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ABSTRACT

Billions of dollars worth of display advertising are sold via
contracts and deals. This paper presents a formal study
of preferred deals, a new generation of contracts for selling
online advertisement, that generalize the traditional reser-
vation contracts; these contracts are suitable for advertisers
with advanced targeting capabilities. We propose a constant-
factor approximation algorithm for maximizing the revenue
that can be obtained from these deals. We show, both the-
oretically and via data analysis, that deals, with appropri-
ately chosen minimum-purchase guarantees, can yield sig-
nificantly higher revenue than auctions. We evaluate our
algorithm using data from Google’s ad exchange platform.
Our algorithm obtains about 90% of the optimal revenue
where the second-price auction, even with personalized re-
serve, obtains at most 52% of the benchmark.

1. INTRODUCTION

Display advertising is the major source of revenue foron-
line publishers and many Internet companies who sell the
space on their webpages to advertisers. In 2014, the revenue
of this market in the US alone exceeded $20 billion [36].

Display advertising is sold mainly via two channels: reser-
vation contracts and real-tim¢bidding. In a reservation or
guaranteed-delivery contract, the advertiser specifies a tar-
geting criteria and the size and duration of the campaign
(e.g., 10 million impressions’ to male users aged 35-50 from
California in November) and the publisher guarantees to de-
liver impressions that match the criteria; the publisher usu-
ally pays a penalty if he fails to deliver [22]. The price per
impression of the contracts is usually determined through
negotiation. Advertisers can also purchase impressions via
auction platforms, such as Google’s DoubleClick and Ya-
hoo!’s Right Media. Advertisers bid in real-time for a chance

! Impression is the unit of inventory and simply refers to the
display of an ad to a user.
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to show their ads on a publisher’s website. These platforms
sell billions of impressions each day [35].

Despite the growth of real-time bidding, still a large frac-
tion of premium (and more valuable) online ad space is still
sold via reservation contracts. In this paper, we study pre-
ferred deals, a new generation of contracts for selling dis-
play advertising: “Preferred Deals is a featiiré¢ that allows
Ad Exchange sellers to offer inventory to buyers at a fixed,
pre-negotiated price before the inventory is made available
to other buyers in the general auction.” [28]

Under the traditional reservation contracts, the advertiser
purchases all the impressions that are sent to him by the
publisher. Preferred deals give the advertiser the option
to choose a subset of impressions from those sent to him.
If the advertiser “accepts” an impression, he pays the pre-
negotiated price. If he rejects the impression, it will go back
to the publisher.

Preferred deals are appealing for advertisers who can eval-
uate the value of an impression better than the publisher.?
Many advertisers collect information about users who have
visited their websites. [They use this information mainly to
re-target users by showing them ads tailored to their previous
activities on the website; such as searching for a product or
vacation packages [30]. Those impressions are of high value
to the advertisers.

In this paper, we present a formal study of preferred deals
and show how they can be structurgl in order to significantly
increase the revenue of a publisher compared to second-price
auctions. We show that finding the optimal sequence of
deals is NP-Hard; see Section 3. Ve then present a greedy
algorithm for a stochastic setting where the valuations of
the buyers are drawn from a joint probability distribution.
More specifically, in Section 4, we present our algorithm,
called the Auction-Adjusted Greedy, where each advertiser
gets the same number of impressions as they would have
won in a second-price auction from the remaining impres-
sions. We prove that our algorithm obtains at least half of
the optimal revenue when the distributions of the buyers’
valuations are independent of each other. When the valu-
ations are correlated via a common value component, our
algorithm yields at least % of thé-bptimal revenue.

We then evaluate our algorithm using data from Google ad
exchange auctions in Section 5. To our surprise, we observe
that our algorithm obtains about 90% of the benchmark
revenue (the sum of the highest bids in each auction). In

2We note that the information Google has about its users is
not shared with the ad exchange.



addition, it obtains significantly higher revenue, up to more
than three times, compared to second-price auctions.

Related Work

In this section, we briefly discuss three lines of work that
are closely related to ours; see [33] for a recent survey on
display advertising. D

Channel coordination. An important challenge in the dis-
play advertising market is coordinating the contract and
auctions sale channels.® A natural approach is to first try to
sell an impression in an auction, and if the impression is not
sold in the auction, then allocate it to one of the reservation
contracts if it matches its targeting criteria. The reserve
price in the auction can be determined so that the contracts
can meet their guarantees by the end of the campaigns [10].
However, this approach may give rise to adverse selection
if the valuations of the contract buyers and bidders in the
auction are correlated. For instance, consider an advertis-
ers who is willing to pay on average $0.05 for an impression
to an Angeleno. But most of the impressions to the users
that are from zip codes with higher than average income in
Los Angeles are sold at the auction. Therefore, the qual-
ity of impressions allocated to the advertiser under the deal
would deteriorate, which subsequently may result in paying
penhlties or losing the advertiser in the future. To address
this issue, [24] propose a randomized bidding mechanism to
allocate a representative set of impressions to the buyers.
[4] characterize adverse-selection proof mechanisms. They
show that under certain assumptions on the correlation of
the valuation of the reservation buyers and the bidders in
the auction, a simple variation of the second-price auction
is adverse-selection proof. Preferred deals can alleviate, if
not eliminate, the adverse selection concerns by allowing the
buyers to choose the impressions they want before they are
sent to the auction.

In this paper, our main focus in on the problem of de-
signing the contracts. Once the contracts are determined,
the delivery of the impressions in order to satisfy the con-
tracts can itself be complicated, particularly when there is
uncertainty about the volume of impressions; see

Right-To-Choose Auctions. A line of research closely re-
lated to our work isthe;study of “right-to-choose” auctions
where the seller @uctions off the right-to-choose an itenr{rom
the available items. These auctions are commonly used to
sell real estate ([5, 27, 12]), antiques and jewelry [19], and
water rights [3]. It has been observed empirically and via
field and lab experiments that right-te-choose auctions-can
increase revenue compared to sequentiai auctions. The-the-
oretical justification for the revenue increase is offered for
the case of risk-averse buyers ([27, 12]). Recently, [18] show
that a variation of right-to-choose auctions can obtain signif-
icantly higher welfare compared to sequential auctions when
the buyers’ valuations are subadditive.

Bundling. The intuition for higher deals’ revenue com-
pared to auctions js-that the seller can bundle impressions
over time.and charge-a higher lprice for the bundle. Bundling
is a well-known tool for price discrimination and revenue
maximizing ([1, 34, 8, 13, 26]). For sponsored search auc-
tions, [25] show that the problem of finding the |optimal

3Channel coordination has been studied in other context
of operations management; for example, see [14] on online
retail.

bundling is NP-Hard and propose approximation algorithms;
see also [21, 20].

[7] study the problem of selling n items to one buyer. They
show that a simple strategy of either pricing each item sep-
arately or selling them all as one bundle obtains a constant
approximation ratio of the optimal mechanism; see also [29].
Our results provide a constant approximation ratio for the
multi-buyer case under the assumptions that n is large and
the items are ex-ante identical. We believe that some of the
ideas developed in our work can be used to find approxi-
mately optimal pricing schemes for more general settings of
this problem.

2. SETTING & PRELIMINARIES

We consider a seller (publisher) of a set of items (impres-
sions) to n buyers (advertisers), over a horizon of length 7.

Let v = (v1,v2, - ,vn) denote the vector of valuations of
the buyers for an impression. We consider the case where
the vector of valuations of the buyers for each impression is
drawn independently and identically from joint distribution
F :R" — R. To simplify the presentation, we assume that
the valuation of buyer ¢ is distributed over [v;,7;], 0 < v, <
v;, and the margins are bounded and positive on [v;,T;].
Therefore, the probability of having two equal positive bids
is zero.

We allow the valuations of the buyers to be correlated via
a common value component. Namely, v; = v; + 7, where v;
is the private signal of the buyer, which is distributed inde-
pendently of the other buyers’ valuations; n is the common
value component.

The buyers are risk-neutral with quasi-linear utility: the
utility buyer i obtains from purchasing the impression at
price p is equal to v; — p.

2.1 Preferred Deals

We define a preferred deal using three parameters Z, p,
and p: by accepting the deal, buyer ¢ gains access tathe
impressions in Z; and agrees to buy a fraction u; of tiei,
each at price p;.

The above definitions follows industry practice [28]. We
note that p; = 1 corresponds to the traditional reservation
contracts where the buyer specifies a set desired impressions,
Z, using different features (e.g., context of webpage, demo-
graphics of users, etc.) and agrees to purchase all the im-
pressions (satisfying those constraints) that the seller sends
to him. In practice, the deals can be specified with the
number of impressions or the total spending instead of the
fraction. We note that because the price-per-impression is
fixed and the total number of impressions is very large, all
these forms of contracts are essentially equivalent.

We assume that the minimum purchase constraint has to
be met (only) in expectation. This is justified by the fact
that the number of impressions in practice is quite large.
Let F; denote the distribution of valuations of buyer i. In
order to purchase p; fraction of the impressions, buyer i
will have to purchase all impressions with v; > 6; where
0; = F, ' (1— ;) (ie., pi = 1—F;(0;)). Note that buyer i will
purchase an impression if v; > p;. Hence, the minimum pur-
chase is binding only if 1 — F;(p;) < p;. The per impression
expected utility of the buyer from deal (Z;, ui, pi) is equal
to (1— F;(6:)) (Ez[vi|vi > 6;] — p;) if the minimum purchase
is binding; otherwise, it is equal to (1 — F;(p;)) (Ez[vilvi >

pil = pi).



We study the seller’s optimization problem to maximize
the revenue using a sequence of deals. The seller chooses
a priority list (w1, 72, -+ ,m,) where n denotes the number
of buyers. The seller offers to each buyer ¢ a preferred deal
(pi, pi, Li). By accepting the deal, the buyer agrees to pur-
chase fraction u; of the impressions in Z; each at price p;.
Each buyer receives impressions that are not purchased by
the buyers with higher priorities. For example, all the im-
pressions are sent to 7, the buyer with the highest priority.
The buyer with the second highest priority receives all the
impressions that are not purchased by 7.

We assume that the seller offers each buyer a deal. A more
general approach would be to offer deals only to a subset of
buyers, and tid buyers that are not offered a deal could
participate in an auction. To simplify the presentation, we
consider the former model, but our results can be extended
to the latter.*

2.2 Benchmark
We compare the performance of our algorithm with a

benchmark mechanism that can extract the whole surplus |:|

of the buyers, cf. [11, 31].

Benchmark Mechanism: The following is an optimal
direct mechanism for the setting described in Section 2:
charge each buyer ¢ an initial payment (or entrance fee) equal
to

T x (Elvilvi = v(1)] — E[r?i,lx{vj}h)l = )]

and then allocate each impression via the second-price auc-
tion with no reserve. Note that this mechanism charges in
advance the expected utility of each buyer from the future
second-price auctions. Hence, it obtain the revenue equal to
the expected maximum welfare equal to T" x maxi{vi}.
However, the current practice of the online advertising
market does not allow for such contracts that require an
initial payment without clearly specifying the number of al-
located impressions. The market design question we[study
in this work is that: are proffered deals near-optimal?~ We
remark that these contracts do not require initial-payments
and have already been implemented in practice ([28]), but
prior to our work, there was no rigorous study of their pow-
ers and limitations compared with the optimal mechanism.

As the first step of our analysis, we nQe that selling each
impression individually at auctions may not be able to com-
pete with the benchmark mechanism.®

PROPOSITION 1 (REVENUE GAP). The gap between the
revenues of the benchmark mechanism and the second price
auction (with an optimal reserve) can be arbitrarily larger.

PROOF. We prove the claim using the following exam-
ple. Suppose there is only one buyer whose valuations is
distributed according to a (truncated) revenue-equal distri-

bution, F(v) = t25 (1 — 1), v € [1, M], for alarge constant

*We examined the latter model empirically and observe that
the seller would prefer to offer deals to all the buyers|instead
of a combination of deals and auction. 0
SFor correlated valuations, the whole surplus can also be
extracted via randomized static mechanisms [17]. But we
note that the revenue gap presented in Proposition 1 holds
for independent valuations, which is an important special
case of our model where surplus extraction is not possible
via auctioning off each impression individually.

M. Observe that the revenue of any posted price p is at most
equal to 1.

s-re) = p(1-55 (1-1))

M 1
< 1—— ) =1
= M—l( M)

On the other hand, the benchmark mechanism obtains rev-
enue equal to E[v] = O(log M).

M
- log M.
M—1"%

M
M 1
Elv] = X —d
[v] ‘/1 T X oy de
Therefore, the gap between the revenues grows larger as M
increases. g

In contrast with second-price auctions, we observe that
preferred deal can obtain the optimal revenue when there
is only one buyer using u = 1 and p = E[v]. The intuition
is that deals can obtain higher revenue because they bundle
the impressions over time and charge the price of the bundle
instead of selling each impression individually. For multiple
buyers, the preferred deals may not be optimal, but as we
show later, they can obtain near-optimal revenue.

In the above example and proposition, we assumed that
the seller can extract all the surplus of the buyer. This
implicitly implies that the seller is a monopoly and has full
bargaining power (no outside option for the buyer). But
from a practical perspective, this may not quite be the case.
Online publishers have a monopoly on the advertising space
on their webpages and to some extent on the users who visit
their websites. If an advertiser aims to target the New York
Times visitors, he has to buy impressions from the New York
Time. Nevertheless, some of those users, or users similar to
them, can be reached via other websites. In practice, the
terms of these contracts can be negotiated and the surplus
is somehow shared between the seller and the buyer, for
instance via offering a deal at a lower price. In this paper, we
do not consider the bargaining solution and the division of
the surplus, and mainly in order to simphify the presentation,
we assume that the seller can extract the surplus of the
buyer. However, as shown by our theoretical result and later
in our empirical analysis in Section 5, we emphasize that the
gap between the revenues obtained from the deals and the
auction could be dramatic, even if the surplus is shared.
Therefore, even a seller with limited bargaining power could
benefit from deals and contracts.

3. CHERRY-PICKING AND HARDNESS

One of the main challenges in finding the optimal sequence
of preferred deals is cherry-picking. A buyer picks the im-
pressions that have the highest value for him, but there could
exist other buyers with higher valuations for those impres-
sions. Therefore, there are two sources of inefficiency from
a sequence of preferred deals: i) The buyer with the high-
est valuation does not purchase the impression because the
price was too high. ii) An impression goes to a buyer with
a lower valuation because that buyer had higher priority.
The latter appears to be the bigger challenge. Due to these
complexities, it is not obvious how to design even a simple
greedy algorithm for this problem. A naive greedy algorithm
may allocate all the impressions to the first buyer it picks if
the buyer has positive valuations for all the impressions. In



fact, in this rest of this section, we show that the problem
of finding the optimal sequence of deals is computationally
hard.

Let w(Z, S) denote the maximum expected per impression
revenue that can be obtained using a sequence of deals from
impressions in Z and the set of buyers S. If S has only one
element (|S| = {i}), then w(Z,S) = Ez[v;], which corre-
sponds to the preferred deal (p; = Ez[v;],us = 1,Z). For
|S| > 2, we can define w recursively.

w(Z,S) = (1)

max

. _ {Prz[vj > 0;] Exlv;lv; = 6;] +
]ES,GJ'E[QJ-,’U]-]

Prefuy < 05] w(Z\ {u; > e},S\{m}.

In the equation above, Z \ {v; > 0} denotes the set of im-
pressions in Z where v; < . Suppose buyer 4, at threshold
0;, maximizes the r.h.s. The seller offers to i preferred deal
(pi = Ez[vi|vi > 60;], s = Prv; > 6;],Z). Note that the pa-
rameters of the deals are determined such that they extract
the buyer’s surplus; see the discussion after Example 1. Un-
fortunately, solving the recursion above takes exponential
time.

THEOREM 1 (COMPUTATIONAL HARDNESS). The prob-

lem of finding an optimal (revenue-malkiinizing) sequence of
preferred deals is NP-Hard.

We present a proof in Appendix A. We use a reduction
from a well-known NP-Hard problem, the mazimum acyclic
subgraph [32]. As suggested by its name, the problem is
defined as finding the largest acyclic subgraph of a given
directed graph. If the graph is weighted, then the goal is
to find a subset that maximizes the sum of the weights of
edges in the acyclic subgraph. This problem is equivalent to
finding an ordering (ranking) of the verticef|that maximizes
the number (or the total weight) of the forward edges (those
consistent with the orderings that are directed from nodes
with higher rankings to lower rankings).%

4. AUCTION-ADJUSTED GREEDY ALGO-
RITHM

We present an algorithm called Auction-Adjusted Greedy
(AAQG) in Figure 1. The algorithm recursively chooses one of
the buyers, denoted by 4, and offers him a contract (u:, pi, Z:).
The choice for 6 is guided by the auction. Consider the
first step. 6; is chosen such that the buyer wins exactly the
same number of impressions as he would have in a second-
price auction with no reserve price. Note that the buyer
wins the same number of impressions, however, now he can
cherry-pick and choose the impressions that maximize his
valuations. Therefore, we have

E [’Ui|1)<1>(S) = ’Ui] S E [’UZ"’UZ' 2 91] 5 (2)

where v(1)(S) = max;es{vi}. On the other hand, as v; may
not be the highest bid for impressions v; > 0;, the algorithm

SFor the maximum acyclic subgraph problem, choosing a
random ordering of nodes obtains a % approximation. For
our problem, choosing a random order does not immediately
lead to a good algorithm because the algorithm has to decide
on the price and minimum-purchase requirement for each
deal.
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Figure 1: Auction-Adjusted Greedy (AAG)

Input: Stream of impressions Z and a set of buyers S.
Output: Sequence of Deals D.

IE (S| = {i})
Return (p; = Ez[vi], pi = 1).

For each buyer j € S, choose 6; such that:
PI“[’U]‘ Z HJ} =Pr [’UZ‘ == ’U(l)(Sﬂ .

Choose buyer
i € arg max{Ez[v;|v; > 0;1/Ezfv) (S\ {j}lv; = 051} (3)

wi < Prz [Ui > (91-].

pi < Ez[vi|vi > 6].

D« (pi, i, L) + AAG(Z\ {vi > 6;}, S\ {i}).
Return D

may lose revenue. We approximate the “opportunity cost”
of allocating impressions to v; with the expected highest
valuation of the other buyers, Ez[v)(S \ {i})]. In other
words, we use the expected value of the highest v; as the
proxy for w(Z, S).

The algorithm chooses buyer 7 with the highest “bang for
the buck.” Buyer i maximizes the ratio of the expected rev-
enue from the impressions allocated to the buyer divided by
the opportunity cost.

We show that the algorithm obtains a constant fraction
of the optimal revenue. We use E[max;{v;}], which is the
trivial upper bound on the revenue as the benchmark.

THEOREM 2. The expected per impression revenue of the
sequence of deals found by the Auction-Adjusted Greedy algo-
rithm is at least equal to +E[max;{v;}]. For the independent
valuation (n: = 0, 7), the algorithm obtains at least half
of the optimal sol@n, 1E[max;{vi}].

In Appendix B, we prove the theorem above using induc-
tion. By Eq. (2), the algorithm obtains at least the same
revenue as the benchmark from the chosen buyer. We then
bound the revenue of the benchmark from the impressions
allocated to the chosen buyer.

For independent valuations, we show that there always
exists a buyer such that for him the proxy opportunity cost,
Elvay(S\{j})|v; > 6;] = E[v1)(S\{7})], is less than or equal
to the revenue that can be obtained from that buyer via a
deal, E[vj|v; > 6;]. Because the algorithm chooses a buyer 4
that maximizes the ratio of the revenue to cost, for chosen
buyer ¢ we have Ez[v(1)(S\ {i})] < Ez[vi|vi > 6;]. Similarly,
for correlated valuations, we show that there exists a buyer
such that E[v1)(S\ {7Dlv; > 0,] < 2 E[o,o; > 6], To do
so, we map the set of impressions for which buyer j has the
highest valuations to the set of impressions where v; > 6;.
For the independent valuations, the expected valuations of
the highest bid among other bidders, E[v)(S \ {j})], are
the same for both sets. For the correlated valuations, the
expected value is higher for the impressions in the second set



(i.e., Blogy (S\ {7 DIy > vy (S\ D] < Bl (S\ {5} oy >
0;] because the valuations are positively correlated), hence
the difference in the approximation ratio.

In the next section, we show that on real-data the algo-
rithm may obtain higher revenue than the worst-case bounds
provided by the theorem.

S. EMPRICAL EVALUATION

We evaluate our algorithm by simulating it over logs of
auction data. The data was collected from Google’s Dou-
bleclick ad exchange platform. On the day of data collection,
we found the top 4 ad units that generated the highest rev-
enue. For each of those ad units, we focus on the top 10
advertisers with the highest total bid (summed over all the
impressions on that day). We then create a dataset for each
ad unit by sampling 0.1% of the auctions that day and col-
lecting the bids of the 10 chosen advertisers; if an advertiser
does not participate in an auction, we let his bid be equal to
0. The number of impressions (auctions) in our four datasets
ranges from 200, 000 to 2 million. Unfortunately, due to the
propridtary nature of our data, we are not able to provide
statistical information about the bids.

The Auction-Adjusted Greedy algorithm is defined in Fig-
ure 1 using the distribution of the valuations. In simulations,
we use the actual realizations instead of a distribution. More
specifically, we assume that the bids are equal to the valu-
ations because bidding truthfully is a dominant strategy in
second-price auctions.” Given a subset of impressions Z, we
use the fraction of auctions where j has the highest bid as
Prz[v; = v). Similarly, for Ez[v;|v; > 6;], we use the av-
erage of v; calculated over the impressions in Z where the
bid of advertiser j is larger than or equal to 6;.

We compare the auction-adjusted greedy algorithm with
four other mechanisms. The first algorithm is the second-
price auction with no reserve price. We then optimize the
reserve price which will remain constant across the auctions.
Namely, we discretize the space of bids and numerically find
the revenue-maximizing reserve. We also look at the second-
price auction with personal reserve prices where the reserves
for buyers may differ and the impression is allocated to the
highest bidder whose bid is above his personal reserve. We
calculate the optimal reserve for each buyer individually by
finding the optimal posted-price for the buyer in the absence
of other bidders.

In addition, we consider a Maz-Margin Greedy Algorithm.
This algorithm at each step chooses the buyer with the high-
est margin, the revenue from the buyer minus the proxy
opportunity cost; namely,

j - angmax {max {Prles > 6] x Elo; Ly (5 1oy > 01}}.

The results are presented in Table 1 as the percentage of
the benchmark. Recall that the benchmark is the first best
solution, the sum of the highest valuation for each impres-
sion which is equal to the welfare obtained by the second-
price auction with no reserve. Surprisingly, our algorithm
obtains about 90% of the optimal revenue. Recall that there
is significant potential for loss of welfare (and revenue) for
preferred—deals because of the imposed ordering. An im-
pressionriay be allocated to a buyer with a lower valuation

"See [15] for a discussion on the pros and cons of this as-
sumption.
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because that buyer had higher priority. However, our study
suggests that the adverse impact of cherry picking might be
limited.

Our algorithm outperforms the other greedy algorithm.
As suggested by theory, both preferred deal mechanisms ob-
tain significantly higher revenue than the second-price auc-
tions.

Among the reserve price mechanisms, the one with per-
sonal reserve yields the highest revenue, but at the cost of
reducing the iency (due to high reserve prices). Note
that the auction-adjusted algorithm obtains a higher welfare
than this auction in 3 out 4 of the datasets. As discussed
in Section 2.2, even if the seller shares the surplus equally
with the buyer, by reducing the price of the deal, the corre-
sponding deal obtains more revenue, and almost-equal if not
higher welfare, than the auction with large reserve prices.

6. CONCLUSION

One of our main goals in this work is to understand the
power and limitations of preferred deals. Our numerical re-
sults are quite promising and suggest that there is signifi-
cant potential to increase the revenue of the publishers using
the preferred deals, if the minimum purchase requirements
are determined appropriately. Our algorithm can serve as
a baseline that identifies potential profitable deals and their
parameters.

We considered only the strict priority rule in this paper.
Another possibility is that two or more buyers can be as-
signed to the same priority level with a tie-breaking rule
when more than one buyers are willing to purchase the im-
pression. One way to break ties is that those buyers bid for
the impression. For instance, this corresponds to a second-
price auction with personal reserve if no minimum purchase
is specified and all the buyers have the same priority. Other
solutions could be random allocation or assigning am|ij-
pression to the contractthat[is behind in its fulfiliment.
Other directions for future Tesearch include analyzing set-
tings where buyers are budget-constrained (cf. [23, 9]) or
arrive over time (cf. [2, 16, 6]).

We believe that further research in this area can shape the
future of the display advertising market by determining how
the deals and contracts will be implemented in practice.

APPENDIX
A. PROOF OF THEOREM 1

Consider an instance of the maximum acyclic subgraph
problem, given by directed graph G(V, E) with n vertices
and m edges. Given an instance of the maximum acyclic
subgraph problem, we construct the following instance of
the preferred deal optimization problem.

The instance has n buyers, each corresponding to a node,
and m-+nd “types” of items where d is equal to the maximum
degree in the graph plus one. For each edge e = (i,5) €
E(G), we add a type e where the valuation of buyer ¢ for an
item of type e is equal to 3, and the valuation of buyer j for
an item of type e is equal to 2. Other buyers’ valuations for
type e items are set equal to 0. Finally, we add d “exclusive”
types of items for each buyer ¢ with value 1. Now let the
number of items be equal to T = T(nJ—I— m) where 7 is the
scaling parameter. The items are drawn uniformly from the



Mechanisms Dataset 1 Dataset 2 Dataset 3 Dataset 4
Proferred Deals Auction-Adjusted Greedy 87% 88% 94% 87%
Max-Margin Greedy 82% 70% 94% 86%
No Reserve 28% 100% | 33% 100% | 18% 100% | 21% 100%
2nd-Price Auction | Optimal Reserve 33% 8% | 37% 99% | 44% 80% | 25%  95%
Personal Reserve 41%  83% | 42% 90% | 49% 88% | 52%  T9%

Table 1: Respectively revenue and welfare as the fraction of the benchmark.

is equal to welfare.

types, i.e., an item belongs to each type with probability
equal to 1/(nd +m).

To convey some intuition, we start with the following
lemma.

LEMMA 1. For any solution with value k to an instance
of the mazimum acyclic subgraph problem, there exists a so-
lution with the expected revenue of 7((2m + k) 4+ nd) to the
corresponding instance of the deal optimization problem.

PrOOF. We construct the following sequence of deals.
The priorities are the same as the ordering of the nodes.
Each Plyer ¢ is offered a deal such that they purchase all
“available” items, including the d exclusive items. In other
words, the threshold 6 for all buyers will be equal to 1;
see (1). From each item that corresponds to a forward edge
(edge in the acyclic subgraph), the revenue is equal to 3
because the buyer with the higher valuation comes first in
the ordering and has a higher priority. Therefore, we obtain
revenue 3 from each forward edge and revenue 2 from back-
ward edges, which adds up to (3k+2(m—k))7 = (k+2m).
The expected revenue from exclusive items is equal to Tnd,
which completes the proof. O

We now prove the other direction, starting with the fol-
lowing lemma.

LEMMA 2. For the problem instance defined above, in the
(optimal) solution of (1), the thresholds (0;s) are equal to 1
and all the exclusive items are allocated to the buyers.

PrOOF. We prove the claim via contradiction. We show
that the revenue of any solution can be increased by allocat-
ing to each buyer all her exclusive items. Consider buyer 1.
It is easy to see that in an optimal solution all the “available”
items with valuation 3 should be allocated to buyer i. We
now consider the following two cases:

e If some (more than 0), but not all, exclusive items
are allocated to buyer i, then we can simply increase
the revenue by allocating all the exclusive items and
setting p equal to the expected value of the items al-
located to her.

e Suppose no exclusive items are allocated to buyer i.
This means that p > 1. Suppose we reduce p to 1.
Note that we may lose some revenue from those items
that buyer i values at 2, but there are other buyers
who value them at 3. The expected total loss from
those items is at most equal to 7d; where d; denotes
the degree of note 3. Because d > d;, the revenue will
be increased.

0
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For the preferred deals, revenue

We are now ready to prove the theorem.

LEMMA 3. If there exists a sequence of preferred deals
with the expected revenue of 7((2m + k) + nd) for the prob-
lem instance described abope, then, there exists an ordering
with k forward edges for the-corresponding mazximum acyclic
subgraph problem.

PrOOF. By Lemma 2, if there exists a sequence of pre-
ferred deals of total revenue 7((2m + k) + nd) for the prob-
lem instance described above, then there exists a sequence
of deals of at least the same revenue such that each buyer
purchases all the items available to her. Note that if a buyer
purchases any exclusive items, she will also purchase all the
available items with value 2 or 3. The total revenue from
the exclusive items is equal to T(ncz) plus 3 from the for-
ward edges and 2 from the backward edges. Therefore, the
expected revenue 7((2m + k) + nd) implies that there are k
types of value 3 in the solution that correspond to k forward
edges for the solution to the acyclic subgraph problem with
the same ordering as the Iﬂeals. |

B. PROOF OF THEOREM 2

We prove Theorem 2 via induction on the number of the
buyers. For |S| = 1, the claim trivially follows using dgal
(p = Efv],up = 1). We now consider |S| > 2. We drop the
dependence on S when it is clear from the context. Let ¢
be the first buyer chosen by the algorithm; see Eq. (3). We
start with providing an upper bound on the benchmark.

E [va) (9)]
= Efva) vy = vi)] +E [va) Lva) # vi,vi > 6:)]
+E [va) (v # vi,vi < 0;)]
E [v) L(va)y =vi)] + B [vy (S\ {i}) 1(vi > 6;)]
+E [va)(S\ {i}) 1(vi < 6:)]
Prlv; > 6] (E[vilvi > 6] +E [v(l)(Sm {i})|vi > 6i])
+Prlvi < 6i] E [v(1)(S\ {i})|vi < 6] (4)

The last inequality follows from Eq. (2). The algorithm
obtains expected per-impression revenue of

PI‘[’UZ‘ Z GZ}E [v¢|v¢ Z 01] .

IN

IN

Therefore, to prove the theorem, using the induction hypoth-
esis, it suffices to show that E [vi|vi > 6;] > E [v(1)(S \ {i})]
for independent valuations and

for correlated valuations. We prove these inequalities re-
spectively in Lemmas 6 and 7.



Recall that for any buyer j, we have v; = n + v; where
1 is the common value component and v; is distributed in-
dependently among the buyers. Let f" and f; respectively
denote the p.d.f. of distributions of n and v;.

Using the fact that v; is distributed independently of v;,
we prove the following lemma.

LEMMA 4. For any buyer j, we have
Elv; — vy (S\ {i})lv; > 0;]

Pr[v; > 6,] Elvj|v; > 6] — Pr[v; > 6,]E {

()

a,
kg\ﬁ}{yk}}

PRrROOF. For any buyer j, we have
i —vay(S\{7hv; = 6;]

17252 (1040 2 0) Bl — 0 (8 \ GDls = n-+0])
x f1(n) f; (v)dndv
X f1(n) f7 (v)dndv

fnj fl'] ( (n+v >4, (V—E[maxkes\{j}{uk}})>

x f1(n) fi (v)dndv
Pr{v; > 6;] Elv;|v; > 0]

—Prlv; > 6;]E [maxge s (5 {vx}]

E[v

O

Recall that v(1) is the random variable corresponding to
the highest valuation. We now define random variable ¥ as
follows. Let vy = 1 + v¢ be the highest valuation. For all
k # £, re-sample vy, and let D, denote the new realization.
Let ¥ = n + maxpx¢{Ur}. We observe that E[v)] > E[7].
The reason is that © represents the highest expected value
among a smaller number of buyers. Using this observation,
we obtain the following result.

LEMMA 5. We have

E[U(l)] —En] > ZPT [vj = 1)(1)] E {IE;Z;({V’“}}
j=1
We are now ready to prove the induction step.

LEMMA 6. Let i be the chosﬁz buyer. For independent
valuations, we have E[vi|v; > 6;] > E [v1) (S \ {i})] .

PROOF. Summing up Eq. (5), we have

ZE i — vy (S\{3H)v; > 0]

> ;Prmzm (Blusles 2 01~ 8 [maxto] ) )
- jf;Pr[vj—vm] (Eloses 2 0 - & [maxton] ) )
> jilpr[vj—vm] (Blustos = veu) — & [maxe | o)
S T

> 0
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Eq. (7) follows from definition of §; and (8) follows from (2).
We obtain the last inequality using Lemma 5. Note that be-
cause the sum f|E [v; — v(1) (S \ {j})|v; > 6;] is non-negative,
there exists buyer k for whom E [vx — v(1)(S \ {k})|vk > 0i] >
0. For that buyer E [vk|vx > 0k]/E [va)(S\ {k})] > 1. By
definition, (3), for buyer ¢ we have

E [1}7;|1}¢ Z 91}/E [1}(1)(5 \ {’L})] Z 1
]

LEMMA 7. For correlated valuations (i.e., n > 0),
have 2 E[’U7;|’U¢ Z 91} 2 E [v(l)(S \ {Z})|1}1 Z 91] .

PROOF. Similar to the previous lemma, summing up Eq. (5),
we have

ZE [vilv; > 6] —I—ZE

we

i — vy (S\ {7 })[v; > 0]

> Bl + ZE [v; — vy (S\ {5 }Hv; > 6;] 9)
= Efva)] (10)

+3 Pl 20 (Bl 2 0 B[ max 0] )
> iﬂﬁﬂ} st >0+ g 200 b

Using (2) and (5) respectively, we obtain (9) and (10). In-
equality (11) follows from Lemma 5, and the last inequality
holds simply because all the terms are non-negative. Note
that because the sum of E [2v; — v(1y(S\ {j})|v; > ;] is
non-negative, there exists buyer k£ for whom

E [2vx — vy (S\ {k})|vk > 0i] > 0.
For that buyer, Wff:lhave
2E [vk|vk > 0k] > E [va)(S\ {k})|vk > 6] .
By definition, (3), for buyer ¢ we have
2E [vilvi > 6] > E [va)(S\ {i})|vi > 6:].

|
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