YXS1CONSET

Y Y Y Y - Y Y Y Y Y Y Y Y Y Y YXS1CONCLR

UM0407 XBUS asynchronous / synchronous serial interface

 253/541

The operating mode of the serial channels XASC is controlled by its control register
XS1CON. Being an XBUS register, it is not bit-addressable: for this reason, a couple of
additional XBUS registers are provided to set and clear single bits of XS1CON emulating
the bit-addressability (see XS1CONSET, XS1CONCLR. This register contains control bits
for mode and error check selection, and status flags for error identification.

XS1CON (E900h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S1R S1LB
S1BR

S
S1OD

D
- S1OE S1FE S1PE

S1OE
N

S1FE
N

S1PE
N

S1RE
N

S1ST
P

S1M

RW RW RW RW RW RW RW RW RW RW RW RW RW

Table 46. XS1CON register description

Bit Function

S1M

XASC Mode Control

0 0 0:8-bit datasynchronous operation
0 0 1:8-bit dataasynchronous operation
0 1 0:Reserved. Do not use this combination
0 1 1:7-bit data + parity asynchronous operation
1 0 0:9-bit dataasynchronous operation
1 0 1:8-bit data + wake up bit asynchronous operation
1 1 0:Reserved. Do not use this combination
1 1 1:8-bit data + parity asynchronous operation

S1STP
Number of Stop bit Selection asynchronous operation

0: One stop bit
1: Two stop bit

S1REN

Receiver Enable bit

0: Receiver disabled
1: Receiver enabled

(Reset by hardware after reception of byte in synchronous mode)

S1PEN
Parity Check Enable bit asynchronous operation

0: Ignore parity
1: Check parity

S1FEN
Framing Check Enable bit asynchronous operation

0: Ignore framing errors
1: Check framing errors

S1OEN
Overrun Check Enable bit

0: Ignore overrun errors
1: Check overrun errors

S1PE
Parity Error Flag

Set by hardware on a parity error (S1PEN = ‘1’). Must be reset by software.

S1FE
Framing Error Flag

Set by hardware on a framing error (S1FEN = ‘1’). Must be reset by software.

XBUS asynchronous / synchronous serial interface UM0407

254/541

XS1CONSET (E902h) XBUS Reset Value: 0000h

XS1CONCLR (E904h) XBUS Reset Value: 0000h

A transmission is started by writing to the Transmit Buffer register XS1TBUF (via an
instruction or a PEC data transfer).

Only the number of data bit which is determined by the selected operating mode will actually
be transmitted. Bits written to positions 9 through 15 of register XS1TBUF are always

S1OE
Overrun Error Flag

Set by hardware on an overrun error (S1OEN = ‘1’). Must be reset by software.

S1ODD
Parity Selection bit

0: Even parity (parity bit set on odd number of ‘1’s in data)
1: Odd parity (parity bit set on even number of ‘1’s in data)

S1BRS
Baud Rate Selection bit

0: Divide clock by reload-value + constant (depending on mode)
1: Additionally reduce serial clock to 2/3rd

S1LB
Loopback Mode Enable bit

0: Standard transmit/receive mode
1: Loopback mode enabled

S1R
Baud Rate Generator Run bit

0: Baud rate generator disabled (XASC inactive)
1: Baud rate generator enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET.1
5

SET.1
4

SET.1
3

SET.1
2

-
SET.1

0
SET.9 SET.8 SET.7 SET.6 SET.5 SET.4 SET.3 SET.2 SET.1 SET.0

W W W W W W W W W W W W W W W

Table 47. XS1CONSET register description

Bit Function

SET.y
Writing a ‘1’ will set the corresponding bit in XS1CON register.

Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR.
15

CLR.
14

CLR.
13

CLR.
12

-
CLR.

10
CLR.

9
CLR.

8
CLR.

7
CLR.

6
CLR.

5
CLR.

4
CLR.

3
CLR.

2
CLR.

1
CLR.

0

W W W W W W W W W W W W W W W

Table 48. XS1CONCLR register description

Bit Function

CLR.y
Writing a ‘1’ will clear the corresponding bit in XS1CON register.

Writing a ‘0’ has no effect.

Table 46. XS1CON register description (continued)

Bit Function

UM0407 XBUS asynchronous / synchronous serial interface

 255/541

insignificant. After a transmission has been completed, the transmit buffer register is cleared
to 0000h.

Data transmission is double-buffered, so a new character may be written to the transmit
buffer register, before the transmission of the previous character is complete. This allows the
transmission of characters back-to-back without gaps.

Data reception is enabled by the Receiver Enable bit S1REN. After reception of a character
has been completed, the received data and, if provided by the selected operating mode, the
received parity bit can be read from the (read-only) Receive Buffer register XS1RBUF.

Bits in the upper half of XS1RBUF which are not valid in the selected operating mode will be
read as zeros.

Data reception is double-buffered, so that reception of a second character may already
begin before the previously received character has been read out of the receive buffer
register.

In all modes, receive buffer overrun error detection can be selected through bit S1OEN.
When enabled, the overrun error status flag S1OE and the error interrupt request flag will be
set when the receive buffer register has not been read by the time reception of a second
character is complete. The previously received character in the receive buffer is overwritten.

The Loop-Back option (selected by bit S1LB) allows the data currently being transmitted to
be received simultaneously in the receive buffer.

This may be used to test serial communication routines at an early stage without having to
provide an external network. In loop-back mode the alternate input/output functions of the
Port8 pins are not necessary.

Note: Serial data transmission or reception is only possible when the Baud Rate Generator Run
bit S1R is set to ‘1’. Otherwise the serial interface is idle.
Do not program the mode control field S1M in register XS1CON to one of the reserved
combinations to avoid unpredictable behavior of the serial interface.

XS1TBUF (E908h) XBUS Reset Value: 0000h

XS1RBUF (E90Ah) XBUS Reset Value: 00xxh

11.1 Asynchronous operation
Asynchronous mode supports full-duplex communication, where both transmitter and
receiver use the same data frame format and the same baud rate. Data is transmitted on pin
TXD1 / P8.7 and received on pin RXD1 / P8.6. These signals are alternate functions of
Port8 pins.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - Transmit Data Buffer

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - Received Data

RW

XBUS asynchronous / synchronous serial interface UM0407

256/541

Figure 108. Asynchronous mode of serial channel XASC

Asynchronous data frames

8-bit data frames either consist of 8 data bit D7...D0 (S1M = ‘001b’), or of 7 data bit D6...D0
plus an automatically generated parity bit (S1M = ‘011b’). Parity may be odd or even,
depending on bit S1ODD in register XS1CON. An even parity bit will be set, if the modulo-2-
sum of the 7 data bit is ‘1’. An odd parity bit will be cleared in this case. Parity checking is
enabled via bit S1PEN (always OFF in 8-bit data mode). The parity error flag S1PE will be
set along with the error interrupt request flag, if a wrong parity bit is received. The parity bit
itself will be stored in bit XS1RBUF.7.

Figure 109. Asynchronous 8-bit data frames

9-bit data frames either consist of 9 data bit D8...D0 (S1M = ‘100b’), of 8 data bit D7...D0
plus an automatically generated parity bit (S1M = ‘111b’) or of 8 data bit D7...D0 plus wake-
up bit (S1M = ‘101b’). Parity may be odd or even, depending on bit S1ODD in register
XS1CON. An even parity bit will be set, if the modulo-2-sum of the 8 data bit is ‘1’. An odd
parity bit will be cleared in this case. Parity checking is enabled via bit S1PEN (always OFF
in 9-bit data and wake-up mode). The parity error flag S1PE will be set along with the error

2CPU
Clock

S1R

Baud Rate Timer

Reload Register

16

Clock

Serial Port Control

Shift Clock

S1M S1STP S1FE S1OES1PE

S1REN
S1FEN
S1PEN
S1OEN
S1LB

Receive Interrupt
Request

Transmit Interrupt
Request

Error Interrupt
Request

Transmit Shift
Register

Receive Shift
Register

TXD1 Output

Transmit Buffer
Register XS1TBUF

Receive Buffer
Register XS1RBUF

SamplingMUX
0

1

RXD1 Input

Internal X-Bus

P8.7

P8.6

2nd
Stop
bit

Start
bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 D7 /
Parity

(1st)
Stop
Bit

UM0407 XBUS asynchronous / synchronous serial interface

 257/541

interrupt request flag, if a wrong parity bit is received. The parity bit itself will be stored in
bit 8 of XS1RBUF.

In wake-up mode received frames are only transferred to the receive buffer register, if the
9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated
and no data will be transferred.

This feature may be used to control communication in multi-processor system when the
master processor wants to transmit a block of data to one of several slaves, it first sends out
an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional 9th bit is a '1' for an address byte and a '0' for a data byte, so no slave will
be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data
+ wake-up bit mode), so each slave can examine the 8 LSBs of the received character (the
address).

The addressed slave will switch to 9-bit data mode (by clearing bit S1M.0), which enables it
to also receive the data byte that will be coming (having the wake-up bit cleared). The slaves
that were not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data byte (see Figure 110).

Asynchronous transmission begins at the next overflow of the divide-by-16 counter (see
Figure 110), provided that S1R is set and data has been loaded into XS1TBUF. The
transmitted data frame consists of three basic elements:

● the start bit,

● the data field (8 or 9 bits, LSB first, including a parity bit, if selected),

● the delimiter (1 or 2 stop bits).

Data transmission is double buffered. When the transmitter is idle, the transmit data loaded
into XS1TBUF is immediately moved to the transmit shift register thus freeing XS1TBUF for
the next data to be sent. This is indicated by the transmit buffer interrupt request flag being
set. XS1TBUF may now be loaded with the next data, while transmission of the previous
one is still going on.

The transmit interrupt request flag will be set before the last bit of a frame is transmitted, that
means before the first or the second stop bit is shifted out of the transmit shift register.
The transmitter output pin TXD1 / P8.7 must be configured for alternate data output,
P8.7 = ’1’ and DP8.7 = ’1’.

Asynchronous reception is initiated by a falling edge (1-to-0 transition) on pin RXD1,
provided that bit S1R and S1REN are set. The receive data input pin RXD1 is sampled at
16 times the rate of the selected baud rate. A majority decision of the 7th, 8th and 9th
sample determines the effective bit value. This avoids erroneous results that may be caused
by noise.

If the detected value is not a '0' when the start bit is sampled, the receive circuit is reset and
waits for the next 1-to-0 transition at pin RXD1. If the start bit proves valid, the receive circuit
continues sampling and shifts the incoming data frame into the receive shift register.

XBUS asynchronous / synchronous serial interface UM0407

258/541

Figure 110. Asynchronous 9-bit data frames

When the last stop bit has been received, the content of the receive shift register is
transferred to the receive data buffer register XS1RBUF. Simultaneously, the receive
interrupt request flag is set after the 9th sample in the last stop bit time slot (as
programmed), regardless whether valid stop bit have been received or not. The receive
circuit then waits for the next start bit (1-to-0 transition) at the receive data input pin.

The receiver input pin RXD1 / P8.6 must be configured for input, using direction control
register DP8.6 = ’0’.

Asynchronous reception is stopped by clearing bit S1REN. A currently received frame is
completed including the generation of the receive interrupt request and an error interrupt
request, if appropriate. Start bit that follow this frame will not be recognized.

Note: In wake-up mode received frames are only transferred to the receive buffer register, if the
9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated
and no data will be transferred.

11.2 Synchronous operation
Synchronous mode supports half-duplex communication, basically for simple I/O expansion
via shift registers. Data is transmitted and received via pin RXD1 / P8.6, while pin
TXD1 / P8.7 outputs the shift clock. These signals are alternate functions of Port8 pins.
Synchronous mode is selected with S1M = ’000b’.

8 data bits are transmitted or received synchronous to a shift clock generated by the internal
baud rate generator. The shift clock is only active as long as data bits are transmitted or
received.

2nd
Stop
bit

Start
bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 9th
bit

(1st)
Stop
bit

D7

●Data bit D8
●Parity
●Wake-up bit

UM0407 XBUS asynchronous / synchronous serial interface

 259/541

Figure 111. Synchronous mode of serial channel XASC

Synchronous transmission begins within 4 CPU clock cycles after data has been loaded
into XS1TBUF, provided that S1R is set and S1REN = ‘0’ (half-duplex, no reception). Data
transmission is double buffered. When the transmitter is idle, the transmit data loaded into
XS1TBUF is immediately moved to the transmit shift register thus freeing XS1TBUF for the
next data to be sent. This is indicated by the transmit buffer interrupt request flag being set.
XS1TBUF may now be loaded with the next data, while transmission of the previous one is
still going on. The data bits are transmitted synchronous with the shift clock. After the bit
time for the 8th data bit, both pins TXD1 and RXD1 will go high, the transmit interrupt
request flag is set, and serial data transmission stops.

Pin TXD1/P8.7 must be configured for alternate data output, P8.7 = ’1’ and DP8.7 = ’1’, in
order to provide the shift clock. Pin RXD1 / P8.6 must also be configured for output
(P8.6 = ’1’ and DP8.6 = ’1’) during transmission.

Synchronous reception is initiated by setting bit S1REN = ’1’. If bit S1R = 1, the data
applied at pin RXD1 are clocked into the receive shift register synchronous to the clock
which is output at pin TXD1. After the 8th bit has been shifted in, the content of the receive
shift register is transferred to the receive data buffer XS1RBUF, the receive interrupt request
flag is set, the receiver enable bit S1REN is reset, and serial data reception stops.

Pin TXD1 / P8.7 must be configured for alternate data output, P8.7 = ’1’ and DP8.7 = ’1’, in
order to provide the shift clock. Pin RXD1 / P8.6 must be configured as alternate data input
(DP8.6 = ’0’).

Synchronous reception is stopped by clearing bit S1REN. A currently received byte is
completed including the generation of the receive interrupt request and an error interrupt
request, if appropriate. Writing to the transmit buffer register while a reception is in progress
has no effect on reception and will not start a transmission.

2CPU
Clock

S1R

Baud Rate Timer

Reload Register

4

Clock

Serial Port Control

Shift Clock

S1M = 000b S1OE

S1REN
S1OEN
S1LB

Receive
Interrupt

Transmit
Interrupt

Error
Interrupt

Transmit Shift
Register

Receive Shift
Register

Transmit Buffer
Register XS1TBUF

Receive Buffer
Register XS1RBUF

MUX
0

1

Internal X-Bus

Receive

Output

Transmit

RXD1

TDX0

P8.6

Input / Output

P8.7

Request

Request

Request

XBUS asynchronous / synchronous serial interface UM0407

260/541

If a previously received byte has not been read out of the receive buffer register at the time
the reception of the next byte is complete, both the error interrupt request flag and the
overrun error status flag S1OE will be set, if the overrun check has been enabled by
S1OEN.

11.3 Hardware error detection
To improve the safety of serial data exchange, the serial channel XASC provides an error
interrupt request flag, which indicates the presence of an error, and three (selectable) error
status flags in register XS1CON, which indicate which error has been detected during
reception. Upon completion of a reception, the error interrupt request flag will be set
simultaneously with the receive interrupt request flag, if one or more of the following
conditions are met:

● If the framing error detection enable bit S1FEN is set and any of the expected stop bit is
not high, the framing error flag S1FE is set, indicating that the error interrupt request is
due to a framing error (Asynchronous mode only).

● If the parity error detection enable bit S1PEN is set in parity bit receive modes, and the
parity check on the received data bit proves false, the parity error flag S1PE is set,
indicating that the error interrupt request is due to a parity error (Asynchronous mode
only).

● If the overrun error detection enable bit S1OEN is set and the last character received
was not read out of the receive buffer by software or PEC transfer at the time the
reception of a new frame is complete, the overrun error flag S1OE is set indicating that
the error interrupt request is due to an overrun error (Asynchronous and synchronous
mode).

11.4 XASC baud rate generation
The serial channel XASC has its own dedicated 13-bit baud rate generator with 13-bit reload
capability, allowing baud rate generation independent of the GPT timers. The baud rate
generator is clocked by fCPU / 2. The timer is counting downwards and can be started or
stopped through the Baud Rate Generator Run bit S1R in register XS1CON. Each
underflow of the timer provides one clock pulse to the serial channel. The timer is reloaded
with the value stored in its 13-bit reload register each time it underflows. The resulting clock
is again divided according to the operating mode and controlled by the Baud Rate Selection
bit S1BRS. If S1BRS = ‘1’, the clock signal is additionally divided to 2/3rd of its frequency
(see formulas and table). So the baud rate of XASC is determined by the CPU clock, the
reload value, the value of S1BRS and the operating mode (asynchronous or synchronous).

Register XS1BG is the dual-function Baud Rate Generator/Reload register. Reading XS1BG
returns the content of the timer (bit 15...13 return zero), while writing to XS1BG always
updates the reload register (bit 15...13 are insignificant).

An auto-reload of the timer with the content of the reload register is performed each time
XS1BG is written to. However, if S1R = ’0’ at the time the write operation to XS1BG is
performed, the timer will not be reloaded until the first instruction cycle after S1R = ’1’.

UM0407 XBUS asynchronous / synchronous serial interface

 261/541

XS1BG (E906h) XBUS Reset Value: 0000h

Asynchronous mode baud rates

For asynchronous operation, the baud rate generator provides a clock with 16 times the rate
of the established baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of
this clock. The baud rate for asynchronous operation of serial channel XASC and the
required reload value for a given baud rate can be determined by the following formulas:

(S1BRL) represents the content of the reload register, taken as unsigned 13-bit integer,
(S1BRS) represents the value of bit S1BRS (‘0’ or ‘1’), taken as integer.

Using the above equation, the maximum baud rate can be calculated for any given clock
speed. The device datasheet gives a table of values for baud rate vs. reload register value
for S1BRS = 0 and S1BRS = 1.

Synchronous mode baud rates

For synchronous operation, the baud rate generator provides a clock with 4 times the rate of
the established baud rate. The baud rate for synchronous operation of serial channel XASC
can be determined by the following formula:

(S1BRL) represents the content of the reload register, taken as unsigned 13-bit
integers,
(S1BRS) represents the value of bit S1BRS (‘0’ or ‘1’), taken as integer.

Using the above equation, the maximum baud rate can be calculated for any given clock
speed.

11.5 XASC interrupt control
Up to four interrupt control registers (XIRxSEL, x = 0, 1, 2, 3) are provided in order to select
the source of the XBUS interrupt: The transmit interrupt, the transmit buffer interrupt, the
receive interrupt and the error interrupt of serial channel XASC are linked to one of the

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - Baud rate

RW

BAsync =
fCPU

16 x [2 + (S1BRS)] x [(S1BRL) + 1]

S1BRL = (
fCPU

16 x [2 + (S1BRS)] x BAsync
) - 1

BSync =

S1BRL = (
fCPU

4 x [2 + (S1BRS)] x BSync
) - 1

fCPU

4 x [2 + (S1BRS)] x [(S1BRL) + 1]

XBUS asynchronous / synchronous serial interface UM0407

262/541

XPxIC registers (x = 0, 1, 2, 3). In particular, the four interrupt lines are available on the
following interrupt vectors:

● Receive XP0INT XP1INT XP2INT

● Transmit XP0INT XP1INT XP2INT

● Transmit Buffer XP0INT XP1INT XP2INT

● Error XP3INT

Refer to Section 5.7: X-Peripheral interrupt on page 114 for details.

The cause of an error interrupt request (framing, parity, overrun error) can be identified by
the error status flags in control register XS1CON.

Note: The error status flags S1FE / S1PE / S1OE are not reset automatically upon entry into the
error interrupt service routine, but must be cleared by software.

Using the XASC interrupts

For normal operation (besides the error interrupt) the XASC provides three interrupt
requests to control data exchange via this serial channel:

● Transmit Buffer (TBIR) internal interrupt signal is activated when data is moved from
XS1TBUF to the transmit shift register.

● Transmit (TIR) internal interrupt signal is activated before the last bit of an
asynchronous frame is transmitted, or after the last bit of a synchronous frame has
been transmitted.

● Receive (RIR) internal interrupt signal is activated when the received frame is moved to
XS1RBUF.

While the task of the receive interrupt handler is quite clear, the transmitter is serviced by
two interrupt handlers. This provides advantages for the servicing software.

For single transfers it is sufficient to use the transmitter interrupt (TIR), which indicates that
the previously loaded data has been transmitted, except for the last bit of an asynchronous
frame.

For multiple back-to-back transfers it is necessary to load the following piece of data at
last until the time the last bit of the previous frame has been transmitted. In asynchronous
mode this leaves just one bit-time for the handler to respond to the transmitter interrupt
request, in synchronous mode it is impossible at all.

Using the transmit buffer interrupt (TBIR) to reload transmit data gives the time to transmit a
complete frame for the service routine, as XS1TBUF may be reloaded while the previous
data is still being transmitted.

As shown in Figure 112, TBIR is an early trigger for the reload routine, while TIR indicates
the completed transmission. Software using handshake therefore should rely on TIR at the
end of a data block to make sure that all data has really been transmitted.

UM0407 XBUS asynchronous / synchronous serial interface

 263/541

Figure 112. XASC interrupt generation

Idle Idle

S
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

TBIR TBIR TBIR

TIR TIR TIR

RIR RIR RIR

Idle Idle

TBIR TBIR TBIR

TIR TIR TIR

RIR RIR RIR

Asynchronous Mode

Synchronous Mode

High-speed synchronous serial interface UM0407

264/541

12 High-speed synchronous serial interface

The High-Speed Synchronous Serial Interface SSC provides flexible high-speed serial
communication between the ST10F272Z2 and other microcontrollers, microprocessors or
external peripherals.

The SSC supports full-duplex and half-duplex synchronous communication. The serial clock
signal can be generated by the SSC itself (master mode) or be received from an external
master (slave mode). Data width, shift direction, clock polarity and phase are programmable.
This allows communication with SPI-compatible devices. Transmission and reception of data
is double-buffered. A 16-bit baud rate generator provides the SSC with a separate serial
clock signal.

The high-speed synchronous serial interface can be configured in three ways, it can be used
with other synchronous serial interfaces (the ASC0 in synchronous mode), or configured in
like master / slave or multi-master interconnections or operate like the popular SPI interface.
It can communicate with shift registers (I/O expansion), peripherals (EEPROMs, etc.) or
other controllers (networking). The SSC supports half-duplex and full-duplex
communication. Data is transmitted or received on pins MTSR/P3.9 (Master Transmit / Slave
Receive) and MRST/P3.8 (Master Receive / Slave Transmit). The clock signal is output or
input on pin SCLK/P3.13. These pins are alternate functions of Port3 pins.

Figure 113. SFRs and port pins associated with the SSC

Ports & Direction Control Alternate functions Data Registers
15

-

14

-

13

Y

12

-

11

-

10

-

9

Y

8

Y

7

-

6

-

5

-

4

-

3

-

2

-

1

-

0

-ODP3 E SSCBR E

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - Y - - - Y Y - - - - - - - -DP3

- - Y - - - Y Y - - - - - - - -P3

SSCTB E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

SSCRB E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

-

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YSSCCON

151413121110 9 8 7 6 5 4 3 2 1 0

SSCTIC

- - - - - - - - Y Y Y Y Y Y Y YSSCRIC

- - - - - - - - Y Y Y Y Y Y Y YSSCEIC

- - - - - - - - Y Y Y Y Y Y Y Y

SCLK / P3.13
MTSR / P3.9
MRST / P3.8

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
SSCBR SSC Baud Rate Generator/Reload
Register
SSCTB SSC Transmit Buffer Register (write only)
SSCTIC SSC Transmit Interrupt Control Register

P3 Port3 Data Register
SSCCON SSC Control Register
SSCRB SSC Receive Buffer Register (read only)
SSCRIC SSC Receive Interrupt Control Register
SSCEIC SSC Error Interrupt Control Register

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

UM0407 High-speed synchronous serial interface

 265/541

Figure 114. Synchronous serial channel SSC block diagram

The operating mode of the serial channel SSC is controlled by its bit-addressable control
register SSCCON. This register serves for two purposes:

● During programming (SSC disabled by SSCEN = ‘0’) it provides access to a set of
control bit.

● During operation (SSC enabled by SSCEN = ‘1’) it provides access to a set of status
flags. Register SSCCON is shown below in each of the two modes.

SSCRB (F0B2h / 59h) ESFR Reset Value: xxxxh

SSCTB (F0B0h / 58h) ESFR Reset Value: 0000h

SSCCON (FFB2h / D9h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSC
EN=0

SSC
MS

-
SSC

AREN
SSC
BEN

SSC
PEN

SSC
REN

SSC
TEN

-
SSC
PO

SSC
PH

SSC
HB

SSCBM

RW RW RW RW RW RW RW RW RW RW RW

Baud Rate Generator

SSC Control
Block

Internal Bus

Clock Control
CPU
Clock

Slave Clock

Master Clock

SCLK

Shift
Clock

Status Control

Receive Interrupt Request

Transmit Interrupt Request

Error Interrupt Request

16-bit Shift Register

Pin
Control

MTSR

MRST

Transmit Buffer
Register SSCTB

Receive Buffer
Register SSCRB

P3.13

P3.9

P3.8

High-speed synchronous serial interface UM0407

266/541

SSCCON (FFB2h / D9h) SFR Reset Value: 0000h

Table 49. SSCCON register bit description when SSCEN = ‘0’

Bit Function (programming mode, SSCEN = ‘0’)

SSCBM
SSC Data Width Selection

0: Reserved. Do not use this combination.
1...15:Transfer Data Width is 2...16-bit [(SSCBM)+1]

SSCHB
SSC Heading Control bit

0: Transmit/Receive LSB First
1: Transmit/Receive MSB First

SSCPH
SSC Clock Phase Control bit

0: Shift transmit data on the leading clock edge, latch on trailing edge
1: Latch receive data on leading clock edge, shift on trailing edge

SSCPO
SSC Clock Polarity Control bit

0: Idle clock line is low, leading clock edge is low-to-high transition
1: Idle clock line is high, leading clock edge is high-to-low transition

SSCTEN
SSC Transmit Error Enable bit

0: Ignore transmit errors
1: Check transmit errors

SSCREN
SSC Receive Error Enable bit

0: Ignore receive errors
1: Check receive errors

SSCPEN
SSC Phase Error Enable bit

0: Ignore phase errors
1: Check phase errors

SSCBEN
SSC Baud Rate Error Enable bit

0: Ignore baud rate errors
1: Check baud rate errors

SSCAREN
SSC Automatic Reset Enable bit

0: No additional action upon a baud rate error
1: The SSC is automatically reset upon a baud rate error

SSCMS
SSC Master Select bit

0: Slave Mode. Operate on shift clock received via SCLK.
1: Master Mode. Generate shift clock and output it via SCLK.

SSCEN
SSC Enable bit = ‘0’

Transmission and reception disabled. Access to control bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSC
EN=1

SSC
MS

-
SSC
BSY

SSC
BE

SSC
PE

SSC
RE

SSC
TE

- - - - SSCBC

RW RW RW RW RW RW RW RW

UM0407 High-speed synchronous serial interface

 267/541

Note: The target of an access to SSCCON (control bit or flags) is determined by the state of
SSCEN prior to the access. Writing C057h to SSCCON in programming mode
(SSCEN = ’0’) will initialize the SSC (SSCEN was ‘0’) and then turn it on (SSCEN = ’1’).
When writing to SSCCON, make sure that reserved locations receive zeros.

The shift register of the SSC is connected to both the transmit pin and the receive pin via the
pin control logic (see Figure 114 on page 265). Transmission and reception of serial data is
synchronized and takes place at the same time, so the same number of transmitted bit is
also received. Transmit data is written into the Transmit Buffer SSCTB. It is moved to the
shift register as soon as this is empty. An SSC-master (SSCMS = ’1’) immediately begins
transmitting, while an SSC-slave (SSCMS = ’0’) will wait for an active shift clock. When the
transfer starts, the busy flag SSCBSY is set and a transmit interrupt request (SSCTIR) will
be generated to indicate that SSCTB may be reloaded again. When the programmed
number of bit (2...16) has been transferred, the contents of the shift register are moved to
the receive buffer SSCRB and a receive interrupt request (SSCRIR) will be generated. If no
further transfer is to take place (SSCTB is empty), SSCBSY will be cleared at the same
time. Software should not modify SSCBSY, as this flag is hardware controlled. Only one
SSC can be master at a given time.

Table 50. SSCCON register bit description when SSCEN = ‘1’

Bit Function (operating mode, SSCEN = ‘1’)

SSCBC
SSC bit Count Field

Shift counter is updated with every shifted bit. Do not write to

SSCTE
SSC Transmit Error Flag

1: Transfer starts with the slave’s transmit buffer not being updated

SSCRE
SSC Receive Error Flag

1: Reception completed before the receive buffer was read

SSCPE
SSC Phase Error Flag

1: Received data changes around sampling clock edge

SSCBE
SSC Baud Rate Error Flag

1: More than factor 2 or 0.5 between Slave’s actual and expected baud rate

SSCBSY SSC Busy Flag: Set while a transfer is in progress. Do not write to

SSCMS
SSC Master Select bit
0: Slave Mode. Operate on shift clock received via SCLK.
1: Master Mode. Generate shift clock and output it via SCLK.

SSCEN
SSC Enable bit = ‘1’

Transmission and reception enabled. Access to status flags and M/S control.

High-speed synchronous serial interface UM0407

268/541

The transfer of serial data bit can be programmed in the following ways:

● The data width can be chosen from 2 bits to 16 bits.

● Transfer may start with the LSB or the MSB.

● The shift clock may be idle low or idle high.

● Data bit may be shifted with the leading or trailing edge of the clock signal.

● The baud rate may be set for a range of values (refer to Section 12.3: Baud rate
generation on page 273 for the formula to calculate values or to the device datasheet
for specific values).

● The shift clock can be generated (master) or received (slave).

This allows the adaptation of the SSC to a wide range of applications, where serial data
transfer is required.

The data width selection supports the transfer of frames of any length, from 2 bit
“characters” up to 16 bit “characters”. Starting with the LSB (SSCHB = ’0’) allows
communication with ASC0 devices in synchronous mode like serial interfaces. Starting with
the MSB (SSCHB = ’1’) allows operation compatible with the SPI interface.

Regardless which data width is selected and whether the MSB or the LSB is transmitted
first, the transfer data is always right aligned in registers SSCTB and SSCRB, with the LSB
of the transfer data in bit 0 of these registers. The data bits are rearranged for transfer by the
internal shift register logic. The unselected bits of SSCTB are ignored, the unselected bits of
SSCRB will be not valid and should be ignored by the receiver service routine.

The clock control allows the adaptation of transmit and receive behavior of the SSC to a
variety of serial interfaces. A specific clock edge (rising or falling) is used to shift out transmit
data, while the other clock edge is used to latch in receive data. Bit SSCPH selects the
leading edge or the trailing edge for each function. Bit SSCPO selects the level of the clock
line in the idle state. So for an idle-high clock the leading edge is a falling one, a 1-to-0
transition. Figure 115 is a summary.

12.1 Full-duplex operation
The different devices are connected through three lines. The definition of these lines is
always determined by the master: The line connected to the master's data output pin MTSR
is the transmit line, the receive line is connected to its data input line MRST, and the clock
line is connected to pin SCLK. Only the device selected for master operation generates and
outputs the serial clock on pin SCLK. All slaves receive this clock, so their pin SCLK must be
switched to input mode (DP3.13 = ’0’). The output of the master’s shift register is connected
to the external transmit line, which in turn is connected to the slaves’ shift register input.

The output of the slaves’ shift register is connected to the external receive line in order to
enable the master to receive the data shifted out of the slave. The external connections are
hard-wired, the function and direction of these pins is determined by the master or slave
operation of the individual device.

Note: The shift direction shown in Figure 115 applies for MSB-first operation as well as for LSB-
first operation.

When initializing the devices in this configuration, select one device for master operation
(SSCMS = ’1’), all others must be programmed for slave operation (SSCMS = ’0’).
Initialization includes the operating mode of the device's SSC and also the function of the
respective port lines (see Section 12.2.1: Port control on page 272).

UM0407 High-speed synchronous serial interface

 269/541

Figure 115. Serial clock phase and polarity options

Figure 116. SSC full duplex configuration

The data output pins MRST of all slave devices are connected together onto the one receive
line in this configuration. During a transfer each slave shifts out data from its shift register.
There are two ways to avoid collisions on the receive line due to different slave data:

Only one slave drives the line, it enables the driver of its MRST pin. All the other slaves
have to program there MRST pins to input. So only one slave can put its data onto the
master's receive line. Only receiving of data from the master is possible. The master selects

Serial Clock
SCLK

Transmit Data Last
bit

Latch
Data

Shift Data

First
bit

Pins
MTSR / MRST

SSCPO SSCPH

0

0

1

1

0

1

0

1

Shift Register

MTSR

CLK

MRST

Clock

Master Device #1

Transmit

Receive

Clock

MTSR

MRST

CLK
Clock

Shift Register

Device #2 Slave

MTSR

MRST

CLK
Clock

Shift Register

Device #3 Slave

High-speed synchronous serial interface UM0407

270/541

the slave device from which it expects data either by separate select lines, or by sending a
special command to this slave. The selected slave then switches its MRST line to output,
until it gets a deselection signal or command.

The slaves use open drain output on MRST. This forms a AND-wired connection. The
receive line needs an external pull-up in this case. Corruption of the data on the receive line
sent by the selected slave is avoided, when all slaves which are not selected for
transmission to the master only send ones (‘1’). Since this high level is not actively driven
onto the line, but only held through the pull-up device, the selected slave can pull this line
actively to a low level when transmitting a zero bit. The master selects the slave device from
which it expects data either by separate select lines, or by sending a special command to
this slave.

After performing all necessary initialization of the SSC, the serial interfaces can be enabled.
For a master device, the alternate clock line will now go to its programmed polarity. The
alternate data line will go to either '0' or '1', until the first transfer will start. After a transfer the
alternate data line will always remain at the logic level of the last transmitted data bit.

When the serial interfaces are enabled, the master device can initiate the first data transfer
by writing the transmit data into register SSCTB. This value is copied into the shift register
(which is assumed to be empty at this time), and the selected first bit of the transmit data will
be placed onto the MTSR line on the next clock from the baud rate generator (transmission
only starts, if SSCEN = ’1’). Depending on the selected clock phase, also a clock pulse will
be generated on the SCLK line.

With the opposite clock edge the master at the same time latches and shifts in the data
detected at its input line MRST. This “exchanges” the transmit data with the receive data.
Since the clock line is connected to all slaves, their shift registers will be shifted
synchronously with the master's shift register, shifting out the data contained in the
registers, and shifting in the data detected at the input line. After the preprogrammed
number of clock pulses (via the data width selection) the data transmitted by the master is
contained in all slaves’ shift registers, while the master's shift register holds the data of the
selected slave. In the master and all slaves the content of the shift register is copied into the
receive buffer SSCRB and the receive interrupt flag SSCRIR is set.

A slave device will immediately output the selected first bit (MSB or LSB of the transfer data)
at pin MRST, when the content of the transmit buffer is copied into the slave's shift register. It
will not wait for the next clock from the baud rate generator, as the master does. The reason
for this is that, depending on the selected clock phase, the first clock edge generated by the
master may be already used to clock in the first data bit. So the slave's first data bit must
already be valid at this time.

Note: A transmission and a reception takes place at the same time, regardless whether valid data
has been transmitted or received. This is different from asynchronous reception on ASC0.

The initialization of the SCLK pin on the master requires some attention in order to avoid
undesired clock transitions, which may disturb the other receivers. The state of the internal
alternate output lines is '1' as long as the SSC is disabled. This alternate output signal is
ANDed with the respective port line output latch. Enabling the SSC with an idle-low clock

UM0407 High-speed synchronous serial interface

 271/541

(SSCPO = ’0’) will drive the alternate data output and (via the AND) the port pin SCLK
immediately low. To avoid this, use the following sequence:

● Select the clock idle level (SSCPO = ’x’)

● Load the port output latch with the desired clock idle level (P3.13 = ’x’)

● Switch the pin to output (DP3.13 = ’1’)

● Enable the SSC (SSCEN = ’1’)

● If SSCPO = ’0’: enable alternate data output (P3.13 = ’1’)

The same mechanism as for selecting a slave for transmission (separate select lines or
special commands) may also be used to move the role of the master to another device in the
network. In this case the previous master and the future master (previous slave) will have to
toggle their operating mode (SSCMS) and the direction of their port pins (see description
above).

12.2 Half duplex operation
In a half duplex configuration only one data line is necessary for both receiving and
transmitting of data. The data exchange line is connected to both pins MTSR and MRST of
each device, the clock line is connected to the SCLK pin.

The master device controls the data transfer by generating the shift clock, while the slave
devices receive it. Due to the fact that all transmit and receive pins are connected to the one
data exchange line, serial data may be moved between arbitrary stations.

Similar to full duplex mode there are two ways to avoid collisions on the data exchange
line:

● Only the transmitting device may enable its transmit pin driver

● The non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device will clock in
its own data at the input pin (MRST for a master device, MTSR for a slave). By these means
any corruptions on the common data exchange line are detected, where the received data is
not equal to the transmitted data.

High-speed synchronous serial interface UM0407

272/541

Figure 117. SSC half duplex configuration

Continuous transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer SSCTB is
empty and ready to be loaded with the next transmit data. If SSCTB has been reloaded by
the time the current transmission is finished, the data is immediately transferred to the shift
register and the next transmission will start without any additional delay. On the data line
there is no gap between the two successive frames, so two bytes transfers would look the
same as one word transfer. This feature can be used to interface with devices which can
operate with or require more than 16 data bits per transfer. It is just a matter of software,
how long a total data frame length can be. This option can also be used to interface to byte
wide and word wide devices on the same serial bus.

Note: Of course, this can only happen in multiples of the selected basic data width, since it would
require disabling/enabling of the SSC to reprogram the basic data width on-the-fly.

12.2.1 Port control

The SSC uses three pins of Port3 to communicate with the external world. Pin P3.13 / SCLK
serves as the clock line, while pins P3.8 / MRST (Master Receive / Slave Transmit) and
P3.9 / MTSR (Master Transmit / Slave Receive) serve as the serial data input/output lines.
The operation of these pins depends on the selected operating mode (master or slave). In
order to enable the alternate output functions of these pins instead of the general purpose
I/O operation, the respective port latches have to be set to '1', since the port latch outputs
and the alternate output lines are ANDed. When an alternate data output line is not used
(function disabled), it is held at a high level, allowing I/O operations via the port latch. The
direction of the port lines depends on the operating mode. The SSC will automatically use

Shift Register
MTSR

CLK

MRST

Clock

Master Device #1

Clock

MTSR

CLK Clock

Shift Register

Device #2 Slave

MTSR

MRST

CLK Clock

Shift Register

Device #3 Slave

MRST

Common
Transmit/
Receive
Line

UM0407 High-speed synchronous serial interface

 273/541

the correct alternate input or output line of the ports when switching modes. The direction of
the pins, however, must be programmed by the user, as shown in the tables.

Using the open drain output feature helps to avoid bus contention problems and reduces the
need for hardwired hand-shaking or slave select lines. In this case it is not always necessary
to switch the direction of a port pin. The table below summarizes the required values for the
different modes and pins.

Note: In the table above, an 'x' means that the actual value is irrelevant in the respective mode,
however, it is recommended to set these bits to '1', so they are already in the correct state
when switching between master and slave mode.

12.3 Baud rate generation
The serial channel SSC has its own dedicated 16-bit baud rate generator with 16-bit reload
capability, allowing baud rate generation independent from the timers.

The baud rate generator is clocked by fCPU/2. The timer is counting downwards and can be
started or stopped through the global enable bit SSCEN in register SSCCON. Register
SSCBR is the dual-function Baud Rate Generator/Reload register. Reading SSCBR, while
the SSC is enabled, returns the content of the timer. Reading SSCBR, while the SSC is
disabled, returns the programmed reload value. In this mode the desired reload value can
be written to SSCBR.

Note: Never write to SSCBR, while the SSC is enabled.

The formulas below calculate the resulting baud rate for a given reload value and the
required reload value for a given baud rate:

(SSCBR) represents the content of the reload register, taken as unsigned 16 bit
integer.

Refer to the device datasheet for a table of baud rates, reload values and resulting bit times.

Table 51. Port 3 pins configuration for SSC master / slave modes

Pin
Master mode Slave mode

Function Port latch Direction Function Port latch Direction

P3.13 / SCLK
Serial Clock
Output

P3.13 = ’1’ DP3.13 = ’1’
Serial Clock
Input

P3.13 = ’x’ DP3.13 = ’0’

P3.9 / MTSR
Serial Data
Output

P3.9 = ’1’ DP3.9 = ’1’
Serial Data
Input

P3.9 = ’x’ DP3.9 = ’0’

P3.8 / MRST
Serial Data
Input

P3.8 = ’x’ DP3.8 = ’0’
Serial Data
Output

P3.8 = ’1’ DP3.8 = ’1’

BaudrateSSC =
fCPU

2 x [(SSCBR) + 1]

SSCBR = (
fCPU

2 x BaudrateSSC
) - 1

High-speed synchronous serial interface UM0407

274/541

SSCBR (F0B4h / 5Ah) ESFR Reset Value: 0000h

12.4 Error detection mechanisms
The SSC is able to detect four different error conditions. Receive Error and Phase Error are
detected in all modes, while Transmit Error and Baud Rate Error only apply to slave mode.
When an error is detected, the respective error flag is set. When the corresponding Error
Enable bit is set, also an error interrupt request will be generated by setting SSCEIR (see
Figure 118). The error interrupt handler may then check the error flags to determine the
cause of the error interrupt. The error flags are not reset automatically (like SSCEIR), but
rather must be cleared by software after servicing. This allows servicing of some error
conditions via interrupt, while the others may be polled by software.

Note: The error interrupt handler must clear the associated (enabled) error flag(s) to prevent
repeated interrupt requests.

A Receive Error (Master or Slave mode) is detected, when a new data frame is completely
received, but the previous data was not read out of the receive buffer register SSCRB. This
condition sets the error flag SSCRE and, when enabled via SSCREN, the error interrupt
request flag SSCEIR. The old data in the receive buffer SSCRB will be overwritten with the
new value and is irretrievably lost.

A Phase Error (Master or Slave mode) is detected, when the incoming data at pin MRST
(master mode) or MTSR (slave mode), sampled with the same frequency as the CPU clock,
changes between one sample before and two samples after the latching edge of the clock
signal (see “Clock Control”). This condition sets the error flag SSCPE and, when enabled
via SSCPEN, the error interrupt request flag SSCEIR.

A Baud Rate Error (Slave mode) is detected, when the incoming clock signal deviates from
the programmed baud rate by more than 100%, it either is more than double or less than
half the expected baud rate. This condition sets the error flag SSCBE and, when enabled via
SSCBEN, the error interrupt request flag SSCEIR. Using this error detection capability
requires that the slave's baud rate generator is programmed to the same baud rate as the
master device.

This feature detects false additional, or missing pulses on the clock line (within a certain
frame).

Note: If this error condition occurs and bit SSCAREN = ‘1’, an automatic reset of the SSC will be
performed in case of this error. This is done to reinitialize the SSC, if too few or too many
clock pulses have been detected.

A Transmit Error (Slave mode) is detected, when a transfer was initiated by the master
(shift clock gets active), but the transmit buffer SSCTB of the slave was not updated since
the last transfer. This condition sets the error flag SSCTE and, when enabled via SSCTEN,
the error interrupt request flag SSCEIR. If a transfer starts while the transmit buffer is not
updated, the slave will shift out the 'old' contents of the shift register, which normally is the
data received during the last transfer.
This may lead to the corruption of the data on the transmit/receive line in half-duplex mode
(open drain configuration), if this slave is not selected for transmission. This mode requires

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Baud Rate

RW

UM0407 High-speed synchronous serial interface

 275/541

that slaves not selected for transmission only shift out ones, so their transmit buffers must be
loaded with 'FFFFh' prior to any transfer.

Note: A slave with push-pull output drivers, which is not selected for transmission, will normally
have its output drivers switched. However, in order to avoid possible conflicts or
misinterpretations, it is recommended to always load the slave's transmit buffer prior to any
transfer (see Figure 118).

12.5 SSC interrupt control
Three interrupt control registers are provided for serial channel SSC. Register SSCTIC
controls the transmit interrupt, SSCRIC controls the receive interrupt and SSCEIC controls
the error interrupt of serial channel SSC. Each interrupt source also has its own dedicated
interrupt vector. SCTINT is the transmit interrupt vector, SCRINT is the receive interrupt
vector, and SCEINT is the error interrupt vector.

The cause of an error interrupt request (receive, phase, baud rate, transmit error) can be
identified by the error status flags in control register SSCCON.

Note: In contrary to the error interrupt request flag SSCEIR, the error status flags SSCxE are not
reset automatically upon entry into the error interrupt service routine, but must be cleared by
software.

Figure 118. SSC error interrupt control

SSCTE

Register SSCCON

SSCTE

&
Transmit
Error

SSCRE

SSCRE

&Receive
Error

SSCPE

SSCPE

&

SSCBE

SSCBE

&

Phase
Error

Baud Rate
Error

Š 1

SSCEIE

SSCEIR

&

Error
Interrupt
SSCEINT

Register SSCEIR

High-speed synchronous serial interface UM0407

276/541

SSCTIC (FF72h / B9h) SFR Reset Value: - - 00h

SSCRIC (FF74h / BAh) SFR Reset Value: - - 00h

SSCEIC (FF76h / BBh) SFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
SSC
TIR

SSC
TIE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
SSC
RIR

SSC
RIE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
SSC
EIR

SSC
EIE

ILVL GLVL

RW RW RW RW

UM0407 XBUS high-speed synchronous serial interface

 277/541

13 XBUS high-speed synchronous serial interface

A second high-speed synchronous serial interface (XSSC) is implemented on ST10F272Z2.
It is mapped on XBUS interface (Address range 00’E800h - 00’E8FFh) and provides flexible
high-speed serial communication between the ST10F272Z2 and other microcontrollers,
microprocessors or external peripherals. The XSSC is enabled by setting XPEN bit 2 of
SYSCON register and bit 8 of XPERCON register.

The XSSC supports full-duplex and half-duplex synchronous communication. The serial
clock signal can be generated by the XSSC itself (master mode) or be received from an
external master (slave mode). Data width, shift direction, clock polarity and phase are
programmable. This allows communication with SPI-compatible devices. Transmission and
reception of data is double-buffered. A 16-bit baud rate generator provides the XSSC with a
separate serial clock signal.

The high-speed synchronous serial interface can be configured in three ways, it can be used
with other synchronous serial interfaces (the ASC0/XASC in synchronous mode), or
configured like master / slave or multimaster interconnections or operate like the popular
SPI interface. It can communicate with shift registers (I/O expansion), peripherals
(EEPROMs, etc.) or other controllers (networking). The XSSC supports half-duplex and full-
duplex communication. Data is transmitted or received on pins MTSR1 / P6.6
(Master Transmit / Slave Receive) and MRST1 / P6.7 (Master Receive / Slave Transmit).
The clock signal is output or input on pin SCLK1 / P6.5. These pins are alternate functions
of Port6 pins.

The main differences between SSC and XSSC are restricted to the programming model and
interrupt management, due to the constraints imposed by the XBUS with respect to the
standard ST10 peripheral bus (registers are not bit addressable, XBUS interrupt channels
sharing with other X-Peripherals). In terms of general functionality and performance, the two
modules are completely equivalent.

XBUS high-speed synchronous serial interface UM0407

278/541

Figure 119. XBUS registers and port pins associated with the XSSC

Ports & Direction Control Alternate functions Data Registers

XSSCBR

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

XSSCTB Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XSSCRB Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

-

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXSSCCON

151413121110 9 8 7 6 5 4 3 2 1 0

XIRxSEL

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXIRxCLR

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXIRxSET

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

SCLK1 / P6.5
MTSR1 / P6.6
MRST1 / P6.7

XSSCBR XSSC Baud Rate Generator/Reload Register
XSSCTB XSSC Transmit Buffer Register (write only)
XSSCRB XSSC Receive Buffer Register (read only)
XSSCPORTXASC Port Control Register

XSSCCONXSSC Control Register
XSSCCONSETXASC Control Register bit set (write only)
XSSCCONCLRXASC Control Register bit clear (write only)
XIRxSEL XPxINT Interrupt Selection Control Register
XIRxSET XPxINT Interrupt Selection Control Reg. Bit Set
XIRxCLR XPxINT Interrupt Selection Control Reg. Bit Clear

Bit is linked to a function
Bit has no function or is not implemented

Y
-

:
:

Y Y - Y Y Y Y Y - Y Y Y Y Y Y Y

Y Y - Y Y Y Y Y - Y Y Y Y Y Y Y

XSSCCONSET

XSSCCONCLR

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXSSCPORT

UM0407 XBUS high-speed synchronous serial interface

 279/541

Figure 120. Synchronous serial channel XSSC block diagram

The operating mode of the serial channel XSSC is controlled by its bit-addressable control
register XSSCCON. This register serves for two purposes:

● During programming (XSSC disabled by SSCEN = ’0’) it provides access to a set of
control bits.

● During operation (XSSC enabled by SSCEN = ’1’) it provides access to a set of status
flags. Register XSSCCON is shown below in each of the two modes.

XSSCCON (E800h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XSSC
EN=0

XSSC
MS - XSSC

AREN
XSSC
BEN

XSSC
PEN

XSSC
REN

XSSC
TEN - XSSC

PO
XSSC

PH
XSSC

HB XSSCBM

RW RW RW RW RW RW RW RW RW RW RW

Table 52. XSSCCON register description with XSSCEN = ‘0’

Bit Function (Programming Mode, XSSCEN = ‘0’)

SSCBM
XSSC Data Width Selection
0: Reserved. Do not use this combination.
1...15:Transfer Data Width is 2...16-bit [(SSCBM)+1]

SSCHB
XSSC Heading Control bit
0: Transmit/Receive LSB First
1: Transmit/Receive MSB First

SSCPH
XSSC Clock Phase Control bit
0: Shift transmit data on the leading clock edge, latch on trailing edge
1: Latch receive data on leading clock edge, shift on trailing edge

Baud Rate Generator

XSSC Control
Block

Internal X-Bus

Clock Control
CPU
Clock

Slave Clock

Master Clock

SCLK1

Shift
Clock

Status Control

Receive Interrupt Request

Transmit Interrupt Request

Error Interrupt Request

16-bit Shift Register

Pin
Control

MTSR1

MRST1

Transmit Buffer
Register XSSCTB

Receive Buffer
Register XSSCRB

P6.5

P6.6

P6.7

XBUS high-speed synchronous serial interface UM0407

280/541

XSSCCON (E800h) XBUS Reset Value: 0000h

SSCPO
XSSC Clock Polarity Control bit
0: Idle clock line is low, leading clock edge is low-to-high transition
1: Idle clock line is high, leading clock edge is high-to-low transition

SSCTEN
XSSC Transmit Error Enable bit
0: Ignore transmit errors
1: Check transmit errors

SSCREN
XSSC Receive Error Enable bit
0: Ignore receive errors
1: Check receive errors

SSCPEN
XSSC Phase Error Enable bit
0: Ignore phase errors
1: Check phase errors

SSCBEN
XSSC Baud Rate Error Enable bit
0: Ignore baud rate errors
1: Check baud rate errors

SSCAREN
XSSC Automatic Reset Enable bit
0: No additional action upon a baud rate error
1: The XSSC is automatically reset upon a baud rate error

SSCMS
XSSC Master Select bit
0: Slave Mode. Operate on shift clock received via SCLK1.
1: Master Mode. Generate shift clock and output it via SCLK1.

SSCEN
XSSC Enable bit = ‘0’
Transmission and reception disabled. Access to control bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XSSC
EN=1

XSSC
MS

-
XSSC
BSY

XSSC
BE

XSSC
PE

XSSC
RE

XSSC
TE

- - - - XSSCBC

RW RW RW RW RW RW RW RW

Table 53. XSSCCON register with XSSCEN = ‘1’

Bit Function (Operating Mode, XSSCEN = ‘1’)

SSCBC
XSSC bit Count Field
Shift counter is updated with every shifted bit. Do not write into this field.

SSCTE
XSSC Transmit Error Flag
1: Transfer starts with the slave’s transmit buffer not being updated

SSCRE
XSSC Receive Error Flag
1: Reception completed before the receive buffer was read

SSCPE
XSSC Phase Error Flag
1: Received data changes around sampling clock edge

SSCBE
XSSC Baud Rate Error Flag
1: More than factor 2 or 0.5 between slave’s actual and expected baud rate

Table 52. XSSCCON register description with XSSCEN = ‘0’ (continued)

Bit Function (Programming Mode, XSSCEN = ‘0’)

UM0407 XBUS high-speed synchronous serial interface

 281/541

Note: The target of an access to XSSCCON (control bits or flags) is determined by the state of
SSCEN prior to the access. Writing C057h to XSSCCON in programming mode
(SSCEN = ‘0’) will initialize the XSSC (SSCEN was ‘0’) and then turn it on (SSCEN = ‘1’).
When writing to XSSCCON, make sure that reserved locations receive zeros.

All XSSCCON bits can be individually (bit-wise) programmed. The “bit-addressable” feature
is available via specific “Set” and “Clear” registers: XSSCCONSET, XSSCCONCLR.

XSSCCONSET (E802h) XBUS Reset Value: 0000h

XSSCCONCLR (E804h) XBUS Reset Value: 0000h

The shift register of the XSSC is connected to both the transmit pin and the receive pin via
the pin control logic (see Figure 120 on page 279). Transmission and reception of serial
data is synchronized and takes place at the same time, so the same number of transmitted
bit is also received. Transmit data is written into the Transmit Buffer XSSCTB.

SSCBSY XSSC Busy Flag: Set while a transfer is in progress. Do not write to

SSCMS
XSSC Master Select bit
0: Slave Mode. Operate on shift clock received via SCLK1.
1: Master Mode. Generate shift clock and output it via SCLK1.

SSCEN
XSSC Enable bit = ‘1’
Transmission and reception enabled. Access to status flags and M/S control.

Table 53. XSSCCON register with XSSCEN = ‘1’ (continued)

Bit Function (Operating Mode, XSSCEN = ‘1’)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET.15 SET.14 - SET.12 SET.11 SET.10 SET.9 SET.8 - SET.6 SET.5 SET.4 SET.3 SET.2 SET.1 SET.0

W W W W W W W W W W W W W W

Table 54. XSSCCONSET register

Bit Function

SET.Y
XSSCCON Bit Y Set

Writing a ‘1’ will set the corresponding bit in XSSCCON register.
Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR.15 CLR.14 - CLR.12 CLR.11 CLR.10 CLR.9 CLR.8 - CLR.6 CLR.5 CLR.4 CLR.3 CLR.2 CLR.1 CLR.0

W W W W W W W W W W W W W W

Table 55. XSSCCONCLR register

Bit Function

SET.Y
XSSCCON Bit Y Clear

Writing a ‘1’ will clear the corresponding bit in XSSCCON register.
Writing a ‘0’ has no effect.

XBUS high-speed synchronous serial interface UM0407

282/541

XSSCTB (E806h) XBUS Reset Value: 0000h

XSSCRB (E808h) XBUS Reset Value: xxxxh

It is moved to the shift register as soon as this is empty. An XSSC-master (SSCMS = ’1’)
immediately begins transmitting, while an XSSC-slave (SSCMS = ’0’) will wait for an active
shift clock. When the transfer starts, the busy flag SSCBSY is set and a transmit interrupt
request will be generated to indicate that XSSCTB may be reloaded again. When the
programmed number of bit (2...16) has been transferred, the contents of the shift register
are moved to the Receive Buffer XSSCRB and a receive interrupt request will be generated.
If no further transfer is to take place (XSSCTB is empty), SSCBSY will be cleared at the
same time. Software should not modify SSCBSY, as this flag is hardware controlled. Only
one XSSC can be master at a given time.

The transfer of serial data bit can be programmed in the following ways:

● The data width can be chosen from 2 bits to 16 bits.

● Transfer may start with the LSB or the MSB.

● The shift clock may be idle low or idle high.

● Data bit may be shifted with the leading or trailing edge of the clock signal.

● The baud rate may be set for a range of values (refer to Section 13.3: Baud rate
generation on page 287 for the formula to calculate values or to the device datasheet
for specific values).

● The shift clock can be generated (master) or received (slave).

This allows the adaptation of the XSSC to a wide range of applications, where serial data
transfer is required.

The data width selection supports the transfer of frames of any length, from 2 bit
“characters” up to 16 bit “characters”. Starting with the LSB (SSCHB = ’0’) allows
communication with ASC0 devices in synchronous mode like serial interfaces. Starting with
the MSB (SSCHB = ’1’) allows operation compatible with the SPI interface.

Regardless which data width is selected and whether the MSB or the LSB is transmitted
first, the transfer data is always right aligned in registers XSSCTB and XSSCRB, with the
LSB of the transfer data in bit 0 of these registers. The data bits are rearranged for transfer
by the internal shift register logic. The unselected bits of XSSCTB are ignored, the
unselected bits of XSSCRB will be not valid and should be ignored by the receiver service
routine.

The clock control allows the adaptation of transmit and receive behavior of the XSSC to a
variety of serial interfaces. A specific clock edge (rising or falling) is used to shift out transmit
data, while the other clock edge is used to latch in receive data. Bit SSCPH selects the
leading edge or the trailing edge for each function. Bit SSCPO selects the level of the clock
line in the idle state. So for an idle-high clock the leading edge is a falling one, a 1-to-0
transition. Figure 121 is a summary.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RW

UM0407 XBUS high-speed synchronous serial interface

 283/541

13.1 Full-duplex operation
The different devices are connected through three lines. The definition of these lines is
always determined by the master: The line connected to the master's data output pin
MTSR1 is the transmit line, the receive line is connected to its data input line MRST1, and
the clock line is connected to pin SCLK1. Only the device selected for master operation
generates and outputs the serial clock on pin SCLK1. All slaves receive this clock, so their
pin SCLK1 must be switched to input mode (XDP6.5 = ’0’). The output of the master’s shift
register is connected to the external transmit line, which in turn is connected to the slaves’
shift register input.

The output of the slaves’ shift register is connected to the external receive line in order to
enable the master to receive the data shifted out of the slave. The external connections are
hard-wired, the function and direction of these pins is determined by the master or slave
operation of the individual device.

Note: The shift direction shown in the Figure 121 on page 283 applies for MSB-first operation as
well as for LSB-first operation.

When initializing the devices in this configuration, select one device for master operation
(SSCMS = ‘1’), all others must be programmed for slave operation (SSCMS = ‘0’).
Initialization includes the operating mode of the device's XSSC and also the function of the
respective port lines (see Section 13.2.1: Port control on page 287).

Figure 121. Serial clock phase and polarity options

Serial Clock
SCLK1

Transmit Data Last
bit

Latch
Data

Shift Data

First
bit

Pins
MTSR1 / MRST1

SSCPO SSCPH

0

0

1

1

0

1

0

1

XBUS high-speed synchronous serial interface UM0407

284/541

Figure 122. XSSC full duplex configuration

The data output pins MRST1 of all slave devices are connected together onto the one
receive line in this configuration. During a transfer each slave shifts out data from its shift
register. There are two ways to avoid collisions on the receive line due to different slave
data:

Only one slave drives the line: it enables the driver of its MRST1 pin. All the other slaves
have to program there MRST1 pins to input. So only one slave can put its data onto the
master's receive line. Only receiving of data from the master is possible. The master selects
the slave device from which it expects data either by separate select lines, or by sending a
special command to this slave. The selected slave then switches its MRST1 line to output,
until it gets a deselection signal or command.

The slaves use open drain output on MRST1. This forms a AND-wired connection. The
receive line needs an external pull-up in this case. Corruption of the data on the receive line
sent by the selected slave is avoided, when all slaves which are not selected for
transmission to the master only send ones (‘1’). Since this high level is not actively driven
onto the line, but only held through the pull-up device, the selected slave can pull this line
actively to a low level when transmitting a zero bit. The master selects the slave device from
which it expects data either by separate select lines, or by sending a special command to
this slave.

After performing all necessary initialization of the XSSC, the serial interfaces can be
enabled. For a master device, the alternate clock line will now go to its programmed polarity.
The alternate data line will go to either '0' or '1', until the first transfer will start. After a

Shift Register

MTSR1

CLK

MRST1

Clock

Master Device #1

Transmit

Receive

Clock

MTSR1

MRST1

CLK
Clock

Shift Register

Device #2 Slave

MTSR1

MRST1

CLK
Clock

Shift Register

Device #3 Slave

UM0407 XBUS high-speed synchronous serial interface

 285/541

transfer the alternate data line will always remain at the logic level of the last transmitted
data bit.

When the serial interfaces are enabled, the master device can initiate the first data transfer
by writing the transmit data into register XSSCTB. This value is copied into the shift register
(which is assumed to be empty at this time), and the selected first bit of the transmit data will
be placed onto the MTSR1 line on the next clock from the baud rate generator (transmission
only starts, if SSCEN = ’1’). Depending on the selected clock phase, also a clock pulse will
be generated on the SCLK1 line.

With the opposite clock edge the master at the same time latches and shifts in the data
detected at its input line MRST1. This “exchanges” the transmit data with the receive data.
Since the clock line is connected to all slaves, their shift registers will be shifted
synchronously with the master's shift register, shifting out the data contained in the
registers, and shifting in the data detected at the input line. After the preprogrammed
number of clock pulses (via the data width selection) the data transmitted by the master is
contained in all slaves’ shift registers, while the master's shift register holds the data of the
selected slave. In the master and all slaves the content of the shift register is copied into the
receive buffer XSSCRB and the receive interrupt flag SSCRIR is set.

A slave device will immediately output the selected first bit (MSB or LSB of the transfer data)
at pin MRST1, when the content of the transmit buffer is copied into the slave's shift register.
It will not wait for the next clock from the baud rate generator, as the master does. The
reason for this is that, depending on the selected clock phase, the first clock edge generated
by the master may be already used to clock in the first data bit. So the slave's first data bit
must already be valid at this time.

Note: A transmission and a reception takes place at the same time, regardless whether valid data
has been transmitted or received. This is different from asynchronous reception on ASC0.

The initialization of the SCLK1 pin on the master requires some attention in order to avoid
undesired clock transitions, which may disturb the other receivers. The state of the internal
alternate output lines is '1' as long as the XSSC is disabled. This alternate output signal is
ANDed with the respective port line output latch. Enabling the XSSC with an idle-low clock
(SSCPO = ’0’) will drive the alternate data output and (via the AND) the port pin SCLK1
immediately low. To avoid this, use the following sequence:

● Select the clock idle level (SSCPO = ’x’)

● Load the port output latch with the desired clock idle level (XP6.5 = ’x’)

● Switch the pin to output (XDP6.5 = ’1’)

● Enable the XSSC (SSCEN = ’1’)

● If SSCPO = ’0’: enable alternate data output (XP6.5 = ’1’)

The same mechanism as for selecting a slave for transmission (separate select lines or
special commands) may also be used to move the role of the master to another device in the
network. In this case the previous master and the future master (previous slave) will have to
toggle their operating mode (SSCMS) and the direction of their port pins (see description
above).

13.2 Half duplex operation
In a half duplex configuration only one data line is necessary for both receiving and
transmitting of data. The data exchange line is connected to both pins MTSR1 and MRST1
of each device, the clock line is connected to the SCLK1 pin.

XBUS high-speed synchronous serial interface UM0407

286/541

The master device controls the data transfer by generating the shift clock, while the slave
devices receive it. Due to the fact that all transmit and receive pins are connected to the one
data exchange line, serial data may be moved between arbitrary stations.

Similar to full duplex mode there are two ways to avoid collisions on the data exchange
line:

● Only the transmitting device may enable its transmit pin driver

● The non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device will clock in
its own data at the input pin (MRST1 for a master device, MTSR1 for a slave). By these
means any corruptions on the common data exchange line are detected, where the received
data is not equal to the transmitted data.

Figure 123. XSSC half duplex configuration

Continuous transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer XSSCTB
is empty and ready to be loaded with the next transmit data. If XSSCTB has been reloaded
by the time the current transmission is finished, the data is immediately transferred to the
shift register and the next transmission will start without any additional delay. On the data
line there is no gap between the two successive frames, so two bytes transfers would look
the same as one word transfer. This feature can be used to interface with devices which can
operate with or require more than 16 data bits per transfer. It is just a matter of software,
how long a total data frame length can be. This option can also be used to interface to byte
wide and word wide devices on the same serial bus.

Shift Register
MTSR1

CLK

MRST1

Clock

Master Device #1

Clock

MTSR1

CLK Clock

Shift Register

Device #2 Slave

MTSR1

MRST1

CLK Clock

Shift Register

Device #3 Slave

MRST1

Common
Transmit/
Receive
Line

UM0407 XBUS high-speed synchronous serial interface

 287/541

Note: Of course, this can only happen in multiples of the selected basic data width, since it would
require disabling/enabling of the XSSC to reprogram the basic data width on-the-fly.

13.2.1 Port control

The XSSC uses three pins of Port6 to communicate with the external world. Pin
P6.5 / SCLK1 serves as the clock line, while pins P6.7 / MRST1 (Master Receive /
Slave Transmit) and P6.6 / MTSR1 (Master Transmit / Slave Receive) serve as the serial
data input/output lines. The operation of these pins depends on the selected operating
mode (master or slave). In order to enable the alternate output functions of these pins
instead of the general purpose I/O operation, the respective port latches have to be set to
'1', since the port latch outputs and the alternate output lines are ANDed. When an alternate
data output line is not used (function disabled), it is held at a high level, allowing I/O
operations via the port latch. The direction of the port lines depends on the operating mode.
The XSSC will automatically use the correct alternate input or output line of the ports when
switching modes. The direction of the pins, however, must be programmed by the user, as
shown in the next table (the table reports the indication of bit names inside XSSCPORT
register). Using the open drain output feature helps to avoid bus contention problems and
reduces the need for hard-wired hand-shaking or slave select lines. In this case it is not
always necessary to switch the direction of a port pin. The table below summarizes the
required values for the different modes and pins.

Note: In the table above, an 'x' means that the actual value is irrelevant in the respective mode,
however, it is recommended to set these bits to '1', so they are already in the correct state
when switching between master and slave mode.

13.3 Baud rate generation
The serial channel XSSC has its own dedicated 16-bit baud rate generator with 16-bit reload
capability, allowing baud rate generation independent from the timers.

The baud rate generator is clocked by fCPU/2. The timer is counting downwards and can be
started or stopped through the global enable bit SSCEN in register XSSCCON. Register
XSSCBR is the dual-function Baud Rate Generator/Reload register. Reading XSSCBR,
while the XSSC is enabled, returns the content of the timer. Reading XSSCBR, while the
XSSC is disabled, returns the programmed reload value. In this mode the desired reload
value can be written to XSSCBR.

Note: Never write to XSSCBR, while the XSSC is enabled.

Table 56. Pin configuration for port control

Pin
Master Mode Slave Mode

Function Port Latch Direction Function Port Latch Direction

P6.5 / SCLK1
Serial clock
output

XP6.5 = ’1’ XDP6.5 = ’1’
Serial clock
input

XP6.5 = ’x’ XDP6.5 = ’0’

P6.6 / MTSR1
Serial data
output

XP6.6 = ’1’ XDP6.6 = ’1’
Serial data
input

XP6.6 = ’x’ XDP6.6 = ’0’

P6.7 / MRST1
Serial data
input

XP6.7 = ’x’ XDP6.7 = ’0’
Serial data
output

XP6.7 = ’1’ XDP6.7 = ’1’

XBUS high-speed synchronous serial interface UM0407

288/541

The formulas below calculate the resulting baud rate for a given reload value and the
required reload value for a given baud rate:

(XSSCBR) represents the content of the reload register, taken as unsigned 16 bit
integer.

Refer to the device datasheet for a table of baud rates, reload values and resulting bit times.

XSSCBR (E80Ah) XBUS Reset Value: 0000h

13.4 Error detection mechanisms
The XSSC is able to detect four different error conditions. Receive Error and Phase Error
are detected in all modes, while Transmit Error and Baud Rate Error only apply to slave
mode. When an error is detected, the respective error flag is set. When the corresponding
Error Enable bit is set, also an error interrupt request will be generated. The error interrupt
handler may then check the error flags to determine the cause of the error interrupt. The
error flags are not reset automatically, but rather must be cleared by software after servicing.
This allows servicing of some error conditions via interrupt, while the others may be polled
by software.

Note: The error interrupt handler must clear the associated (enabled) error flag(s) to prevent
repeated interrupt requests.

A Receive Error (Master or Slave mode) is detected, when a new data frame is completely
received, but the previous data was not read out of the receive buffer register XSSCRB. This
condition sets the error flag SSCRE and, when enabled via SSCREN, the error interrupt
request flag (see XP3INT line). The old data in the receive buffer XSSCRB will be
overwritten with the new value and is irretrievably lost.

A Phase Error (Master or Slave mode) is detected, when the incoming data at pin MRST1
(master mode) or MTSR1 (slave mode), sampled with the same frequency as the CPU
clock, changes between one sample before and two samples after the latching edge of the
clock signal (see “Clock Control”). This condition sets the error flag SSCPE and, when
enabled via SSCPEN, the error interrupt request flag (see XP3INT line).

A Baud Rate Error (Slave mode) is detected, when the incoming clock signal deviates from
the programmed baud rate by more than 100%, it either is more than double or less than
half the expected baud rate. This condition sets the error flag SSCBE and, when enabled via
SSCBEN, the error interrupt request flag (see XP3INT line). Using this error detection
capability requires that the slave's baud rate generator is programmed to the same baud
rate as the master device.

This feature detects false additional, or missing pulses on the clock line (within a certain
frame).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Baud Rate

RW

BaudrateXSSC =
fCPU

2 x [(XSSCBR) + 1]

XSSCBR = (
fCPU

2 x BaudrateXSSC
) - 1

UM0407 XBUS high-speed synchronous serial interface

 289/541

Note: If this error condition occurs and bit SSCAREN = ‘1’, an automatic reset of the XSSC will be
performed in case of this error. This is done to reinitialize the XSSC, if too few or too many
clock pulses have been detected.

A Transmit Error (Slave mode) is detected, when a transfer was initiated by the master
(shift clock gets active), but the transmit buffer XSSCTB of the slave was not updated since
the last transfer. This condition sets the error flag SSCTE and, when enabled via SSCTEN,
the error interrupt request flag (see XP3INT line). If a transfer starts while the transmit buffer
is not updated, the slave will shift out the 'old' contents of the shift register, which normally is
the data received during the last transfer.
This may lead to the corruption of the data on the transmit/receive line in half-duplex mode
(open drain configuration), if this slave is not selected for transmission. This mode requires
that slaves not selected for transmission only shift out ones, so their transmit buffers must be
loaded with 'FFFFh' prior to any transfer.

Note: A slave with push-pull output drivers, which is not selected for transmission, will normally
have its output drivers switched. However, in order to avoid possible conflicts or
misinterpretations, it is recommended to always load the slave's transmit buffer prior to any
transfer.

13.5 XSSC interrupt control
Up to four interrupt control registers (XIRxSEL, x = 0, 1, 2, 3) are provided in order to select
the source of the XBUS interrupt: The transmit interrupt, the receive interrupt and the error
interrupt of serial channel XSSC are linked to the one of the XPxIC registers (x = 0, 1, 2, 3).
In particular, the three interrupt lines are available on the following interrupt vectors:

● ReceiveXP0INTXP1INTXP2INT

● TransmitXP0INTXP1INTXP2INT

● ErrorXP3INT

Refer to Section 5.7: X-Peripheral interrupt on page 114 for details.

The cause of an error interrupt request (receive, phase, baud rate, transmit error) can be
identified by checking the error status flags in control register XSSCCON.

Note: The error status flags SSCxE are not reset automatically upon entry into the error interrupt
service routine, but must be cleared by software.

Watchdog timer UM0407

290/541

14 Watchdog timer

The watchdog timer (WDT) provides recovery from software or hardware failure. If the
software fails to service this timer before an overflow occurs, an internal reset sequence is
initiated.

This internal reset will also pull the RSTOUT pin low, this resets the peripheral hardware
which might have caused the malfunction. When the watchdog timer is enabled and is
serviced regularly to prevent overflows, the watchdog timer supervises program execution.
Overflow only occurs if the program does not progress properly.

The watchdog timer will time out, if a software error was due to hardware related failures.
This prevents the controller from malfunctioning for longer than a user-specified time.

The watchdog timer provides two registers:

● Read-only timer register that contains the current count.

● Control register for initialization.

The watchdog timer is a 16-bit up counter which can be clocked with the CPU clock (fCPU)
either divided by 2 or divided by 128. This 16-bit timer is realized as two concatenated 8-bit
timers (see Figure 125).

The upper 8 bits of the watchdog timer can be preset to a user-programmable value by a
watchdog service access, in order to program the watchdog expire time. The lower 8 bits are
reset on each service access.

Figure 124. SFRs and port pins associated with the watchdog timer

Figure 125. Watchdog timer block diagram

Data Registers Control Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YWDT

151413121110 9 8 7 6 5 4 3 2 1 0

WDTCON Y Y Y Y Y Y Y Y - - Y Y Y Y Y Y

Reset Indication Pin

RSTOUT

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

³ 2

³ 128

MUX

WDTIN

WDT Low Byte WDT High Byte WDTR

Reset

WDTREL

Clear

WDT Control

fCPU

RSTOUT

UM0407 Watchdog timer

 291/541

14.1 Operation of the watchdog timer
The current count value of the Watchdog Timer is contained in the Watchdog Timer Register
WDT, which is a bit-addressable read-only register. The operation of the Watchdog Timer is
controlled by its bit-addressable Watchdog Timer Control Register WDTCON. This register
specifies the reload value for the high byte of the timer, selects the input clock prescaling
factor and provides a flag that indicates a watchdog timer overflow.

WDTCON (FFAEh / D7h) SFR Reset Value: 00xxh

After any software reset, external hardware reset (see note), or watchdog timer reset, the
watchdog timer is enabled and starts counting up from 0000h with the frequency fCPU / 2.
The input frequency may be switched to fCPU / 128 by setting bit WDTIN. The watchdog
timer can be disabled via the instruction DISWDT (Disable Watchdog Timer). Instruction
DISWDT is a protected 32-bit instruction which will ONLY be executed during the time
between a reset and execution of either the EINIT (End of Initialization) or the SRVWDT
(Service Watchdog Timer) instruction. Either one of these instructions disables the
execution of DISWDT.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTREL - - PONR LHWR SHWR SWR WDTR WDTIN

RW RW RW RW RW RW RW

Table 57. WDTCON register description

Bit name Function

WDTIN

Watchdog Timer Input Frequency Selection

‘0’: Input Frequency is fCPU/2 (Default after Reset).

‘1’: Input Frequency is fCPU/128.

WDTR(1)

1. More than one reset indication flag may be set. After EINIT, all flags are cleared.

Watchdog Timer Reset Indication Flag

Set by the watchdog timer on an overflow.

Cleared by a hardware reset or by the SRVWDT instruction.

SWR(1)
Software Reset Indication Flag

Set by the SRST execution.

Cleared by the EINIT instruction.

SHWR(1)
Short Hardware Reset Indication Flag

Set by the input RSTIN.

Cleared by the EINIT instruction.

LHWR(1)
Long Hardware Reset Indication Flag

Set by the input RSTIN.

Cleared by the EINIT instruction.

PONR(1)- (2)

2. Power-on is detected when a rising edge from VDD = 0 V to VDD > 2.0 V is recognized.

Power-On (Asynchronous) Reset Indication Flag

Set by the input RSTIN if a Power-On condition has been detected.

Cleared by the EINIT instruction.

Watchdog timer UM0407

292/541

When the watchdog timer is not disabled via instruction DISWDT, it will continue counting
up, even during Idle Mode. If it is not serviced via the instruction SRVWDT by the time the
count reaches FFFFh the watchdog timer will overflow and cause an internal reset. This
reset will pull the external reset indication pin RSTOUT low. It differs from a software or
external hardware reset in that bit WDTR (Watchdog Timer Reset Indication Flag) of register
WDTCON will be set. A hardware reset or the SRVWDT instruction will clear this bit. Bit
WDTR can be examined by software in order to determine the cause of the reset.

A watchdog reset will also complete a running external bus cycle before starting the internal
reset sequence if this bus cycle does not use READY or samples READY active (low) after
the programmed wait-states. Otherwise the external bus cycle will be aborted.

After a hardware reset that activates the Bootstrap Loader the watchdog timer will be
disabled.

To prevent the watchdog timer from overflowing, it must be serviced periodically by the user
software. The watchdog timer is serviced with the instruction SRVWDT, which is a protected
32-bit instruction. Servicing the watchdog timer clears the low byte and reloads the high byte
of the watchdog time register WDT with the preset value in bit-field WDTREL, which is the
high byte of register WDTCON. Servicing the watchdog timer will also reset bit WDTR.

After being serviced the watchdog timer continues counting up from the value [(WDTREL) x
28]. Instruction SRVWDT has been encoded in such a way that the chance of unintentionally
servicing the watchdog timer (e.g. by fetching and executing a bit pattern from a wrong
location) is minimized. When instruction SRVWDT does not match the format for protected
instructions, the Protection Fault Trap will be entered, rather than the instruction be
executed.

The PONR flag of WDTCON register is set if the output voltage of the internal 1.8V supply
falls below the threshold (typically 1.65V) of the Power-On detection circuit. This circuit is
efficient to detect major failures of the external 5V supply but if the internal 1.8V supply does
not drop under 1.65 Volts, the PONR flag is not set. This could be the case on fast switch-off
/ switch-on of the 5V supply. The time needed for such a sequence to activate the PONR
flag depends on the value of the capacitors connected to the supply and on the exact value
of the internal threshold of the detection circuit.

Note: 1 PONR bit may not be set for short supply failure.

2 For Power-On reset and reset after supply partial failure, asynchronous reset must be used.

In the next Table 60 on page 294 a summary of the different reset events and consequent
WDTCON flag setting is reported. Refer also to Section 23: System reset on page 446 for
details.

Table 58. WDTCON bits value on different resets

Reset source PONR LHWR SHWR SWR WDTR

Power-On Reset X X X X

Power-On after partial supply
failure

Note 1 X X X

Long Hardware Reset X X X

Short Hardware Reset X X

Software Reset X

Watchdog Reset X X

UM0407 Watchdog timer

 293/541

The Watchdog Timer is 16-bit, clocked with the system clock divided by 2 or 128. The high
byte of the watchdog timer register can be set to a prespecified reload value (stored in
WDTREL).

Each time it is serviced by the application software, the high byte of the watchdog timer is
reloaded. For security, rewrite WDTCON each time before the watchdog timer is serviced.

The time period for an overflow of the watchdog timer is programmable in two ways:

● The input frequency to the watchdog timer can be selected via bit WDTIN in register
WDTCON to be either fCPU / 2 or fCPU / 128.

● The reload value WDTREL for the high byte of WDT can be programmed in register
WDTCON.

The period PWDT between servicing the watchdog timer and the next overflow can therefore
be determined by the following formula:

Refer to the device datasheet for a table of watchdog timer ranges. For security, you are
advised to rewrite WDTCON each time before the watchdog timer is serviced.

The Table 59 shows the watchdog time range for 40 MHz and 64 MHz CPU clock.

Table 59. WDTREL reload value

Reload value in
WDTREL

Prescaler for fCPU = 40 MHz Prescaler for fCPU = 64 MHz

2 (WDTIN = ‘0’)
128 (WDTIN =

‘1’)
2 (WDTIN = ‘0’)

128 (WDTIN =
‘1’)

FFh 12.8µs 819.2µs 8µs 512µs

00h 3.277ms 209.7ms 2.048ms 131.1ms

PWDT =
fCPU

2[1 + (WDTIN) x 6] x [216 - (WDTREL) x 28]

Watchdog timer UM0407

294/541

Table 60. Reset events summary

Event

R
P

D

E
A

B
id

ir

S
yn

ch
.

A
sy

n
ch

. RSTIN WDTCON Flags

Min Max

P
O

N
R

L
H

W
R

S
H

W
R

S
W

R

W
D

T
R

Power-on reset

0 0 N Async.

1ms (VREG)

1.2ms (Reson. + PLL)

10.2ms (Crystal + PLL)

- 1 1 1 1 0

0 1 N Async. 1ms (VREG) - 1 1 1 1 0

1 x x FORBIDDEN

x x Y NOT APPLICABLE

Hardware reset
(Asynchronous)

0 0 N Async. 500ns - 0 1 1 1 0

0 1 N Async. 500ns - 0 1 1 1 0

0 0 Y Async. 500ns - 0 1 1 1 0

0 1 Y Async. 500ns - 0 1 1 1 0

Short hardware
reset

(Synchronous)
(1)

1. It can degenerate into a Long Hardware Reset and consequently differently flagged (see Section 23.3:
Synchronous reset (warm reset) on page 451 for details).

1 0 N Sync. max (4TCL, 500ns) 1032TCL 0 0 1 1 0

1 1 N Sync. max (4TCL, 500ns) 1032TCL 0 0 1 1 0

1 0 Y Sync.
max (4TCL, 500ns) 1032TCL

0 0 1 1 0
Activated by internal logic for 1024TCL

1 1 Y Sync.
max (4TCL, 500ns) 1032TCL

0 0 1 1 0
Activated by internal logic for 1024TCL

Long hardware
reset

(Synchronous)

1 0 N Sync. 1032TCL - 0 1 1 1 0

1 1 N Sync. 1032TCL - 0 1 1 1 0

1 0 Y Sync.
1032TCL -

0 1 1 1 0
Activated by internal logic only for 1024TCL

1 1 Y Sync.
1032TCL -

0 1 1 1 0
Activated by internal logic only for 1024TCL

Software reset
(2)

2. When Bidirectional is active (and with RPD = 0), it can be followed by a Short Hardware Reset and
consequently differently flagged (see Section 23.6: Bidirectional reset on page 459 for details).

x 0 N Sync. Not activated 0 0 0 1 0

x 0 N Sync. Not activated 0 0 0 1 0

0 1 Y Sync. Not activated 0 0 0 1 0

1 1 Y Sync. Activated by internal logic for 1024TCL 0 0 0 1 0

Watchdog reset
(2)

x 0 N Sync. Not activated 0 0 0 1 1

x 0 N Sync. Not activated 0 0 0 1 1

0 1 Y Sync. Not activated 0 0 0 1 1

1 1 Y Sync. Activated by internal logic for 1024TCL 0 0 0 1 1

UM0407 The bootstrap loader

 295/541

15 The bootstrap loader

ST10F272Z2 implements boot capabilities in order to:

● Support bootstrap via UART or bootstrap via CAN for the standard bootstrap;

● Support a Selective Bootstrap Loader, to manage in a different way the bootstrap
sequence.

15.1 Selection among user-code, standard or alternate bootstrap
The selection among user-code, standard bootstrap or alternate bootstrap is made by
special combinations on Port0L[5...4] during the time the reset configuration is latched from
Port0.

The alternate boot mode is triggered with a special combination set on Port0L[5...4]. Those
signals, as other configuration signals are latched on the rising edge of RSTIN pin.

The alternate boot function is divided into two functional parts (which are independent from
each other):

15.1.1 Part 1:

Selection of reset sequence according to the Port0 configuration, the User Mode and
the Selective Boot Mode signatures

● Decoding of reset configuration (P0L.5 = 1, P0L.4 = 1) will select the normal mode and
select the user Flash to be mapped from address 00’0000h.

● Decoding of reset configuration (P0L.5 = 1, P0L.4 = 0) will select ST10 standard
bootstrap mode (Test-Flash is active and overlaps user Flash for code fetches from
address 00'0000h; user Flash is active and available for read and program).

● Decoding of reset configuration (P0L.5 = 0, P0L.4 = 1) will activate new verifications to
select which bootstrap software to execute:

● if the User mode signature in the User Flash is programmed correctly, then a software
reset sequence is selected and the User code is executed;

● if the User mode signature is not programmed correctly in the user Flash, then the User
key location is read again. Its value will determine the behavior of the Selective
Bootstrap Loader.

15.1.2 Part 2:

Running of user selected reset sequence

● Standard Bootstrap Loader: jump to a predefined memory location in Test-Flash
(controlled by ST)

● Selective Bootstrap Loader: jump to a predefined location in Test-Flash (controlled
by ST) and check which communication channel is selected

● User code: do a software reset and jump to 00’0000h

The bootstrap loader UM0407

296/541

15.2 Standard bootstrap loader
The built-in bootstrap loader of the ST10F272Z2 provides a mechanism to load the startup
program, which is executed after reset, via the serial interface. In this case no external
(ROM) memory or an internal ROM is required for the initialization code starting at location
00’0000H. The bootstrap loader moves code/data into the IRAM, but it is also possible to
transfer data via the serial interface into an external RAM using a second level loader
routine. ROM memory (internal or external) is not necessary. However, it may be used to
provide lookup tables or may provide “core-code”, that is, a set of general purpose
subroutines, e.g. for I/O operations, number crunching, system initialization, etc.

The Bootstrap Loader may be used to load the complete application software into ROMless
systems, it may load temporary software into complete systems for testing or calibration, it
may also be used to load a programming routine for Flash devices.

The BSL mechanism may be used for standard system startup as well as only for special
occasions like system maintenance (firmware update) or end-of-line programming or
testing.

15.2.1 Entering the standard bootstrap loader

As with the old ST10 bootstrap mode, the ST10F272Z2 enters BSL mode, if pin P0L.4 is
sampled low at the end of a hardware reset. In this case the built-in bootstrap loader is
activated independently of the selected bus mode. The bootstrap loader code is stored in a
special Test-Flash: No part of the standard of the Flash memory area is required for this.

After entering BSL mode and the respective initialization, the ST10F272Z2 scans the RxD0
line and the CAN1_RxD line to receive either a valid dominant bit from CAN interface, or a
start condition from UART line.

Start condition on UART RxD: ST10F272Z2 starts standard bootstrap loader. This
bootstrap loader is identical to other ST10 devices (example: ST10F269, ST10F168). See
paragraph Section 15.3: Standard bootstrap with UART (RS232 or K-Line) on page 302 for
details.

Valid dominant bit on CAN1 RxD: ST10F272Z2 starts bootstrapping via CAN1; the
bootstrapping method is new and is described in the next paragraph Section 15.4: Standard
bootstrap with CAN on page 305. The following Figure 126 on page 297 shows the program

Table 61. ST10F272Z2 boot mode selection

P0.5 P0.4 ST10 decoding

1 1 User Mode: user Flash mapped at 00’0000h

1 0
Standard Bootstrap Loader: User Flash mapped from 00’0000h, code
fetches redirected to Test-Flash at 00’0000h

0 1
Selective Boot Mode: User Flash mapped from 00’0000h, code fetches
redirected to Test-Flash at 00’0000h (different sequence execution in
respect of Standard Boot)

0 0 Reserved

UM0407 The bootstrap loader

 297/541

flow of the new bootstrap loader. It illustrates clearly how the new functionalities are
implemented:

● UART: UART has priority over CAN after a falling edge on CAN1_RxD until the 1st valid
rising edge on CAN1_RxD;

● CAN: pulses on CAN1_RxD shorter than 20*CPU-cycles are filtered.

Figure 126. ST10F272Zx new standard bootstrap loader program flowST10
configuration in BSL

START

Falling-edge on
UART0 RxD?

Falling-edge on
CAN1 RxD?

Start Timer PT0

UART RxD = 0?

CAN1 RxD = 1?

PT0 > 20?

No

Count = 1

CAN RxD = 0?
No

CAN1 RxD = 1?
No

Count += 1

Count = 5?

Stop Timer PT0
Initialize CAN

Address = FA40h

No

Stop Timer PT0

Message Received?
No

[Address] = MO15_data0
Address = Address + 1

Address = FAC0h?
No

Glitch on CAN1 RxD

Clear Timer PT0

No No

Start Timer T6

UART0 RxD = 1?
No

Stop Timer T6
Initialize UART

Send Acknowledge
Address = FA40h

Byte Received?
No

[Address] = S0RBUF
Address = Address + 1

Address = FA60h?
No

Yes

Jump to address FA40h

UART BOOT

CAN BOOT

CAN BOOTUART BOOT

No

The bootstrap loader UM0407

298/541

When the ST10F272Z2 has entered BSL mode, the following configuration is automatically
set (values that deviate from the normal reset values, are marked in bold):

Other than after a normal reset the watchdog timer is disabled, so the bootstrap loading
sequence is not time limited. Depending on the selected serial link (UART0 or CAN1), pin
TxD0 or CAN1_TxD is configured as output, so the ST10F272Z2 can return the
acknowledge byte. Even if the internal IFlash is enabled, no code can be executed out of it.

15.2.2 Booting steps

As Figure 132 on page 305 shows, booting ST10F272Z2 with the boot loader code occurs
in 4 steps minimum:

1. The ST10F272Z2 is reset with P0L.4 low.

2. The internal new bootstrap code runs on the ST10 and a first level user code is
downloaded from the external device, via the selected serial link (UART0 or CAN1).
The bootstrap code is contained in the ST10F272Z2 Test-Flash and is automatically
run when ST10F272Z2 is reset with P0L.4 low. After loading a preselected number of
bytes, ST10F272Z2 begins executing the downloaded program.

3. The First level user code run on ST10F272Z2. Typically, this first level user code is
another loader that is used to download the application software into the ST10F272Z2.

4. The loaded application software is now running.

Watchdog Timer: Disabled

Register SYSCON: 0404H (1)

1. In bootstrap modes (standard or alternate) ROMEN, bit 10 of SYSCON, is always set regardless of EA pin
level. BYTDIS, bit 9 of SYSCON, is set according to data bus width selection via Port0 configuration.

; XPEN bit set for Bootstrap via

; CAN or Alternate Boot Mode

Context Pointer CP: FA00H

Register STKUN: FC00H

Stack Pointer SP: FA40H

Register STKOV: FA00H

Register BUSCON0: acc. to startup config.(2)

2. BUSCON0 is initialized with 0000h, external bus disabled, if pin EA is high during reset. If pin EA is low
during reset, BUSACT0, bit 10, and ALECTL0, bit 9, are set enabling the external bus with lengthened ALE
signal. BTYP field, bit 7 and 6, is set according to Port0 configuration.

Register S0CON: 8011H ; Initialized only if Bootstrap via UART

Register S0BG: acc. to ‘00’ byte ; Initialized only if Bootstrap via UART

P3.10 / TXD0: ‘1’ ; Initialized only if Bootstrap via UART

DP3.10: ‘1’ ; Initialized only if Bootstrap via UART

CAN1 Status/Control register: 0000H ; Initialized only if Bootstrap via CAN

CAN1 Bit Timing Register: acc. to ‘0’ frame ; Initialized only if Bootstrap via CAN

XPERCON: 042DH ; XRAM1-2, CAN1 and XMISC enabled

; Initialized only if Bootstrap via CAN

P4.6 / CAN1_TxD: ‘1’ ; Initialized only if Bootstrap via CAN

DP4.6: ‘1’ ; Initialized only if Bootstrap via CAN

UM0407 The bootstrap loader

 299/541

Figure 127. Booting steps for ST10F272Z2

15.2.3 Hardware to activate BSL

The hardware that activates the BSL during reset may be a simple pull-down resistor on
P0L.4 for systems that use this feature upon every hardware reset. You may want to use a
switchable solution (via jumper or an external signal) for systems that only temporarily use
the bootstrap loader.

Note: CAN alternate function on Port4 lines is not activated if the user has selected 8 address
segments (Port4 pins have 3 functions: I/O port, address-segment, CAN). Boot via CAN
requires that 4 address segments or less are selected.

Figure 128. Hardware provisions to activate the BSL

External device

S
erial
Link

External device

S
erial
Link

External device

S
erial
Link

External device

S
erial
Link

Run Bootstrap Code

Run 1st level Code

Run Application Code

Step1

Step2

Step3

Step4

Download
1st level user code

Download
Application

Entering bootstrap

Loading 1st level user code

Loading the application
and exiting BSL

from Test-Flash

from DPRAM @FA40h

ST10

ST10

ST10

ST10

RP0L.4
8kΩ max.

Circuit 1

P0L.4 P0L.4

Normal Boot

BSL

External
Signal

RP0L.4
8kΩ max.

Circuit 2

The bootstrap loader UM0407

300/541

15.2.4 Memory configuration in bootstrap loader mode

The configuration (that is, the accessibility) of the ST10F272Z2’s memory areas after reset
in Bootstrap Loader mode differs from the standard case. Pin EA is evaluated when BSL
mode is selected in order to enable or not the external bus:

● If EA = 1, the external bus is disabled (BUSACT0 = 0 in BUSCON0 register);

● If EA = 0, the external bus is enabled (BUSACT0 = 1 in BUSCON0 register).

● Moreover, while in BSL mode, accesses to the internal IFlash area are partly
redirected:

● All code accesses are made from the special Test-Flash seen in the range 00’0000h to
00’01FFFh;

● User IFlash is only available for read and write accesses (Test-Flash cannot be read
nor written);

● Write accesses must be made with addresses starting in segment 1 from 01'0000h,
whatever the value of ROMS1 bit in SYSCON register;

● Read accesses are made in segment 0 or in segment 1 depending of ROMS1 value;

● In BSL mode, by default, ROMS1 = 0 so the first 32 Kbytes of IFlash are mapped in
segment 0.

Example:

In the default configuration, to program address 0, user must put the value 01'0000h in
the FARL and FARH registers, but to verify the content of the address 0 a read to
00'0000h must be performed.

Note: As long as ST10F272Z2 is in BSL, user’s software should not try to execute code from the
internal IFlash as the fetches are redirected to the Test-Flash.

Figure 129. Memory configuration after reset

16 Mbytes 16 Mbytes 16 Mbytes

BSL mode active Yes (P0L.4 = ‘0’) Yes (P0L.4 = ‘0’) No (P0L.4 = ‘1’)

EA pin high low according to application

Code fetch from
internal Flash area

Test-Flash access Test-Flash access User IFlash access

Data fetch from internal
Flash area

User IFlash access User IFlash access User IFlash access

int. Flash
enabled

Te
st

-F
la

sh

us
er

 F
la

sh

access to

external
bus
disabled

access to

 int.
RAM

1

0

25
5

int. Flash
enabled

Te
st

-F
la

sh

us
er

 F
la

sh

access to

external
bus
enabled

access to

 int.
RAM

1

0

25
5

us
er

 F
la

sh

 int.
RAM

25
5

1

0

Depends on
reset config.
(EA, Port0)

Depends on
reset config.

UM0407 The bootstrap loader

 301/541

15.2.5 Loading the start-up code

After the serial link initialization sequence (see following sections), the BSL enters a loop to
receive 32bytes (boot via UART) or 128bytes (boot via CAN).

These bytes are stored sequentially into ST10F272Z2 Dual-Port RAM from location
00’FA40h.

To execute the loaded code, the BSL then jumps to location 00’FA40h. The bootstrap
sequence running from the Test-Flash is now terminated; the microcontroller remains in
BSL mode however.

Most probably, the initially loaded routine, the first level user code, will load additional code
and data. This first level user code may use the preinitialized interface (UART or CAN) to
receive data, a second level of code, and store it to arbitrary user-defined locations.

This second level of code may be the final application code. It may also be another, more
sophisticated, loader routine that adds a transmission protocol to enhance the integrity of
the loaded code or data. It may also contain a code sequence to change the system
configuration and enable the bus interface to store the received data into external memory.

In all cases, the ST10F272Z2 will still run in BSL mode, that is, with the watchdog timer
disabled and limited access to the internal IFlash area.

15.2.6 Exiting bootstrap loader mode

In order to execute a program in normal mode, the BSL mode must be terminated first. The
ST10F272Z2 exits BSL mode upon a software reset (level on P0L.4 is ignored) or a
hardware reset (P0L.4 must be high in this case). After the reset, the ST10F272Z2 will start
executing from location 00’0000H of the internal Flash (User Flash) or the external memory,
as programmed via pin EA.

Note: If a bidirectional Software Reset is executed, and external memory boot is selected
(EA = 0), a degeneration of the Software Reset event into a Hardware Reset can occur
(Refer to Section 23.6: Bidirectional reset for details). This would imply that P0L.4 becomes
transparent, so to exit from Bootstrap mode it would be necessary to release pin P0L.4 (it is
no longer ignored).

15.2.7 Hardware requirements

Although the new bootstrap loader has been designed to be compatible with the old
bootstrap loader, there are few hardware requirements related with the new bootstrap
loader:

● External Bus configuration: need to have 4 segment address lines or less (keep CAN
I/Os available);

● Usage of CAN pins (P4.5 and P4.6): even in bootstrap via UART, P4.5 (CAN1_RxD)
can not be used as Port output but only as input. The pin P4.6 (CAN1_TxD) can be
used as input or output.

● Level on UART RxD and CAN1_RxD during the bootstrap phase (see Figure 132 -
Step 2): must be 1 (external pull-ups recommended).

The bootstrap loader UM0407

302/541

15.3 Standard bootstrap with UART (RS232 or K-Line)

15.3.1 Features

ST10F272Z2 bootstrap via UART has the same overall behavior as the old ST10 bootstrap
via UART:

● Same bootstrapping steps;

● Same bootstrap method: analyze the timing of a predefined byte, send back an
acknowledge byte, load a fixed number of bytes and run then;

● Same functionalities: boot with different crystals and PLL ratios.

Figure 130. UART bootstrap loader sequence

15.3.2 Entering bootstrap via UART

The ST10F272Z2 enters BSL mode, if pin P0L.4 is sampled low at the end of a hardware
reset. In this case the built-in bootstrap loader is activated independent of the selected bus
mode. The bootstrap loader code is stored in a special Test-Flash, no part of the standard
mask ROM or Flash memory area is required for this.

After entering BSL mode and the respective initialization the ST10F272Z2 scans the RxD0
line to receive a zero byte, that is, one start bit, eight ‘0’ data bits and one stop bit. From the
duration of this zero byte it calculates the corresponding baud rate factor with respect to the
current CPU clock, initializes the serial interface ASC0 accordingly and switches pin TxD0 to
output. Using this baud rate, an acknowledge byte is returned to the host that provides the
loaded data.

The acknowledge byte is D5h for the ST10F272Z2.

Int. Boot ROM / Test-Flash BSL-routine
 32 bytes

2)

3)

 user software

4)

6)

1) BSL initialization time, > 1ms @ fCPU = 40 MHz.

2) Zero byte (1 start bit, eight ‘0’ data bits, 1 stop bit), sent by host.

3) Acknowledge byte, sent by ST10F272Z2.
4) 32 bytes of code / data, sent by host.

5) Caution: TxD0 is only driven a certain time after reception of the zero byte (1.3ms @
fCPU = 40 MHz).

6) Internal Boot ROM / Test-Flash.

1)

5)

RSTIN

P0L.4

RxD0

TxD0

CSP:IP

UM0407 The bootstrap loader

 303/541

15.3.3 ST10 configuration in UART BSL (RS232 or K-Line)

When the ST10F272Z2 has entered BSL mode on UART, the following configuration is
automatically set (values that deviate from the normal reset values, are marked in bold):

Other than after a normal reset the watchdog timer is disabled, so the bootstrap loading
sequence is not time-limited. Pin TxD0 is configured as output, so the ST10F272Z2 can
return the acknowledge byte. Even if the internal IFlash is enabled, no code can be
executed out of it.

15.3.4 Loading the start-up code

After sending the acknowledge byte the BSL enters a loop to receive 32 bytes via ASC0.
These bytes are stored sequentially into locations 00’FA40H through 00’FA5FH of the IRAM.
So up to 16 instructions may be placed into the RAM area. To execute the loaded code the
BSL then jumps to location 00’FA40H, that is, the first loaded instruction. The bootstrap
loading sequence is now terminated, the ST10F272Z2 remains in BSL mode, however.
Most probably the initially loaded routine will load additional code or data, as an average
application is likely to require substantially more than 16 instructions. This second receive
loop may directly use the preinitialized interface ASC0 to receive data and store it to
arbitrary user-defined locations.

This second level of loaded code may be the final application code. It may also be another,
more sophisticated, loader routine that adds a transmission protocol to enhance the integrity
of the loaded code or data. It may also contain a code sequence to change the system
configuration and enable the bus interface to store the received data into external memory.

This process may go through several iterations or may directly execute the final application.
In all cases the ST10F272Z2 will still run in BSL mode, that is, with the watchdog timer
disabled and limited access to the internal Flash area. All code fetches from the internal
IFlash area (01’0000H...08’FFFFH) are redirected to the special Test-Flash. Data read
operations will access the internal Flash of the ST10F272Z2, if any is available, but will
return undefined data on ROM-less devices.

Watchdog Timer: Disabled

Register SYSCON: 0400H (1)

1. In bootstrap modes (standard or alternate) ROMEN, bit 10 of SYSCON, is always set regardless of EA pin
level. BYTDIS, bit 9 of SYSCON, is set according to data bus width selection via Port0 configuration.

Context Pointer CP: FA00H

Register STKUN: FA00H

Stack Pointer SP: FA40H

Register STKOV: FC00H

Register S0CON: 8011H

Register BUSCON0: according to startup configuration (2)

2. BUSCON0 is initialized with 0000h, external bus disabled, if pin EA is high during reset. If pin EA is low
during reset, BUSACT0, bit 10, and ALECTL0, bit 9, are set enabling the external bus with lengthened ALE
signal. BTYP field, bit 7 and 6, is set according to Port0 configuration.

Register S0BG: according to ‘00’ byte

P3.10 / TXD0: ‘1’

DP3.10: ‘1’

The bootstrap loader UM0407

304/541

15.3.5 Choosing the baud rate for the BSL via UART

The calculation of the serial baud rate for ASC0 from the length of the first zero byte that is
received, allows the operation of the bootstrap loader of the ST10F272Z2 with a wide range
of baud rates. However, the upper and lower limits have to be kept, in order to insure proper
data transfer.

The ST10F272Z2 uses timer T6 to measure the length of the initial zero byte. The
quantization uncertainty of this measurement implies the first deviation from the real baud
rate, the next deviation is implied by the computation of the S0BRL reload value from the
timer contents. The formula below shows the association:

For a correct data transfer from the host to the ST10F272Z2 the maximum deviation
between the internal initialized baud rate for ASC0 and the real baud rate of the host should
be below 2.5%. The deviation (FB, in percent) between host baud rate and ST10F272Z2
baud rate can be calculated via the formula below:

Note: Function (FB) does not consider the tolerances of oscillators and other devices supporting
the serial communication.

This baud rate deviation is a nonlinear function depending on the CPU clock and the baud
rate of the host. The maxima of the function (FB) increases with the host baud rate due to
the smaller baud rate prescaler factors and the implied higher quantization error (see
Figure 131).

Figure 131. Baud rate deviation between host and ST10F272Z2

The minimum baud rate (BLow in Figure 131) is determined by the maximum count
capacity of timer T6, when measuring the zero byte, that is, it depends on the CPU clock.
Using the maximum T6 count 216 in the formula the minimum baud rate can be calculated.
The lowest standard baud rate in this case would be 1200 baud. Baud rates below BLow
would cause T6 to overflow. In this case ASC0 cannot be initialized properly.

The maximum baud rate (BHigh in Figure 131) is the highest baud rate where the deviation
still does not exceed the limit, that is, all baud rates between BLow and BHigh are below the
deviation limit. The maximum standard baud rate that fulfills this requirement is 19200 Baud.

fCPU
32 S0BRL 1+()⋅
---BST10F272Z2

=

S0BRL T6 36–
72

--------------------= T6 9
4
--

fCPU
BHost
---------------⋅=,

FB
BContr BHost–

BContr
-- 100⋅= % FB 2.5≤ %,

BLow

2.5%

FB

BHigh

I

II
BHOST

UM0407 The bootstrap loader

 305/541

Higher baud rates, however, may be used as long as the actual deviation does not exceed
the limit. A certain baud rate (marked I) in the figure) may e.g. violate the deviation limit,
while an even higher baud rate (marked II) in the figure) stays very well below it. This
depends on the host interface.

15.4 Standard bootstrap with CAN

15.4.1 Features

The bootstrap via CAN has the same overall behavior as the bootstrap via UART:

● Same bootstrapping steps;

● Same bootstrap method: analyze the timing of a predefined frame, send back an
acknowledge frame BUT only on request, load a fixed number of bytes and run then;

● Same functionalities: boot with different crystals and PLL ratios.

Figure 132. CAN bootstrap loader sequence

The Bootstrap Loader may be used to load the complete application software into ROM-less
systems, it may load temporary software into complete systems for testing or calibration, it
may also be used to load a programming routine for Flash devices.

The BSL mechanism may be used for standard system start-up as well as only for special
occasions like system maintenance (firmware update) or end-of-line programming or
testing.

Int. Boot ROM / Test-Flash BSL-routine
 128bytes

2)

3)

 user software

4)

6)

1) BSL initialization time, > 1ms @ fCPU = 40 MHz.

2) Zero frame (CAN message: standard ID = 0, DLC = 0), sent by host.

3) CAN message (standard ID = E6h, DLC = 3, Data0 = D5h, Data1-Data2 = IDCHIP_low-high),
sent by ST10F272Z2 on request

4) 128bytes of code / data, sent by host.
5) Caution: CAN1_TxD is only driven a certain time after reception of the zero byte (1.3ms @ fCPU
= 40 MHz).
6) Internal Boot ROM / Test-Flash.

1)

5)

RSTIN

P0L.4

CAN1_RxD

CAN1_TxD

CSP:IP

The bootstrap loader UM0407

306/541

15.4.2 Entering the CAN bootstrap loader

The ST10F272Z2 enters BSL mode, if pin P0L.4 is sampled low at the end of a hardware
reset. In this case the built-in bootstrap loader is activated independent of the selected bus
mode. The bootstrap loader code is stored in a special Test-Flash, no part of the standard
mask ROM or Flash memory area is required for this.

After entering BSL mode and the respective initialization the ST10F272Z2 scans the
CAN1_TxD line to receive the following initialization frame:

● standard identifier = 0h

● DLC = 0h

As all the bits to be transmitted are dominant bits, a succession of 5 dominant bits and 1
stuff bit on the CAN network is used. From the duration of this frame it calculates the
corresponding baud rate factor with respect to the current CPU clock, initializes the CAN1
interface accordingly, switches pin CAN1_TxD to output and enables the CAN1 interface to
take part in the network communication. Using this baud rate, an Message Object is
configured in order to send an acknowledge frame. The ST10F272Z2 will not send this
Message Object but the host can request it by sending remote frame.

The acknowledge frame is the following for the ST10F272Z2:

● standard identifier = E6h

● DLC = 3h

● Data0 = D5h, that is, generic acknowledge of the ST10 devices

● Data1 = IDCHIP least significant byte

● Data2 = IDCHIP most significant byte

For the ST10F272Z2, IDCHIP = 114Xh.
Two behaviors can be distinguished in the acknowledging of the ST10 to the host. If the host
is behaving according to the CAN protocol, as at the beginning the ST10 CAN is not
configured, the host will be alone on the CAN network and will not get any acknowledge. It
will automatically resent the zero frame. As soon as the ST10 CAN will be configured, it will
acknowledge the zero frame. The “acknowledge frame” with identifier 0xE6, will be
configured, but the Transmit Request will not be set. The host can request this frame to be
sent, and therefore get the IDCHIP, by sending a remote frame.

Hint: As the IDCHIP is sent in the acknowledge frame, Flash programming software now
has the possibility to immediately know the exact type of device to be programmed.

15.4.3 ST10 configuration in CAN BSL

When the ST10F272Z2 has entered BSL mode via CAN, the following configuration is
automatically set (values that deviate from the normal reset values, are marked in bold):

Watchdog Timer: Disabled

XPERCON: 042DH ; XRAM1-2, CAN1, XMISC enabled

SYSCON: 0404H
(1) ; XPEN bit set

Context Pointer CP: FA00H

Register STKUN: FA00H

Stack Pointer SP: FA40H

UM0407 The bootstrap loader

 307/541

Other than after a normal reset the watchdog timer is disabled, so the bootstrap loading
sequence is not time limited. Pin CAN1_TxD1 is configured as output, so the ST10F272Z2
can return the identification frame. Even if the internal IFlash is enabled, no code can be
executed out of it.

15.4.4 Loading the start-up code via CAN

After sending the acknowledge byte the BSL enters a loop to receive 128 bytes via CAN1.

Hint: The number of bytes loaded when booting via the CAN interface has been extended to
128 bytes in order to allow the reconfiguration of the CAN Bit Timing Register with the best
timings (synchronization window, ...). This can be achieved by the following sequence of
instructions:

ReconfigureBaudRate:
MOV R1,#041h
MOV DPP3:0EF00h,R1 ; Put CAN in Init, enable Configuration Change
MOV R1,#01600h
MOV DPP3:0EF06h,R1 ; 1MBaud at Fcpu = 20 MHz

These 128 bytes are stored sequentially into locations 00’FA40H through 00’FABFH of the
IRAM. So up to 64 instructions may be placed into the RAM area. To execute the loaded
code the BSL then jumps to location 00’FA40H, that is, the first loaded instruction. The
bootstrap loading sequence is now terminated, the ST10F272Z2 remains in BSL mode,
however. Most probably the initially loaded routine will load additional code or data, as an
average application is likely to require substantially more than 64 instructions. This second
receive loop may directly use the preinitialized CAN interface to receive data and store it to
arbitrary user-defined locations.

This second level of loaded code may be the final application code. It may also be another,
more sophisticated, loader routine that adds a transmission protocol to enhance the integrity
of the loaded code or data. It may also contain a code sequence to change the system
configuration and enable the bus interface to store the received data into external memory.

This process may go through several iterations or may directly execute the final application.
In all cases the ST10F272Z2 will still run in BSL mode, that is, with the watchdog timer
disabled and limited access to the internal Flash area. All code fetches from the internal
Flash area (01’0000H...08’FFFFH) are redirected to the special Test-Flash. Data read
operations will access the internal Flash of the ST10F272Z2, if any is available, but will
return undefined data on ROM-less devices.

Register STKOV: FC00H

BUSCON0:
according to start-up
configuration (2)

CAN1 Status/Control Register: 0000H

CAN1 Bit Timing Register: according to ‘Zero’ frame

P4.6 / CAN1_TxD: ‘1’

DP4.6: ‘1’

1. In bootstrap modes (standard or alternate) ROMEN, bit 10 of SYSCON, is always set regardless of EA pin
level. BYTDIS, bit 9 of SYSCON, is set according to data bus width selection via Port0 configuration.

2. BUSCON0 is initialized with 0000h, external bus disabled, if pin EA is high during reset. If pin EA is low
during reset, BUSACT0, bit 10, and ALECTL0, bit 9, are set enabling the external bus with lengthened ALE
signal. BTYP field, bit 7 and 6, is set according to Port0 configuration.

The bootstrap loader UM0407

308/541

15.4.5 Choosing the baud rate for the BSL via CAN

The Bootstrap via CAN acts in the same way than the UART bootstrap mode. When the
ST10F272Z2 is started in BSL mode, it polls the RxD0 and CAN1_RxD lines. On polling a
low level on one of these lines, a timer is launched that will be stopped when the line gets
back to high level.

For CAN communication, the algorithm is made to receive a zero frame, i-e standard
identifier is 0x0, DLC is 0. This frame will produce on the network the following levels: 5D,
1R, 5D, 1R, 5D, 1R, 5D, 1R, 5D, 1R, 4D, 1R, 1D, 11R. The algorithm lets run the timer until
the detection of the 5th recessive bit. This way the bit timing is calculated over the duration
of 29 bit time: This is done in order to minimize the error introduced by the polling.

Figure 133. Bit rate measurement over a predefined zero-frame

Error induced by the polling

The code used for the polling is the following:
WaitCom:

JNB P4.5,CAN_Boot ; if SOF detected on CAN, then go to
CAN

; loader
JB P3.11,WaitCom ; Wait for start bit at RxD0
BSET T6R ; Start Timer T6

....
CAN_Boot:

BSET PWMCON0.0 ; Start PWM Timer0
 ; (resolution is 1 CPU clk cycle)

JMPR cc_UC,WaitRecessiveBit
WaitDominantBit:

JB P4.5,WaitDominantBit; wait for end of stuff bit
WaitRecessiveBit:

JNB P4.5,WaitRecessiveBit; wait for 1st dominant bit = Stuff
bit

CMPI1R1,#5 ; Test if 5th stuff bit detected
JMPR cc_NE,WaitDominantBit; No, go back to count more
BCLR PWMCON.0 ; Stop timer

; here the 5th stuff bit is detected:
; PT0 = 29 Bit_Time (25D and 4R)

Therefore the maximum error at the detection of the communication on CAN pin is:

(1 not taken + 1 taken jumps) + 1 taken jump + 1 bit set: (6) + 6 CPU clock cycles

The error at the detection for the 5th recessive bit is:

(1 taken jump) + 1 not taken jump + 1 compare + 1 bit clear: (4) + 6 CPU cycles

........

Start Stuff bit Stuff bit Stuff bit Stuff bit

Measured Time

UM0407 The bootstrap loader

 309/541

In the worst case the induced error is of 6 CPU clock cycles. So the polling could induce an
error of 6 timer ticks.

Error induced by the baud rate calculation

The content of the timer PT0 counter corresponds to 29 bit times. This gives the following
equation:

PT0 = 58 x (BRP + 1) X (1 + Tseg1 + Tseg2)

where BRP, Tseg1 and Tseg2 are the field of the CAN Bit Timing register.

The CAN protocol specification recommends to implement a bit time composed by at least 8
time quanta (tq). This recommendation have been applied here. Moreover, the maximum bit
time length is 25 tq. In order to have a good precision, the target is to have the smallest Bit
Rate Prescaler (BRP) and the maximum number of tq in a bit time.

This gave the following ranges for PT0 according to BRP:

8 ≤ 1 + Tseg1 + Tseg2 ≤ 25

464 x (1 + BRP) ≤ PT0 ≤ 1450 x (1 + BRP)

The error coming from the measurement of the 29 bits is:

e1 = 6 / [PT0]

It is maximal for the smallest BRP value and the smallest number of ticks in PT0. Therefore:

e1 Max = 1.29%

To have a better precision, the target is to have the smallest BRP so that the time quantum
is the smallest possible. Thus an error on the calculation of time quanta in a bit time is
minored.

In order to do so, the value of PT0 is divided in ranges of 1450 ticks. In the algorithm, PT0 is
divided by 1451 and the result is BRP.

Table 62. Ranges of timer contents in function of BRP value

BRP PT0_min PT0_max Comments

0 464 1450

1 1451 2900

2 2901 4350

3 4351 5800

4 5801 7250

5 7251 8700

..

43 20416 63800

44 20880 65250

45 21344 66700 Possible Timer overflow

..

63 X X

The bootstrap loader UM0407

310/541

The calculated BRP value is then used to divide PT0 in order to have the value of (1 +
Tseg1 + Tseg2). A table is made to set the values for Tseg1 and Tseg2 according to the
value of (1 + Tseg1 + Tseg2). These values of Tseg1 and Tseg2 are chosen in order to
reach a sample point between 70% and 80% of the bit time.

During the calculation of (1 + Tseg1 + Tseg2), an error e2 can be introduced by the division.
This error is of 1 time quantum maximum.

To compensate any possible error on bit rate, the (Re)Synchronization Jump Width is fixed
to 2 time quanta.

15.4.6 How to compute the baud rate error

Considering the following conditions, a computation of the error is reported as example.

● CPU frequency: 20 MHz

● Target Bit Rate: 1 Mbit/s

In these conditions, the content of PT0 timer for 29 bits should be:

Therefore:

574 < [PT0] < 586

This gives:

● BRP = 0

● tq = 100ns

Computation of 1 + Tseg1 + Tseg2: considering the equation:

[PT0] = 58 x (1 + BRP) x (1 + Tseg1 + Tseg2)

Thus:

In the algorithm, a rounding to the superior value is made if the remainder of the division is
greater than half of the divisor. Here it would have been the case if the PT0 content was 574.
Thus in this example it results 1+Tseg1+Tseg2 = 10, giving a bit time of exactly 1µs => no
error in bit rate.

Note: In most cases (24 MHz, 32 MHz, 40 MHz of CPU frequency and 125, 250, 500 or 1 Mbit/s of
bitrate) there is no error. Nevertheless, it is better to check the error with the real application
parameters.

The content of the Bit Timing register will be: 0x1640. This gives a sample point at 80%.

Note: The (Re)Synchronization Jump Width is fixed to 2 time quanta.

PT0[] 29 Fcpu×
BitRate

--------------------------- 29 20× 6×

1x10
6

----------------------------- 580===

9 574
58

---------- Tseg1 Tseg2 586
58

---------- 10=≤+≤=

UM0407 The bootstrap loader

 311/541

15.4.7 Bootstrap via CAN

After the bootstrap phase, ST10F272Zx CAN module is configured as follow:

● The pin P4.6 is configured as output (the latch value is ‘1’ = recessive) to assume
CAN1_TxD function.

● The MO2 is configured to output the acknowledge of the bootstrap with the standard
identifier E6h, a DLC of 3 and Data0 = D5h, Data1&2 = IDCHIP.

● The MO1 is configured to receive messages with the standard identifier 5h. Its
acceptance mask is set in order that all bits must match. The DLC received is not
checked: The ST10 expects only 1 byte of data at a time.

No other message is sent by the ST10F272Z2 after the acknowledge.

Note: The CAN boot waits for 128 byte of data instead of 32 (see UART boot). This is done in
order to allow the User to reconfigure the CAN bitrate as soon as possible.

15.5 Comparing the old and the new bootstrap loader
The following tables summarize the differences between the old ST10 (boot via UART only)
bootstrap and the new one (boot via UART or CAN).

15.5.1 Software aspects

As the CAN1 is needed, the XPERCON register is configured by the bootstrap loader code
and bit XPEN of SYSCON is set. Anyway, as long as the EINIT instruction is not executed
(and it is not in the bootstrap loader code), the settings can be modified. The following steps
must be performed in order to do this:

● disable the X-Peripherals by clearing XPEN in SYSCON register. Attention: This part of
code must not be located in XRAM as it will be disabled.

● enabled the needed X-Peripherals by writing the correct value in the XPERCON
register.

● set XPEN bit in SYSCON.

15.5.2 Hardware aspects

Although the new bootstrap loader has been designed to be compatible with the old
bootstrap loader, there are few hardware requirements with the new bootstrap loader
hereafter summarized.

Table 63. Software topics summary

Old bootstrap loader New bootstrap loader Comments

Uses only 32 bytes in Dual-
Port RAM from 00’FA40h

Uses up to 128 bytes in
Dual-Port RAM from
00’FA40h

For compatibility between boot via UART
and boot via CAN1, avoid loading the
application software in the
00’FA60h/00’FABFh range.

Loads 32 bytes from UART
Loads 32 bytes from UART
(boot via UART mode)

Same files can be used for boot via
UART.

User selected X-Peripherals
can be enabled during boot
(step 3 or step 4)

X-Peripherals selection is
fixed.

User can change the X-Peripheral
selections through a specific code.

The bootstrap loader UM0407

312/541

15.6 Selective boot mode

15.6.1 Activation

Selective boot mode is activated with the combination ‘01’ on Port0L[5..4] at the rising edge
of RSTIN.

15.6.2 Memory mapping

ST10F272Z2 has the same memory mapping as for standard boot mode:

● Test-Flash: mapped from 00’0000h. The Standard Bootstrap Loader can be started by
executing a jump to the address of this routine (JMPS 00’xxxx; address to be defined).

● User Flash: The IFlash is visible only for memory reads and memory writes (no code
fetch).

● All ST10F272Z2 XRAM and X-Peripherals modules can be accessed if enabled in
XPERCON register.

15.6.3 User mode signature integrity check

The behavior of the Selective Boot Mode is based on the computing of a signature between
the content of 2 memory locations and a comparison with a reference signature. This
requires that users who use Selective Boot have reserved and programmed the Flash
memory locations according to:

User mode signature

00'0000h: memory address of operand0 for the signature computing

00’1FFCh: memory address of operand1 for the signature computing

00’1FFEh: memory address for the signature reference

The value for operand0, operand1 and the signature should be such that the following
sequence should be successfully executed:

MOV Rx, CheckBlock1Addr ; 00’0000h for standard reset
ADD Rx, CheckBlock2Addr ; 00’1FFCh for standard reset
CPLB RLx ; 1s complement of the lower

; byte of the sum
CMP Rx, CheckBlock3Addr ; 00’1FFEh for standard reset

When the user signatures is not correct, instead of executing the standard bootstrap loader
(triggered by P0L.4 low at reset), additional check is made.

Table 64. Hardware topics summary

Actual bootstrap loader New bootstrap loader Comments

P4.5 can be used as output in
BSL mode.

P4.5 can not be used as user output
in BSL mode, but only as CAN1_RxD
or input or address-segments.

level on CAN1_RxD can
change during boot step2.

level on CAN1_RxD must be stable at
‘1’ during boot step2.

external pull-up on P4.5
needed.

UM0407 The bootstrap loader

 313/541

Address 00’1FFCh is read again with the following behavior:

● If value is 0000h or FFFFh, then a jump is performed to the Standard Bootstrap Loader.

● Else:

– High byte is disregarded.

– Low byte bits selects which communication channel is enabled.

Therefore a value:

● 0xXX03 will configure the Selective Bootstrap Loader to poll for RxD0 and CAN1_RxD.

● 0xXX01 will configure the Selective Bootstrap loader to poll only RxD0 (no boot via
CAN).

● 0xXX02 will configure the Selective Bootstrap Loader to poll only CAN1_RxD (no boot
via UART).

● other values will let the ST10F272Z2 executing an endless loop into the Test-Flash.

15.6.4 Internal decoding of test modes

The test mode decoding logic is located inside ST10F272Z2 Bus Controller.

The decoding is as follow:

● Alternate Boot Mode decoding: (P0L.5 & P0L.4)

● Standard Bootstrap decoding: (P0L.5 & P0L.4)

● Normal operation: (P0L.5 & P0L.4)

The other configurations select ST internal test modes.

15.6.5 Example

In the following example Alternate Boot Mode works as follow:

● On rising edge of RSTIN pin, the reset configuration is latched.

– if Bootstrap Loader mode is not enabled (P0L[5..4] = ‘11’), then ST10F272Z2
hardware proceeds with a standard hardware reset procedure.

– If standard Bootstrap Loader is enabled (P0L[5..4] = ‘10’), then the standard ST10
Bootstrap Loader is enabled

– If Selective Boot Mode is selected (P0L[5..4] = ‘01’), then depending on signatures
integrity checks a predefined reset sequence is activated.

Bit Function

0

UART Selection
‘0’: UART will not be watched for a Start condition.
‘1’: UART will be watched for a Start condition.

1
CAN1 Selection
‘0’: CAN1 will not be watched for a Start condition.

‘1’: CAN1 will be watched for a Start condition.

2..7
Reserved
For upward compatibility, must be programmed to ‘0’

The bootstrap loader UM0407

314/541

Figure 134. Reset boot sequence

Standard Start
No (P0L[5..4] = ‘11’)

K1 is not OK

K1 is OK

Running from test Flash

Yes (P0L[5..4] = ‘01’)

Std. Bootstrap Loader

Jump to Test-Flash

User Mode / User Flash

Start at 00’0000h

RSTIN 0 to 1

Boot Mode?

Yes (P0L[5..4] = ‘10’)

Software Checks
User Reset Vector

(K1 is OK?)

SW RESET

ST Test Modes

No (P0L[5..4] = ‘other config.’)

Selective Bootstrap Loader

Jump to Test-Flash

Read 00’1FFCh

UM0407 The capture / compare units

 315/541

16 The capture / compare units

The ST10F272Z2 provides two, almost identical, capture / compare (CAPCOM) units which
differ, only in the way they are connected to the I/O pins. They provide 32 channels which
interact with 4 timers. The CAPCOM units capture the contents of a timer on specific
internal or external events, or they compare a timer’s content with given values and modify
output signals in case of a match. They support generation and control of timing sequences
on up to 16 channels per unit with a minimum of software intervention. For programming,
the term 'CAPCOM unit' refers to a set of SFRs associated to the peripheral, including the
port pins which may be used for alternate input / output functions including their direction
control bits.

The capture / compare units UM0407

316/541

Figure 135. SFRs and port pins associated with the CAPCOM units

A CAPCOM unit handles high speed I/O tasks such as pulse and waveform generation,
pulse width modulation, or recording of the time at which specific events occur. It also allows
the implementation of up to 16 software timers. The maximum resolution of the CAPCOM

P
or

ts
 &

 D
ire

ct
io

n
C

on
tr

ol
 A

lte
rn

at
e

fu
nc

tio
ns

D
at

a
R

eg
is

te
rs

15 -

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 Y

6 Y

5 Y

4 Y

3 -

2 -

1 -

0 -
D

P
1H

 E
T

0

15 Y

14 Y

13 Y

12 Y

11 Y

10 Y

9 Y

8 Y

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y

-
-

-
-

-
-

-
-

Y
Y

Y
Y

-
-

-
-

P
1H

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
2

E

T
0R

E
L

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

T
1

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
on

tr
ol

 R
eg

is
te

rs
In

te
rr

up
t C

on
tr

ol

15 Y

14 Y

13 Y

12 Y

11 Y

10 Y

9 Y

8 Y

7 Y

6 Y

5 Y

4 Y

3 Y

2 Y

1 Y

0 Y
T

01
C

O
N

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

T
0I

C

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

T
1I

C

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

T
7I

C
 E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

0I
O

/P
2.

0.
..C

C
15

IO
/P

2.
15

C
C

16
IO

/P
8.

0.
..C

C
23

IO
/P

8.
7

C
C

24
IO

/P
1H

.4
...

C
C

27
IO

/P
1H

.7
C

C
28

IO
/P

7.
4.

..C
C

31
IO

/P
7.

7

T
xR

E
LC

A
P

C
O

M
 T

im
er

 x
 R

el
oa

d
R

eg
is

te
r

T
xC

A
P

C
O

M
 T

im
er

 x
 R

eg
is

te
r

C
C

0.
..1

5C
A

P
C

O
M

1
R

eg
is

te
r

0.
..1

5

C
C

16
...

31
C

A
P

C
O

M
2

R
eg

is
te

r
16

...
31

C
C

M
0.

..3
C

A
P

C
O

M
1

M
od

e
C

on
tr

ol
 R

eg
is

te
r

0.
..3

C
C

M
4.

..7
C

A
P

C
O

M
2

M
od

e
C

on
tr

ol
 R

eg
is

te
r

4.
..7

C
C

0.
..1

5I
C

C
A

P
C

O
M

1
In

te
rr

up
t C

on
tr

ol
 R

eg
is

te
r

0.
..1

5

C
C

16
..3

1I
C

C
A

P
C

O
M

2
In

te
rr

up
t C

on
tr

ol
 R

eg
is

te
r

16
...

31

O
D

P
xP

or
t x

 O
pe

n
D

ra
in

 C
on

tr
ol

 R
eg

is
te

r

D
P

xP
or

t x
 D

ire
ct

io
n

C
on

tr
ol

 R
eg

is
te

r

P
xP

or
t x

 D
at

a
R

eg
is

te
r

T
01

C
O

N
C

A
P

C
O

M
1

T
im

er
s

T
0

an
d

T
1

C
on

tr
ol

 R
eg

is
te

r

T
78

C
O

N
C

A
P

C
O

M
2

T
im

er
s

T
7

an
d

T
8

C
on

tr
ol

 R
eg

is
te

r

T
0I

C
/T

1I
C

C
A

P
C

O
M

1
T

im
er

 0
/1

 In
te

rr
up

t C
on

tr
ol

 R
eg

is
te

r

T
7I

C
/T

8I
C

C
A

P
C

O
M

2
T

im
er

 7
/8

 In
te

rr
up

t C
on

tr
ol

 R
eg

is
te

r

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

D
P

2

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

P
2

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
Y

O
D

P
3

E

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
Y

D
P

3

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
Y

P
3

-
-

-
-

-
-

-
-

Y
Y

Y
Y

-
-

-
-

O
D

P
7

E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

-
-

-
-

D
P

7

-
-

-
-

-
-

-
-

Y
Y

Y
Y

-
-

-
-

P
7

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

O
D

P
8

E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

D
P

8

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

P
8

T
1R

E
L

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

T
7

E
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

T
7R

E
L

E
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

T
8

E
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

T
8R

E
L

E
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

C
C

0-
3

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

4-
7

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

8-
11

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

12
-1

5Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

16
-1

9Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

20
-2

3Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

24
-2

7Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

28
-3

1Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

T
78

C
O

N

C
C

M
0

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
1

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
2

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
3

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
4

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
5

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
6

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
C

M
7

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

T
8I

C
 E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

0I
C

-3
IC

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

4I
C

-7
IC

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

8I
C

-1
1I

C

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

12
IC

-1
5I

C

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

16
IC

-1
9I

C
 E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

20
IC

-2
3I

C
 E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

24
IC

-2
7I

C
 E

-
-

-
-

-
-

-
-

Y
Y

Y
Y

Y
Y

Y
Y

C
C

28
IC

-3
1I

C
 E

B
it

is
 li

nk
ed

 to
 a

 fu
nc

tio
n

B
it

ha
s

no
 fu

nc
tio

n
or

 is
 n

ot
 im

pl
em

en
te

d
R

eg
is

te
r

is
 in

 E
S

F
R

 in
te

rn
al

 m
em

or
y

sp
ac

e

Y - E

: : :

UM0407 The capture / compare units

 317/541

units is calculated with the formula in Section 16.1: CAPCOM timers on page 318 and is
specified in the device datasheet.

Each CAPCOM unit consists of two 16-bit timers (T0 / T1 in CAPCOM1, T7 / T8 in
CAPCOM2), each with its own reload register (TxREL), and a bank of sixteen dual purpose
16-bit capture / compare registers (CC0 through CC15 in CAPCOM1, CC16 through CC31
in CAPCOM2).

The input clock for the CAPCOM timers is programmable to several prescaled values of the
CPU clock, or it can be derived from an overflow / underflow of timer T6 in block GPT2. T0
and T7 may also operate in counter mode (from an external input) where they can be
clocked by external events.

Each capture / compare register may be programmed individually for capture or compare
function, and each register may be allocated to either timer of the associated unit. Each
capture / compare register has one port pin associated with it which serves as an input pin
for the capture function or as an output pin for the compare function (except for
CC27...CC24 on P1H.7...P1H.4, which only provide the capture function). The capture
function causes the current timer contents to be latched into the respective capture /
compare register triggered by an event (transition) on its associated port pin. The compare
function may cause an output signal transition on that port pin whose associated capture /
compare register matches the current timer contents. Specific interrupt requests are
generated upon each capture / compare event or upon timer overflow.

Figure 136 shows the basic structure of the two CAPCOM units.

Figure 136. CAPCOM unit block diagram

Note: The CAPCOM2 unit provides 16 capture inputs, but only 12 compare outputs.

Tx
Input

Control

2n n = 3...10

GPT2 Timer T6

TxIN

CPU
Clock

Mode
Control

(Capture
or

Compare)

16
Capture inputs

Compare outputs

Ty
Input

Control

2n n = 3...10

GPT2 Timer T6
Over / Underflow

CPU
Clock

Reload Register TxREL

CAPCOM Timer Tx

Interrupt
Request

Sixteen 16-bit
(Capture/Compare)

Registers

Over / Underflow

CAPCOM Timer Ty

Reload Register TyREL

16
Capture / Compare
Interrupt Requests

Interrupt
Request

x = 0, 7

y = 1, 8

The capture / compare units UM0407

318/541

16.1 CAPCOM timers
The primary use of the timers T0 / T1 and T7 / T8 is to provide two independent time bases
for the capture / compare registers of each unit, but they may also be used independent of
the capture / compare registers. The basic structure of the four timers is identical, while the
selection of input signals is different for timers T0 / T7 and timers T1 / T8.

Figure 137. Block diagram of CAPCOM timers T0 and T7

Figure 138. Block diagram of CAPCOM timers T1 and T8

Note: When an external input signal is connected to the input lines of both T0 and T7, these timers
count the input signal synchronously. Thus the two timers can be regarded as one timer
whose contents can be compared with 32 capture registers.

The functions of the CAPCOM timers are controlled via the bit-addressable 16-bit control
registers T01CON and T78CON. The high-byte of T01CON controls T1, the low-byte of
T01CON controls T0, the high-byte of T78CON controls T8, the low-byte of T78CON
controls T7. The control options are identical for all four timers (except for external input).

T01CON (FF50h / A8h) SFR Reset Value: 0000h

X

Txl

CPU
Clock

TxR

MUXGPT2 Timer T6
Over / Underflow

Edge Select

TxIN

Txl

Txl TxM

Input
Control

Reload Register TxREL

CAPCOM Timer Tx TxIR Interrupt
Request

x = 0, 7

X

Txl

CPU
Clock

TxR

MUX
GPT2 Timer T6

Over / Underflow

TxM

Reload Register TxREL

CAPCOM Timer Tx TxIR Interrupt
Request

x = 1, 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- T1R - - T1M T1I - T0R - - T0M T0I

RW RW RW RW RW RW

UM0407 The capture / compare units

 319/541

T78CON (FF20h / 90h) SFR Reset Value: 0000h

Note: 1) This selection is available for timers T0 and T7. Timers T1 and T8 will stop at this
selection!

The run flags T0R, T1R, T7R and T8R enable or disable the timers. The following
description of the timer modes and operation always applies to the enabled state of the
timers, the respective run flag is assumed to be set to '1'.

In all modes, the timers are always counting upward. The current timer values are
accessible for the CPU in the timer registers Tx, which are non bit-addressable SFRs. When
the CPU writes to a register Tx in the state immediately before the respective timer
increment, a reload is to be performed, the CPU write operation has priority and the
increment or reload is disabled to guarantee correct timer operation.

Timer Mode

The bit TxM in SFRs T01CON and T78CON selects the timer mode or the counter mode. In
timer mode (TxM = ‘0’), the input clock of a timer is derived from the internal CPU clock
divided by a programmable prescaler.

The different options of the prescaler of each timer are selected separately by the bit-fields
TxI.

The input frequencies fTx for Tx are determined as a function of the CPU clock as follows,
where (TxI) represents the contents of the bit-field TxI:

When a timer overflows from FFFFh to 0000h it is reloaded with the value stored in its
respective reload register TxREL.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- T8R - - T8M T8I - T7R - - T7M T7I

RW RW RW RW RW RW

Bit Function

TxI

Timer / Counter x Input Selection

Timer Mode (TxM = ‘0’)Input Frequency = fCPU / 2[(TxI)+3]
See also table below for examples.

Counter Mode (TxM = ‘1’):X00 Overflow / Underflow of GPT2 Timer 6

X01 Positive (rising) edge on pin TxIN 1)
X10 Negative (falling) edge on pin TxIN 1)

X11 Any edge (rising and falling) on pin TxIN 1)

TxM

Timer / Counter x Mode Selection

‘0’: Timer Mode (Input derived from internal clock)
‘1’: Counter Mode (Input from External Input or T6)

TxR

Timer / Counter x Run Control

‘0’: Timer / Counter x is disabled
‘1’: Timer / Counter x is enabled

fTx =
fCPU

2[(TxI)+3]

The capture / compare units UM0407

320/541

The reload value determines the period PTx between two consecutive overflows of Tx as
follows:

The timer resolutions against prescaler option in TxI are listed in the table below.

Refer to the device datasheet for a table of timer input frequencies, resolution and periods
for each prescaler option in TxI.

After a timer has been started by setting its run flag (TxR) to '1', the first increment will occur
within the time interval which is defined by the selected timer resolution. All further
increments occur exactly after the time defined by the timer resolution.

When both timers of a CAPCOM unit are to be incremented or reloaded at the same time T0
is always serviced one CPU clock before T1, T7 before T8, respectively.

Counter mode

The bit TxM in SFRs T01CON and T78CON select between timer or counter mode for the
respective timer. In Counter mode (TxM=‘1’) the input clock for a timer can be derived from
the overflows / underflows of timer T6 in block GPT2. In addition, timers T0 and T7 can be
clocked by external events. Either a positive, a negative, or both a positive and a negative
transition at pin T0IN (alternate input function of port pin P3.0) or T7IN (alternate input
function of port pin P2.15), respectively, can be selected to cause an increment of T0 / T7.

When T1 or T8 is programmed to run in counter mode, bit-field TxI is used to enable the
overflows / underflows of timer T6 as the count source. This is the only option for T1 and T8,
and it is selected by the combination TxI = X00b. When bit-field TxI is programmed to any
other combination, the respective timer (T1 or T8) will stop.

When T0 or T7 is programmed to run in counter mode, bit-field TxI is used to select the
count source and transition (if the source is the input pin) which should cause a count trigger
(see description of TxyCON for the possible selections).

Note: In order to use pin T0IN or T7IN as external count input pin, the respective port pin must be
configured as input, and the corresponding direction control bit (DP3.0 or DP2.15) must be
cleared ('0').
If the respective port pin is configured as output, the associated timer may be clocked by
modifying the port output latches P3.0 or P2.15 via software, for example for testing
purposes.

The maximum external input frequency to T0 or T7 in counter mode is fCPU / 16. To ensure
that a signal transition is properly recognized at the timer input, an external count input
signal should be held for at least 8 CPU clock cycles before it changes its level again. The
incremented count value appears in SFR T0 / T7 within 8 CPU clock cycles after the signal
transition at pin TxIN.

Timer Input Selection TxI

000b 001b 010b 011b 100b 101b 110b 111b

Prescaler for fCPU 8 16 32 64 128 256 512 1024

Resolution in
CPU clock cycles

8 16 32 64 128 256 512 1024

PTx = fCPU

[216 - (TxREL)] x 2[(TxI)+3]

UM0407 The capture / compare units

 321/541

Reload

A reload of a timer with the 16 bit value stored in its associated reload register in both
modes is performed each time a timer would overflow from FFFFh to 0000h. In this case the
timer does not wrap around to 0000h, but rather is reloaded with the contents of the
respective reload register TxREL. The timer then resumes incrementing starting from the
reloaded value.

The reload registers TxREL are not bit-addressable.

16.2 CAPCOM unit timer interrupts
Upon a timer overflow the corresponding timer interrupt request flag TxIR for the respective
timer will be set. This flag can be used to generate an interrupt or trigger a PEC service
request, when enabled by the respective interrupt enable bit TxIE.

Each timer has its own bit-addressable interrupt control register (TxIC) and its own interrupt
vector (TxINT). The organization of the interrupt control registers TxIC is identical with the
other interrupt control registers.

T0IC (FF9Ch / CEh) SFR Reset Value: - - 00h

T1IC (FF9Eh / CFh) SFR Reset Value: - - 00h

T7IC (F17Ah / BEh) ESFR Reset Value: - - 00h

T8IC (F17Ch / BFh) ESFR Reset Value: - - 00h

Note: Refer to the Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

16.3 Capture / compare registers
The 16-bit capture / compare registers CC0 through CC31 are used as data registers for
capture or compare operations with respect to timers T0 / T1 and T7 / T8. The
capture / compare registers are not bit-addressable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T0IR T0IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T1IR T1IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T7IR T7IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T8IR T8IE ILVL GLVL

RW RW RW RW

The capture / compare units UM0407

322/541

Each of the registers CC0...CC31 may be individually programmed for capture mode or one
of 4 different compare modes (except for CC24...CC27), and may be allocated individually
to one of the two timers of the respective CAPCOM unit (T0 or T1, and T7 or T8,
respectively). A special combination of compare modes additionally allows the
implementation of a 'double-register' compare mode.

When capture or compare operation is disabled for one of the CCx registers, it may be used
for general purpose variable storage.

The functions of the 32 capture / compare registers are controlled by the eight mode control
registers named CCM0...CCM7 which are all organized identically (see description below).
These 16-bit registers are bit-addressable.

Each register contains bit for mode selection and timer allocation of four capture / compare
registers.

Capture / compare mode registers for the CAPCOM1 unit (CC0...CC15)

CCM0 (FF52h / A9h) SFR Reset Value: 0000h

CCM1 (FF54h / AAh) SFR Reset Value: 0000h

CCM2 (FF56h / ABh) SFR Reset Value: 0000h

CCM3 (FF58h / ACh) SFR Reset Value: 0000h

Capture / compare mode registers for the CAPCOM2 unit (CC16...CC31)

CCM4 (FF22h / 91h) SFR Reset Value: 0000h

CCM5 (FF24h / 92h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC3 CCMOD3 ACC2 CCMOD2 ACC1 CCMOD1 ACC0 CCMOD0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC7 CCMOD7 ACC6 CCMOD6 ACC5 CCMOD5 ACC4 CCMOD4

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC11 CCMOD11 ACC10 CCMOD10 ACC9 CCMOD9 ACC8 CCMOD8

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC15 CCMOD15 ACC14 CCMOD14 ACC13 CCMOD13 ACC12 CCMOD12

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC19 CCMOD19 ACC18 CCMOD18 ACC17 CCMOD17 ACC16 CCMOD16

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC23 CCMOD23 ACC22 CCMOD22 ACC21 CCMOD21 ACC20 CCMOD20

RW RW RW RW RW RW RW RW

UM0407 The capture / compare units

 323/541

CCM6 (FF26h / 93h) SFR Reset Value: 0000h

CCM7 (FF28h / 94h) SFR Reset Value: 0000h

The detailed discussion of the capture and compare modes is valid for all the capture /
compare channels, so registers, bits and pins are only referenced by the place holder ‘x’.

Note: Capture / compare channels 24...27 generate an interrupt request but do not provide an
output signal. The resulting exceptions are indicated in the following subsections.
A capture or compare event on channel 31 may be used to trigger a channel injection on the
ST10F272Z2’s A / D converter if enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC27 CCMOD27 ACC26 CCMOD26 ACC25 CCMOD25 ACC24 CCMOD24

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC31 CCMOD31 ACC30 CCMOD30 ACC29 CCMOD29 ACC28 CCMOD28

RW RW RW RW RW RW RW RW

Bit Function

CCMODx
Mode Selection for Capture / Compare Register CCx
The available capture / compare modes are listed in Table 65.

ACCx

Allocation bit for Capture / Compare Register CCx
‘0’: CCx allocated to Timer T0 (CAPCOM1) / Timer T7 (CAPCOM2)

‘1’: CCx allocated to Timer T1 (CAPCOM1) / Timer T8 (CAPCOM2)

Table 65. Selection of capture modes and compare modes

CCMODx Selected operating mode

0 0 0
Disable Capture and Compare Modes
The respective CAPCOM register may be used for general variable storage.

0 0 1 Capture on Positive Transition (Rising Edge) at Pin CCxIO

0 1 0 Capture on Negative Transition (Falling Edge) at Pin CCxIO

0 1 1 Capture on Positive and Negative Transition (Both Edges) at Pin CCxIO

1 0 0
Compare Mode 0:Interrupt Only
Several interrupts per timer period. Enables double-register compare mode for
registers CC8...CC15 and CC24...CC31.

1 0 1
Compare Mode 1:Toggle Output Pin on each Match
Several compare events per timer period. This mode is required for double-register
compare mode for registers CC0...CC7 and CC16...CC23.

1 1 0
Compare Mode 2:Interrupt Only
Only one interrupt per timer period.

1 1 1
Compare Mode 3:Set Output Pin on each Match
Reset output pin on each timer overflow. Only one interrupt per timer period.

The capture / compare units UM0407

324/541

16.4 Capture mode
In response to an external event the content of the associated timer (T0 / T1 or T7 / T8,
depending on the used CAPCOM unit and the state of the allocation control bit ACCx) is
latched into the respective capture register CCx. The external event causing a capture can
be programmed to be either a positive, a negative, or both a positive or a negative transition
at the respective external input pin CCxIO.

The triggering transition is selected by the mode bit CCMODx in the respective CAPCOM
mode control register. In any case, the event causing a capture will also set the respective
interrupt request flag CCxIR, which can cause an interrupt or a PEC service request, when
enabled (see Figure 139).

In order to use the respective port pin as external capture input pin CCxIO for capture
register CCx, this port pin must be configured as input, the corresponding direction control
bit by setting to ‘0’. To ensure that a signal transition is properly recognized, an external
capture input signal should be held for at least 8 CPU clock cycles before it changes its
level.

During these 8 CPU clock cycles the capture input signals are scanned sequentially. When
a timer is modified or incremented during this process, the new timer contents will already
be captured for the remaining capture registers within the current scanning sequence. If pin
CCxIO is configured as output, the capture function may be triggered by modifying the
corresponding port output latch via software, like for testing purposes.

Figure 139. Capture mode block diagram

16.5 Compare modes
The compare modes allow triggering of events (interrupts and / or output signal transitions)
with minimum software overhead.

In all compare modes, the 16-bit value stored in compare register CCx (in the following also
referred to as 'compare value') is continuously compared with the contents of the allocated
timer (T0 / T1 or T7 / T8). If the current timer contents match the compare value, an
appropriate output signal, which is based on the selected compare mode, can be generated
at the corresponding output pin CCxIO (except for CC24IO...CC27IO) and the associated
interrupt request flag CCxIR is set, which can generate an interrupt request (if enabled).

As for capture mode, the compare registers are also processed sequentially during compare
mode. When any two compare registers are programmed to the same compare value, their
corresponding interrupt request flags will be set to '1' and the selected output signals will be

CCMODx

Edge
Select

CCxIO

Capture Register CCx

CAPCOM Timer Ty TyIR
Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR
Interrupt
Request

UM0407 The capture / compare units

 325/541

generated within 8 CPU clock cycles after the allocated timer is incremented to the compare
value.

Further compare events on the same compare value are disabled until the timer is
incremented again or written to by software. After a reset, compare events for register CCx
will only become enabled, if the allocated timer has been incremented or written to by
software and one of the compare modes described in the following has been selected for
this register.

The different compare modes which can be programmed for a given compare register CCx
are selected by the mode control field CCMODx in the associated capture / compare mode
control register. In the following, each of the compare modes, including the special 'double-
register' mode, is discussed in detail.

16.5.1 Compare mode 0

This is an interrupt-only mode which can be used for software timing purposes. Compare
mode 0 is selected for a given compare register CCx by setting bit-field CCMODx of the
corresponding mode control register to ‘100b’.

In this mode, the interrupt request flag CCxIR is set each time a match is detected between
the content of compare register CCx and the allocated timer.

Several of these compare events are possible within a single timer period, when the
compare value in register CCx is updated during the timer period.

The corresponding port pin CCxIO is not affected by compare events in this mode and can
be used as general purpose I/O pin.

If compare mode 0 is programmed for one of the registers CC8...CC15 or CC24...CC31, the
double-register compare mode becomes enabled for this register if the corresponding bank
1 register is programmed to compare mode 1 (see Section 16.5.5: Double register compare
mode on page 329).

Table 66. Summary of compare modes

Compare modes Function

Mode 0
Interrupt-only compare mode;
several compare interrupts per timer period are possible

Mode 1
Pin toggles on each compare match;
several compare events per timer period are possible

Mode 2
Interrupt-only compare mode;
only one compare interrupt per timer period is generated

Mode 3
Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;
only one compare event per timer period is generated

Double
Register Mode

Two registers operate on one pin; pin toggles on each compare match;
several compare events per timer period are possible.

The capture / compare units UM0407

326/541

Figure 140. Compare mode 0 and 1 block diagram

Note: The port latch and pin remain unaffected in compare mode 0.

In the example below, the compare value in register CCx is modified from cv1 to cv2 after
compare events #1 and #3, and from cv2 to cv1 after events #2 and #4, etc. This results in
periodic interrupt requests from timer Ty, and in interrupt requests from register CCx which
occur at the time specified by the user through cv1 and cv2 (see Figure 141 on page 327).

16.5.2 Compare mode 1

Compare mode 1 is selected for register CCx by setting bit-field CCMODx of the
corresponding mode control register to ‘101b’.

When a match between the content of the allocated timer and the compare value in register
CCx is detected in this mode, interrupt request flag CCxIR is set to ‘1’, and in addition the
corresponding output pin CCxIO (alternate port output function) is toggled. For this purpose,
the state of the respective port output latch (not the pin) is read, inverted, and then written
back to the output latch.

Compare mode 1 allows several compare events within a single timer period. An overflow of
the allocated timer has no effect on the output pin, nor does it disable or enable further
compare events.

In order to use the respective port pin as compare signal output pin CCxIO for compare
register CCx in compare mode 1, this port pin must be configured as output, and the
corresponding direction control bit must be set to ‘1’. With this configuration, the initial state
of the output signal can be programmed or its state can be modified at any time by writing to
the port output latch.

In compare mode 1 the port latch is toggled upon each compare event (see Figure 141 on
page 327).

Note: If the port output latch is written to by software at the same time it would be altered by a
compare event, the software write will have priority. In this case the hardware-triggered
change will not become effective.

If compare mode 1 is programmed for one of the registers CC0...CC7 or CC16...CC23 the
double-register compare mode becomes enabled for this register if the corresponding bank
1 register is programmed to compare mode 0 (see Section 16.5.5: Double register compare
mode on page 329).

Note: If the port output latch is written to by software at the same time it would be altered by a
compare event, the software write will have priority. In this case the hardware-triggered

Capture Register CCx

CAPCOM Timer Ty TyIR

Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR

Comparator

CCMODx

Port Latch
Toggle

(Mode 1)

CCxIO

Interrupt
Request

UM0407 The capture / compare units

 327/541

change will not become effective. On channels 24...27 compare mode 1 will generate
interrupt requests but no output function is provided.

Figure 141. Timing example for compare modes 0 and 1

16.5.3 Compare mode 2

Compare mode 2 is an interrupt-only mode similar to compare mode 0, but only one
interrupt request per timer period will be generated. Compare mode 2 is selected for register
CCx by setting bit-field CCMODx of the corresponding mode control register to ‘110b’.

When a match is detected in compare mode 2 for the first time within a timer period, the
interrupt request flag CCxIR is set to ‘1’. The corresponding Port2 pin is not affected and
can be used for general purpose I/O. However, after the first match has been detected in this
mode, all further compare events within the same timer period are disabled for compare
register CCx until the allocated timer overflows. This means, that after the first match, even
when the compare register is reloaded with a value higher than the current timer value, no
compare event will occur until the next timer period.

In the example below, the compare value in register CCx is modified from cv1 to cv2 after
compare event #1. Compare event #2, however, will not occur until the next period of timer
Ty.

Figure 142. Compare mode 2 and 3 block diagram

*) Output pin CCxIO only effected in mode 1. No changes in mode 0.
x = 31...0
y = 0, 1, 7, 8

TyIR CCxIR CCxIR TyIR CCxIR CCxIR TyIR
Interrupt
Requests:

t

Contents of Ty
FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>
0000h

Event #1
CCx: = cv2 Event #2

CCx: = cv1

Event #3
CCx: = cv2 Event #4

CCx: = cv1

Capture Register CCx

CAPCOM Timer Ty TyIR

Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR

Comparator

CCMODx

Port Latch(Mode 3) CCxIO

Interrupt
Request

Set

Reset

The capture / compare units UM0407

328/541

Note: The port latch and pin remain unaffected in compare mode 2.

Figure 143. Timing example for compare modes 2 and 3

16.5.4 Compare mode 3

Compare mode 3 is selected for register CCx by setting bit-field CCMODx of the
corresponding mode control register to ‘111b’. In compare mode 3 only one compare event
will be generated per timer period.

When the first match within the timer period is detected the interrupt request flag CCxIR is
set to ‘1’ and also the output pin CCxIO (alternate port function) will be set to ‘1’. The pin will
be reset to ‘0’, when the allocated timer overflows.

If a match was found for register CCx in this mode, all further compare events during the
current timer period are disabled for CCx until the corresponding timer overflows. If, after a
match was detected, the compare register is reloaded with a new value, this value will not
become effective until the next timer period.

In order to use the respective port pin as compare signal output pin CCxIO for compare
register CCx in compare mode 3 this port pin must be configured as output and the
corresponding direction control bit must be set to ‘1’. With this configuration, the initial state
of the output signal can be programmed or its state can be modified at any time by writing to
the port output latch.

In compare mode 3 the port latch is set upon a compare event and cleared upon a timer
overflow (see Figure 143).

However, when compare value and reload value for a channel are equal the respective
interrupt requests will be generated, only the output signal is not changed (set and clear
would coincide in this case).

Note: If the port output latch is written to by software at the same time it would be altered by a
compare event, the software write will have priority. In this case the hardware-triggered
change will not become effective.
On channels 24...27 compare mode 1 will generate interrupt requests but no output function
is provided.

*) Output pin CCxIO only effected in mode 3. No changes in mode 2.
x = 31...0
y = 0, 1, 7, 8

TyIR CCxIR TyIR CCxIR TyIR

Interrupt
Requests:

Contents of Ty
FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>

0000h

Event #1
CCx: = cv2

Event #2
CCx: = cv1

State of
CCxIO:

t

1

0

UM0407 The capture / compare units

 329/541

16.5.5 Double register compare mode

In double-register compare mode two compare registers work together to control one output
pin. This mode is selected by a special combination of modes for these two registers.

For double-register mode the 16 capture / compare registers of each CAPCOM unit are
regarded as two banks of 8 registers each. Registers CC0...CC7 and CC16...CC23 form
bank 1 while registers CC8...CC15 and CC24...CC31 form bank 2 (respectively). For
double-register mode a bank 1 register and a bank 2 register form a register pair. Both
registers of this register pair operate on the pin associated with the bank 1 register (pins
CC0IO...CC7IO and CC16IO...CC23IO).

The relationship between the bank 1 and bank 2 register of a pair and the effected output
pins for double-register compare mode is listed in the Table 67.

The double-register compare mode can be programmed individually for each register pair. In
order to enable double-register mode the respective bank 1 register (see Table 67) must be
programmed to compare mode 1 and the corresponding bank 2 register (see Table 67) must
be programmed to compare mode 0.

If the respective bank 1 compare register is disabled or programmed for a mode other than
mode 1 the corresponding bank 2 register will operate in compare mode 0 (interrupt-only
mode).

In the following, a bank 2 register (programmed to compare mode 0) will be referred to as
CCz while the corresponding bank 1 register (programmed to compare mode 1) will be
referred to as CCx.

When a match is detected for one of the two registers in a register pair (CCx or CCz) the
associated interrupt request flag (CCxIR or CCzIR) is set to ‘1’ and pin CCxIO
corresponding to bank 1 register CCx is toggled. The generated interrupt always
corresponds to the register that caused the match.

Note: If a match occurs simultaneously for both register CCx and register CCz of the register pair,
pin CCxIO will be toggled only once but two separate compare interrupt requests will be
generated, one for vector CCxINT and one for vector CCzINT.

Table 67. Register pairs for double-register compare mode

CAPCOM1 unit CAPCOM2 unit

Register pair Associated
output pin

Register pair Associated
output pinBank 1 Bank 2 Bank 1 Bank 2

CC0 CC8 CC0IO CC16 CC24 CC16IO

CC1 CC9 CC1IO CC17 CC25 CC17IO

CC2 CC10 CC2IO CC18 CC26 CC18IO

CC3 CC11 CC3IO CC19 CC27 CC19IO

CC4 CC12 CC4IO CC20 CC28 CC20IO

CC5 CC13 CC5IO CC21 CC29 CC21IO

CC6 CC14 CC6IO CC22 CC30 CC22IO

CC7 CC15 CC7IO CC23 CC31 CC23IO

The capture / compare units UM0407

330/541

In order to use the respective port pin as compare signal output pin CCxIO for compare
register CCx in double-register compare mode, this port pin must be configured as output,
and the corresponding direction control bit must be set to ‘1’. With this configuration, the
output pin has the same characteristics as in compare mode 1.

Figure 144. Double register compare mode block diagram

In this configuration example, the same timer allocation was chosen for both compare
registers, but each register may also be individually allocated to one of the two timers of the
respective CAPCOM unit. In the timing example for this compare mode (below) the compare
values in registers CCx and CCz are not modified.

The pins CCzIO (which are not selected for double-register compare mode) may be used for
general purpose I/O.

Figure 145. Timing example for double register compare mode

Compare Register CCx

Comparator

CAPCOM Timer Ty

Comparator

Compare Register CCz

Input
Clock TyIR

Mode 0
CCMODz

CCzIR
Interrupt
Request

Interrupt
Request Š 1

CCMODx
Mode 1

Toggle
Port Latch CCxIO

CCxIO

x = 23...16, 7...0
y = 0, 1, 7, 8
z = 31...24, 15...8

CCxIR
Interrupt
Request

x = 23...16, 7...0 y = 0, 1, 7, 8 z = 31...24, 15...8

FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>

0000h

1

0

Interrupt
Requests:

Contents of Ty

State of CCxIO:

t

TyIR CCxIR CCxIR TyIR CCxIR CCxIR TyIR

UM0407 The capture / compare units

 331/541

16.6 Capture / compare interrupts
Upon a capture or compare event, the interrupt request flag CCxIR for the respective
capture / compare register CCx is set to ‘1’. This flag can be used to generate an interrupt or
trigger a PEC service request when enabled by the interrupt enable bit CCxIE.

Capture interrupts can be regarded as external interrupt requests with the additional feature
of recording the time at which the triggering event occurred (see also Section 5.6: External
interrupts on page 110).

Note: Each of the 32 capture / compare registers (CC0...CC31) has its own bit-addressable
interrupt control register (CC0IC...CC31IC) and its own interrupt vector
(CC0INT...CC31INT). These registers are organized the same way as all other interrupt
control registers. The figure below shows the basic register layout, and the table lists the
associated addresses.

CCxIC (see Table 68) SFR/ESFR Reset Value: - - 00h

Note: Refer to ‘Section 5.1.3: Interrupt control registers on page 97 for more details on the control
fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CCxIR CCxIE ILVL GLVL

RW RW RW RW

Table 68. CAPCOM unit interrupt control register addresses

CAPCOM1 unit CAPCOM2 unit

Register Address
Register

space
Register Address

Register
space

CC0IC FF78h / BCh SFR CC16IC F160h / B0h ESFR

CC1IC FF7Ah / BDh SFR CC17IC F162h / B1h ESFR

CC2IC FF7Ch / BEh SFR CC18IC F164h / B2h ESFR

CC3IC FF7Eh / BFh SFR CC19IC F166h / B3h ESFR

CC4IC FF80h / C0h SFR CC20IC F168h / B4h ESFR

CC5IC FF82h / C1h SFR CC21IC F16Ah / B5h ESFR

CC6IC FF84h / C2h SFR CC22IC F16Ch / B6h ESFR

CC7IC FF86h / C3h SFR CC23IC F16Eh / B7h ESFR

CC8IC FF88h / C4h SFR CC24IC F170h / B8h ESFR

CC9IC FF8Ah / C5h SFR CC25IC F172h / B9h ESFR

CC10IC FF8Ch / C6h SFR CC26IC F174h / BAh ESFR

CC11IC FF8Eh / C7h SFR CC27IC F176h / BBh ESFR

CC12IC FF90h / C8h SFR CC28IC F178h / BCh ESFR

CC13IC FF92h / C9h SFR CC29IC F184h / C2h ESFR

CC14IC FF94h / CAh SFR CC30IC F18Ch / C6h ESFR

CC15IC FF96h / CBh SFR CC31IC F194h / CAh ESFR

Pulse width modulation module UM0407

332/541

17 Pulse width modulation module

The Pulse Width Modulation (PWM) Module of the ST10F272Z2 generates up to four
independent PWM signals. The minimum PWM signal frequency depends on the width (16
bits) and the resolution (CLK/1 or CLK/64) of the PWM timers. The maximum PWM signal
frequency assumes that the PWM output signal changes with every cycle of the respective
timer. In a real application, the maximum PWM frequency will depend on the required
resolution of the PWM output signal.

The pulse width modulation module has four independent PWM channels. Each channel
has a 16-bit up/down counter PTx, a 16-bit period register PPx with a shadow latch, a 16-bit
pulse width register PWx with a shadow latch, two comparators, and the necessary control
logic.

The operation of all four channels is controlled by two common control registers,
PWMCON0 and PWMCON1, and the interrupt control and status is handled by one interrupt
control register PWMIC, which is also common for all channels (see Figure 147 on
page 334).

UM0407 Pulse width modulation module

 333/541

Figure 146. SFRs and port pins associated with the PWM module

Ports & Direction Control Alternate functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

-

6

-

5

-

4

-

3

Y

2

Y

1

Y

0

YODP7 E PP0 E

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - - - - - Y Y Y YDP7

- - - - - - - - - - - - Y Y Y YP7

PW0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP1 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YPT0 E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWMCON0

- - - - - - - - Y Y Y Y Y Y Y YPWMIC E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP2 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP3 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT1 E

ODP7 Port7 Open Drain Control Register
DP7 Port7 Direction Control Register
P7 Port7 Data Register
PWMIC PWM Interrupt Control Register

POUT0/P7.0
POUT1/P7.1
POUT2/P7.2
POUT3/P7.3

PPx PWM Period Register x
PWx PWM Pulse Width Register x
PTx PWM Counter Register x
PWMCONxPWM Control Register 0/1

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT2 E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT3 E

PWMCON1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

Pulse width modulation module UM0407

334/541

Figure 147. PWM channel block diagram

17.1 Operating modes
The PWM module provides four different operating modes:

● Mode 0 standard PWM generation (edge aligned PWM) available on 4 channels

● Mode 1 Symmetrical PWM generation (center aligned PWM) available on all four
channels

● Burst mode combines channels 0 and 1

● Single shot mode available on channels 2 and 3

Note: The output signals of the PWM module are XORed with the outputs of the respective port
output latches. After reset these latches are cleared, so the PWM signals are directly driven
to the port pins. By setting the respective port output latch to ‘1’ the PWM signal may be
inverted (XORed with ‘1’) before being driven to the port pin. The descriptions below refer to
the standard case after reset, which is direct drive.

17.1.1 Mode 0: standard PWM generation (edge aligned PWM)

Mode 0 is selected by clearing the respective bit PMx in register PWMCON1 to ‘0’. In this
mode the timer PTx of the respective PWM channel is always counting up until it reaches
the value in the associated period shadow register. Upon the next count pulse the timer is
reset to 0000h and continues counting up with subsequent count pulses.

The PWM output signal is switched to high level when the timer contents are equal to or
greater than the contents of the pulse width shadow register.

The signal is switched back to low level when the respective timer is reset to 0000h, that
means below the pulse width shadow register. The period of the resulting PWM signal is
determined by the value of the respective PPx shadow register plus 1, counted in units of
the timer resolution.

PWM_PeriodMode0 = [PPx] + 1

PPx Period Register

Comparator

PTx
16-bit Up/Down Counter

Shadow Register

PWx Pulse Width Register

Input

Run
Control

Clock 1

Clock 2

Comparator

*

*

*

Up/Down/
Clear Control

Match

Output Control
Match

Write Control

* User readable & writeable register

Enable
POUTx

x = 3...0

UM0407 Pulse width modulation module

 335/541

The duty cycle of the PWM output signal is controlled by the value in the respective pulse
width shadow register. This mechanism allows the selection of duty cycles from 0% to 100%
including the boundaries.

For a value of 0000h the output will remain at a high level, representing a duty cycle of
100%. For a value higher than the value in the period register the output will remain at a low
level, which corresponds to a duty cycle of 0%.

The Figure 148 illustrates the operation and output waveforms of a PWM channel in mode 0
for different values in the pulse width register. This mode is referred to as Edge Aligned
PWM, because the value in the pulse width shadow register only effects the positive edge of
the output signal. The negative edge is always fixed and related to the clearing of the timer.

Figure 148. Operation and output waveform in mode 0

17.1.2 Mode 1: symmetrical PWM generation (center aligned PWM)

Mode 1 is selected by setting the respective bit PMx in register PWMCON1 to ‘1’. In this
mode the timer PTx of the respective PWM channel is counting up until it reaches the value
in the associated period shadow register. Upon the next count pulse the count direction is
reversed and the timer starts counting down now with subsequent count pulses until it
reaches the value 0000h. Upon the next count pulse the count direction is reversed again
and the count cycle is repeated with the following count pulses.

The PWM output signal is switched to a high level when the timer contents are equal to or
greater than the contents of the pulse width shadow register while the timer is counting up.
The signal is switched back to a low level when the respective timer has counted down to a
value below the contents of the pulse width shadow register. So in mode 1 this PWM value
controls both edges of the output signal.

7
6

7
6

5

3
4

2
1

0

7
6

5

3
4

2
1

0
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=0

PWx=1

PWx=2

PWx=4

PWx=6

PWx=7

PWx=8

Latch Shadow Registers
Interrupt Request

LSR LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

LSR

Pulse width modulation module UM0407

336/541

Note that in mode 1 the period of the PWM signal is twice the period of the timer:

PWM_PeriodMode1 = 2 x ([PPx] + 1)

Figure 149 on page 336 illustrates the operation and output waveforms of a PWM channel in
mode 1 for different values in the pulse width register. This mode is referred to as Center
Aligned PWM, because the value in the pulse width shadow register effects both edges of
the output signal symmetrically.

Figure 149. Operation and output waveform in mode 1

17.1.3 Burst mode

Burst mode is selected by setting bit PB01 in register PWMCON1 to ‘1’. This mode
combines the signals from PWM channels 0 and 1 onto the port pin of channel 0.

The output of channel 0 is replaced with the logical AND of channels 0 and 1. The output of
channel 1 can still be used at its associated output pin (if enabled).

Each of the two channels can either operate in mode 0 or 1.

Note: It is guaranteed by design, that no spurious spikes will occur at the output pin of channel 0 in
this mode. The output of the AND gate will be transferred to the output pin synchronously to
internal clocks.
XORing of the PWM signal and the port output latch value is done after the ANDing of
channel 0 and 1 (see Figure 150 on page 337).

1

7
6

5

3
4

2
1

0
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=0

PWx=1

PWx=2

PWx=4

PWx=6

PWx=7

PWx=8

Latch Shadow Registers
Interrupt Reques

Change Count LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

0

2

7
6

5
4

3
2

1

Direction
LSR

UM0407 Pulse width modulation module

 337/541

Figure 150. Operation and output waveform in burst mode

17.1.4 Single shot mode

Single shot mode is selected by setting the respective bit PSx in register PWMCON1 to ‘1’.
This mode is available for PWM channels 2 and 3.

In this mode the timer PTx of the respective PWM channel is started via software and is
counting up until it reaches the value in the associated period shadow register. Upon the
next count pulse the timer is cleared to 0000h and stopped via hardware, (the respective
PTRx bit is cleared). The PWM output signal is switched to high level when the timer
contents are equal to or greater than the contents of the pulse width shadow register. The
signal is switched back to low level when the respective timer is cleared, because it is below
the pulse width shadow register.

Thus starting a PWM timer in single shot mode produces one single pulse on the respective
port pin, provided that the pulse width value is between 0000h and the period value. In order
to generate a further pulse, the timer has to be started again via software by setting bit
PTRx (see Figure 151 on page 338).

PP0
Period
Value

PT0
Count
Value

Channel 0

PP1

PT1

Channel 0

Channel 1

Resulting
Output
POUT0

Pulse width modulation module UM0407

338/541

Figure 151. Operation and output waveform in single shot mode

After starting the timer (with PTRx = ‘1’) the output pulse may be modified via software.
Writing to timer PTx changes the positive and/or negative edge of the output signal,
depending on whether the pulse has already started (the output is high) or not (the output is
still low). This (multiple) re-triggering is always possible while the timer is running, after the
pulse has started and before the timer is stopped.

Loading counter PTx directly with the value in the respective PPx shadow register will abort
the current PWM pulse upon the next clock pulse (counter is cleared and stopped by
hardware).

By setting the period (PPx), the timer start value (PTx) and the pulse width value (PWx)
appropriately, the pulse width (tw) and the optional pulse delay (td) may be varied in a wide
range (see Figure 151).

17.2 PWM module registers
The PWM module is controlled via two sets of registers. The waveforms are selected by the
channel specific registers PTx (timer), PPx (period) and PWx (pulse width). Three common
registers control the operating modes and the general functions (PWMCON0 and
PWMCON1) of the PWM module as well as the interrupt behavior (PWMIC).

7
6

5

3
4

2
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=4

Set PTRx
by Software PTRx Reset

by Hardware
PTx stopped

7
6

5

3
4

2
1

0

Set PTRx
by Software

LSR

for Next Pulse

6
5

3
4

2
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=4

7
6

5
4

tD

Retrigger after

 Write PWx value to PTx

1
0

7
6

5
4

tD

Trigger before Pulse has started :
Write PWx value to PTx;

LSR

tWtW

Shortens Delay Time tD

Pulse has started :

UM0407 Pulse width modulation module

 339/541

Up/down Counters PTx

Each counter PTx of a PWM channel is clocked either directly by the CPU clock or by the
CPU clock divided by 64. Bit PTIx in register PWMCON0 selects the respective clock
source. A PWM counter counts up or down (controlled by hardware), while its respective run
control bit PTRx is set. A timer is started (PTRx = ‘1’) via software and is stopped (PTRx =
‘0’) either via hardware or software, depending on its operating mode. Control bit PTRx
enables or disables the clock input of counter PTx rather than controlling the PWM output
signal.

Table 69 summarizes the PWM frequencies that result from various combinations of
operating mode, counter resolution (input clock) and pulse width resolution.

Period registers PPx

The 16-bit period register PPx of a PWM channel determines the period of a PWM cycle
and the frequency of the PWM signal. This register is buffered with a shadow register.

The shadow register is loaded from the respective PPx register at the beginning of every
new PWM cycle, or upon a write access to PPx, while the timer is stopped. The CPU
accesses the PPx register while the hardware compares the contents of the shadow register
with the contents of the associated counter PTx.

When a match is found between counter and PPx shadow register, the counter is either
reset to 0000h, or the count direction is switched from counting up to counting down,
depending on the selected operating mode of that PWM channel. For the register locations
refer to the Table 70.

Pulse width registers PWx

This 16-bit register holds the actual PWM pulse width value which corresponds to the duty
cycle of the PWM signal. This register is buffered with a shadow register.

The CPU accesses the PWx register while the hardware compares the contents of the
shadow register with the contents of the associated counter PTx. The shadow register is
loaded from the respective PWx register at the beginning of every new PWM cycle, or upon
a write access to PWx, while the timer is stopped.

When the counter value is greater than or equal to the shadow register value, the PWM
signal is set, otherwise it is reset. The output of the comparators may be described by the
boolean formula:

PWM output signal = [PTx] > [PWx shadow latch].

This type of comparison allows a flexible control of the PWM signal. For the register
locations refer to the Table 70.

Table 69. PWM frequencies

Input clock and
mode (counter

resolution)

8-bit PWM
resolution

10-bit PWM
resolution

12-bit PWM
resolution

14-bit PWM
resolution

16-bit PWM
resolution

fCPUMode 0 fcpu/2
8 fcpu/210 fcpu/2

12 fcpu/2
14 fcpu/2

16

fCPU / 64Mode 0 fcpu/64x28 fcpu/64x210 fcpu/64x212 fcpu/64x214 fcpu/64x216

fCPUMode 1 fcpu/2x28 fcpu/2x210 fcpu/2x212 fcpu/2x214 fcpu/2x216

fCPU / 64Mode 1 fcpu/2x64x28 fcpu/2x64x210 fcpu/2x64x212 fcpu/2x64x214 fcpu/2x64x216

Pulse width modulation module UM0407

340/541

PWM control register PWMCON0

Register PWMCON0 controls the function of the timers of the four PWM channels and the
channel specific interrupts. Having the control bit organized in functional groups allows to
start or to stop all the 4 PWM timers simultaneously with one bit-field instruction.

PWMCON0 (FF30h / 98h) SFR Reset Value: 0000h

PWM control register PWMCON1

Register PWMCON1 controls the operating modes and the outputs of the four PWM
channels. The basic operating mode for each channel (standard = edge aligned, or
symmetrical = center aligned PWM mode) is selected by the mode bit PMx. Burst mode
(channels 0 and 1) and single shot mode (channel 2 or 3) are selected by separate control
bit. The output signal of each PWM channel is individually enabled by bit PENx. If the output
is not enabled the respective pin can be used for general purpose I/O and the PWM channel
can only be used to generate an interrupt request.

Table 70. PWM module channel specific register addresses

Register Address Reg. space Register Address Reg. space

PW0 FE30h / 18h SFR PT0 F030h / 18h ESFR

PW1 FE32h / 19h SFR PT1 F032h / 19h ESFR

PW2 FE34h / 1Ah SFR PT2 F034h / 1Ah ESFR

PW3 FE36h / 1Bh SFR PT3 F036h / 1Bh ESFR

These registers are not bit-addressable.

PP0 F038h / 1Ch ESFR

PP1 F03Ah / 1Dh ESFR

PP2 F03Ch / 1Eh ESFR

PP3 F03Eh / 1Fh ESFR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIR3 PIR2 PIR1 PIR0 PIE3 PIE2 PIE1 PIE0 PTI3 PTI2 PTI1 PTI0 PTR3 PTR2 PTR1 PTR0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PTRx

PWM Timer x Run Control bit
‘0’: Timer PTx is disconnected from its input clock

‘1’: Timer PTx is running

PTIx

PWM Timer x Input Clock Selection
‘0’: Timer PTx clocked with CLKCPU
‘1’: Timer PTx clocked with CLKCPU / 64

PIEx
PWM Channel x Interrupt Enable Flag
‘0’: Interrupt from channel x disabled

‘1’: Interrupt from channel x enabled

PIRx

PWM Channel x Interrupt Request Flag
‘0’: No interrupt request from channel x

‘1’: Channel x interrupt pending (must be reset via software)

UM0407 Pulse width modulation module

 341/541

PWMCON1 (FF32h / 99h) SFR Reset Value: 0000h

17.3 Interrupt request generation
Each of the four channels of the PWM module can generate an individual interrupt request.
Each of these “channel interrupts” can activate the common “module interrupt”, which
actually interrupts the CPU. This common module interrupt is controlled by the PWM
Module Interrupt Control register PWMIC. The interrupt service routine can determine the
active channel interrupt(s) from the channel specific interrupt request flags PIRx in register
PWMCON0.

The interrupt request flag PIRx of a channel is set at the beginning of a new PWM cycle,
when loading the shadow registers. This indicates that registers PPx and PWx are now
ready to receive a new value. If a channel interrupt is enabled via its respective PIEx bit,
also the common interrupt request flag PWMIR in register PWMIC is set, provided that it is
enabled via the common interrupt enable bit PWMIE.

Note: The channel interrupt request flags (PIRx in register PWMCON0) are not automatically
cleared by hardware upon entry into the interrupt service routine, so they must be cleared
via software. The module interrupt request flag PWMIR is cleared by hardware upon entry
into the service routine, regardless of how many channel interrupts were active. However, it
will be set again if during execution of the service routine a new channel interrupt request is
generated.

PWMIC (F17Eh / BFh) ESFR Reset Value: - - 00h

Note: Refer to ‘Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PS3 PS2 - PB01 - - - - PM3 PM2 PM1 PM0 PEN3 PEN2 PEN1 PEN0

RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PENx
PWM Channel x Output Enable bit

‘0’: Channel x output signal disabled, generate interrupt only
‘1’: Channel x output signal enabled

PMx
PWM Channel x Mode Control bit

‘0’: Channel x operates in mode 0, that is, edge aligned PWM
‘1’: Channel x operates in mode 1, that is, center aligned PWM

PB01
PWM Channel 0/1 Burst Mode Control bit
‘0’: Channels 0 and 1 work independently in respective standard mode
‘1’: Outputs of channels 0 and 1 are ANDed to POUT0 in burst mode

PSx
PWM Channel x Single Shot Mode Control bit

‘0’: Channel x works in respective standard mode
‘1’: Channel x operates in single shot mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
PWM

IR
PWM

IE
ILVL GLVL

RW RW RW RW

Pulse width modulation module UM0407

342/541

17.4 PWM output signals
The output signals of the four PWM channels (POUT3...POUT0) are alternate output
functions on Port7 (P7.3...P7.0). The output signal of each PWM channel is individually
enabled by control bit PENx in register PWMCON1.

The PWM signals are XORed with the respective port latch outputs before being driven to
the port pins.

This allows driving the PWM signal directly to the port pin (P7.x = ‘0’) or drive the inverted
PWM signal (P7.x = ‘1’) (see Figure 152 on page 343).

Note: Using the open-drain mode on Port7 allows the combination of two or more PWM outputs
through a AND-Wired configuration, using an external pull-up device. This provides sort of a
burst mode for any PWM channel.

Software control of the PWM outputs

In an application the PWM output signals are generally controlled by the PWM module.
However, it may be necessary to influence the level of the PWM output pins via software
either to initialize the system or to react on some extraordinary condition, like a system fault
or an emergency.

Clearing the timer run bit PTRx stops the associated counter and leaves the respective
output at its current level.

The individual PWM channel outputs are controlled by comparators according to the
formula:

PWM output signal = [PTx] > [PWx shadow latch].

So whenever software changes registers PTx, the respective output will reflect the condition
after the change. Loading timer PTx with a value greater than or equal to the value in PWx
immediately sets the respective output, a PTx value below the PWx value clears the
respective output.

By clearing or setting the respective Port7 output latch the PWM channel signal is driven
directly or inverted to the port pin.

Clearing the enable bit PENx disconnects the PWM channel and switches the respective
port pin to the value in the port output latch.

Note: To prevent further PWM pulses from occurring after such a software intervention the
respective counters must be stopped first.

UM0407 Pulse width modulation module

 343/541

Figure 152. PWM output signal generation

Latch P7.3

PWM 3

Pin P7.3

Latch P7.2

PWM 2

Pin P7.2

Latch P7.1

PWM 1

Pin P7.1

Latch P7.0

PWM 0

Pin P7.0

X
O

R
X

O
R

X
O

R
X

O
R

&

PWMCON1.PEN3

PWMCON1.PEN2

PWMCON1.PEN0

PWMCON1.PEN1

PWMCON1.PB01

XBUS pulse width modulation module UM0407

344/541

18 XBUS pulse width modulation module

A second pulse width modulation (XPWM) module is implemented on ST10F272Z2. It is
mapped on XBUS interface (Address range 00’EC00h-00’ECFFh) and generates up to four
additional independent PWM signals. The minimum PWM signal frequency depends on the
width (16 bits) and the resolution (CLK/1 or CLK/64) of the XPWM timers. The maximum
PWM signal frequency assumes that the PWM output signal changes with every cycle of the
respective timer. In a real application, the maximum PWM frequency will depend on the
required resolution of the PWM output signal.

The pulse width modulation module has four independent PWM channels. Each channel
has a 16-bit up/down counter XPTx, a 16-bit period register XPPx with a shadow latch, a 16-
bit pulse width register XPWx with a shadow latch, two comparators, and the necessary
control logic.

The main differences between PWM and XPWM are restricted to the programming model
and interrupt management, due to the constraints imposed by the XBUS with respect to the
standard ST10 peripheral bus (registers are not bit addressable, XBUS interrupt channels
sharing with other X-Peripherals). In terms of general functionality and performance, the two
modules are completely equivalent.

UM0407 XBUS pulse width modulation module

 345/541

Figure 153. XBUS registers and port pins associated with the XPWM module

Ports & Direction Control Alternate functions Data Registers

15

-

14

-

13

-

12

-

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXPWMPORT XPP0

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

XPW0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPP1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YCounter Registers

Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YXPT0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XPWMCON0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPW1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPP2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPW2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPP3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPW3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXPT1

XPWMPORT XPWM Port Control Register
XPPx XPWM Period Register x
XPWx XPWM Pulse Width Register x
XPTx XPWM Counter Register x
XPOLAR XPWM Channel Polarity Register

XPOUT0 / P8.0
XPOUT1 / P8.1
XPOUT2 / P8.2
XPOUT3 / P8.3

XIRxSEL XPxINT Interrupt Selection Control Register
XIRxSET XPxINT Interrupt Selection Control Reg. Bit Set
XIRxCLR XPxINT Interrupt Selection Control Reg. Bit Clear
XPWMCONx XPWM Control Register 0/1
XPWMCONxSET XPWM Control Register 0/1 Bit Set (write only)
XPWMCONxCLR XPWM Control Register 0/1 Bit Clear (write only)

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXPT2

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YXPT3

XPWMCON0SET Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Bit is linked to a function
Bit has no function or is not implemented

Y
-

:
:

XIRxSEL Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XIRxSET Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XIRxCLR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control Registers

XPWMCON0CLR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

XPWMCON1 Y Y - Y - - - - Y Y Y Y Y Y Y Y

XPWMCON1SET Y Y - Y - - - - Y Y Y Y Y Y Y Y

XPWMCON1CLR Y Y - Y - - - - Y Y Y Y Y Y Y Y

- - - - - - - - - - - - Y Y Y YXPOLAR

XBUS pulse width modulation module UM0407

346/541

Figure 154. XPWM channel block diagram

18.1 Operating modes
The XPWM module provides four different operating modes:

● Mode 0 standard PWM generation (edge aligned PWM) available on 4 channels

● Mode 1 Symmetrical PWM generation (center aligned PWM) available on all four
channels

● Burst mode combines channels 0 and 1

● Single shot mode available on channels 2 and 3

Note: The output signals of the XPWM module are XORed with the outputs of the respective port
output latches. After reset these latches are cleared, so the PWM signals are directly driven
to the port pins. By setting the respective port output latch to ‘1’ the PWM signal may be
inverted (XORed with ‘1’) before being driven to the port pin. Besides, XPOLAR register is
added to allow another level of possible polarity control. The descriptions below refer to the
standard case after reset, which is direct drive.

18.1.1 Mode 0: standard PWM generation (edge aligned PWM)

Mode 0 is selected by clearing the respective bit PMx in register XPWMCON1 to ‘0’. In this
mode the timer XPTx of the respective XPWM channel is always counting up until it reaches
the value in the associated period shadow register. Upon the next count pulse the timer is
reset to 0000h and continues counting up with subsequent count pulses.

The XPWM output signal is switched to high level when the timer contents are equal to or
greater than the contents of the pulse width shadow register.

The signal is switched back to low level when the respective timer is reset to 0000h, that
means below the pulse width shadow register. The period of the resulting PWM signal is
determined by the value of the respective XPPx shadow register plus 1, counted in units of
the timer resolution.

XPWM_PeriodMode0 = [XPPx] + 1

XPPx Period Register

Comparator

XPTx
16-bit Up/Down Counter

Shadow Register

XPWx Pulse Width Register

Input

Run
Control

Clock 1

Clock 2

Comparator

*

*

*

Up/Down/
Clear Control

Match

Output Control
Match

Write Control

* User readable & writeable register

Enable
XPOUTx

x = 3...0

UM0407 XBUS pulse width modulation module

 347/541

The duty cycle of the PWM output signal is controlled by the value in the respective pulse
width shadow register. This mechanism allows the selection of duty cycles from 0% to 100%
including the boundaries.

For a value of 0000h the output will remain at a high level, representing a duty cycle of
100%. For a value higher than the value in the period register the output will remain at a low
level, which corresponds to a duty cycle of 0%.

Figure 155 illustrates the operation and output waveforms of a XPWM channel in mode 0 for
different values in the pulse width register. This mode is referred to as Edge Aligned PWM,
because the value in the pulse width shadow register only effects the positive edge of the
output signal. The negative edge is always fixed and related to the clearing of the timer.

Figure 155. Operation and output waveform in mode 0

18.1.2 Mode 1: symmetrical PWM generation (center aligned PWM)

Mode 1 is selected by setting the respective bit PMx in register XPWMCON1 to ‘1’. In this
mode the timer XPTx of the respective XPWM channel is counting up until it reaches the
value in the associated period shadow register. Upon the next count pulse the count
direction is reversed and the timer starts counting down now with subsequent count pulses
until it reaches the value 0000h. Upon the next count pulse the count direction is reversed
again and the count cycle is repeated with the following count pulses.

The PWM output signal is switched to a high level when the timer contents are equal to or
greater than the contents of the pulse width shadow register while the timer is counting up.
The signal is switched back to a low level when the respective timer has counted down to a
value below the contents of the pulse width shadow register. So in mode 1 this PWM value
controls both edges of the output signal.

Note that in mode 1 the period of the PWM signal is twice the period of the timer:

XPWM_PeriodMode1 = 2 x ([XPPx] + 1)

7
6

7
6

5

3
4

2
1

0

7
6

5

3
4

2
1

0
1

0

XPPx
Period=7

XPTx Count
Value

XPWx Pulse
Width=0

XPWx=1

XPWx=2

XPWx=4

XPWx=6

XPWx=7

XPWx=8

Latch Shadow Registers
Interrupt Request

LSR LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

LSR

XBUS pulse width modulation module UM0407

348/541

The Figure 156 on page 348 illustrates the operation and output waveforms of a XPWM
channel in mode 1 for different values in the pulse width register. This mode is referred to as
Center Aligned PWM, because the value in the pulse width shadow register effects both
edges of the output signal symmetrically.

Figure 156. Operation and output waveform in mode 1

18.1.3 Burst mode

Burst mode is selected by setting bit PB01 in register XPWMCON1 to ‘1’. This mode
combines the signals from XPWM channels 0 and 1 onto the port pin of channel 0.

The output of channel 0 is replaced with the logical AND of channels 0 and 1. The output of
channel 1 can still be used at its associated output pin (if enabled).

Each of the two channels can either operate in mode 0 or 1.

Note: It is guaranteed by design, that no spurious spikes will occur at the output pin of channel 0 in
this mode. The output of the AND gate will be transferred to the output pin synchronously to
internal clocks.
XORing of the PWM signal and the port output latch value is done after the ANDing of
channel 0 and 1 (see Figure 157 on page 349).

1

7
6

5

3
4

2
1

0
1

0

XPPx
Period=7

XPTx Count
Value

XPWx Pulse
Width=0

XPWx=1

XPWx=2

XPWx=4

XPWx=6

XPWx=7

XPWx=8

Latch Shadow Registers
Interrupt Reques

Change Count LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

0

2

7
6

5
4

3
2

1

Direction
LSR

UM0407 XBUS pulse width modulation module

 349/541

Figure 157. Operation and output waveform in burst mode

18.1.4 Single shot mode

Single shot mode is selected by setting the respective bit PSx in register XPWMCON1 to ‘1’.
This mode is available for XPWM channels 2 and 3.

In this mode the timer XPTx of the respective XPWM channel is started via software and is
counting up until it reaches the value in the associated period shadow register. Upon the
next count pulse the timer is cleared to 0000h and stopped via hardware, (the respective
PTRx bit is cleared). The PWM output signal is switched to high level when the timer
contents are equal to or greater than the contents of the pulse width shadow register. The
signal is switched back to low level when the respective timer is cleared, because it is below
the pulse width shadow register.

Thus starting a XPWM timer in single shot mode produces one single pulse on the
respective port pin, provided that the pulse width value is between 0000h and the period
value. In order to generate a further pulse, the timer has to be started again via software by
setting bit PTRx (see Figure 158 on page 350).

XPP0
Period
Value

XPT0
Count
Value

Channel 0

XPP1

XPT1

Channel 0

Channel 1

Resulting
Output
XPOUT0

XBUS pulse width modulation module UM0407

350/541

Figure 158. Operation and output waveform in single shot mode

After starting the timer (with PTRx = ‘1’) the output pulse may be modified via software.
Writing to timer XPTx changes the positive and/or negative edge of the output signal,
depending on whether the pulse has already started (the output is high) or not (the output is
still low). This (multiple) re-triggering is always possible while the timer is running, after the
pulse has started and before the timer is stopped.

Loading counter XPTx directly with the value in the respective XPPx shadow register will
abort the current PWM pulse upon the next clock pulse (counter is cleared and stopped by
hardware).

By setting the period (XPPx), the timer start value (XPTx) and the pulse width value (XPWx)
appropriately, the pulse width (tW) and the optional pulse delay (tD) may be varied in a wide
range (see Figure 158 on page 350).

18.2 XPWM module registers
The XPWM module is controlled via two sets of registers. The waveforms are selected by
the channel specific registers XPTx (timer), XPPx (period) and XPWx (pulse width). Two
common registers control the operating modes and the general functions (XPWMCON0 and
XPWMCON1) of the XPWM module; the interrupt is controlled through the XBUS interrupt
circuitry (X-Peripherals interrupt line sharing concept).

7
6

5

3
4

2
1

0

XPPx
Period=7

XPTx Count
Value

XPWx Pulse
Width=4

Set PTRx
by Software PTRx Reset

by Hardware
XPTx stopped

7
6

5

3
4

2
1

0

Set PTRx
by Software

LSR

for Next Pulse

6
5

3
4

2
1

0

XPPx
Period=7

XPTx Count
Value

XPWx Pulse
Width=4

7
6

5
4

tD

Retrigger after

 Write XPWx value to XPTx

1
0

7
6

5
4

tD

Trigger before Pulse has started :
Write XPWx value to XPTx;

LSR

tWtW

Shortens Delay Time tD

Pulse has started :

UM0407 XBUS pulse width modulation module

 351/541

Up/down counters XPTx

Each counter XPTx of a XPWM channel is clocked either directly by the CPU clock or by the
CPU clock divided by 64. Bit PTIx in register XPWMCON0 selects the respective clock
source. A XPWM counter counts up or down (controlled by hardware), while its respective
run control bit PTRx is set. A timer is started (PTRx = ‘1’) via software and is stopped
(PTRx = ‘0’) either via hardware or software, depending on its operating mode. Control bit
PTRx enables or disables the clock input of counter XPTx rather than controlling the PWM
output signal.

Table 71 summarizes the XPWM frequencies that result from various combinations of
operating mode, counter resolution (input clock) and pulse width resolution.

Period registers XPPx

The 16-bit period register XPPx of a XPWM channel determines the period of a PWM cycle
and the frequency of the PWM signal. This register is buffered with a shadow register.

The shadow register is loaded from the respective XPPx register at the beginning of every
new PWM cycle, or upon a write access to XPPx, while the timer is stopped. The CPU
accesses the XPPx register while the hardware compares the contents of the shadow
register with the contents of the associated counter XPTx.

When a match is found between counter and XPPx shadow register, the counter is either
reset to 0000h, or the count direction is switched from counting up to counting down,
depending on the selected operating mode of that XPWM channel. For the register locations
refer to Table 72 on page 352.

Pulse width registers XPWx

This 16-bit register holds the actual PWM pulse width value which corresponds to the duty
cycle of the PWM signal. This register is buffered with a shadow register.

The CPU accesses the XPWx register while the hardware compares the contents of the
shadow register with the contents of the associated counter XPTx. The shadow register is
loaded from the respective XPWx register at the beginning of every new PWM cycle, or
upon a write access to XPWx, while the timer is stopped.

When the counter value is greater than or equal to the shadow register value, the PWM
signal is set, otherwise it is reset. The output of the comparators may be described by the
boolean formula:

PWM output signal = [XPTx] > [XPWx shadow latch]

This type of comparison allows a flexible control of the PWM signal. For the register
locations refer to Table 72 on page 352.

Table 71. XPWM frequencies

Input Clock and
Mode (Counter

resolution)

8-bit PWM
resolution

10-bit PWM
resolution

12-bit PWM
resolution

14-bit PWM
resolution

16-bit PWM
resolution

fCPU Mode 0 fCPU / 2
8 fCPU / 2

10 fCPU / 2
12 fCPU / 2

14 fCPU / 2
16

fCPU / 64Mode 0 fCPU / 64x28 fCPU / 64x210 fCPU / 64x212 fCPU / 64x214 fCPU / 64x216

fCPU Mode 1 fCPU / 2x28 fCPU / 2x210 fCPU / 2x212 fCPU / 2x214 fCPU / 2x216

fCPU / 64Mode 1 fCPU / 2x64x28 fCPU / 2x64x210 fCPU / 2x64x212 fCPU / 2x64x214 fCPU / 2x64x216

XBUS pulse width modulation module UM0407

352/541

XPWM control register XPWMCON0

Register XPWMCON0 controls the function of the timers of the four XPWM channels and
the channel specific interrupts. Having the control bit organized in functional groups allows
to start or to stop all the 4 XPWM timers simultaneously with one bit-field instruction.

Note: This register is not bit-addressable; the bit-addressability is available via specific ‘set’ and
‘Clear’ write-only registers XPWMCON0SET and XPWMCON0CLR.

XPWMCON0 (EC00h) XBUS Reset Value: 0000h

XPWMCON0SET (EC06h) XBUS Reset Value: 0000h

Table 72. XPWM module channel specific register addresses

Register Address Reg. Space Register Address Reg. Space

XPW0 EC30h XBUS XPT0 EC10h XBUS

XPW1 EC32h XBUS XPT1 EC12h XBUS

XPW2 EC34h XBUS XPT2 EC14h XBUS

XPW3 EC36h XBUS XPT3 EC16h XBUS

All XPWM registers are not bit-addressable.

XPP0 EC20h XBUS

XPP1 EC22h XBUS

XPP2 EC24h XBUS

XPP3 EC26h XBUS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIR
3

PIR
2

PIR
1

PIR
0

PIE
3

PIE
2

PIE
1

PIE
0

PTI3 PTI2 PTI1 PTI0
PTR

3
PTR

2
PTR

1
PTR

0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PTRx

XPWM Timer x Run Control bit
‘0’: Timer XPTx is disconnected from its input clock
‘1’: Timer XPTx is running

PTIx
XPWM Timer x Input Clock Selection
‘0’: Timer XPTx clocked with CLKCPU

‘1’: Timer XPTx clocked with CLKCPU / 64

PIEx

XPWM Channel x Interrupt Enable Flag
‘0’: Interrupt from channel x disabled

‘1’: Interrupt from channel x enabled

PIRx

XPWM Channel x Interrupt Request Flag
‘0’: No interrupt request from channel x
‘1’: Channel x interrupt pending (must be reset via software)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET.
15

SET.
14

SET.
13

SET.
12

SET.
11

SET.
10

SET.
9

SET.
8

SET.
7

SET.
6

SET.
5

SET.
4

SET.
3

SET.
2

SET.
1

SET.
0

W W W W W W W W W W W W W W W W

UM0407 XBUS pulse width modulation module

 353/541

XPWMCON0CLR (EC08h) XBUS Reset Value: 0000h

XPWM control register XPWMCON1

Register XPWMCON1 controls the operating modes and the outputs of the four XPWM
channels. The basic operating mode for each channel (standard = edge aligned, or
symmetrical = center aligned PWM mode) is selected by the mode bit PMx. Burst mode
(channels 0 and 1) and single shot mode (channel 2 or 3) are selected by separate control
bit. The output signal of each XPWM channel is individually enabled by bit PENx. If the
output is not enabled the respective pin can be used for general purpose I/O and the XPWM
channel can only be used to generate an interrupt request.

Note: This register is not bit-addressable; the bit-addressability is available via specific ‘set’ and
‘Clear’ write-only registers XPWMCON1SET and XPWMCON1CLR.

XPWMCON1 (EC02h) XBUS Reset Value: 0000h

Bit Function

SET.Y

XPWMCON0 Bit Y Set

Writing a ‘1’ will set the corresponding bit in XPWMCON0 register,
Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR
.15

CLR
.14

CLR
.13

CLR
.12

CLR
.11

CLR
.10

CLR
.9

CLR
.8

CLR
.7

CLR
.6

CLR
.5

CLR
.4

CLR
.3

CLR
.2

CLR
.1

CLR
.0

W W W W W W W W W W W W W W W W

Bit Function

CLR.Y

XPWMCON0 Bit Y Clear

Writing a ‘1’ will clear the corresponding bit in XPWMCON0 register,
Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PS3 PS2 -
PB0

1
- - - - PM3 PM2 PM1 PM0

PEN
3

PEN
2

PEN
1

PEN
0

RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PENx
XPWM Channel x Output Enable bit
‘0’: Channel x output signal disabled, generate interrupt only
‘1’: Channel x output signal enabled

PMx
XPWM Channel x Mode Control bit
‘0’: Channel x operates in mode 0, that is, edge aligned PWM
‘1’: Channel x operates in mode 1, that is, center aligned PWM

XBUS pulse width modulation module UM0407

354/541

XPWMCON1SET (EC0Ah) XBUS Reset Value: 0000h

XPWMCON1CLR (EC0Ch) XBUS Reset Value: 0000h

18.3 Interrupt request generation
Each of the four channels of the XPWM module can generate an individual interrupt
request. Each of these “channel interrupts” can activate the common “module interrupt”,
which actually interrupts the CPU.

Up to four interrupt control registers (XIRxSEL, x = 0, 1, 2, 3) are provided in order to select
the source of the XBUS interrupts: The XPWM common interrupt line is linked to one of the
XPxINT registers (x = 0, 1, 2, 3). In particular, the XPWM interrupt line is available on the
XP2INT and XP3INT interrupt vectors.

Refer to Section 5.7: X-Peripheral interrupt on page 114 for details.

The interrupt service routine can determine the active channel interrupt(s) from the channel
specific interrupt request flags PIRx in register XPWMCON0.

PB01
XPWM Channel 0/1 Burst Mode Control bit
‘0’: Channels 0 and 1 work independently in respective standard mode
‘1’: Outputs of channels 0 and 1 are ANDed to POUT0 in burst mode

PSx
XPWM Channel x Single Shot Mode Control bit
‘0’: Channel x works in respective standard mode
‘1’: Channel x operates in single shot mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET.
15

SET.
14

-
SET.
12

- - - -
SET.

7
SET.

6
SET.

5
SET.

4
SET.

3
SET.

2
SET.

1
SET.

0

W W W W W W W W W W W

Bit Function

SET.Y

XPWMCON1 Bit Y Set

Writing a ‘1’ will set the corresponding bit in XPWMCON1 register,
Writing a ‘0’ has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR
.15

CLR
.14

-
CLR
.12

- - - -
CLR

.7
CLR

.6
CLR

.5
CLR

.4
CLR

.3
CLR

.2
CLR

.1
CLR

.0

W W W W W W W W W W W

Bit Function

CLR.Y

XPWMCON1 Bit Y Clear

Writing a ‘1’ will clear the corresponding bit in XPWMCON1 register,
Writing a ‘0’ has no effect.

Bit Function

UM0407 XBUS pulse width modulation module

 355/541

The interrupt request flag PIRx of a channel is set at the beginning of a new PWM cycle,
when loading the shadow registers. This indicates that registers XPPx and XPWx are now
ready to receive a new value. If a channel interrupt is enabled via its respective PIEx bit,
also the common interrupt request line is asserted (XP2IR/XP3IR in registers
XP2IC/XP3IC), provided that they are enabled via the common interrupt enable bits
(XP2IE/XP3IE) and the dedicated enable bits inside XIRSEL2/XIRSEL3 registers.

Note: The channel interrupt request flags (PIRx in register XPWMCON0) are not automatically
cleared by hardware upon entry into the interrupt service routine, so they must be cleared
via software. The module interrupt request flags XP2IR/XP3IR are also not cleared by
hardware upon entry into the service routine, regardless of how many channel interrupts
were active. However, it will be set again if during execution of the service routine a new
channel interrupt request is generated.

18.4 XPWM output signals
The output signals of the four XPWM channels (XPOUT3...XPOUT0) are alternate output
functions on Port8 (P8.3...P8.0). The XPWM signals are XORed with the outputs of the
register XPOLAR before being driven to the port pins. This allows driving the XPWM signal
directly to the port pin (XPOLAR.x = ‘0’) or drive the inverted XPWM signal
(XPOLAR.x = ‘1’). At Port8 level, when output direction is enabled, and bit XPWMEN of
XPERCON is set, it is again possible to control the polarity like it is done for the standard
PWM (on Port7), simply setting or clearing the output data register P8.x (x = 0...3);
maintaining cleared the data register, the polarity is not inverted, while it is inverted setting
the register. Note that if bit XP8.y (XPWMPORT register) is set, the polarity is inverted as
well: so, if both XPOLAR.y and XP8.y are set, no inversion is achieved. For Port8 block
diagram, refer also to Section 6.10: Port8 on page 169.

The PWM signals are XORed with the respective port latch outputs before being driven to
the port pins.

This allows driving the PWM signal directly to the port pin (P8.x = ‘0’) or drive the inverted
PWM signal (P8.x = ‘1’) (see Figure 159 on page 356).

Note: Using the open-drain mode on Port8 allows the combination of two or more XPWM outputs
through a AND-Wired configuration, using an external pull-up device. This provides sort of a
burst mode for any XPWM channel.

XPOLAR (EC04h) XBUS Reset Value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - -
XPO
LAR
.3

XPO
LAR
.2

XPO
LAR

.1

XPO
LAR
.0

RW RW RW RW

Bit Function

XPOLAR.Y

XPWM Channel Y Polarity Bit

‘0’: Polarity of Channel Y is normal
‘1’: Polarity of Channel Y is inverted

XBUS pulse width modulation module UM0407

356/541

Software control of the XPWM outputs

In an application the XPWM output signals are generally controlled by the XPWM module.
However, it may be necessary to influence the level of the XPWM output pins via software
either to initialize the system or to react on some extraordinary condition, like a system fault
or an emergency.

Clearing the timer run bit PTRx stops the associated counter and leaves the respective
output at its current level.

The individual XPWM channel outputs are controlled by comparators according to the
formula:

PWM output signal = [XPTx] > [XPWx shadow latch]

So whenever software changes registers XPTx, the respective output will reflect the
condition after the change. Loading timer XPTx with a value greater than or equal to the
value in XPWx immediately sets the respective output, a XPTx value below the XPWx value
clears the respective output.

By clearing or setting the respective Port8 output latch the XPWM channel signal is driven
directly or inverted to the port pin.

Clearing the enable bit PENx disconnects the XPWM channel and switches the respective
port pin to the value in the port output latch.

Note: To prevent further PWM pulses from occurring after such a software intervention the
respective counter must be stopped first.

Figure 159. XPWM output signal generation

Latch XPOLAR.3

XPWM 3

Pin P8.3

Latch XPOLAR.2

XPWM 2

Pin P8.2

Latch XPOLAR.1

XPWM 1

Pin P8.1

Latch XPOLAR.0

XPWM 0

Pin P8.0

X
O

R
X

O
R

X
O

R
X

O
R

&

XPWMCON1.PEN3

XPWMCON1.PEN2

XPWMCON1.PEN0

XPWMCON1.PEN1

XPWMCON1.PB01

UM0407 Analog / digital converter

 357/541

19 Analog / digital converter

The ST10F272Z2 provides an Analog / Digital Converter with 10-bit resolution and a sample
& hold circuit on-chip. A multiplexer selects between up to 16+8 analog input channels
(alternate functions of Port5 and Port1) either via software (fixed channel modes) or
automatically (auto scan modes works automatically among the 16 channels of Port5, or
among the 8 channels of Port1). An automatic self-calibration adjusts the ADC module to
process parameter variations at each reset event. The ADC supports the following
conversion modes:

● Fixed channel single conversion
produces just one result from the selected channel

● Fixed channel continuous conversion
repeatedly converts the selected channel

● Auto scan single conversion
produces one result from each of a selected group of channels

● Auto scan continuous conversion
repeatedly converts the selected group of channels

● Wait for ADDAT read mode
start a conversion automatically when the previous result was read

● Channel injection mode
insert the conversion of a specific channel into a group conversion (auto scan)

A set of SFRs and port pins provide access to control functions and results of the ADC.

Figure 160. SFRs, XBUS registers and port pins associated with the A/D converter
Ports & Direction Control Alternate functions Data Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YP5 ADDAT

15

Y

14

Y

13

Y

12

Y

11

-

10

-

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

ADDAT2 E Y Y Y Y - - Y Y Y Y Y Y Y Y Y Y

Control Registers

Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

-

5

Y

4

Y

3

Y

2

Y

1

Y

0

YADCON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCIC - - - - - - - - Y Y Y Y Y Y Y Y

ADEIC - - - - - - - - Y Y Y Y Y Y Y Y

AN0/P5.0... AN15/P5.15

P5 Port5 Data Register
P5DIDIS Port5 Analog Inputs Disturb Protection Register
DP1L Port1L Direction Register
P1L Port1L Data Register
XP1DIDIS Port1L Analog Inputs Disturb Protection Register (XBUS)
ADDAT A/D Converter Result Register
ADDAT2 A/D Converter Channel Injection Result Register
ADCON A/D Converter Control Register
XMISC Miscellaneous Register (XBUS)
ADCIC A/D Converter Interrupt Control Register

(End of Conversion)
ADEIC A/D Converter Interrupt Control Register

(Overrun Error / Channel Injection)

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

DP1L

P1L

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - Y Y Y Y Y Y Y Y Y

AN16/P1L.0... AN23/P1L.7

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP5DIDIS

XP1DIDIS - - - - - - - Y Y Y Y Y Y Y Y Y

- - - - - - - - - - - - Y Y Y YXMISC

Analog / digital converter UM0407

358/541

The external analog reference voltages VAREF and VAGND are fixed. The separate supply for
the ADC reduces the interference with other digital signals.

The sample time as well as the conversion time is programmable, so the ADC can be
adjusted to the internal resistances of the analog sources and/or the analog reference
voltage supply.

Figure 161. Analog / digital converter block diagram

ADCIR

ADEIR

8
Analog
Input

Channels
:
:

:
:

AN16
P1L.0

AN23
P1L.7

S + H
10-Bit

Converter

Conversion
Control

ADCON

Result Reg. ADDAT

Result Reg. ADDAT2

Interrupt
Requests

VAREF VAGND

ADCMUX

8
Analog
Input

Channels
:
:

:
:

AN0
P5.0

AN7
P5.7

8
Analog
Input

Channels
:
:

:
:

AN8
P5.8

AN15
P5.15

MUX
32-16

MUX
16-1

0

1

Open (*)

(*) Open means floating input seen by A/D Converter, so unpredictable conversion result expected.

UM0407 Analog / digital converter

 359/541

19.1 Mode selection and operation
The analog input channels AN0...AN15 are alternate functions of Port5 which is a 16-bit
input-only port. The Port5 lines may either be used as analog or digital inputs. No special
action is required to configure the Port5 lines as analog inputs.

The additional register P5DIDIS can be used to further protect ADC input analog section
disabling the digital input section. Refer to Section 6.7.2: Port5 analog inputs disturb
protection on page 159 for details on register P5DIDIS.

The analog input channels AN16...AN23 are alternate functions of Port1L which is an 8-bit
bidirectional port. The Port1L lines may either be used as analog input or digital
input/output. The additional register XP1DIDIS can be used to further protect ADC input
analog section disabling the digital input section. Refer to Section 6.3.2: PORT1 analog
inputs disturb protection on page 141 for details on register XP1DIDIS.

In order to configure the Port1L lines as analog inputs it is first of all recommended to
properly set register XP1DIDIS; next it is necessary to set bit ADCMUX of register XMISC:
in this way all analog input channels of Port5 are disabled, and the analog signal to the
Converter is provided through the Port1L pins.

Both XMISC and XP1DIDIS registers can be accessed only after bit XMISCEN of register
XPERCON and bit XPEN of register SYSCON have been set.

XMISC (EB46h) XBUS Reset Value: 0000h

The functions of the A/D converter are controlled by the bit-addressable A/D Converter
Control Register ADCON.

Its bit-fields specify the analog channel to be acted upon, the conversion mode, and also
reflect the status of the converter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - VREG
OFF

CAN
CK2

CAN
PAR

ADC
MUX

RW RW RW RW

Bit Function

ADCMUX

Port1L ADC Channels Enable
‘0’: Analog inputs on port P5.y can be converted (default configuration)

‘1’: Analog inputs on port P1.z can be converted. Only 8 channels can be managed

CANPAR

CAN Parallel Mode Selection
‘0’: CAN2 is mapped on P4.4/P4.7, while CAN1 is mapped on P4.5/P4.6
‘1’: CAN1 and CAN2 are mapped in parallel on P4.5/P4.6. This is effective only if
both CAN1 and CAN2 are enabled through setting of bits CAN1EN and CAN2EN in
XPERCON register. If CAN1 is disabled, CAN2 remains on P4.4/P4.7 even if bit
CANPAR is set.

CANCK2

CAN Clock divider by 2 disable
‘0’: Clock provided to CAN modules is CPU clock divided by 2 (mandatory when
fCPU is higher than 40 MHz)

‘1’: Clock provided to CAN modules is directly CPU clock

VREGOFF
Main Voltage Regulator disable in Power Down mode
‘0’: Default value after reset and when Power Down is not used
‘1’: On-chip Main Regulator is turned off when power down mode is entered

Analog / digital converter UM0407

360/541

ADCON (FFA0h / D0h) SFR Reset Value: 0000h

Bit-field ADCH specifies the analog input channel which is to be converted (first channel of a
conversion sequence in auto scan modes): According to the value of bit ADCMUX in XMISC
register, a channel on Port5 or Port1L is selected. Bit-field ADM selects the operating mode
of the A/D converter. A conversion (or a sequence) is then started by setting bit ADST.

Clearing ADST stops the A/D converter after a certain operation which depends on the
selected operating mode.

The busy flag (read-only) ADBSY is set, as long as a conversion is in progress.

After reset, this bit is set because the self-calibration is on going (duration of self-calibration
depends on CPU clock: it takes up to 40.629 ± 1 clock pulses). The user shall poll this bit to
know when the first conversion can be launched.

The result of a conversion is stored in the result register ADDAT, or in register ADDAT2 for
an injected conversion.

Note: Bit-field CHNR of register ADDAT is loaded by the ADC to indicate which channel the result
refers to. Bit-field CHNR of register ADDAT2 is loaded by the CPU to select the analog
channel, which is to be injected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCTC ADSTC
AD

CRQ
AD
CIN

AD
WR

AD
BSY

ADST
AD

OFF
ADM ADCH

RW RW RW RW RW R RW RW RW RW

Bit Function

ADCH ADC Analog Channel Input Selection

ADM

ADC Mode Selection

’0 0’: Fixed Channel Single Conversion
’0 1’: Fixed Channel Continuous Conversion
’1 0’: Auto Scan Single Conversion
’1 1’: Auto Scan Continuous Conversion

ADOFF

ADC Disable
‘0’: Analog circuitry of A/D converter is on: it can be used properly
‘1’: Analog circuitry of A/D converter is turned off (no consumption): non conversion
possible

ADST ADC Start bit

ADBSY
ADC Busy Flag
‘1’: a conversion or calibration is active

ADWR ADC Wait for Read Control

ADCIN ADC Channel Injection Enable

ADCRQ ADC Channel Injection Request Flag

ADSTC ADC Sample Time Control (1)

1. ADSTC and ADCTC control the conversion timing. Refer to Section 19.2 on page 367.

ADCTC ADC Conversion Time Control (1)

UM0407 Analog / digital converter

 361/541

ADDAT (FEA0h / 50h) SFR Reset Value: 0000h

ADDAT2 (F0A0h / 50h) ESFR Reset Value: 0000h

A conversion is started by setting bit ADST=‘1’. The busy flag ADBSY will be set and the
converter then selects and samples the input channel, which is specified by the channel
selection field ADCH in register ADCON. The sampled level will then be held internally
during the conversion.

When the conversion of this channel is complete, the 10-bit result together with the number
of the converted channel is transferred into the result register ADDAT and the interrupt
request flag ADCIR is set.

Field ADCH represents the channel of Port5 when bit ADCMUX in register XMISC is not set
(0h = channel 0, 1h = channel 1, ... , Fh = channel 15); while it represents the channel of
Port1 when ADCMUX is set (0h = channel 16, 1h = channel 17, ... , 7h = channel 23).

If bit ADST is reset via software, while a conversion is in progress, the A/D converter will
stop after the current conversion (fixed channel modes) or after the current conversion
sequence (auto scan modes).

Setting bit ADST while a conversion is running, will abort this conversion and start a new
conversion with the parameters specified in ADCON.

Note: Stop and restart (see above) are triggered by bit ADST changing from ‘0’ to ‘1’, ADST must
be ‘0’ before being set.

While a conversion is in progress, the mode selection field ADM and the channel selection
field ADCH may be changed. ADM will be evaluated after the current conversion. ADCH will
be evaluated after the current conversion (fixed channel modes) or after the current
conversion sequence (auto scan modes).

19.1.1 Fixed channel conversion modes

These modes are selected by programming the mode selection field ADM in register
ADCON to ‘00b’ (single conversion) or to ‘01b’ (continuous conversion). After starting the
converter through bit ADST, the busy flag ADBSY will be set and the channel specified in
bit-field ADCH will be converted. If bit ADCMUX of register XMISC is set, the converted
channel is the one on Port1 (ADCH = 0h for channel 16, ADCH = 1h for channel 17, ... ,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHNR - - ADRES

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHNR - - ADRES

RW RW

Bit Function

ADRES A/D Conversion Result (10 bits)

CHNR

Channel Number
4 bits, identifies the converted analog channel: first eight binary values shall be
combined with status of bit ADCMUX of register XMISC to distinguish between
channel(7:0) and channel(23:16).

Analog / digital converter UM0407

362/541

ADCH = 7h for channel 23). After the conversion is complete, the interrupt request flag
ADCIR will be set.

In single conversion mode the converter will automatically stop and reset bit ADBSY and
ADST.

In continuous conversion mode the converter will automatically start a new conversion of
the channel specified in ADCH. ADCIR will be set after each completed conversion. When
bit ADST is reset by software, while a conversion is in progress, the converter will complete
the current conversion and then stop and reset bit ADBSY.

19.1.2 Auto scan conversion modes

These modes are selected by programming the mode selection field ADM in register
ADCON to ‘10B’ (single conversion) or to ‘11B’ (continuous conversion).

Auto Scan modes automatically convert a sequence of analog channels, beginning with the
channel specified in bit-field ADCH and ending with channel 0, without requiring software to
change the channel number. Again, if bit ADCMUX of register XMISC is set, the sequence
starts with the specified channel on Port1 ending with channel 16. Besides, if bit ADCMUX
of register XMISC is set and ADCH value is greater than 7h, the sequence starts converting
non existing channel: This corresponds to an unpredictable result, since the input of A/D
Converter is left floating. After starting the converter through bit ADST, the busy flag ADBSY
will be set and the channel specified in bit-field ADCH will be converted.

After the conversion is complete, the interrupt request flag ADCIR will be set and the
converter will automatically start a new conversion of the next lower channel. ADCIR will be
set after each completed conversion. After conversion of channel 0 the current sequence is
complete.

In single conversion mode the converter will automatically stop and reset bits ADBSY and
ADST.

In continuous conversion mode the converter will automatically start a new sequence
beginning with the conversion of the channel specified in ADCH.

When bit ADST is reset by software, while a conversion is in progress, the converter will
complete the current sequence (including conversion of channel 0) and then stop and reset
bit ADBSY.

Figure 162. Auto scan conversion mode example

Conversion #2 #1 #0 #3 #2

#x #3 #2 #3#1 #0

#x #3 #2 #1 #3

Write ADDAT
ADDAT Full

Generate Interrupt
Request

Read of ADDAT;
Result of Channel:

ADDAT Full;
Channel 0
Result Lost

Overrun Error Interrupt Request

#3
of Channel:

UM0407 Analog / digital converter

 363/541

19.1.3 Wait for ADDAT read mode

If in default mode of the ADC a previous conversion result has not been read out of register
ADDAT by the time a new conversion is complete, the previous result in register ADDAT is
lost because it is overwritten by the new value, and the A/D overrun error interrupt request
flag ADEIR will be set.

In order to avoid error interrupts and the loss of conversion results especially when using
continuous conversion modes, the ADC can be switched to “Wait for ADDAT Read Mode” by
setting bit ADWR in register ADCON.

If the value in ADDAT has not been read by the time the current conversion is complete, the
new result is stored in a temporary buffer and the next conversion is suspended (ADST and
ADBSY will remain set in the meantime, but no end-of-conversion interrupt will be
generated). After reading the previous value from ADDAT the temporary buffer is copied into
ADDAT (generating an ADCIR interrupt) and the suspended conversion is started. This
mechanism applies to both single and continuous conversion modes.

While in standard mode continuous conversions are executed at a fixed rate (determined by
the conversion time), in “Wait for ADDAT Read Mode” there may be delays due to
suspended conversions. However, this only affects the conversions, if the CPU (or PEC)
cannot keep track with the conversion rate.

Figure 163. Wait for read mode example

19.1.4 Channel injection mode

Channel injection mode allows the conversion of a specific analog channel (also while the
ADC is running in a continuous or auto scan mode) without changing the current operating
mode. After the conversion of this specific channel, the ADC continues with the original
operating mode.

Channel injection mode is enabled by setting bit ADCIN in register ADCON and requires the
Wait for ADDAT Read Mode (ADWR=‘1’). The channel to be converted in this mode is
specified in bit-field CHNR of register ADDAT2.

These 4 bits in ADDAT2 are not modified by the A/D converter, but only the ADRES bit-field.
Since the channel number for an injected conversion is not buffered, bit-field CHNR of

#3 #2 #1 #0 #3Conversion

#x #3 #2 #0#1

#x #3 #2 #1 #0

Write ADDAT
ADDAT Full

Generate Interrupt
Request

Read of ADDAT;
Result of Channel:

Wait

Temp-Latch Full

#3

#1

Hold Result in
Temp-Latch

of Channel:

Analog / digital converter UM0407

364/541

ADDAT2 must never be modified during the sample phase of an injected conversion,
otherwise the input multiplexer will switch to the new channel. It is recommended to only
change the channel number with no injected conversion running (see Figure 164 on
page 365).

A channel injection can be triggered in two ways:

● Setting the Channel Injection Request bit ADCRQ via software a compare or a capture
event of Capture/Compare register CC31 of the CAPCOM2 Unit, which also sets bit
ADCRQ.

● Triggering a channel injection at a specific time on the occurrence of a predefined count
value of the CAPCOM timers or on a capture event of register CC31. This can be either
the positive, negative, or both the positive and the negative edge of an external signal.
In addition, this option allows recording the time of occurrence of this signal.

Note: The channel injection request bit ADCRQ will be set on any interrupt request of CAPCOM2
channel CC31, regardless whether the channel injection mode is enabled or not. It is
recommended to always clear bit ADCRQ before enabling the channel injection mode.
While an injected conversion is in progress, no further channel injection request can be
triggered. The Channel Injection Request flag ADCRQ remains set until the result of the
injected conversion is written to the ADDAT2 register.
If the converter was idle before the channel injection, and during the injected conversion the
converter is started by software for normal conversions, the channel injection is aborted,
and the converter starts in the selected mode (as described above). This can be avoided by
checking the busy bit ADBSY before starting a new operation.

When Port1 channels are used in addition to those of Port5, attention must be paid in
managing the channel injection mode. When the injection is controlled via software, the
status of bit ADCMUX in register XMISC shall be considered:

● If the channel to inject is on Port5, and ADCMUX is set, before setting bit ADCRQ in
register ADCON, bit ADCMUX needs to be reset;

● If the channel to inject is on Port1, and ADCMUX is reset, before setting bit ADCRQ in
register ADCON, bit ADCMUX needs to be set;

● If the channel to inject is on Port5, and ADCMUX is reset, setting bit ADCRQ in register
ADCON will properly inject the right channel;

● If the channel to inject is on Port1, and ADCMUX is set, setting bit ADCRQ in register
ADCON will properly inject the right channel.

When the injection is not controlled via software, the status of the bit ADCMUX cannot be
checked: This implies that the analog signal to convert as injected channel, must be
available on both the channel banks on Port5 and Port1. This is true when the channel to
inject is mapped on P5(7:0) or P1(7:0): supposing channel to inject is channel #3, P5.3 and
P1.3 pins must be externally shorted, providing the analog signal to both. On the contrary,
when the channel to inject is on P5(15:8), there is no correspondent channel on Port1: This
means that if ADCMUX is set at the time the injection is triggered, an unpredictable result is
expected, since the A/D converter analog input is left floating.

After the completion of the current conversion (if any is in progress) the converter will start
(inject) the conversion of the specified channel. When the conversion of this channel is
complete, the result will be placed into the alternate result register ADDAT2, and a Channel
Injection Complete Interrupt request will be generated, which uses the interrupt request flag
ADEIR (for this reason the Wait for ADDAT Read Mode is required).

UM0407 Analog / digital converter

 365/541

Figure 164. Channel injection example

If the temporary data register used in Wait for ADDAT Read Mode is full, the respective next
conversion (standard or injected) will be suspended. The temporary register can hold data
for ADDAT (from a standard conversion) or for ADDAT2 (from an injected conversion).

#x #x-1 #x-2 #x-3 #x-4Conversion

#x+1 #x #x-1 #x-3

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-4

#...

#x-2

#x #x-1 #x-2 #x-3 #x-4

#y

Write ADDAT2

Channel Injection
Request by CC31

Interrupt Request
ADEINT

Injected Conversion
of Channel #y

ADDAT2 Full

Read ADDAT2

of Channel:

Analog / digital converter UM0407

366/541

Figure 165. Channel injection example with wait for read

19.1.5 ADC power off (ADOFF)

Setting bit ADOFF in ADCON register the ADC is turned off and the static power
consumption related with ADC analog circuitry is zeroed. If this bit is set during a
conversion, the command is ignored (even though the ADOFF bit is immediately set): only at
the end of the conversion (or sequence of conversions if Scan mode was selected), the ADC
is switched off (as soon as ADBSY bit is cleared).

#x #x-1 #x-2 #x-3Conversion

#x+1 #x #x-1 #x-2

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-3

#...

#x #x-1 #x-2 #x-3

#y
Channel Injection
Request by CC31

Injected Conversion
of Channel #y Write ADDAT2

#y

Interrupt
Request

#z #y

ADDAT2 Full

Read ADDAT2

Temp-Latch Full

#x #x-1 #x-2 #x-3Conversion

#x+1 #x #x-1 #x-2

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-3

#...

#x #x-2 #x-3

#y
Channel Injection
Request by CC31

Write ADDAT2

Interrupt Request
ADEINT

#y

ADDAT2 Full

Read ADDAT2

#x-1

Temp-Latch Full

Wait until ADDAT2
is read

of Channel:

of Channel:

#z

ADEINT

Wait until
ADDAT2 is

read

UM0407 Analog / digital converter

 367/541

When ADC is off (ADOFF bit set), setting bit ADST wakes automatically up the ADC and a
conversion starts: The accuracy is unfortunately not yet granted, since the analog circuitry
needs at least 50µs to complete the power-up transient phase. It is recommended to clear
ADOFF bit first, and only after 50µs to start the first conversion.

Note: If bit ADOFF is set and when ADST is set also, at the end of the conversion (or cycle of
conversion if Scan mode is selected), the ADC is switched off again (as soon as ADBSY is
cleared).

Turning off ADC consumption (setting bit ADOFF) should be done once the Calibration is
completed (starts after every reset occurrence): on the contrary, the calibration is stopped
by setting bit ADOFF, and not restarted/completed once bit ADOFF is cleared again.

19.2 Conversion timing control
When a conversion is started, first the capacitances of the converter are loaded via the
respective analog input pin to the current analog input voltage. The time to load the
capacitances is referred to as sample time. Next the sampled voltage is converted to a
digital value several successive steps, which correspond to the 10-bit resolution of the ADC.
During these steps the internal capacitances are repeatedly charged and discharged via the
VAREF pin.

The current that has to be drawn from the sources for sampling and changing charges
depends on the time that each respective step takes, because the capacitors must reach
their final voltage level within the given time, at least with a certain approximation. The
maximum current, however, that a source can deliver, depends on its internal resistance.

The time that the two different actions during conversion take (sampling, and converting)
can be programmed within a certain range in the ST10F272Z2 relative to the CPU clock.
The absolute time that is consumed by the different conversion steps therefore is
independent of the general speed of the controller. This allows adjusting the A/D converter
of the ST10F272Z2 to the properties of the system:

Fast conversion can be achieved by programming the respective times to their absolute
possible minimum. This is preferable for scanning high frequency signals. The internal
resistance of analog source and analog supply must be sufficiently low, however.

High internal resistance can be achieved by programming the respective times to a higher
value, or the possible maximum.

This is preferable when using analog sources and supply with a high internal resistance in
order to keep the current as low as possible. The conversion rate in this case may be
considerably lower, however.

The conversion times are programmed via the upper four bits of register ADCON. Bit fields
ADCTC and ADSTC are used to define the basic conversion time and in particular the
partition between sample phase and comparison phases. The table below lists the possible
combinations. The timings refer to the unit TCL, where fCPU = 1/2TCL.

Analog / digital converter UM0407

368/541

A complete conversion time includes the conversion itself, the sample time and the time
required to transfer the digital value to the result register.

Note: The total conversion time is compatible with the formula valid for ST10F269, while the
meaning of the bit fields ADCTC and ADSTC is no longer compatible: The minimum
conversion time is 388 TCL, which at 40 MHz CPU frequency corresponds to 4.85µs (see
ST10F269).
ST10F272Z2 can target a maximum CPU frequency of 64 MHz. This means that the
minimum conversion time is around 3µs.

19.3 A/D converter interrupt control
At the end of each conversion, interrupt request flag ADCIR in interrupt control register
ADCIC is set. This end-of-conversion interrupt request may cause an interrupt to vector
ADCINT, or it may trigger a PEC data transfer which reads the conversion result from
register ADDAT it can be stored it into a table in the on-chip RAM for later evaluation.

The interrupt request flag ADEIR in register ADEIC will be set, either if a conversion result
overwrites a previous value in register ADDAT (error interrupt in standard mode), or if the
result of an injected conversion has been stored into ADDAT2 (end-of-injected-conversion
interrupt). This interrupt request may be used to cause an interrupt to vector ADEINT, or it
may trigger a PEC data transfer.

ADCIC (FF98h / CCh) SFR Reset Value: - - 00h

Table 73. ADC sampling and conversion timing

ADCTC ADSTC Sample Comparison Extra
Total

conversion

00 00 TCL * 120 TCL * 240 TCL * 28 TCL * 388

00 01 TCL * 140 TCL * 280 TCL * 16 TCL * 436

00 10 TCL * 200 TCL * 280 TCL * 52 TCL * 532

00 11 TCL * 400 TCL * 280 TCL * 44 TCL * 724

11 00 TCL * 240 TCL * 480 TCL * 52 TCL * 772

11 01 TCL * 280 TCL * 560 TCL * 28 TCL * 868

11 10 TCL * 400 TCL * 560 TCL * 100 TCL * 1060

11 11 TCL * 800 TCL * 560 TCL * 52 TCL * 1444

10 00 TCL * 480 TCL * 960 TCL * 100 TCL * 1540

10 01 TCL * 560 TCL * 1120 TCL * 52 TCL * 1732

10 10 TCL * 800 TCL * 1120 TCL * 196 TCL * 2116

10 11 TCL * 1600 TCL * 1120 TCL * 164 TCL * 2884

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
ADC

IR
ADC

IE
ILVL GLVL

RW RW RW RW

UM0407 Analog / digital converter

 369/541

ADEIC (FF9Ah / CDh) SFR Reset Value: - - 00h

Note: Refer to Section 5.1.3: Interrupt control registers on page 97 for an explanation of the
control fields.

19.4 Calibration
A full calibration sequence is performed after a reset. This full calibration lasts 40.629 ± 1
CPU clock cycles. During this time, the busy flag ADBSY is set to indicate the operation. It
compensates the capacitance mismatch, so the calibration procedure does not need any
update during normal operation.

No conversion can be performed during this time: The bit ADBSY shall be polled to verify
when the calibration is over, and the module is able to start a conversion.

Since the calibration process writes repeatedly spurious conversion results inside ADDAT
register, at the end of the calibration, both ADCIR and ADEIR flags are set. For this reason,
before starting a conversion, in the A/D Converter initialization routine, the application shall
perform a dummy read of ADDAT register and clear the two flags.

Note: If ADDAT is not read before starting the first conversion, and for example “Wait for Read
Mode” is entered (ADWR bit set), the A/D Converter is stack waiting for the ADDAT read,
since the result of the current conversion cannot be immediately written inside ADDAT,
which contains the results of the calibration (meaningless data).

19.5 A/D conversion accuracy
The A/D Converter compares the analog voltage sampled on the selected analog input
channel to its analog reference voltage (VAREF) and converts it into 10-bit digital data. The
absolute accuracy of the A/D conversion is the deviation between the input analog value and
the output digital value. It includes the following errors:

● Offset error (OFS)

● Gain error (GE)

● Quantization error

● Non-linearity error (differential and integral)

These four error quantities are explained below using Figure 166 on page 371.

Offset Error

Offset error is the deviation between actual and ideal A/D conversion characteristics when
the digital output value changes from the minimum (zero voltage) 00 to 01 (Figure 166 on
page 371, see OFS).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
ADE
IR

ADE
IE

ILVL GLVL

RW RW RW RW

Analog / digital converter UM0407

370/541

Gain error

Gain error is the deviation between the actual and ideal A/D conversion characteristics when
the digital output value changes from the 3FE to the maximum 3FF, once offset error is
subtracted.

Gain error combined with offset error represents the so-called full-scale error (Figure 166 on
page 371, OFS + GE).

Quantization error

Quantization error is the intrinsic error of the A/D converter and is expressed as 1/2 LSB.

Non-linearity error

Non-Linearity error is the deviation between actual and the best-fitting A/D conversion
characteristics (see Figure 166):

● Differential Non-Linearity error is the actual step dimension versus the ideal one (1
LSBIDEAL).

● Integral Non-Linearity error is the distance between the center of the actual step and
the center of the bisector line, in the actual characteristics. Note that for Integral Non-
Linearity error, the effect of offset, gain and quantization errors is not included.

Note: Bisector characteristic is obtained drawing a line from 1/2 LSB before the first step of the
real characteristic, and 1/2 LSB after the last step again of the real characteristic.

19.5.1 Total unadjusted error

The Total Unadjusted Error specifies the maximum deviation from the ideal characteristic:
The number provided in the datasheet represents the maximum error with respect to the
entire characteristic. It is a combination of the Offset, Gain and Integral Linearity errors. The
different errors may compensate each other depending on the relative sign of the Offset and
Gain errors. Refer to Figure 166, see TUE.

UM0407 Analog / digital converter

 371/541

Figure 166. A/D conversion characteristic

19.5.2 Analog reference pins

The accuracy of the A/D converter depends on how accurate is its analog reference: A noise
in the reference results in at least that much error in a conversion. A low pass filter on the
A/D converter reference source (supplied through pins VAREF and VAGND), is recommended
in order to clean the signal, minimizing the noise. A simple capacitive bypassing may be
sufficient in most of the cases; in presence of high RF noise energy, inductors or ferrite
beads may be necessary.

In this architecture, VAREF and VAGND pins also represent the power supply of the analog
circuitry of the A/D converter: There is an effective DC current requirement from the
reference voltage by the internal resistor string in the R-C DAC array and by the rest of the
analog circuitry.

An external resistance on VAREF could introduce error under certain conditions: for this
reasons, series resistance are not advisable, and more in general any series devices in the
filter network should be designed to minimize the DC resistance.

19.5.3 Analog input pins

To improve the accuracy of the A/D converter, it is definitively necessary that analog input
pins have low AC impedance. Placing a capacitor with good high frequency characteristics
at the input pin of the device, can be effective: The capacitor should be as large as possible,
ideally, infinite. This capacitor contributes to attenuating the noise present on the input pin;
besides, it sources charge during the sampling phase, when the analog signal source is a
high-impedance source.

(2)

(1)

(3)

(4)

(5)

Offset Error OFS

Offset Error OFS

Gain Error GE

1 LSB (ideal)

VAIN (LSBIDEAL)

[LSBIDEAL = VAREF /
1024]

Digital
Out

(HEX)

3FF

3FE

3FD

3FC

3FB

3FA

005

004

003

002

001

000

007

006 (1) Example of an actual transfer curve

(2) The ideal transfer curve

(3) Differential Non-Linearity Error (DNL)

(4) Integral Non-Linearity Error (INL)

(5) Center of a step of the actual transfer curve

(6) Quantization Error (1/2 LSB)

(7) Total Unadjusted Error (TUE)

1 3 5 7 10241022102010182 4 6

(6)

(7)

Bisector Characteristic

Ideal Characteristic

Analog / digital converter UM0407

372/541

A real filter, can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC Filter). The RC filtering may be limited according to the value of source
impedance of the transducer or circuit supplying the analog signal to be measured.

The filter at the input pins must be designed taking into account the dynamic characteristics
of the input signal (bandwidth).

Figure 167. A/D converter input pins scheme

Input leakage and external circuit

The series resistor utilized to limit the current to a pin (see RL in Figure 167 on page 372), in
combination with a large source impedance can lead to a degradation of A/D converter
accuracy when input leakage is present.

Data about maximum input leakage current at each pin are provided in the datasheet
(Electrical Characteristics section). Input leakage is greatest at high operating temperatures,
and in general it decreases by one half for each 10° C decrease in temperature.

Considering that, for a 10-bit A/D converter one count is about 5mV (assuming VAREF = 5V),
an input leakage of 100nA acting though an RL = 50kΩ of external resistance leads to an
error of exactly one count (5mV); if the resistance were 100kΩ the error would become two
counts.

Eventual additional leakage due to external clamping diodes must also be taken into
account in computing the total leakage affecting the A/D converter measurements. Another
contribution to the total leakage is represented by the charge sharing effects with the
sampling capacitance: being CS substantially a switched capacitance, with a frequency
equal to the conversion rate of a single channel (maximum when fixed channel continuous
conversion mode is selected), it can be seen as a resistive path to ground. For instance,
assuming a conversion rate of 250 kHz, with CS equal to 4pF, a resistance of 1MΩ is
obtained (REQ = 1 / fCCS, where fC represents the conversion rate at the considered
channel). To minimize the error induced by the voltage partitioning between this resistance

RF

CF

RS RL RSW

CP2 CS

VDD

Sampling
Source Filter Current Limiter

EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME

RS Source Impedance

RF Filter Resistance

CF Filter Capacitance

RL Current Limiter Resistance

RSW Channel Selection Switch Impedance

RADSampling Switch Impedance

CP Pin Capacitance (two contributions, CP1 and CP2)

CS Sampling Capacitance

CP1

RAD

Channel
Selection

VA

UM0407 Analog / digital converter

 373/541

(sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit
must be designed to respect the following relation:

The formula above provides a constraints for external network design, in particular on
resistive path.

A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF, CP1 and CP2 initially charged at the source voltage VA (refer to the
equivalent circuit reported in Figure 167 on page 372), when the sampling phase is started
(A/D switch close), a charge sharing phenomena is installed.

Figure 168. Charge sharing timing diagram during sampling phase

In particular two different transient periods can be distinguished (see Figure 168):

● A first and quick charge transfer from the internal capacitance CP1 and CP2 to the
sampling capacitance CS occurs (CS is supposed initially completely discharged):
considering a worst case (since the time constant in reality would be faster) in which
CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitance CP and CS
are in series, and the time constant is:

This relation can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D Converter circuitry has been

VA

RS RF RL RSW RAD+ + + +

REQ
---⋅ 1

2
---LSB<

VA

VA1

VA2

tTS

VCS Voltage Transient on CS

∆V < 0.5 LSB

1 2

τ1 < (RSW + RAD) CS << TS

τ2 = RL (CS + CP1 + CP2)

τ1 RSW RAD+()=
CP CS⋅

CP CS+
-----------------------⋅

Analog / digital converter UM0407

374/541

designed to be robust also in the very worst case: the sampling time TS is always much
longer than the internal time constant:

The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the
voltage VA1 on the capacitance according to the following equation:

● A second charge transfer involves also CF (that is typically bigger than the on-chip
capacitances) through the resistance RL: again considering the worst case in which
CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster),
the time constant is:

In this case, the time constant depends on the external circuit: in particular imposing
that the transient is completed well before the end of sampling time TS, a constraints on
RL sizing is obtained:

Of course, RL shall be sized also according to the current limitation constraints, in
combination with RS (source impedance) and RF (filter resistance). Being CF
definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the
charge transfer transient) will be much higher than VA1. The following equation must be
respected (charge balance assuming now CS already charged at VA1):

The two transients above are not influenced by the voltage source that, due to the presence
of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on
CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with
respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing (see
Figure 169).

Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of
the anti-aliasing filter, fF), according to Nyquist theorem the conversion rate fC must be at
least 2f0; it means that the constant time of the filter is greater than or at least equal to twice
the conversion period (TC). Again the conversion period TC is longer than the sampling time
TS, which is just a portion of it, even when fixed channel continuous conversion mode is
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the
time constant of the filter RFCF is definitively much higher than the sampling time TS, so the
charge level on CS cannot be modified by the analog signal source during the time in which
the sampling switch is closed.

τ1 RSW RAD+()< CS⋅ << TS

VA1 CS CP1 CP2+ +()⋅ VA CP1 CP2+()⋅=

τ2 RL< CS CP1 CP2+ +()⋅

10 τ2⋅ 10 R⋅ L= CS CP1 CP2+ +() TS≤⋅

VA2 CS CP1 CP2 CF+ + +()⋅ VA CF⋅ VA1+ CP1 CP2+ CS+()⋅=

UM0407 Analog / digital converter

 375/541

Figure 169. Anti-aliasing filter and conversion rate

The considerations above lead to impose new constraints to the external circuit, to reduce
the accuracy error due to the voltage drop on CS; from the two charge balance equations
above, it is simple to derive the following relation between the ideal and real sampled
voltage on CS:

From this formula, in the worst case (when VA is maximum, that is for instance 5V),
assuming to accept a maximum error of half a count (~2.44mV), it is immediately evident a
constraints on CF value:

In the next section an example of how to design the external network is provided, assuming
some reasonable values for the internal parameters and making hypothesis on the
characteristics of the analog signal to be sampled.

19.5.4 Example of external network sizing

The following hypothesis are formulated in order to proceed in designing the external
network on A/D Converter input pins:

f0 f

Analog Source Bandwidth (VA)

f0 f

Sampled Signal Spectrum (fC = Conversion Rate)

fCf

Anti-Aliasing Filter (fF = RC Filter pole)

fF

2 f0 ≤ fC (Nyquist)

fF = f0 (Anti-aliasing Filtering Condition)

TC ≤ 2 RFCF (Conversion Rate vs. Filter Pole)

Noise

VA
VA2

CP1 CP2+ CF+

CP1 CP2+ CF CS+ +
---=

CF 2048 CS⋅>

Analog Signal Source Bandwidth (f0): 10 kHz

Conversion Rate (fC): 25 kHz

Sampling Time (TS): 1µs

Pin Input Capacitance (CP1): 5pF

Pin Input Routing Capacitance (CP2): 1pF

Sampling Capacitance (CS): 4pF

Maximum Input Current Injection (IINJ): 3mA

Maximum Analog Source Voltage (VAM): 12V

Analog Source Impedance (RS): 100Ω

Analog / digital converter UM0407

376/541

1. Supposing to design the filter with the pole exactly at the maximum frequency of the
signal, the time constant of the filter is:

2. Using the relation between CF and CS and taking some margin (4000 instead of 2048),
it is possible to define CF:

3. As a consequence of step 1 and 2, RC can be chosen:

4. Considering the current injection limitation and supposing that the source can go up to
12V, the total series resistance can be defined as:

from which is now simple to define the value of RL:

5. Now the three element of the external circuit RF, CF and RL are defined. Some
conditions discussed in the previous paragraphs have been used to size the
component, the other must now be verified. The relation which allow to minimize the
accuracy error introduced by the switched capacitance equivalent resistance is in this
case:

So the error due to the voltage partitioning between the real resistive path and CS is
less then half a count (considering the worst case when VA = 5V):

The other conditions to be verified is the time constants of the transients are really and
significantly shorter than the sampling period duration TS:

For complete set of parameters characterizing the ST10F272Z2 A/D converter equivalent
circuit, refer to the datasheet.

Channel Switch Resistance (RSW): 500Ω

Sampling Switch Resistance (RAD): 200Ω

RCCF
1

2π f0
------------- 15.9µs==

CF 4000 CS⋅ 16nF==

RF
1

2πf0CF
--------------------- 995Ω 1kΩ≅==

RS RF RL

VAM
IINJ
------------- 4kΩ==+ +

RL

VAM
IINJ
------------- RF RS 2.9kΩ=––=

REQ
1

fCCS
--------------- 10MΩ==

VA

RS RF RL RSW RAD+ + + +

REQ
--- 2.35mV=⋅ 1

2
---LSB<

τ1 RSW RAD+()= CS 2.8ns=⋅ << TS = 1µs

10 τ2⋅ 10 R⋅ L= CS CP1 CP2+ +() 290ns=⋅ < TS = 1µs

UM0407 I2C interface

 377/541

20 I2C interface

The I2C is enabled by setting XPEN, bit 2 of the SYSCON register and bit XI2CEN of
XPERCON register. Once this is done, pins P4.4 and P4.7 becomes fully dedicated to I2C
interface and all the other alternate functions are bypassed (external memory and CAN2
functions). The pins are also automatically configured as Open-Drain as requested by the
I2C bus standard. The Port4 control registers P4, DP4 and ODP4 can no longer control P4.7
and P4.4 pin configuration: writing in the bits corresponding to P4.4 and P4.7 in these
registers has no effect on pins activity.

● Standard/Fast I2C mode

I2C interface UM0407

378/541

= There are three different types of interrupt that the module can generate:

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION

DATA REGISTER (I2CDR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (I2COAR1)

CLOCK CONTROL REGISTER (I2CCCR1/2)

STATUS REGISTER 1 (I2CSR1)

CONTROL REGISTER (I2CCR)

CONTROL LOGIC

STATUS REGISTER 2 (I2CSR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL

SDA

OWN ADDRESS REGISTER 2 (I2COAR2)

UM0407 I2C interface

 379/541

● requests related to bus events, like start or stop events, arbitration lost, etc.;

● requests related to data transmission;

● requests related to data reception;

These requests are issued to the interrupt controller by three different lines, and identified as
Error, Transmit and Receive interrupt lines.

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

10-bit Master receiver:

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.....

DataN A P

EV1 EV3 EV3 EV3-1 EV4

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8 EV8 EV8

Sr Header A Data1 A
.....

DataN A P

EV5 EV6 EV7 EV7

I2C interface UM0407

380/541

Figure 170. Schematic of internal gates of the XBUS functions

Up to four interrupt control registers (XIRxSEL, x = 0, 1, 2, 3) are provided in order to select
the source of the XBUS interrupt: The transmit interrupt, the receive interrupt and the error
interrupt of I2C Interface are linked to the one of the XPxIC registers (x = 0, 1, 2, 3). In
particular, the three interrupt lines are available on the following interrupt vectors:

● Receive XP0INT XP1INT XP2INT

● Transmit XP0INT XP1INT XP2INT

● Error XP3INT

Refer to Section 5.7: X-Peripheral interrupt on page 114 for details.

When interruptible power down mode is entered, I2C SCL line (P4.4) can be used to wake-
up the device from low power mode without resetting it, restarting the application from
where it was stopped at the execution of PWRDN instruction.

Again, refer to Section 5.6.1: Fast external interrupts on page 111 for further details.

20.1 Register description
I2CCR (EA00h) XBUS Reset Value: 0000h

Error

SB

ADD10

ENDAD

ADSL

STOPF

AF

BERR

ARLO

BTF Transmit

TRA

Receive

ITE

EVF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– PE ENGC START ACK STOP ITE

RW RW RW RW RW RW

UM0407 I2C interface

 381/541

I2CSR1 (EA02h) XBUS Reset Value: 0000h

I2CSR2 (EA04h) XBUS Reset Value: 0000h

Bit Function

ITE
Interrupt Enable
=

STOP = =

ACK
Acknowledge Enable
=

START = =

ENGC
Enable General Call
=

PE
Peripheral Enable
=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– EVF ADD10 TRA BUSY BTF ADSL M/SL SB

R R R R R R R R

Bit Function

SB = = =

M/SL = = =

ADSL = = =

BTF = = = =

BUSY =

TRA = = = = =

ADD10 =

EVF
Event Flag
– = = = = = = = = = = =

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– ENDAD AF STOPF ARLO BERR GCAL

R R R R R R

Bit Function

GCAL = = =

BERR = = =

ARLO = = = =

STOPF = = = =

I2C interface UM0407

382/541

I2CCCR1 (EA06h) XBUS Reset Value: 0000h

I2COAR1 (EA08h) XBUS Reset Value: 0000h

7-bit addressing mode

10-bit addressing mode

I2COAR2 (EA0Ah) XBUS Reset Value: 0000h

AF = = =

ENDAD

- 7-bit addressing mode: the address byte has been transmitted;
- 10-bit addressing mode: the MSB and the LSB have been transmitted during the
addressing phase. When the master needs to receive data from the slave, it has to
send just the MSB of the slave once again; hence the ENDAD flag is set, without
waiting for the LSB of the address.
=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

–
FM/
SM

CC6 CC5 CC4 CC3 CC2 CC1 CC0

RW RW RW RW RW RW RW RW

Bit Function

CC(6:0) = = ≤ =

FM/SL =

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

–
ADD

7
ADD

6
ADD

5
ADD

4
ADD

3
ADD

2
ADD

1
ADD

0

RW RW RW RW RW RW RW RW

Bit Function

ADD0 =

ADD(7:1) =

Bit Function

ADD(7:0) =

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– FR2 FR1 FR0 –
ADD

9
ADD

8
–

RW RW RW RW RW

Bit Function

UM0407 I2C interface

 383/541

I2CDR (EA0Ch) XBUS Reset Value: 0000h

I2CCCR2 (EA0Eh) XBUS Reset Value: 0000h

Bit Function

ADD(9:8) =

FR(2:0)

Frequency bits
= fCPU Range (MHz)FR2FR1FR0

3.3 - 10.0000
10.0 - 16.7001
16.7 - 26.7010
26.7 - 40.0011
40.0 - 53.3100
53.3 - 66.0101
66.0 - 80.0110
80.0 - 100.0111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– D7 D6 D5 D4 D3 D2 D1 D0

RW RW RW RW RW RW RW RW

Bit Function

D(7:0) –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

–
CC1

1
CC1

0
CC9 CC8 CC7

RW RW RW RW RW

Bit Function

CC(11:7) =

CAN modules UM0407

384/541

21 CAN modules

The two integrated CAN modules (CAN1 and CAN2) are identical and handle the
completely autonomous transmission and reception of CAN frames in accordance with the
CAN specification V2.0 part A and B (active).

The module is based on C-CAN module characteristics. The following system resources are
used to interface the module with the ST10 core:

● Interrupt of CAN1 and CAN2 are connected to the XBUS interrupt lines: refer to next
Section 21.2: Interrupt on page 387 for details.

● Both CAN modules have to be selected, before the bit XPEN is set in SYSCON
register, by setting the proper bit in XPERCON register.

● After reset, CAN1 is enabled by default (see Reset value of XPERCON register). The
CAN2 on the contrary is not enabled.

21.1 Memory and pin mapping

21.1.1 CAN1 mapping

Address range 00’EF00h - 00’EFFFh is reserved for the CAN1 Module access. The CAN1 is
enabled by setting bit XPEN of the SYSCON register and bit 0 of XPERCON register.
Accesses to the CAN Module use demultiplexed addresses and a 16-bit data bus (only word
accesses are possible). Two wait states give an access time of 62.5ns @64MHz CPU clock.
No tristate wait state is used.

After reset, CAN1 is enabled by default (see Reset value of XPERCON register). It is
available on pins P4.5 and P4.6.

21.1.2 CAN2 mapping

Address range 00’EE00h - 00’EEFFh is reserved for the CAN2 Module access. The CAN2 is
enabled by setting bit XPEN of the SYSCON register and bit 1 of the XPERCON register.
Accesses to the CAN Module use demultiplexed addresses and a 16-bit data bus (only word
accesses are possible). Two wait states give an access time of 62.5ns @64MHz CPU clock.
No tristate wait state is used.

After reset, CAN2 is disabled by default (see Reset value of XPERCON register). Once
enabled, it is available on pins P4.4 and P4.7. When I2C interface is enabled as well (bit
XI2CEN in XPERCON register), CAN2 is not available on P4.4 and P4.7, since for I2C a
higher priority has been set by hardware option.

Note: If one or the two CAN modules are used, Port4 can not be programmed to output all 8
segment address lines. Thus, only 4 segment address lines can be used, reducing the
external memory space to 5 Mbytes (1 Mbyte per CS line).

21.1.3 Register summary

In the tables below, the CAN modules register mapping is summarized.

UM0407 CAN modules

 385/541

Table 74. CAN1 register mapping

Name Physical address Description
Reset
value

CAN1CR EF00h CAN1: CAN Control Register 0001h

CAN1SR EF02h CAN1: Status Register 0000h

CAN1EC EF04h CAN1: Error Counter 0000h

CAN1BTR EF06h CAN1: Bit Timing Register 2301h

CAN1IR EF08h CAN1: Interrupt Register 0000h

CAN1TR EF0Ah CAN1: Test Register 00x0h

CAN1BRPER EF0Ch CAN1: BRP Extension Register 0000h

CAN1IF1CR EF10h CAN1: IF1 Command Request 0001h

CAN1IF1CM EF12h CAN1: IF1 Command Mask 0000h

CAN1IF1M1 EF14h CAN1: IF1 Mask 1 FFFFh

CAN1IF1M2 EF16h CAN1: IF1 Mask 2 FFFFh

CAN1IF1A1 EF18h CAN1: IF1 Arbitration 1 0000h

CAN1IF1A2 EF1Ah CAN1: IF1 Arbitration 2 0000h

CAN1IF1MC EF1Ch CAN1: IF1 Message Control 0000h

CAN1IF1DA1 EF1Eh CAN1: IF1 Data A 1 0000h

CAN1IF1DA2 EF20h CAN1: IF1 Data A 2 0000h

CAN1IF1DB1 EF22h CAN1: IF1 Data B 1 0000h

CAN1IF1DB2 EF24h CAN1: IF1 Data B 2 0000h

CAN1IF2CR EF40h CAN1: IF2 Command Request 0001h

CAN1IF2CM EF42h CAN1: IF2 Command Mask 0000h

CAN1IF2M1 EF44h CAN1: IF2 Mask 1 FFFFh

CAN1IF2M2 EF46h CAN1: IF2 Mask 2 FFFFh

CAN1IF2A1 EF48h CAN1: IF2 Arbitration 1 0000h

CAN1IF2A2 EF4Ah CAN1: IF2 Arbitration 2 0000h

CAN1IF2MC EF4Ch CAN1: IF2 Message Control 0000h

CAN1IF2DA1 EF4Eh CAN1: IF2 Data A 1 0000h

CAN1IF2DA2 EF50h CAN1: IF2 Data A 2 0000h

CAN1IF2DB1 EF52h CAN1: IF2 Data B 1 0000h

CAN1IF2DB2 EF54h CAN1: IF2 Data B 2 0000h

CAN1TR1 EF80h CAN1: Transmission Request 1 0000h

CAN1TR2 EF82h CAN1: Transmission Request 2 0000h

CAN1ND1 EF90h CAN1: New Data 1 0000h

CAN1ND2 EF92h CAN1: New Data 2 0000h

CAN1IP1 EFA0h CAN1: Interrupt Pending 1 0000h

CAN modules UM0407

386/541

CAN1IP2 EFA2h CAN1: Interrupt Pending 2 0000h

CAN1MV1 EFB0h CAN1: Message Valid 1 0000h

CAN1MV2 EFB2h CAN1: Message Valid 2 0000h

Table 75. CAN2 register mapping

Name Physical address Description
Reset
value

CAN2CR EE00h CAN2: CAN Control Register 0001h

CAN2SR EE02h CAN2: Status Register 0000h

CAN2EC EE04h CAN2: Error Counter 0000h

CAN2BTR EE06h CAN2: Bit Timing Register 2301h

CAN2IR EE08h CAN2: Interrupt Register 0000h

CAN2TR EE0Ah CAN2: Test Register 00x0h

CAN2BRPER EE0Ch CAN2: BRP Extension Register 0000h

CAN2IF1CR EE10h CAN2: IF1 Command Request 0001h

CAN2IF1CM EE12h CAN2: IF1 Command Mask 0000h

CAN2IF1M1 EE14h CAN2: IF1 Mask 1 FFFFh

CAN2IF1M2 EE16h CAN2: IF1 Mask 2 FFFFh

CAN2IF1A1 EE18h CAN2: IF1 Arbitration 1 0000h

CAN2IF1A2 EE1Ah CAN2: IF1 Arbitration 2 0000h

CAN2IF1MC EE1Ch CAN2: IF1 Message Control 0000h

CAN2IF1DA1 EE1Eh CAN2: IF1 Data A 1 0000h

CAN2IF1DA2 EE20h CAN2: IF1 Data A 2 0000h

CAN2IF1DB1 EE22h CAN2: IF1 Data B 1 0000h

CAN2IF1DB2 EE24h CAN2: IF1 Data B 2 0000h

CAN2IF2CR EE40h CAN2: IF2 Command Request 0001h

CAN2IF2CM EE42h CAN2: IF2 Command Mask 0000h

CAN2IF2M1 EE44h CAN2: IF2 Mask 1 FFFFh

CAN2IF2M2 EE46h CAN2: IF2 Mask 2 FFFFh

CAN2IF2A1 EE48h CAN2: IF2 Arbitration 1 0000h

CAN2IF2A2 EE4Ah CAN2: IF2 Arbitration 2 0000h

CAN2IF2MC EE4Ch CAN2: IF2 Message Control 0000h

CAN2IF2DA1 EE4Eh CAN2: IF2 Data A 1 0000h

CAN2IF2DA2 EE50h CAN2: IF2 Data A 2 0000h

CAN2IF2DB1 EE52h CAN2: IF2 Data B 1 0000h

Table 74. CAN1 register mapping (continued)

Name Physical address Description
Reset
value

UM0407 CAN modules

 387/541

21.2 Interrupt
Up to four interrupt control registers (XIRxSEL, x = 0, 1, 2, 3) are provided in order to select
the source of the XBUS interrupt: one line for each module is provided and differently linked
to one of the XPxIC registers (x = 0, 1, 2, 3). In particular, the two interrupt lines are
available on the following interrupt vectors:

Refer to Section 5.7: X-Peripheral interrupt on page 114 for details.

When interruptible power down mode is entered, both CAN1 and CAN2 lines can be used to
wake-up the device from low power mode without resetting it, restarting the application from
where it was stopped before the execution of PWRDN instruction.

Refer to Section 5.6.1: Fast external interrupts on page 111.

21.3 Configuration support
It is possible that both CAN controllers are working on the same CAN bus, supporting
together up to 64 message objects. In this configuration, both receive signals and both
transmit signals are linked together when using the same CAN transceiver. This
configuration is especially supported by providing open drain outputs for the CAN1_Txd and
CAN2_TxD signals. The open drain function is controlled with the ODP4 register for port P4:
in this way it is possible to connect together P4.4 with P4.5 (receive lines) and P4.6 with
P4.7 (transmit lines configured to be configured as Open-Drain).

The user is also allowed to map internally both CAN modules on the same pins P4.5 and
P4.6. In this way, P4.4 and P4.7 may be used either as general purpose I/O lines, or used
for I2C interface. This is possible by setting bit CANPAR of XMISC register. To access this
register it is necessary to set bit XMISCEN of XPERCON register and bit XPEN of SYSCON
register.

CAN2IF2DB2 EE54h CAN2: IF2 Data B 2 0000h

CAN2TR1 EE80h CAN2: Transmission Request 1 0000h

CAN2TR2 EE82h CAN2: Transmission Request 2 0000h

CAN2ND1 EE90h CAN2: New Data 1 0000h

CAN2ND2 EE92h CAN2: New Data 2 0000h

CAN2IP1 EEA0h CAN2: Interrupt Pending 1 0000h

CAN2IP2 EEA2h CAN2: Interrupt Pending 2 0000h

CAN2MV1 EEB0h CAN2: Message Valid 1 0000h

CAN2MV2 EEB2h CAN2: Message Valid 2 0000h

Table 75. CAN2 register mapping (continued)

Name Physical address Description
Reset
value

CAN1 XP0INT XP3INT

CAN2 XP1INT XP3INT

CAN modules UM0407

388/541

Note: CAN Parallel mode is effective only if both CAN1 and CAN2 are enabled through the setting
of bits CAN1EN and CAN2EN in XPERCON register. If CAN1 is disabled, CAN2 remains on
P4.4/P4.7 even if bit CANPAR is set.

XMISC (EB46h) XBUS Reset Value: 0000h

21.3.1 Configuration examples

The following figures show different configuration examples, where the two CAN controllers
of the ST10F272Z2 are working on the same CAN bus or on different CAN busses.

Wired-or connections to a CAN bus use open drain outputs as described above. A wired-or
structure can be used for on-board data exchange between two or more controller devices
via one signal line. As no CAN transceiver is used in this case, the maximum wire length is
very limited (<< 1 m) and noise conditions must be considered.

Finally, when one bus only is interfaced, the parallel mode for the two on-chip CAN modules
allows to double the buffer capability, and to save two pins for other functionalities. The
receive lines are internally tied together, while the transmit lines from the two modules are
logically ANDed on the single pin: This is done to assign to the pin the active value driven by
one of the two (for CAN protocol logic level ‘1’ is the recessive state, so the non-transmitting
CAN module, allows the other to drive the pin).

Note that after reset, the port pin are in high impedance, so an external pull-up is always
needed to grant the recessive level on Tx lines.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

–
VREG
OFF

CAN

CK2

CAN

PAR

ADC

MUX

– RW RW RW RW

Bit Function

ADCMUX
Port1L ADC Channels Enable
‘0’: Analog inputs on port P5.y can be converted (default configuration)

‘1’: Analog inputs on port P1.z can be converted. Only 8 channels can be managed

CANPAR

CAN Parallel Mode Selection
‘0’: CAN2 is mapped on P4.4/P4.7, while CAN1 is mapped on P4.5/P4.6

‘1’: CAN1 and CAN2 are mapped in parallel on P4.5/P4.6. This is effective only if
both CAN1 and CAN2 are enabled through setting of bits CAN1EN and CAN2EN in
XPERCON register. If CAN1 is disabled, CAN2 remains on P4.4/P4.7 even if bit
CANPAR is set.

CANCK2

CAN Clock divider by 2 disable
‘0’: Clock provided to CAN modules is CPU clock divided by 2 (mandatory when
fCPU is higher than 40 MHz)

‘1’: Clock provided to CAN modules is directly CPU clock

VREGOFF
Main Voltage Regulator disable in Power Down mode
‘0’: Default value after reset and when Power Down is not used
‘1’: On-chip Main Regulator is turned off when power down mode is entered

UM0407 CAN modules

 389/541

Figure 171. Connection to single CAN bus via separate CAN transceivers

Figure 172. Connection to single CAN bus via one common transceiver

Figure 173. Connection to two different CAN buses (e.g. for gateway application)

CAN1

RX TX

CAN_H

CAN_L
CAN bus

CAN2

RX TX

XMISC.CANPAR = 0

CAN CAN
TransceiverTransceiver

P4.4 P4.7P4.5 P4.6

+5V

2.7kΩ

+5V

2.7kΩ

OD = Open Drain Output

+5V

CAN

CAN_H

CAN_L
CAN bus

2.7kΩ OD

Transceiver

XMISC.CANPAR = 0

CAN1

RX TX

CAN2

RX TX

P4.4 P4.7P4.5 P4.6
OD

CAN_H

CAN_L
CAN bus 1

CAN_H

CAN_L
CAN bus 2

XMISC.CANPAR = 0

CAN CAN
TransceiverTransceiver

CAN1

RX TX

CAN2

RX TX

P4.4 P4.7P4.5 P4.6

+5V

2.7kΩ

+5V

2.7kΩ

CAN modules UM0407

390/541

Figure 174. Connection to one CAN bus with internal parallel mode enabled

21.4 Clock prescaling
In the register XMISC there is also a bit (CANCK2) to modify the clock frequency driving
both the CAN modules. For architectural limitations of the CAN module, when the CPU
frequency is higher than 40 MHz, it is recommended to provide the CPU clock divided by 2
to each CAN module. 20 MHz is sufficient for CAN module to produce the maximum baud
rate defined by the protocol standard. On the other hand, the CPU frequency can be
reduced down to 8 MHz: providing the CAN module directly with the CPU clock disabling the
prescaler factor, it is still possible to obtain the maximum CAN speed (1Mbaud).

After reset the prescaler is enabled, so CPU clock is divided by 2 and then provided to the
CAN modules: According to the system clock frequency, the application can disable the
prescaler to obtain the required baud rate.

Refer to Section 21.3: Configuration support on page 387 for the description of register
XMISC.

21.5 CAN module: functional overview
The C-CAN consists of the components (see Figure 175 on page 392) CAN Core, Message
RAM, Message Handler, Control Registers, and Module Interface.

The CAN Core performs communication according to the CAN protocol version 2.0 part A
and B. The bit rate can be programmed to values up to 1 Mbit/s depending on the used
technology. For the connection to the physical layer additional external transceiver hardware
is required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM.

XMISC.CANPAR = 1

CAN2

RX TX

P4.4 P4.7P4.5 P4.6

CAN

CAN_H

CAN_L
CAN bus

Transceiver

CAN1

RX TX

(Both CAN enabled)

+5V

2.7kΩ

UM0407 CAN modules

 391/541

All functions concerning the handling of messages are implemented in the Message
Handler. Those functions are the acceptance filtering, the transfer of messages between the
CAN Core and the Message RAM, and the handling of transmission requests as well as the
generation of the module interrupt.

The register set of the C-CAN can be accessed directly by the CPU via the module
interface. These registers are used to control/configure the CAN Core and the Message
Handler and to access the Message RAM.

The C-CAN implements the following features:

● Supports CAN protocol version 2.0 part A and B

● Bit rates up to 1 Mbit/s

● 32 Message Objects

● Each Message Object has its own identifier mask

● Programmable FIFO mode (concatenation of Message Objects)

● Maskable interrupt

● Disabled Automatic Retransmission mode for Time Triggered CAN applications

● Programmable loop-back mode for self-test operation

21.6 Block diagram
The module consists of the following functional blocks (see Figure 175 on page 392):

● CAN Core: CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel
conversion of messages.

● Message RAM: Stores Message Objects and Identifier Masks.

● Registers: All registers used to control and to configure the C-CAN module.

● Message Handler: State Machine that controls the data transfer between the Rx/Tx
Shift Register of the CAN Core and the Message RAM as well as the generation of
interrupts as programmed in the Control and Configuration Registers.

CAN modules UM0407

392/541

Figure 175. Block diagram of the C-CAN

21.7 Operating modes

21.7.1 Software initialization

The software initialization is started by setting the bit Init in the CAN Control Register, either
by software or by a hardware reset, or by going Bus_Off.

While Init is set, all message transfer from and to the CAN bus is stopped, the status of the
CAN bus output CAN_TxD is recessive (HIGH). The counters of the Error Management
Logic are unchanged. Setting Init does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register and each
Message Object. If a Message Object is not needed, it is sufficient to set its MsgVal bit to
not valid. Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for the configuration of
the bit timing is enabled when both bits Init and CCE in the CAN Control Register are set.

Resetting Init (by CPU only) finishes the software initialization. Afterwards the Bit Stream
Processor BSP (see Section 21.9.10: Configuration of the bit timing on page 426)
synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a
sequence of 11 consecutive recessive bits (≡ Bus Idle) before it can take part in bus
activities and starts the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly,
but the Message Objects should all be configured to particular identifiers or set to not valid
before the BSP starts the message transfer.

C-CAN

CAN Core

Registers

Module Interface

M
es

sa
ge

 H
an

dl
er

CAN_TxD CAN_RxD

Message RAM

D
at

aI
N

In
te

rr
up

t

C
lo

ck

R
es

et

A
dd

re
ss

(7
:0

)

C
on

tr
ol

C
A

N
_W

A
IT

_B

D
at

aO
U

T

UM0407 CAN modules

 393/541

To change the configuration of a Message Object during normal operation, the CPU has to
start by setting MsgVal to not valid. When the configuration is completed, MsgVal is set to
valid again.

21.7.2 CAN message transfer

Once the C-CAN is initialized and Init is reset to zero, the CAN Core synchronizes itself to
the CAN bus and starts the message transfer.

Received messages are stored into their appropriate Message Objects if they pass the
Message Handler’s acceptance filtering. The whole message including all arbitration bits,
DLC and eight data bytes is stored into the Message Object. If the Identifier Mask is used,
the arbitration bits which are masked to “don’t care” may be overwritten in the Message
Object.

The CPU may read or write each message any time via the Interface Registers, the
Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the CPU. If a permanent Message Object
(arbitration and control bits set up during configuration) exists for the message, only the data
bytes are updated and then TxRqst bit with NewDat bit are set to start the transmission. If
several transmit messages are assigned to the same Message Object (when the number of
Message Objects is not sufficient), the whole Message Object has to be configured before
the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time,
they are transmitted subsequently according to their internal priority. Messages may be
updated or set to not valid any time, even when their requested transmission is still pending.
The old data will be discarded when a message is updated before its pending transmission
has started.

Depending on the configuration of the Message Object, the transmission of a message may
be requested autonomously by the reception of a remote frame with a matching identifier.

21.7.3 Disabled automatic re-transmission

According to the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the C-
CAN provides means for automatic re-transmission of frames that have lost arbitration or
that have been disturbed by errors during transmission. The frame transmission service will
not be confirmed to the user before the transmission is successfully completed. By default,
this means for automatic re-transmission is enabled. It can be disabled to enable the C-CAN
to work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the
CAN Control Register to one. In this operation mode the programmer has to consider the
different behavior of bits TxRqst and NewDat in the Control Registers of the Message
Buffers:

● When a transmission starts bit TxRqst of the respective Message Buffer is reset, while
bit NewDat remains set.

● When the transmission completed successfully bit NewDat is reset.

When a transmission failed (lost arbitration or error) bit NewDat remains set. To restart the
transmission the CPU has to set TxRqst back to one.

CAN modules UM0407

394/541

21.7.4 Test mode

The Test Mode is entered by setting bit Test in the CAN Control Register to one. In Test
Mode the bits Tx1, Tx0, LBack, Silent and Basic in the Test Register are writable. Bit Rx
monitors the state of pin CAN_RxD and therefore is only readable. All Test Register
functions are disabled when bit Test is reset to zero.

21.7.5 Silent mode

The CAN Core can be set in Silent Mode by programming the Test Register bit Silent to
one.

In Silent Mode, the C-CAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN
Core is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is
rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus
may remain in recessive state. The Silent Mode can be used to analyze the traffic on a CAN
bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error
Frames). Figure 176 shows the connection of signals CAN_TxD and CAN_RxD to the CAN
Core in Silent Mode.

Figure 176. CAN core in silent mode

In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode.

21.7.6 Loop back mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack
to one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) into a Receive Buffer.
Figure 177 shows the connection of signals CAN_TxD and CAN_RxD to the CAN Core in
Loop Back Mode.

CAN_TxD CAN_RxD

Tx Rx

CAN Core

C-CAN

••

=1

UM0407 CAN modules

 395/541

Figure 177. CAN core in loop back mode

This mode is provided for self-test functions. To be independent from external stimulation,
the CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a
data/remote frame) in Loop Back Mode. In this mode the CAN Core performs an internal
feedback from its Tx output to its Rx input. The actual value of the CAN_RxD input pin is
disregarded by the CAN Core. The transmitted messages can be monitored at the
CAN_TxD pin.

21.7.7 Loop back combined with silent mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, meaning the
C-CAN can be tested without affecting a running CAN system connected to the pins
CAN_TxD and CAN_RxD. In this mode the CAN_RxD pin is disconnected from the CAN
Core and the CAN_TxD pin is held recessive. Figure 178 shows the connection of signals
CAN_TxD and CAN_RxD to the CAN Core in case of the combination of Loop Back Mode
with Silent Mode.

Figure 178. CAN core in loop back combined with silent mode

21.7.8 Basic mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one.
In this mode the C-CAN module runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1
Registers is requested by writing the Busy bit of the IF1 Command Request Register to
one. The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the
transmission is pending.

CAN_TxD CAN_RxD

Tx Rx

CAN Core

C-CAN

••

CAN_TxD CAN_RxD

Tx Rx

CAN Core

C-CAN

••

=1

CAN modules UM0407

396/541

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN
Core and the transmission is started. When the transmission has completed, the Busy bit is
reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1
Command Request Register while the IF1 Registers are locked. If the CPU has reset the
Busy bit, a possible retransmission in case of lost arbitration or in case of an error is
disabled.

The IF2 Registers are used as Receive Buffer. After the reception of a message the
contents of the shift register is stored into the IF2 Registers, without any acceptance
filtering.

Additionally, the actual contents of the shift register can be monitored during the message
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2
Command Request Register to one, the contents of the shift register is stored into the IF2
Registers.

In Basic Mode the evaluation of all Message Object related control and status bits and of the
control bits of the IFx Command Mask Registers is turned off. The message number of the
Command request registers is not evaluated. The NewDat and MsgLst bits of the IF2
Message Control Register retain their function, DLC(3:0) will show the received DLC, the
other control bits will be read as zero.

In Basic Mode the ready output CAN_WAIT_B is disabled (always one).

21.7.9 Software control of pin CAN_TxD

Four output functions are available for the CAN transmit pin CAN_TxD. Additionally to its
default function – the serial data output – it can drive the CAN Sample Point signal to
monitor CAN Core’s bit timing and it can drive constant dominant or recessive values. The
last two functions, combined with the readable CAN receive pin CAN_RxD, can be used to
check the CAN bus’ physical layer.

The output mode of pin CAN_TxD is selected by programming the Test Register bits Tx1
and Tx0 as described in Test register on page 402.

The three test functions for pin CAN_TxD interfere with all CAN protocol functions.
CAN_TxD must be left in its default function when CAN message transfer or any of the test
modes Loop Back Mode, Silent Mode, or Basic Mode are selected.

21.8 Programmer’s model
Each C-CAN module allocates an address space of 256 bytes. The registers are organized
as 16-bit registers, with the high byte at the odd address and the low byte at the even
address.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message
RAM. They buffer the data to be transferred to and from the RAM, avoiding conflicts
between CPU accesses and message reception/transmission.

UM0407 CAN modules

 397/541

Table 76. C-CAN register memory space summary

Address Name Reset Value Note

CAN Base + 0x00 CAN Control Register 0x0001

CAN Base + 0x02 Status Register 0x0000

CAN Base + 0x04 Error Counter 0x0000 read only

CAN Base + 0x06 Bit Timing Register 0x2301 write enabled by CCE

CAN Base + 0x08 Interrupt Register 0x0000 read only

CAN Base + 0x0A Test Register 0x00 & 0br0000000 (1)

1. r signifies the actual value of the CAN_RxD pin.

write enabled by Test

CAN Base + 0x0C BRP Extension Register 0x0000 write enabled by CCE

CAN Base + 0x0E — reserved — (2)

CAN Base + 0x10 IF1 Command Request 0x0001

CAN Base + 0x12 IF1 Command Mask 0x0000

CAN Base + 0x14 IF1 Mask 1 0xFFFF

CAN Base + 0x16 IF1 Mask 2 0xFFFF

CAN Base + 0x18 IF1 Arbitration 1 0x0000

CAN Base + 0x1A IF1 Arbitration 2 0x0000

CAN Base + 0x1C IF1 Message Control 0x0000

CAN Base + 0x1E IF1 Data A 1 0x0000

CAN Base + 0x20 IF1 Data A 2 0x0000

CAN Base + 0x22 IF1 Data B 1 0x0000

CAN Base + 0x24 IF1 Data B 2 0x0000

CAN Base + 0x28 - 0x3E — reserved — (2)

CAN Base + 0x40 - 0x54 IF2 Registers see note (3) same as IF1 Registers

CAN Base + 0x56 - 0x7E — reserved — (2)

CAN Base + 0x80 Transmission Request 1 0x0000 read only

CAN Base + 0x82 Transmission Request 2 0x0000 read only

CAN Base + 0x84 - 0x8E — reserved — (2)

CAN Base + 0x90 New Data 1 0x0000 read only

CAN Base + 0x92 New Data 2 0x0000 read only

CAN Base + 0x94 - 0x9E — reserved — (2)

CAN Base + 0xA0 Interrupt Pending 1 0x0000 read only

CAN Base + 0xA2 Interrupt Pending 2 0x0000 read only

CAN Base + 0xA4 - 0xAE — reserved — (2)

CAN Base + 0xB0 Message Valid 1 0x0000 read only

CAN Base + 0xB2 Message Valid 2 0x0000 read only

CAN Base + 0xB4 - 0xBE — reserved — (2)

CAN modules UM0407

398/541

21.8.1 Hardware reset description

After hardware reset, the registers of the C-CAN hold the values described in Table 76.

Additionally the busoff state is reset and the output CAN_TxD is set to recessive (HIGH).
The value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialization.
The C-CAN does not influence the CAN bus until the CPU resets Init to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After Power-On,
the contents of the Message RAM is undefined.

21.8.2 CAN protocol related registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

CAN Control Register

CAN1CR (EF00h) XBUS Reset Value: 0001h
CAN2CR (EE00h) XBUS Reset Value: 0001h

2. Reserved bits are read as ‘0’ except for IFx Mask 2 Register where they are read as ‘1’.

3. The two sets of Message Interface Registers - IF1 and IF2 - have identical functions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - Test CCE DAR - EIE SIE IE Init

RW RW RW RW RW RW RW

Bit Function

Init

Initialization
’0’: Normal Operation.
’1’: Initialization is started.

IE

Module Interrupt Enable
’0’: Disabled - Module Interrupt IRQ_B is always HIGH.

’1’: Enabled - Interrupts will set IRQ_B to LOW. IRQ_B remains LOW until all
pending interrupts are processed.

SIE

Status Change Interrupt Enable
’0’: Disabled - No Status Change Interrupt will be generated.

’1’: Enabled - An interrupt will be generated when a message transfer is successfully
completed or a CAN bus error is detected.

EIE

Error Interrupt Enable
‘0’: Disabled - No Error Status Interrupt will be generated.

‘1’: Enabled - A change in the bits BOff or EWarn in the Status Register will
generate an interrupt.

DAR
Disable Automatic Retransmission
‘0’: Automatic Retransmission of disturbed messages enabled.

‘1’: Automatic Retransmission disabled.

UM0407 CAN modules

 399/541

Note: The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by
setting or resetting bit Init. If the device goes busoff, it will set bit Init of its own accord,
stopping all bus activities. Once bit Init has been cleared by the CPU, the device will then
wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming
normal operations. At the end of the busoff recovery sequence, the Error Management
Counters will be reset.

During the waiting time after the resetting of bit Init, each time a sequence of 11 recessive
bits has been monitored, a Bit0Error code is written to the Status Register, enabling the
CPU to readily check up whether the CAN bus is stuck at dominant or continuously
disturbed and to monitor the proceeding of the busoff recovery sequence.

Status Register

CAN1SR (EF02h) XBUS Reset Value: 0000h
CAN2SR (EE02h) XBUS Reset Value: 0000h

CCE

Configuration Change Enable
‘0’: The CPU has no write access to the Bit Timing Register.
‘1’: The CPU has write access to the Bit Timing Register (while Init = one).

Test
Test Mode enable
‘0’: Normal Operation.

‘1’: Test mode.

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - BOff
EWa

rn
EPa
ss

RxO
k

TxO
k

LEC

R R R RW RW RW

CAN modules UM0407

400/541

The LEC field holds a code which indicates the type of the last error to occur on the CAN
bus. This field will be cleared to ‘0h’ when a message has been transferred (reception or
transmission) without error. The unused code ‘7h’ may be written by the CPU to check for
updates.

Bit Function

LEC

Last Error Code (Type of the last error to occur on the CAN bus)
’000’: No Error.

’001’: Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a
received message where this is not allowed.

’010’: Form Error: A fixed format part of a received frame has the wrong format.
’011’: AckError: The message this CAN Core transmitted was not acknowledged by
another node.
’100’: Bit1Error: During the transmission of a message (with the exception of the
arbitration field), the device wanted to send a recessive level (bit of logical value ‘1’),
but the monitored bus value was dominant.

’101’: Bit0Error: During the transmission of a message (or acknowledge bit, or
active error flag, or overload flag), the device wanted to send a dominant level (data
or identifier bit logical value ‘0’), but the monitored Bus value was recessive. During
busoff recovery this status is set each time a sequence of 11 recessive bits has
been monitored. This enables the CPU to monitor the proceeding of the busoff
recovery sequence (indicating the bus is not stuck at dominant or continuously
disturbed).

’110’: CRCError: The CRC check sum was incorrect in the message received, the
CRC received for an incoming message does not match with the calculated CRC for
the received data.

’111’: unused: When the LEC shows the value ‘7’, no CAN bus event was detected
since the CPU wrote this value to the LEC.

TxOk

Transmitted a Message Successfully
’0’: Since this bit was reset by the CPU, no message has been successfully
transmitted. This bit is never reset by the CAN Core.
’1’: Since this bit was last reset by the CPU, a message has been successfully
(error free and acknowledged by at least one other node) transmitted.

RxOk

Received a Message Successfully
’0’: Since this bit was last reset by the CPU, no message has been successfully
received. This bit is never reset by the CAN Core.

’1’: Since this bit was last reset (to zero) by the CPU, a message has been
successfully received (independent of the result of acceptance filtering).

EPass

Error Passive
‘0’: The CAN Core is error active.

‘1’: The CAN Core is in the error passive state as defined in the CAN Specification.

EWarn

Warning Status
‘0’: Both error counters are below the error warning limit of 96.
‘1’: At least one of the error counters in the Error Management Logic has reached
the error warning limit of 96.

BOff

Busoff Status
‘0’: The CAN module is not busoff.
‘1’: The CAN module is in busoff state.

UM0407 CAN modules

 401/541

Status interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOk,
and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the CAN
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never
generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt
Register, if it is pending.

Error counter

CAN1EC (EF04h) XBUS Reset Value: 0000h
CAN2EC (EE04h) XBUS Reset Value: 0000h

Bit timing register

CAN1BTR (EF06h) XBUS Reset Value: 2301h
CAN2BTR (EE06h) XBUS Reset Value: 2301h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC(6:0) TEC(7:0)

R R R

Bit Function

TEC(7:0)
Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

REC(6:0)
Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

RP

Receive Error Passive
’0’: The Receive Error Counter is below the error passive level.
’1’: The Receive Error Counter has reached the error passive level as defined in the
CAN Specification.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- TSeg2 TSeg1 SJW BRP

RW RW RW RW

Bit Function

BRP

Baud Rate Prescaler
Value by which the CPU clock frequency is divided for generating the bit time
quanta. The bit time is built up from a multiple of this quanta. Valid values for the
Baud Rate Prescaler are 01h-3Fh (0…63). The actual interpretation by the
hardware of this value is such that one more than the value programmed here is
used.

SJW

(Re)Synchronization Jump Width
Valid programmed values are 0h-3h (0...3). The actual interpretation by the
hardware of this value is such that one more than the value programmed here is
used.

CAN modules UM0407

402/541

Note: With a CAN module clock of 8 MHz, the reset value of 0x2301 configures the C-CAN for a
bit rate of 500 Kbit/s. The registers are only writable if bits CCE and Init in the CAN Control
Register are set.

Test register

CAN1TR (EF0Ah) XBUS Reset Value: 00x0h
CAN2TR (EE0Ah) XBUS Reset Value: 00x0h

Write access to the Test Register is enabled by setting bit Test in the CAN Control Register.
The different test functions may be combined, but Tx(1:0) ≠ “00” disturbs message transfer.

TSeg1

Time segment before the sample point
Valid values for TSeg1 are 01h-0Fh (1…15). The actual interpretation by the
hardware of this value is such that one more than the value programmed here is
used.

TSeg2
Time segment after the sample point
Valid values for TSeg2 are 0h-7h (0…7). The actual interpretation by the hardware
of this value is such that one more than the value programmed here is used.

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - Rx Tx(1:0)
LBa
ck

Sile
nt

Basi
c

-

RW RW RW RW RW

Bit Function

Basic
Basic Mode
’0’: Basic Mode disabled.

’1’: IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.

Silent

Silent Mode
’0’: Normal operation.

’1’: The module is in Silent Mode.

LBack

Loop Back Mode
’0’: Loop Back Mode is disabled.
’1’: Loop Back Mode is enabled.

Tx(1:0)

CAN_TxD pin control
’00’: Reset value, CAN_TxD is controlled by the CAN Core.

’01’: Sample Point can be monitored at CAN_TxD pin.

’10’: CAN_TxD pin drives a dominant (‘0’) value.
’11’: CAN_TxD pin drives a recessive (‘1’) value.

Rx
Actual CAN_RxD pin value monitor
’0’: The CAN bus is dominant (CAN_RxD = ‘0’).

’1’: The CAN bus is recessive (CAN_RxD = ‘1’).

UM0407 CAN modules

 403/541

BRP extension register

CAN1BRPER (EF0Ch) XBUS Reset Value: 0000h
CAN2BRPER (EE0Ch) XBUS Reset Value: 0000h

21.8.3 Message interface register sets

There are two sets of Interface Registers which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflicts between CPU access to the
Message RAM and CAN message reception and transmission by buffering the data to be
transferred. A complete Message Object (see Message object in the message memory on
page 412) or parts of the Message Object may be transferred between the Message RAM
and the IFx Message Buffer registers (see IFx message buffer registers on page 406) in one
single transfer.

The function of the two interface register sets is identical (except for test mode Basic). They
can be used the way that one set of registers is used for data transfer to the Message RAM
while the other set of registers is used for the data transfer from the Message RAM, allowing
both processes to be interrupted by each other. Table 77 gives an overview of the two
Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data
transfer and which parts of a Message Object will be transferred. The Command Request
Register is used to select a Message Object in the Message RAM as target or source for the
transfer and to start the action specified in the Command Mask Register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - BRPE

RW

Bit Function

BRPE

Baud Rate Prescaler Extension
By programming BRPE (0h-Fh) the Baud Rate Prescaler can be extended to values
up to 1023. The actual interpretation by the hardware is that one more than the
value programmed by BRPE (MSBs) and BRP (LSBs) is used.

Table 77. IF1 and IF2 message interface register sets

Address IF1 register set Address IF2 register set

CAN Base + 0x10 IF1 Command Request CAN Base + 0x40 IF2 Command Request

CAN Base + 0x12 IF1 Command Mask CAN Base + 0x42 IF2 Command Mask

CAN Base + 0x14 IF1 Mask 1 CAN Base + 0x44 IF2 Mask 1

CAN Base + 0x16 IF1 Mask 2 CAN Base + 0x46 IF2 Mask 2

CAN Base + 0x18 IF1 Arbitration 1 CAN Base + 0x48 IF2 Arbitration 1

CAN Base + 0x1A IF1 Arbitration 2 CAN Base + 0x4A IF2 Arbitration 2

CAN Base + 0x1C IF1 Message Control CAN Base + 0x4C IF2 Message Control

CAN Base + 0x1E IF1 Data A 1 CAN Base + 0x4E IF2 Data A 1

CAN Base + 0x20 IF1 Data A 2 CAN Base + 0x50 IF2 Data A 2

CAN modules UM0407

404/541

IFx command request registers

A message transfer is started as soon as the CPU has written the message number to the
command request register. With this write operation the Busy bit is automatically set to ‘1’.
After a wait time of 3 to 6 CAN clock periods, the transfer between the Interface Register
and the Message RAM has completed and the Busy bit is set back to zero.

CAN1IF1CR (EF10h) XBUS Reset Value: 0001h
CAN2IF1CR (EE10h) XBUS Reset Value: 0001h

CAN1IF2CR (EF40h) XBUS Reset Value: 0001h
CAN2IF2CR (EE40h) XBUS Reset Value: 0001h

Note: When a Message Number that is not valid is written into the Command Request Register,
the Message Number will be transformed into a valid value and that Message Object will be
transferred.

CAN Base + 0x22 IF1 Data B 1 CAN Base + 0x52 IF2 Data B 1

CAN Base + 0x24 IF1 Data B 2 CAN Base + 0x54 IF2 Data B 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bus
y

- - - - - - - - - Message Number

R RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bus
y

- - - - - - - - - Message Number

R RW

Bit Function

Message
Number

Message Number

’00h’: Not a valid Message Number, interpreted as 20h.
’01h’: Valid Message Number, the Message Object in the RAM is selected for data
transfer.
’02h’: Valid Message Number, the Message Object in the RAM is selected for data
transfer.
 :

’20h’: Valid Message Number, the Message Object in the RAM is selected for data
transfer.

’21h’: Not a valid Message Number, interpreted as 01h.

’22h’: Not a valid Message Number, interpreted as 02h.
 :

’3Fh’: Not a valid Message Number, interpreted as 1Fh.

Busy

Busy Flag

’0’: Reset to zero when read/write action has finished.

’1’: Set to one when writing to the IFx Command Request Register.

Table 77. IF1 and IF2 message interface register sets (continued)

Address IF1 register set Address IF2 register set

UM0407 CAN modules

 405/541

IFx command mask registers

The control bits of the IFx command mask register specify the transfer direction and select
which of the IFx message buffer registers are source or target of the data transfer. The bits
of IFx command mask register have different functions depending on the transfer direction
(Write or Read), defined through WR/RD bit of the register itself.

CAN1IF1CM (EF12h) XBUS Reset Value: 0000h
CAN2IF1CM (EE12h) XBUS Reset Value: 0000h

CAN1IF2CM (EF42h) XBUS Reset Value: 0000h
CAN2IF2CM (EE42h) XBUS Reset Value: 0000h

Direction write:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - WR/RD Mask Arb Control ClrInt
Pnd

TxRqst/N
ewDat

Data
A

Data
B

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - WR/RD Mask Arb Control ClrInt
Pnd

TxRqst/
NewDat Data A Data B

RW RW RW RW RW RW RW RW

Bit Function

WR/RD

Write / Read
’0’: Read: Transfer data from the Message Object addressed by the Command
Request Register into the selected Message Buffer Registers.

’1’: Write: Transfer data from the selected Message Buffer Registers to the Message
Object addressed by the Command Request Register.

Bit Function

Data B

Access Data Bytes 4-7
’0’: Data Bytes 4-7 unchanged.

’1’: Transfer Data Bytes 4-7 to Message Object.

Data A

Access Data Bytes 0-3
’0’: Data Bytes 0-3 unchanged.
’1’: Transfer Data Bytes 0-3 to Message Object.

TxRqst/NewD
at

Access Transmission Request Bit
’0’: TxRqst bit unchanged.

’1’: Set TxRqst bit.

Note: If a transmission is requested by programming bit TxRqst/NewDat in the IFx
Command Mask Register, bit TxRqst in the IFx Message Control Register will be
ignored.

ClrIntPnd
Clear Interrupt Pending Bit
When writing to a Message Object, this bit is ignored.

Control
Access Control Bits
’0’: Control Bits unchanged.

’1’: Transfer Control Bits to Message Object.

CAN modules UM0407

406/541

Direction Read:

IFx message buffer registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.
The function of the Message Objects bits is described in Message object in the message
memory on page 412.

Arb

Access Arbitration Bits
’0’: Arbitration bits unchanged.
’1’: Transfer Identifier + Dir + Xtd + MsgVal to Message Object.

Mask
Access Mask Bits
’0’: Mask bits unchanged.

’1’: Transfer Identifier Mask + MDir + MXtd to Message Object.

Bit Function

Data B
Access Data Bytes 4-7
’0’: Data Bytes 4-7 unchanged.

’1’: Transfer Data Bytes 4-7 to IFx Message Buffer Register.

Data A

Access Data Bytes 0-3
’0’: Data Bytes 0-3 unchanged.

’1’: Transfer Data Bytes 0-3 to IFx Message Buffer Register.

TxRqst/NewD
at

Access Transmission Request Bit
’0’: NewDat bit remains unchanged.

’1’: Clear NewDat bit in the Message Object.
A read access to a Message Object can be combined with the reset of the control
bits IntPnd and NewDat. The values of these bits transferred to the IFx Message
Control Register always reflect the status before resetting these bits.

ClrIntPnd

Clear Interrupt Pending Bit
’0’: IntPnd bit remains unchanged.

’1’: clear IntPnd bit in the Message Object.

Control

Access Control Bits
’0’: Control Bits unchanged.
’1’: Transfer Control Bits to IFx Message Buffer Register.

Arb
Access Arbitration Bits
’0’: Arbitration bits unchanged.

’1’: Transfer Identifier + Dir + Xtd + MsgVal to IFx Message Buffer Register.

Mask

Access Mask Bits
’0’: Mask bits unchanged.

’1’: Transfer Identifier Mask + MDir + MXtd to IFx Message Buffer Register.

Bit Function

UM0407 CAN modules

 407/541

IFx mask registers

CAN1IF1M1 (EF14h) XBUS Reset Value: FFFFh
CAN2IF1M1 (EE14h) XBUS Reset Value: FFFFh

CAN1IF1M2 (EF16h) XBUS Reset Value: FFFFh
CAN2IF1M2 (EE16h) XBUS Reset Value: FFFFh

CAN1IF2M1 (EF44h) XBUS Reset Value: FFFFh
CAN2IF2M1 (EE44h) XBUS Reset Value: FFFFh

CAN1IF2M2 (EF46h) XBUS Reset Value: FFFFh
CAN2IF2M2 (EE46h) XBUS Reset Value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk(15:0)

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir - Msk(28:16)

RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk(15:0)

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXt
d

MDir - Msk(28:16)

RW RW RW

Bit Function

Msk(28:0)

Identifier Mask
Msk(28:18): Identifier Mask Standard Message.

Msk(28:0): Identifier Mask Extended Message.
’0’: The corresponding bit in the identifier of the message object cannot inhibit the
match in the acceptance filtering.
’1’: The corresponding identifier bit is used for acceptance filtering.

MDir
Mask Message Direction
’0’: The message direction bit (RTR) has no effect on the acceptance filtering.

’1’: The message direction bit (RTR) is used for acceptance filtering.

MXtd

Mask Extended Identifier
’0’: The extended identifier bit (IDE) has no effect on the acceptance filtering.

’1’: The extended identifier bit (IDE) is used for acceptance filtering.

CAN modules UM0407

408/541

IFx arbitration registers

CAN1IF1A1 (EF18h) XBUS Reset Value: 0000h
CAN2IF1A1 (EE18h) XBUS Reset Value: 0000h

CAN1IF1A2 (EF1Ah) XBUS Reset Value: 0000h
CAN2IF1A2 (EE1Ah) XBUS Reset Value: 0000h

CAN1IF2A1 (EF48h) XBUS Reset Value: 0000h
CAN2IF2A1 (EE48h) XBUS Reset Value: 0000h

CAN1IF2A2 (EF4Ah) XBUS Reset Value: 0000h
CAN2IF2A2 (EE4Ah) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID(15:0)

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msg
Val

Xtd Dir ID(28:16)

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID(15:0)

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msg
Val

Xtd Dir ID(28:16)

RW RW RW RW

Bit Function

ID(28:0)
Message Identifier
ID(28:18): Identifier for Standard Message.

ID(28:0): Identifier for Extended Message.

Dir

Message Direction
’0’: Direction = Receive: on TxRqst, a Remote Frame with the identifier of this
Message Object is transmitted. On reception of a Data Frame with matching
identifier, that message is stored in this Message Object.
’1’: Direction = Transmit: on TxRqst, the respective Message Object is transmitted as
a Data Frame. On reception of a Remote Frame with matching identifier, the TxRqst
bit of this Message Object is set (if RmtEn = one).

UM0407 CAN modules

 409/541

The Arbitration Registers are used for acceptance filtering of incoming messages and to
define the identifier of outgoing messages. A received message is stored into the valid
Message Object with matching identifier and Direction = receive (Data Frame) or Direction =
transmit (Remote Frame). Extended frames can be stored only in Message Objects with Xtd
= one, standard frames in Message Objects with Xtd = zero. For identifier matching, the
corresponding mask has to be considered. If the identifier of a received message (Data
Frame or Remote Frame) matches with more than one valid Message Object, it is stored
into that with the lowest message number. For details see Section 21.9: CAN application on
page 418.

IFx message control register

CAN1IF1MC (EF1Ch) XBUS Reset Value: 0000h
CAN2IF1MC (EE1Ch) XBUS Reset Value: 0000h

CAN1IF2MC (EF4Ch) XBUS Reset Value: 0000h
CAN2IF2MC (EE4Ch) XBUS Reset Value: 0000h

Xtd

Extended Identifier
’0’: The standard Identifier (11-bit) will be used for this Message Object.
’1’: The extended Identifier (29-bit) will be used for this Message Object.

MsgVal

Message Valid
The CPU must reset the MsgVal bit of all unused Messages Objects during the
initialization before it resets bit Init in the CAN Control Register. This bit must be
reset if the message is no longer required, or if the identifier, the control bits Xtd, Dir
or the Data Length Code DLC(3:0) are modified.

’0’: The Message Object is ignored by the Message Handler.

’1’: The Message Object is configured and should be considered by the Message
Handler.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB - DLC(3:0)

RW RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB - DLC(3:0)

RW RW RW RW RW RW RW RW RW RW

Bit Function

CAN modules UM0407

410/541

Bit Function

DLC(3:0)

Data Length Code
’0000’: Data Frame has 0 data byte.
’0001’: Data Frame has 1 data byte.

 :

’1000’: Data Frame has 8 data bytes.
’1001’: Data Frame has 8 data bytes.

 :

’1111’: Data Frame has 8 data bytes.
Note: The Data Length Code of a Message Object must be defined the same as in
all the corresponding objects with the same identifier at other nodes. When the
Message Handler stores a data frame, it will write the DLC to the value given by the
received message.

EoB

End of Buffer
’0’: FIFO Operation: If MsgVal is set, this messageObject stores the next Message.

’1’: FIFO Operation: Last Message Object of a FIFO Buffer.

Note: This bit is used to concatenate two ore more Message Objects (up to 32) to
build a FIFO Buffer. For normal operation this bit must always be set to one.

TxRqst
Transmit Request
’0’: This Message Object is not waiting for transmission.

’1’: The transmission of this Message Object is requested and is not yet done.

RmtEn

Remote Enable
’0’: At the reception of a Remote Frame, TxRqst is left unchanged.

’1’: At the reception of a Remote Frame, TxRqst is set.

RxIE

Receive Interrupt Enable
’0’: No interrupt is generated after the successful reception of a frame.
’1’: An interrupt is generated after a successful reception of a frame (this interrupt
may be masked by IE bit in the CAN Control Register).

TxIE

Transmit Interrupt Enable
’0’: No interrupt is generated after the successful transmission of a frame.
’1’: An interrupt is generated after a successful transmission of a frame (this interrupt
may be masked by IE bit in the CAN Control Register).

UMask

Use Identifier Mask
’0’: Identifier Mask ignored.
’1’: Use identifier Mask.

IntPnd

Interrupt Pending
’0’: No interrupt was generated by this message object since last time the CPU has
cleared this flag.
’1’: This message object has generated an interrupt.

UM0407 CAN modules

 411/541

IFx data A and data B registers

The data bytes of CAN messages are stored in the IFx Message Buffer Registers (or Data
Registers) in the order shown in the next table.

CAN1IF1DA1 (EF1Eh) XBUS Reset Value: 0000h
CAN2IF1DA1 (EE1Eh) XBUS Reset Value: 0000h

CAN1IF1DA2 (EF20h) XBUS Reset Value: 0000h
CAN2IF1DA2 (EE20h) XBUS Reset Value: 0000h

CAN1IF1DB1 (EF22h) XBUS Reset Value: 0000h
CAN2IF1DB1 (EE22h) XBUS Reset Value: 0000h

CAN1IF1DB2 (EF24h) XBUS Reset Value: 0000h
CAN2IF1DB2 (EE24h) XBUS Reset Value: 0000h

CAN1IF2DA1 (EF4Eh) XBUS Reset Value: 0000h
CAN2IF2DA1 (EE4Eh) XBUS Reset Value: 0000h

MsgLst

Message Lost (only valid for Message Objects with direction = receive)

’0’: No message lost since last time this bit was reset by the CPU.
’1’: The Message Handler stored a new message into this object when NewDat was
still set, the CPU has lost a message.

NewDat

New Data
’0’: No new data has been written into the data portion of this Message Object by the
Message Handler since last time this flag was cleared by the CPU.

’1’: The Message Handler or the CPU has written new data into the data portion of
this Message Object.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(1) Data(0)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(3) Data(2)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(5) Data(4)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(7) Data(6)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(1) Data(0)

RW RW

Bit Function

CAN modules UM0407

412/541

CAN1IF2DA2 (EF50h) XBUS Reset Value: 0000h
CAN2IF2DA2 (EE50h) XBUS Reset Value: 0000h

CAN1IF2DB1 (EF52h) XBUS Reset Value: 0000h
CAN2IF2DB1 (EE52h) XBUS Reset Value: 0000h

CAN1IF2DB2 (EF54h) XBUS Reset Value: 0000h
CAN2IF2DB2 (EE54h) XBUS Reset Value: 0000h

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or
received. In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

When the Message Handler stores a Data Frame, it will write all the eight data bytes into a
Message Object. If the Data Length Code is less than 8, the remaining bytes of the
Message Object will be overwritten by non specified values.

Message object in the message memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU
access to the Message RAM and CAN message reception and transmission, the CPU
cannot directly access the Message Objects, these accesses are handled via the IFx
Interface Registers.

Next diagram gives an overview of the two structures of a Message Object in the Message
Memory.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(3) Data(2)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(5) Data(4)

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data(7) Data(6)

RW RW

Message object

UMask Msk(28:0) MXtd MDir EoB NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

MsgVal ID(28:0) Xtd Dir DLC(3:0) Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7

UM0407 CAN modules

 413/541

Bit Function

MsgVal

Message Valid
’0’: The Message Object is ignored by the Message Handler.
’1’: The Message Object is configured and should be considered by the Message
Handler.
Note: The CPU must reset the MsgVal bit of all unused Messages Objects during
the initialization before it resets bit Init in the CAN Control Register. This bit must
also be reset before the identifier ID(28:0), the control bits Xtd, Dir, or the Data
Length Code DLC(3:0) are modified, or if the Messages Object is no longer
required.

UMask

Use Acceptance Mask
’0’: Mask ignored.
’1’: Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering.

If the UMask bit is set to one, the Message Object’s mask bits have to be
programmed during initialization of the Message Object before MsgVal is set to one.

ID(28:0)

Message Identifier
ID(28:18): 11-bit Identifier (Standard Frame).
ID(28:0): 29-bit Identifier (Extended Frame).

Msk(28:0)

Identifier Mask
’0’: The corresponding bit in the identifier of the message object cannot inhibit the
match in the acceptance filtering.
’1’: The corresponding identifier bit is used for acceptance filtering.

Xtd
Extended Identifier
’0’: The standard Identifier (11-bit) will be used for this Message Object.

’1’: The extended Identifier (29-bit) will be used for this Message Object.

MXtd

Mask Extended Identifier
’0’: The extended identifier bit (IDE) has no effect on the acceptance filtering.

’1’: The extended identifier bit (IDE) is used for acceptance filtering.
Note: When 11-bit (“standard”) Identifiers are used for a Message Object, the
identifiers of received Data Frames are written into bits ID28 to ID18. For
acceptance filtering, only these bits together with mask bits Msk28 to Msk18 are
considered.

Dir

Message Direction
’0’: Direction = Receive: on TxRqst, a Remote Frame with the identifier of this
Message Object is transmitted. On reception of a Data Frame with matching
identifier, that message is stored in this Message Object.

’1’: Direction = Transmit: on TxRqst, the respective Message Object is transmitted as
a Data Frame. On reception of a Remote Frame with matching identifier, the TxRqst
bit of this Message Object is set (if RmtEn = one).

CAN modules UM0407

414/541

MDir

Mask Message Direction
’0’: The message direction bit (Dir) has no effect on the acceptance filtering.
’1’: The message direction bit (Dir) is used for acceptance filtering.

The Arbitration Registers ID(28:0), Xtd, and Dir are used to define the identifier and
type of outgoing messages and are used (together with the mask registers
Msk(28:0), MXtd, and MDir) for acceptance filtering of incoming messages. A
received message is stored into the valid Message Object with matching identifier
and Direction = receive (Data Frame) or Direction = transmit (Remote Frame).
Extended frames can be stored only in Message Objects with Xtd = one, standard
frames in Message Objects with Xtd = zero. If a received message (Data Frame or
Remote Frame) matches with more than one valid Message Object, it is stored into
that with the lowest message number. For details see Acceptance filtering of
received messages on page 421.

EoB

End of Buffer
’0’: Message Object belongs to a FIFO Buffer and is not the last Message Object of
that FIFO Buffer.

’1’: Single Message Object or last Message Object of a FIFO Buffer.

Note: This bit is used to concatenate two ore more Message Objects (up to 32) to
build a FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer)
this bit must always be set to one. For details on the concatenation of Message
Objects see Section 21.9.7: Configuration of a FIFO buffer on page 423.

NewDat

New Data
’0’: No new data has been written into the data portion of this Message Object by the
Message Handler since last time this flag was cleared by the CPU.

’1’: The Message Handler or the CPU has written new data into the data portion of
this Message Object.

MsgLst

Message Lost (only valid for Message Objects with direction = receive)
’0’: No message lost since last time this bit was reset by the CPU.

’1’: The Message Handler stored a new message into this object when NewDat was
still set, the CPU has lost a message.

RxIE
Receive Interrupt Enable
’0’: IntPnd will be left unchanged after a successful reception of a frame.

’1’: IntPnd will be set after a successful reception of a frame.

TxIE

Transmit Interrupt Enable
’0’: IntPnd will be left unchanged after the successful transmission of a frame.

’1’: IntPnd will be set after a successful transmission of a frame.

IntPnd

Interrupt Pending
’0’: This message object is not the source of an interrupt.
’1’: This message object is the source of an interrupt. The Interrupt Identifier in the
Interrupt Register will point to this message object if there is no other interrupt
source with higher priority.

RmtEn

Remote Enable
’0’: At the reception of a Remote Frame, TxRqst is left unchanged.

’1’: At the reception of a Remote Frame, TxRqst is set.

Bit Function

UM0407 CAN modules

 415/541

21.8.4 Message handler registers

All Message Handler registers are read-only. Their contents (TxRqst, NewDat, IntPnd, and
MsgVal bits of each Message Object and the Interrupt Identifier) is status information
provided by the Message Handler FSM.

Interrupt register

CAN1IR (EF08h) XBUS Reset Value: 0000h
CAN2IR (EE08h) XBUS Reset Value: 0000h

TxRqst

Transmit Request
’0’: This Message Object is not waiting for transmission.
’1’: The transmission of this Message Object is requested and is not yet done.

DLC(3:0)

Data Length Code
’0000’: Data Frame has 0 data byte.

’0001’: Data Frame has 1 data byte.

 :
’1000’: Data Frame has 8 data bytes.

’1001’: Data Frame has 8 data bytes.

 :
’1111’: Data Frame has 8 data bytes.

Note: The Data Length Code of a Message Object must be defined the same as in
all the corresponding objects with the same identifier at other nodes. When the
Message Handler stores a data frame, it will write the DLC to the value given by the
received message.

Data 0

Data 1

Data 2
Data 3

Data 4

Data 5
Data 6

Data 7

1st data byte of a CAN Data Frame
2nd data byte of a CAN Data Frame

3rd data byte of a CAN Data Frame

4th data byte of a CAN Data Frame
5th data byte of a CAN Data Frame

6th data byte of a CAN Data Frame

7th data byte of a CAN Data Frame
8th data byte of a CAN Data Frame

Note: Byte Data 0 is the first data byte shifted into the shift register of the CAN Core
during a reception, byte Data 7 is the last. When the Message Handler stores a Data
Frame, it will write all the eight data bytes into a Message Object. If the Data Length
Code is less than 8, the remaining bytes of the Message Object will be overwritten
by non specified values.

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId(15:0)

R

CAN modules UM0407

416/541

If several interrupts are pending, the CAN Interrupt Register will point to the pending
interrupt with the highest priority, disregarding their chronological order. An interrupt remains
pending until the CPU has cleared it. If IntId is different from 0x0000 and IE is set, the
interrupt line to the CPU, is active. The interrupt line remains active until IntId is back to
value 0x0000 (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

Transmission request registers

CAN1TR1 (EF80h) XBUS Reset Value: 0000h
CAN2TR1 (EE80h) XBUS Reset Value: 0000h

CAN1TR2 (EF82h) XBUS Reset Value: 0000h
CAN2TR2 (EE82h) XBUS Reset Value: 0000h

These registers hold the TxRqst bits of the 32 Message Objects. By reading out the TxRqst
bits, the CPU can check for which Message Object a Transmission Request is pending. The
TxRqst bit of a specific Message Object can be set/reset by the CPU via the IFx Message

Bit Function

IntId(15:0)

Interrupt Identifier (the number here indicates the source of the interrupt)

’0000h’: No interrupt is pending.
’0001h’: Message Object 1 caused the interrupt.

 :

’0020h’: Message Object 32 caused the interrupt.
’0021h’: Unused.

 :

’7FFFh’: Unused.
’8000h’: Status Interrupt.

’8001h’: Unused.

 :
’FFFFh’: Unused.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst(16:1)

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst(32:17)

R

Bit Function

TxRqst(32:1)
Transmission Request Bits (of all Message Objects)
’0’: This Message Object is not waiting for transmission.

’1’: The transmission of this Message Object is requested and is not yet done.

UM0407 CAN modules

 417/541

Interface Registers or by the Message Handler after reception of a Remote Frame or after a
successful transmission.

New data registers

CAN1ND1 (EF90h) XBUS Reset Value: 0000h
CAN2ND1 (EE90h) XBUS Reset Value: 0000h

CAN1ND2 (EF92h) XBUS Reset Value: 0000h
CAN2ND2 (EE92h) XBUS Reset Value: 0000h

These registers hold the NewDat bits of the 32 Message Objects. By reading out the
NewDat bits, the CPU can check for which Message Object the data portion was updated.
The NewDat bit of a specific Message Object can be set/reset by the CPU via the IFx
Message Interface Registers or by the Message Handler after reception of a Data Frame or
after a successful transmission.

Interrupt pending registers

CAN1IP1 (EFA0h) XBUS Reset Value: 0000h
CAN2IP1 (EEA0h) XBUS Reset Value: 0000h

CAN1IP2 (EFA2h) XBUS Reset Value: 0000h
CAN2IP2 (EEA2h) XBUS Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat(16:1)

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat(32:17)

R

Bit Function

NewDat(32:1)

New Data Bits (of all Message Objects)

’0’: No new data has been written into the data portion of this Message Object by the
Message Handler since last time this flag was cleared by the CPU.

’1’: The Message Handler or the CPU has written new data into the data portion of
this Message Object.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd(16:1)

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd(32:17)

R

CAN modules UM0407

418/541

These registers hold the IntPnd bits of the 32 Message Objects. By reading out the IntPnd
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of
a specific Message Object can be set/reset by the CPU via the IFx Message Interface
Registers or by the Message Handler after reception or after a successful transmission of a
frame. This will also affect the value of IntId in the Interrupt Register.

Message valid registers

CAN1MV1 (EFB0h) XBUS Reset Value: 0000h
CAN2MV1 (EEB0h) XBUS Reset Value: 0000h

CAN1MV2 (EFB2h) XBUS Reset Value: 0000h
CAN2MV2 (EEB2h) XBUS Reset Value: 0000h

These registers hold the MsgVal bits of the 32 Message Objects. By reading out the MsgVal
bits, the CPU can check which Message Object is valid. The MsgVal bit of a specific
Message Object can be set/reset by the CPU via the IFx Message Interface Registers.

21.9 CAN application

21.9.1 Management of message objects

The configuration of the Message Objects in the Message RAM will (with the exception of
the bits MsgVal, NewDat, IntPnd, and TxRqst) not be affected by resetting the chip. All the
Message Objects must be initialized by the CPU or they must be not valid (MsgVal = ‘0’) and
the bit timing must be configured before the CPU clears the Init bit in the CAN Control
Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control
and Data field of one of the two interface register sets to the desired values. By writing to the

Bit Function

IntPnd(32:1)

Interrupt Pending Bits (of all Message Objects)

’0’: This message object is not the source of an interrupt.
’1’: This message object is the source of an interrupt.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal(16:1)

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal(32:17)

R

Bit Function

MsgVal(32:1)

Message Valid Bits (of all Message Objects)
’0’: This Message Object is ignored by the Message Handler.

’1’: This Message Object is configured and should be considered by the Message
Handler.

UM0407 CAN modules

 419/541

corresponding IFx Command Request Register, the IFx Message Buffer Registers are
loaded into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN Core and the Message Handler State Machine control the C-CAN’s
internal data flow. Received messages that pass the acceptance filtering are stored into the
Message RAM, messages with pending transmission request are loaded into the CAN
Core’s Shift Register and are transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFx
Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN
message and CAN error events.

21.9.2 Message handler state machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the
CAN Core, the Message RAM and the IFx Registers.

The Message Handler Finite State Machine (FSM) controls the following functions:

● Data Transfer from IFx Registers to the Message RAM

● Data Transfer from Message RAM to the IFx Registers

● Data Transfer from Shift Register to the Message RAM

● Data Transfer from Message RAM to Shift Register

● Data Transfer from Shift Register to the Acceptance Filtering unit

● Scanning of Message RAM for a matching Message Object

● Handling of TxRqst flags

● Handling of interrupts

Data transfer from / to message RAM

When the CPU initiates a data transfer between the IFx Registers and Message RAM, the
Message Handler sets the Busy bit in the respective Command Register to ‘1’. After the
transfer has completed, the Busy bit is set back to ‘0’ (see Figure 179 on page 420).

The respective Command Mask Register specifies whether a complete Message Object or
only parts of it will be transferred. Due to the structure of the Message RAM, it is not
possible to write single bits/bytes of one Message Object, it is always necessary to write a
complete Message Object into the Message RAM. Therefore the data transfer from the IFx
Registers to the Message RAM requires of a read-modify-write cycle. First, those parts of
the Message Object that are not to be changes are read from the Message RAM, and then
the complete contents of the Message Buffer Registers are written into the Message Object.

CAN modules UM0407

420/541

Figure 179. Data transfer between IFx Registers and Message RAM

After the partial write of a Message Object, the Message Buffer Registers that are not
selected in the Command Mask Register will be set to the actual contents of the selected
Message Object.

After the partial read of a Message Object, the Message Buffer Registers that are not
selected in the Command Mask Register will be left unchanged.

Transmission of messages

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer
between the IFx Registers and Message RAM, the MsgVal bits in the Message Valid
Register and TxRqst bits in the Transmission Request Register are evaluated. The valid
Message Object with the highest priority pending transmission request is loaded into the
shift register by the Message Handler and the transmission is started. The Message
Object’s NewDat bit is reset.

After a successful transmission and if no new data was written to the Message Object
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit will be reset. If TxIE is set,
IntPnd will be set after a successful transmission. If the C-CAN has lost the arbitration or if
an error occurred during the transmission, the message will be retransmitted as soon as the
CAN bus is free again. If meanwhile the transmission of a message with higher priority has
been requested, the messages will be transmitted in the order of their priority.

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFx

Write IFx to Message RAM

Read Message Object to IFx

No Yes

CAN_WAIT_B = 0

CAN_WAIT_B = 1

Write Command Request Register
No

Yes

UM0407 CAN modules

 421/541

Acceptance filtering of received messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming
message is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message
Handler FSM starts the scanning of the Message RAM for a matching valid Message
Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is
loaded with the arbitration bits from the CAN Core shift register. Then the arbitration and
mask fields (including MsgVal, UMask, NewDat and EoB) of Message Object 1 are loaded
into the Acceptance Filtering unit and compared with the arbitration field from the shift
register. This is repeated with each following Message Object until a matching Message
Object is found or until the end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM proceeds
depending on the type of frame (Data Frame or Remote Frame) received.

Reception of data frame

The Message Handler FSM stores the message from the CAN Core shift register into the
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration
bits and the Data Length Code are stored into the corresponding Message Object. This is
implemented to keep the data bytes connected with the identifier even if arbitration mask
registers are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been
received. The CPU should reset NewDat bit when it reads the Message Object. If at the time
of the reception the NewDat bit was already set, MsgLst is set to indicate that the previous
data (supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is set,
causing the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote
Frame, while the requested Data Frame has just been received.

Reception of remote frame

When a Remote Frame is received, three different configurations of the matching Message
Object have to be considered:

1. Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or ‘0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is
set. The rest of the Message Object remains unchanged.

2. Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ‘0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object
remains unchanged; the Remote Frame is ignored.

3. Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ‘1’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is
reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift
register is stored into the Message Object in the Message RAM and the NewDat bit of
this Message Object is set. The data field of the Message Object remains unchanged;
the Remote Frame is treated similar to a received Data Frame.

Receive / transmit priority

The receive/transmit priority for the message objects is attached to the message number.
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority.

CAN modules UM0407

422/541

If more than one transmission request is pending, they are serviced according to the priority
of the corresponding Message Object.

21.9.3 Configuration of a transmit object

Next diagram shows how a Transmit Object should be initialized.

The Arbitration Registers (ID(28:0) and Xtd bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is
used, it is programmed to ID(28:18), while ID(17:0) can then be disregarded.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the
Message Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be
set; the Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLC(3:0) and Data(7:0)) are given by the application, TxRqst and
RmtEn may not be set before the data is valid.

The Mask Registers (Msk(28:0), UMask, MXtd, and MDir bits) may be used (UMask = ‘1’)
to allow groups of Remote Frames with similar identifiers to set the TxRqst bit. For details
see Reception of remote frame on page 421, and handle with care. The Dir bit should not
be masked.

21.9.4 Updating a transmit object

The CPU may update the data bytes of a Transmit Object any time via the IFx Interface
registers, neither MsgVal nor TxRqst have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding
IFx Data A Register or IFx Data B Register have to be valid before the content of that
register is transferred to the Message Object. Either the CPU has to write all four bytes into
the IFx Data Register or the Message Object is transferred to the IFx Data Register before
the CPU writes the new data bytes.

When only the (eight) data bytes are updated, first 0x0087h is written to the Command
Mask Register and then the number of the Message Object is written to the Command
Request Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress
while the data is updated, NewDat has to be set together with TxRqst. For details see
Transmission of messages on page 420.

When NewDat is set together with TxRqst, NewDat bit will be reset as soon as the new
transmission has started.

21.9.5 Configuration of a receive object

Next diagram shows how a Receive Object should be initialized.

MsgVal Arb Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl appl appl 1 1 0 0 0 appl 0 appl 0

UM0407 CAN modules

 423/541

The Arbitration Registers (ID(28:0) and Xtd bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”)
is used, it is programmed to ID(28:18), while ID(17:0) can then be disregarded. When a
Data Frame with an 11-bit Identifier is received, ID(17:0) will be reset to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLC(3:0)) is given by the application. When the Message Handler
stores a Data Frame in the Message Object, it will store the received Data Length Code and
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message
Object will be overwritten by non specified values.

The Mask Registers (Msk(28:0), UMask, MXtd and MDir bits) may be used (UMask = ‘1’)
to allow groups of Data Frames with similar identifiers to be accepted. For details see
Reception of data frame on page 421. The Dir bit should not be masked in typical
applications.

21.9.6 Handling of received messages

The CPU may read a received message any time via the IFx Interface registers, the data
consistency is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x007Fh to the Command Mask Register and then the
number of the Message Object to the Command Request Register. That combination will
transfer the whole received message from the Message RAM into the Message Buffer
Register. Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in
the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of
the matching messages has been received.

The actual value of NewDat shows whether a new message has been received since last
time this Message Object was read. The actual value of MsgLst shows whether more than
one message has been received since last time this Message Object was read. MsgLst will
not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new
data for a receive object. Setting the TxRqst bit of a receive object will cause the
transmission of a Remote Frame with the receive object’s identifier. This Remote Frame
triggers the other CAN node to start the transmission of the matching Data Frame. If the
matching Data Frame is received before the Remote Frame could be transmitted, the
TxRqst bit is automatically reset.

21.9.7 Configuration of a FIFO buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object, see Section 21.9.5:
Configuration of a receive object on page 422.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks
(if used) of these Message Objects have to be programmed to matching values. Due to the

MsgVal Arb Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl appl appl 1 0 0 0 appl 0 0 0 0

CAN modules UM0407

424/541

implicit priority of the Message Objects, the Message Object with the lowest number will be
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO
Buffer except the last have to be programmed to zero. The EoB bits of the last Message
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

21.9.8 Reception of messages with FIFO buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message
Object of this FIFO Buffer starting with the Message Object with the lowest message
number.

When a message is stored into a Message Object of a FIFO Buffer the NewDat bit of this
Message Object is set. By setting NewDat while EoB is zero the Message Object is locked
for further write accesses by the Message Handler until the CPU has written the NewDat bit
back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is
reached. If none of the preceding Message Objects is released by writing NewDat to zero,
all further messages for this FIFO Buffer will be written into the last Message Object of the
FIFO Buffer and therefore overwrite previous messages.

Reading from a FIFO buffer

When the CPU transfers the contents of Message Object to the IFx Message Buffer
registers by writing its number to the IFx Command Request Register, the corresponding
Command Mask Register should be programmed the way that bits NewDat and IntPnd are
reset to zero (TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the
Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message
Objects starting at the FIFO Object with the lowest message number. Figure 180 on
page 425 shows how a set of Message Objects which are concatenated to a FIFO Buffer
can be handled by the CPU.

UM0407 CAN modules

 425/541

Figure 180. CPU handling of a FIFO buffer

21.9.9 Handling of interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending
interrupt with the highest priority, disregarding their chronological order. An interrupt remains
pending until the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

The interrupt identifier IntId in the Interrupt Register indicates the cause of the interrupt.
When no interrupt is pending, the register will hold the value zero. If the value of the

Read Interrupt Pointer

START

case Interrupt Pointer
0x8000h else 0x0000h

Status Change END

MessageNum = Interrupt Pointer

Write MessageNum to IFx Command Request

(Read Message to IFx Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

Read IFx Message Control

NewDat = 1

Read Data from IFx Data A,B

EoB = 1

MessageNum = MessageNum + 1

Yes

No

Yes

No

Message Interrupt

Interrupt Handling

CAN modules UM0407

426/541

Interrupt Register is different from zero, then there is an interrupt pending and, if IE is set,
the interrupt line to the CPU, IRQ_B, is active. The interrupt line remains active until the
Interrupt Register is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000h indicates that an interrupt is pending because the CAN Core has
updated (not necessarily changed) the Status Register (Error Interrupt or Status Interrupt).
This interrupt has the highest priority. The CPU can update (reset) the status bits RxOk,
TxOk and LEC, but a write access of the CPU to the Status Register can never generate or
reset an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects, IntId
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE
and SIE in the CAN Control Register) and whether the interrupt line becomes active when
the Interrupt Register is different from zero (bit IE in the CAN Control Register). The
Interrupt Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First it can follow
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see
Interrupt pending registers on page 417).

An interrupt service routine reading the message that is the source of the interrupt may read
the message and reset the Message Object’s IntPnd at the same time (bit ClrIntPnd in the
Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the
next Message Object with a pending interrupt.

21.9.10 Configuration of the bit timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit
timing to such a degree that only occasionally an error frame is generated. In the case of
arbitration however, when two or more CAN nodes simultaneously try to transmit a frame, a
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit
synchronization inside a CAN node and of the CAN nodes’ interaction on the CAN bus.

Bit time and bit rate

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s. Each member
of the CAN network has its own clock generator, usually a quartz oscillator. The timing
parameter of the bit time (that is, the reciprocal of the bit rate) can be configured individually
for each CAN node, creating a common bit rate even though the CAN nodes’ oscillator
periods (fosc) may be different.

The frequencies of these oscillators (or PLL’s when used to generate the CAN clock starting
from a reference obtained through a quartz oscillator) are not absolutely stable, small
variations are caused by changes in temperature or voltage and by deteriorating
components. As long as the variations remain inside a specific oscillator tolerance range
(df), the CAN nodes are able to compensate for the different bit rates by resynchronizing to
the bit stream.

According to the CAN specification, the bit time is divided into four segments (see
Figure 181 on page 427): the Synchronization Segment, the Propagation Time Segment,

UM0407 CAN modules

 427/541

the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists of a
specific, programmable number of time quanta (see Table 78). The length of the time
quantum (tq), which is the basic time unit of the bit time, is defined by the CAN controller’s
system clock fsys and the Baud Rate Prescaler (BRP): tq = BRP / fsys. The C-CAN’s system
clock fsys is the frequency of its CAN module clock input (see fCPU).

The Synchronization Segment Sync_Seg is that part of the bit time where edges of the CAN
bus level are expected to occur; the distance between an edge that occurs outside of
Sync_Seg and the Sync_Seg is called the phase error of that edge. The Propagation Time
Segment Prop_Seg is intended to compensate for the physical delay times within the CAN
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample
Point. The (Re-)Synchronization Jump Width (SJW) defines how far a resynchronization
may move the Sample Point inside the limits defined by the Phase Buffer Segments to
compensate for edge phase errors.

Figure 181. Bit timing

A given bit rate may be met by different bit time configurations, but for the proper function of
the CAN network the physical delay times and the oscillator’s tolerance range have to be
considered.

Propagation time segment

This part of the bit time is used to compensate physical delay times within the network.
These delay times consist of the signal propagation time on the bus and the internal delay
time of the CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the
transmitter of that bit stream, caused by the signal propagation time between the two nodes.

Table 78. Parameters of the CAN bit time

Parameter Range Remark

BRP
BRP +
BRPE

[1 .. 32]
[1 .. 512]

defines the length of the time quantum tq

Sync_Seg 1 tq fixed length, synchronization of bus input to system clock

Prop_Seg [1 .. 8] tq compensates for the physical delay times

Phase_Seg1 [1 .. 8] tq may be lengthened temporarily by synchronization

Phase_Seg2 [1 .. 8] tq may be shortened temporarily by synchronization

SJW [1 .. 4] tq may not be longer than either Phase Buffer Segments

This table describes the minimum programmable ranges required by the CAN protocol

1 Time Quantum
(tq)

Sync_ Prop_Seg Phase_Seg1 Phase_Seg2

Sample Point

Nominal CAN Bit Time

Seg

CAN modules UM0407

428/541

The CAN protocol’s non-destructive bit wise arbitration and the dominant acknowledge bit
provided by receivers of CAN messages require that a CAN node transmitting a bit stream
must also be able to receive dominant bits transmitted by other CAN nodes that are
synchronized to that bit stream. The example in Figure 182 shows the phase shift and
propagation times between two CAN nodes.

Figure 182. The propagation time segment

In this example, both nodes A and B are transmitters performing an arbitration for the CAN
bus. The node A has sent its Start of Frame bit less than one bit time earlier than node B,
therefore node B has synchronized itself to the received edge from recessive to dominant.
Since node B has received this edge delay(A_to_B) after it has been transmitted, B’s bit
timing segments are shifted with regard to A. Node B sends an identifier with higher priority
and so it will win the arbitration at a specific identifier bit when it transmits a dominant bit
while node A transmits a recessive bit. The dominant bit transmitted by node B will arrive at
node A after the delay(B_to_A).

Due to oscillator (or PLL) tolerances, the actual position of node A’s Sample Point can be
anywhere inside the nominal range of node A’s Phase Buffer Segments, so the bit
transmitted by node B must arrive at node A before the start of Phase_Seg1. This condition
defines the length of Prop_Seg.

If the edge from recessive to dominant transmitted by node B would arrive at node A after
the start of Phase_Seg1, it could happen that node A samples a recessive bit instead of a
dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators (or
PLL’s) of opposite ends of the tolerance range and that are separated by a long bus line; this
is an example of a minor error in the bit timing configuration (Prop_Seg too short) that
causes sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode: the C-CAN does not. In
this mode, the CAN bus input signal passes a digital low-pass filter, using three samples and
a majority logic to determine the valid bit value. This results in an additional input delay of 1
tq, requiring a longer Prop_Seg.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Node B

Node A

Delay A_to_B Delay B_to_A

Prop_Seg ≥ Delay A_to_B + Delay B_to_A

Prop_Seg ≥ 2 • [max(node output delay + bus line delay + node input delay)]

Delay A_to_B ≥ node output delay(A) + bus line delay(A → B) + node input delay(B)

UM0407 CAN modules

 429/541

Phase buffer segments and synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization
Jump Width (SJW) are used to compensate for the oscillator (or PLL) tolerance. The Phase
Buffer Segments may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it
with the bus level at the previous Sample Point. A synchronization may be done only if a
recessive bit was sampled at the previous Sample Point and if the actual time quantum’s bus
level is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between
edge and the end of Sync_Seg is the edge phase error, measured in time quanta. If the
edge occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist: Hard Synchronization and Resynchronization. A Hard
Synchronization is done once at the start of a frame; inside a frame only
Resynchronizations occur.

● Hard synchronization
After a hard synchronization, the bit time is restarted with the end of Sync_Seg,
regardless of the edge phase error. Thus hard synchronization forces the edge which
has caused the hard synchronization to lie within the synchronization segment of the
restarted bit time.

● Bit resynchronization
Resynchronization leads to a shortening or lengthening of the bit time such that the
position of the sample point is shifted with regard to the edge.
When the phase error of the edge which causes Resynchronization is positive,
Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW,
Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened
by SJW.
When the phase error of the edge which causes Resynchronization is negative,
Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW,
Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by
SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed
value of SJW, the results of Hard Synchronization and Resynchronization are the same. If
the magnitude of the phase error is larger than SJW, the Resynchronization cannot
compensate the phase error completely, an error of (phase error - SJW) remains.

Only one synchronization may be done between two Sample Points. The Synchronizations
maintain a minimum distance between edges and Sample Points, giving the bus level time
to stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes
synchronize “hard” on the edge transmitted by the “leading” transceiver that started
transmitting first, but due to propagation delay times, they cannot become ideally
synchronized. The “leading” transmitter does not necessarily win the arbitration, therefore
the receivers have to synchronize themselves to different transmitters that subsequently
“take the lead” and that are differently synchronized to the previously “leading” transmitter.
The same happens at the acknowledge field, where the transmitter and some of the
receivers will have to synchronize to that receiver that “takes the lead” in the transmission of
the dominant acknowledge bit.

CAN modules UM0407

430/541

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when
the differences in the oscillator’s clock periods of transmitter and receivers sum up during
the time between synchronizations (at most 10 bits). These summarized differences may
not be longer than the SJW, limiting the oscillator’s (or PLL) tolerance range.

The examples in Figure 183 show how the Phase Buffer Segments are used to compensate
for phase errors. There are three drawings of each two consecutive bit timings. The upper
drawing shows the synchronization on a “late” edge, the lower drawing shows the
synchronization on an “early” edge, and the middle drawing is the reference without
synchronization.

Figure 183. Synchronization on “late” and “early” edges

In the first example an edge from recessive to dominant occurs at the end of Prop_Seg. The
edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, Phase_Seg1 is
lengthened so that the distance from the edge to the Sample Point is the same as it would
have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error
of this “late” edge is less than SJW, so it is fully compensated and the edge from dominant
to recessive at the end of the bit, which is one nominal bit time long, occurs in the
Sync_Seg.

In the second example an edge from recessive to dominant occurs during Phase_Seg2. The
edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge,
Phase_Seg2 is shortened and Sync_Seg is omitted, so that the distance from the edge to
the Sample Point is the same as it would have been from a Sync_Seg to the Sample Point if
no edge had occurred. As in the previous example, the magnitude of this “early” edge’s
phase error is less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit
time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN implementation’s
state machine, where the bit time starts and ends at the Sample Points. The state machine
omits Sync_Seg when synchronizing on an “early” edge because it cannot subsequently
redefine that time quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

recessive
dominant

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

“late” Edge

“early” Edge

Rx-Input

Rx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

Sample-Point Sample-Point

UM0407 CAN modules

 431/541

The examples in Figure 184 show how short dominant noise spikes are filtered by
synchronizations. In both examples the spike starts at the end of Prop_Seg and has the
length of (Prop_Seg + Phase_Seg1).

Figure 184. Filtering of short dominant spikes

In the first example, the Synchronization Jump Width is greater than or equal to the phase
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be
shifted far enough; the dominant spike is sampled as actual bus level.

System clock tolerance range

The CAN system clock for the different nodes in the network is typically derived from a
different clock generator source. The actual CAN system clock frequency for each node
(and consequently the actual bit time), is affected by a tolerance. In particular, for
ST10F272Z2 the CAN system clock is derived (prescaled) from the CPU clock, typically
generated by the on-chip PLL multiplying the frequency of the main oscillator.

An effective communication requires that all CAN nodes in the network sample the correct
value for each transmitted bit: also those nodes (typically at opposite ends of the network)
with the largest propagation delay, and working with system clocks that are at opposite limits
of the frequency tolerance, must be able to correctly receive and decode every message
transmitted on the network.

Considering the effect of the system clock discrepancy between two CAN nodes, and
supposing no bus errors is detected (due to, for instance, electrical disturbances), bit stuffing
guarantees that, also in the worst case condition for the accumulation of phase error (during
a normal communication), the maximum time between two resynchronization edges is 10 bit
periods (5 dominant bits followed by 5 recessive bits are always followed by a dominant bit).

Calling tBT the CAN Bit Time, this maximum time tJ between two resynchronization edges
can be simply expressed as:

Then assuming the two CAN nodes with opposite system clock generator tolerance
(considering the specified tolerance "df" valid for both the nodes in the network) for their

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

SpikeRx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

recessive
dominantSpikeRx-Input

SJW ≥ Phase Error

SJW < Phase Error

tJ 10 tBT⋅=

CAN modules UM0407

432/541

respective system clocks, the accumulated phase error at the resynchronization instant
becomes:

where df represents the system clock relative tolerance (f actual frequency, fN nominal
frequency):

This error must be compensated, therefore it must be less than the programmed (Re-
)Synchronization Jump Width (SJW). Calling tSJW the duration of the resynchronization
segment (programmable from 1 to 4 time quanta), the following condition can be written:

This expression can be seen as a condition for the CAN system clock tolerance df:

Considering now that real systems typically operate in the presence of electrical
disturbances, errors on the CAN bus may occurs. When an error is detected, an Error Flag
is transmitted on the bus: if the error is just local, only the node which detected it transmits
the Error Flag on the bus, while the other nodes simply receive the Error Flag and then
transmit their own Error Flags as an echo. On the contrary, if the error is global, all nodes
detect it within the same bit time, so they transmit their own Error Flags simultaneously. In
this way, each node can recognize if the error is local or global simply by detecting whether
there is an echo after its Error Flag. This is possible only if the node can properly sample the
first bit after transmitting the Error Flag.

The Error Flag from an Error Active node is composed by 6 dominant bits; in the worst case
condition of a bit stuffing error, up to other 6 dominant bits could be received before the Error
Flag. It means that the first bit after the Error Flag is the 13th bit after the last
synchronization: This bit, as already said, must be correctly sampled.

Again calling tBT the CAN Bit Time, the maximum time tS (with correct sampling) between
two resynchronization edges can be expressed as:

where tPB2 corresponds to the duration of Phase_Seg2 (PB = Phase Buffer).

Also in this case, assuming the two CAN nodes with opposite system clock generator
tolerance (considering the specified tolerance "df" valid for both the nodes in the network)
for their respective system clocks, the accumulated phase error at the resynchronization
instant becomes:

For a correct sampling, the accumulated phase error must not lead the resynchronization
edge outside the interval Phase_seg1 + Phase_Seg2. This condition can be expressed as:

Once again, this expression can be translated in a condition for the CAN system clock
tolerance df:

∆tJ 2 df⋅() 10 tBT⋅ ⋅=

df
f fN–

fN
---------------=

2 df⋅() 10 tBT⋅ ⋅ tSJW<

df
tSJW

2 10 tBT⋅ ⋅
------------------------<

tS 13 tBT tPB2–⋅=

∆tS 2 df⋅() 13 tBT tPB2–⋅()⋅=

tPB1 2 df⋅() 13 tBT tSeg2–⋅() tPB2<⋅<

df
min tPB1 tPB2(,)

2 13 tBT tPB2–⋅()⋅
---<

UM0407 CAN modules

 433/541

In conclusion, there are two conditions on CAN system clock tolerance both to be satisfied.

In case the CAN node generates its system clock through a PLL, the maximum allowed
clock tolerance must be a function of the PLL jitter also: This will result in a more severe
quality requirement for the oscillator (crystal or resonator).

The phase error introduced by the PLL jitter is a function of the number of clock periods: in
particular the jitter increases with the clock period number until a saturation maximum value,
which consists in the long term jitter. Refer to datasheet for more details about the PLL
Electrical Characteristics.

Considering the PLL effect, the two expressions giving the phase error in the two conditions
of introduced above, are modified as in the following:

where δPLL represents the absolute deviation introduced by the PLL jitter. In the two
formulas the value of δPLL shall evaluated for different number of clock periods: for the first,
the jitter correspondent to 10 bit time period must be considered, while for the second, the
jitter correspondent to 13 bit time period must be considered. The number of clock periods
shall be computed taking into account the baud rate prescaler setting as well. Again, the
factor 2, which multiplies the single CAN node phase deviation, is considered to take into
account the worst case eventuality that the two communicating nodes are at the opposite
limits of the specified frequency tolerance.

From two equations above, the new constraints for the CAN system clock tolerance can be
translated in new quality requirements for the oscillator:

It is evident that the PLL jitter imposes a more stringent constraints on oscillator tolerance
than what can be accepted when no PLL is used. ST10F272Z2 PLL characteristics are such
that the oscillator requirements are acceptably impacted by the jitter for the majority of the
worst CAN bus network configurations.

The oscillator tolerance range was increased when the CAN protocol was developed from
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to
synchronize on edges from dominant to recessive became obsolete, only edges from
recessive to dominant are considered for synchronization. The protocol update to version
2.0 (A and B) had no influence on the oscillator tolerance.

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer
Segments and that the Propagation Time Segment limits the part of the bit time that may be
used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the
largest possible frequency tolerance of 1.58% (in the absence of PLL jitter). This
combination with a Propagation Time Segment of only 10% of the bit time is not suitable for
short bit times; it can be used for bit rates of up to 125 Kbit/s (bit time = 8µs) with a bus
length of 40m.

∆tJ 2 d(f⋅ 10 tBT δPLL)+⋅ ⋅=

∆tS 2 d[f⋅ 13 tBT tPB2–⋅() δPLL]+⋅=

df
tSJW 2 δ⋅ PLL–

2 10 tBT⋅ ⋅
-------------------------------------<

df
min tPB1 tPB2(,) 2 δ⋅ PLL–

2 13 tBT tPB2–⋅()⋅
--<

CAN modules UM0407

434/541

Configuration of the CAN protocol controller

In most CAN implementations and also in the C-CAN, the bit timing configuration is
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSeg1) is
combined with Phase_Seg2 (as TSeg2) in one byte, SJW and BRP are combined in the
other byte (see Figure 185).

In these bit timing registers (CANxBTR), the four components TSeg1, TSeg2, SJW, and
BRP have to be programmed to a numerical value that is one less than its functional value;
so instead of values in the range of [1...n], values in the range of [0...n-1] are programmed.
That way, e.g. SJW (functional range of [1...4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSeg1 + TSeg2 + 3] tq or
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

Figure 185. Structure of the CAN core’s can protocol controller

The data in the bit timing registers are the configuration input of the CAN protocol controller.
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the
basic time unit of the bit time; the Bit Timing Logic (configured by TSeg1, TSeg2, and SJW)
defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and
occasional synchronizations are controlled by the BTL state machine, which is evaluated
once each time quantum. The rest of the CAN protocol controller, the Bit Stream Processor
(BSP) state machine is evaluated once each bit time, at the Sample Point.

The Shift Register serializes the messages to be sent and parallelizes received messages.
Its loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC
code, performs the error management, and decides which type of synchronization is to be
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time
after the Sample point that is needed to calculate the next bit to be sent (e.g. data bit, CRC
bit, stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

Sample_Point

Bit_to_send

Sync_Mode

Bus_Off

Scaled_Clock (tq)System Clock

Receive_Data

Transmit_Data

Control

Received_Message

Send_Message

Status

Bit
Timing
Logic

Baud rate
Prescaler

Sampled_Bit

Configuration (TSeg1, TSeg2, SJW)

Configuration (BRP)

Shift-Register

Received_Data_Bit

Next_Data_Bit

Control

B
it

S
tr

ea
m

 P
ro

ce
ss

or

IP
T

UM0407 CAN modules

 435/541

The IPT is application specific but may not be longer than 2 tq; the C-CAN’s IPT is 0 tq. Its
length is the lower limit of the programmed length of Phase_Seg2. In case of a
synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not
affect bus timing.

Calculation of the bit timing parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time.
The resulting bit time (1/ bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined
by the Baud Rate Prescaler with tq = (Baud Rate Prescaler) / fsys. Several combinations may
lead to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. A maximum bus length as well as a maximum node delay has to
be defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted
into time quanta (rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase
Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have
the same length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may
not be shorter than the CAN controller’s Information Processing Time, which is, depending
on the actual implementation, in the range of [0...2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the
formulas given in System clock tolerance range on page 431.

If more than one configuration is possible, that configuration allowing the highest oscillator
or PLL tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same
bit rate. The calculation of the propagation time in the CAN network, based on the nodes
with the longest delay times, is done once for the whole network.

The CAN system’s oscillator (or PLL when used) tolerance range is limited by that node with
the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the
oscillator frequencies’ stability has to be increased in order to find a protocol compliant
configuration of the CAN bit timing.

The resulting configuration is written into the Bit Timing Register:

(Phase_Seg2 - 1) & (Phase_Seg1 + Prop_Seg - 1) & (SynchronizationJumpWidth - 1) &
(Prescaler - 1)

Example for bit timing at high baud rate

In this example, the CPU frequency (CAN module clock) is 10 MHz, BRP is 0, the bit rate is
1 Mbit/s.

tq 100 ns = tCPU

Delay of bus driver 50 ns

CAN modules UM0407

436/541

Tolerance for CAN clock 0.39 % =

δPLL (13 x tBT = 13 x 10 x tq = 130 tCPU) 5 ns = Data from PLL jitter characteristics

Tolerance for oscillator (no PLL effect) 0.35% =

In this example, the concatenated bit time parameters are (2-1)3 & (7-1)4 & (1-1)2 & (1-1)6,
the Bit Timing Register CANxBTR is programmed to = 0x1600h.

Example for bit timing at low baud rate

In this example, the frequency of CAN module clock is 2 MHz, BRP is 1, the bit rate is 100
Kbit/s.

tq 1 µs = 2 x tCPU

Delay of bus driver200 ns

Delay of receiver circuit80ns

Delay of bus line (40m)220ns

tProp 1 µs = 1 x tq

tSJW 4 µs = 4 x tq

tPB1 4 µs = 4 x tq

tSeg1 = tProp + tPB15 µs = 5 x tq

tSeg2 = tPB2 4 µs = Information Processing Time + 3 x tq = 4 x tq

tSync-Seg 1 µs = 1 x tq

tBT 10 µs = tSync-Seg + tSeg1 + tSeg2 = 10 x tq

Tolerance for CAN clock1.58%=

Delay of receiver circuit 30 ns

Delay of bus line (40m) 220 ns

tProp 600 ns = 6 x tq

tSJW 100 ns = 1 x tq

tPB1 100 ns = 1 x tq

tSeg1 = tProp + tPB1 700 ns = 7 x tq

tSeg2 = tPB2 200 ns = Information Processing Time + 1 x tq = 2 x tq

tSync-Seg 100 ns = 1 x tq

tBT 1000 ns = tSync-Seg + tSeg1 + tSeg2 = 10 x tq

min tPB1 tPB2(,)

2 13 tBT tPB2–⋅()⋅
--- 0.1µs

2 13 1µs 0.2µs–⋅()⋅
---=

min tPB1 tPB2(,) 2 δPLL⋅–

2 13 tBT tPB2–⋅()⋅
--

min tPB1 tPB2(,)

2 13 tBT tPB2–⋅()⋅
--- 4µs

2 13 10µs 4µs–⋅()⋅
--=

UM0407 CAN modules

 437/541

δPLL (13 x tBT = 13 x 10 x tq = 260 tCPU)10ns= Data from PLL jitter characteristics

Tolerance for oscillator (no PLL effect)1.57%=

In this example, the concatenated bit time parameters are (4-1)3 & (5-1)4 & (4-1)2 & (2-1)6,
the Bit Timing Register CANxBTR is programmed to = 0x34C1h.

min tPB1 tPB2(,) 2 δPLL⋅–

2 13 tBT tPB2–⋅()⋅
--

Real time clock UM0407

438/541

22 Real time clock

The real time clock is an independent timer, which clock is directly derived from the oscillator
clock (either the main on-chip oscillator or the 32 kHz on-chip oscillator), so that it can be
maintained running even in Idle or power down mode (if enabled to) or again in standby
mode. Registers access is implemented onto the XBUS. This module is designed for the
following purposes:

● Generate the current time and date for the system.

● Provide cyclic time based interrupt on Port2 external interrupts every ‘RTC basic clock
tick’ and after n ‘RTC basic clock ticks’ (n is programmable) if enabled.

● Long term measurements (58-bit timer).

● Exit the ST10F272Z2 from power down mode (if PWDCFG of SYSCON set) after a
programmed delay.

The real time clock is based on two main blocks of counters. The first block is a prescaler
which generates a basic reference clock (for example a 1 second period). This basic
reference clock is coming out of a 20-bit DIVIDER (4-bit MSB RTCDH counter and 16-bit
LSB RTCDL counter). This 20-bit counter is driven by an input clock derived from the on-
chip oscillator clock (XTAL1 input), pre-divided by a 1/64 fixed counter (see Figure 188 on
page 440). This 20-bit counter is loaded at each basic reference clock period with the value
of the 20-bit PRESCALER register (4-bit MSB RTCPH register and 16-bit LSB RTCPL
register). The value of the 20-bit RTCP register determines the period of the basic reference
clock.

A timed interrupt request (RTCSI) may be sent on each basic reference clock period. The
second block of the RTC is a 32-bit counter (16-bit RTCH and 16-bit RTCL). This counter
may be initialized with the current system time. RTCH/RTCL counter is driven with the basic
reference clock signal. In order to provide an alarm function the contents of RTCH/RTCL
counter is compared with a 32-bit alarm register (16-bit RTCAH register and 16-bit RTCAL
register). The alarm register may be loaded with a reference date. An alarm interrupt
request (RTCAI), may be generated when the value of RTCH/RTCL counter matches the
reference date of RTCAH/RTCAL register.

The timed RTCSI and the alarm RTCAI interrupt requests can trigger a fast external
interrupt via EXISEL register of Port2 and wakes the ST10 up when running in Power Down
mode. Using the RTCOFF bit of RTCCON register, the user may switch off the clock
oscillator when entering the Power Down mode.

UM0407 Real time clock

 439/541

Figure 186. SFRs associated with the RTC

Figure 187. XBUS registers associated with the RTC

- - - - - - - - Y Y Y Y - - - -EXISEL E

EXISEL External Interrupt Source Selection register (Port2)

- - - - - - - - Y Y Y Y Y Y Y YCCxIC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - Y Y Y Y - - - -EXICON E

EXICON External Interrupt Control register (Port2)
CCxIC CAPCOM1 Interrupt Control registers (x = 10, 11)

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

Interrupt Control

- - - - - - Y Y Y - - - Y Y Y YRTCCON - - - - - - - - - - - - Y Y Y YRTCPH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit is linked to a function
Bit has no function or is not implemented

Y
-

:
:

Control Registers

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCPL

- - - - - - - - - - - - Y Y Y YRTCDH

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCDL

Prescaler Registers

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCH

Counter Registers

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCAH

Compare Registers

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YRTCAL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCH RTC Programmable Counter - High
RTCL RTC Programmable Counter - Low
RTCAH RTC Alarm Register - High
RTCAL RTC Alarm Register - Low

RTCCON RTC Control Register
RTCPH RTC Prescaler Loaded Value Register - High
RTCPL RTC Prescaler Loaded Value Register - Low
RTCDH RTC Prescaler Current Value Register - High

Real time clock UM0407

440/541

Figure 188. RTC block diagram

22.1 RTC registers

22.1.1 RTCCON: RTC control register

The functions of the RTC are controlled by the RTCCON control register. If the RTOFF bit is
set, the RTC dividers and counters clock is disabled and registers can be written, when the
ST10 chip enters power down mode the clock oscillator will be switch off. The RTC has 2
interrupt sources, one is triggered every basic clock period, the other one is the alarm.

RTCCON includes an interrupt request flag and an interrupt enable bit for each of them.
This register is read and written via the XBUS.

RTCCON (ED00h) XBUS Reset Value: 0x00h

Reset Value: 0000 000x 0000 0000b

/64

RTCPLRTCPH

RTCDH RTCDL

RTCAH RTCAL

Main

Reload=

programmable 20 bits divider32 bits Counter

RTCCON

Alarm IT Basic Clock IT

RTCAI

RTCSI

MUX

OSC_STOP

OSC32_STOP
32kHz Oscillator

Clock Oscillator

Programmable Alarm register Programmable Prescaler register

RTCH RTCL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - OFF3
2

OSC RTCOFF - - - RTCAE
N

RTCAIR RTC-
SEN

RTCSIR

RW R RW RW RW RW RW

Bit Function

RTCSIR

RTC Second Interrupt Request flag
‘0’: The bit was reset less than one basic clock tick ago.
‘1’: The interrupt was triggered.

RTCSEN
RTC Second interrupt Enable
‘0’: RTCSI is disabled.

‘1’: RTCSI is enabled, it is generated every basic clock tick.

UM0407 Real time clock

 441/541

Note: All the bits of RTCCON are active high.

The 2 RTC Interrupt request lines are internally connected to Port2 input lines in order to
trigger an external interrupt that wakes the chip up if in Power Down mode.

All the RTC registers are not bit addressable.

To clear the RTC Interrupt Request flags (bit 0 and bit 2 of the RTCCON register) it is
necessary to write a ‘1’ to the corresponding bit of the RTCCON register.

22.1.2 RTCPH & RTCPL: RTC prescaler registers

The 20-bit programmable prescaler divider is loaded with 2 registers.

The 4 most significant bit are stored into RTCPH and the 16 Less significant bit are stored in
RTCPL. In order to keep the system clock, those registers are not reset.

They are write protected by bit RTOFF of RTCCON register, write operation is allowed if
RTOFF is set.

RTCPL (ED06h) XBUS Reset Value: xxxxh

RTCPH (ED08h) XBUS Reset Value: - - - xh

RTCAIR

RTC Alarm Interrupt Request flag (when the alarm is triggered)
‘0’: The bit was reset less than a n basic clock tick ago.
‘1’: The interrupt was triggered.

RTCAEN
RTC Alarm Interrupt Enable
‘0’: RTCAI is disabled.

‘1’: RTCAI is enabled, it is generated when the counters reach the alarm value.

RTCOFF

RTC Switch Off bit
‘0’: clock oscillator and RTC are kept on running even if ST10 is in Power Down
mode.

‘1’: clock oscillator is switched off if ST10 enters Power Down mode. Besides, setting
this bit RTC dividers and counters are stopped, and registers can be written.

OSC
Oscillator Selection Flag
‘0’: The clock oscillator used by the RTC is the Main oscillator.

‘1’: The clock oscillator used by the RTC is the low power 32 kHz oscillator.

OFF32
32 kHz Oscillator Switch Off bit
‘0’: The 32 kHz oscillator is enabled.

‘1’: The 32 kHz oscillator is disabled.

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCPL

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - RTCPH

RW

Real time clock UM0407

442/541

Figure 189. Prescaler register

The value stored into RTCPH, RTCPL is called RTCP (coded on 20-bit). The dividing ratio of
the Prescaler divider is:

ratio = 64 x (RTCP)

The minimum value which can be set in RTCPL is 0002h.

22.1.3 RTCDH & RTCDL: RTC divider counters

Every basic reference clock the Divider counters are reloaded with the value stored RTCPH
and RTCPL registers. To get an accurate time measurement it is possible to read the value
of the Divider, reading the RTCDH, RTCDL. Those counters are read only. After any bit
changed in the programmable Prescaler register, the new value is loaded in the Divider.

RTCDL (ED0Ah) XBUS Reset Value: xxxxh

RTCDH (ED0Ch) XBUS Reset Value: - - - xh

Note: These registers are not reset, and are read only.

The divider works as a decrementor: when the internal value reaches 0001h, the second
interrupt is generated. Then, when next decrement occurs (which would virtually put in the
divider register the value 0000h), the 20-bit word stored into RTCPH, RTCPL registers is
loaded in the divider. As already stated, the minimum value which can be programmed in
RTCPL is 0002h: if 0001h were set, just one second interrupt would be generated, since the
divider would stay fixed at the value 0001h forever (successive second interrupt cannot
occur).

3 2 1 07 6 5 411 10 9 815 14 13 123 2 1 0

RTCPH RTCPL

3 2 1 07 6 5 411 10 9 815 14 13 1219 18 17 16

20 bit word counter

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCDL

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - RTCDH

R

UM0407 Real time clock

 443/541

Figure 190. Divider counters

Bit 15 to bit 4 of RTCPH and RTCDH are not used. When reading, the return value of those
bit will be zeros.

22.1.4 RTCH & RTCL: RTC programmable counter registers

The RTC has 2 x 16-bit programmable counters which count rate is based on the basic time
reference (for example 1 second). As the clock oscillator may be kept working, even in
Power Down mode, the RTC counters may be used as a clock for real time system date
(either the main or the 32 kHz oscillator). In addition RTC counters and registers are not
modified at any system reset. The only way to force their value is to write them via the
XBUS.

These counters are write protected as well. The bit RTOFF of the RTCCON register must be
set (RTC dividers and counters are stopped) to enable a write operation on RTCH or RTCL.

A write operation on RTCH or RTCL register loads directly the corresponding counter. When
reading, the current value in the counter (system date) is returned.

The counters keeps on running while the clock oscillator is working.

RTCL (ED0Eh) XBUS Reset Value: xxxxh

RTCH (ED10h) XBUS Reset Value: xxxxh

Note: These registers are not reset.

22.1.5 RTCAH & RTCAL: RTC alarm registers

When the programmable counters reach the 32-bit value stored into RTCAH & RTCAL
registers, an alarm is triggered and the interrupt request RTAIR is generated. These
registers are not protected.

RTCAL (ED12h) XBUS Reset Value: xxxxh

3 2 1 07 6 5 411 10 9 815 14 13 123 2 1 0

RTCDH RTCDL

3 2 1 07 6 5 411 10 9 815 14 13 1219 18 17 16

20 bit word internal value of the Prescaler divider

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCL

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCH

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCAL

RW

Real time clock UM0407

444/541

RTCAH (ED14h) XBUS Reset Value: xxxxh

Note: These registers are not reset.

22.2 Programming the RTC
RTC interrupt request signals are connected to Port2, pin 10 (RTCSI) and pin 11 (RTCAI).
An alternate function of Port2 is to generate fast interrupts firq[7:0]. To trigger firq[2] and
firq[3] the following configuration has to be set.

EXICON ESFR controls the external interrupt edge selection, RTC interrupt requests are
rising edge active.

EXICON (F1C0h / E0h) ESFR Reset Value: 0000h

Note: 1. EXI2ES and EXI3ES must be configured as ‘01b’ because RTC interrupt request lines
are rising edge active.
2. Alarm interrupt request line (RTCAI) is linked with EXI3ES.
3. Timed interrupt request line (RTCSI) is linked with EXI2ES.

EXISEL ESFR enables the Port2 alternate sources. RTC interrupts are alternate sources 2
and 3.

EXISEL (F1DAh / EDh) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCAH

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

RW RW RW RW RW RW RW RW

Bit Function

EXIxES
(x = 7...0)

External Interrupt x Edge Selection Field (x = 7...0)
0 0: Fast external interrupts disabled: standard mode

EXxIN pin not taken in account for entering/exiting Power Down mode.

0 1: Interrupt on positive edge (rising)
Enter power down mode if EXiIN = ‘0’, exit if EXxIN = ‘1’ (ref as ‘high’ active level)

1 0: Interrupt on negative edge (falling)
Enter power down mode if EXiIN = ‘1’, exit if EXxIN = ‘0’ (ref as ‘low’ active level)

1 1: Interrupt on any edge (rising or falling)
Always enter Power Down mode, exit if EXxIN level changed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7SS EXI6SS EXI5SS EXI4SS EXI3SS 2 EXI2SS 3 EXI1SS EXI0SS

RW RW RW RW RW RW RW RW

UM0407 Real time clock

 445/541

Note: 1. Advised configurations.

Interrupt control register are common with CAPCOM1 Unit: CC10IC (RTCSI) and CC11IC
(RTCAI).

CC10IC / CC11IC SFR Reset Value: - - 00h

CC10IC: FF8Ch/C6h

CC11IC: FF8Eh/C7h

Bit Function

EXIxSS

External Interrupt x Source Selection (x = 7...0)
‘00’: Input from associated Port2 pin.

‘01’: Input from “alternate source”. 1

‘10’: Input from Port2 pin ORed with “alternate source”. 1

‘11’: Input from Port2 pin ANDed with “alternate source”.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
CCx
IR

CCx
IE

ILVL GLVL

RW RW RW RW

Source of
interrupt

Request flag Enable flag
Interrupt
vector

Vector
location

Trap number

External interrupt 2 CC10IR CC10IE CC10INT 00’0068h 1Ah / 26

External interrupt 3 CC11IR CC11IE CC11INT 00’006Ch 1Bh / 27

System reset UM0407

446/541

23 System reset

System reset initializes the device in a predefined state. There are many ways to activate a
reset state. The system start-up configuration is different for each case as shown in
Table 79. The reset history is flagged inside WDTCON register (see also Section 14:
Watchdog timer on page 290 for additional details).

23.1 Input filter
On RSTIN input pin an on-chip RC filter is implemented. It is sized to filter all the spikes
shorter than 50ns. On the other side, a valid pulse shall be longer than 500ns to grant that
ST10 recognizes a reset command. In between 50ns and 500ns a pulse can either be
filtered or recognized as valid, depending on the operating conditions and process
variations.

For this reason all minimum durations mentioned in this section for the different kind of reset
events shall be carefully evaluated taking into account of the above requirements.

In particular, for Short Hardware Reset, where only 4 TCL is specified as minimum input
reset pulse duration, the operating frequency is a key factor. Examples:

● for a CPU clock of 64 MHz, 4 TCL is 31.25ns, so it would be filtered: in this case the
minimum becomes the one imposed by the filter (that is 500ns).

● for a CPU clock of 4 MHz, 4 TCL is 500ns: in this case the minimum from the formula is
coherent with the limit imposed by the filter.

Table 79. Reset event definition

Reset source Flag
RPD

status
Conditions

Power-On reset PONR Low Power-On

Asynchronous Hardware reset

LHWR

Low tRSTIN > (1)

1. RSTIN pulse should be longer than 500ns (Filter) and than settling time for configuration of Port0.

Synchronous Long Hardware
reset

High
tRSTIN > (1032 + 12) TCL + max(4 TCL,
500ns)

Synchronous Short Hardware
reset

SHWR High
tRSTIN > max(4 TCL, 500ns)
tRSTIN ≤ (1032 + 12) TCL + max(4 TCL,
500ns)

Watchdog Timer reset WDTR (2)

2. See Section 23.1: Input filter for more details on minimum reset pulse duration.

WDT overflow

Software reset SWR (3)

3. The RPD status has no influence unless Bidirectional Reset is activated (bit BDRSTEN in SYSCON): RPD
low inhibits the Bidirectional reset on SW and WDT reset events, that is RSTIN is not activated (refer to
Section 23.4: Software reset, Section 23.5: Watchdog timer reset and Section 23.6: Bidirectional reset on
page 459).

SRST instruction execution

UM0407 System reset

 447/541

23.2 Asynchronous reset
An asynchronous reset is triggered when RSTIN pin is pulled low while RPD pin is at low
level. Then the ST10F272Zx is immediately (after the input filter delay) forced in reset
default state. It pulls low RSTOUT pin, it cancels pending internal hold states if any, it aborts
all internal/external bus cycles, it switches buses (data, address and control signals) and I/O
pin drivers to high-impedance, it pulls high Port0 pins.

Note: If an asynchronous reset occurs during a read or write phase in internal memories, the
content of the memory itself could be corrupted: To avoid this, synchronous reset usage is
strongly recommended.

Power-on reset

The asynchronous reset must be used during the Power-On of the device. Depending on
crystal or resonator frequency, the on-chip oscillator needs about 1ms to 10ms to stabilize
(refer to ST10F272Zx datasheet - Electrical Characteristics Section), with an already stable
VDD. The logic of the ST10F272Zx does not need a stabilized clock signal to detect an
asynchronous reset, so it is suitable for Power-On conditions. To ensure a proper reset
sequence, the RSTIN pin and the RPD pin must be held at low level until the device clock
signal is stabilized and the system configuration value on Port0 is settled.

At Power-On it is important to respect some additional constraints introduced by the start-up
phase of the different embedded modules.

In particular the on-chip voltage regulator needs at least 1ms to stabilize the internal 1.8V
for the core logic: This time is computed from when the external reference (VDD) becomes
stable (inside specification range, that is at least 4.5V). This is a constraint for the
application hardware (external voltage regulator): The RSTIN pin assertion shall be
extended to guarantee the voltage regulator stabilization.

A second constraint is imposed by the embedded Flash. When booting from internal
memory, starting from RSTIN releasing, it needs a maximum of 1ms for its initialization:
before that, the internal reset (RST signal) is not released, so the CPU does not start code
execution in internal memory.

Note: This is not true if external memory is used (pin EA held low during reset phase). In this case,
once RSTIN pin is released, and after few CPU clock (Filter delay plus 3...8 TCL), the
internal reset signal RST is released as well, so the code execution can start immediately
after. Obviously, an eventual access to the data in internal Flash is forbidden before its
initialization phase is completed: an eventual access during starting phase will return FFFFh
(just at the beginning), while later 009Bh (an illegal opcode trap can be generated).

At Power-On, the RSTIN pin shall be tied low for a minimum time that includes also the start-
up time of the main oscillator (tSTUP = 1ms for resonator, 10ms for crystal) and PLL
synchronization time (tPSUP = 200µs): This means that if the internal Flash is used, the
RSTIN pin could be released before the main oscillator and PLL are stable to recover some
time in the start-up phase (Flash initialization only needs stable V18, but does not need
stable system clock since an internal dedicated oscillator is used).

Caution: It is recommended to provide the external hardware with a current limitation circuitry. This is
necessary to avoid permanent damages of the device during the Power-On transient, when
the capacitance on V18 pin is charged. For the on-chip voltage regulator functionality 10nF
are sufficient: Anyway, a maximum of 100nF on V18 pin should not generate problems of
over-current (higher value is allowed if current is limited by the external hardware). External
current limitation is nonetheless recommended to also avoid risks of damage in case of

System reset UM0407

448/541

temporary short between V18 and ground: The internal 1.8V drivers are sized to drive
currents of several tens of Ampere, so the current shall be limited by the external hardware.
The limit of current is imposed by power dissipation considerations (refer to ST10F272
datasheet - Electrical Characteristics Section).

In Figure 191 and Figure 192 on page 449 Asynchronous Power-On timing diagrams are
reported, respectively with boot from internal or external memory, highlighting the reset
phase extension introduced by the embedded Flash module when selected.

Note: Never power the device without keeping RSTIN pin grounded, the device could enter in
unpredictable states, risking also permanent damages.

Figure 191. Asynchronous power-on RESET (EA = 1)

RSTF

P0[15:13]

P0[12:2]

transparent

transparent

P0[1:0] not t.not transparent

FLARST

V18

XTAL1 ...

≤ 2 TCL

RST

≤ 1ms

Latching point of Port0 for
system start-up configuration

VDD

≥ 1ms (for on-chip VREG stabilization)

RPD

IBUS-CS

≤ 1.2ms (for resonator oscillation + PLL stabilization)
≤ 10.2ms (for crystal oscillation + PLL stabilization)

RSTIN

(After Filter)

≤ 500ns
≥ 50ns

7 TCL

3..4 TCL

(Internal)

not t.

not t.not t.

UM0407 System reset

 449/541

Figure 192. Asynchronous power-on RESET (EA = 0)

Hardware reset

The asynchronous reset must be used to recover from catastrophic situations of the
application. It may be triggered by the hardware of the application. Internal hardware logic
and application circuitry are described in Section 23.7: Reset circuitry on page 463 and
Figure 204, Figure 205 and Figure 207. It occurs when RSTIN is low and RPD is detected
(or becomes) low as well.

RSTIN

P0[15:13]

P0[12:2]

not t.

transparent not t.

P0[1:0] not t.not transparent

V18

XTAL1 ...

3..8 TCL1)

RST

Latching point of Port0 for
system start-up configuration

VDD

≥ 1ms (for on-chip VREG stabilization)

RPD

ALE

≥ 1.2ms (for resonator oscillation + PLL stabilization)
≥ 10.2ms (for crystal oscillation + PLL stabilization)

Note 1. 3 to 8 TCL depending on clock source selection.

RSTF

≤ 500ns

(After Filter)

≥ 50ns

8 TCL

transparent

3..4 TCL

System reset UM0407

450/541

Figure 193. Asynchronous hardware RESET (EA = 1)

RSTF

P0[15:13]

P0[12:2]

transparent

transparent not t.

P0[1:0] not t.not transparent

FLARST

≤ 2 TCL

RST

≤ 1ms

Latching point of Port0 for
system start-up configuration

RPD

IBUS-CS

1)

not transparent

not transparent

Note 1. Longer than Port0 settling time + PLL synchronization (if needed, that is P0(15:13) changed)
Longer than 500ns to take into account of Input Filter on RSTIN pin

(After Filter)

RSTIN

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

7 TCL

(internal)

3..4 TCL

not t. not t.

UM0407 System reset

 451/541

Figure 194. Asynchronous hardware RESET (EA = 0)

Exit from asynchronous reset state

When the RSTIN pin is pulled high, the device restarts: As already mentioned, if internal
Flash is used, the restarting occurs after the embedded Flash initialization routine is
completed. The system configuration is latched from Port0: ALE, RD and WR/WRL pins are
driven to their inactive level. The ST10F272Zx starts program execution from memory
location 00'0000h in code segment 0. This starting location will typically point to the general
initialization routine. Timing of asynchronous Hardware Reset sequence are summarized in
Figure 193 and Figure 194 on page 451.

23.3 Synchronous reset (warm reset)
A synchronous reset is triggered when RSTIN pin is pulled low while RPD pin is at high
level. In order to properly activate the internal reset logic of the device, the RSTIN pin must
be held low, at least, during 4 TCL (2 periods of CPU clock): refer also to Section 23.1: Input
filter on page 446 for details on minimum reset pulse duration. The I/O pins are set to high
impedance and RSTOUT pin is driven low. After RSTIN level is detected, a short duration of
a maximum of 12 TCL (6 periods of CPU clock) elapses, during which pending internal hold
states are cancelled and the current internal access cycle if any is completed. External bus
cycle is aborted. The internal pull-down of RSTIN pin is activated if bit BDRSTEN of

RSTF

P0[15:13]

P0[12:2]

transparent not t.

transparent not t.

P0[1:0] not t.not transparent

3..8 TCL2)

RST

Latching point of Port0 for
system start-up configuration

RPD

ALE

1)

Note 2. 3 to 8 TCL depending on clock source selection.

not transparent

not transparent

Note 1. Longer than Port0 settling time + PLL synchronization (if needed, that is P0(15:13) changed)
Longer than 500ns to take into account of Input Filter on RSTIN pin

(After Filter)

RSTIN

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

8 TCL

3..4 TCL

System reset UM0407

452/541

SYSCON register was previously set by software. Note that this bit is always cleared on
Power-On or after a reset sequence.

Short and long synchronous reset

Once the first maximum 16 TCL are elapsed (4+12TCL), the internal reset sequence starts.
It is 1024 TCL cycles long: at the end of it, and after other 8TCL the level of RSTIN is
sampled (after the filter, see RSTF in the drawings): if it is already at high level, only Short
Reset is flagged (refer to Section 14: Watchdog timer on page 290 for details on reset flags);
if it is recognized still low, the Long reset is flagged as well. The major difference between
Long and Short reset is that during the Long reset, also P0(15:13) become transparent, so it
is possible to change the clock options.

Caution: In case of a short pulse on RSTIN pin, and when Bidirectional reset is enabled, the RSTIN
pin is held low by the internal circuitry. At the end of the 1024 TCL cycles, the RTSIN pin is
released, but due to the presence of the input analog filter the internal input reset signal
(RSTF in the drawings) is released later (from 50 to 500ns). This delay is in parallel with the
additional 8 TCL, at the end of which the internal input reset line (RSTF) is sampled, to
decide if the reset event is Short or Long. In particular:

● If 8 TCL > 500ns (fCPU < 8 MHz), the reset event is always recognized as Short

● If 8 TCL < 500ns (fCPU > 8 MHz), the reset event could be recognized either as Short or
Long, depending on the real filter delay (between 50 and 500ns) and the CPU
frequency (RSTF sampled High means Short reset, RSTF sampled Low means Long
reset). Note that in case a Long Reset is recognized, once the 8 TCL are elapsed, the
P0(15:13) pins becomes transparent, so the system clock can be re-configured. The
port returns not transparent 3-4TCL after the internal RSTF signal becomes high.

The same behavior just described, occurs also when unidirectional reset is selected and
RSTIN pin is held low until the end of the internal sequence (exactly 1024TCL + max 16
TCL) and released exactly at that time.

Note: When running with CPU frequency lower than 40 MHz, the minimum valid reset pulse to be
recognized by the CPU (4 TCL) could be longer than the minimum analog filter delay (50ns);
so it might happen that a short reset pulse is not filtered by the analog input filter, but on the
other hand it is not long enough to trigger a CPU reset (shorter than 4 TCL): This would
generate a Flash reset but not a system reset. In this condition, the Flash answers always
with FFFFh, which leads to an illegal opcode and consequently a trap event is generated.

Exit from synchronous reset state

The reset sequence is extended until RSTIN level becomes high. Besides, it is internally
prolonged by the Flash initialization when EA = 1 (internal memory selected). Then, the
code execution restarts. The system configuration is latched from Port0, and ALE, RD and
WR/WRL pins are driven to their inactive level. The ST10F272Zx starts program execution
from memory location 00'0000h in code segment 0. This starting location will typically point
to the general initialization routine. Timing of synchronous reset sequence are summarized
in Figure 195 and Figure 196 on page 455 where a Short Reset event is shown, with
particular highlighting on the fact that it can degenerate into Long Reset: The two figures
show the behavior when booting from internal or external memory respectively. Figure 197
and Figure 198 on page 457 report the timing of a typical synchronous Long Reset, again
when booting from internal or external memory.

UM0407 System reset

 453/541

Synchronous reset and RPD pin

Whenever the RSTIN pin is pulled low (by external hardware or as a consequence of a
Bidirectional reset), the RPD internal weak pull-down is activated. The external capacitance
(if any) on RPD pin is slowly discharged through the internal weak pull-down. If the voltage
level on RPD pin reaches the input low threshold (around 2.5V), the reset event becomes
immediately asynchronous. In case of hardware reset (short or long) the situation goes
immediately to the one illustrated in Figure 193 on page 450. There is no effect if RPD
comes again above the input threshold: The asynchronous reset is completed coherently. To
grant the normal completion of a synchronous reset, the value of the capacitance shall be
big enough to maintain the voltage on RPD pin sufficient high along the duration of the
internal reset sequence.

For a Software or Watchdog reset events, an active synchronous reset is completed
regardless of the RPD status.

It is important to highlight that the signal that makes RPD status transparent under reset is
the internal RSTF (after the noise filter).

System reset UM0407

454/541

Figure 195. Synchronous short / long hardware RESET (EA = 1)

Note: Refer also to Section 22.1 on page 440 for details on minimum pulse duration.

P0[15:13] not transparent

RSTF

P0[12:2] transparent not t.

P0[1:0] not t.not transparent

FLARST

RST

≤ 1ms

1024 TCL

≤ 2 TCL

2) VRPD > 2.5V Asynchronous Reset not entered
200µA Discharge

RPD

RSTOUT

At this time RSTF is sampled HIGH or LOW
so it is SHORT or LONG reset

(After Filter)

RSTIN

< 1032 TCL≤ 4 TCL4)

3)

≤ 12 TCL

1)

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

IBUS-CS

7 TCL

1. RSTIN assertion can be released there.

2. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation),

the asynchronous reset is then immediately entered.

3. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software.
Bit BDRSTEN is cleared after reset.

4. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the

internal filter.

Notes:

(Internal)

8 TCL

not t.

UM0407 System reset

 455/541

Figure 196. Synchronous short / long hardware RESET (EA = 0)

Note: Refer also to Section 22.1 on page 440 for details on minimum pulse duration.

P0[15:13] not transparent

RSTF

P0[12:2] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

3..8 TCL3)

2) VRPD > 2.5V Asynchronous Reset not entered
200µA Discharge

RPD

RSTOUT

At this time RSTF is sampled HIGH or LOW
so it is SHORT or LONG reset

(After Filter)

RSTIN

< 1032 TCL≤ 4 TCL5)

4)

≤ 12 TCL

1)

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

ALE

8 TCL

1. RSTIN assertion can be released there.
2. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation),

the asynchronous reset is then immediately entered.

4. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software.

Bit BDRSTEN is cleared after reset.

5. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the

internal filter.

Notes:

3. 3 to 8 TCL depending on clock source selection.

8 TCL

not t.

System reset UM0407

456/541

Figure 197. Synchronous long hardware RESET (EA = 1)

Note: Refer also to Section 22.1 on page 440 for details on minimum pulse duration.

P0[15:13] not transparent

RSTF

P0[12:2] transparent not t.

P0[1:0] not t.not transparent

FLARST

RST

≤ 1ms

1024+8 TCL

≤ 2 TCL

1) VRPD > 2.5V Asynchronous Reset not entered
200µA Discharge

RPD

RSTOUT

At this time RSTF is sampled LOW
so it is definitely LONG reset

(After Filter)

RSTIN

1024+8 TCL≤ 4 TCL2)≤ 12 TCL

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

IBUS-CS

7 TCL

1. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation),
the asynchronous reset is then immediately entered. Even if RPD returns above the threshold,

2. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the

internal filter.

Notes:

not t.transparent

not t.

3..4 TCL

(Internal)

the reset is defnitively taken as asynchronous.

UM0407 System reset

 457/541

Figure 198. Synchronous long hardware RESET (EA = 0)

Note: Refer also to Section 22.1 on page 440 for details on minimum pulse duration.

23.4 Software reset
A software reset sequence can be triggered at any time by the protected SRST (software
reset) instruction. This instruction can be deliberately executed within a program, e.g. to
leave bootstrap loader mode, or on a hardware trap that reveals system failure.

On execution of the SRST instruction, the internal reset sequence is started. The
microcontroller behavior is the same as for a synchronous short reset, except that only bits
P0.12...P0.8 are latched at the end of the reset sequence, while previously latched, bits
P0.7...P0.2 are cleared (that is written at ‘1’).

A Software reset is always taken as synchronous: There is no influence on Software Reset
behavior with RPD status. In case Bidirectional Reset is selected, a Software Reset event
pulls RSTIN pin low: This occurs only if RPD is high; if RPD is low, RSTIN pin is not pulled
low even though Bidirectional Reset is selected.

P0[15:13] not transparent

RSTF

P0[12:2] transparent not t.

P0[1:0] not t.not transparent

RST

1024+8 TCL

3..8 TCL3)

1) VRPD > 2.5V Asynchronous Reset not entered
200µA Discharge

RPD

RSTOUT

At this time RSTF is sampled LOW
so it is LONG reset

(After Filter)

RSTIN

1024+8 TCL4 TCL2) 12 TCL

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

ALE

8 TCL

1. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation),

the asynchronous reset is then immediately entered.
2. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the

internal filter.

Notes:

not t.transparent

3. 3 to 8 TCL depending on clock source selection.

3..4 TCL

System reset UM0407

458/541

Refer to next Figure 199 and Figure 200 on page 459 for unidirectional SW reset timing, and
to Figure 201, Figure 202 and Figure 203 on page 463 for bidirectional.

23.5 Watchdog timer reset
When the watchdog timer is not disabled during the initialization, or serviced regularly
during program execution, it will overflow and trigger the reset sequence.

Unlike hardware and software resets, the watchdog reset completes a running external bus
cycle if this bus cycle either does not use READY, or if READY is sampled active (low) after
the programmed wait states.

When READY is sampled inactive (high) after the programmed wait states the running
external bus cycle is aborted. Then the internal reset sequence is started.

Bits P0.12...P0.8 are latched at the end of the reset sequence and bits P0.7...P0.2 are
cleared (that is, written at ‘1’).

A Watchdog reset is always taken as synchronous: There is no influence on Watchdog
Reset behavior with RPD status. In case Bidirectional Reset is selected, a Watchdog Reset
event pulls RSTIN pin low: This occurs only if RPD is high; if RPD is low, RSTIN pin is not
pulled low even though Bidirectional Reset is selected.

Refer to Figure 199 and Figure 200 on page 459 for unidirectional SW reset timing, and to
Figure 201, Figure 202 and Figure 203 on page 463 for bidirectional.

Figure 199. SW / WDT unidirectional RESET (EA = 1)

P0[7:2] not transparent

P0[12:8] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

RSTOUT

RSTIN

IBUS-CS

7 TCL

P0[15:13] not transparent

FLARST

≤ 1ms

(Internal)

≤ 2 TCL

UM0407 System reset

 459/541

Figure 200. SW / WDT unidirectional RESET (EA = 0)

23.6 Bidirectional reset
As shown in the previous sections, the RSTOUT pin is driven active (low level) at the
beginning of any reset sequence (synchronous/asynchronous hardware, software and
watchdog timer resets). RSTOUT pin stays active low beyond the end of the initialization
routine, until the protected EINIT instruction (End of Initialization) is completed.

The Bidirectional Reset function is useful when external devices require a reset signal but
cannot be connected to RSTOUT pin, because RSTOUT signal lasts during initialization. It
is, for instance, the case of external memory running initialization routine before the
execution of EINIT instruction.

Bidirectional reset function is enabled by setting bit 3 (BDRSTEN) in SYSCON register. It
only can be enabled during the initialization routine, before EINIT instruction is completed.

When enabled, the open drain of the RSTIN pin is activated, pulling down the reset signal,
for the duration of the internal reset sequence (synchronous/asynchronous hardware,
synchronous software and synchronous watchdog timer resets). At the end of the internal
reset sequence the pull down is released and:

● After a Short Synchronous Bidirectional Hardware Reset, if RSTF is sampled low 8
TCL periods after the internal reset sequence completion (refer to Figure 195 on
page 454 and Figure 196 on page 455), the Short Reset becomes a Long Reset. On
the contrary, if RSTF is sampled high the device simply exits reset state.

● After a Software or Watchdog Bidirectional Reset, the device exits from reset. If RSTF
remains still low for at least 4 TCL periods (minimum time to recognize a Short
Hardware reset) after the reset exiting (refer to Figure 201 on page 461 and Figure 202
on page 462), the Software or Watchdog Reset become a Short Hardware Reset. On
the contrary, if RSTF remains low for less than 4 TCL, the device simply exits reset
state.

P0[7:2] not transparent

P0[12:8] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

RSTOUT

RSTIN

ALE

8 TCL

P0[15:13] not transparent

System reset UM0407

460/541

The Bidirectional reset is not effective in case RPD is held low, when a Software or
Watchdog reset event occurs. On the contrary, if a Software or Watchdog Bidirectional reset
event is active and RPD becomes low, the RSTIN pin is immediately released, while the
internal reset sequence is completed regardless of RPD status change (1024 TCL).

Note: The bidirectional reset function is disabled by any reset sequence (bit BDRSTEN of
SYSCON is cleared). To be activated again it must be enabled during the initialization
routine.

WDTCON flags

Similarly to what already highlighted in the previous section when discussing about Short
reset and the degeneration into Long reset, similar situations may occur when Bidirectional
reset is enabled. The presence of the internal filter on RSTIN pin introduces a delay: when
RSTIN is released, the internal signal after the filter (see RSTF in the drawings) is delayed,
so it remains still active (low) for a while. It means that depending on the internal clock
speed, a short reset may be recognized as a long reset: The WDTCON flags are set
accordingly.

Besides, when either Software or Watchdog bidirectional reset events occur, again when the
RSTIN pin is released (at the end of the internal reset sequence), the RSTF internal signal
(after the filter) remains low for a while, and depending on the clock frequency it is
recognized high or low: 8TCL after the completion of the internal sequence, the level of
RSTF signal is sampled, and if recognized still low a Hardware reset sequence starts, and
WDTCON will flag this last event, masking the previous one (Software or Watchdog reset).
Typically, a Short Hardware reset is recognized, unless the RSTIN pin (and consequently
internal signal RSTF) is sufficiently held low by the external hardware to inject a Long
Hardware reset. After this occurrence, the initialization routine is not able to recognize a
Software or Watchdog bidirectional reset event, since a different source is flagged inside
WDTCON register. This phenomenon does not occur when internal Flash is selected during
reset (EA = 1), since the initialization of the Flash itself extend the internal reset duration
well beyond the filter delay.

Figure 201, Figure 202 and Figure 203 on page 463 summarize the timing for Software and
Watchdog Timer Bidirectional reset events: In particular Figure 203 shows the degeneration
into Hardware reset.

UM0407 System reset

 461/541

Figure 201. SW / WDT bidirectional RESET(EA = 1)

P0[15:13] not transparent

RSTF

P0[12:8] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

RSTOUT

(After Filter)

RSTIN

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

IBUS-CS

7 TCL

FLARST

≤ 1ms

≤ 2 TCL

(Internal)

P0[7:2] not transparent

System reset UM0407

462/541

Figure 202. SW / WDT bidirectional RESET (EA = 0)

P0[15:13] not transparent

RSTF

P0[12:8] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

RSTOUT

At this time RSTF is sampled HIGH
so SW or WDT Reset is flagged in WDTCON

(After Filter)

RSTIN

≤ 500ns
≥ 50ns

≤ 500ns
≥ 50ns

ALE

8 TCL

P0[7:2] not transparent

UM0407 System reset

 463/541

Figure 203. SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET

23.7 Reset circuitry
Internal reset circuitry is described in Figure 206: Internal (simplified) reset circuitry on
page 465. The RSTIN pin provides an internal pull-up resistor of 50kΩ to 250kΩ (The
minimum reset time must be calculated using the lowest value).

It also provides a programmable (BDRSTEN bit of SYSCON register) pull-down to output
internal reset state signal (synchronous reset, watchdog timer reset or software reset).

This bidirectional reset function is useful in applications where external devices require a
reset signal but cannot be connected to RSTOUT pin.

This is the case of an external memory running codes before EINIT (end of initialization)
instruction is executed. RSTOUT pin is pulled high only when EINIT is executed.

The RPD pin provides an internal weak pull-down resistor which discharges external
capacitor at a typical rate of 200µA. If bit PWDCFG of SYSCON register is set, an internal
pull-up resistor is activated at the end of the reset sequence. This pull-up will charge any
capacitor connected on RPD pin.

The simplest way to reset the ST10F272Zx is to insert a capacitor C1 between RSTIN pin
and VSS, and a capacitor between RPD pin and VSS (C0) with a pull-up resistor R0 between
RPD pin and VDD. The input RSTIN provides an internal pull-up device equalling a resistor of
50kΩ to 250kΩ (the minimum reset time must be determined by the lowest value). Select C1

P0[15:13] not transparent

RSTF

P0[12:8] transparent not t.

P0[1:0] not t.not transparent

RST

1024 TCL

RSTOUT

At this time RSTF is sampled LOW
so HW Reset is entered

(After Filter)

RSTIN

≤ 500ns
≥ 50ns

ALE

8 TCL

≤ 500ns
≥ 50ns

P0[7:2] not transparent

System reset UM0407

464/541

that produces a sufficient discharge time to permit the internal or external oscillator and / or
internal PLL and the on-chip voltage regulator to stabilize.

To ensure correct Power-On reset with controlled supply current consumption, specially if
clock signal requires a long period of time to stabilize, an asynchronous hardware reset is
required during Power-On. For this reason, it is recommended to connect the external R0-
C0 circuit shown in Figure 204 to the RPD pin. At Power-On, the logical low level on RPD
pin forces an asynchronous hardware reset when RSTIN is asserted low. The external pull-
up R0 will then charge the capacitor C0. Note that an internal pull-down device on RPD pin
is turned on when RSTIN pin is low, and causes the external capacitor (C0) to begin
discharging at a typical rate of 100-200µA. With this mechanism, after Power-On reset,
short low pulses applied on RSTIN produce synchronous hardware reset. If RSTIN is
asserted longer than the time needed for C0 to be discharged by the internal pull-down
device, then the device is forced in an asynchronous reset. This mechanism insures
recovery from very catastrophic failure.

Figure 204. Minimum external reset circuitry

The minimum reset circuit of Figure 204 is not adequate when the RSTIN pin is driven from
the ST10F272Zx itself during software or watchdog triggered resets, because of the
capacitor C1 that will keep the voltage on RSTIN pin above VIL after the end of the internal
reset sequence, and thus will trigger an asynchronous reset sequence.

Figure 205 on page 465 shows an example of a reset circuit. In this example, R1-C1
external circuit is only used to generate Power-On or manual reset, and R0-C0 circuit on
RPD is used for Power-On reset and to exit from Power Down mode. Diode D1 creates a
wired-OR gate connection to the reset pin and may be replaced by open-collector Schmitt
Trigger buffer. Diode D2 provides a faster cycle time for repetitive Power-On resets.

R2 is an optional pull-up for faster recovery and correct biasing of TTL Open Collector
drivers.

RSTOUT

RPD

RSTIN

C1 a) Hardware Reset

VCC

+

C0

R0 b) For Power-On Reset
(and Interruptible Power Down mode)

External Hardware

+

ST10F272Z

UM0407 System reset

 465/541

Figure 205. System reset circuit

Figure 206. Internal (simplified) reset circuitry

23.8 Reset application examples
The next two timing diagrams (Figure 207 on page 466 and Figure 208 on page 467)
provide additional examples of bidirectional internal reset events (Software and Watchdog)

RSTOUT

RPD

RSTIN

VDD

+

C0

R0

External Hardware

VDD

R2

+

C1

R1
D2

D1

o.d. External
Reset Source

Open Drain Inverter

VDD

ST10F272Zx

RSTOUT

EINIT Instruction

Trigger

Clr

Clock

Reset State
Machine

Internal
Reset
Signal

Reset Sequence
(512 CPU Clock Cycles)

SRST instruction
watchdog overflow

RSTIN

VDD

BDRSTEN

VDD

RPD

Weak Pulldown
(~200mA)

From/to
Exit Power Down
Circuit

Asynchronous
Reset

Clr

Q

Set

System reset UM0407

466/541

including in particular the external capacitances charge and discharge transients (refer also
to Figure 205 on page 465 for the external circuit scheme).

Figure 207. Example of software or watchdog bidirectional reset (EA = 1)

V
IL

V
IH

R
S

TO
U

T

R
S

T
IN

R
S

T
F

id
ea

l
T

fil
te

r
R

S
T

<
 5

00
ns

10
24

 T
C

L
(1

2.
8

us
)

1m
s

(C
1

ch
ar

ge
)

T
fil

te
r

R
S

T
<

 5
00

ns

R
P

D
V

IL

R
S

T

W
D

T
C

O
N

[5
:0

]

E
IN

IT

04
h

1C
h

00
h

P
0[

15
:1

3]

<
4

TC
L

P
0[

12
:8

]

P
0[

7:
2]

P
0[

1:
0]

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

no
t t

ra
ns

pa
re

nt
no

t t
ra

ns
pa

re
nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

tr
an

sp
ar

en
t

tr
an

sp
ar

en
t

tr
an

sp
ar

en
t

4
TC

L

3.
.8

 T
CL

0C
h

UM0407 System reset

 467/541

Figure 208. Example of software or watchdog bidirectional reset (EA = 0)

V
IL

V
IH

R
S

TO
U

T

R
S

T
IN

R
S

T
F

id
ea

l
T

fil
te

r
R

S
T

<
 5

00
ns

10
24

 T
C

L
(1

2.
8

us
)

1m
s

(C
1

ch
ar

ge
)

T
fil

te
r

R
S

T
<

 5
00

ns

R
P

D
V

IL

R
S

T

W
D

T
C

O
N

[5
:0

]

E
IN

IT

04
h

1C
h

00
h

P
0[

15
:1

3]

<
4

TC
L

P
0[

12
:8

]

P
0[

7:
2]

P
0[

1:
0]

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

La
tc

hi
ng

 p
oi

nt

no
t t

ra
ns

pa
re

nt
no

t t
ra

ns
pa

re
nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

no
t t

ra
ns

pa
re

nt

tr
an

sp
ar

en
t

tr
an

sp
ar

en
t

tr
an

sp
ar

en
t

4
TC

L

3.
.8

 T
CL

0C
h

System reset UM0407

468/541

23.9 Reset summary
A summary of the various reset events is given in the table below.

Table 80. Reset events summary

Event

R
P

D

E
A

B
id

ir

S
yn

ch
.

A
sy

n
ch

. RSTIN WDTCON Flags

min max

P
O

N
R

LH
W

R

S
H

W
R

S
W

R

W
D

T
R

Power-On Reset

0 0 N Asynch

1ms (VREG)
1.2ms (Reson. +

PLL)
10.2ms (Crystal +

PLL)

- 1 1 1 1 0

0 1 N Asynch 1ms (VREG) - 1 1 1 1 0

1 x x FORBIDDEN

x x Y NOT APPLICABLE

Hardware Reset
(Asynchronous)

0 0 N Asynch 500ns - 0 1 1 1 0

0 1 N Asynch 500ns - 0 1 1 1 0

0 0 Y Asynch 500ns - 0 1 1 1 0

0 1 Y Asynch 500ns - 0 1 1 1 0

Short Hardware
Reset

(Synchronous) (1)

1. It can degenerate into a Long Hardware Reset and consequently differently flagged (see Section 23.3:
Synchronous reset (warm reset) on page 451 for details).

1 0 N Synch. max (4 TCL, 500ns) 1032 + 12 TCL +
max(4 TCL, 500ns) 0 0 1 1 0

1 1 N Synch. max (4 TCL, 500ns) 1032 + 12 TCL +
max(4 TCL, 500ns) 0 0 1 1 0

1 0 Y Synch.
max (4 TCL, 500ns) 1032 + 12 TCL +

max(4 TCL, 500ns) 0 0 1 1 0
Activated by internal logic for 1024 TCL

1 1 Y Synch.
max (4 TCL, 500ns) 1032 + 12 TCL +

max(4 TCL, 500ns) 0 0 1 1 0
Activated by internal logic for 1024 TCL

Long Hardware
Reset

(Synchronous)

1 0 N Synch. 1032 + 12 TCL +
max(4 TCL, 500ns) - 0 1 1 1 0

1 1 N Synch. 1032 + 12 TCL +
max(4 TCL, 500ns) - 0 1 1 1 0

1 0 Y Synch.
1032 + 12 TCL +

max(4 TCL, 500ns) -
0 1 1 1 0

Activated by internal logic only for 1024 TCL

1 1 Y Synch.
1032 + 12 TCL +

max(4 TCL, 500ns) -
0 1 1 1 0

Activated by internal logic only for 1024 TCL

Software
Reset (2)

2. When Bidirectional is active (and with RPD =), it can be followed by a Short Hardware Reset and
consequently differently flagged (see Section 23.6: Bidirectional reset on page 459 for details).

x 0 N Synch. Not activated 0 0 0 1 0

x 0 N Synch. Not activated 0 0 0 1 0

0 1 Y Synch. Not activated 0 0 0 1 0

1 1 Y Synch. Activated by internal logic for 1024 TCL 0 0 0 1 0

Watchdog
Reset (2)

x 0 N Synch. Not activated 0 0 0 1 1

x 0 N Synch. Not activated 0 0 0 1 1

0 1 Y Synch. Not activated 0 0 0 1 1

1 1 Y Synch. Activated by internal logic for 1024 TCL 0 0 0 1 1

UM0407 System reset

 469/541

23.9.1 System start-up configuration
Although most programmable features are either selected during the initialization phase or
repeatedly during program execution, there are some features that must be selected earlier
because they are used for the first access of the program execution (for example internal or
external start selected via EA).

These selections are made during reset by the pins of PORT0 which are read at the end of
the internal reset sequence. During reset, internal pull-up devices are active on the PORT0
lines so their input level is high, if the respective pin is left open, or is low, if the respective
pin is connected to an external pull-down device. With the coding of the selections, as
shown below, in many cases the default option (high level), can be used.

The value on the upper byte of PORT0 (P0H) is latched into register RP0H upon reset, the
value on the lower byte (P0L) directly influences the BUSCON0 register (bus mode) or the
internal control logic of the ST10F272Zx.

Not all PORT0 bits are latched after the end of an internal reset. Depending on the reset
type, different bits are latched.

When RSTIN goes active, the PORT0 configuration input pins are not transparent for the
first 1024 TCL.

After that time only, the PORT0 pins are transparent and will be latched when internal reset
signal becomes inactive (see falling edge of internal signal RST in Figure 191 on page 448
to Figure 198 on page 457). To avoid unexpected behavior, the level of the PORT0
configuration input pins should not change while PORT0 is transparent.

Table 81. PORT0 latched configuration for the different reset events

X : Pin is sampled

- : Pin is not sampled

PORT0

C
lo

ck
 O

p
ti

o
n

s

S
eg

m
. A

d
d

r.
 L

in
es

C
h

ip
 S

el
ec

ts

W
R

 c
o

n
fi

g
.

B
u

s
T

yp
e

R
es

er
ve

d

B
S

L

R
es

er
ve

d

R
es

er
ve

d

A
d

ap
t

M
o

d
e

E
m

u
 M

o
d

e

Sample event

P
0H

.7

P
0H

.6

P
0H

.5

P
0H

.4

P
0H

.3

P
0H

.2

P
0H

.1

P
0H

.0

P
0L

.7

P
0L

.6

P
0L

.5

P
0L

.4

P
0L

.3

P
0L

.2

P
0L

.1

P
0L

.0
Software Reset - - - X X X X X X X - - - - - -

Watchdog Reset - - - X X X X X X X - - - - - -

Synchronous Short Hardware
Reset

- - - X X X X X X X X X X X X X

Synchronous Long Hardware
Reset

X X X X X X X X X X X X X X X X

Asynchronous Hardware
Reset

X X X X X X X X X X X X X X X X

Asynchronous Power-On
Reset

X X X X X X X X X X X X X X X X

System reset UM0407

470/541

Figure 209. PORT0 bits latched into the different registers after reset

RP0H (F108h / 84h) SFR Reset Value: - - xxh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CLKCFG SALSEL CSSEL WRC

R (1),(2)

1. RP0H.7 to RP0H.5 bits are loaded only during a long hardware reset. As pull-up resistors are active on
each Port P0H pins during reset, RP0H default value is ‘FFh’.

2. These bits are set according to Port0 configuration during any reset sequence.

R (2) R (2) R (2)

Bit Function

WRC

Write Configuration Control
‘0’: Pins WR acts as WRL, pin BHE acts as WRH

‘1’: Pins WR and BHE retain their normal function

CSSEL

Chip Select Line Selection (Number of active CS outputs)

0 0: 3 CS lines: CS2...CS0
0 1: 2 CS lines: CS1...CS0

1 0: No CS lines at all

1 1: 5 CS lines: CS4...CS0 (Default without pull-downs)

SALSEL

Segment Address Line Selection (Number of active segment address outputs)

0 0: 4 Bit segment address: A19...A16
0 1: No segment address lines at all

1 0: 8 Bit segment address: A23...A16

1 1: 2 Bit segment address: A17...A16 (Default without pull-downs)

L. L. L. L. L. L.H. H. H. H. L. L.H. H. H. H.

RP0H

Clock Port4
Logic

Port6
Logic

SYSCON BUSCON0

Internal Control Logic

7 6

2

P0L.7

P0L.7

79

BYTDIS WRCFG

PORT0

Bootstrap Loader

Generator

10 9

EA / VSTBY

ROMEN

10

UM0407 System reset

 471/541

Pins controlling the operation of the internal logic and the reserved pins are evaluated only
during a hardware triggered reset sequence.

The pins that influence the configuration of the ST10F272Zx are evaluated during any reset
sequence, even during software and watchdog timer triggered resets.

The configuration via P0H is latched in register RP0H for subsequent evaluation by
software. Register RP0H is described in Section 8: The external bus interface on page 179.

Note: The reserved pins, P0L.2 and P0L.3, must remain high during reset in order to ensure
proper operation of the ST10F272Zx. The load on those pins must be small enough for the
internal pull-up device to keep their level high, or external pull-up devices must ensure the
high level.

The following describes the different selections that are offered for reset configuration.

The default modes refer to pins at high level, without external pull-down devices connected.

Emulation mode: P0L.0

When low during reset, pin P0L.0 (EMU) selects the Emulation Mode. This mode allows the
access to integrated XBUS peripherals via the external bus interface pins in application
specific version of the ST10F272Zx. In addition also the RSTOUT pin floats to tristate rather
to be driven low. When the emulation mode is latched the CLKOUT output is automatically
enabled. This mode is used for special emulator purposes and is not used in basic
ST10F272Zx devices, so in this case P0L.0 should be held high.

Default: Emulation Mode is off.

Adapt mode: P0L.1

Pin P0L.1 (ADP) selects the Adapt Mode, when low during reset. In this mode the
ST10F272Zx goes into a passive state, which is similar to its state during reset.

The pins of the ST10F272Zx float to tristate or are deactivated via internal pull-up/pull-down
devices, as described for the reset state. In addition also the RSTOUT pin floats to tristate
rather than be driven low, and the on-chip oscillator is switched off.

This mode allows switching a ST10F272Zx that is mounted to a board virtually off, so an
emulator may control the board’s circuitry, even though the original ST10F272Zx remains in
its place. The original ST10F272Zx also may resume to control the board after a reset

CLKCFG

P0H.7-5 fCPU = fXTAL x F Note (1)

111 fXTAL x 4 Default configuration

110 fXTAL x 3

101 fXTAL x 8

100 fXTAL x 5

011 fXTAL Direct Drive (oscillator bypassed) (1)

010 fXTAL x 10

001 fXTAL x 0.5 CPU clock via prescaler (1)

000 fXTAL x 16

1. Refer to datasheet for more details about input clock ranges and limitations.

Bit Function

System reset UM0407

472/541

sequence with P0L.1 high.
Default: Adapt Mode is off.

Note: When XTAL1 is fed by an external clock generator (while XTAL2 is left open), this clock
signal may also be used to drive the emulator device.
However, if a crystal is used, the emulator device’s oscillator can use this crystal only, if at
least XTAL2 of the original device is disconnected from the circuitry (the output XTAL2 will
still be active in Adapt Mode).

Reserved: P0L.2 - P0L.3

These pins must be always left open (or driven high) during reset, to avoid ST10 enters
particular test mode and consequently does not work properly.

Default: Test Modes are off.

Bootstrap loader mode: P0L.4 - P0L.5

Pins P0L.4 and P0L.5 (BSL) activate the on-chip bootstrap loader modes. The bootstrap
loader allows moving the start code into the IRAM of the ST10F272Zx via the serial
interface ASC0 or CAN1. The MCU will remain in bootstrap loader mode until a hardware
reset with P0L.4 and P0L.5 both high or a software reset occurrence. Refer to Section 15:
The bootstrap loader on page 295 for details.

Default: The ST10F272Zx starts fetching code from location 00’0000h, the bootstrap loader
is off.

External bus type: P0L.6 - P0L.7

Pins P0L.7 and P0L.6 (BUSTYP) select the external bus type during reset, if an external
start is selected via pin EA. This allows the configuration of the external bus interface of the
ST10F272Zx even for the first code fetch after reset. The two bits are copied into bit-field
BTYP of register BUSCON0. P0L.7 controls the data bus width, while P0L.6 controls the
address output (multiplexed or de-multiplexed). This bit-field may be changed via software
after reset, if required.

PORT0 and PORT1 are automatically switched to the selected bus mode. In multiplexed bus
modes PORT0 drives both the 16-bit intra-segment address and the output data, while
PORT1 remains in high impedance state as long as no de-multiplexed bus is selected via
one of the BUSCON registers. In de-multiplexed bus modes PORT1 drives the 16-bit intra-
segment address, while PORT0 or P0L (according to the selected data bus width) drives the
output data.
For a 16-bit data bus BHE is automatically enabled, for an 8-bit data bus BHE is disabled via
bit BYTDIS in register SYSCON.

Default: 16-bit data bus with multiplexed addresses.

BTYP encoding External data bus width External address bus mode

0 0 8-bit Data De-multiplexed Addresses

0 1 8-bit Data Multiplexed Addresses

1 0 16-bit Data De-multiplexed Addresses

1 1 16-bit Data Multiplexed Addresses

UM0407 System reset

 473/541

Note: If an internal start is selected via pin EA, these two pins are disregarded and bit-field BTYP
of register BUSCON0 is cleared.

Write configuration: P0H.0

Pin P0H.0 (WRC) selects the initial operation of the control pins WR and BHE during reset.
When high, this pin selects the standard function, which is WR control and BHE. When low,
it selects the alternate configuration, WRH and WRL. Thus even the first access after a
reset can go to a memory controlled via WRH and WRL. This bit is latched in register RP0H
and its inverted value is copied into bit WRCFG in register SYSCON.

Default: Standard function (WR control and BHE).

Chip select lines: P0H.1 - P0H.2

Pins P0H.2 and P0H.1 (CSSEL) define the number of active chip select signals during reset.

This allows to select which pins of Port6 drive external CS signals and which are used for
general purpose I/O. The two bits are latched in register RP0H.

Default: All five chip select lines active (CS4...CS0).

Note: The selected number of CS signals cannot be changed via software after reset.

Segment address lines: P0H.3 - P0H.4

Pins P0H.4 and P0H.3 (SALSEL) define the number of active segment address lines during
reset. This determines which pins of Port4 are used as address line or as I/O line. The two
bits are latched in register RP0H.

Depending on the system architecture the required address space is chosen and accessible
right from the start, so the initialization routine can directly access all locations without prior
programming.

The required pins of Port4 are automatically switched to address output mode.

Even if not all segment address lines are enabled on Port4, the ST10F272Zx internally uses
its complete 24-bit addressing mechanism.

This allows the restriction of the width of the effective address bus, while still deriving CS
signals from the complete addresses.

CSSEL Chip select lines Note

1 1 Five: CS4...CS0 Default without pull-downs

1 0 None Port6 pins free for I/O

0 1 Two: CS1...CS0

0 0 Three: CS2...CS0

SALSEL Segment address lines Directly accessible address space

1 1 Two: A17...A16 256 Kbytes (Default without pull-downs)

1 0 Eight: A23...A16 16 Mbytes (Maximum)

0 1 None 64 Kbytes (Minimum)

0 0 Four: A19...A16 1 Mbyte

System reset UM0407

474/541

Default: 2-bit segment address (A17...A16) allowing access to 256 Kbytes.

Note: The selected number of segment address lines cannot be changed via software after reset.

Clock generation control: P0H.5 - P0H.6 - P0H.7

Pins P0H.7, P0H.6 and P0H.5 (CLKCFG) select the clock generation mode (on-chip PLL)
during reset. The oscillator clock either directly feeds the CPU and peripherals (direct drive)
or it is fed to the on-chip PLL which then provides the CPU clock signal (selectable multiple
of the oscillator frequency). These bits are latched in register RP0H (see System start-up
configuration on page 469).

UM0407 Power reduction modes

 475/541

24 Power reduction modes

Several different power reduction modes with different levels of power reduction have been
implemented in the ST10F272Z2, which may be entered under software and/or hardware
control.

In Idle mode the CPU is stopped, while the peripherals continue their operation. Idle mode
can be terminated by any reset or interrupt request.

In power down mode both the CPU and the peripherals are stopped. power down mode can
be configured by software in order to be terminated only by a hardware reset, by a transition
on enabled fast external interrupt pins, by an interrupt generated by the Real Time Clock, by
an interrupt generated by the activity on CAN’s and I2C module interfaces.

Note: All external bus actions are completed before Idle or power down mode is entered. However,
Idle or power down mode is not entered if READY is enabled, but has not been activated
(driven low for negative polarity, or driven high for positive polarity) during the last bus
access.

When Real Time Clock module is used, when the device is in power down mode a reference
clock is needed. In this case, two possible configurations may be selected by the user
application according to the desired level of power reduction:

● A 32 kHz crystal is connected to the low-power oscillator pins (XTAL3 / XTAL4) and
running. In this case the main oscillator is stopped when power down mode is entered,
while the Real Time Clock continues counting using 32 kHz clock signal as reference.
The presence of a running low-power oscillator is detected after the Power-On: This
clock is immediately assumed (if present, or as soon as it is detected) as reference for
the Real Time Clock counter and it will be maintained forever (unless specifically
disabled via software, see Section 22: Real time clock on page 438).

● Only the main oscillator is running (XTAL1 / XTAL2 pins). In this case the main
oscillator is not stopped when Power Down is entered, and the Real Time Clock
continues counting using the main oscillator clock signal as reference.

Standby mode is achieved by turning off the main power supply (VDD) while VSTBY remains
the only active supply for the device. In this condition VSTBY pin provides the supply to a
portion of the XRAM (the so called standby RAM, 16 Kbyte in this device) through a
dedicated on-chip low power Voltage Regulator: The content of this RAM can be retained
and will be available at next system start-up.

Note: VSTBY shall be always powered in the range of 4.5-5.5Volt: 6Volt is acceptable for a reduced
period of time during the life of the device, refer to Electrical Characteristics section of the
device datasheet for details; 4Volt is acceptable when no RTC and 32 kHz Oscillator are
used.

Exception for VSTBY value is allowed when RSTIN pin is held low and the main VDD is on:
This will allow to properly drive pin EA (mapped together with VSTBY) and configure the
access to external memory. After RSTIN pin is released, VSTBY shall return high, to be used
as VSTBY supply voltage.

When the real time clock module is counting, it is still possible to enter standby mode. In
particular, when the on-chip low-power oscillator (XTAL3 / XTAL4 pins) provides a 32 kHz
clock reference for the counter, the main power supply can be turned off since both real time
clock module and the low-power oscillator circuitries are powered (directly or through the
low-power voltage regulator) by the voltage applied on VSTBY pin.

Power reduction modes UM0407

476/541

Note: If the on-chip low-power oscillator is not in use, the Real Time Clock module can only be
driven by the main oscillator: in this case it is not possible to turn off the main power supply
(VDD) of the device, since the main oscillator circuitry would stop working. In this case,
standard power down mode is recommended (VDD on, so RTC can be driven by the main
oscillator).

24.1 Idle mode
The power consumption of the ST10F272Z2 microcontroller can be decreased by entering
Idle mode. In this mode all peripherals, including the watchdog timer, continue to operate
normally, only the CPU operation is halted.

Idle mode is entered after the IDLE instruction has been executed and the instruction before
the IDLE instruction has been completed. To prevent unintentional entry into Idle mode, the
IDLE instruction has been implemented as a protected 32-bit instruction.

Idle mode is terminated by interrupt request from any enabled interrupt source whose
individual Interrupt Enable flag has been set before the Idle mode was entered, regardless
of bit IEN.

For a request selected for CPU interrupt service the associated interrupt service routine is
entered if the priority level of the requesting source is higher than the current CPU priority
and the interrupt system is globally enabled. After the RETI (Return from Interrupt)
instruction of the interrupt service routine is executed, the CPU continues executing the
program with the instruction following the IDLE instruction. Otherwise, if the interrupt
request cannot be serviced because of a too low priority or a globally disabled interrupt
system, the CPU immediately resumes normal program execution with the instruction
following the IDLE instruction.

For a request which was programmed for PEC service, a PEC data transfer is performed if
the priority level of this request is higher than the current CPU priority and if the interrupt
system is globally enabled. After the PEC data transfer has been completed the CPU
remains in Idle mode. Otherwise, if the PEC request cannot be serviced because of a too
low priority or a globally disabled interrupt system, the CPU does not remain in Idle mode
but continues program execution with the instruction following the IDLE instruction (see
Figure 210 on page 477).

Table 82. Power reduction modes summary

Mode
V

D
D

V
S

T
B

Y

C
P

U

P
er

ip
h

er
al

s

R
T

C

M
ai

n
 O

S
C

32
kH

z
O

S
C

S
T

B
Y

 X
R

A
M

X
R

A
M

Idle
on on off on off on off biased biased
on on off on on on on biased biased

on on off on on on off biased biased

Power down
on on off off off off off biased biased
on on off off on on off biased biased

on on off off on off on biased biased

Standby
off on off off off off off biased off

off on off off on off on biased off

UM0407 Power reduction modes

 477/541

Idle mode can also be terminated by a Non-Maskable Interrupt, with a high to low transition
on the NMI pin. After Idle mode has been terminated by an interrupt or NMI request, the
interrupt system performs a round of prioritization to determine the highest priority request.
In the case of an NMI request, the NMI trap will always be entered.

Any interrupt request whose individual Interrupt Enable flag was set before Idle mode was
entered will terminate Idle mode regardless of the current CPU priority. The CPU will not go
back into Idle mode when a CPU interrupt request is detected, even when the interrupt was
not serviced because of a higher CPU priority or a globally disabled interrupt system
(IEN = ‘0’). The CPU will only go back into Idle mode when the interrupt system is globally
enabled (IEN = ‘1’) and a PEC service on a priority level higher than the current CPU level is
requested and executed.

Figure 210. Transitions between Idle mode and active mode

Note: An interrupt request which is individually enabled and assigned to priority level 0 will
terminate Idle mode. The associated interrupt vector will not be accessed, however.

The watchdog timer may be used to monitor the Idle mode: An internal reset will be
generated if no interrupt or NMI request occurs before the watchdog timer overflows. To
prevent the watchdog timer from overflowing during Idle mode it must be programmed to a
reasonable duration interval before Idle mode is entered.

24.2 Power down mode
To further reduce the power consumption the microcontroller can be switched to Power
Down mode. Clocking of all internal blocks is stopped, the contents of the on-chip RAM
modules, however, are preserved through the voltage supplied via the VDD pins (and on-
chip voltage regulator). The watchdog timer is stopped in power down mode also. The only
exception could be the Real Time Clock if opportunely programmed and one of the two
oscillator circuits as a consequence (either the main or the low-power on-chip oscillator).

Before entering power down mode (by executing the instruction PWRDN), bit VREGOFF in
XMISC register must be set: in this way, as soon as, the PWRDN command is executed, the
main voltage regulator is turned off, and only the so called low power voltage regulator
remains active.

Note: Leaving the main regulator active during Power Down may lead to unexpected behavior (ex:
CPU wake-up) and power consumption higher than what specified.

XMISC (EB46h) XBUS Reset Value: 0000h

Active
Mode

Idle
Mode

IDLE instruction

CPU Interrupt Request

Denied PEC Request Executed
PEC Request

denied

accepted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– VREG
OFF

CAN
CK2

CAN
PAR

ADC
MUX

– RW RW RW RW

Power reduction modes UM0407

478/541

The ST10F272Z2 provides two different operating Power Down modes:

● Protected Power Down mode,

● Interruptible Power Down mode.

The Power Down operating mode is selected by the bit PWDCFG in SYSCON register.

SYSCON (FF12h / 89h) SFR Reset Value: 0xx0h

Reset Value: 0000 0xx0 x000 0000b

Note: Register SYSCON cannot be changed after execution of the EINIT instruction.

24.2.1 Protected power down mode

This mode is selected by clearing the bit PWDCFG in register SYSCON to ‘0’.

In this mode, the power down mode can only be entered if the NMI (Non Maskable
Interrupt) pin is externally pulled low while the PWRDN instruction is executed.

This feature can be used in conjunction with an external power failure signal which pulls the
NMI pin low when a power failure is imminent. The microcontroller will enter the NMI trap

Bit Function

ADCMUX

Port1L ADC Channels Enable

‘0’: Analog inputs on port P5.y can be converted (default configuration)

‘1’: Analog inputs on port P1.z can be converted. Only 8 channels can be managed

CANPAR

CAN Parallel Mode Selection

‘0’:CAN2 is mapped on P4.4/P4.7, while CAN1 is mapped on P4.5/P4.6

‘1’:CAN1 and CAN2 are mapped in parallel on P4.5/P4.6. This is effective only if
both CAN1 and CAN2 are enabled through setting of bits CAN1EN and CAN2EN in
XPERCON register.

If CAN1 is disabled, CAN2 remains on P4.4/P4.7 even if bit CANPAR is set.

CANCK2

CAN Clock divider by 2 disable
‘0’:Clock provided to CAN modules is CPU clock divided by 2 (mandatory when
fCPU is higher than 40 MHz)

‘1’: Clock provided to CAN modules is directly CPU clock

VREGOFF
Main Voltage Regulator disable in Power Down mode
‘0’: Default value after reset and when Power Down is not used
‘1’: On-chip Main Regulator is turned off when power down mode is entered

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

PWD
CFG

OWD
DIS

BDR
STEN XPEN VISI

BLE
XPER-
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PWDCFG Power Down Mode Configuration Control

‘0’: power down mode can only be entered during PWRDN instruction execution if
NMI pin is low, otherwise the instruction has no effect. To exit Power Down Mode,
an external reset must be provided by asserting the RSTIN pin.
‘1’: power down mode can only be entered during PWRDN instruction execution if
all enabled Fast External Interrupt (EXxIN) pins are in their inactive level. Exiting
this mode can be done by asserting one enabled EXxIN pin and/or by an interrupt
coming from the Real Time Clock (if running), and/or by an interrupt coming from
CAN1/CAN2/I2C serial interfaces and/or by asserting RSTIN pin.

UM0407 Power reduction modes

 479/541

routine which can save the internal state into RAM. After the internal state has been saved,
the trap routine may set a flag or write a certain bit pattern into specific RAM locations, and
then execute the PWRDN instruction. If the NMI pin is still low at this time, power down
mode will be entered, otherwise program execution continues.

Exiting power down mode

In this mode, the only way to exit power down mode is with an external hardware reset.

The initialization routine (executed upon reset) can check the identification flag (see
WDTCON - Section Section 14: Watchdog timer on page 290) or bit pattern within RAM to
determine whether the controller was initially switched on, or whether it was properly
restarted from Power Down mode.

24.2.2 Interruptible power down mode

This mode is selected by setting the bit PWDCFG in register SYSCON to ‘1’.

In this mode, the power down mode can be entered if enabled Fast External Interrupt pins
(EXxIN pins, alternate functions of Port2 pins, with x = 7...0) are in their inactive level. This
inactive level is configured with the EXIxES bit field in the EXICON register, as follow:

EXICON (F1C0h / E0h) ESFR Reset Value: 0000h

Exiting power down mode

When Interruptible power down mode is entered, the CPU and peripheral clocks are frozen,
and the oscillator and PLL are stopped (when RTC is disabled, so there is no need for a
clock reference). Interruptible power down mode can be exited by either asserting RSTIN or
one of the enabled EXxIN pin (Fast External Interrupt). In case the Real Time Clock module
needs to be running during Power Down, either the main or the low-power oscillator is not
stopped. The PLL, on the contrary is nevertheless switched off.

If power down mode is exited by a hardware RESET, RSTIN pin must be held low until the
oscillator (if not already running for Real Time Clock operation) and PLL have restarted and
stabilized.

EXxIN inputs are normally sampled interrupt inputs. However, the power down mode
circuitry uses them as level-sensitive inputs. An EXxIN (x = 7...0) Interrupt Enable bit (bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

RW RW RW RW RW RW RW RW

Bit Function

EXIxES
(x = 7...0)

External Interrupt x Edge Selection Field (x = 7...0)

0 0: Fast external interrupts disabled: standard mode
EXxIN pin not taken in account for entering/exiting Power Down mode.

0 1: Interrupt on positive edge (rising)
Enter power down mode if EXiIN = ‘0’, exit if EXxIN = ‘1’ (ref as ‘high’ active level)

1 0: Interrupt on negative edge (falling)
Enter power down mode if EXiIN = ‘1’, exit if EXxIN = ‘0’ (ref as ‘low’ active level)

1 1: Interrupt on any edge (rising or falling)
Always enter Power Down mode, exit if EXxIN level changed.

Power reduction modes UM0407

480/541

CCxIE in respective CCxIC register) needs not to be set to bring the device out of Power
Down mode.

In order to guarantee a proper stabilization time before restart the operation when exiting
from Power Down (especially if the main oscillator was stopped: typically when Real Time
Clock module is not used, or when the low-power on-chip oscillator circuit is used to provide
the reference signal to the Real Time Clock module), an external RC circuit must be
connected to RPD pin (Return from Power Down), as shown in the following Figure 211.

Figure 211. RPD pin: external circuit to exit power down

To exit power down mode with external interrupt, an EXxIN pin has to be asserted for at
least 40ns (x = 7...0). This signal enables the internal main oscillator (if not already running)
and PLL circuitry, and also turns on the internal weak pull-down on RPD pin (see following
Figure 212 on page 481). The discharging of the external capacitor provides a delay that
allows the oscillator and PLL circuits to stabilize before the internal CPU and Peripheral
clocks are enabled. When the voltage on RPD pin drops below the threshold voltage (about
2.5 V), the Schmitt Trigger clears Q2 flip-flop, thus enabling the CPU and Peripheral clocks,
and the device resumes code execution.

If the Interrupt was enabled (bit CCxIE = ‘1’ in the respective CCxIC register) before entering
Power Down mode, the device executes the interrupt service routine, and then resumes
execution after the PWRDN instruction (see note below). If the interrupt was disabled, the
device executes the instruction following PWRDN instruction, and the Interrupt Request
Flag (bit CCxIR in the respective CCxIC register) remains set until it is cleared by software.

Note: Due to internal pipeline, the instruction that follows the PWRDN instruction is executed
before the CPU performs a call of the interrupt service routine when exiting Power Down
mode.

RPD

220 k-1M Ohm (Typ)

1µF (Typ)

ST10F272Z2

+

VDD

C0

R0

UM0407 Power reduction modes

 481/541

Figure 212. Simplified power down exit circuitry

Exiting from Interruptible Power Down is also possible through the CAN Receive lines and
I2C Serial Clock line: if properly enabled (through CC8IC and CC9IC registers), an activity
on pins P4.5 and P4.4 is interpreted as a fast external interrupt event able to wake-up the
device. For more details refers also to Section 5.6.1: Fast external interrupts on page 111.

Figure 213. Power down exit sequence using an external interrupt (PLL x 2)

24.2.3 Real time clock and power down mode

If the Real Time Clock is running (RTOFF bit of RTCCON register cleared), when PWRDN
instruction is executed, the oscillator circuit which is providing the reference to the counter is
not stopped. The selection of which of the two on-chip oscillator amplifier circuits shall
provide the reference clock to the Real Time Clock counter is determined whenever a

Enter

External
Interrupt

Reset

stop PLL
stop oscillator

VDD

D Q

Qcd system clock

CPU and Peripherals Clocks

RPD

VDD

exit_pwrd

en_clk_n

Pull-Up

Weak Pull-Down
(~ 200 µA)

Power Down

Q2

VDD

D Q

Qcd

Q1

CPU clk

Power Down Signal

External

RPD

ExitPwrd

XTAL1

(Internal)

Interrupt

(Internal)

~ 2.5 V

Delay for oscillator / PLL
stabilization

Power reduction modes UM0407

482/541

Power-On sequence is applied on main VDD pins. By default after Power-On, the reference
clock is the main oscillator; immediately after exiting from Power-On reset (RSTIN pin
released), an internal mechanism is able to detect the presence or absence of a clock signal
from the low-power oscillator (32 kHz, see XTAL3 / XTAL4 pins). In case this oscillator is
running, the reference for the Real Time Clock module becomes the 32 kHz ones (three to
five 32 kHz clock pulses later). On the contrary, if no oscillation is detected on XTAL3 /
XTAL4, the reference for the counter will remain the one from the main on-chip oscillator
(XTAL1 / XTAL2).

Note: In case the switch occurred (32 kHz reference selected), it is possible to come back to the
default configuration either via software by setting the bit OFF32 of RTCCON register or
through a new Power-On sequence.

When no external 32 kHz crystal is connected, XTAL3 and XTAL4 pins shall be properly
biased to a steady value, to avoid any spike, that would cause an unwanted switching of the
reference clock for the Real Time Clock counter, from the main oscillator (running) signal to
the 32 kHz oscillator (not running, only noisy).

24.3 Standby mode
In Standby mode, the RAM array is maintained powered through the dedicated pin VSTBY
when ST10F272Z2 main power supply (VDD) is turned off.

To enter standby mode is mandatory to held the device under reset: once the device is
under reset, the RAM is disabled (see XRAM2EN bit of XPERCON register), and its digital
interface is frozen in order to avoid any kind of data corruption. It is then possible to turn off
the main VDD provided that VSTBY is on.

A dedicated embedded low-power voltage regulator is implemented to generate the internal
low voltage supply (about 1.65V in standby mode) to bias all those circuits that shall remain
active: the portion of XRAM (16 Kbytes), the RTC counters and 32 kHz on-chip oscillator
amplifier.

In normal running mode (that is when main VDD is on) the VSTBY pin can be tied to VSS
during reset to exercise the EA functionality associated with the same pin: The voltage
supply for the circuitries which are usually biased with VSTBY (see in particular the 32 kHz
oscillator used in conjunction with Real Time Clock module) is granted by the active main
VDD.

It must be noted that standby mode can generate problems associated with the usage of
different power supplies in CMOS systems; particular attention must be paid when the
ST10F272Z2 I/O lines are interfaced with other external CMOS integrated circuits: if VDD of
ST10F272Z2 becomes (for example in standby mode) lower than the output level forced by
the I/O lines of these external integrated circuits, the ST10F272Z2 could be directly powered
through the inherent diode existing on ST10F272Z2 output driver circuitry. The same is valid
for ST10F272Z2 interfaced to active/inactive communication buses during standby mode:
current injection can be generated through the inherent diode.
Furthermore, the sequence of turning on/off of the different voltage could be critical for the
system (not only for the ST10F272Z2 device). The device standby mode current (ISTBY) may
vary while VDD to VSTBY (and vice versa) transition occurs: some current flows between VDD
and VSTBY pins. System noise on both VDD and VSTBY can contribute to increase this
phenomenon.

UM0407 Power reduction modes

 483/541

24.3.1 Entering standby mode

As already said, to enter Standby Mode XRAM2EN bit in the XPERCON Register must be
cleared (note that this bit is automatically reset by any kind of RESET event, see
Chapter 23: System reset on page 446): This allows to immediately freeze the RAM
interface, avoiding any data corruption. As a consequence of a RESET event, the RAM
Power Supply is switched to the internal low-voltage supply V18SB (derived from VSTBY
through the low-power voltage regulator). The RAM interface will remain frozen until the bit
XRAM2EN is set again by software initialization routine (at next exit from main VDD Power-
On reset sequence).

Since V18 is falling down (as a consequence of VDD turning off), it can happen that the
XRAM2EN bit is no longer able to guarantee its content (logic “0”), being the XPERCON
Register powered by internal V18. This does not generate any problem, because the
standby mode switching dedicated circuit continues to confirm the RAM interface freezing,
irrespective the XRAM2EN bit content; XRAM2EN bit status is considered again when
internal V18 comes back over internal standby reference V18SB.

If internal V18 becomes lower than internal standby reference (V18SB) of about 0.3-0.45V
with bit XRAM2EN set, the RAM Supply switching circuit is not active: in case of a
temporary drop on internal V18 voltage versus internal V18SB during normal code execution,
no spurious standby mode switching can occur (the RAM is not frozen and can still be
accessed).

The ST10F272Z2 Core module, generating the RAM control signals, is powered by internal
V18 supply; during turning off transient these control signals follow the V18, while RAM is
switched to V18SB internal reference. It could happen that a high level of RAM write strobe
from ST10F272Z2 Core (active low signal) is low enough to be recognized as a logic “0” by
the RAM interface (due to V18 lower than V18SB): The bus status could contain a valid
address for the RAM and an unwanted data corruption could occur. For this reason, an extra
interface, powered by the switched supply, is used to prevent the RAM from this kind of
potential corruption mechanism.

Caution: During Power-Off phase, it is important that the external hardware maintains a stable ground
level on RSTIN pin, without any glitch, in order to avoid spurious exiting from reset status
with unstable power supply.

24.3.2 Exiting standby mode

After the system has entered the Standby Mode, the procedure to exit this mode consists of
a standard Power-On sequence, with the only difference that the RAM is already powered
through V18SB internal reference (derived from VSTBY pin external voltage).

It is recommended to held the device under RESET (RSTIN pin forced low) until external
VDD voltage pin is stable. Even though, at the very beginning of the Power-On phase, the
device is maintained under reset by the internal low voltage detector circuit (implemented
inside the main voltage regulator) until the internal V18 becomes higher than about 1.0V,
there is no warranty that the device stays under reset status if RSTIN is at high level
during power ramp up. So, it is important the external hardware is able to guarantee a
stable ground level on RSTIN along the Power-On phase, without any temporary
glitch.

The external hardware shall be responsible to drive low the RSTIN pin until the VDD is
stable, even though the internal LVD is active. Besides, it is requested an additional time (at
least 1ms) to allow internal voltage regulator stabilization before releasing the RSTIN pin:

Power reduction modes UM0407

484/541

This is necessary since the internal Flash has to begin its initialization phase (starting when
RSTIN pin is released) with an already stable V18.

Once the internal Reset signal goes low, the RAM (still frozen) power supply is switched to
the main V18.

At this time, everything becomes stable, and the execution of the initialization routines can
start: XRAM2EN bit can be set, enabling the RAM.

24.3.3 Real time clock and standby mode

When standby mode is entered (turning off the main supply VDD), the Real Time Clock
counting can be maintained running in case the on-chip low-power oscillator is used to
provide the reference to the counter. This is not possible if the main oscillator is used as
reference for the counter: being the main oscillator powered by VDD, once this is switched
off, the oscillator is stopped.

24.4 Output pin status
During Idle mode the CPU clocks are turned off, while all peripherals continue their
operation in the normal way. Therefore all ports pins, which are configured as general
purpose output pins, output the last data value which was written to their port output latches.
If the alternate output function of a port pin is used by a peripheral, the state of the pin is
determined by the operation of the peripheral. Port pins which are used for bus control
functions go into that state which represents the inactive state of the respective function
(WR), or to a defined state which is based on the last bus access (BHE). Port pins which are
used as external address/data bus hold the address/data which was output during the last
external memory access before entry into Idle mode under the following conditions:

P0H outputs the high byte of the last address if a multiplexed bus mode with 8-bit data bus is
used, otherwise P0H is floating. P0L is always floating in Idle mode.

PORT1 outputs the lower 16 bits of the last address if a de-multiplexed bus mode is used,
otherwise the output pins of PORT1 represent the port latch data.

Port4 outputs the segment address for the last access on those pins that were selected
during reset, otherwise the output pins of Port4 represent the port latch data.

During power down mode the oscillator and the clocks to the CPU and to the peripherals
are turned off. Like in Idle mode, all port pins which are configured as general purpose
output pins output the last data value which was written to their port output latches.

When the alternate output function of a port pin is used by a peripheral the state of this pin is
determined by the last action of the peripheral before the clocks were switched off.

Table 83 summarizes the state of all ST10F272Z2 output pins during Idle and Power Down
mode.

UM0407 Power reduction modes

 485/541

Note: 1. High if EINIT was executed before entering Idle or Power Down mode, Low otherwise.

2. For multiplexed buses with 8-bit data bus.

3. For de-multiplexed buses.

4. The CS signal that corresponds to the last address remains active (low), all other enabled
CS signals remain inactive (high). By accessing an on-chip X-Peripheral prior to entering a
power save mode all external CS signals can be deactivated.

Table 83. Output pin state during Idle and power down modes

ST10F272Z2
output pins

Idle mode Power down mode

No
external bus

External bus
enabled

No
external bus

External bus
enabled

ALE Low Low Low Low

RD, WR High High High High

CLKOUT Active Active High High

RSTOUT 1 1 1 1

P0L Port Latch Data Floating Port Latch Data Floating

P0H Port Latch Data A15...A8 2 / Float Port Latch Data A15...A8 2 / Float

PORT1 Port Latch Data Last Address 3 /
Port Latch Data

Port Latch Data Last Address 3 /
Port Latch Data

Port4 Port Latch Data Port Latch
Data/Last segment

Port Latch Data Port Latch
Data/Last segment

BHE Port Latch Data Last value Port Latch Data Last value

HLDA Port Latch Data Last value Port Latch Data Last value

BREQ Port Latch Data High Port Latch Data High

CSx Port Latch Data Last value 4 Port Latch Data Last value 4

Other Port
Output Pins

Port Latch Data /
Alternate function

Port Latch Data /
Alternate function

Port Latch Data /
Alternate function

Port Latch Data /
Alternate function

Programmable output clock divider UM0407

486/541

25 Programmable output clock divider

A specific register mapped on the XBUS allows to choose the division factor on the
CLKOUT signal (P3.15). This register is mapped on X-Miscellaneous memory address
range.

XCLKOUTDIV (EB02h) XBUS Reset Value: - - 00h

When CLKOUT function is enabled by setting bit CLKEN of register SYSCON, by default the
CPU clock is output on P3.15. Setting bit XMISCEN of register XPERCON and bit XPEN of
register SYSCON, it is possible to program the clock prescaling factor: in this way on P3.15
a prescaled value of the CPU clock can be output.

When CLKOUT function is not enabled (bit CLKEN of register SYSCON cleared), P3.15
does not output any clock signal, even though XCLKOUTDIV register is programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DIV

RW

Bit Function

DIV

Clock Divider setting

‘00h’: fCLKOUT = fCPU
‘01h’: fCLKOUT = fCPU / 2
‘02h’: fCLKOUT = fCPU / 3
‘03h’: fCLKOUT = fCPU / 4

:
‘FFh’: fCLKOUT = fCPU / 256

UM0407 Register set

 487/541

26 Register set

This section summarizes all registers implemented in the ST10F272Z2, and explains the
description format used in the sections describing the function and layout of the SFRs.

For easy reference the registers (except for GPRs) are ordered in two ways:

● Ordered by register name, to find the location of a specific register.

● Ordered by address, to check which register a given address references.

26.1 Register description format
Along the document, the function and the layout of the different registers is described in a
specific format. The examples below explain this format.

A word register looks like this:

REG_NAME (A16h / A8h) SFR/ESFR/XBUS Reset Value: ****h

A byte register looks like this:

REG_NAME (A16h / A8h) SFR/ESFR/XBUS Reset Value: - - **h

Elements:

REG_NAME Name of this register

A16h / A8h Long 16-bit address / Short 8-bit address

SFR/ESFR/XBUS Register space (SFR, ESFR or XBUS Register)

(* *) * * Register contents after reset

0/1: defined

x: undefined (undefined (’x’) after Power-On)

U: unchanged

hw bit bits that are set/cleared by hardware are written in bold

- bits that are not implemented or reserved: never write to these bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - -
wr

only
hw
bit

rd
only

std
bit

hw
bit

bit field bit field

W RW R RW RW RW RW

Bit Function

bit(field) name
Explanation of bit(field) name

Description of the functions controlled by this bit(field).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - -
std
bit

hw
bit

bit field bit field

RW RW RW RW

Register set UM0407

488/541

26.2 General purpose registers (GPRs)
The GPRs form the register bank that the CPU works with. This register bank may be
located anywhere within the IRAM via the Context Pointer (CP). Due to the addressing
mechanism, GPR banks can only reside within the IRAM. All GPRs are bit-addressable.

The first 8 GPRs (R7...R0) may also be accessed byte wise. Other than with SFRs, writing
to a GPR byte does not affect the other byte of the respective GPR. The respective halves of
the byte-accessible registers receive special names:

Table 84. General purpose registers (GPRs)

Name
Physical
Address

8-bit
address

Description
Reset
value

R0 (CP) + 0 F0h CPU General Purpose (word) Register R0 UUUUh

R1 (CP) + 2 F1h CPU General Purpose (word) Register R1 UUUUh

R2 (CP) + 4 F2h CPU General Purpose (word) Register R2 UUUUh

R3 (CP) + 6 F3h CPU General Purpose (word) Register R3 UUUUh

R4 (CP) + 8 F4h CPU General Purpose (word) Register R4 UUUUh

R5 (CP) + 10 F5h CPU General Purpose (word) Register R5 UUUUh

R6 (CP) + 12 F6h CPU General Purpose (word) Register R6 UUUUh

R7 (CP) + 14 F7h CPU General Purpose (word) Register R7 UUUUh

R8 (CP) + 16 F8h CPU General Purpose (word) Register R8 UUUUh

R9 (CP) + 18 F9h CPU General Purpose (word) Register R9 UUUUh

R10 (CP) + 20 FAh CPU General Purpose (word) Register R10 UUUUh

R11 (CP) + 22 FBh CPU General Purpose (word) Register R11 UUUUh

R12 (CP) + 24 FCh CPU General Purpose (word) Register R12 UUUUh

R13 (CP) + 26 FDh CPU General Purpose (word) Register R13 UUUUh

R14 (CP) + 28 FEh CPU General Purpose (word) Register R14 UUUUh

R15 (CP) + 30 FFh CPU General Purpose (word) Register R15 UUUUh

Table 85. General purpose registers (GPRs) bit wise addressing

Name
Physical
address

8-bit
address

Description
Reset
value

RL0 (CP) + 0 F0h CPU General Purpose (byte) Register RL0 UUh

RH0 (CP) + 1 F1h CPU General Purpose (byte) Register RH0 UUh

RL1 (CP) + 2 F2h CPU General Purpose (byte) Register RL1 UUh

RH1 (CP) + 3 F3h CPU General Purpose (byte) Register RH1 UUh

RL2 (CP) + 4 F4h CPU General Purpose (byte) Register RL2 UUh

RH2 (CP) + 5 F5h CPU General Purpose (byte) Register RH2 UUh

RL3 (CP) + 6 F6h CPU General Purpose (byte) Register RL3 UUh

RH3 (CP) + 7 F7h CPU General Purpose (byte) Register RH3 UUh

UM0407 Register set

 489/541

26.3 Special function registers ordered by name
The following table lists all SFRs which are implemented in the ST10F272Z2 in alphabetical
order.

● Bit-addressable SFRs are marked with the letter “b” in column “Name”.

● SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in
column “Physical Address”.

RL4 (CP) + 8 F8h CPU General Purpose (byte) Register RL4 UUh

RH4 (CP) + 9 F9h CPU General Purpose (byte) Register RH4 UUh

RL5 (CP) + 10 FAh CPU General Purpose (byte) Register RL5 UUh

RH5 (CP) + 11 FBh CPU General Purpose (byte) Register RH5 UUh

RL6 (CP) + 12 FCh CPU General Purpose (byte) Register RL6 UUh

RH6 (CP) + 13 FDh CPU General Purpose (byte) Register RH6 UUh

RL7 (CP) + 14 FEh CPU General Purpose (byte) Register RL7 UUh

RH7 (CP) + 15 FFh CPU General Purpose (byte) Register RH7 UUh

Table 85. General purpose registers (GPRs) bit wise addressing (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Table 86. Special function registers ordered by name

Name
Physical
address

8-bit
address

Description
Reset
value

ADCICb FF98h CCh
A/D Converter end of Conversion Interrupt
Control Reg.

- - 00h

ADCONb FFA0h D0h A/D Converter Control Register 0000h

ADDAT FEA0h 50h A/D Converter Result Register 0000h

ADDAT2 F0A0hE 50h A/D Converter 2 Result Register 0000h

ADDRSEL1 FE18h 0Ch Address Select Register 1 0000h

ADDRSEL2 FE1Ah 0Dh Address Select Register 2 0000h

ADDRSEL3 FE1Ch 0Eh Address Select Register 3 0000h

ADDRSEL4 FE1Eh 0Fh Address Select Register 4 0000h

ADEICb FF9Ah CDh
A/D converter overrun error interrupt control
register

- - 00h

BUSCON0b FF0Ch 86h Bus Configuration Register 0 0xx0h 1)

BUSCON1b FF14h 8Ah Bus Configuration Register 1 0000h

BUSCON2b FF16h 8Bh Bus Configuration Register 2 0000h

BUSCON3b FF18h 8Ch Bus Configuration Register 3 0000h

BUSCON4b FF1Ah 8Dh Bus Configuration Register 4 0000h

CAPREL FE4Ah 25h GPT2 Capture/Reload Register 0000h

Register set UM0407

490/541

CC0 FE80h 40h CAPCOM Register 0 0000h

CC0ICb FF78h BCh CAPCOM Register 0 Interrupt Control Register - - 00h

CC1 FE82h 41h CAPCOM Register 1 0000h

CC1ICb FF7Ah BDh CAPCOM Register 1 Interrupt Control Register - - 00h

CC2 FE84h 42h CAPCOM Register 2 0000h

CC2ICb FF7Ch BEh CAPCOM Register 2 Interrupt Control Register - - 00h

CC3 FE86h 43h CAPCOM Register 3 0000h

CC3ICb FF7Eh BFh CAPCOM Register 3 Interrupt Control Register - - 00h

CC4 FE88h 44h CAPCOM Register 4 0000h

CC4ICb FF80h C0h CAPCOM Register 4 Interrupt Control Register - - 00h

CC5 FE8Ah 45h CAPCOM Register 5 0000h

CC5ICb FF82h C1h CAPCOM Register 5 Interrupt Control Register - - 00h

CC6 FE8Ch 46h CAPCOM Register 6 0000h

CC6ICb FF84h C2h CAPCOM Register 6 Interrupt Control Register - - 00h

CC7 FE8Eh 47h CAPCOM Register 7 0000h

CC7ICb FF86h C3h CAPCOM Register 7 Interrupt Control Register - - 00h

CC8 FE90h 48h CAPCOM Register 8 0000h

CC8ICb FF88h C4h CAPCOM Register 8 Interrupt Control Register - - 00h

CC9 FE92h 49h CAPCOM Register 9 0000h

CC9ICb FF8Ah C5h CAPCOM Register 9 Interrupt Control Register - - 00h

CC10 FE94h 4Ah CAPCOM Register 10 0000h

CC10ICb FF8Ch C6h
CAPCOM Register 10 Interrupt Control
Register

- - 00h

CC11 FE96h 4Bh CAPCOM Register 11 0000h

CC11ICb FF8Eh C7h
CAPCOM Register 11 Interrupt Control
Register

- - 00h

CC12 FE98h 4Ch CAPCOM Register 12 0000h

CC12ICb FF90h C8h
CAPCOM Register 12 Interrupt Control
Register

- - 00h

CC13 FE9Ah 4Dh CAPCOM Register 13 0000h

CC13ICb FF92h C9h
CAPCOM Register 13 Interrupt Control
Register

- - 00h

CC14 FE9Ch 4Eh CAPCOM Register 14 0000h

CC14ICb FF94h CAh
CAPCOM Register 14 Interrupt Control
Register

- - 00h

CC15 FE9Eh 4Fh CAPCOM Register 15 0000h

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 491/541

CC15ICb FF96h CBh
CAPCOM Register 15 Interrupt Control
Register

- - 00h

CC16 FE60h 30h CAPCOM Register 16 0000h

CC16ICb F160hE B0h
CAPCOM Register 16 Interrupt Control
Register

- - 00h

CC17 FE62h 31h CAPCOM Register 17 0000h

CC17ICb F162hE B1h
CAPCOM Register 17 Interrupt Control
Register

- - 00h

CC18 FE64h 32h CAPCOM Register 18 0000h

CC18ICb F164hE B2h
CAPCOM Register 18 Interrupt Control
Register

- - 00h

CC19 FE66h 33h CAPCOM Register 19 0000h

CC19ICb F166hE B3h
CAPCOM Register 19 Interrupt Control
Register

- - 00h

CC20 FE68h 34h CAPCOM Register 20 0000h

CC20ICb F168hE B4h
CAPCOM Register 20 Interrupt Control
Register

- - 00h

CC21 FE6Ah 35h CAPCOM Register 21 0000h

CC21ICb F16AhE B5h
CAPCOM Register 21 Interrupt Control
Register

- - 00h

CC22 FE6Ch 36h CAPCOM Register 22 0000h

CC22ICb F16ChE B6h
CAPCOM Register 22 Interrupt Control
Register

- - 00h

CC23 FE6Eh 37h CAPCOM Register 23 0000h

CC23ICb F16EhE B7h
CAPCOM Register 23 Interrupt Control
Register

- - 00h

CC24 FE70h 38h CAPCOM Register 24 0000h

CC24ICb F170hE B8h
CAPCOM Register 24 Interrupt Control
Register

- - 00h

CC25 FE72h 39h CAPCOM Register 25 0000h

CC25ICb F172hE B9h
CAPCOM Register 25 Interrupt Control
Register

- - 00h

CC26 FE74h 3Ah CAPCOM Register 26 0000h

CC26ICb F174hE BAh
CAPCOM Register 26 Interrupt Control
Register

- - 00h

CC27 FE76h 3Bh CAPCOM Register 27 0000h

CC27ICb F176hE BBh
CAPCOM Register 27 Interrupt Control
Register

- - 00h

CC28 FE78h 3Ch CAPCOM Register 28 0000h

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

492/541

CC28ICb F178hE BCh
CAPCOM Register 28 Interrupt Control
Register

- - 00h

CC29 FE7Ah 3Dh CAPCOM Register 29 0000h

CC29ICb F184hE C2h
CAPCOM Register 29 Interrupt Control
Register

- - 00h

CC30 FE7Ch 3Eh CAPCOM Register 30 0000h

CC30ICb F18ChE C6h
CAPCOM Register 30 Interrupt Control
Register

- - 00h

CC31 FE7Eh 3Fh CAPCOM Register 31 0000h

CC31ICb F194hE CAh
CAPCOM Register 31 Interrupt Control
Register

- - 00h

CCM0b FF52h A9h CAPCOM Mode Control Register 0 0000h

CCM1b FF54h AAh CAPCOM Mode Control Register 1 0000h

CCM2b FF56h ABh CAPCOM Mode Control Register 2 0000h

CCM3b FF58h ACh CAPCOM Mode Control Register 3 0000h

CCM4b FF22h 91h CAPCOM Mode Control Register 4 0000h

CCM5b FF24h 92h CAPCOM Mode Control Register 5 0000h

CCM6b FF26h 93h CAPCOM Mode Control Register 6 0000h

CCM7b FF28h 94h CAPCOM Mode Control Register 7 0000h

CP FE10h 08h CPU Context Pointer Register FC00h

CRICb FF6Ah B5h GPT2 CAPREL Interrupt Control Register - - 00h

CSP FE08h 04h
CPU Code Segment Pointer Register (read
only)

0000h

DP0Lb F100hE 80h P0L Direction Control Register - - 00h

DP0Hb F102hE 81h P0h Direction Control Register - - 00h

DP1Lb F104hE 82h P1L Direction Control Register - - 00h

DP1Hb F106hE 83h P1h Direction Control Register - - 00h

DP2 b FFC2h E1h Port2 Direction Control Register 0000h

DP3 b FFC6h E3h Port3 Direction Control Register 0000h

DP4 b FFCAh E5h Port4 Direction Control Register - - 00h

DP6 b FFCEh E7h Port6 Direction Control Register - - 00h

DP7 b FFD2h E9h Port7 Direction Control Register - - 00h

DP8 b FFD6h EBh Port8 Direction Control Register - - 00h

DPP0 FE00h 00h CPU Data Page Pointer 0 Register (10-bit) 0000h

DPP1 FE02h 01h CPU Data Page Pointer 1 Register (10-bit) 0001h

DPP2 FE04h 02h CPU Data Page Pointer 2 Register (10-bit) 0002h

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 493/541

DPP3 FE06h 03h CPU Data Page Pointer 3 Register (10-bit) 0003h

EMUCON FE0Ah 05h Emulation Control Register - - xxh

EXICONb F1C0hE E0h External Interrupt Control Register 0000h

EXISELb F1DAhE EDh External Interrupt Source Selection Register 0000h

IDCHIP F07ChE 3Eh
Device Identifier Register (n is the device
revision)

110nh

IDMANUF F07EhE 3Fh Manufacturer Identifier Register 0403h

IDMEM F07AhE 3Dh On-chip Memory Identifier Register 3040h

IDPROG F078hE 3Ch Programming Voltage Identifier Register 0040h

IDX0b FF08h 84h MAC Unit Address Pointer 0 0000h

IDX1b FF0Ah 85h MAC Unit Address Pointer 1 0000h

MAH FE5Eh 2Fh MAC Unit Accumulator - High Word 0000h

MAL FE5Ch 2Eh MAC Unit Accumulator - Low Word 0000h

MCWb FFDCh EEh MAC Unit Control Word 0000h

MDCb FF0Eh 87h CPU Multiply Divide Control Register 0000h

MDH FE0Ch 06h CPU Multiply Divide Register – High Word 0000h

MDL FE0Eh 07h CPU Multiply Divide Register – Low Word 0000h

MRWb FFDAh EDh MAC Unit Repeat Word 0000h

MSWb FFDEh EFh MAC Unit Status Word 0200h

ODP2b F1C2hE E1h Port2 Open Drain Control Register 0000h

ODP3b F1C6hE E3h Port3 Open Drain Control Register 0000h

ODP4b F1CAhE E5h Port4 Open Drain Control Register - - 00h

ODP6b F1CEhE E7h Port6 Open Drain Control Register - - 00h

ODP7b F1D2hE E9h Port7 Open Drain Control Register - - 00h

ODP8b F1D6hE EBh Port8 Open Drain Control Register - - 00h

ONESb FF1Eh 8Fh Constant Value 1’s Register (read only) FFFFh

P0L b FF00h 80h PORT0 Low Register (Lower half of PORT0) - - 00h

P0H b FF02h 81h PORT0 High Register (Upper half of PORT0) - - 00h

P1L b FF04h 82h PORT1 Low Register (Lower half of PORT1) - - 00h

P1H b FF06h 83h PORT1 High Register (Upper half of PORT1) - - 00h

P2 b FFC0h E0h Port2 Register 0000h

P3 b FFC4h E2h Port3 Register 0000h

P4 b FFC8h E4h Port4 Register (8-bit) - - 00h

P5 b FFA2h D1h Port5 Register (read only) xxxxh

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

494/541

P6 b FFCCh E6h Port6 Register (8-bit) - - 00h

P7 b FFD0h E8h Port7 Register (8-bit) - - 00h

P8 b FFD4h EAh Port8 Register (8-bit) - - 00h

P5DIDISb FFA4h D2h Port5 Digital Disable Register 0000h

PECC0 FEC0h 60h PEC Channel 0 Control Register 0000h

PECC1 FEC2h 61h PEC Channel 1 Control Register 0000h

PECC2 FEC4h 62h PEC Channel 2 Control Register 0000h

PECC3 FEC6h 63h PEC Channel 3 Control Register 0000h

PECC4 FEC8h 64h PEC Channel 4 Control Register 0000h

PECC5 FECAh 65h PEC Channel 5 Control Register 0000h

PECC6 FECCh 66h PEC Channel 6 Control Register 0000h

PICONb F1C4hE E2h Port Input Threshold Control Register - - 00h

PP0 F038hE 1Ch PWM Module Period Register 0 0000h

PP1 F03AhE 1Dh PWM Module Period Register 1 0000h

PP2 F03ChE 1Eh PWM Module Period Register 2 0000h

PP3 F03EhE 1Fh PWM Module Period Register 3 0000h

PSWb FF10h 88h CPU Program Status Word 0000h

PT0 F030hE 18h PWM Module Up/Down Counter 0 0000h

PT1 F032hE 19h PWM Module Up/Down Counter 1 0000h

PT2 F034hE 1Ah PWM Module Up/Down Counter 2 0000h

PT3 F036hE 1Bh PWM Module Up/Down Counter 3 0000h

PW0 FE30h 18h PWM Module Pulse Width Register 0 0000h

PW1 FE32h 19h PWM Module Pulse Width Register 1 0000h

PW2 FE34h 1Ah PWM Module Pulse Width Register 2 0000h

PW3 FE36h 1Bh PWM Module Pulse Width Register 3 0000h

PWMCON0b FF30h 98h PWM Module Control Register 0 0000h

PWMCON1b FF32h 99h PWM Module Control Register 1 0000h

PWMICb F17EhE BFh PWM Module Interrupt Control Register - - 00h

QR0 F004hE 02h MAC Unit Offset Register R0 0000h

QR1 F006hE 03h MAC Unit Offset Register R1 0000h

QX0 F000hE 00h MAC Unit Offset Register X0 0000h

QX1 F002hE 01h MAC Unit Offset Register X1 0000h

RP0Hb F108hE 84h
System Start-up Configuration Register (read
only)

- - xxh

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 495/541

S0BG FEB4h 5Ah
Serial Channel 0 Baud Rate Generator Reload
Register

0000h

S0CONb FFB0h D8h Serial Channel 0 Control Register 0000h

S0EICb FF70h B8h
Serial Channel 0 Error Interrupt Control
Register

- - 00h

S0RBUF FEB2h 59h
Serial Channel 0 Receive Buffer Register
(read only)

- xxxh

S0RICb FF6Eh B7h
Serial Channel 0 Receive Interrupt Control
Register

- - 00h

S0TBICb F19ChE CEh
Serial Channel 0 Transmit Buffer Interrupt
Control Reg.

- - 00h

S0TBUF FEB0h 58h
Serial Channel 0 Transmit Buffer Register
(write only)

0000h

S0TICb FF6Ch B6h
Serial Channel 0 Transmit Interrupt Control
Register

- - 00h

SP FE12h 09h CPU System Stack Pointer Register FC00h

SSCBR F0B4hE 5Ah SSC Baud Rate Register 0000h

SSCCONb FFB2h D9h SSC Control Register 0000h

SSCEICb FF76h BBh SSC Error Interrupt Control Register - - 00h

SSCRB F0B2hE 59h SSC Receive Buffer (read only) xxxxh

SSCRICb FF74h BAh SSC Receive Interrupt Control Register - - 00h

SSCTB F0B0hE 58h SSC Transmit Buffer (write only) 0000h

SSCTICb FF72h B9h SSC Transmit Interrupt Control Register - - 00h

STKOV FE14h 0Ah CPU Stack Overflow Pointer Register FA00h

STKUN FE16h 0Bh CPU Stack Underflow Pointer Register FC00h

SYSCONb FF12h 89h CPU System Configuration Register 0xx0h 2)

T0 FE50h 28h CAPCOM Timer 0 Register 0000h

T01CONb FF50h A8h
CAPCOM Timer 0 and Timer 1 Control
Register

0000h

T0ICb FF9Ch CEh CAPCOM Timer 0 Interrupt Control Register - - 00h

T0REL FE54h 2Ah CAPCOM Timer 0 Reload Register 0000h

T1 FE52h 29h CAPCOM Timer 1 Register 0000h

T1ICb FF9Eh CFh CAPCOM Timer 1 Interrupt Control Register - - 00h

T1REL FE56h 2Bh CAPCOM Timer 1 Reload Register 0000h

T2 FE40h 20h GPT1 Timer 2 Register 0000h

T2CONb FF40h A0h GPT1 Timer 2 Control Register 0000h

T2ICb FF60h B0h GPT1 Timer 2 Interrupt Control Register - - 00h

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

496/541

T3 FE42h 21h GPT1 Timer 3 Register 0000h

T3CONb FF42h A1h GPT1 Timer 3 Control Register 0000h

T3ICb FF62h B1h GPT1 Timer 3 Interrupt Control Register - - 00h

T4 FE44h 22h GPT1 Timer 4 Register 0000h

T4CONb FF44h A2h GPT1 Timer 4 Control Register 0000h

T4ICb FF64h B2h GPT1 Timer 4 Interrupt Control Register - - 00h

T5 FE46h 23h GPT2 Timer 5 Register 0000h

T5CONb FF46h A3h GPT2 Timer 5 Control Register 0000h

T5ICb FF66h B3h GPT2 Timer 5 Interrupt Control Register - - 00h

T6 FE48h 24h GPT2 Timer 6 Register 0000h

T6CONb FF48h A4h GPT2 Timer 6 Control Register 0000h

T6ICb FF68h B4h GPT2 Timer 6 Interrupt Control Register - - 00h

T7 F050hE 28h CAPCOM Timer 7 Register 0000h

T78CONb FF20h 90h CAPCOM Timer 7 and 8 Control Register 0000h

T7ICb F17AhE BDh CAPCOM Timer 7 Interrupt Control Register - - 00h

T7REL F054hE 2Ah CAPCOM Timer 7 Reload Register 0000h

T8 F052hE 29h CAPCOM Timer 8 Register 0000h

T8ICb F17ChE BEh CAPCOM Timer 8 Interrupt Control Register - - 00h

T8REL F056hE 2Bh CAPCOM Timer 8 Reload Register 0000h

TFR b FFACh D6h Trap Flag Register 0000h

WDT FEAEh 57h Watchdog Timer Register (read only) 0000h

WDTCONb FFAEh D7h Watchdog Timer Control Register 00xxh 3)

XADRS3 F01Ch E 0Eh XPER Address Select Register 3 800Bh

XP0ICb F186hE C3h See Section Section 5.7 on page 114 - - 00h 4)

XP1ICb F18EhE C7h See Section Section 5.7 on page 114 - - 00h 4)

XP2ICb F196hE CBh See Section Section 5.7 on page 114 - - 00h 4)

XP3ICb F19EhE CFh See Section Section 5.7 on page 114 - - 00h 4)

XPERCON F024hE 12h XPER Configuration Register - - 05h

ZEROSb FF1Ch 8Eh Constant Value 0’s Register (read only) 0000h

Table 86. Special function registers ordered by name (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 497/541

Note: 1. The BUSCON0 reset value is: 0000 0xx0 xx00 0000b.

2. The system configuration is selected during reset: in particular, the SYSCON reset value
is 0000 0xx0 x000 0000b.

3. Reset Value depends on different triggered reset event.

4. The XPnIC Interrupt Control Registers control interrupt requests from integrated X-Bus
peripherals. Some software controlled interrupt requests may be generated by setting the
XPnIR bits (of XPnIC register) of the unused X-Peripheral nodes.

26.4 Special function registers ordered by address
The following table lists all SFRs which are implemented in the ST10F272Z2 ordered by
their physical address. Bit-addressable SFRs are marked with the letter “b” in column
“Name”. SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in
column “Physical Address”. Registers within on-chip X-Peripherals (CAN) are marked with
the letter “X” in column “Physical Address”.

Table 87. Special function registers ordered by address

Name
Physical
address

8-bit
address

Description
Reset
value

QX0 F000hE 00h MAC Unit Offset Register X0 0000h

QX1 F002hE 01h MAC Unit Offset Register X1 0000h

QR0 F004hE 02h MAC Unit Offset Register R0 0000h

QR1 F006hE 03h MAC Unit Offset Register R1 0000h

XADRS3 F01ChE 0Eh XPER Address Select Register 3 800Bh

XPERCON F024hE 12h XPER Configuration Register - - 05h

PT0 F030hE 18h PWM Module Up/Down Counter 0 0000h

PT1 F032hE 19h PWM Module Up/Down Counter 1 0000h

PT2 F034hE 1Ah PWM Module Up/Down Counter 2 0000h

PT3 F036hE 1Bh PWM Module Up/Down Counter 3 0000h

PP0 F038hE 1Ch PWM Module Period Register 0 0000h

PP1 F03AhE 1Dh PWM Module Period Register 1 0000h

PP2 F03ChE 1Eh PWM Module Period Register 2 0000h

PP3 F03EhE 1Fh PWM Module Period Register 3 0000h

T7 F050hE 28h CAPCOM Timer 7 Register 0000h

T8 F052hE 29h CAPCOM Timer 8 Register 0000h

T7REL F054hE 2Ah CAPCOM Timer 7 Reload Register 0000h

T8REL F056hE 2Bh CAPCOM Timer 8 Reload Register 0000h

DPROG F078hE 3Ch Programming Voltage Identifier Register 0040h

IDMEM F07AhE 3Dh On-chip Memory Identifier Register 3040h

IDCHIP F07ChE 3Eh Device Identifier Register (n is the device revision) 110nh

Register set UM0407

498/541

IDMANUF F07EhE 3Fh Manufacturer Identifier Register 0403h

ADDAT2 F0A0hE 50h A/D Converter 2 Result Register 0000h

SSCTB F0B0hE 58h SSC Transmit Buffer (write only) 0000h

SSCRB F0B2hE 59h SSC Receive Buffer (read only) xxxxh

SSCBR F0B4hE 5Ah SSC Baud Rate Register 0000h

DP0Lb F100hE 80h P0L Direction Control Register - - 00h

DP0Hb F102hE 81h P0H Direction Control Register - - 00h

DP1Lb F104hE 82h P1L Direction Control Register - - 00h

DP1Hb F106hE 83h P1H Direction Control Register - - 00h

RP0Hb F108hE 84h
System Start-up Configuration Register (Read
only)

- - xxh

CC16ICb F160hE B0h CAPCOM Register 16 Interrupt Control Register - - 00h

CC17ICb F162hE B1h CAPCOM Register 17 Interrupt Control Register - - 00h

CC18ICb F164hE B2h CAPCOM Register 18 Interrupt Control Register - - 00h

CC19ICb F166hE B3h CAPCOM Register 19 Interrupt Control Register - - 00h

CC20ICb F168hE B4h CAPCOM Register 20 Interrupt Control Register - - 00h

CC21ICb F16AhE B5h CAPCOM Register 21 Interrupt Control Register - - 00h

CC22ICb F16ChE B6h CAPCOM Register 22 Interrupt Control Register - - 00h

CC23ICb F16EhE B7h CAPCOM Register 23 Interrupt Control Register - - 00h

CC24ICb F170hE B8h CAPCOM Register 24 Interrupt Control Register - - 00h

CC25ICb F172hE B9h CAPCOM Register 25 Interrupt Control Register - - 00h

CC26ICb F174hE BAh CAPCOM Register 26 Interrupt Control Register - - 00h

CC27ICb F176hE BBh CAPCOM Register 27 Interrupt Control Register - - 00h

CC28ICb F178hE BCh CAPCOM Register 28 Interrupt Control Register - - 00h

T7ICb F17AhE BDh CAPCOM Timer 7 Interrupt Control Register - - 00h

T8ICb F17ChE BEh CAPCOM Timer 8 Interrupt Control Register - - 00h

PWMICb F17EhE BFh PWM Module Interrupt Control Register - - 00h

CC29ICb F184hE C2h CAPCOM Register 29 Interrupt Control Register - - 00h

XP0ICb F186hE C3h See Section Section 5.7 on page 114 - - 00h

CC30ICb F18ChE C6h CAPCOM Register 30 Interrupt Control Register - - 00h

XP1ICb F18EhE C7h See Section Section 5.7 on page 114 - - 00h

CC31ICb F194hE CAh CAPCOM Register 31 Interrupt Control Register - - 00h

XP2ICb F196hE CBh See Section Section 5.7 on page 114 - - 00h

S0TBICb F19ChE CEh
Serial Channel 0 Transmit Buffer Interrupt Control
Reg.

- - 00h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 499/541

XP3ICb F19EhE CFh See Section Section 5.7 on page 114 - - 00h

EXICONb F1C0hE E0h External Interrupt Control Register 0000h

ODP2b F1C2hE E1h Port2 Open Drain Control Register 0000h

PICONb F1C4hE E2h Port Input Threshold Control Register - - 00h

ODP3b F1C6hE E3h Port3 Open Drain Control Register 0000h

ODP4b F1CAhE E5h Port4 Open Drain Control Register - - 00h

ODP6b F1CEhE E7h Port6 Open Drain Control Register - - 00h

ODP7b F1D2hE E9h Port7 Open Drain Control Register - - 00h

ODP8b F1D6hE EBh Port8 Open Drain Control Register - - 00h

EXISELb F1DAhE EDh External Interrupt Source Selection Register 0000h

DPP0 FE00h 00h CPU Data Page Pointer 0 Register (10-bit) 0000h

DPP1 FE02h 01h CPU Data Page Pointer 1 Register (10-bit) 0001h

DPP2 FE04h 02h CPU Data Page Pointer 2 Register (10-bit) 0002h

DPP3 FE06h 03h CPU Data Page Pointer 3 Register (10-bit) 0003h

CSP FE08h 04h CPU Code Segment Pointer Register (read only) 0000h

EMUCON FE0Ah 05h Emulation Control Register - - xxh

MDH FE0Ch 06h CPU Multiply Divide Register – High word 0000h

MDL FE0Eh 07h CPU Multiply Divide Register – Low word 0000h

CP FE10h 08h CPU Context Pointer Register FC00h

SP FE12h 09h CPU System Stack Pointer Register FC00h

STKOV FE14h 0Ah CPU Stack Overflow Pointer Register FA00h

STKUN FE16h 0Bh CPU Stack Underflow Pointer Register FC00h

ADDRSEL1 FE18h 0Ch Address Select Register 1 0000h

ADDRSEL2 FE1Ah 0Dh Address Select Register 2 0000h

ADDRSEL3 FE1Ch 0Eh Address Select Register 3 0000h

ADDRSEL4 FE1Eh 0Fh Address Select Register 4 0000h

PW0 FE30h 18h PWM Module Pulse Width Register 0 0000h

PW1 FE32h 19h PWM Module Pulse Width Register 1 0000h

PW2 FE34h 1Ah PWM Module Pulse Width Register 2 0000h

PW3 FE36h 1Bh PWM Module Pulse Width Register 3 0000h

T2 FE40h 20h GPT1 Timer 2 Register 0000h

T3 FE42h 21h GPT1 Timer 3 Register 0000h

T4 FE44h 22h GPT1 Timer 4 Register 0000h

T5 FE46h 23h GPT2 Timer 5 Register 0000h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

500/541

T6 FE48h 24h GPT2 Timer 6 Register 0000h

CAPREL FE4Ah 25h GPT2 Capture/Reload Register 0000h

T0 FE50h 28h CAPCOM Timer 0 Register 0000h

T1 FE52h 29h CAPCOM Timer 1 Register 0000h

T0REL FE54h 2Ah CAPCOM Timer 0 Reload Register 0000h

T1REL FE56h 2Bh CAPCOM Timer 1 Reload Register 0000h

MAL FE5Ch 2Eh MAC Unit Accumulator - Low Word 0000h

MAH FE5Eh 2Fh MAC Unit Accumulator - High Word 0000h

CC16 FE60h 30h CAPCOM Register 16 0000h

CC17 FE62h 31h CAPCOM Register 17 0000h

CC18 FE64h 32h CAPCOM Register 18 0000h

CC19 FE66h 33h CAPCOM Register 19 0000h

CC20 FE68h 34h CAPCOM Register 20 0000h

CC21 FE6Ah 35h CAPCOM Register 21 0000h

CC22 FE6Ch 36h CAPCOM Register 22 0000h

CC23 FE6Eh 37h CAPCOM Register 23 0000h

CC24 FE70h 38h CAPCOM Register 24 0000h

CC25 FE72h 39h CAPCOM Register 25 0000h

CC26 FE74h 3Ah CAPCOM Register 26 0000h

CC27 FE76h 3Bh CAPCOM Register 27 0000h

CC28 FE78h 3Ch CAPCOM Register 28 0000h

CC29 FE7Ah 3Dh CAPCOM Register 29 0000h

CC30 FE7Ch 3Eh CAPCOM Register 30 0000h

CC31 FE7Eh 3Fh CAPCOM Register 31 0000h

CC0 FE80h 40h CAPCOM Register 0 0000h

CC1 FE82h 41h CAPCOM Register 1 0000h

CC2 FE84h 42h CAPCOM Register 2 0000h

CC3 FE86h 43h CAPCOM Register 3 0000h

CC4 FE88h 44h CAPCOM Register 4 0000h

CC5 FE8Ah 45h CAPCOM Register 5 0000h

CC6 FE8Ch 46h CAPCOM Register 6 0000h

CC7 FE8Eh 47h CAPCOM Register 7 0000h

CC8 FE90h 48h CAPCOM Register 8 0000h

CC9 FE92h 49h CAPCOM Register 9 0000h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 501/541

CC10 FE94h 4Ah CAPCOM Register 10 0000h

CC11 FE96h 4Bh CAPCOM Register 11 0000h

CC12 FE98h 4Ch CAPCOM Register 12 0000h

CC13 FE9Ah 4Dh CAPCOM Register 13 0000h

CC14 FE9Ch 4Eh CAPCOM Register 14 0000h

CC15 FE9Eh 4Fh CAPCOM Register 15 0000h

ADDAT FEA0h 50h A/D Converter Result Register 0000h

WDT FEAEh 57h Watchdog Timer Register (read only) 0000h

S0TBUF FEB0h 58h
Serial Channel 0 Transmit Buffer Register (write
only)

0000h

S0RBUF FEB2h 59h
Serial Channel 0 Receive Buffer Register (read
only)

- xxxh

S0BG FEB4h 5Ah
Serial Channel 0 Baud Rate Generator Reload
Register

0000h

PECC0 FEC0h 60h PEC Channel 0 Control Register 0000h

PECC1 FEC2h 61h PEC Channel 1 Control Register 0000h

PECC2 FEC4h 62h PEC Channel 2 Control Register 0000h

PECC3 FEC6h 63h PEC Channel 3 Control Register 0000h

PECC4 FEC8h 64h PEC Channel 4 Control Register 0000h

PECC5 FECAh 65h PEC Channel 5 Control Register 0000h

PECC6 FECCh 66h PEC Channel 6 Control Register 0000h

PECC7 FECEh 67h PEC Channel 7 Control Register 0000h

P0L b FF00h 80h Port0 Low Register (Lower half of PORT0) - - 00h

P0H b FF02h 81h Port0 High Register (Upper half of PORT0) - - 00h

P1L b FF04h 82h Port1 Low Register (Lower half of PORT1) - - 00h

P1H b FF06h 83h Port1 High Register (Upper half of PORT1) - - 00h

IDX0b FF08h 84h MAC Unit Address Pointer 0 0000h

IDX1b FF0Ah 85h MAC Unit Address Pointer 1 0000h

BUSCON0b FF0Ch 86h Bus Configuration Register 0 0xx0h

MDCb FF0Eh 87h CPU Multiply Divide Control Register 0000h

PSWb FF10h 88h CPU Program Status word 0000h

SYSCONb FF12h 89h CPU System Configuration Register 0xx0h

BUSCON1b FF14h 8Ah Bus Configuration Register 1 0000h

BUSCON2b FF16h 8Bh Bus Configuration Register 2 0000h

BUSCON3b FF18h 8Ch Bus Configuration Register 3 0000h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

502/541

BUSCON4b FF1Ah 8Dh Bus Configuration Register 4 0000h

ZEROSb FF1Ch 8Eh Constant Value 0’s Register (read only) 0000h

ONESb FF1Eh 8Fh Constant Value 1’s Register (read only) FFFFh

T78CONb FF20h 90h CAPCOM Timer 7 and 8 Control Register 0000h

CCM4b FF22h 91h CAPCOM Mode Control Register 4 0000h

CCM5b FF24h 92h CAPCOM Mode Control Register 5 0000h

CCM6b FF26h 93h CAPCOM Mode Control Register 6 0000h

CCM7b FF28h 94h CAPCOM Mode Control Register 7 0000h

PWMCON0b FF30h 98h PWM Module Control Register 0 0000h

PWMCON1b FF32h 99h PWM Module Control Register 1 0000h

T2CONb FF40h A0h GPT1 Timer 2 Control Register 0000h

T3CONb FF42h A1h GPT1 Timer 3 Control Register 0000h

T4CONb FF44h A2h GPT1 Timer 4 Control Register 0000h

T5CONb FF46h A3h GPT2 Timer 5 Control Register 0000h

T6CONb FF48h A4h GPT2 Timer 6 Control Register 0000h

T01CONb FF50h A8h CAPCOM Timer 0 and Timer 1 Control Register 0000h

CCM0b FF52h A9h CAPCOM Mode Control Register 0 0000h

CCM1b FF54h AAh CAPCOM Mode Control Register 1 0000h

CCM2b FF56h ABh CAPCOM Mode Control Register 2 0000h

CCM3b FF58h ACh CAPCOM Mode Control Register 3 0000h

T2ICb FF60h B0h GPT1 Timer 2 Interrupt Control Register - - 00h

T3ICb FF62h B1h GPT1 Timer 3 Interrupt Control Register - - 00h

T4ICb FF64h B2h GPT1 Timer 4 Interrupt Control Register - - 00h

T5ICb FF66h B3h GPT2 Timer 5 Interrupt Control Register - - 00h

T6ICb FF68h B4h GPT2 Timer 6 Interrupt Control Register - - 00h

CRICb FF6Ah B5h GPT2 CAPREL Interrupt Control Register - - 00h

S0TICb FF6Ch B6h
Serial Channel 0 Transmit Interrupt Control
Register

- - 00h

S0RICb FF6Eh B7h
Serial Channel 0 Receive Interrupt Control
Register

- - 00h

S0EICb FF70h B8h Serial Channel 0 Error Interrupt Control Register - - 00h

SSCTICb FF72h B9h SSC Transmit Interrupt Control Register - - 00h

SSCRICb FF74h BAh SSC Receive Interrupt Control Register - - 00h

SSCEICb FF76h BBh SSC Error Interrupt Control Register - - 00h

CC0ICb FF78h BCh CAPCOM Register 0 Interrupt Control Register - - 00h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

UM0407 Register set

 503/541

CC1ICb FF7Ah BDh CAPCOM Register 1 Interrupt Control Register - - 00h

CC2ICb FF7Ch BEh CAPCOM Register 2 Interrupt Control Register - - 00h

CC3ICb FF7Eh BFh CAPCOM Register 3 Interrupt Control Register - - 00h

CC4ICb FF80h C0h CAPCOM Register 4 Interrupt Control Register - - 00h

CC5ICb FF82h C1h CAPCOM Register 5 Interrupt Control Register - - 00h

CC6ICb FF84h C2h CAPCOM Register 6 Interrupt Control Register - - 00h

CC7ICb FF86h C3h CAPCOM Register 7 Interrupt Control Register - - 00h

CC8ICb FF88h C4h CAPCOM Register 8 Interrupt Control Register - - 00h

CC9ICb FF8Ah C5h CAPCOM Register 9 Interrupt Control Register - - 00h

CC10ICb FF8Ch C6h CAPCOM Register 10 Interrupt Control Register - - 00h

CC11ICb FF8Eh C7h CAPCOM Register 11 Interrupt Control Register - - 00h

CC12ICb FF90h C8h CAPCOM Register 12 Interrupt Control Register - - 00h

CC13ICb FF92h C9h CAPCOM Register 13 Interrupt Control Register - - 00h

CC14ICb FF94h CAh CAPCOM Register 14 Interrupt Control Register - - 00h

CC15ICb FF96h CBh CAPCOM Register 15 Interrupt Control Register - - 00h

ADCICb FF98h CCh
A/D Converter End of Conversion Interrupt Control
Reg.

- - 00h

ADEICb FF9Ah CDh A/D Converter Overrun Error Interrupt Control Reg - - 00h

T0ICb FF9Ch CEh CAPCOM Timer 0 Interrupt Control Register - - 00h

T1ICb FF9Eh CFh CAPCOM Timer 1 Interrupt Control Register - - 00h

ADCONb FFA0h D0h A/D Converter Control Register 0000h

P5 b FFA2h D1h Port5 Register (read only) xxxxh

P5DIDISb FFA4h D2h Port5 Digital Disable Register 0000h

TFR b FFACh D6h Trap Flag Register 0000h

WDTCONb FFAEh D7h Watchdog Timer Control Register 00xxh

S0CONb FFB0h D8h Serial Channel 0 Control Register 0000h

SSCCONb FFB2h D9h SSC Control Register 0000h

P2 b FFC0h E0h Port2 Register 0000h

DP2 b FFC2h E1h Port2 Direction Control Register 0000h

P3 b FFC4h E2h Port3 Register 0000h

DP3 b FFC6h E3h Port3 Direction Control Register 0000h

P4 b FFC8h E4h Port4 Register (8-bit) - - 00h

DP4 b FFCAh E5h Port4 Direction Control Register - - 00h

P6 b FFCCh E6h Port6 Register (8-bit) - - 00h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Register set UM0407

504/541

26.5 X-Registers ordered by name
The following table lists all X-Bus registers which are implemented in the ST10F272Z2
ordered by their name. The Flash control registers are listed in a separate section, in spite of
they are also physically mapped on X-Bus memory space. Note that all X-Registers are not
bit-addressable.

DP6 b FFCEh E7h Port6 Direction Control Register - - 00h

P7 b FFD0h E8h Port7 Register (8-bit) - - 00h

DP7 b FFD2h E9h Port7 Direction Control Register - - 00h

P8 b FFD4h EAh Port8 Register (8-bit) - - 00h

DP8 b FFD6h EBh Port8 Direction Control Register - - 00h

MRWb FFDAh EDh MAC Unit Repeat Word 0000h

MCWb FFDCh EEh MAC Unit Control Word 0000h

MSWb FFDEh EFh MAC Unit Status Word 0200h

Table 87. Special function registers ordered by address (continued)

Name
Physical
address

8-bit
address

Description
Reset
value

Table 88. X-Registers ordered by name

Name
Physical
address

Description
Reset
value

CAN1BRPER EF0Ch CAN1: BRP Extension Register 0000h

CAN1BTR EF06h CAN1: Bit Timing Register 2301h

CAN1CR EF00h CAN1: CAN Control Register 0001h

CAN1EC EF04h CAN1: Error Counter 0000h

CAN1IF1A1 EF18h CAN1: IF1 Arbitration 1 0000h

CAN1IF1A2 EF1Ah CAN1: IF1 Arbitration 2 0000h

CAN1IF1CM EF12h CAN1: IF1 Command Mask 0000h

CAN1IF1CR EF10h CAN1: IF1 Command Request 0001h

CAN1IF1DA1 EF1Eh CAN1: IF1 Data A 1 0000h

CAN1IF1DA2 EF20h CAN1: IF1 Data A 2 0000h

CAN1IF1DB1 EF22h CAN1: IF1 Data B 1 0000h

CAN1IF1DB2 EF24h CAN1: IF1 Data B 2 0000h

CAN1IF1M1 EF14h CAN1: IF1 Mask 1 FFFFh

CAN1IF1M2 EF16h CAN1: IF1 Mask 2 FFFFh

CAN1IF1MC EF1Ch CAN1: IF1 Message Control 0000h

CAN1IF2A1 EF48h CAN1: IF2 Arbitration 1 0000h

CAN1IF2A2 EF4Ah CAN1: IF2 Arbitration 2 0000h

UM0407 Register set

 505/541

CAN1IF2CM EF42h CAN1: IF2 Command Mask 0000h

CAN1IF2CR EF40h CAN1: IF2 Command Request 0001h

CAN1IF2DA1 EF4Eh CAN1: IF2 Data A 1 0000h

CAN1IF2DA2 EF50h CAN1: IF2 Data A 2 0000h

CAN1IF2DB1 EF52h CAN1: IF2 Data B 1 0000h

CAN1IF2DB2 EF54h CAN1: IF2 Data B 2 0000h

CAN1IF2M1 EF44h CAN1: IF2 Mask 1 FFFFh

CAN1IF2M2 EF46h CAN1: IF2 Mask 2 FFFFh

CAN1IF2MC EF4Ch CAN1: IF2 Message Control 0000h

CAN1IP1 EFA0h CAN1: Interrupt Pending 1 0000h

CAN1IP2 EFA2h CAN1: Interrupt Pending 2 0000h

CAN1IR EF08h CAN1: Interrupt Register 0000h

CAN1MV1 EFB0h CAN1: Message Valid 1 0000h

CAN1MV2 EFB2h CAN1: Message Valid 2 0000h

CAN1ND1 EF90h CAN1: New Data 1 0000h

CAN1ND2 EF92h CAN1: New Data 2 0000h

CAN1SR EF02h CAN1: Status Register 0000h

CAN1TR EF0Ah CAN1: Test Register 00x0h

CAN1TR1 EF80h CAN1: Transmission Request 1 0000h

CAN1TR2 EF82h CAN1: Transmission Request 2 0000h

CAN2BRPER EE0Ch CAN2: BRP Extension Register 0000h

CAN2BTR EE06h CAN2: Bit Timing Register 2301h

CAN2CR EE00h CAN2: CAN Control Register 0001h

CAN2EC EE04h CAN2: Error Counter 0000h

CAN2IF1A1 EE18h CAN2: IF1 Arbitration 1 0000h

CAN2IF1A2 EE1Ah CAN2: IF1 Arbitration 2 0000h

CAN2IF1CM EE12h CAN2: IF1 Command Mask 0000h

CAN2IF1CR EE10h CAN2: IF1 Command Request 0001h

CAN2IF1DA1 EE1Eh CAN2: IF1 Data A 1 0000h

CAN2IF1DA2 EE20h CAN2: IF1 Data A 2 0000h

CAN2IF1DB1 EE22h CAN2: IF1 Data B 1 0000h

CAN2IF1DB2 EE24h CAN2: IF1 Data B 2 0000h

CAN2IF1M1 EE14h CAN2: IF1 Mask 1 FFFFh

CAN2IF1M2 EE16h CAN2: IF1 Mask 2 FFFFh

Table 88. X-Registers ordered by name (continued)

Name
Physical
address

Description
Reset
value

Register set UM0407

506/541

CAN2IF1MC EE1Ch CAN2: IF1 Message Control 0000h

CAN2IF2A1 EE48h CAN2: IF2 Arbitration 1 0000h

CAN2IF2A2 EE4Ah CAN2: IF2 Arbitration 2 0000h

CAN2IF2CM EE42h CAN2: IF2 Command Mask 0000h

CAN2IF2CR EE40h CAN2: IF2 Command Request 0001h

CAN2IF2DA1 EE4Eh CAN2: IF2 Data A 1 0000h

CAN2IF2DA2 EE50h CAN2: IF2 Data A 2 0000h

CAN2IF2DB1 EE52h CAN2: IF2 Data B 1 0000h

CAN2IF2DB2 EE54h CAN2: IF2 Data B 2 0000h

CAN2IF2M1 EE44h CAN2: IF2 Mask 1 FFFFh

CAN2IF2M2 EE46h CAN2: IF2 Mask 2 FFFFh

CAN2IF2MC EE4Ch CAN2: IF2 Message Control 0000h

CAN2IP1 EEA0h CAN2: Interrupt Pending 1 0000h

CAN2IP2 EEA2h CAN2: Interrupt Pending 2 0000h

CAN2IR EE08h CAN2: Interrupt Register 0000h

CAN2MV1 EEB0h CAN2: Message Valid 1 0000h

CAN2MV2 EEB2h CAN2: Message Valid 2 0000h

CAN2ND1 EE90h CAN2: New Data 1 0000h

CAN2ND2 EE92h CAN2: New Data 2 0000h

CAN2SR EE02h CAN2: Status Register 0000h

CAN2TR EE0Ah CAN2: Test Register 00x0h

CAN2TR1 EE80h CAN2: Transmission Request 1 0000h

CAN2TR2 EE82h CAN2: Transmission Request 2 0000h

I2CCCR1 EA06h I2C Clock Control Register 1 0000h

I2CCCR2 EA0Eh I2C Clock Control Register 2 0000h

I2CCR EA00h I2C Control Register 0000h

I2CDR EA0Ch I2C Data Register 0000h

I2COAR1 EA08h I2C Own Address Register 1 0000h

I2COAR2 EA0Ah I2C Own Address Register 2 0000h

I2CSR1 EA02h I2C Status Register 1 0000h

I2CSR2 EA04h I2C Status Register 2 0000h

RTCAH ED14h RTC Alarm Register High Byte xxxxh

RTCAL ED12h RTC Alarm Register Low Byte xxxxh

RTCCON ED00H RTC Control Register 0x00h 1)

Table 88. X-Registers ordered by name (continued)

Name
Physical
address

Description
Reset
value

UM0407 Register set

 507/541

RTCDH ED0Ch RTC Divider Counter High Byte xxxxh

RTCDL ED0Ah RTC Divider Counter Low Byte xxxxh

RTCH ED10h RTC Programmable Counter High Byte xxxxh

RTCL ED0Eh RTC Programmable Counter Low Byte xxxxh

RTCPH ED08h RTC Prescaler Register High Byte xxxxh

RTCPL ED06h RTC Prescaler Register Low Byte xxxxh

XCLKOUTDIV EB02h CLKOUT Divider Control Register - - 00h

XEMU0 EB76h XBUS Emulation Register 0 (write only) xxxxh

XEMU1 EB78h XBUS Emulation Register 1 (write only) xxxxh

XEMU2 EB7Ah XBUS Emulation Register 2 (write only) xxxxh

XEMU3 EB7Ch XBUS Emulation Register 3 (write only) xxxxh

XIR0CLR EB14h X-Interrupt 0 Clear Register (write only) 0000h

XIR0SEL EB10h X-Interrupt 0 Selection Register 0000h

XIR0SET EB12h X-Interrupt 0 Set Register (write only) 0000h

XIR1CLR EB24h X-Interrupt 1 Clear Register (write only) 0000h

XIR1SEL EB20h X-Interrupt 1 Selection Register 0000h

XIR1SET EB22h X-Interrupt 1 Set Register (write only) 0000h

XIR2CLR EB34h X-Interrupt 2 Clear Register (write only) 0000h

XIR2SEL EB30h X-Interrupt 2 Selection Register 0000h

XIR2SET EB32h X-Interrupt 2 Set Register (write only) 0000h

XIR3CLR EB44h
X-Interrupt 3 Clear Selection Register (write
only)

0000h

XIR3SEL EB40h X-Interrupt 3 Selection Register 0000h

XIR3SET EB42h
X-Interrupt 3 Set Selection Register (write
only)

0000h

XMISC EB46h XBUS Miscellaneous Features Register 0000h

XP1DIDIS EB36h PORT1 Digital Disable Register 0000h

XPEREMU EB7Eh XPERCON copy for Emulation (write only) xxxxh

XPICON EB26h
Extended Port Input Threshold Control
Register

- - 00h

XPOLAR EC04h XPWM Module Channel Polarity Register 0000h

XPP0 EC20h XPWM Module Period Register 0 0000h

XPP1 EC22h XPWM Module Period Register 1 0000h

XPP2 EC24h XPWM Module Period Register 2 0000h

XPP3 EC26h XPWM Module Period Register 3 0000h

Table 88. X-Registers ordered by name (continued)

Name
Physical
address

Description
Reset
value

Register set UM0407

508/541

Note: 1. The RTCCON reset value is: 0000 000x 0000 0000b.

XPT0 EC10h XPWM Module Up/Down Counter 0 0000h

XPT1 EC12h XPWM Module Up/Down Counter 1 0000h

XPT2 EC14h XPWM Module Up/Down Counter 2 0000h

XPT3 EC16h XPWM Module Up/Down Counter 3 0000h

XPW0 EC30h XPWM Module Pulse Width Register 0 0000h

XPW1 EC32h XPWM Module Pulse Width Register 1 0000h

XPW2 EC34h XPWM Module Pulse Width Register 2 0000h

XPW3 EC36h XPWM Module Pulse Width Register 3 0000h

XPWMCON0 EC00h XPWM Module Control Register 0 0000h

XPWMCON0CLR EC08h
XPWM Module Clear Control Reg. 0 (write
only)

0000h

XPWMCON0SET EC06h
XPWM Module Set Control Register 0 (write
only)

0000h

XPWMCON1 EC02h XPWM Module Control Register 1 0000h

XPWMCON1CLR EC0Ch
XPWM Module Clear Control Reg. 0 (write
only)

0000h

XPWMCON1SET EC0Ah
XPWM Module Set Control Register 0 (write
only)

0000h

XPWMPORT EC80h XPWM Module Port Control Register 0000h

XS1BG E906h
XASC Baud Rate Generator Reload
Register

0000h

XS1CON E900h XASC Control Register 0000h

XS1CONCLR E904h XASC Clear Control Register (write only) 0000h

XS1CONSET E902h XASC Set Control Register (write only) 0000h

XS1PORT E980h XASC Port Control Register 0000h

XS1RBUF E90Ah XASC Receive Buffer Register - xxxh

XS1TBUF E908h XASC Transmit Buffer Register 0000h

XSSCBR E80Ah XSSC Baud Rate Register 0000h

XSSCCON E800h XSSC Control Register 0000h

XSSCCONCLR E804h XSSC Clear Control Register (write only) 0000h

XSSCCONSET E802h XSSC Set Control Register (write only) 0000h

XSSCPORT E880h XSSC Port Control Register 0000h

XSSCRB E808h XSSC Receive Buffer xxxxh

XSSCTB E806h XSSC Transmit Buffer 0000h

Table 88. X-Registers ordered by name (continued)

Name
Physical
address

Description
Reset
value

UM0407 Register set

 509/541

26.6 X-registers ordered by address
The following table lists all X-Bus registers which are implemented in the ST10F272Z2
ordered by their physical address. The Flash control registers are listed in a separate
section, in spite of they are also physically mapped on X-Bus memory space. Note that all
X-Registers are not bit-addressable.

Table 89. X-Registers ordered by address

Name
Physical
address

Description
Reset
value

XSSCCON E800h XSSC Control Register 0000h

XSSCCONSET E802h XSSC Set Control Register (write only) 0000h

XSSCCONCLR E804h XSSC Clear Control Register (write only) 0000h

XSSCTB E806h XSSC Transmit Buffer 0000h

XSSCRB E808h XSSC Receive Buffer xxxxh

XSSCBR E80Ah XSSC Baud Rate Register 0000h

XSSCPORT E880h XSSC Port Control Register 0000h

XS1CON E900h XASC Control Register 0000h

XS1CONSET E902h XASC Set Control Register (write only) 0000h

XS1CONCLR E904h XASC Clear Control Register (write only) 0000h

XS1BG E906h XASC Baud Rate Generator Reload Register 0000h

XS1TBUF E908h XASC Transmit Buffer Register 0000h

XS1RBUF E90Ah XASC Receive Buffer Register - xxxh

XS1PORT E980h XASC Port Control Register 0000h

I2CCR EA00h I2C Control Register 0000h

I2CSR1 EA02h I2C Status Register 1 0000h

I2CSR2 EA04h I2C Status Register 2 0000h

I2CCCR1 EA06h I2C Clock Control Register 1 0000h

I2COAR1 EA08h I2C Own Address Register 1 0000h

I2COAR2 EA0Ah I2C Own Address Register 2 0000h

I2CDR EA0Ch I2C Data Register 0000h

I2CCCR2 EA0Eh I2C Clock Control Register 2 0000h

XCLKOUTDIV EB02h CLKOUT Divider Control Register - - 00h

XIR0SEL EB10h X-Interrupt 0 Selection Register 0000h

XIR0SET EB12h X-Interrupt 0 Set Register (write only) 0000h

XIR0CLR EB14h X-Interrupt 0 Clear Register (write only) 0000h

XIR1SEL EB20h X-Interrupt 1 Selection Register 0000h

XIR1SET EB22h X-Interrupt 1 Set Register (write only) 0000h

XIR1CLR EB24h X-Interrupt 1 Clear Register (write only) 0000h

Register set UM0407

510/541

XPICON EB26h
Extended Port Input Threshold Control
Register

- - 00h

XIR2SEL EB30h X-Interrupt 2 Selection Register 0000h

XIR2SET EB32h X-Interrupt 2 Set Register (write only) 0000h

XIR2CLR EB34h X-Interrupt 2 Clear Register (write only) 0000h

XP1DIDIS EB36h PORT1 Digital Disable Register 0000h

XIR3SEL EB40h X-Interrupt 3 Selection Register 0000h

XIR3SET EB42h
X-Interrupt 3 Set Selection Register (write
only)

0000h

XIR3CLR EB44h
X-Interrupt 3 Clear Selection Register (write
only)

0000h

XMISC EB46h XBUS Miscellaneous Features Register 0000h

XEMU0 EB76h XBUS Emulation Register 0 (write only) xxxxh

XEMU1 EB78h XBUS Emulation Register 1 (write only) xxxxh

XEMU2 EB7Ah XBUS Emulation Register 2 (write only) xxxxh

XEMU3 EB7Ch XBUS Emulation Register 3 (write only) xxxxh

XPEREMU EB7Eh XPERCON copy for Emulation (write only) xxxxh

XPWMCON0 EC00h XPWM Module Control Register 0 0000h

XPWMCON1 EC02h XPWM Module Control Register 1 0000h

XPOLAR EC04h XPWM Module Channel Polarity Register 0000h

XPWMCON0SET EC06h
XPWM Module Set Control Register 0 (write
only)

0000h

XPWMCON0CLR EC08h
XPWM Module Clear Control Reg. 0 (write
only)

0000h

XPWMCON1SET EC0Ah
XPWM Module Set Control Register 0 (write
only)

0000h

XPWMCON1CLR EC0Ch
XPWM Module Clear Control Reg. 0 (write
only)

0000h

XPT0 EC10h XPWM Module Up/Down Counter 0 0000h

XPT1 EC12h XPWM Module Up/Down Counter 1 0000h

XPT2 EC14h XPWM Module Up/Down Counter 2 0000h

XPT3 EC16h XPWM Module Up/Down Counter 3 0000h

XPP0 EC20h XPWM Module Period Register 0 0000h

XPP1 EC22h XPWM Module Period Register 1 0000h

XPP2 EC24h XPWM Module Period Register 2 0000h

XPP3 EC26h XPWM Module Period Register 3 0000h

XPW0 EC30h XPWM Module Pulse Width Register 0 0000h

Table 89. X-Registers ordered by address (continued)

Name
Physical
address

Description
Reset
value

UM0407 Register set

 511/541

XPW1 EC32h XPWM Module Pulse Width Register 1 0000h

XPW2 EC34h XPWM Module Pulse Width Register 2 0000h

XPW3 EC36h XPWM Module Pulse Width Register 3 0000h

XPWMPORT EC80h XPWM Module Port Control Register 0000h

RTCCON ED00H RTC Control Register 0x00h

RTCPL ED06h RTC Prescaler Register Low Byte xxxxh

RTCPH ED08h RTC Prescaler Register High Byte xxxxh

RTCDL ED0Ah RTC Divider Counter Low Byte xxxxh

RTCDH ED0Ch RTC Divider Counter High Byte xxxxh

RTCL ED0Eh RTC Programmable Counter Low Byte xxxxh

RTCH ED10h RTC Programmable Counter High Byte xxxxh

RTCAL ED12h RTC Alarm Register Low Byte xxxxh

RTCAH ED14h RTC Alarm Register High Byte xxxxh

CAN2CR EE00h CAN2: CAN Control Register 0001h

CAN2SR EE02h CAN2: Status Register 0000h

CAN2EC EE04h CAN2: Error Counter 0000h

CAN2BTR EE06h CAN2: Bit Timing Register 2301h

CAN2IR EE08h CAN2: Interrupt Register 0000h

CAN2TR EE0Ah CAN2: Test Register 00x0h

CAN2BRPER EE0Ch CAN2: BRP Extension Register 0000h

CAN2IF1CR EE10h CAN2: IF1 Command Request 0001h

CAN2IF1CM EE12h CAN2: IF1 Command Mask 0000h

CAN2IF1M1 EE14h CAN2: IF1 Mask 1 FFFFh

CAN2IF1M2 EE16h CAN2: IF1 Mask 2 FFFFh

CAN2IF1A1 EE18h CAN2: IF1 Arbitration 1 0000h

CAN2IF1A2 EE1Ah CAN2: IF1 Arbitration 2 0000h

CAN2IF1MC EE1Ch CAN2: IF1 Message Control 0000h

CAN2IF1DA1 EE1Eh CAN2: IF1 Data A 1 0000h

CAN2IF1DA2 EE20h CAN2: IF1 Data A 2 0000h

CAN2IF1DB1 EE22h CAN2: IF1 Data B 1 0000h

CAN2IF1DB2 EE24h CAN2: IF1 Data B 2 0000h

CAN2IF2CR EE40h CAN2: IF2 Command Request 0001h

CAN2IF2CM EE42h CAN2: IF2 Command Mask 0000h

CAN2IF2M1 EE44h CAN2: IF2 Mask 1 FFFFh

Table 89. X-Registers ordered by address (continued)

Name
Physical
address

Description
Reset
value

Register set UM0407

512/541

CAN2IF2M2 EE46h CAN2: IF2 Mask 2 FFFFh

CAN2IF2A1 EE48h CAN2: IF2 Arbitration 1 0000h

CAN2IF2A2 EE4Ah CAN2: IF2 Arbitration 2 0000h

CAN2IF2MC EE4Ch CAN2: IF2 Message Control 0000h

CAN2IF2DA1 EE4Eh CAN2: IF2 Data A 1 0000h

CAN2IF2DA2 EE50h CAN2: IF2 Data A 2 0000h

CAN2IF2DB1 EE52h CAN2: IF2 Data B 1 0000h

CAN2IF2DB2 EE54h CAN2: IF2 Data B 2 0000h

CAN2TR1 EE80h CAN2: Transmission Request 1 0000h

CAN2TR2 EE82h CAN2: Transmission Request 2 0000h

CAN2ND1 EE90h CAN2: New Data 1 0000h

CAN2ND2 EE92h CAN2: New Data 2 0000h

CAN2IP1 EEA0h CAN2: Interrupt Pending 1 0000h

CAN2IP2 EEA2h CAN2: Interrupt Pending 2 0000h

CAN2MV1 EEB0h CAN2: Message Valid 1 0000h

CAN2MV2 EEB2h CAN2: Message Valid 2 0000h

CAN1CR EF00h CAN1: CAN Control Register 0001h

CAN1SR EF02h CAN1: Status Register 0000h

CAN1EC EF04h CAN1: Error Counter 0000h

CAN1BTR EF06h CAN1: Bit Timing Register 2301h

CAN1IR EF08h CAN1: Interrupt Register 0000h

CAN1TR EF0Ah CAN1: Test Register 00x0h

CAN1BRPER EF0Ch CAN1: BRP Extension Register 0000h

CAN1IF1CR EF10h CAN1: IF1 Command Request 0001h

CAN1IF1CM EF12h CAN1: IF1 Command Mask 0000h

CAN1IF1M1 EF14h CAN1: IF1 Mask 1 FFFFh

CAN1IF1M2 EF16h CAN1: IF1 Mask 2 FFFFh

CAN1IF1A1 EF18h CAN1: IF1 Arbitration 1 0000h

CAN1IF1A2 EF1Ah CAN1: IF1 Arbitration 2 0000h

CAN1IF1MC EF1Ch CAN1: IF1 Message Control 0000h

CAN1IF1DA1 EF1Eh CAN1: IF1 Data A 1 0000h

CAN1IF1DA2 EF20h CAN1: IF1 Data A 2 0000h

CAN1IF1DB1 EF22h CAN1: IF1 Data B 1 0000h

CAN1IF1DB2 EF24h CAN1: IF1 Data B 2 0000h

Table 89. X-Registers ordered by address (continued)

Name
Physical
address

Description
Reset
value

UM0407 Register set

 513/541

26.7 Flash registers ordered by name
The following table lists all Flash Control Registers which are implemented in the
ST10F272Z2 ordered by their name. These registers are physically mapped on the IBus,
except for XFVTAU0, that is mapped on the XBUS in XMiscellaneous Registers Area. Note
that Flash registers are not bit addressable.

CAN1IF2CR EF40h CAN1: IF2 Command Request 0001h

CAN1IF2CM EF42h CAN1: IF2 Command Mask 0000h

CAN1IF2M1 EF44h CAN1: IF2 Mask 1 FFFFh

CAN1IF2M2 EF46h CAN1: IF2 Mask 2 FFFFh

CAN1IF2A1 EF48h CAN1: IF2 Arbitration 1 0000h

CAN1IF2A2 EF4Ah CAN1: IF2 Arbitration 2 0000h

CAN1IF2MC EF4Ch CAN1: IF2 Message Control 0000h

CAN1IF2DA1 EF4Eh CAN1: IF2 Data A 1 0000h

CAN1IF2DA2 EF50h CAN1: IF2 Data A 2 0000h

CAN1IF2DB1 EF52h CAN1: IF2 Data B 1 0000h

CAN1IF2DB2 EF54h CAN1: IF2 Data B 2 0000h

CAN1TR1 EF80h CAN1: Transmission Request 1 0000h

CAN1TR2 EF82h CAN1: Transmission Request 2 0000h

CAN1ND1 EF90h CAN1: New Data 1 0000h

CAN1ND2 EF92h CAN1: New Data 2 0000h

CAN1IP1 EFA0h CAN1: Interrupt Pending 1 0000h

CAN1IP2 EFA2h CAN1: Interrupt Pending 2 0000h

CAN1MV1 EFB0h CAN1: Message Valid 1 0000h

CAN1MV2 EFB2h CAN1: Message Valid 2 0000h

Table 89. X-Registers ordered by address (continued)

Name
Physical
address

Description
Reset
value

Table 90. Flash registers ordered by name

Name
Physical
address

Description
Reset
value

FARH 0x0008 0012 Flash Address Register High 0000h

FARL 0x0008 0010 Flash Address Register Low 0000h

FCR0H 0x0008 0002 Flash Control Register 0 - High 0000h

FCR0L 0x0008 0000 Flash Control Register 0 - Low 0000h

FCR1H 0x0008 0006 Flash Control Register 1 - High 0000h

FCR1L 0x0008 0004 Flash Control Register 1 - Low 0000h

Register set UM0407

514/541

26.8 Flash registers ordered by address
The following table lists all Flash Control Registers which are implemented in the
ST10F272Z2 ordered by their physical address. These registers are physically mapped on
the IBUS, except for XFVTAU0, that is mapped on the XBUS in XMiscellaneous Regisers
Area. Note that Flash registers are not bit addressable.

FDR0H 0x0008 000A Flash Data Register 0 - High FFFFh

FDR0L 0x0008 0008 Flash Data Register 0 - Low FFFFh

FDR1H 0x0008 000E Flash Data Register 1 - High FFFFh

FDR1L 0x0008 000C Flash Data Register 1 - Low FFFFh

FER 0x0008 0014 Flash Error Register 0000h

FNVAPR0 0x0008 DFB8 Flash Non Volatile Access Protection Reg. 0 ACFFh

FNVAPR1H 0x0008 DFBE
Flash Non Volatile Access Protection Reg. 1 -
High

FFFFh

FNVAPR1L 0x0008 DFBC Flash Non Volatile Access Protection Reg. 1 - Low FFFFh

FNVWPIRH 0x0008 DFB6 Flash Non Volatile Protection I Reg. High FFFFh

FNVWPIRL 0x0008 DFB4 Flash Non Volatile Protection I Reg. Low FFFFh

XFVTAU0 0x0000 EB500
Flash Volatile X Temporary Access Unprotection
Reg.0

000Fh

Table 90. Flash registers ordered by name (continued)

Name
Physical
address

Description
Reset
value

Table 91. Flash registers ordered by address

Name
Physical
address

Description
Reset
value

XFVTAU0 0x0000 EB50 Flash Volatile X Temporary Access Unprotection Reg.0 0000h

FCR0L 0x0008 0000 Flash Control Register 0 - Low 0000h

FCR0H 0x0008 0002 Flash Control Register 0 - High 0000h

FCR1L 0x0008 0004 Flash Control Register 1 - Low 0000h

FCR1H 0x0008 0006 Flash Control Register 1 - High 0000h

FDR0L 0x0008 0008 Flash Data Register 0 - Low FFFFh

FDR0H 0x0008 000A Flash Data Register 0 - High FFFFh

FDR1L 0x0008 000C Flash Data Register 1 - Low FFFFh

FDR1H 0x0008 000E Flash Data Register 1 - High FFFFh

FARL 0x0008 0010 Flash Address Register Low 0000h

FARH 0x0008 0012 Flash Address Register High 0000h

FER 0x0008 0014 Flash Error Register 0000h

FNVWPIRL 0x0008 DFB4 Flash Non Volatile Protection I Reg. Low FFFFh

UM0407 Register set

 515/541

26.9 Special notes

PEC pointer registers

The source and destination pointers for the peripheral event controller are mapped to a
special area within the IRAM. Pointers that are not occupied by the PEC may therefore be
used like normal RAM. During power down mode or any short reset the PEC pointers are
preserved.

The PEC and its registers are described inSection 5: Interrupt and trap functions on
page 93.

GPR access in the ESFR area

The locations 00’F000h...00’F01Eh within the ESFR area are reserved and provide access
to the current register bank via short register addressing modes. The GPRs are mirrored to
the ESFR area which allows access to the current register bank even after switching register
spaces (see example below).

MOVR5, DP3;GPR access via SFR area

EXTR#1

MOVR5, ODP3;GPR access via ESFR area

Writing byte to SFRs

All special function registers may be accessed word wise or byte wise (some of them even
bit wise). Reading byte from word SFRs is a non-critical operation. However, when writing
byte to word SFRs the complementary byte of the respective SFR is cleared with the write
operation.

26.10 Identification registers
The ST10F272Z2 has four Identification registers, mapped in ESFR space. These registers
contain:

● A manufacturer identifier.

● A chip identifier with its revision.

● An internal Flash and size identifier.

● Programming voltage description.

FNVWPIRH 0x0008 DFB6 Flash Non Volatile Protection I Reg. High FFFFh

FNVAPR0 0x0008 DFB8 Flash Non Volatile Access Protection Reg. 0 ACFFh

FNVAPR1L 0x0008 DFBC Flash Non Volatile Access Protection Reg. 1 - Low FFFFh

FNVAPR1H 0x0008 DFBE Flash Non Volatile Access Protection Reg. 1 - High FFFFh

Table 91. Flash registers ordered by address (continued)

Name
Physical
address

Description
Reset
value

Register set UM0407

516/541

IDMANUF (F07Eh / 3Fh) ESFR Reset Value: 0403h

IDCHIP (F07Ch / 3Eh) ESFR Reset Value: 110xh

IDMEM (F07Ah / 3Dh) ESFR Reset Value: 3040h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANUF 0 0 0 1 1

R

Bit Function

MANUF
Manufacturer Identifier

020h: STMicroelectronics manufacturer (JTAG worldwide normalization).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCONF IDCHIP REVID

R R R

Bit Function

PCONF

Peripheral Configuration

‘00’: (E) Enhanced (ST10F272Zx)
‘01’: (B) Basic
‘10’: (D) Dedicated
‘11’: reserved

IDCHIP
Device Identifier

110h: ST10F272Z2 Identifier (272 in decimal format).

REVID
Device Revision Identifier

Xh: According to revision number (1: for Axx steps, 2: for Bxx, 3: for Cxx and so on)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMTYP MEMSIZE

R R

Bit Function

MEMSIZE
Internal Memory Size
Internal Memory size is 4 x (MEMSIZE) (in Kbyte)
040h for ST10F272Z2 (256 Kbytes)

MEMTYP

Internal Memory Type
‘0h’: ROM-Less
‘1h’: (M) ROM memory
‘2h’: (S) Standard Flash memory
‘3h’: (H) High Performance Flash memory (ST10F272Zx)
‘4h...Fh’: reserved

UM0407 Register set

 517/541

IDPROG (F078h / 3Ch) ESFR Reset Value: 0040h

Note: All identification words are read only registers.

The values written inside different Identification Registers bits are valid only after the Flash
initialization phase is completed. When code execution is started from internal memory (pin
EA held high during reset), the Flash has certainly completed its initialization, so the bits of
Identification Registers are immediately ready to be read out. On the contrary, when code
execution is started from external memory (pin EA held low during reset), the Flash
initialization is not yet completed, so the bits of Identification Registers are not ready. The
user can poll bits 15 and 14 of IDMEM register: when both bits are read low, the Flash
initialization is complete, so all Identification Register bits are correct.

Before Flash initialization completion, the default setting of the different Identification
Registers are the following:

IDMANUF 0403h

IDCHIP 110xh (where x represents the silicon revision number)

IDMEM F040h

IDPROG 0040h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROGVPP PROGVDD

R R

Bit Function

PROGVDD
Programming VDD Voltage
VDD voltage when programming EPROM or Flash devices is calculated using the
following formula: VDD = 20 x [PROGVDD] / 256 (volts) - 40h for ST10F272Z2 (5V).

PROGVPP Programming VPP Voltage (no need of external VPP) - 00h

System programming UM0407

518/541

27 System programming

Constructs for modularity, loops, and context switching have been built into the ST10F272Z2
instruction set. Many commonly used instruction sequences have been simplified. The
following programming features are available to the programmer.

Instructions provided as subsets of instructions

In many cases, instructions found in other microcontrollers are provided as subsets of more
powerful instructions in the ST10F272Z2.

This provides the same functionality, while decreasing the hardware requirement and
decreasing decode complexity. These instructions can be built in macros to aid assembly
programming.

Directly substitutable instructions are known instructions from other microcontrollers that
can be replaced by the following instructions of the ST10F272Z2:

Modification of system flags is performed by using bit set or bit clear instructions (BSET,
BCLR). All bit and word instructions can access the PSW register, so no instructions like
CLEAR CARRY or ENABLE INTERRUPTS are required.

External memory data access does not require special instructions to load data pointers
or explicitly load and store external data.

The ST10F272Z2 provides a unified memory architecture and its on-chip hardware
automatically detects accesses to IRAM, GPRs, and SFRs.

Multiplication and division

Multiplication and division of words and double words is provided through multiple cycle
instructions implementing a Booth algorithm. Each instruction implicitly uses the 32-bit
register MD (MDL = lower 16 bits, MDH = upper 16 bits).

The MDRIU flag (Multiply or Divide Register In Use) in register MDC is set whenever either
half of this register is written to or when a multiply/divide instruction is started. It is cleared
whenever the MDL register is read.

Because an interrupt can be acknowledged before the contents of register MD are saved,
this flag is required to alert interrupt routines, which require the use of the multiply/divide
hardware, so they can preserve register MD.

This register, however, only needs to be saved when an interrupt routine requires use of the
MD register and a previous task has not saved the current result. This flag is easily tested by
the Jump-on bit instructions.

Substituted instruction ST10F272Z2 instruction Function

CLRRn ANDRn, #0h Clear register

CPLBBit BMOVNBit, Bit Complement bit

DECRn SUBRn, #1h Decrement register

INCRn ADDRn, #1h Increment register

SWAPBRn RORRn, #8h Swap byte within word

UM0407 System programming

 519/541

Multiplication or division is simply performed by specifying the correct (signed or unsigned)
version of the multiply or divide instruction. The result is then stored in register MD.

The overflow flag (V) is set if the result from a multiply or divide instruction is greater than
16-bit. This flag can be used to determine whether both word halves must be transferred
from register MD.

The high portion of register MD (MDH) must be moved into the register file or memory first,
in order to ensure that the MDRIU flag reflects the correct state.

The following instruction sequence performs an unsigned 16 by 16-bit multiplication:

The above save sequence and the restore sequence after COPYL are only required if the
current routine could have interrupted a previous routine which contained a MUL or DIV
instruction. Register MDC is also saved because it is possible that a previous routine's
Multiply or Divide instruction was interrupted while in progress. In this case the information
about how to restart the instruction is contained in this register. Register MDC must be
cleared to be correctly initialized for a subsequent multiplication or division. The old MDC
contents must be popped from the stack before the RETI instruction is executed.

For a division the user must first move the dividend into the MD register. If a 16 by 16-bit
division is specified, only the low portion of register MD must be loaded.

The result is also stored into register MD. The low portion (MDL) contains the integer result
of the division, while the high portion (MDH) contains the remainder.

...

SAVE: JNB MDRIU, START ;Test if MD was in use.

SCXT MDC, #0010H ;Save and clear control register, leaving MDRIU
set

;(only req for interrupted multiply/divide
instructions)

BSET SAVED ;Indicate the save operation

PUSH MDH ;Save previous MD contents...

PUSH MDL ;...on system stack

START: MULU R1, R2 ;Multiply 16·16 unsigned, Sets MDRIU

JMPR cc_NV, COPYL ;Test for only 16 Bit result

MOV R3, MDH ;Move high portion of MD

COPYL: MOV R4, MDL ;Move low portion of MD, Clears MDRIU

RESTORE: JNB SAVED, DONE ;Test if MD registers were saved

POP MDL ;Restore registers

POP MDH

POP MDC

BCLR SAVED ;Multiplication is completed, program continues

DONE: ...

System programming UM0407

520/541

The following instruction sequence performs a 32 by 16-bit division:

Whenever a multiply or divide instruction is interrupted while in progress, the address of the
interrupted instruction is pushed onto the stack and the MULIP flag in the PSW of the
interrupting routine is set. When the interrupt routine is exited with the RETI instruction, this
bit is implicitly tested before the old PSW is popped from the stack. If MULIP = ‘1’ the
multiply/divide instruction is re-read from the location popped from the stack (return
address) and will be completed after the RETI instruction has been executed.

Note: The MULIP flag is part of the context of the interrupted task. When the interrupting
routine does not return to the interrupted task (for example when a scheduler switches to
another task) the MULIP flag must be set or cleared according to the context of the task that
is switched to.

BCD calculations

No direct support for BCD calculations is provided in the ST10F272Z2. BCD calculations
are performed by converting BCD data to binary data, performing the desired calculations
using standard data types, and converting the result back to BCD data. Due to the
enhanced performance of division instructions binary data is quickly converted to BCD data
through division by 10d. Conversion from BCD data to binary data is enhanced by multiple
bit shift instructions. This provides similar performance compared to instructions directly
supporting BCD data types, while no additional hardware is required.

27.1 Stack operations
The ST10F272Z2 supports two types of stacks. The system stack is used implicitly by the
controller and is located in the IRAM. The user stack provides stack access to the user in
either the internal or external memory. Both stack types grow from high memory addresses
to low memory addresses.

Internal system stack

A system stack is provided to store return vectors, segment pointers, and processor status
for procedures and interrupt routines. A system register, SP, points to the top of the stack.
This pointer is decremented when data is pushed onto the stack, and incremented when
data is popped.

The internal system stack can also be used to temporarily store data or pass it between
subroutines or tasks. Instructions are provided to push or pop registers on/from the system
stack. However, in most cases the register banking scheme provides the best performance
for passing data between multiple tasks.

MOV MDH, R1 ;Move dividend to MD register. Sets MDRIU

MOV MDL, R2 ;Move low portion to MD

DIV R3 ;Divide 32/16 signed, R3 holds the divisor

JMPR cc_V, ERROR ;Test for divide overflow

MOV R3, MDH ;Move remainder to R3

MOV R4, MDL ;Move integer result to R4. Clears MDRIU

UM0407 System programming

 521/541

Note: The system stack allows the storage of words only. Byte must either be converted to word or
the respective other byte must be disregarded. Register SP can only be loaded with even
byte addresses (The LSB of SP is always '0').

Detection of stack overflow/underflow is supported by two registers, STKOV (Stack Overflow
Pointer) and STKUN (Stack Underflow Pointer). Specific system traps (Stack Overflow trap,
Stack Underflow trap) will be entered whenever the SP reaches either boundary specified in
these registers.

The contents of the stack pointer are compared to the contents of the overflow register,
whenever the SP is DECREMENTED either by a CALL, PUSH or SUB instruction. An
overflow trap will be entered, when the SP value is less than the value in the stack overflow
register.

The contents of the stack pointer are compared to the contents of the underflow register,
whenever the SP is INCREMENTED either by a RET, POP or ADD instruction. An underflow
trap will be entered, when the SP value is greater than the value in the stack underflow
register.

Note: When a value is MOVED into the stack pointer, NO check against the overflow/underflow
registers is performed.

In many cases the user will place a software reset instruction (SRST) into the stack
underflow and overflow trap service routines. This is an easy approach, which does not
require special programming.

However, this approach assumes that the defined internal stack is sufficient for the current
software and that exceeding its upper or lower boundary represents a fatal error.

It is also possible to use the stack underflow and stack overflow traps to cache portions of a
larger external stack. Only the portion of the system stack currently being used is placed
into the internal memory, thus allowing a greater portion of the IRAM to be used for program,
data or register banking. This approach assumes no error but requires a set of control
routines (see below).

Circular (virtual) stack

This basic technique allows pushing until the overflow boundary of the internal stack is
reached. At this point a portion of the stacked data must be saved into external memory to
create space for further stack pushes.

This is called “stack flushing”. When executing a number of return or pop instructions, the
upper boundary (since the stack empties upward to higher memory locations) is reached.
The entries that have been previously saved in external memory must now be restored.

This is called “stack filling”. Because procedure call instructions do not continue to nest
infinitely and call and return instructions alternate, flushing and filling normally occurs very
infrequently. If this is not true for a given program environment, this technique should not be
used because of the overhead of flushing and filling.

The basic mechanism is the transformation of the addresses of a virtual stack area,
controlled via registers SP, STKOV and STKUN, to a defined physical stack area within the
IRAM via hardware. This virtual stack area covers all possible locations that SP can point to,
from 00’F000h through 00’FFFEh. STKOV and STKUN accept the same 4-Kbyte address
range.

The size of the physical stack area within the IRAM that effectively is used for standard stack
operations is defined via bit-field STKSZ in register SYSCON (see below).

System programming UM0407

522/541

The virtual stack addresses are transformed to physical stack addresses by concatenating
the significant bit of the stack pointer register SP (see Table 92) with the complementary
most significant bit of the upper limit of the physical stack area (00’FBFEh). This
transformation is done via hardware (see Figure 214).

The reset values (STKOV = FA00h, STKUN = FC00h, SP = FC00h, STKSZ = 00b) map the
virtual stack area directly to the physical stack area and allow using the internal system
stack without any changes, provided that the 256 word area is not exceeded.

Figure 214. Physical stack address generation

The following example demonstrates the circular stack mechanism which is also an effect of
this virtual stack mapping: First, register R1 is pushed onto the lowest physical stack
location according to the selected maximum stack size. With the following instruction,
register R2 will be pushed onto the highest physical stack location although the SP is
decremented by 2 as for the previous push operation.

 .

Table 92. Stack size selection

(STKSZ)
Stack size

(words)
IRAM addresses (words)

of physical stack
Significant bit of
stack pointer SP

0 0 0 b 256 00’FBFEh...00’FA00h (Default after Reset) SP.8...SP.0

0 0 1 b 128 00’FBFEh...00’FB00h SP.7...SP.0

0 1 0 b 64 00’FBFEh...00’FB80h SP.6...SP.0

0 1 1 b 32 00’FBFEh...00’FBC0h SP.5...SP.0

1 0 0 b 512 00’FBFEh...00’F800h (not for 1 Kbyte IRAM) SP.9...SP.0

1 0 1 b --- Reserved. Do not use this combination. ---

1 1 0 b --- Reserved. Do not use this combination. ---

1 1 1 b 1024 00’FDFEh...00’F600h (Note: No circular stack) SP.11...SP.0

MOV SP, #0F802h ; Set SP before last entry of physical stack of 256 Words

... ; (SP) = F802h: Physical stack address = FA02h

PUSH R1 ; (SP) = F800h: Physical stack address = FA00h

PUSH R2 ; (SP) = F7FEh: Physical stack address = FBFEh

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEh

FB80h

FB80h

FBFEh

FB7Eh

FBFEh

FBFEh

64 Words 256 Words

F800h

FA00h

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEh

F7FEh

FBFEh

(SP)

(SP)

Phys.A.

Phys.A.

Stack Size

After PUSH After PUSH

UM0407 System programming

 523/541

The effect of the address transformation is that the physical stack addresses wrap around
from the end of the defined area to its beginning. When flushing and filling the internal stack,
this circular stack mechanism only requires to move that portion of stack data which is really
to be re-used (the upper part of the defined stack area) instead of the whole stack area.
Stack data that remain in the lower part of the internal stack need not be moved by the
distance of the space being flushed or filled, as the stack pointer automatically wraps
around to the beginning of the freed part of the stack area.

Note: This circular stack technique is applicable for stack sizes of 32 to 512 words (STKSZ =
‘000b’ to ‘100b’), it does not work with option STKSZ = ‘111b’, which uses the complete
IRAM for system stack.
In the latter case the address transformation mechanism is deactivated.

When a boundary is reached, the stack underflow or overflow trap is entered, where the
user moves a predetermined portion of the internal stack to or from the external stack. The
amount of data transferred is determined by the average stack space required by routines
and the frequency of calls, traps, interrupts and returns. In most cases this will be
approximately one quarter to one tenth the size of the internal stack. Once the transfer is
complete, the boundary pointers are updated to reflect the newly allocated space on the
internal stack. Thus, the user is free to write code without concern for the internal stack
limits. Only the execution time required by the trap routines affects user programs.

The following procedure initializes the controller for usage of the circular stack mechanism:

● Specify the size of the physical system stack area within the IRAM (bit-field STKSZ in
register SYSCON).

● Define two pointers, which specify the upper and lower boundary of the external stack.
These values are then tested in the stack underflow and overflow trap routines when
moving data.

● Set the stack overflow pointer (STKOV) to the limit of the defined internal stack area
plus six words (for the reserved space to store two interrupt entries).

The internal stack will now fill until the overflow pointer is reached. After entry into the
overflow trap procedure, the top of the stack will be copied to the external memory. The
internal pointers will then be modified to reflect the newly allocated space. After exiting from
the trap procedure, the internal stack will wrap around to the top of the internal stack, and
continue to grow until the new value of the stack overflow pointer is reached.

When the underflow pointer is reached while the stack is emptied the bottom of stack is
reloaded from the external memory and the internal pointers are adjusted accordingly.

Linear stack

The ST10F272Z2 also offers a linear stack option (STKSZ = ‘111b’), where the system
stack may use the complete IRAM area. This provides a large system stack without
requiring procedures to handle data transfers for a circular stack. However, this method also
leaves less RAM space for variables or code. The RAM area that may effectively be
consumed by the system stack is defined via the STKUN and STKOV pointers. The
underflow and overflow traps in this case serve for fatal error detection only. For the linear
stack option all modifiable bit of register SP are used to access the physical stack. Although
the stack pointer may cover addresses from 00’F000h up to 00’FFFEh the (physical) system
stack must be located within the IRAM and therefore may only use the address range
00’F600h to 00’FDFEh. It is the user’s responsibility to restrict the system stack to the IRAM
range.

System programming UM0407

524/541

Note: Avoid stack accesses below the IRAM area (ESFR space and reserved area) and within
address range 00’FE00h and 00’FFFEh (SFR space).
Otherwise unpredictable results will occur.

User stacks

User stacks provide the ability to create task specific data stacks and to off-load data from
the system stack. The user may push both byte and words onto a user stack, but is
responsible for using the appropriate instructions when popping data from the specific user
stack. No hardware detection of overflow or underflow of a user stack is provided. The
following addressing modes allow implementation of user stacks:

[– Rw], Rb or [– Rw], Rw: Pre-decrement indirect addressing. Used to push one byte or
word onto a user stack. This mode is only available for MOV instructions and can specify
any GPR as the user stack pointer.

Rb, [Rw+] or Rw, [Rw+]: Post-increment Index Register Indirect Addressing. Used to pop
one byte or word from user stack. This mode is available to most instructions with some
restrictions.

For MOV instructions, any word GPR can be used as user stack pointer.

For arithmetic, logical and compare instructions, only GPRs R0-R3 can be used.

Rb, [Rw+] or Rw, [Rw+]: Post-increment Indirect Addressing. Used to pop one byte or word
from a user stack. This mode is only available for MOV instructions and can specify any
GPR as the user stack pointer.

27.2 Register banking
Register banking provides the user with an extremely fast method to switch user context. A
single instruction cycle instruction saves the old bank and enters a new register bank. Each
register bank may assign up to 16 registers. Each register bank should be allocated during
coding based on the needs of each task. Once the internal memory has been partitioned
into a register bank space, internal stack space and a global internal memory area, each
bank pointer is then assigned. Thus, upon entry into a new task, the appropriate bank
pointer is used as the operand for the SCXT (switch context) instruction. Upon exit from a
task a simple POP instruction to the context pointer (CP) restores the previous task's
register bank.

27.3 Procedure call entry and exit
To support modular programming a procedure mechanism is provided to allow coding of
frequently used portions of code into subroutines. The CALL and RET instructions store and
restore the value of the instruction pointer (IP) on the system stack before and after a
subroutine is executed.

Procedures may be called conditionally with instructions CALLA or CALLI, or be called
unconditionally using instructions CALLR or CALLS.

Note: Any data pushed onto the system stack during execution of the subroutine must be popped
before the RET instruction is executed.

UM0407 System programming

 525/541

Passing parameters on the system stack

Parameters may be passed via the system stack through PUSH instructions before the
subroutine is called, and POP instructions during execution of the subroutine. Base plus
offset indirect addressing also permits access to parameters without popping these
parameters from the stack during execution of the subroutine. Indirect addressing provides a
mechanism of accessing data referenced by data pointers, which are passed to the
subroutine. In addition, two instructions have been implemented to allow one parameter to
be passed on the system stack without additional software overhead.

The PCALL (push and call) instruction first pushes the 'reg' operand and the IP contents
onto the system stack and then passes control to the subroutine specified by the 'caddr'
operand.

When exiting from the subroutine, the RETP (return and pop) instruction first pops the IP
and then the 'reg' operand from the system stack and returns to the calling program.

Cross segment subroutine calls

Calls to subroutines in different segments require the use of the CALLS (call inter-segment
subroutine) instruction. This instruction preserves both the CSP (code segment pointer) and
IP on the system stack.

Upon return from the subroutine, a RETS (return from inter-segment subroutine) instruction
must be used to restore both the CSP and IP. This ensures that the next instruction after the
CALLS instruction is fetched from the correct segment.

Note: It is possible to use CALLS within the same segment, but still two words of the stack are
used to store both the IP and CSP.

Providing local registers for subroutines

For subroutines which require local storage, the following methods are provided:

Alternate bank of registers: Upon entry into a subroutine, it is possible to specify a new
set of local registers by executing the SCXT (switch context) instruction. This mechanism
does not provide a method to recursively call a subroutine.

Saving and restoring of registers: To provide local registers, the contents of the registers
which are required for use by the subroutine can be pushed onto the stack and the previous
values be popped before returning to the calling routine. This is the most common technique
used today and it does provide a mechanism to support recursive procedures. This method,
however, requires two instruction cycles per register stored on the system stack (one cycle
to PUSH the register, and one to POP the register).

Use of the system stack for local registers: It is possible to use the SP and CP to set up
local subroutine register frames. This enables subroutines to dynamically allocate local
variables as needed within two instruction cycles.

A local frame is allocated by simply subtracting the number of required local registers from
the SP, and then moving the value of the new SP to the CP.

This operation is supported through the SCXT (switch context) instruction with the
addressing mode 'reg, mem'. Using this instruction saves the old contents of the CP on the
system stack and moves the value of the SP into CP (see example below). Each local
register is then accessed as if it was a normal register. Upon exit from the subroutine, first
the old CP must be restored by popping it from the stack and then the number of used local

System programming UM0407

526/541

registers must be added to the SP to restore the allocated local space back to the system
stack. The system stack is growing downwards, while the register bank is growing upwards.

Figure 215. Local registers

The software to provide the local register bank for the example above Figure 215 is very
compact:

After entering the subroutine:

Before exiting the subroutine:

27.4 Table searching
A number of features have been included to decrease the execution time required to search
tables. First, branch delays are eliminated by the branch target cache after the first iteration
of the loop. Second, in non-sequentially searched tables, the enhanced performance of the
ALU allows more complicated hash algorithms to be processed to obtain better table
distribution. For sequentially searched tables, the auto-increment indirect addressing mode
and the E (end of table) flag stored in the PSW decrease the number of overhead
instructions executed in the loop.

The two examples below illustrate searching ordered, and non-ordered tables, respectively:

Note: The last entry in the table must be equal to the lowest signed integer (8000h).

SUB SP, #10D ; Free 5 Words in the current system stack

SCXT CP, SP ; Set the new register bank pointer

POP CP ; Restore the old register bank

ADD SP, #10D ; Release the 5 Word of the current system stack

Old
Stack
Area

Newly
Allocated
Register

Bank

R4
R3
R2
R1
R0

Old CP Contents

Old SP

New SP
New CP

New
Stack
Area

MOV R0, #BASE ;Move table base into R0

LOOP: CMP R1, [R0+] ;Compare target to table entry

JMPR cc_SGT, LOOP ;Test whether target has not been found

MOV R0, #BASE ;Move table base into R0

LOOP: CMP R1, [R0+] ;Compare target to table entry

JMPR cc_NET, LOOP
;Test whether target is not found AND the
end of table...

;...has not been reached.

UM0407 System programming

 527/541

27.5 Peripheral control and interface
All communication between peripherals and the CPU is performed either by PEC transfers
to and from internal memory, or by explicitly addressing the SFRs associated with the
specific peripherals. After resetting the ST10F272Z2 all peripherals (except the watchdog
timer) are disabled and initialized to default values. A desired configuration of a specific
peripheral is programmed using MOV instructions of either constants or memory values to
specific SFRs. Specific control flags may also be altered via bit instructions.

Once in operation, the peripheral operates autonomously until an end condition is reached
at which time it requests a PEC transfer or requests CPU servicing through an interrupt
routine. Information may also be polled from peripherals through read accesses to SFRs or
bit operations including branch tests on specific control bit in SFRs. To ensure proper
allocation of peripherals among multiple tasks, a portion of the internal memory has been
made bit addressable to allow user semaphores. Instructions have also been provided to
lock out tasks via software by setting or clearing user specific bit and conditionally branching
based on these specific bit.

It is recommended that bit-fields in control SFRs are updated using the BFLDH and BFLDL
instructions or a MOV instruction to avoid undesired intermediate modes of operation which
can occur, when BCLR/BSET or AND/OR instruction sequences are used.

27.6 Floating point support
All floating point operations are performed using software. Standard multiple precision
instructions are used to perform calculations on data types that exceed the size of the ALU.
Multiple bit rotate and logic instructions allow easy masking and extracting of portions of
floating point numbers.

To decrease the time required to perform floating point operations, two hardware features
have been implemented in the CPU core. First, the PRIOR instruction aids in normalizing
floating point numbers by indicating the position of the first set bit in a GPR. This result can
the be used to rotate the floating point result accordingly.

The second feature aids in properly rounding the result of normalized floating point numbers
through the overflow (V) flag in the PSW. This flag is set when a one is shifted out of the
carry bit during shift right operations. The overflow flag and the carry flag are then used to
round the floating point result based on the desired rounding algorithm.

27.7 Trap / interrupt entry and exit
Interrupt routines are entered when a requesting interrupt has a priority higher than the
current CPU priority level. Traps are entered regardless of the current CPU priority. When
either a trap or interrupt routine is entered, the state of the machine is preserved on the
system stack and a branch to the appropriate trap/interrupt vector is made.

All trap and interrupt routines require the use of the RETI (return from interrupt) instruction
to exit from the called routine.

This instruction restores the system state from the system stack and then branches back to
the location where the trap or interrupt occurred.

System programming UM0407

528/541

27.8 Inseparable instruction sequences
The instructions of the ST10F272Z2 are very efficient (most instructions execute in one
instruction cycle) and even the multiplication and division are interruptible in order to
minimize the response latency to interrupt requests (internal and external). In many
microcontroller applications this is vital.

Some special occasions, however, require certain code sequences (like semaphore
handling) to be non-interruptible to function properly.

This can be provided by inhibiting interrupts during the respective code sequence by
disabling and enabling them before and after the sequence.

The necessary overhead may be reduced by means of the ATOMIC instruction which allows
locking 1...4 instructions to an inseparable code sequence, during which the interrupt
system (standard interrupts and PEC requests) and Class A Traps (NMI, stack
overflow/underflow) are disabled. A Class B Trap (illegal opcode, illegal bus access, etc.),
however, will interrupt the atomic sequence, since it indicates a severe hardware problem.

The interrupt inhibit caused by an ATOMIC instruction gets active immediately, and no other
instruction will enter the pipeline except the one that follows the ATOMIC instruction, and no
interrupt request will be serviced in between.

All instructions requiring multiple cycles or hold states are regarded as one instruction in this
sense (example MUL is one instruction). Any instruction type can be used within an
inseparable code sequence.

27.9 Overriding the DPP addressing mechanism
The standard mechanism to access data locations uses one of the four data page pointers
(DPPx), which selects a 16-Kbyte data page, and a 14-bit offset within this data page. The
four DPPs allow immediate access to up to 64 Kbytes of data. In applications with big data
arrays, especially in HLL applications using large memory models, this may require frequent
reloading of the DPPs, even for single accesses.

The EXTP (extend page) instruction allows switching to an arbitrary data page for 1...4
instructions without having to change the current DPPs.

EXAMPLE: ATOMIC #3 ; The following 3 instructions are locked

; (No NOP required)

MOV R0, #1234H
; Instruction 1 (no other instr. enters the
pipeline!)

MOV R1, #5678H ; Instruction 2

MUL R0, R1 ; Instruction 3: MUL regarded as one instruction

MOV R2, MDL

; This instruction is out of the scope of the
ATOMIC

; instruction sequence

EXAMPLE: EXTP R15, #1 ; The override page number is stored in R15

MOV R0, [R14] ; The (14 Bit) page offset is stored in R14

MOV R1, [R13] ; This instruction uses the standard DPP scheme!

UM0407 System programming

 529/541

The EXTS (extend segment) instruction allows switching to a 64 Kbyte segment oriented
data access scheme for 1...4 instructions without having to change the current DPPs. In this
case all 16 bits of the operand address are used as segment offset, with the segment taken
from the EXTS instruction. This greatly simplifies address calculation with continuous data
like huge arrays in “C”.

Note: Instructions EXTP and EXTS inhibit interrupts the same way as ATOMIC.

Short addressing in the extended SFR (ESFR) space

The short addressing modes of the ST10F272Z2 (REG or bitOFF) implicitly access the SFR
space. The additional ESFR space would have to be accessed via long addressing modes
(MEM or [Rw]).

The EXTR (extend register) instruction redirects accesses in short addressing modes to the
ESFR space for 1...4 instructions, so the additional registers can be accessed this way, too.

The EXTPR and EXTSR instructions combine the DPP override mechanism with the
redirection to the ESFR space using a single instruction.

Note: Instructions EXTR, EXTPR and EXTSR inhibit interrupts the same way as ATOMIC.
The switching to the ESFR area and data page overriding is checked by the development
tools or handled automatically.

Nested locked sequences

Each of the described extension instruction and the ATOMIC instruction starts an internal
“extension counter” counting the effected instructions. When another extension or ATOMIC
instruction is contained in the current locked sequence this counter is restarted with the
value of the new instruction. This allows the construction of locked sequences longer than 4
instructions.

Note: Interrupt latencies may be increased when using locked code sequences.
PEC requests are not serviced during idle mode, if the IDLE instruction is part of a locked
sequence.

27.10 Handling the internal Flash
The ST10F272Z2 provides and controls up to 256 Kbytes of internal on-chip IFlash memory
that may store code as well as data. Access to this internal Flash area is controlled during
the reset configuration and via software.

Configuration during reset

The default memory configuration of the ST10F272Z2 Memory is determined by the state of
the EA pin at reset. This value is stored in the Internal ROM Enable bit (named ROMEN) of
the SYSCON register.

EXAMPLE: EXTS #15, #1
; The override seg. is #15
(0F’0000h...0F’FFFFh)

MOV R0, [R14] ; The (16 Bit) segment offset is stored in R14

MOV R1, [R13]
; This instruction uses the standard DPP
scheme!

System programming UM0407

530/541

When the EA pin is high during reset (default value), the internal Flash is globally enabled
and the first 32 Kbytes are mapped in segment ‘0’. The first instructions are fetched from the
internal Flash from locations 00’0000h.

When the EA pin is low during reset (ROMEN = 0), the internal Flash is disabled and
external ROM is used for startup control.

Mapping the internal Flash area

When internal Flash is disabled on reset the first instructions are fetched from external
memory locations 00’0000h. The Flash memory can later be enabled by setting the ROMEN
bit of SYSCON to 1. The code performing this setting must not run from a segment of the
external memory, that superimposes the Flash memory area, otherwise unexpected
behavior may occur.

For example, if external memory code is located in the first 32 Kbytes of segment 0, the first
32 Kbytes of the Flash must then be enabled in segment 1. This is done by setting the
ROMS1 bit of SYSCON to 0 before or simultaneously with setting of ROMEN bit. This must
be done in the externally supplied program before the execution of the EINIT instruction.

If program execution starts from external memory, but access to the Flash memory mapped
in segment 0 is later required, then the code that performs the setting of ROMEN bit must be
executed either in the segment 0 but above address 00’8000h, or from the on-chip RAM.

Bit ROMS1 only affects the mapping of the first 32 Kbytes of the IFlash memory. All other
parts of the IFlash memory (addresses 01’8000h - 08’FFFFh) remain unaffected.

The SGTDIS Segmentation Disable / Enable must also be set to 0 to allow the use of the full
256 Kbytes of on-chip Flash memory in addition to the external boot memory. The correct
procedure on changing the segmentation registers must also be observed to prevent an
unwanted trap condition:

● Instructions that configure the internal memory must only be executed from external
memory or from the IRAM.

● An Absolute Inter-Segment Jump (JMPS) instruction must be executed after Flash
enabling, to the next instruction, even if this next instruction is located in the
consecutive address.

● Whenever the internal Memory is disabled, enabled or re-mapped, the DPPs must be
explicitly (re)loaded to enable correct data accesses to the internal memory and/or
external memory.

When starting from external memory, the interrupt/trap vector table, which uses locations
00’0000h through 00’01FFh, of the external memory and may therefore be modified, so the
system software may now change interrupt/trap handlers according to the current condition
of the system.

The internal Flash can still be used for fixed software routines like I/O drivers, math libraries,
application specific invariant routines, tables, etc. This combines the advantage of an
integrated non-volatile memory with the advantage of a flexible, adaptable software system.

Enabling and disabling the internal flash area after reset

If the internal Flash does not contain an appropriate start-up code, the system may be
booted from external memory, while the internal Flash is enabled afterwards to provide
access to library routines, tables, etc.

UM0407 System programming

 531/541

If the internal Flash only contains the start-up code and/or test software, the system may be
booted from internal Flash, which may then be disabled, after the software has switched to
executing from external memory, in order to free the address space occupied by the internal
Flash area, which is now unnecessary.

27.11 Pits, traps and mines
Although handling the internal Flash provides powerful means to enhance the overall
performance and flexibility of a system, extreme care must be taken in order to avoid a
system crash. Instruction memory is the most crucial resource for the ST10F272Z2 and it
must be made sure that it never runs out of it.

The following precautions help to take advantage of the methods mentioned above without
jeopardizing system security.

Internal Flash access after reset: When the first instructions are to be fetched from
internal Flash (EA=‘1’), the memory must contain a valid reset vector and valid code at its
destination.

Mapping the internal Flash to segment 1: Due to instruction pipelining, any new Flash
mapping will at the earliest become valid for the second instruction after the instruction
which has changed the Flash mapping. To enable accesses to the Flash after mapping a
branch to the newly selected Flash area (JMPS) and reloading of all data page pointers is
required.
This also applies to re-mapping the internal Flash to segment 0.

Enabling the internal Flash after reset: When enabling the internal Flash after having
booted the system from external memory, note that the ST10F272Z2 will then access the
internal Flash using the current segment offset, rather than accessing external memory.

Disabling the internal Flash after reset: When disabling the internal Flash after having
booted the system from there, note that the ST10F272Z2 will not access external memory
before a jump to segment 0 (in this case) is executed.

General rules

When mapping the Flash no instruction or data accesses should be made to the internal
Flash, otherwise unpredictable results may occur.

To avoid these problems, the instructions that configure the internal Flash should be
executed from external memory or from the IRAM.

Whenever the internal Flash is disabled, enabled or re-mapped the DPPs must be explicitly
(re)loaded to enable correct data accesses to the internal Flash and/or external memory.

Revision history UM0407

532/541

28 Revision history

Date Revision Changes

13-Mar-2007 1.0 Initial release on internet.

UM0407 Index

 533/541

Index

A
Accuracy . 369
Acronyms . 2
Adapt Mode . 471
ADC . 37

Accuracy . 369
Auto Scan Conversion 362
Calibration . 369
Channel Injection . 363
Interrupt . 368
Power Off . 366
Timing Control . 367
Wait for ADDAT Read Mode 363
XMISC . 359

Adder/Subtracter . 85
Address

Arbitration . 200
Area Definition . 199
Boundaries . 50
Segment . 185, 473

ADDRSELx . 198, 200, 205
ALE

Length . 188
Pin . 177

Alternate Boot Mode 312
ALU . 67
Analog/Digital Converter 37
Arbitration

Address . 200
External Bus . 202

ASC0 . 34
Baudrate . 248
Interrupt . 249

Auto Scan . 362

B
Baudrate

ASC0 . 248
Bootstrap Loader . 308
CAN . 425-426
SSC . 273
XASC . 260
XSSC . 287

BHE . 150, 185
Bidirectional Reset . 459
Bit

Addressable Memory 44

Index UM0407

534/541

Handling . 58
Protected . 59

Bootstrap Loader . 295, 472
Boundaries . 50
Burst Mode (PWM) 336, 348
Bus

Arbitration . 202
CAN . 37
Demultiplexed . 182
I2C . 38, 377
Idle State . 201
Mode Configuration 180, 472
Multiplexed . 181

C
Calibration . 369
CAN . 37, 384

Baudrate . 425-426
Clock Prescaling . 390
Interface . 37
Interrupt . 387, 425
XMISC . 388

CAPCOM . 36
Capture Mode . 324
Compare Modes . 324
Double-Register Compare 329
Interrupt . 331
Timer . 318
Unit . 315

Capture/Compare Unit 315
Center Aligned PWM 335, 347
Channel Injection . 363
Chip Select . 186, 473
CLKOUT . 149, 486
Clock Generator . 29, 474
CMOS Input . 134
Concatenation of Timers 224, 237
Configuration

Address . 473
Bus Mode . 180, 472
Chip Select . 186, 473
PLL . 474
Segment Address . 185
Write Control . 473

Context Switching . 106
Conversion

Auto Scan . 362
Timing Control . 367

Counter . 218, 223, 233, 236, 339, 351
CP . 72
CPU . 22

UM0407 Index

 535/541

CSP . 70

D
Data Page . 71, 528

Boundaries . 50
Delay

Read/Write . 191
Demultiplexed Bus . 182
Disable

Interrupt . 103
Segmentation . 63

Division . 76, 518
DP0L, DP0H . 137
DP1L, DP1H . 140
DP2 . 143
DP3 . 147
DP4 . 151
DP6 . 160
DP7 . 166, 486
DP8 . 170
DPP . 71, 528

E
EA

Functionality . 211
Edge Aligned PWM 334, 346
Emulation Mode . 471
Enable

Interrupt . 103
Segmentation . 63

Error Detection
SSC . 274
XSSC . 288

EXICON . 112
External

Bus . 28
Bus Characteristics 187
Bus Idle State . 201
Bus Modes . 180-185
Interrupts . 110

F
Fast External Interrupts 111
Filter (Reset) . 446
Flags . 67
Flash . 42
Full Duplex . 268, 283

Index UM0407

536/541

G
GPR . 45, 488
GPT . 35, 213

Capture Mode . 227, 237
GPT1 . 213
GPT2 . 229

H
Half Duplex . 271, 285
Hardware

Traps . 26, 126
Hardware Reset . 449
Hold State . 203

I
I2C Interface . 377
I2C Serial Interface . 38
Idle

State (Bus) . 201
Idle Mode . 476

Pins . 485
IFlash . 42
Incremental Interface Mode 237
Input Threshold . 134
Inseparable Instructions 528
Instruction . 518

Branch . 55
Inseparable . 528
Pipeline . 54
Timing . 59

Interface
CAN . 37
External Bus . 179
I2C . 38, 377
serial sync. . 264, 277

Interrupt
ADC . 368
ASC0 . 249
CAN . 387, 425
CAPCOM . 331
Context Switching . 106
Enable/Disable . 103
External . 110
Fast External . 111
Group . 98
MAC . 129
PEC Service . 97
Priority . 98
Processing . 93, 97
PSW . 100

UM0407 Index

 537/541

Response Times . 106
Sources . 96
System . 26, 93
Vectors . 96
XASC . 261

IP . 69
IRAM . 43

M
MAC

Adder/Subtracter . 85
Master Mode . 203
MDC . 77
MDH . 76
MDL . 77
Memory . 27

Bit-Addressable . 44
External . 49
IRAM/SFR . 43
XRAM . 48

Memory Cycle Time . 189
Multiplexed Bus . 181
Multiplication . 76, 518

N
NMI . 93, 128

O
ODP2 . 143
ODP3 . 147
ODP4 . 151
ODP6 . 160
ODP7 . 166, 486
ODP8 . 170
ONES . 78
Open Drain . 131

P
P0L,P0H . 136
P1L,P1H . 139
P2 . 143
P3 . 147
P4 . 150
P5 . 158
P5DIDIS . 159
P6 . 160
P7 . 166, 486
P8 . 170
PEC . 27, 46

Index UM0407

538/541

Response Times . 108
Peripheral . 31
PICON . 134
Pins . 177

Idle and Power Down mode 485
Pipeline . 54

Effects . 56
PLL . 474
Port . 33, 131

Input Threshold . 134
Power Down Mode . 477

Pins . 485
Protected

Bits . 59
PSW . 66, 100
Pulse Width Modulation 36
PWM . 36

Burst mode . 336
Center Aligned PWM 335
Counter . 339
Single Shot Mode . 337

PWM Module . 332

R
RAM

IRAM . 43
XRAM . 48

Read/Write Delay . 191
READY . 177, 192
Register . 487

Flash . 513-514
Identification . 515
SFR . 489, 497
XBUS . 504, 509

Reset . 446
Asynchronous . 447
Bidirectional . 459
Circuitry . 463
Flags . 460
Hardware . 449
RPD . 453
Software . 457
Startup Configurations 469
Watchdog . 458

RP0H . 470
RPD . 178

Reset . 453
RTC . 38, 440

S
Segment

UM0407 Index

 539/541

Address . 185, 473
Boundaries . 50

Segmentation
Enable/Disable . 63

Serial Interface . 34
Asynchronous . 244, 255
CAN . 37
I2C . 38, 377
Synchronous . 246, 264, 277

SFR . 47, 489, 497
Single Chip Mode . 179
Single Shot Mode (PWM) 349
Single Shot Mode(PWM) 337
Slave Mode . 203
Software

Traps . 126
Software Reset . 457
Source

Interrupt . 96
SP . 74
SSC . 34, 264

Baudrate . 273
Error Detection . 274
Full Duplex . 268
Half Duplex . 271

Stack . 45, 74, 520
STKOV . 75, 129
STKUN . 76, 129
Subroutine . 525
Synchronous Serial Interface 264, 277
SYSCON . 61, 195

T
T0 . 318
T7 . 318
T8 . 318
Threshold . 134
Timer . 35, 213, 229

Auxiliary Timer . 222, 235
CAPCOM . 318
Concatenation . 224, 237

Traps . 97, 125
Hardware . 126
Illegal External Bus Access 130
Illegal Word Operand Access 130
NMI . 128
Protection Fault . 130
Software . 126
Stack Overflow . 129
Stack Underflow . 129
Undefined Opcode 129

Index UM0407

540/541

Tri-State Time . 190
TTL Input . 134

V
Voltage Regulator . 477

XMISC . 477

W
Wait for ADDAT Read Mode 363
Waitstate

Memory Cycle . 189
Tri-State . 190

Watchdog . 35, 290
Reset . 458

XYZ
XADRSx . 205
XASC . 34

Baudrate . 260
Interrupt . 261

XBUS . 29, 205
XMISC . 359, 388, 477
XP1DIDIS . 141
XPERCON . 64, 210
XPICON . 134
XPWM . 36, 344

Burst Mode . 348
Center Aligned PWM 347
Counter . 351
Edge Aligned PWM 346
Single Shot Mode . 349

XPWMPORT . 170
XRAM . 48
XS1PORT . 171
XSSC . 34, 277

Baudrate . 287
Error Detection . 288
Full Duplex . 283
Half Duplex . 285

ZEROS . 78

UM0407

 541/541

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Architectural overview
	1.1 Basic CPU concepts and optimization
	Figure 1. ST10F272Z2 functional block diagram
	Figure 2. CPU block diagram
	1.1.1 High instruction bandwidth / fast execution
	1.1.2 High function 8-bit and 16-bit ALU
	1.1.3 Extended bit processing and peripheral control
	1.1.4 High performance branch, call and loop processing
	1.1.5 Consistent and optimized instruction formats
	1.1.6 Programmable multiple priority interrupt system

	1.2 On-chip system resources
	1.2.1 Peripheral event control and interrupt control
	1.2.2 Memory areas
	1.2.3 External bus interface

	1.3 Clock generator
	Figure 3. Clock block diagram
	1.3.1 PLL operation
	1.3.2 Prescaler operation
	1.3.3 Direct drive
	1.3.4 Oscillator watchdog (OWD)

	1.4 On-chip peripheral blocks
	1.4.1 Peripheral interfaces
	1.4.2 Peripheral timing
	1.4.3 Programming hints
	1.4.4 Parallel ports
	1.4.5 Serial channels
	1.4.6 General purpose timer (GPT) unit
	1.4.7 Watchdog timer
	1.4.8 Capture / compare (CAPCOM) units
	1.4.9 Pulse width modulation unit
	1.4.10 A/D converter
	1.4.11 CAN module
	1.4.12 I2C serial interface

	1.5 Real time clock
	1.6 Protected bits
	Table 1. Protected bit

	2 Memory organization
	Figure 4. ST10F272Z2 memory mapping (user mode: Flash Read operation/XADRS3 = F006h)
	2.1 Word, byte and bit storage
	Figure 5. Storage of words, bytes and bits in a byte organized memory

	2.2 On-chip Flash
	Table 2. Memory organization of the 512 Kbytes related to IFlash (ROMEN = ‘1’)

	2.3 IRAM and SFR area
	Figure 6. On-chip RAM and SFR/ESFR areas
	2.3.1 System stack
	Table 3. Stack size

	2.3.2 General purpose registers
	Table 4. Mapping of general purpose registers to RAM addresses

	2.3.3 PEC source and destination pointers
	Figure 7. Location of the PEC pointers

	2.3.4 Special function registers

	2.4 The on-chip XRAM
	2.4.1 XRAM access via external masters

	2.5 External memory space
	2.6 Crossing memory boundaries

	3 The central processing unit (CPU)
	Figure 8. CPU block diagram
	3.1 Instruction pipelines
	Figure 9. Sequential instruction pipelining
	3.1.1 Sequential instruction processing
	3.1.2 Standard branch instruction processing
	Figure 10. Standard branch instruction pipelining

	3.1.3 Cache jump instruction processing
	Figure 11. Cache jump instruction pipelining

	3.1.4 Particular pipeline effects

	3.2 Bit-handling and bit-protection
	3.3 Instruction execution times
	Table 5. Minimum execution times

	3.4 CPU special function registers
	3.4.1 The system configuration register SYSCON
	Table 6. Stack size

	3.4.2 X-Peripherals control register (XPERCON)
	3.4.3 XPERCON and XPEREMU registers
	3.4.4 Emulation dedicated registers
	3.4.5 The processor status word PSW
	Table 7. Shift right rounding error evaluation

	3.4.6 The instruction pointer IP
	3.4.7 The code segment pointer CSP
	Figure 12. Addressing via the code segment pointer

	3.4.8 The data page pointers DPP0, DPP1, DPP2, DPP3
	Figure 13. Addressing via the data page pointers

	3.4.9 The context pointer CP
	Figure 14. Register bank selection via register CP
	Figure 15. Implicit CP use by short GPR addressing modes

	3.4.10 The stack pointer SP
	3.4.11 The stack overflow pointer STKOV
	3.4.12 The stack underflow pointer STKUN
	3.4.13 The multiply / divide high register MDH
	3.4.14 The multiply / divide low register MDL
	3.4.15 The multiply / divide control register MDC
	3.4.16 The constant zeros register ZEROS
	3.4.17 The constant ones register ONES

	4 Multiply-accumulate unit (MAC)
	4.1 MAC features
	4.2 MAC operation
	Figure 16. MAC architecture
	4.2.1 Instruction pipelining
	4.2.2 Particular pipeline effects with the MAC unit
	4.2.3 Address generation
	Table 8. Pointer post-modification combinations for IDXi and Rwn
	Table 9. Parallel data move addressing
	Figure 17. Example of parallel data move

	4.2.4 16 x 16 signed/unsigned parallel multiplier
	4.2.5 40-bit signed arithmetic unit
	4.2.6 The 40-bit signed accumulator register
	4.2.7 The 40-bit adder / subtracter
	4.2.8 Data limiter
	Table 10. Limiter output using CoSTORE instruction

	4.2.9 The accumulator shifter
	4.2.10 Repeat unit
	4.2.11 MAC interrupt
	Figure 18. Pipeline diagram for MAC interrupt response time

	4.2.12 Number representation & rounding

	4.3 MAC register set
	4.3.1 Address registers
	4.3.2 Accumulator & control registers
	Table 11. MAC register address in CoReg addressing mode

	4.4 MAC instruction set summary
	Table 12. MAC instruction set summary

	5 Interrupt and trap functions
	5.1 Interrupt system structure
	Table 13. Interrupt and PEC service request sources
	Table 14. Vector locations and status for hardware traps
	5.1.1 Normal interrupt processing and PEC service
	5.1.2 Interrupt system register description
	5.1.3 Interrupt control registers
	5.1.4 Interrupt priority level and group level
	Figure 19. Priority levels and PEC channels

	5.1.5 Interrupt control functions in the PSW

	5.2 Operation of the PEC channels
	Table 15. PEC control register addresses
	Figure 20. Mapping of PEC pointers into the IRAM

	5.3 Prioritizing interrupt & PEC service requests
	5.3.1 Enabling and disabling interrupt requests
	5.3.2 Interrupt class management
	Table 16. Example of software controlled interrupt classes

	5.4 Saving the status during interrupt service
	Figure 21. Task status saved on the system stack
	5.4.1 Context switching

	5.5 Interrupt response times
	Figure 22. Pipeline diagram for interrupt response time
	5.5.1 PEC response times
	Figure 23. Pipeline diagram for PEC response time

	5.6 External interrupts
	Table 17. Pins to be used as external interrupt inputs
	5.6.1 Fast external interrupts

	5.7 X-Peripheral interrupt
	Figure 24. X-Interrupt basic structure
	Table 18. X-Interrupt detailed mapping

	5.8 Trap functions
	Table 19. Trap priorities
	5.8.1 Software traps
	5.8.2 Hardware traps
	5.8.3 External NMI trap
	5.8.4 Stack overflow trap
	5.8.5 Stack underflow trap
	5.8.6 Undefined opcode trap
	5.8.7 MAC interrupt
	5.8.8 Protection fault trap
	5.8.9 Illegal word operand access trap
	5.8.10 Illegal instruction access trap
	5.8.11 Illegal external bus access trap

	6 Parallel ports
	6.1 Introduction
	6.1.1 Open drain mode
	Figure 25. SFRs, XBUS registers and pins associated with the parallel ports
	Figure 26. Output drivers in push-pull mode and in open drain mode

	6.1.2 Input threshold control
	Figure 27. Hysteresis concept

	6.1.3 Alternate port functions

	6.2 PORT0
	6.2.1 Alternate functions of PORT0
	Figure 28. PORT0 I/O and alternate functions
	Figure 29. Block diagram of a PORT0 pin

	6.3 PORT1
	6.3.1 Alternate functions of PORT1
	Figure 30. PORT1 I/O and alternate functions

	6.3.2 PORT1 analog inputs disturb protection
	Figure 31. Block diagram of input section of a P1L pin
	Figure 32. Block diagram of a PORT1 pin

	6.4 Port2
	6.4.1 Alternate functions of Port2
	6.4.2 External interrupts
	Table 20. Port2 alternate functions
	Figure 33. Port2 I/O and alternate functions
	Figure 34. Block diagram of a Port2 pin

	6.5 Port3
	6.5.1 Alternate functions of Port3
	Table 21. Port3 alternative functions
	Figure 35. Port3 I/O and alternate functions
	Figure 36. Block diagram of a Port3 pin
	Figure 37. Block diagram of P3.15 (CLKOUT) and P3.12 (BHE/WRH) pins

	6.6 Port4
	6.6.1 Alternate functions of Port4
	Table 22. Port4 alternate functions
	Figure 38. Port4 I/O and alternate functions
	Figure 39. Block diagram of Port4 pins 3...0
	Figure 40. Block diagram of P4.4 pin
	Figure 41. Block diagram of P4.5 pin
	Figure 42. Block diagram of P4.6 pin
	Figure 43. Block diagram of P4.7 pin

	6.7 Port5
	6.7.1 Alternate functions of Port5
	Table 23. Port5 alternate functions
	Figure 44. Port5 I/O and alternate functions
	Figure 45. Block diagram of a Port5 pin

	6.7.2 Port5 analog inputs disturb protection

	6.8 Port6
	6.8.1 Alternate functions of Port6
	Table 24. Port6 alternate functions
	Figure 46. Port6 I/O and alternate functions
	Figure 47. Block diagram of Port6 pins 4...0
	Figure 48. Block diagram of P6.5 pin
	Figure 49. Block diagram of P6.6 and P6.7 pins

	6.9 Port7
	6.9.1 Alternate functions of Port7
	Table 25. Port7 alternate functions
	Figure 50. Port7 I/O and alternate functions
	Figure 51. Block diagram of Port7 pins 3...0
	Figure 52. Block diagram of Port7 pins 7...4

	6.10 Port8
	6.10.1 Alternate functions of Port8
	Table 26. Port8 alternate functions
	Figure 53. Port8 I/O and alternate functions
	Figure 54. Block diagram of Port8 pins 3...0
	Figure 55. Block diagram of P8.4 and P8.5 pins
	Figure 56. Block diagram of P8.6 pin
	Figure 57. Block diagram of P8.7 pin

	7 Dedicated pins
	Table 27. Summary of dedicated pins
	Figure 58. RPD external RC circuit

	8 The external bus interface
	8.1 Single chip mode
	Figure 59. SFRs and port pins associated with the external bus interface

	8.2 External bus modes
	8.2.1 Multiplexed bus modes
	Figure 60. Multiplexed bus cycle

	8.2.2 De-multiplexed bus modes
	Figure 61. De-multiplexed bus cycle

	8.2.3 Switching between the bus modes
	8.2.4 External data bus width
	Figure 62. Switching from de-multiplexed to multiplexed bus mode

	8.2.5 Disable / enable control for pin BHE (BYTDIS)
	8.2.6 Segment address generation
	8.2.7 CS signal generation
	8.2.8 Segment address versus chip select

	8.3 Programmable bus characteristics
	Figure 63. Programmable external bus cycle
	8.3.1 ALE length control
	Figure 64. ALE length control

	8.3.2 Programmable memory cycle time
	Figure 65. Memory cycle time

	8.3.3 Programmable memory tri-state time
	Figure 66. Memory tri-state time

	8.3.4 Read / write signal delay
	Figure 67. Read / write delay

	8.3.5 READY polarity
	8.3.6 READY / READY controlled bus cycles
	Figure 68. READY/READY controlled bus cycles

	8.3.7 Programmable chip select timing control
	Figure 69. Chip select delay

	8.4 Controlling the external bus controller
	8.4.1 Definition of address areas
	Table 28. Definition of address areas

	8.4.2 Address window arbitration
	Figure 70. Address window arbitration

	8.4.3 Precautions and hints

	8.5 EBC idle state
	Table 29. Status of the external bus interface during EBC idle state

	8.6 External bus arbitration
	8.6.1 Connecting bus masters
	8.6.2 Entering the hold state
	Figure 71. Sharing external resources using slave mode
	Figure 72. External bus arbitration, releasing the bus

	8.6.3 Exiting the hold state
	Figure 73. External bus arbitration, (regaining the bus)

	8.7 The XBUS interface
	Table 30. Definition of XBUS address areas
	Figure 74. Memory mapping (User mode (ROMEN = 1) / XADRS = 800Bh (reset value))
	Figure 75. Memory mapping (User mode: Flash read operations (ROMEN = 1 / XADRS = F006h)

	8.8 EA functionality
	Figure 76. EA / VSTBY external circuit

	9 The general purpose timer units
	9.1 Timer block GPT1
	Figure 77. SFRs and port pins associated with timer block GPT1
	Figure 78. GPT1 block diagram
	9.1.1 GPT1 core timer T3
	Table 31. T3CON register description
	Table 32. GPT1 core timer T3 count direction control
	Figure 79. Core timer T3 in timer mode
	Table 33. GPT1 timer resolutions
	Figure 80. Core timer T3 in gated timer mode
	Figure 81. Core timer T3 in counter mode
	Table 34. GPT1 core timer T3 (counter mode) input edge selection
	Figure 82. Core timer T3 in incremental interface mode
	Table 35. GPT1 core timer T3 (incremental interface mode) input edge selection
	Figure 83. Connection of the encoder to the ST10F272Zx
	Table 36. Incremental interface count with regard to encoder’s inputs
	Figure 84. Evaluation of the incremental encoder signals
	Figure 85. Evaluation of the incremental encoder signals

	9.1.2 GPT1 auxiliary timers T2 and T4
	Table 37. T2CON and T4CON registers description
	Figure 86. Auxiliary timer in counter mode
	Table 38. GPT1 auxiliary timer (counter mode) input edge selection
	Figure 87. Concatenation of core timer T3 and an auxiliary timer
	Figure 88. GPT1 auxiliary timer in reload mode
	Figure 89. GPT1 timer reload configuration for PWM generation
	Figure 90. GPT1 auxiliary timer in capture mode

	9.1.3 Interrupt control for GPT1 timers

	9.2 Timer block GPT2
	Figure 91. SFRs and port pins associated with timer block GPT2
	Figure 92. GPT2 block diagram
	9.2.1 GPT2 core timer T6
	Table 39. T6CON register description
	Table 40. GPT2 core timer T6 count direction control
	Figure 93. Block diagram of core timer T6 in timer mode
	Table 41. GPT2 timer resolution
	Figure 94. Block diagram of core timer T6 in gated timer mode
	Figure 95. Block diagram of core timer T6 in counter mode
	Table 42. GPT2 core timer T6 (counter mode) input edge selection
	Table 43. T5CON register description
	Figure 96. Block diagram of auxiliary timer T5 in counter mode
	Table 44. GPT2 auxiliary timer (counter mode) input edge selection
	Figure 97. Concatenation of core timer T6 and auxiliary timer T5
	Figure 98. GPT2 register CAPREL in capture mode
	Figure 99. GPT2 register CAPREL in reload mode
	Figure 100. GPT2 register CAPREL in capture-and-reload mode

	9.2.2 Interrupt control for GPT2 timers and CAPREL

	10 Asynchronous / synchronous serial interface
	Figure 101. SFRs and port pins associated with ASC0
	Table 45. S0CON register description
	10.1 Asynchronous operation
	Figure 102. Asynchronous mode of serial channel ASC0
	Figure 103. Asynchronous 8-bit data frames
	Figure 104. Asynchronous 9-bit data frames

	10.2 Synchronous operation
	Figure 105. Synchronous mode of serial channel ASC0

	10.3 Hardware error detection
	10.4 ASC0 baud rate generation
	10.5 ASC0 interrupt control
	Figure 106. ASC0 interrupt generation

	11 XBUS asynchronous / synchronous serial interface
	Figure 107. XBUS registers and port pins associated with XASC
	Table 46. XS1CON register description
	Table 47. XS1CONSET register description
	Table 48. XS1CONCLR register description
	11.1 Asynchronous operation
	Figure 108. Asynchronous mode of serial channel XASC
	Figure 109. Asynchronous 8-bit data frames
	Figure 110. Asynchronous 9-bit data frames

	11.2 Synchronous operation
	Figure 111. Synchronous mode of serial channel XASC

	11.3 Hardware error detection
	11.4 XASC baud rate generation
	11.5 XASC interrupt control
	Figure 112. XASC interrupt generation

	12 High-speed synchronous serial interface
	Figure 113. SFRs and port pins associated with the SSC
	Figure 114. Synchronous serial channel SSC block diagram
	Table 49. SSCCON register bit description when SSCEN = ‘0’
	Table 50. SSCCON register bit description when SSCEN = ‘1’
	12.1 Full-duplex operation
	Figure 115. Serial clock phase and polarity options
	Figure 116. SSC full duplex configuration

	12.2 Half duplex operation
	Figure 117. SSC half duplex configuration
	12.2.1 Port control
	Table 51. Port 3 pins configuration for SSC master / slave modes

	12.3 Baud rate generation
	12.4 Error detection mechanisms
	12.5 SSC interrupt control
	Figure 118. SSC error interrupt control

	13 XBUS high-speed synchronous serial interface
	Figure 119. XBUS registers and port pins associated with the XSSC
	Figure 120. Synchronous serial channel XSSC block diagram
	Table 52. XSSCCON register description with XSSCEN = ‘0’
	Table 53. XSSCCON register with XSSCEN = ‘1’
	Table 54. XSSCCONSET register
	Table 55. XSSCCONCLR register
	13.1 Full-duplex operation
	Figure 121. Serial clock phase and polarity options
	Figure 122. XSSC full duplex configuration

	13.2 Half duplex operation
	Figure 123. XSSC half duplex configuration
	13.2.1 Port control
	Table 56. Pin configuration for port control

	13.3 Baud rate generation
	13.4 Error detection mechanisms
	13.5 XSSC interrupt control

	14 Watchdog timer
	Figure 124. SFRs and port pins associated with the watchdog timer
	Figure 125. Watchdog timer block diagram
	14.1 Operation of the watchdog timer
	Table 57. WDTCON register description
	Table 58. WDTCON bits value on different resets
	Table 59. WDTREL reload value
	Table 60. Reset events summary

	15 The bootstrap loader
	15.1 Selection among user-code, standard or alternate bootstrap
	15.1.1 Part 1:
	15.1.2 Part 2:
	Table 61. ST10F272Z2 boot mode selection

	15.2 Standard bootstrap loader
	15.2.1 Entering the standard bootstrap loader
	Figure 126. ST10F272Zx new standard bootstrap loader program flowST10 configuration in BSL

	15.2.2 Booting steps
	Figure 127. Booting steps for ST10F272Z2

	15.2.3 Hardware to activate BSL
	Figure 128. Hardware provisions to activate the BSL

	15.2.4 Memory configuration in bootstrap loader mode
	Figure 129. Memory configuration after reset

	15.2.5 Loading the start-up code
	15.2.6 Exiting bootstrap loader mode
	15.2.7 Hardware requirements

	15.3 Standard bootstrap with UART (RS232 or K-Line)
	15.3.1 Features
	Figure 130. UART bootstrap loader sequence

	15.3.2 Entering bootstrap via UART
	15.3.3 ST10 configuration in UART BSL (RS232 or K-Line)
	15.3.4 Loading the start-up code
	15.3.5 Choosing the baud rate for the BSL via UART
	Figure 131. Baud rate deviation between host and ST10F272Z2

	15.4 Standard bootstrap with CAN
	15.4.1 Features
	Figure 132. CAN bootstrap loader sequence

	15.4.2 Entering the CAN bootstrap loader
	15.4.3 ST10 configuration in CAN BSL
	15.4.4 Loading the start-up code via CAN
	15.4.5 Choosing the baud rate for the BSL via CAN
	Figure 133. Bit rate measurement over a predefined zero-frame
	Table 62. Ranges of timer contents in function of BRP value

	15.4.6 How to compute the baud rate error
	15.4.7 Bootstrap via CAN

	15.5 Comparing the old and the new bootstrap loader
	15.5.1 Software aspects
	Table 63. Software topics summary

	15.5.2 Hardware aspects
	Table 64. Hardware topics summary

	15.6 Selective boot mode
	15.6.1 Activation
	15.6.2 Memory mapping
	15.6.3 User mode signature integrity check
	15.6.4 Internal decoding of test modes
	15.6.5 Example
	Figure 134. Reset boot sequence

	16 The capture / compare units
	Figure 135. SFRs and port pins associated with the CAPCOM units
	Figure 136. CAPCOM unit block diagram
	16.1 CAPCOM timers
	Figure 137. Block diagram of CAPCOM timers T0 and T7
	Figure 138. Block diagram of CAPCOM timers T1 and T8

	16.2 CAPCOM unit timer interrupts
	16.3 Capture / compare registers
	Table 65. Selection of capture modes and compare modes

	16.4 Capture mode
	Figure 139. Capture mode block diagram

	16.5 Compare modes
	Table 66. Summary of compare modes
	16.5.1 Compare mode 0
	Figure 140. Compare mode 0 and 1 block diagram

	16.5.2 Compare mode 1
	Figure 141. Timing example for compare modes 0 and 1

	16.5.3 Compare mode 2
	Figure 142. Compare mode 2 and 3 block diagram
	Figure 143. Timing example for compare modes 2 and 3

	16.5.4 Compare mode 3
	16.5.5 Double register compare mode
	Table 67. Register pairs for double-register compare mode
	Figure 144. Double register compare mode block diagram
	Figure 145. Timing example for double register compare mode

	16.6 Capture / compare interrupts
	Table 68. CAPCOM unit interrupt control register addresses

	17 Pulse width modulation module
	Figure 146. SFRs and port pins associated with the PWM module
	Figure 147. PWM channel block diagram
	17.1 Operating modes
	17.1.1 Mode 0: standard PWM generation (edge aligned PWM)
	Figure 148. Operation and output waveform in mode 0

	17.1.2 Mode 1: symmetrical PWM generation (center aligned PWM)
	Figure 149. Operation and output waveform in mode 1

	17.1.3 Burst mode
	Figure 150. Operation and output waveform in burst mode

	17.1.4 Single shot mode
	Figure 151. Operation and output waveform in single shot mode

	17.2 PWM module registers
	Table 69. PWM frequencies
	Table 70. PWM module channel specific register addresses

	17.3 Interrupt request generation
	17.4 PWM output signals
	Figure 152. PWM output signal generation

	18 XBUS pulse width modulation module
	Figure 153. XBUS registers and port pins associated with the XPWM module
	Figure 154. XPWM channel block diagram
	18.1 Operating modes
	18.1.1 Mode 0: standard PWM generation (edge aligned PWM)
	Figure 155. Operation and output waveform in mode 0

	18.1.2 Mode 1: symmetrical PWM generation (center aligned PWM)
	Figure 156. Operation and output waveform in mode 1

	18.1.3 Burst mode
	Figure 157. Operation and output waveform in burst mode

	18.1.4 Single shot mode
	Figure 158. Operation and output waveform in single shot mode

	18.2 XPWM module registers
	Table 71. XPWM frequencies
	Table 72. XPWM module channel specific register addresses

	18.3 Interrupt request generation
	18.4 XPWM output signals
	Figure 159. XPWM output signal generation

	19 Analog / digital converter
	Figure 160. SFRs, XBUS registers and port pins associated with the A/D converter
	Figure 161. Analog / digital converter block diagram
	19.1 Mode selection and operation
	19.1.1 Fixed channel conversion modes
	19.1.2 Auto scan conversion modes
	Figure 162. Auto scan conversion mode example

	19.1.3 Wait for ADDAT read mode
	Figure 163. Wait for read mode example

	19.1.4 Channel injection mode
	Figure 164. Channel injection example
	Figure 165. Channel injection example with wait for read

	19.1.5 ADC power off (ADOFF)

	19.2 Conversion timing control
	Table 73. ADC sampling and conversion timing

	19.3 A/D converter interrupt control
	19.4 Calibration
	19.5 A/D conversion accuracy
	19.5.1 Total unadjusted error
	Figure 166. A/D conversion characteristic

	19.5.2 Analog reference pins
	19.5.3 Analog input pins
	Figure 167. A/D converter input pins scheme
	Figure 168. Charge sharing timing diagram during sampling phase
	Figure 169. Anti-aliasing filter and conversion rate

	19.5.4 Example of external network sizing

	20 I2C interface
	Figure 170. Schematic of internal gates of the XBUS functions
	20.1 Register description

	21 CAN modules
	21.1 Memory and pin mapping
	21.1.1 CAN1 mapping
	21.1.2 CAN2 mapping
	21.1.3 Register summary
	Table 74. CAN1 register mapping
	Table 75. CAN2 register mapping

	21.2 Interrupt
	21.3 Configuration support
	21.3.1 Configuration examples
	Figure 171. Connection to single CAN bus via separate CAN transceivers
	Figure 172. Connection to single CAN bus via one common transceiver
	Figure 173. Connection to two different CAN buses (e.g. for gateway application)
	Figure 174. Connection to one CAN bus with internal parallel mode enabled

	21.4 Clock prescaling
	21.5 CAN module: functional overview
	21.6 Block diagram
	Figure 175. Block diagram of the C-CAN

	21.7 Operating modes
	21.7.1 Software initialization
	21.7.2 CAN message transfer
	21.7.3 Disabled automatic re-transmission
	21.7.4 Test mode
	21.7.5 Silent mode
	Figure 176. CAN core in silent mode

	21.7.6 Loop back mode
	Figure 177. CAN core in loop back mode

	21.7.7 Loop back combined with silent mode
	Figure 178. CAN core in loop back combined with silent mode

	21.7.8 Basic mode
	21.7.9 Software control of pin CAN_TxD

	21.8 Programmer’s model
	Table 76. C-CAN register memory space summary
	21.8.1 Hardware reset description
	21.8.2 CAN protocol related registers
	21.8.3 Message interface register sets
	Table 77. IF1 and IF2 message interface register sets

	21.8.4 Message handler registers

	21.9 CAN application
	21.9.1 Management of message objects
	21.9.2 Message handler state machine
	Figure 179. Data transfer between IFx Registers and Message RAM

	21.9.3 Configuration of a transmit object
	21.9.4 Updating a transmit object
	21.9.5 Configuration of a receive object
	21.9.6 Handling of received messages
	21.9.7 Configuration of a FIFO buffer
	21.9.8 Reception of messages with FIFO buffers
	Figure 180. CPU handling of a FIFO buffer

	21.9.9 Handling of interrupts
	21.9.10 Configuration of the bit timing
	Figure 181. Bit timing
	Table 78. Parameters of the CAN bit time
	Figure 182. The propagation time segment
	Figure 183. Synchronization on “late” and “early” edges
	Figure 184. Filtering of short dominant spikes
	Figure 185. Structure of the CAN core’s can protocol controller

	22 Real time clock
	Figure 186. SFRs associated with the RTC
	Figure 187. XBUS registers associated with the RTC
	Figure 188. RTC block diagram
	22.1 RTC registers
	22.1.1 RTCCON: RTC control register
	22.1.2 RTCPH & RTCPL: RTC prescaler registers
	Figure 189. Prescaler register

	22.1.3 RTCDH & RTCDL: RTC divider counters
	Figure 190. Divider counters

	22.1.4 RTCH & RTCL: RTC programmable counter registers
	22.1.5 RTCAH & RTCAL: RTC alarm registers

	22.2 Programming the RTC

	23 System reset
	Table 79. Reset event definition
	23.1 Input filter
	23.2 Asynchronous reset
	Figure 191. Asynchronous power-on RESET (EA = 1)
	Figure 192. Asynchronous power-on RESET (EA = 0)
	Figure 193. Asynchronous hardware RESET (EA = 1)
	Figure 194. Asynchronous hardware RESET (EA = 0)

	23.3 Synchronous reset (warm reset)
	Figure 195. Synchronous short / long hardware RESET (EA = 1)
	Figure 196. Synchronous short / long hardware RESET (EA = 0)
	Figure 197. Synchronous long hardware RESET (EA = 1)
	Figure 198. Synchronous long hardware RESET (EA = 0)

	23.4 Software reset
	23.5 Watchdog timer reset
	Figure 199. SW / WDT unidirectional RESET (EA = 1)
	Figure 200. SW / WDT unidirectional RESET (EA = 0)

	23.6 Bidirectional reset
	Figure 201. SW / WDT bidirectional RESET(EA = 1)
	Figure 202. SW / WDT bidirectional RESET (EA = 0)
	Figure 203. SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET

	23.7 Reset circuitry
	Figure 204. Minimum external reset circuitry
	Figure 205. System reset circuit
	Figure 206. Internal (simplified) reset circuitry

	23.8 Reset application examples
	Figure 207. Example of software or watchdog bidirectional reset (EA = 1)
	Figure 208. Example of software or watchdog bidirectional reset (EA = 0)

	23.9 Reset summary
	Table 80. Reset events summary
	23.9.1 System start-up configuration
	Table 81. PORT0 latched configuration for the different reset events
	Figure 209. PORT0 bits latched into the different registers after reset

	24 Power reduction modes
	Table 82. Power reduction modes summary
	24.1 Idle mode
	Figure 210. Transitions between Idle mode and active mode

	24.2 Power down mode
	24.2.1 Protected power down mode
	24.2.2 Interruptible power down mode
	Figure 211. RPD pin: external circuit to exit power down
	Figure 212. Simplified power down exit circuitry
	Figure 213. Power down exit sequence using an external interrupt (PLL x 2)

	24.2.3 Real time clock and power down mode

	24.3 Standby mode
	24.3.1 Entering standby mode
	24.3.2 Exiting standby mode
	24.3.3 Real time clock and standby mode

	24.4 Output pin status
	Table 83. Output pin state during Idle and power down modes

	25 Programmable output clock divider
	26 Register set
	26.1 Register description format
	26.2 General purpose registers (GPRs)
	Table 84. General purpose registers (GPRs)
	Table 85. General purpose registers (GPRs) bit wise addressing

	26.3 Special function registers ordered by name
	Table 86. Special function registers ordered by name

	26.4 Special function registers ordered by address
	Table 87. Special function registers ordered by address

	26.5 X-Registers ordered by name
	Table 88. X-Registers ordered by name

	26.6 X-registers ordered by address
	Table 89. X-Registers ordered by address

	26.7 Flash registers ordered by name
	Table 90. Flash registers ordered by name

	26.8 Flash registers ordered by address
	Table 91. Flash registers ordered by address

	26.9 Special notes
	26.10 Identification registers

	27 System programming
	27.1 Stack operations
	Table 92. Stack size selection
	Figure 214. Physical stack address generation

	27.2 Register banking
	27.3 Procedure call entry and exit
	Figure 215. Local registers

	27.4 Table searching
	27.5 Peripheral control and interface
	27.6 Floating point support
	27.7 Trap / interrupt entry and exit
	27.8 Inseparable instruction sequences
	27.9 Overriding the DPP addressing mechanism
	27.10 Handling the internal Flash
	27.11 Pits, traps and mines

	28 Revision history

