
STMicrolectronics

ROM Patch
Library

UM0179
User Manual

CD00074887 Rev 1

December 2005

www.st.com

BLANK

Rev 1
December 2005 1/30

1

UM0179
USER MANUAL

ROM Patch Library

Introduction
This document describes the ROM Patch Library for ST30R7xx and how to use it to update
ROM contents.

www.st.com

http://www.st.com

 UM0179

2/30

Contents

1 Introduction . 6

1.1 Referenced documents . 6

1.2 Summary . 6

2 The ST30 ROM memory and the ROM Patching Mechanism 7

2.1 ROM organization . 7

2.2 ROM protection . 8

2.2.1 ROM protection mechanism . 9

2.3 The ROM Patch module . 9

2.3.1 Functional description . 10

2.3.2 Address comparison . 10

2.3.3 Abort generation . 10

2.3.4 ROM Patch access protection . 10

3 About the ROM Patch Library . 11

3.1 General information .11

3.2 Using the library .11

3.3 Further considerations .11

4 Using the ROM Patch Library . 12

4.1 Preliminary operations . 12

4.2 Static Patching at startup . 12

4.3 Sample code . 13

4.4 Patching a single instruction or data . 13

4.5 Patching using Prefetch and Data Aborts . 15

4.5.1 Identifying access to patched memory . 19

5 Library reference . 20

5.1 Functions . 20

5.1.1 SetPatch . 20

5.1.2 SetCodePatch . 21

5.1.3 SetLongJumpPatch . 21

5.1.4 SetDataPatch . 22

UM0179

 3/30

5.1.5 SetDataAbortPatch . 22

5.1.6 SetCodeAbortPatch . 23

5.1.7 GetComparatorHitFlag . 23

5.1.8 SetPassword . 24

5.1.9 LockPatch . 24

5.1.10 UnlockPatch . 24

5.2 Structures and data types . 25

5.2.1 ROM Patch flags . 25

6 Software end-user agreement . 26

7 Revision history . 29

 UM0179

4/30

List of tables

Table 1. Levels of ROM protection . 9
Table 2. ROM Patch flags. 25

UM0179

5/30

List of figures

Figure 1. ST30R7xx memory organization . 8

1 Introduction UM0179

6/30

1 Introduction

This document describes the ST30R7xx’s ROM Patch module and the procedure to update
ROM contents.

1.1 Referenced documents

The following documents have been used as reference while writing this document:

● ST30 ROM Patching Application Note

● ST30R77x Design Specifications (Zephyrus_ROM_02.pdf)

● ST30 Software Package v.0.9.4

1.2 Summary

This document is divided in four chapters. The first chapter is this introduction, chapter two
introduces the ROM memory, the protection and the patching mechanism, chapter three gives
general information about this library, chapter four describes how to use the library and chapter
five contains a reference to the functions of the library.

UM0179 2 The ST30 ROM memory and the ROM Patching Mechanism

 7/30

2 The ST30 ROM memory and the ROM Patching
Mechanism

This chapter describes the organization of the ST30R7xx ROM memory.

For further information, please refer to the ROM Patch Application Note and to the Zephyrus
ROM datasheet.

2.1 ROM organization

In ST30 ROM devices can have up to 256KB of ROM. A Test ROM of 4KB is available in read
mode for configuration and initial startup code when boot mode is used.

2 The ST30 ROM memory and the ROM Patching Mechanism UM0179

8/30

The following figure details the memory organization of the ST30R7xx.

2.2 ROM protection

The ST30R7xx implements ROM protection with the following capabilities:

● JTAG debug protection.

● ROM access protection.

Figure 1. ST30R7xx memory organization

Addressable Memory Space

0

1

3

4

5

6

7

0x1FFF FFFF
0x2000 0000

0x3FFF FFFF
0x4000 0000

0x5FFF FFFF
0x6000 0000

0x7FFF FFFF
0x8000 0000

0x9FFF FFFF
0xA000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

0x0010 0017

0x6000 03FF

0x0000 0000

4 Gbytes

ROM/RAM (1) 4K + 128/256K

RCCU 1K

APB TO ARM7
BRIDGE0xFFFF 8000

32K

CONFIG. REGS 64B

D

0x4000 003F

ROM
0x8010 DFFF

128/256K

RAM 9/16KB
0xA000 23FF

access to shadow area will return an ABORT

ROM Memory Space
256 Kbytes

0x8000 0000

0x8010 C000

0x8010 DFFF
4K

NATIVE ARBITER 16B

(1) ROM / RAM aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes)

0x2000 000F

0xA000 3FFF(2)/

TEST ROM

0x8003 FFFF 256K

0

128K 0x8001 FFFF

ROM PATCH

2
0x4001 00CF

0x4001 0000
208B

UM0179 2 The ST30 ROM memory and the ROM Patching Mechanism

 9/30

● Temporary access unprotection.

2.2.1 ROM protection mechanism

The ST30 ROM family implements a mechanism for protecting ROM access from RAM and
JTAG Debug. Both protections have to be set to assure maximum protection against piracy.

Debug protection

If JTAG Debug protection is enabled then the core cannot be accessed through JTAG.
Protection is enabled through the metal option JTAG ACCESS PROT option and its status can
be determined by reading JTAG ACCESS PROT bit of the Device Identification Register 2
(DIDR2).

Access protection

If ROM data access protection is enabled then any attempt to read the ROM from internal
RAM, through DMA or through ARM debugger, will result in dummy data (0x00000000) and the
ROM Patch will be not accessible. Protection is enabled through the metal option ROM
ACCESS PROT and its status can be determined by reading ROM ACCESS PROT bit of the
Device Identification Register 2 (DIDR2).

Temporarily ROM access protection disabling

It is possible to temporarily disable the ROM access protection by setting to ‘1’ the TAUB bit of
the Rom Control and Status Register (ROM CSR). This bit can only be written from code
executing from ROM. To restore the access protection, it is necessary to program the TAUB bit
to ‘0’ or reset the device. Any other means to set/reset this bit (such as scanning any instruction
through JTAG using ARM debugger) will have no effect.

Table 1. Levels of ROM protection

2.3 The ROM Patch module

This paragraph describes the ROM Patch module and its functionalities.

In ST30R7xx, the ROM Patch module is available with 16 independent entries. By
programming the ROM Patch module’s address comparators and data patch registers with
suitable configuration, data or opcode in ROM can be changed. In particular, the following
functionalities are available:

● Change the instruction at a particular ROM address.

● Change the value of any data residing in ROM.

● Generate an abort while instruction / data fetch occurs in ARM mode or in Thumb mode,

● Password access protection and supervisor mode only access for initializing the ROM
Patch registers.

ROM ACCESS PROT TAUB ROM Status

0 x unprotected

1 0 protected

1 1 unprotected (this must be done with ROM code)

2 The ST30 ROM memory and the ROM Patching Mechanism UM0179

10/30

2.3.1 Functional description

The ROM Patch module provides 16 address comparators. Each comparator contains a
Comparator Address Register (CAR), Patch Data Register (PDR) and a Comparator Control
Register (CCR). Each comparator can be used to patch a single location or sequence in ROM
whenever the ARM7TDMI CPU address matches with the address stored in the address
register of the comparator. A comparator is able to patch the code only when the corresponding
Patch Enable bit of the CCR register is set. Execution from code-patch has same instruction
timing to the execution from ROM and has same behavior.

2.3.2 Address comparison

The ARM address bus A<17:1> is compared with comparator address register CAR<17:1>. In
case of match, the Patch data register PDR<31:0> will be output on ARM input data bus
DIN<31:0>. Chip select of ROM is used to enable this comparison. This also removes the
absolute address comparison problem when ROM is remapped to 00000000h.

2.3.3 Abort generation

In case the needed patch is more than data or opcode substitution, each comparator is capable
of generating an abort in the following cases:

● An instruction is fetched from the patched address and both Patch Enable (PE), Opcode
Abort Enable (OAE) bits are set.

● A data is fetched from the patched address and both Patch Enable (PE), Data Abort
Enable (DAE) bits are set.

In this case, the Patch Data Register can be used to store information that will be used by the
abort handler (ex: location where to branch) and the Comparator Hit Register used to identify
the comparator that generated the Abort.

2.3.4 ROM Patch access protection

Two 16-bit password registers, Reference Password register and Password register are
provided to protect patch configuration. To avoid leakage in ROM protection, if ROM protection
is active both password registers must be written only by supervisor code executed out of the
ROM. All of the other registers (except password registers) can be written only if the following
conditions are satisfied:

● Password register matches with the inverted value of reference password

● Code is executing from ROM(1)

● Device is in Supervisor mode.

1. If ROM is unprotected, ROM Patch registers can also be accessed from code executed in RAM.

UM0179 3 About the ROM Patch Library

 11/30

3 About the ROM Patch Library

This chapter gives an overview of the ROM Patch Library.

3.1 General information

The ROM Patch library allows to easily configure the ROM Patch module.

The library provides basic functionality to add and configure code and data patch, both as
single replacement or using the abort generation. Functions to lock and unlock protection are
also provided.

3.2 Using the library

All the library functions directly access the ROM Patch module, so they have to respect the
access rules defined by the active protection level (ROM access protection, core mode).
Neither ROM protection level nor CPU mode is changed from within the library so it is up to the
user to remove/disable all active protections. This is detailed into the paragraph Preliminary
Operations on page 9.

In order to use the library, the following files should be included into your project’s sources:

● RPL.h

● ST30R7xx.h

You can then add the source rpl.c to your project or link your sources with the precompiled
binary, rpl10d.a for debug code and rpl10.a for release code.

The library supports patching by Abort generation by providing a sample code for the abort
handling routine. This handler is contained into the file RPAbort.s; you should include this file if
you want to use this functionality and not write your own handler. Refer to Patching using
Prefetch and Data Aborts on page 1for more information on this.

The library is built over the ST30 Startup kit register’s description. For this reason either the
user includes the ST30R7xx.h file from the Software Package or redefines the missing data
types. Please refer to the Software Package documentation for more information.

3.3 Further considerations

While choosing your patch method, please take into account the following points.

The ROM Patch mechanism is totally transparent to the core, so no delays are introduced
during address comparison. Of course, the abort generation introduces some latency due to
the exception management by the core (maximum delay can be easily determined, please refer
to the ARM7TDMI documentation).

Debugging functionalities are not weakened by patching operations. Just take into account that
the original content of the ROM will not be any longer visible after patching.

Exception’s capture functionality of your debugger can be used to check the patching code
executed during abort.

4 Using the ROM Patch Library UM0179

12/30

4 Using the ROM Patch Library

This chapter describes the operations needed to program the ROM Patch module using the
ROM Patch Library.

4.1 Preliminary operations

In order to proceed with ROM patching all the protection features must the temporarily
disabled. These operations are summarized by the following list:

1. If device is not in a privileged mode, change the device mode to supervisor.

2. Temporarily remove the ROM protection by setting the TAUB bit of ROM_CSR register to
‘1’. Refer to Temporarily ROM access protection on page 6.

Note: If ROM is access protected, patch code in RAM can not access static data in ROM or call the
ROM Patch library. If this is needed, temporarily remove the ROM protection (see above).
Another method is to copy the needed parameters/data from ROM to RAM during startup and
before executing the patch code.

The following code shows how to temporarily disable the ROM protection. This code must be
executed from ROM in order to access the ROM_CSR register.

#define ROM_CSR (*(volatile unsigned int*)(0x40000040))

// Set TAUB bit in order to temporarily disable ROM protection.

ROM_CSR = 0x01;

4.2 Static Patching at startup

ROM Patch programming is usually performed at boot during micro initialization but before the
execution of the application code. This operation is performed by reading addresses of code
and data to patch from an external serial memory and programming the appropriate
comparators registers. Performing patching during the boot phase assures that all security
conditions are satisfied: the micro is in Supervisor mode and that the ROM Patch password in
not yet set (see ROM Protection on page 6 and ROM Patch Access Protection on page 7).

● Disable ROM protection

● Read data from serial memory

● Program the Patch Module

● Protect the Patch Module

● Re-enable ROM protection (if DMA is not used)

● Start normal execution, possibly switching to USER mode to further protect the ROM
patch.

UM0179 4 Using the ROM Patch Library

 13/30

4.3 Sample code

All the examples in this section refer to the sample code below. This simple code configures the
PLL of a micro running with a 4MHz crystal to generate a 12MHz clock (DIV16, DX=1, MX=1).

// Registers definition

#define CLKCONTROL_CLK_FLAG \

(*(volatile unsigned short *)(0x60000008))

#define CLKCONTROL_PLLCONF \

(*(volatile unsigned short *)(0x60000018))

CLKCONTROL_PLLCONF = 0x11; // Set the PLL

while (!(CLKCONTROL_CLK_FLAG & 0x02)); // Wait for synch

CLKCONTROL_CLK_FLAG = 0x8009; // Select PLL Clock

After C compilation, the above code is translated in assembly to:

80000358 [0xe3a00011] MOV r0,#0x11

8000035c [0xe3a01460] MOV r1,#0x60000000

80000360 [0xe1c101b8] STRH r0,[r1,#0x18]

80000364 [0xe1a00000] NOP

80000368 [0xe3a00460] MOV r0,#0x60000000

8000036c [0xe1d000b8] LDRH r0,[r0,#8]

80000370 [0xe3100002] TST r0,#2

80000374 [0x0afffffb] BEQ 0x80000368

80000378 [0xe59f0008] LDR r0,0x80000388

8000037c [0xe3a01460] MOV r1,#0x60000000

80000380 [0xe1c100b8] STRH r0,[r1,#8]

80000388 [0x00008009] DCD 0x00008009

4.4 Patching a single instruction or data

This example shows how to patch data and instructions in ROM.

To patch a single instruction, the following function can be used:

 void SetCodePatch(u8ID, u32Address, u32Opcode);

4 Using the ROM Patch Library UM0179

14/30

To patch a single data, the following function can be used:

 void SetDataPatch(u8ID, u32Address, u32Data);

Let’s change the sample code by inserting mistakes on line number two and number three
respectively. In particular we assume that the AND operator has been replaced by mistake with
an OR (wrong instruction) and that the value 0x00008009 has been replaced by mistake with
0x00008019 (wrong data).

// Registers definition

#define CLKCONTROL_CLK_FLAG \

(*(volatile unsigned short *)(0x60000008))

#define CLKCONTROL_PLLCONF \

(*(volatile unsigned short *)(0x60000018))

CLKCONTROL_PLLCONF = 0x11; // Set the PLL

while (!(CLKCONTROL_CLK_FLAG | 0x02)); // Wait for synch

CLKCONTROL_CLK_FLAG = 0x8019; // Select PLL clock

The corresponding assembly code will be:

; CLKCONTROL_PLLCONF = 0x11;

80000358 [0xe3a00011] MOV r0,#0x11

8000035c [0xe3a01460] MOV r1,#0x60000000

80000360 [0xe1c101b8] STRH r0,[r1,#0x18]

; while (!(CLKCONTROL_CLK_FLAG | 0x02));

80000364 [0xE1A00000] NOP

80000368 [0xE3A00460] MOV r0,#0x60000000

8000036C [0xE1D000B8] LDRH r0,[r0,#8]

80000370 [0xE3900002] ORRS r0,r0,#2

80000374 [0x0AFFFFFB] BEQ 0x80000368

; CLKCONTROL_CLK_FLAG = 0x8019;

80000378 [0xE59f0008] LDR r0,0x80000388

8000037C [0xE3A01460] MOV r1,#0x60000000

80000380 [0xE1C100B8] STRH r0,[r1,#8]

80000388 [0x00008019] DCD 0x00008019

UM0179 4 Using the ROM Patch Library

 15/30

In order to repair mistakes in this code, two patches must be applied: one to correct the wrong
instruction (ORRS r0, r0, #2 instead of TST r0, #2, respectively E3900002h and 3100002h)
and one to correct the wrong data (8019h instead of 8009h).

In order to correct the wrong instruction, call the function SetCodePatch with the comparator
number (1), the address of the wrong instruction (80000370h) and the new opcode
(E3100002h, corresponding to TST r0, #2) that will replace the wrong one.

// Configures first comparator to patch opcode at 0x80000370

SetCodePatch(0x01, 0x00000370, 0xE3100002);

In order to correct the wrong data, call the function SetDataPatch with the comparator number
(2), the address holding the wrong value (800000388h) and the new, correct, value
(00008009h).

// Configures second comparator to patch data at 0x80000388

SetDataPatch(0x02, 0x00000388, 0x00008009);

4.5 Patching using Prefetch and Data Aborts

When more complex patches are needed, the ROM Patch should be configured to generate an
Abort in order to reduce the number of comparators used. This example shows how to insert a
Prefetch Abort at a given address and execute patched code using the following functions:

 void SetCodeAbortPatch(u8ID, u32Address, pfnCallback);

Let’s assume for example to change the sample code to insert some mistakes:

// Registers definition

#define CLKCONTROL_CLK_FLAG \

(*(volatile unsigned short *)(0x200000F8))

#define CLKCONTROL_PLLCONF \

(*(volatile unsigned short *)(0x60000018))

CLKCONTROL_PLLCONF = 0x11; // Set the PLL

while (!(CLKCONTROL_CLK_FLAG & 0x04)); // Wait for synch

CLKCONTROL_CLK_FLAG = 0x8009; //

The generated assembly code will be:

4 Using the ROM Patch Library UM0179

16/30

; CLKCONTROL_PLLCONF = 0x11;

80000358 [0xE3A00011] MOV r0, #0x11

8000035C [0xE3A01460] MOV r1, #0x60000000

80000360 [0xE1C101B8] STRH r0, [r1,#0x18]

; while (!(CLKCONTROL_CLK_FLAG & 0x04));

80000364 [0xE1A00000] NOP

80000368 [0xE3A00460] MOV r0, #0x20000000

8000036C [0xE1D00FB8] LDRH r0, [r0,#0xF8]

80000370 [0xE3100004] tst r0, #4

80000374 [0x0AFFFFFB] BEQ 0x80000368

; CLKCONTROL_CLK_FLAG = 0x8009;

80000378 [0xE59F0008] LDR r0, 0x80000388

8000037C [0xE3A01460] MOV r1, #0x60000000

80000380 [0xE1C100B8] STRH r0, [r1,#8]

80000388 [0x00008019] DCD 0x00008009

To correct the introduced mistakes, it could be possible to use a number of comparators as
described in the above example, which inserts patches at three different addresses. However,
as the instructions to patch are consecutive in memory, it is possible to reduce the number of
comparators used to one. This can be done by configuring the Patch module to generate a
Prefetch Abort at the first address (80000368h) and to implement a prefetch handler procedure
that will replace all the wrong instructions (at addresses 80000368h, 8000036Ch and
80000370h) with the correct ones.

In order to do this, the following step must be followed:

● Configure the Prefetch abort vector to point to a handler routine that can manage
exceptions generated from the ROM Patch.

● Copy the patched code from the external EPROM into the RAM.

● Configure the ROM Patch module to generate a prefetch exception.

The exception handler must check if the exception is a real exception or has been generated
from the ROM Patch module. If the exception has been generated from the ROM Patch, the
handler should run the patch code related to the comparator hit. The following code can be
used for this:

;--

;

ROMPATCH_PDR0 EQU 0x40 ; PDR[0] register offset

ROMPATCH_CIR EQU 0xC4 ; CIR register offset

ROMPATCH_CIR_CHF EQU 0x10 ; CIR THF bit mask

;--;

ROMPATCH_BASE DCD 0x40010000 ; ROM Patch Base address

UM0179 4 Using the ROM Patch Library

 17/30

;--;

 AREA Patch, CODE, READONLY

;--;

; Prefetch_Handler

;

; Description:

; Prefetch Abort handler.

;

;--

Prefetch_Handler PROC

;// Update LR to point to the next instruction

SUB lr, lr, #4

;// Backup registers

STMFD sp!, {r0-r4, r12}

;// Must store LR if using BL instructions

;// Check if the ROM Patch generated this Abort

LDR r0, ROMPATCH_BASE ; ROMPatch base address

 LDR r1, [r0, #ROMPATCH_CIR] ; Load CIR register

 TST r1, #ROMPATCH_CIR_CHF ; Test the THF bit

BEQ PH_Exit

; Retrieves address of patch code from PDR of this

; comparator

BIC r1, #ROMPATCH_CIR_CHF ; Obtain CID (clear CHF)

ADD r0, r0, #ROMPATCH_PDR0 ; Point to PDR[0]

LDR r1, [r0, r1, LSL#2] ; Load PDR[CID]

; Jump to patch

MOV pc, r1 ; Jump to patch code

PH_Exit

;// Restore PA registers

LDMFD sp!, {r0-r4, r12}

;// Exit from the Prefetch Abort mode

MOVS pc, lr

ENDP

4 Using the ROM Patch Library UM0179

18/30

Note: The ROM Patch library stores the address of the patch code into the PDR register. The address
of this handler must be stored into the exception vector table at address 00000000h.

Below is the code that will substitute the erroneous code in ROM. It should be copied from the
external EPROM into the RAM. This code should be written in assembly as it must update the
lr register in order to return from the Abort mode by skipping all the patched code.

;--

;

; Patch01

;

; Description:

: Sample patch code.

; Remarks:

; lr points to the patched address and must be adjusted

; before leaving.

; Code is executed in Abort mode.

; This function must return restoring r0-r4, r12 and CPSR

; from stack.

; ROM is not accessible if ROM access protection is enabled.

; ROM Patch is not accessible if ROM access protection is

; enabled.

;--

Patch01 PROC

MOV r0, #0x60000000

LDRH r0, [r0,#8]

TST r0, #2

BEQ Patch01

; Adjusts lr to skip patched code (5 instr.)

ADD lr, lr, #0x10

;// Restore PA registers

LDMFD sp!, {r0-r4, r12}

;// Exit from the Prefetch Abort mode

MOVS pc, lr

; ... or jump to the Prefetch Handler epilogue

;B PH_Exit

ENDP

Note: Please note that patch code executed in RAM cannot access data in protected ROM.

UM0179 4 Using the ROM Patch Library

 19/30

To configure the Patch module to generate an Abort, call the function SetCodeAbortPatch with
the comparator number (1), the address of the first wrong instruction (80000368h) and a
pointer to the routing that will replace the wrong code (Patch01).

The code below configures the comparator (1) and configures it to generate a Prefetch Abort.

// Configures the first comparator to generate a prefetch abort

// if code at 0x80000368 is executed.

SetCodeAbortPatch(0x01, 0x00000368, Patch01);

4.5.1 Identifying access to patched memory

In case of code patching, functionality provided by the GetComparatorHitFlag function
becomes useful to identify the comparator that has generated the exception.

When an address match occurs, the ROM Patch module can keep track of the match in the
Comparator Identification Register so that the exception handler can detect which patch to run.
To enable tracking of comparator hits, please use the RPF_COMPARE_HIT_MASK flag when
configuring the comparator. The function GetComparatorHitFlag() can be used to retrieve
the value of the Comparator Hit register.

Note: This function will clear the contents of the Comparator Hit register.

5 Library reference UM0179

20/30

5 Library reference

This chapter describes functions and structures provided by the ROM Patch Library.

5.1 Functions

The ROM Patch Library provides the following functions:

The following paragraphs describe these functions more in detail.

5.1.1 SetPatch

void SetPatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 u32Data,

UINT8 u8Flags

);

Parameters

u8Id

 [in] ID of the comparator to set.

u32Address

[in] address to patch.

u32Data

[in] data/opcode to return on address match.

u8Flags

[in] configuration flag for the comparator.

SetPatch Configures a patch.

SetCodePatch Configures a patch on code.

SetLongJumpPatch Configures a patch to generate a Long Jump.

SetDataPatch Configures a patch on data.

SetDataAbortPatch Configures a patch to generate a Data Abort.

SetCodeAbortPatch Configures a patch to generate a Prefetch Abort.

GetComparatorHitFlag Retrieves the contents of the Comparator Hit register.

SetPassword Set the password for access protection.

LockPatch Enable access protection to the ROM Patch.

UnlockPatch Disable access protection to the ROM Patch.

UM0179 5 Library reference

 21/30

Return values

This function has no return value.

Remarks

This function configures the ROM Patch comparator. Content of flags can be a combination of:
RPF_COMPARE_HIT_MASK, RPF_WORD_COMPARISON_ENABLE, RPF_DATA_ABORT_ENABLE,
RPF_CODE_ABORT_ENABLE, RPF_LONGJUMP_ENABLE, RPF_PATCH_ENABLE.

5.1.2 SetCodePatch

void SetCodePatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 u32Opcode

);

Parameters

u8Id

 [in] ID of the comparator to set.

u32Address

 [in] ROM Address to patch.

u32Opcode

 [in] opcode to substitute.

Return values

This function has no return value.

Remarks

This function configures the patch comparator for opcode substitution. It is equivalent to call
SetPatch(u8Id, u32Address, u32Opcode, 0);

5.1.3 SetLongJumpPatch

void SetLongJumpPatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 u32NewAddress

) ;

Parameters

u8Id

 [in] ID of the comparator to set.

u32Address

 [in] ROM Address to patch.

u32NewAddress

5 Library reference UM0179

22/30

[in] Address of the new code to execute.

Return values

This function has no return value.

Remarks

This function configures the patch comparator for opcode substitution. It is equivalent to call
SetPatch(u8Id, u32Address, u32NewAddress, RPF_LONGJUMP_ENABLE)

5.1.4 SetDataPatch

void SetDataPatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 u32Data

);

Parameters

u8Id

 [in] ID of the comparator to set.

u32Address

[in] ROM Address to patch.

u32Data

 [in] New data value for ROM.

Return values

This function has no return value.

Remarks

This function configures the patch comparator for opcode substitution. It is equivalent to call
SetPatch(u8Id, u32Address, u32Data, 0). SetCodeAbortPatch() stores the address of
the callback routine into the Patch Data Register (PDR) of the corresponding comparator.

5.1.5 SetDataAbortPatch

void SetDataAbortPatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 pfnCallback

);

Parameters

u8Id

 [in] ID of the comparator to set.

u32Address

 [in] ROM Address to patch.

UM0179 5 Library reference

 23/30

pfnCallback

[in] Pointer to the callback function to call on DATA ABORT.

Return values

This function has no return value.

Remarks

This function configures the patch comparator for opcode substitution. It is equivalent to call
SetPatch(u8Id, u32address, pfnCallback, RPF_COMPARE_HIT_MASK |

RPF_DATA_ABORT_ENABLE). SetDataAbortPatch() stores the address of the callback routine
into the Patch Data Register (PDR) of the corresponding comparator.

5.1.6 SetCodeAbortPatch

void SetCodeAbortPatch(

UINT8 u8ID,

UINT32 u32Address,

UINT32 pfnCallback

);

Parameters

u8Id

[in] ID of the comparator to set.

u32Address

[in] ROM Address to patch.

pfnCallback

[in] Pointer to the callback function to call on DATA ABORT.

Return values

This function has no return value.

Remarks

This function configures the patch comparator to generate a Prefetch Abort on comparator's hit.
It is equivalent to call SetPatch(u8Id, u32Address, pfnCallback,
RPF_COMPARE_HIT_MASK | RPF_CODE_ABORT_ENABLE).

5.1.7 GetComparatorHitFlag

UINT8 GetComparatorHitFlag(void);

Parameters

This function takes no parameters.

Return values

Returns a mask of hit comparators.

5 Library reference UM0179

24/30

Remarks

This function returns the comparator hits, if any. In order to be notified of a comparator match,
the RPF_COMPARE_HIT_MASK flag must be set.

5.1.8 SetPassword

void SetPassword(

UINT16 u16Password

);

Parameters

u16Password

[in] password to unlock the ROM Patch.

Return values

This function has no return value.

Remarks

This function sets the password for the ROM Patch module in order to avoid accidental writing
to its registers.

5.1.9 LockPatch

void LockPatch(void);

Parameters:

This function has no parameters.

Return values:

This function has no return value.

Remarks:

This function enables access protection to the ROM Patch module. A password must have
been set before by SetPassword().

5.1.10 UnlockPatch

void UnlockPatch(

UINT16 u16Password

);

4 3 2 1 0

Hit Comparator ID

UM0179 5 Library reference

 25/30

Parameters

u16Password, [in] password to unlock the ROM Patch.

Return values

This function has no return value.

Remarks

This function removes access protection to the ROM Patch module.

5.2 Structures and data types

This paragraph describes structures and data types defined by the ROM Patch Library.

5.2.1 ROM Patch flags

Flags listed in Table 2. can be used to configure ROM Patch comparators.

 Take into account that if you use the helper macros, the only flags you would specify are
COMPARE_HIT_MASK and WORD_COMPARISON_ENABLE. Helper macros correctly set the needed
flags.

Table 2. ROM Patch flags

Flag Value Description

RPF_COMPARE_HIT_MASK 0x20
Enables the Hit Mask, usually used in conjunction
with Abort generation.

RPF_WORD_COMPARISON_ENABLE 0x10
Enables the Word Comparison mode for Thumb
code.

RPF_DATA_ABORT_ENABLE 0x08 Enable Data Abort generation.

RPF_CODE_ABORT_ENABLE 0x04 Enable Prefetch Abort generation.

RPF_LONGJUMP_ENABLE 0x02 Enable Long Jump on comparator match.

RPF_PATCH_ENABLE 0x01 Enable Patch comparator.

6 Software end-user agreement UM0179

26/30

6 Software end-user agreement

END-USER LICENSE AGREEMENT

YOU ("You") SHOULD CAREFULY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE USING THIS SOFTWARE (the "Software") WHICH IS LICENSED BY
STMICROELECTRONICS NV ("ST") TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET
FORTH BELOW.

Acceptance

If You agree with and accept the terms and conditions of this Agreement it shall become a
legally binding agreement between You and ST and You may proceed to install, copy and use
the Software in accordance with the terms and conditions of the Agreement.

Rejection and Right to a Refund

If You do not agree with or do not wish to be bound by the terms and conditions of this
Agreement You may NOT install, copy or use the Software.

License

ST hereby grants to You, subject to the terms and conditions of this Agreement, a non-
exclusive, non-transferable, worldwide license, without the right to sub-license, to use the
Software to develop software applications for ST microcontroller product only. You are not
permitted to lease, rent, distribute or sublicense the Software or to use the Software in a time-
sharing arrangement or in any unauthorized manner.

Restrictions on Use of the Software

The Software is delivered free of charge by electronically means. You are allowed to copy the
Software in its initial form to be installed on as many computers as needed.

You shall only use the Software on a single computer connected to a single monitor at any one
time.

Limited Warranty

ST warrants to You that the Software will perform substantially in accordance with the
accompanying documentation.

ST's total liability and your exclusive remedy for breach of the limited warranty given above
shall be limited to ST, it is ST's sole option, using reasonable efforts to correct material,
documents, reproduce defects in the Software.

EXCEPT AS PROVIDED ABOVE ST EXPRESSLY DISCLAIMS ALL OTHER
REPRESENTATIONS, WARRANTIES, CONDITIONS OR OTHER TERMS, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

UM0179 6 Software end-user agreement

 27/30

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ST
BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
(INCLUDING LOSS OF PROFITS) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE WHETHER BASED ON A CLAIM UNDER CONTRACT, TORT OR OTHER
LEGAL THEORY, EVEN IF ST WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
ST does not seek to limit or exclude liability for death or personal injury arising from ST's
negligence and because some jurisdictions do not permit the exclusion or limitation of liability
for consequential or incidental damages the above limitation relating to liability for
consequential damages may not apply to You.

Third Party Rights

Software provided under this Agreement may contain or be derived from portions of materials
provided by a third party under license to ST. THE THIRD PARTY DISCLAIMS ALL
WARRANTIES EXPRESS OR IMPLIED WITH RESPECT TO THE USE OF SUCH
MATERIALS IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT
LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Software provided under this Agreement may contain or be derived from portions of materials
provided by a third party under license to ST. The third party may enforce any of the provisions
of this Agreement to the extent such third party materials are effected. Additionally, any
limitation of liabilities described in this Agreement also applies to any third-party supplier of
materials supplied to You. ST and its third party supplier limitations of liabilities are not
cumulative. Such third party is an intended beneficiary of this section.

Term and Termination

This Agreement shall remain in force until terminated by You or by ST.

Without prejudice to any of its other rights if You are in breach of any of the terms and
conditions of this Agreement then this Agreement will terminate immediately. Upon such
termination You agree to destroy the Software and documentation together will all copies in any
form.

You may terminate this Agreement at any time by destroying the Software and documentation
together will all copies in any form.

General

This Agreement is governed by the law of France.

This is the only agreement between You and ST relating to the Software and it may only be
modified by written agreement between You and ST.

This Agreement may not be modified by purchase orders, advertising or other representation
by any person.

If any clause in this Agreement is held by a court of law to be illegal or unenforceable the
remaining provisions of the Agreement shall not be affected thereby.

6 Software end-user agreement UM0179

28/30

The failure by ST to enforce any of the provisions of this Agreement, unless waived in writing,
shall not constitute a waiver of ST's rights to enforce such provision or any other provision of
the Agreement in the future.

Use, copying or disclosure by the US Government is subject to the restrictions set out in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software -
Restricted Rights at 48 C.F.R. 52.227-19, as applicable.

You agree that You will not export or re-export the Software to any country, person or entity or
end user subject to U.S.A. export restrictions, or other countries export restrictions.

UM0179 7 Revision history

 29/30

7 Revision history

Date Revision Changes

02-May-2005 1 Initial release.

 UM0179

30/30 CD00074887

The present note which is for guidance only, aims at providing customers with information regarding their products in order for them to save
time. As a result, STMicroelectronics shall not be held liable for any direct, indirect or consequential damages with respect to any claims
arising from the content of such a note and/or the use made by customers of the information contained herein in connection with therir
products.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	1.1 Referenced documents
	1.2 Summary

	2 The ST30 ROM memory and the ROM Patching Mechanism
	2.1 ROM organization
	Figure 1. ST30R7xx memory organization

	2.2 ROM protection
	2.2.1 ROM protection mechanism
	Table 1. Levels of ROM protection

	2.3 The ROM Patch module
	2.3.1 Functional description
	2.3.2 Address comparison
	2.3.3 Abort generation
	2.3.4 ROM Patch access protection

	3 About the ROM Patch Library
	3.1 General information
	3.2 Using the library
	3.3 Further considerations

	4 Using the ROM Patch Library
	4.1 Preliminary operations
	4.2 Static Patching at startup
	4.3 Sample code
	4.4 Patching a single instruction or data
	4.5 Patching using Prefetch and Data Aborts
	4.5.1 Identifying access to patched memory

	5 Library reference
	5.1 Functions
	5.1.1 SetPatch
	5.1.2 SetCodePatch
	5.1.3 SetLongJumpPatch
	5.1.4 SetDataPatch
	5.1.5 SetDataAbortPatch
	5.1.6 SetCodeAbortPatch
	5.1.7 GetComparatorHitFlag
	5.1.8 SetPassword
	5.1.9 LockPatch
	5.1.10 UnlockPatch

	5.2 Structures and data types
	5.2.1 ROM Patch flags
	Table 2. ROM Patch flags

	6 Software end-user agreement
	7 Revision history

