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ABSTRACT

In the Submodular Welfare Maximization (SWM) problem,
the input consists of a set of n items, each of which must be
allocated to one of m agents. Each agent ¢ has a valuation
function ve, where v¢(S) denotes the welfare obtained by this
agent if she receives the set of items S. The functions v, are
all submodular; as is standard, we assume that they are
monotone and vg() = 0. The goal is to partition the items
into m disjoint subsets S1, 52, ... Sy in order to maximize
the social welfare, defined as Y ;- v¢(S¢). A simple greedy
algorithm gives a 1/2-approximation to SWM in the offline
setting, and this was the best known until Vondrak’s recent
(1 — 1/e)-approximation algorithm [34].

In this paper, we consider the online version of SWM.
Here, items arrive one at a time in an online manner; when
an item arrives, the algorithm must make an irrevocable
decision about which agent to assign it to before seeing any
subsequent items. This problem is motivated by applications
to Internet advertising, where user ad impressions must be
allocated to advertisers whose value is a submodular func-
tion of the set of users / impressions they receive. There are
two natural models that differ in the order in which items
arrive. In the fully adversarial setting, an adversary can
construct an arbitrary / worst-case instance, as well as pick
the order in which items arrive in order to minimize the al-
gorithm’s performance. In this setting, the 1/2-competitive
greedy algorithm is the best possible. To improve on this,
one must weaken the adversary slightly: In the random or-
der model, the adversary can construct a worst-case set of
items and valuations, but does not control the order in which
the items arrive; instead, they are assumed to arrive in a
random order. The random order model has been well stud-
ied for online SWM and various special cases, but the best
known competitive ratio (even for several special cases) is
1/2 + 1/n [9, [I0], barely better than the ratio for the ad-
versarial order. Obtaining a competitive ratio of 1/2 + Q(1)
for the random order model has been an important open
problem for several years. We solve this open problem by
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demonstrating that the greedy algorithm has a competitive
ratio of at least 0.505 for online SWM in the random or-
der model. This is the first result showing a competitive
ratio bounded above 1/2 in the random order model, even
for special cases such as the weighted matching or budgeted
allocation problems (without the so-called ‘large capacity’
assumptions). For special cases of submodular functions in-
cluding weighted matching, weighted coverage functions and
a broader class of “second-order supermodular” functions, we
provide a different analysis that gives a competitive ratio
of 0.51. We analyze the greedy algorithm using a factor-
revealing linear program, bounding how the assignment of
one item can decrease potential welfare from assigning fu-
ture items. We also formulate a natural conjecture which,
if true, would improve the competitive ratio of the greedy
algorithm to at least 0.567.

In addition to our new competitive ratios for online SWM,
we make two further contributions: First, we define the
classes of second-order modular, supermodular, and sub-
modular functions, which are likely to be of independent
interest in submodular optimization. Second, we obtain an
improved competitive ratio via a technique we refer to as
gain linearizing, which may be useful in other contexts (see
[26]): Essentially, we linearize the submodular function by
dividing the gain of an optimal solution into gain from in-
dividual elements, compare the algorithm’s gain when it as-
signs an element to the optimal solution’s gain from the
element, and, crucially, bound the extent to which assigning
elements can affect the potential gain of other elements.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete

Mathematics|: Combinatorics—Combinatorial algorithms
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1. INTRODUCTION

As a general abstraction of many economic resource-allocation

problems, submodular welfare maximization (abbreviated as
SWM) is a central optimization problem in combinatorial
auctions and has attracted significant attention in the re-
search area at the intersection of economics, game theory,
and computer science. In this problem, an auctioneer sells



a set N of n items to a set M of m agents. The value of
agent £ € M for any subset (bundle) of items is given by
a submodular valuation set function v, : 2V — R, where
v (S) represents i’s maximum willingness to pay for the bun-
dle S. The two standard assumptions on each v, (besides
submodularity) are that if S C T then v¢(S) < v¢(T") (mono-
tonicity), and that v¢(@) = 0 (normalization). The objective
is to partition NV into m disjoint subsets S1, S2, ..., Sm, and
give set S¢ to agent ¢ in a way that maximizes the social
welfare, i.e. the expression Y~ ve(Se).

In the online version of the problem (also known as the
online submodular welfare mazimization), referred to as on-
line SWM, items in N arrive one by one online, and upon
arrival of an item, it must be assigned immediately and ir-
revocably to one of the agents. That is, the assignment of
an item must be made before any subsequent items arrive,
and it may not be changed later.

The online SWM problem is a natural generalization of
the online matching [20, 17, (13} [I, 23], budgeted allocation
[24] 4] 5] [15] and online weighted matching problems [ [11],
along with more general classes of online allocation / as-
signment problems [12] [33] [2 [6]. Besides being theoretically
important, these problems have a number of practical ap-
plications including internet advertising, network routing,
etc. These online allocation problems have been studied in
both worst-case / adversarial and stochastic settings. In the
adversarial arrival model, an adversary constructs a worst-
case instance, and can order the items arbitrarily in order to
minimize the algorithm’s performance. In contrast, in the
random order arrival model, the adversary can construct
an arbitrary instance, but the order in which items arrive
is considered to be chosen uniformly at random. Here, the
performance of the algorithm is computed as the average
over the random choice of the arrival order of the items.

The Submodular Welfare Maximization problem has been
studied extensively as both an offline and an online optimiza-
tion problem: For the offline optimization problem, one can
easily observe that SWM is a special case of the monotone
submodular maximization problem subject to a (partition)
matroid constraint. As a result, an old result of Nemhauser,
Wolsey, and Fisher [30] imply that a simple greedy algorithm
achieves a 1/2-approximation. Improving this approxima-
tion factor for the offline SWM was open until Vondrak [34]
presented a new 1 — 1/e-approximation algorithm for the
problem; this is the best possible using a sub-exponential
number of oracle calls [28§].

For the online SWM problem, a simple online greedy al-
gorithm (assign each item to the agent whose marginal val-
uation increases the most) achieves a competitive ratio of
1/2 for the adversarial model [14] [2I]. As online SWM and
its special cases are of considerable theoretical and prac-
tical interest, there has been a large body of work trying
to improve upon this competitive ratio in both the adver-
sarial and random arrival models. For example, in the ad-
versarial model, 1 — 1/e-competitive algorithms have been
achieved for the special case of the online matching problem,
as well as the the budgeted allocation and online weighted
matching problems under the so-called large capacity as-
sumption [20, 24, 11]. However, such a result is not possible
for the general online SWM problem in the adversarial set-
ting, where the simple greedy algorithm is the best possible:
A recent result by Kapralov, Post, and Vondrak [I8] shows
that this 1/2-approximation is tight for online SWM unless
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NP=RP. This hardness result, however, does not rule out
improving the approximation factor of 1/2 for the random
order model. In fact, getting a 1/2 + (1) approximation
factor remains an open problem even for special cases of
online SWM such as the budgeted allocation problem, and
weighed matching with free disposal [I1 [6].

Our Contributions and Techniques. In this paper, we
resolve the open problem of obtaining an improved compet-
itive ratio for random order online SWM:

THEOREM 1. The Greedy algorithm has competitive ratio
at least 0.5052 for online SWM in the random order model.

Prior to our work, the best known algorithm for this prob-
lem (even for special cases such as weighted matching or
budgeted allocation) gave a % + %-approximation [9, 10].
Thus, our result is also the first 1/2 + Q(1)-competitive al-
gorithm for the budgeted allocation and the online weighted
matching problems under the random order model. Beat-
ing the factor of 1/2 for the online weighted matching and
budgeted allocation problems in either the adversarial or the
random order model (without the large capacity constraints)
has remained a major open problem in the area.

Further, for a broad class of submodular functions, we can
strengthen our analysis. To do this, we introduce the con-
cept of second-order supermodular functions; to the best of
our knowledge, this class of functions has not been explicitly
studied before.

DEFINITION 2. For a submodular function f, let MG(A,e) =

f(AU{e}) — f(A) denote the marginal gain from adding el-
ement e to set A. For sets A, S, we define GR(A, S,e) =
MG(A,e)— MG(AUS, e) as the amount by which S reduces
the marginal gain from adding e to A. (Here, GR stands for
Gain Reduction.) Note that by definition of submodularity,
GR(A, S, e) is always non-negative.

e The function f is said to be second-order modular
if, for all sets A,B,S such that A C B, and SN
B = 0, and all elements e, we have: GR(A,S,e) =
GR(B,S,e).

e The function f is second-order supermodular if, for
all sets A, B, S such that AC B, and SNB =0, and
all elements e, we have: GR(A,S,e) > GR(B,S,e).
Equivalently, MG(A,e) —MG(B,e) > MG(AUS,e)—
MG(BUS,e).

e The function f is said to be second-order submod-
ular if, for all sets A,B,S such that A C B, and
SNB =10, and all elements e, we have: GR(A, S,e) <
GR(B,S,e).

It is well known that when considering the multilinear ex-
tension of f, submodularity corresponds to a non-positive
second-order derivative. Our definition of second-order sub-
modularity implies non-positive third-order derivatives, while
the definition of second-order supermodularity implies a non-
negative third-order derivative.

We believe these classes are likely to be of independent
interest, as they help partition the space of submodular
functions, and may refine our understanding of submodu-
lar optimization. Several natural submodular functions can
be classified in this framework: For example, cut functions



are second-order modular, while weighted coverage functions
and weighted matching functions are second-order super-
modular.

THEOREM 3. The Greedy algorithm has competitive ratio
at least 0.5104 for online SWM in the random order model
if the valuation functions of agents are second-order super-
modular functions.

Note that our results also imply simple 1/2+Q(1) approx-
imation algorithms for the offline SWM problems: simply
permute the items randomly and apply the online Greedy
algorithmEl We focus on the Greedy algorithm for several
reasons: It is simple and natural, besides being easy to im-
plement and likely to be used in practice. Further, it is
optimal in the adversarial setting. Algorithms that perform
well in both adversarial and stochastic settings (see, for in-
stance, [27]) are of considerable practical utility; by showing
that the Greedy algorithm achieves a ratio better than 1/2 in
the random order model, we provide further justification for
its practical importance. Moreover, the Greedy algorithm
for online SWM has been extensively studied in strategic
settings [22] [31], [32].

Our approach to analyzing the performance of the Greedy
algorithm is to understand how item allocations interact via
the technique we call gain linearizing: We first formulate
some basic inequalities about any greedy allocation which
yield another proof that the Greedy algorithm achieves a
competitive ratio of 1/2. To go beyond this ratio, we note
that the assignment of an item can reduce the expected
gains from future items, but this reduction in future gains
is bounded, and the random order ensures that it is ‘evenly
spread out’ among future items. We formalize this intuition
in Section[2} once we can bound such interactions, we derive
constraints for a factor-revealing Linear Program, which we
explicitly analyze to get a lower bound on the competitive
ratio of the Greedy algorithm.

1.1 Related Work

The online submodular welfare maximization problem is a
generalization of various well-studied online allocation prob-
lems, including problems with practical applications to In-
ternet advertising. These include online weighted b-matching
(with free disposal), also referred to as the Display Ads Allo-
cation problem [11] 12} 2] 33], and budgeted allocation or the
AdWords problem [24] [5]. In both of these problems, a pub-
lisher must assign online impressions to a set of agents corre-
sponding to advertisers; the goal is to optimize efficiency or
revenue of the allocation while respecting pre-specified con-
tracts with advertisers. Both of these problems have been
studied in the competitive adversarial model [24], 111 [4] and
the stochastic random order model [B 12 2] [33].

In the online weighted b-matching problem with free dis-
posal, motivated by display advertising, we are given a set of
m advertisers; advertiser j has a set S; of eligible impressions
and demand of at most N(j) impressions. The ad-serving
algorithm must allocate the set of n impressions that arrive
online. Each impression ¢ has value w(i,j) > 0 for adver-
tiser j. The goal of the algorithm is to assign each impression
to at most one advertiser, while maximizing the value of all

!We note that improving on the ratio of 1/2 for the offline
Submodular Welfare Maximization Problem was an open
problem for nearly 40 years until the result of Vondrak [34].
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the assigned impressions and ensuring that advertiser j does
not receive more than N(j) impressions. Expressed combi-
natorially, this corresponds to finding a maximum weight
b-matching online. This weighted b-matching problem is
considered in [IT], which showed that the problem is in-
approximable without exploiting free disposal. When the
demand of each advertiser is large, a (1 — %)—competitive
algorithm exists [I1], and this is the best possible. In the
budgeted allocation problem, motivated by sponsored search
advertising, the ad-serving algorithm allocates impressions
resulting from search queries. Advertiser j has a budget
B(j) on the total spend instead of a bound N(j) on the
number of impressions. Assigning impression ¢ to advertiser
j consumes w(i,7) units of j’s budget instead of 1 of the
N(j) slots, as in the weighted b-matching problem. 1 — 1-
competitive algorithms have been designed for this problem
under the assumption of large budgets [24] [4].

The random order model has also been studied exten-
sively for these problems. In particular, a dual technique
has been developed to solve problems in this setting: This
approach is based on computing an offline optimal dual so-
lution based on the first e fraction of items / impressions,
and using this solution online to assign the remaining ver-
tices. Following the first such training-based dual algorithm
of [B] for the budgeted allocation problem, training-based
(1 — e)-competitive algorithms have been developed for the
weighted matching problem and its generalization to various
packing linear programs [12}[33] 21 29]. These papers develop
(1 — €)-competitive algorithms for online stochastic packing
problems in the random order model, if % > O(%)

and the demand of each advertiser / agent is large. In a sep-
arate line of work, improved approximation algorithms have
been proposed for the unweighted online bipartite match-
ing problem (which is a special case of both the weighted
matching and budgeted allocation problems) in the random
order model [19, 23], even without the assumption that the
demand of each agent is large.

i.i.d. Model. Other than the adversarial and random-order
models studied in this paper, online ad allocation problems
have been studied extensively in the i.i.d. stochastic models
in which impressions arrive i.i.d. according to a known or
an unknown distribution. A key technique in this area is
the primal approach which is based on solving an offline
allocation problem on the instance that we expect to arrive
according to the stochastic information, and then applying
this offline solution online. This technique has been applied
to the online stochastic matching problem [20] and in the
i.i.d. model with known distributions [13] 25| [I6] [3], and
resulted in improved competitive algorithms.

Interestingly, a new hybrid technique can be applied to ob-
tain a 1—1/e-competitive algorithm for the budgeted alloca-
tion problem in the i.i.d. model [7,[8], and a similar ratio can
be obtained for the more general online SWM problem [18].
However, all results based on such techniques seem to only
apply to the i.i.d. model [7, 18] and not the random order
model. Generalizing such results to the random order model
remains an interesting open problem in the area.

2. PRELIMINARIES AND KEY IDEAS

We study the following welfare maximization problem, re-
ferred to as online SWM: n items from a set N arrive se-
quentially online, and when each item arrives, it should be



irrevocably assigned to one of m agents from the set M.
Each agent 1 < ¢ < m has valuation function vy : 2l R4.
We assume that each agent’s valuation function v, is sub-
modular, non-negative and monotone. The goal is to assign
the items to agents in order to maximize the social welfare,
defined as 31" ve(S¢) where Sq is the set of items assigned
to £. We assume w.l.o.g. that all of the n items are distinct,
but we sometimes consider the union of two or more alloca-
tions, as a result of which there may exist multiple copies
of items: In this case, the set of items assigned to a single
agent is the union of the sets assigned to it under the allo-
cations, so it does not actually receive multiple copies of the
same item. (Equivalently, one could extend the submodular
function to multisets in the natural way so that the marginal
value of an agent for the second copy of an item is 0.)

Algorithms for maximizing welfare in combinatorial auc-
tions and submodular optimization are required to be poly-
nomial in the natural parameters of the problem, m and n.
However, since the “input” (the valuation functions) is of
exponential size, one must specify how it can be accessed.
Most works in this field have taken a “black box” approach
in which bidders’ valuation functions are accessed via or-
acles that can answer specific type of queries. The most
natural and popular oracle query model is the value query
model [9, 10, 21], which we also use: the query to a valua-
tion function wve is in the form of a bundle S C N, and the
response is ve(S).

As discussed above, no online algorithm can achieve a
competitive ratio greater than 1/2 for online SWM in the
adversarial setting, and hence we focus on the random order
model. We measure the competitive ratio of an algorithm
as the ratio of the expected social welfare achieved by the
algorithm’s assigment (where the expectation is taken over
all n! permutations) to the optimum social welfare. Our
main contribution is to demonstrate that the simple and
natural Greedy algorithm achieves a competitive ratio of
1/24Q(1).

What is the main difficulty in proving that the Greedy
algorithm achieves a competitive ratio better than 1/27 It
is obvious that the expected welfare that Greedy obtains by
allocating the first item is at least as much as the optimum
algorithm obtains by allocating this item. Of course, the
disadvantage of the greedy allocation is that by assigning
one item, it may severely reduce the potential welfare gain
from items that arrive in the future. Our key insight is
into how items interact and how allocating one item can
affect the welfare gain that can be obtained from allocating
other items. Unfortunately, due to space constraints, certain
proofs are deferred to the full version, but we attempt to
sketch / provide intuition for these proofs here.

2.1 Understanding Item Interactions and Gain

In order to study interactions between allocations, we need
to introduce the following notation:

DEFINITION 4. An allocation of items to agents, denoted
by A, consists of m subsets of items A = {A¢}yr, where
Ay is the set of items allocated to agent £, and every item is
assigned to at most one agent. We note that some items may
remain unallocated in an allocation. We denote the total
welfare or value of allocation A by V(A) = > 7%, ve(Ae).

We let A* be the allocation that maximizes social welfare
OPT = 7" ve(A;) where OPT is the maximum social
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welfare. Without loss of generality (by normalizing all val-
ues), we assume that OPT is equal to 1. For an item j,
we define opt; to be the agent that receives item j in the
optimum allocation A*, i.e. j belongs to Azpt_7~ For a per-

mutation ¢ on the items [n], we define o* to be the set of
first 4 items in o, in other words {01,092, -+ ,0:}.

We can now introduce a central concept in our analy-
sis, used to provide a lower bound on the welfare gains of
Greedy. In standard analyses of greedy algorithms, a com-
mon approach is to show that one good option available to
the greedy algorithm is the choice made by the optimal algo-
rithm. In our setting, this would translate to showing that
Greedy can obtain a good increase in welfare by assigning
item j to opt;. The other piece of this approach is to show
that the greedy choice for allocating item j does not reduce
the welfare gain that can be obtained from future items by
more than the welfare increase from j. Together, these two
ideas imply that Greedy is 1/2-competitive in the worst case.
In order to formally argue about this, we introduce the fol-
lowing notation to describe the marginal gain of assigning
item j to agent ¢ = opt; based on a current allocation and a
(partial) optimum allocation:

DEFINITION 5. Fiz an arbitrary permutation o (such as
the identity permutation). For any item j and any allocation
A let £ = opt;, and i + 1 denote the index of item j in o.
We define Gain(j, A) as:

v ({j} UAgU (A5 N a")) — vy (Ag U (4N a")) .

That is, Gain(j, A) denotes the marginal gain we get from
assigning j to the agent ¢ that receives it in the optimal
solution, assuming that ¢ has already received all items in
Ay based on the allocation A, as well as those of the first ¢
items (under o) that the optimal solution allocates to ¢ (i.e.
A} No?). It is important to note that in the definition, the
permutation o is fixed and the same permutation is used to
define Gain(j, A) for all items j and allocations A.

Intuitively, Gain(j, A) captures the further marginal gain
one can achieve from item j, given allocation A. As a sim-
ple example, consider the case when A is an empty allo-
cation (no item is allocated in A). In this case, the sum
>_j—; Gain(j, A) is equal to OPT because for any permu-
tation o, the sum } ", Gain(j, A) of marginal gains of the
n items obtained by the optimal allocation is the defini-
tion of OPT. For any set S, we use Gain(S, A) to denote
> es Gain(j, A).

How is the concept of Gain useful? Let 7 denote the ar-
rival order of the items. We denote the allocation of Greedy
on the first ¢ items (that is, on the sequence 7°) by A’
The following lemma captures the marginal welfare Greedy
achieves at each step by using the notion of Gain variables.

LEMMA 6. If item j arrives at position i + 1 under per-
mutation , the increase in welfare that Greedy achicves by
allocating this item is at least Gain(j, A").

What does this have to do with interactions between items?
For a fixed item j, the value Gain(j, A%) is non-increasing
in 4. In other words, when Greedy assigns a new item m;,
it may decrease the Gain values for some items. We now
prove that the total decrease in Gain values for all n items
is at most the increase in welfare that Greedy obtained by



allocating item 7;. This next lemma allows us to keep track
of changes in these Gain values throughout the algorithm.

LEMMA 7. Greedy’s increase in welfare from item m; is at
least 3,1, Gain(j, A™Y) — Gain(j, AY).

Lemmas |§| and m (note that neither uses the fact that we
have a random permutation) use the concept of Gain to give
an alternate proof of the simple fact that the Greedy algo-
rithm is 1/2-competitive in the adversarial model: We start
with an empty allocation A%, and Greedy assigns items one
by one. At the beginning, the total Gain = Gain(N, A°)
is equal to OPT. Let G denote the sum of the final gains
Gain(N, A™). Lemmal7]implies that the value of the alloca-
tion A™ is at least OPT — (G. On the other hand, Lemma@
shows that if item j arrives at position ¢ 4+ 1, the algo-
rithm’s marginal increase in welfare is at least Gain(j, A*) >
Gain(j, A™). Therefore, the total welfare obtained by the al-
gorithm is at least G. Since the welfare is at least max{G,
OPT — G}, it must be at least OPT/2.

2.2 Going Beyond 1/2: Our Techniques

Of course, we wish to argue that Greedy does better than
half in the random order model. When we applied Lemmalg]
in the previous paragraph, we could have lower bounded
Greedy’s marginal increase in welfare from allocating item j
in position i 41 by Gain(j, A%); instead, we used the weaker
lower bound Gain(j, A™) < Gain(j, A"). When this inequal-
ity is not tight (that is, if the gain of item j is reduced after
it arrives by subsequent Greedy allocations), we can obtain
an improved competitive ratio. To make this formal, we de-
fine B as the total amount by which the Greedy allocation
reduces the gain of items which have already arrived.

LEMMA 8. The competitive ratio of Greedy is at least 1/2+
8/2.

ProoOF. If item j arrives in position i+ 1, define g; as the
reduction in the gain of j after it arrived; that is, g; =
Gain(j, A’) — Gain(j, A"). By definition, 8 = " g;.
From Lemma [f] the increase in Greedy’s welfare from al-
locating item j is at least Gain(j, A) = Gain(j, A™) + g;.
Denoting Gain(N, A™) as G, we conclude that the total wel-
fare of Greedy is at least G + 3. Lemma [7] implies that the
total welfare of Greedy is at least 1 — G (recall that we nor-
malized OPT to 1. Hence, Greedy’s total welfare is at least
max{G+ 3,1 -G} =1/2+ /2. O

If the gains of items were consistently reduced by a sub-
stantial amount after they arrived, we would have a proof
that Greedy has competitive ratio 1/2 + Q(1). But perhaps
in the worst-case instances, Greedy’s allocation of the ith
item only reduces Gain values for future items? By taking
advantage of the random arrival order, we can understand
how the reduction in Gain is distributed among future items.
In particular, the second item to arrive is unlikely to have
its Gain reduced significantly (in expectation) by the first
item , but when the last item arrives, it is quite likely that it
has a very small Gain value, because some previous (mis)-
allocations of the greedy algorithm mean that assigning it
to its optimal agent produces little value.

A straightforward differential equation analysis based on
Lemmas @ and E (which ultimately yields a competitive ra-
tio of 1/2) shows that when items arrive in a random order,
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the expected welfare from greedily assigning the first ¢ frac-
tion of items is at least w(t) = ¢t — % that of the optimal
(more details can be found in the full version of this paper).
Assuming this analysis is tight, the expected rate at which
welfare increases is w'(t) = 1 — t which is essentially zero
for the last few items (as opposed to at least 1 for the first
item). The key contribution we make, then, is to go beyond
such analyses: We derive new lower bounds on the welfare
obtained from items that arrive towards the end of the or-
der. This allows us to show that the total welfare obtained
by the greedy algorithm is strictly better than 1/2 of the
optimal.

Proving such lower bounds is non-trivial, and the main
technique we apply is lower bounding the welfare obtained
from a single item by both its own Gain when it arrives (as
in Lemmal 6]}, and how it reduces the Gain of other items (as
in Lemmal7)). In particular, we apply these lower bounds to
items arriving at the end of the random order, which allows
us to show that Greedy obtains non-zero welfare even at the
end. In this paper, we take three distinct approaches to ob-
tain the needed lower bounds on Gain values from items that
arrive at the end of the random order. Informally speaking,
we do the following:

e First, we consider the special case of second-order su-
permodular functions. We show that Greedy gets good
welfare from items that arrive towards the end by prov-
ing that there exists an allocation of these items that
significantly reduces the Gains of the first n/2 items.
(Recall from Lemma [7] that Greedy’s welfare from al-
locating an item is at least as much as its ability to
reduce the Gains of other items.) Our proof proceeds
in several steps: We first show that there is an al-
location of the first n/2 items that significantly re-
duces the Gains of the last n/2 items; by symmetry,
there must exist an allocation A of the last n/2 items
that significantly reduces the Gains of the first n/2.
Next, we use second-order supermodularity to argue
that a subset of the items that arrive at the end will
be able to reduce the Gains of the first n/2 items at
least in proportion to the size of this subset. More for-
mally, we show that for items that arrive at the end,
the only way they might not significantly reduce the
Gains of the first n/2 items is if previous allocations
among the last n/2 items already reduced these Gains
significantly. But in this case, Greedy’s allocations re-
duced the gains of items that arrived previously, which
means that 8 = >, b; is large, and Lemma [§] shows
that Greedy must then have a competitive ratio bet-
ter than 1/2. We precisely quantify this improvement
over 1/2 by formulating a factor-revealing Linear Pro-
gram, and analyzing it explicitly.

e Second, we consider the general submodular valua-
tion case. The previous approach no longer applies,
as without the second-order supermodularity property,
allocating a single random item might significantly af-
fect the collective gains of other items. Therefore, we
consider the (simulated) effect of assigning the last
quarter of items three times in succession, using three
different allocations. Intuitively, this can be under-
stood as showing three distinct allocations for these
items and arguing that the (mis)-allocations of Greedy
cannot harm all of these simultaneously. Therefore,



these allocations together obtain large welfare, and the
first time these items arrive (corresponding to the ‘real’
arrival and allocation) is the best of these.

e Third, we consider duplicating a single random item
and adding it to the end of the sequence of arriving
items. We propose a natural conjecture on how the
marginal gain of this item is related to the marginal
gain of Greedy on the last item. If this conjecture
holds, we obtain a much stronger lower bound on the
marginal gain from Greedy at the end of the sequence,
giving a competitive ratio of 0.567.

With these lower bounds on Gain values, we can prove
Theorems [I] and [3] by constructing factor-revealing linear
programs; the fact that items arrive in a random order al-
lows us to constrain the values of the variables representing
the interactions in item Gains. We then formally analyze
these linear programs, which requires some intricate com-
putations. Though these calculations are problem-specific,
we believe that our main technique of gain linearizing and
bounding item interactions will be generally useful to im-
prove analyses of submodular allocations and greedy ap-
proaches for random-order problems. (For one example, see
126].)

2.3 Formulating the Factor-Revealing LP

Recall from Lemmas[f]and [7] that when item j in position i
arrives, Greedy has marginal welfare at least Gain(j, A™™1).
Further, assigning this item j reduces the Gain values of
other items (both those that have already arrived, and those
which will arrive after j), but the total reduction is at most
the marginal welfare of allocating item j.

DEFINITION 9. For each index 1 < i < n, we define w;
to be the expected increase in welfare Greedy achieves by as-
signing the item in position i (that is, the ith item in the
arrival order).

Assigning item i possibly reduces the Gain values of items.
We partition this effect into two parts; for any item i, we
have two variables b; and a; defined as follows to capture the
reduction in Gain values of other items:

e b; (we use b to denote before) is the expected reduction
in Gain of items j that have already arrived. From our

definition of B above, B =>""_, b;.

e a; (a denotes after) is the expected reduction in Gain
of items j that are going to arrive later.

Clearly, allocating the item in position i reduces the total
gain values of other items by b; + a; in expectation.

By definition, Greedy’s performance is simply >.7 | w;.
Our factor-revealing linear programs will consist of three
separate lower bounds on w;. Two of these are common
to both the general submodular case as well as the case of
second-order supermodular functions.

For the first constraint of our LP, we use the notation of
Definition |§| to express Lemma [7| as w; > b; + a;. (This
follows because w; is the increase in welfare that Greedy
achieves from the ith item, and b; + a; is how much this
segment reduces the Gain values of all items.)

In the next lemma, we prove another lower bound on w;,
yielding the next constraint of our linear program. Recall
that we normalized our instance so that OPT = 1.
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LEMMA 10. For any 1 < ¢ < n, if OPT = 1, we have
> %

1 i—1
- 23:1 n—j"

—n

w;

PROOF. From Lemma [ the increase in welfare of the
algorithm from the ith item is at least its Gain values at the
time of its arrival; this can be written as the difference of
the original Gain value of this items (before the algorithm
starts) and the reduction in Gain value due to allocating
items that arrived previously. Before the algorithm starts,
the average Gain value for the ith item is equal to OPT'/n =
1/n, because the sum of original Gain values is equal to
OPT =1.

Now it suffices to prove that the expected reduction in
the Gain value of the ith item does not exceed Z;;ll kaj]
Since we are bounding the reduction in the Gain value of
an item before it arrives, we can ignore any reduction that
occurs after it arrives. If the Gain value of the ith item is
reduced before it arrives, it must have been reduced by the
item in position j for some j < i, and hence this must have
been included in a;. However, the variable a1, for instance,
captures reductions in Gain values for all items appearing
after the first, not just the ith item. In general, for some
1 < j <4, a; accounts for reduction in Gain values of items
which arrive in any of the positions j + 1,5+ 2,--- ,n. The
probability that any of these items falls in position ¢ and
hence the reduction of its Gain value becomes relevant in
this lower bound is 1/(k — j) because there are k — j fu-
ture segments, and we have a random permutation of items.
Therefore, for each 1 < j < 4, we should deduct :jj in this
lower bound. []

We now have two constraints that lower bound w;, but
if we only use these two, we will not be able to show that
Greedy has a competitive ratio better than 1/2. As de-
scribed above, the further ingredient required is to show
that Greedy obtains good welfare from the items that arrive
towards the end of the sequence. In Section [3] we do this
for the special case of second-order supermodular functions,
proving Theorem [3] Then, in Section [ we apply a more
general technique to obtain a slightly weaker result for ar-
bitrary submodular functions, proving Theorem Finally,
in Section [f] we discuss how these results can be greatly
improved based on a new conjecture.

3. SECOND-ORDER SUPERMODULARFUNC-

TIONS

DEFINITION 11. Let Sy be the sequence of items with in-
dex < n/2, Sy the sequence of items with index i such that
n/2 < i < 3n/4, and Sz the sequence of items with index
it > 3n/4. All of S1, S2, and Ss are random variables (se-
quences).

We define (Say;Sas, ++ ,Sa,) to be the concatenation of
sequences of items Sa,, Say, -+ ,Sa,. For any sequence Sk,
we abuse notation and use Sy to denote both a sequence of
items and the set of these items, but the meaning will always
be clear from context.

Let A%(S) be the allocation of items in S by the Greedy
algorithm, where we assume that no other item has arrived
prior to S, and then Greedy allocates items of S one by one.
We also define A*(S) to be the optimum allocation of items
inS.

We want to show that Greedy gets good welfare from
items that arrive at the end. As described in Section |2 the



straightforward analysis that obtains a competitive ratio of
1/2 shows that Greedy’s welfare from assigning the first ¢
fraction of the items is > t — t*/2. Therefore, at t = 0.8, we
have already obtained welfare 0.48, and at ¢t = 0.9, we have
welfare 0.495. That is, the remaining welfare from assigning
the last 0.2 and 0.1 fraction of the items is 0.02 and 0.005
respectively. To improve on the competitive ratio of 1/2, we
use better lower bounds on the value of items that arrive at
the end.

We first show that Greedy’s allocation of items in S; re-
duces the Gains of items in S2 U.S3 by at least 1/4; it follows
that there exists an allocation of S» U S3 that reduces the
Gains of S1 by 1/4. However, Greedy’s allocation of items
in S1 may also reduce the Gains of other items in S; by
up to 1/8. Hence, the further reduction of Gains of Si by
allocating S2 U Ss3 is at least 1/4 —1/8 = 1/8. We then take
advantage of second-order supermodularity to argue that the
ability of a random subset of S2 U S5 to reduce the Gains
of items in S; is proportional to its size. That is, a sub-
set of So U S3 of size k will be able to reduce the Gain of
S1 by at least nL/Q% In particular, the last 0.1 fraction of
the items will be able to reduce the Gain of S; by at least
% é = 0.025; and hence there is an allocation of these items
which could obtain welfare at least 0.025. (Note that this
is 5 times better than the naive analysis of Greedy.) The
only reason for Greedy to not get such a welfare increase
would be if previous allocations of items in (S2, Ss) already
reduced the Gain of S; significantly. But in this case, we
use Lemma [8] to show that Greedy has a competitive ratio
better than 1/2. More formally, instead of considering an
explicit fraction such as the last 0.1 fraction of the items, we
quantify the improvement over 1/2 by applying this idea to
write a constraint in our factor-revealing Linear Program for
every i, and then mathematically analyzing the LP. Please
refer to the full version for details.

4. GENERAL SUBMODULAR FUNCTIONS

For arbitrary submodular functions, we can no longer use
the technique of the previous section to argue that we ob-
tain sufficient welfare from items in (S2, S3). Instead, here
we use a different constraint that provides a lower bound on
Zl>3n /4 Wi which is Greedy’s expected increase in welfare
when assigning S3, the last quarter of items. We obtain this
constraint by considering the simulated sequence of items
S’ = (51,852,853, 52,S5,52). In other words, we will analyze
how one could assign items if after the items in S; arrive,
items in Sz and S3 arrive multiple times. We assign items
of S using the following allocation A’ = A%((S1, S2,S3)) U
A% ((S2,83))UA*(S2). That is, we first use Greedy to assign
the items of (S1,S2,53); then, we use the different alloca-
tion given by Greedy on (Ss, S3) assuming nothing has been
assigned so far (that is, ignoring the previous allocation of
Greedy on (Si,S2,S53)). Finally we use the optimum al-
location for Ss. A’ is defined as the union of these three
allocations.

To show that Greedy gets sufficient value from items in
S3, we will lower bound the value of A’ on the last five
segments (S2, S, Sa, S3,.52). This part of the value of A’ can
be formally written as V (A’) =V (A% (S1) E|us1ng Lemmalﬂ
we can lower bound it by showing how much it reduces the

*Recall from Definition {| that V (A) for some allocation A
denotes the total welfare or value of the allocation.
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Gain values of all items. That is, E[V (A") — V(A% (S1))] >
E[Gain(N, A%(S1)) — Gain(N, A")]. Since N = S;US2U S,
we can lower bound the desired quantity by separately lower
bounding E[Gain(Sk, A°(Sk)) — Gain(Sk, A")] for each of
k=1,2,3.

Cramn 1. E[Gain(Si, A%(S1)) — Gain(S1, A
Z?/? 2/21 Zn/2(n/2 la1+b)

ProOF. For any item j, Gain(j, A% ((S2, S3))) is at least
Gain(j, A") by submodularity and the fact that A%((Sa, S3)) C
A’. So to lower bound E[Gain(S1, A%(S1)) — Gain(S1, A")],
it suffices to lower bound
E[Gain(S1, A%(S1)) — Gain(S1, A%((Sz2, S5)))] =

E[Gain(S1,0) — Gain(S:, A ((Sa, S3)))] —
E[Gain(S1,0) — Gain(S1, A%(S1))]

It follows that E[Gain(S1,0)—Gain(S1, AST° (S5, S3)))]

Z”f Z/zzal from symmetry and the definition

of a; variables. To see this, note that ©' = (S2,S53,51) is
also a random permutation in which (S, Ss) is the first half
of items, and S; is the second half. Now we want to lower
bound how much Greedy’s allocation of first half items in the
random permutation 7’ reduces the Gain variables of sec-
ond half items of m’. We know that for any ¢ < n/2, the ith
item in 7’ reduces the Gain variables of items that appear in
positions greater than i in ' by a;, and (as in Lemma
in expectation :/
with items in positions greater than n/2. Similarly, we can
consider the original random permutation = = (S1, S2, S3),
and see that the allocation of items in S1 reduces the Gain
variables of other items in S; by a total of Z”/Q "7/12 iz a;+b;.
This proves the desired claim. []

CramM 2. E[Gain(S2, A%(S1)) —
1 Zn/2 n/4

4 =1 n—1

=

is equal to >

fraction of this reduction is assomated

Gain(S2, A")] =

PROOF. Since Ss is a random quarter of all items, we have
that E[Gain(S2,0)] = %, and since A’ concludes with the
optimum allocation on items of Sz (A*(S2)), Gain(S2, A’) is
zero. So E[Gain(S2, A% (S1)) — Gain(S2, A')] is equal to i-
(E[Gain(S2,0) — Gain(S2, A°(S1))]). The latter term can
be exactly calculated from the fact that allocating the item
in the ith position reduces the gains of subsequent items by
ai, and n/4 of the n — ¢ remaining items are in Sz; therefore,

E[Gain(Ss,0) — Gain(Sz, AS(S1))] = /2 niq,. O

i=1 n—g di-

CrLAM 3. E[Gain(Ss, AC(S1))—Gain(Ss, A')] > S230/*

i=n/24+1 n—1i

PROOF. Since A%((S1, S2)) is a subset of A’, it suffices to
lower bound

E[Gain(Ss, A°(S1)) — Gain(Ss, A% ((S1, S2)))].

Similarly to the proof of the previous claim this reductlon
in Gain of items in S3 n/4 5 @iy

but now this reduction is achieved by allocating items of
Sa. O

From the three preceding claims, we conclude that E[V (A")—
V(A%(S1))] is at least:

n/2 n/2 3n/4
2 2 1 4

Eﬁl :éial_ El (n/f 7,+b>+4_21 n/ a;+ E

i= i i i= n/2+1

Q.



n/2 3n/4
4 4
7+§ ( ”/ -—bi>+ S A,
i=njze1 0"

LEMMA 12. The expected increase in welfare that Greedy
achieves for the last quarter of items is at least

n/2/1 n/4 1. 3n/4 n/4 3n/4
+Z (G(n 7,) 6b1)+21 n/24+1 6(n—1) ai— 6

Proor. We use X to denote the lower bound obtained
from the three preceding claims on how much A’ increases
the welfare from the rest of S’ after items in S; have al-
rady arrived. In other words, this is how much it increases
its welfare by allocating (S2,Ss3,S2,S3,52). We use W3 =
Zie 54 Wi to denote how much A’ increases its welfare by al-
locating items in the first copy of S3, and since items in the
first copy are assigned greedily (in A’), their total increase
in the welfare is at least as much as the increase in welfare
A’ obtains by allocating the second copy S3 (this is easy to
verify for each item). So A’ in total increases its welfare
from the two copies of S3 by at most 2Ws.

Let S5 be the sequence (Sa2,S2,S2) derived from S’ by
removing the initial copy of S1 and the two copies of Ss.
Let A5 be the projection of allocation A’ on sequence S5;
in other words, A% is an allocation of sequence S5, and it is
consistent with A’ on this sequence. It is clear that after the
allocation AG(Sl), allocating the three copies of Sy using A%
increases the welfare by at least X —2W3 since removing the
two copies of S3 will not reduce the welfare by more than
2Ws.

We now appeal to symmetry and switch the argument
from Sz to Ss. Given set S1, Sz is a random sequence of half
of the items in N \ S1, and so is S3; that is, given sequence
S1, S2 and Ss have the same distribution. Suppose S; is
allocated by Greedy; as argued above, we know that after
this allocation it is possible to allocate three consecutive
copies of Sy using A5 and increase the welfare by at least
X — 2Ws3 in expectation. Therefore we can claim that after
allocation AG(Sl), it is possible to allocate three copies of
S3 and increase the welfare by the same amount of at least
X —2Ws;. Formally, there exists an allocation A% of sequence
S% = (83,53, S3) such that E[V (AC(S1)UAL) — V(A (S1))]
is at least X — 2Wjs.

Now consider the sequence (S1,S2,S3,S55), which begins
with the original sequence S = (Si,S2,S53) and then has
three copies of S3. For this sequence, consider the allocation
AFinal — pGreedy((g, S, S3)) U Aj; that is, we first assign
the original sequence (S1,S2,S3) according to Greedy, and
then assign the three copies of S5 using A5. The increase in
welfare by allocating the last three copies of S in AFe! ig
at least X — 2W3 — W5 — W3 where Wy = 21652 w;. Now
there are four copies of S3 in the sequence < S1, S2, S3, S5 >
Since the first copy of Ss is allocated greedily in A¥™ its
increase in welfare which is W3 is at least as much as the
increase in welfare of any the other copies of S3 in AFmal,
and hence also at least as much as the average of increase in
welfare by these three copies. We conclude that:

i>3n/4 Wi

X —2W3 — Wy — W3
3
By definition of X and W3, we have: W3 > w

n 3n/4
,+Z/2( a; —y " ,{l/z+1wz

W3 >

i— n/4
n—i

3n/4 n/4
bi) + Zi:n/2+1 n—i

6

i=n/2+1 Wi -
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which concludes the proof.

We now have all the building blocks we need to provide
a lower bound on the total welfare obtained by Greedy in
terms of w;, a;, and b;, and consequently prove that Greedy
achieves a competitive ratio better than %

LEMMA 13. The expected welfare obtained by Greedy is at
least 37 + Zn/Q ((1 + ST gb') + 2?2{14/2-%1

6(n—1)
((% + ) + 320 2 (wi — ag — bi).

ProOOF. We can write the expected increase in welfare by

3n/4 .
Greedy as Zl Twi + Zi:{L/Q-&-l Wi + 3005, 40 Wi Using
Lemma (12| to lower bound the 1ast term Zz>3n/4 w;, We

conclude that the Welfare is at least 57 + Zn/Q( i-n/4

6(n—) ¥ —
gbi) + mefl%ﬂ 6(n 1) ai + 3 Z?n{;gﬂ w;i + 303w

Since the coefficient of each w; is positive (either 2 or 1)
in this lower bound, we can apply Lemmato replace each
w; with a; +b;, and add the sum 23"/4 3 (w; —a; —b;) while
still having a valid lower bound. It suﬁices to merge the
sums to conclude the claim of this lemma. []

)ai +

n/4 .
G(n—i))a’

We can now complete our proof of Theorem

Proof of Theorem[]] Using Lemmal[I3] we know that for any
instance the expected gain of greedy is at least:

n/2 /4
T—n
ot E < Z))az + 6b )
3n/4 3n/4
5 n/4 5 5
Z <(6+6(n—i))a+6 )+Z6(w @i = bi)
i=n/2+1 i=1

for some set of 2 numbers {w;,a;,b; }3"/4 all in [0,1].

From Lemmas [7] and[I0} we know they satisfy the 1nequah-
ties w; > a;+b;, and w; > %—Z’._ll — i < 34"
The minimum value of LB among the fea51ble solutions of
these linear constraints lower bounds the competitive ra-
tio of Greedy algorithm. We prove that to minimize LB
given these linear constraints, one can assume w.l.og. that
wZ = al + b; for any i < " as follows. Suppose for some

3 the gap § = w; — (al + b;) is positive. We increase
bi by 4. The value of LB is intact because on one hand %bi
appears in either the first or second summation in the lower
bound, and —%bi appears in the third summation. The in-
equalities w; > a; +b; and w; > % — Z;zll na_jj are also still
satisfied, and w; is now equal to a; + b;. Performing this
update for every constraint w; > a; + b; that is not tight,
we can assume that w; = a; + b; for any i < %". Therefore
it suffices to lower bound the following simplified expression

LB':
n/2
1 1—n/4 5
LB = — 1 i+ =b;
24+;(( M P DA )+
3n/4
Z 5 n/4 5
= 1 bz
_ <( 6(n—z))a+6 >
i=n/2+1

for some set of 3 numbers {ai, b; }3"/4 allin [0, 1] With linear

1 aj
72;1ng

constraints a; + b; Z P



We find the minimum value of LB’ among all feasible so-
lutions of these linear constraints. First, we prove that there
exists an optimum solution (minimizing LB’, and satisfying
the constraints) in which a; 4+ b; = % — Z;;ll na_jj for any
1<i< %". In other words, the linear constraints should be
tight. Second, we show that there exists an optimal solution
in which, furthermore, all b; values are 0. This then allows
us to explicitly find the values of a; in this optimal solution,
and we can evaluate LB’ explicitly.

Due to space constraints, we are unable to include the
complete analysis to lower bound LB’; in the full version of
this paper, we show that LB’ is at least 0.5052. a

S. TOWARDS AN IMPROVED COMPETI-
TIVE RATIO

While the techniques of the previous section show that the
competitive ratio of the Greedy algorithm is strictly better
than 1/2, we believe that the performance is considerably
better. In this section, we present a natural conjecture on
the marginal increases in welfare obtained by Greedy (Con-
jecture, that captures much of the difficulty of this prob-
lem. Theorem @ proved in the full version of this paper,
shows that if the conjecture holds, the Greedy algorithm
achieves at least a competitive ratio of 0.567. In order to
state the conjecture, we need to introduce some notation:

DEFINITION 14. Fiz a permutation © = (71, T2, ,Tn).
We define two new permutations based on m:
o Let mM°V be the permutation (71, 7o, , Ti—1, Tit1,

i+, ,Tn, ;) (wWhich is achieved from m by moving
m; to the end).

o Let 19°PY"? be the permutation (1, 2, -

Jrom m by copying m; to the end without removing the
original m;). We note that PV s a sequence of
n + 1 items with two copies of item ;.

Let MG(i,7) denote the marginal gain that the algorithm
Greedy gets by allocating the ith online item m; in per-
mutation 7, and let S,, be the set of all n! permutations
on the n items. The algorithm Greedy achieves welfare
Welfare(Greedy) = Er~s, >y MG(i, 7)) where the ex-
pectation is taken over permutations 7 chosen uniformly at
random from S,. It is clear that M G(i,7) > MG (n, 7*°v%)
for any  since the first i — 1 items of both 7 and 7°®? are
the same, and therefore Greedy’s allocation on them is the
same; the claim is implied by the non-increasing marginals
property of submodular functions. Now we can present the
conjecture, and the improved competitive ratio for greedy
based on it:

CONJECTURE 15. For any instance of the online submod-
ular welfare mazimization problem, we conjecture that

Erns, |> MG(n+1, nc"py’i)] < Enns,

i=1

i=1

We also note that the latter is equal to nEr~g, [MG(n, )]
as both ™ and m°"¢* have the same distribution.

THEOREM 16. Assuming Conjecture holds, the com-
petitive ratio of the Greedy algorithm for online SWM is at
least 0.567 in the random order model.

, T, i) (achieved

i MG(?’L, ﬂ_]vlove,i):| .
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6. CONCLUSIONS AND OPEN PROBLEMS

As we have seen, the Greedy algorithm, which achieves
an optimal competitive ratio of 1/2 for online SWM in the
adversarial setting, does strictly better in the random or-
der setting. We showed that the competitive ratio of this
algorithm is at least 0.5052, and defined the new and inter-
esting class of second-order supermodular functions (includ-
ing weighted matching and weighted coverage functions), for
which the ratio is at least 0.5104. Further, under Conjec-
ture[I5] the competitive ratio is considerably better, at least
0.567, which is more than halfway between 0.5 and 1 — 1/e.
This work motivates several open problems, which are inter-
esting directions for future research:

e First, and most obviously, can one prove Conjecture |15
If true, as discussed above, this gives an immediate
improvement to the competitive ratio of the Greedy
algorithm.

e We believe it should be possible to improve on the
competitive ratios of both Theorems [I] and B] Our
work broke the barrier of 1/2, but further improve-
ments may be possible via a more careful analysis.

e A natural question is whether the Greedy algorithm
does in fact achieve a ratio of 1 — 1/e in the random
order model. A hardness result showing that this ratio
is impossible would be extremely interesting, yielding
one of the first provable separations between the ran-
dom order and i.i.d. models.

e Finally, the new classes of second-order modular, second-
order supermodular and second-order submodular func-
tions that we defined are likely to be of independent
interest. We may be able to refine our understanding of
submodular optimization by determining which prob-
lems become more tractable for submodular functions
in these classes.
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