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Abstract

Minimizing empirical risk subject to a set of constraints can be a useful strategy for learning re-
stricted classes of functions, such as monotonic functions, submodular functions, classifiers that
guarantee a certain class label for some subset of examples, etc. However, these restrictions may
result in a very large number of constraints. Projected stochastic gradient descent (SGD) is often
the default choice for large-scale optimization in machine learning, but requires a projection after
each update. For heavily-constrained objectives, we propose an efficient extension of SGD that
stays close to the feasible region while only applying constraints probabilistically at each iteration.
Theoretical analysis shows a compelling trade-off between per-iteration work and the number of
iterations needed on problems with a large number of constraints.

1. Introduction

Many machine learning problems can benefit from the addition of constraints. For example, one
can learn monotonic functions by adding appropriate constraints to ensure or encourage positive
derivatives everywhere (e.g. Archer and Wang, 1993; Sill, 1998; Spouge et al., 2003; Daniels and
Velikova, 2010; Gupta et al., 2016). Submodular functions can often be learned from noisy examples
by imposing constraints to ensure submodularity holds. Another example occurs when one wishes to
guarantee that a classifier will correctly label certain “canonical” examples, which can be enforced
by constraining the function values on those examples. See Qu and Hu (2011) for some other
examples of constraints useful in machine learning.

However, these practical uses of constraints in machine learning are impractical in that the number
of constraints may be very large, and scale poorly with the number of features d or number of
training samples n. In this paper we propose a new strategy for tackling such heavily-constrained
problems, with guarantees and compelling convergence rates for large-scale convex problems.

A standard approach for large-scale empirical risk minimization is projected stochastic gradient
descent (e.g. Zinkevich, 2003; Nemirovski et al., 2009). Each SGD iteration is computationally
cheap, and the algorithm converges quickly to a solution good enough for machine learning needs.
However, this algorithm requires a projection onto the feasible region after each stochastic gradient
step, which can be prohibitively slow if there are many non-trivial constraints, and is not easy to
parallelize. Recently, Frank-Wolfe-style algorithms (e.g. Hazan and Kale, 2012; Jaggi, 2013) have
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been proposed that remove the projection, but require a constrained linear optimization at each
iteration.

We propose a new strategy for large-scale constrained optimization that, like Mahdavi et al. (2012),
moves the constraints into the objective and finds an approximate solution of the resulting uncon-
strained problem, projecting the (potentially-infeasible) result onto the constraints only once, at the
end. Their work focused on handling only one constraint, but as they noted, multiple constraints
g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0 can be reduced to one constraint by replacing the m con-
straints with their maximum: maxi gi(x) ≤ 0. However, this still requires that all m constraints be
checked at every iteration. In this paper, we focus on the computational complexity as a function of
the number of constraints m, and show that it is possible to achieve good convergence rates without
checking constraints so often.

The key challenge to handling a large number of constraints is determining which constraints are
active at the optimum of the constrained problem, which is likely to be only a small fraction of
the total constraint set. For example, for linear inequality constraints on a d-dimensional problem,
no more than d of the constraints will be active at the optimum, and furthermore, once the active
constraints are known, the problem reduces to solving the unconstrained problem that results from
projecting onto them, which is typically vastly easier.

To identify and focus on the important constraints, we propose learning a probability distribution
over the m constraints that concentrates on the most-violated, and sampling constraints from this
evolving distribution at each iteration. We call this approach LightTouch because at each itera-
tion only a few constraints are checked, and the solution is only nudged toward the feasible set.
LightTouch is suitable for convex problems, but we also propose a variant, MidTouch, that enjoys
a superior convergence rate on strongly convex problems. These two algorithms are introduced and
analyzed in Section 3.

Our proposed strategy removes the per-iteration m-dependence on the number of constraint evalu-
ations. LightTouch and MidTouch do need more iterations to converge, but each iteration is faster,
resulting in a net performance improvement. To be precise, we show that the total number of con-
straint checks required to achieve ε-suboptimality when optimizing a non-strongly convex objective
decreases from O(m/ε2) to Õ((lnm)/ε2 +m(lnm)3/2/ε3/2)—notice that the m-dependence of the
dominant (in ε) term has decreased from m to lnm. For a λ-strongly convex objective, the domi-
nant (again in ε) term in our bound on the number of constraint checks decreases fromO(m/λ2ε) to
Õ((lnm)/λ2ε), but like the non-strongly convex result this bound contains lower-order terms with
worse m-dependencies. A more careful comparison of the performance of our algorithms can be
found in Section 4.

While they check fewer than m constraints per iteration, these algorithms do need to pay a O(m)
per-iteration arithmetic cost. When each constraint is expensive to check, this cost can be neglected.
However, when the constraints are simple to check (e.g. box constraints, or the lattice monotonic-
ity constraints considered in our experiments), it can be partially addressed by transforming the
problem into an equivalent one with fewer more costly constraints. This, as well as other practical
considerations, are discussed in Section 5.

Experiments on a large-scale real-world heavily-constrained ranking problem show that our pro-
posed approach works well in practice. This problem was too large for a projected SGD implemen-
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Table 1: Key notation.
Symbol Description Definition
W Bounded, closed and convex domain W ⊆ Rd

∆m m-dimensional simplex ∆m = {p ∈ Rm | pi ≥ 0 ∧
∑m
i=1 pi = 1}

d Dimension ofW
m Number of constraints
f Unconstrained objective function f :W → R
gi Convex constraint functions gi :W → R
g Combined constraint function g(w) = maxi gi(w)
Πw Projection ontoW Πw(w) = argmin{w′∈W} ‖w − w′‖2
Πp Projection onto ∆m Πp(p) = p/ ‖p‖1
Πg Projection onto constraints Πg(w) = argmin{w′∈W:g(w′)≤0} ‖w − w′‖2
ρ Boundary gradient magnitude If g(w) = 0, then ρ ≤

∥∥∇̌∥∥
2

for all ∇̌ ∈ ∂g(w)
γ Constraint scaling factor γ > Lf/ρ
h Objective function h(w) = f(w) + γmax(0, g(w))

h̃ Relaxed objective function h̃(w, p) = f(w) + γ
∑m
i=1 pi max(0, gi(w))

Lf Lipschitz constant of f Lf ‖w − w′‖2 ≥ |f(w)− f(w′)|
Lg Lipschitz constant of the gis Lg ‖w − w′‖2 ≥ |gi(w)− gi(w′)|
Dw Bound (≥ 1) on diameter ofW Dw ≥ supw,w′∈W max{1, ‖w − w′‖2}
Gf Bound on stochastic subgradients of f Gf ≥

∥∥∆̌(t)
∥∥
2

Gg Bound on stochastic subgradients of gis Gg ≥
∥∥∇̌max(0, gi(w))

∥∥
2

∆̌ Stochastic subgradient of f
∆̌w Stochastic subgradient of h̃ w.r.t. w
∆̂p Stochastic supergradient of h̃ w.r.t. p
µ Remembered gradient coordinates (Johnson and Zhang, 2013)
k Minibatch size in LightTouch’s p-update
w̄ Average iterate w̄ = (

∑T
t=1 w

(t))/T

tation using an off-the-shelf quadratic programming solver to perform projections, but was amenable
to an approach based on a fast approximate projection routine tailored to this particular constraint
set. Measured in terms of runtime, however, LightTouch was still significantly faster. Each con-
straint in this problem is trivial, requiring only a single comparison operation to check, so the afore-
mentioned O(m) arithmetic cost of LightTouch is a significant issue. Despite this, LightTouch was
roughly as fast as the Mahdavi et al. (2012)-like algorithm FullTouch. In light of other experiments
showing that LightTouch checks dramatically fewer constraints in total than FullTouch, we believe
that LightTouch is well-suited to machine learning problems with many nontrivial constraints.

2. Heavily Constrained SGD

Consider the constrained optimization problem:

min
w∈W

f (w) (1)

s.t. gi (w) ≤ 0 ∀i ∈ {1, . . . ,m} ,

where W ⊆ Rd is bounded, closed and convex, and f : W → R and all gi : W → R are convex
(our notation is summarized in Table 1). We assume thatW is a simple object, e.g. an `2 ball, onto
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Algorithm 1 (FullTouch) Minimizes f on W subject to the single constraint g(w) ≤ 0. For
problems with m constraints gi(w) ≤ 0, let g(w) = maxi gi(w), in which case differentiating
max{0, g(w)} (line 4) requires evaluating all m constraints. This algorithm—our starting point—is
similar to those proposed by Mahdavi et al. (2012), and like their algorithms only contains a single
projection, at the end, projecting the potentially-infeasible result vector w̄.

Hyperparameters: T , η
1 Initialize w(1) ∈ W arbitrarily
2 For t = 1 to T :
3 Sample ∆̌(t) // stochastic subgradient of f(w(t))

4 Let ∆̌
(t)
w = ∆̌(t) + γ∇̌max{0, g(w(t))}

5 Update w(t+1) = Πw(w(t) − η∆̌
(t)
w ) // Πw projects its argument ontoW w.r.t. ‖·‖2

6 Average w̄ = (
∑T
t=1 w

(t))/T
7 Return Πg(w̄) // optional if small constraint violations are acceptable

which it is inexpensive to project, and that the “trickier” aspects of the domain are specified via
the constraints gi(w) ≤ 0. Notice that we consider constraints written in terms of arbitrary convex
functions, and are not restricted to e.g. only linear or quadratic constraints.

2.1. FullTouch: A Relaxation with a Feasible Minimizer

We build on the approach of Mahdavi et al. (2012) to relax Equation 1. Defining g(w) = maxi gi(w)
and introducing a Lagrange multiplier α yields the equivalent optimization problem:

max
α≥0

min
w∈W

f (w) + αg (w) . (2)

Directly optimizing over w and α is problematic because the optimal value for α is infinite for
any w that violates a constraint. Instead, we follow Mahdavi et al. (2012, Section 4.2) in relaxing
the problem by adding an upper bound of γ on α, and using the fact that max0≤α≤γ αg(w) =
γmax(0, g(w)).

In the following lemma, we show that, with the proper choice of γ, any minimizer of this relaxed
objective is a feasible solution of Equation 1, indicating that using stochastic gradient descent (SGD)
to minimize the relaxation (h(w) in the lemma below) will be effective.

Lemma 1 Suppose that f isLf -Lipschitz, i.e. |f(w)− f(w′)| ≤ Lf ‖w − w′‖2 for allw,w′ ∈ W ,
and that there is a constant ρ > 0 such that if g(w) = 0 then

∥∥∇̌∥∥
2
≥ ρ for all ∇̌ ∈ ∂g(w), where

∂g(w) is the subdifferential of g(w).

For a parameter γ > 0, define:

h (w) = f (w) + γmax {0, g (w)} .

If γ > Lf/ρ, then for any infeasible w (i.e. for which g(w) > 0):

h (w) > h (Πg (w)) = f (Πg (w)) and ‖w −Πg (w)‖2 ≤
h (w)− h (Πg (w))

γρ− Lf
,

where Πg (w) is the projection of w onto the set {w ∈ W : g(w) ≤ 0} w.r.t. the Euclidean norm.
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Proof In Appendix C.

The strategy of applying SGD to h(w), detailed in Algorithm 1, which we call FullTouch, has the
same “flavor” as the algorithms proposed by Mahdavi et al. (2012), and we use it as a baseline
comparison point for our other algorithms.

Application of a standard SGD bound to FullTouch shows that it converges at a rate with no ex-
plicit dependence on the number of constraints m, measured in terms of the number of iterations
required to achieve some desired suboptimality (see Appendix C.1), although the γ parameter can
introduce an implicit d or m-dependence, depending on the constraints (discussed in Section 2.2).
The main drawback of FullTouch is that each iteration is expensive, requiring the evaluation of all
m constraints, since differentiation of g requires first identifying the most-violated. This is the key
issue we tackle with the LightTouch algorithm proposed in Section 3.

2.2. Constraint-Dependence of γ

The conditions on Lemma 1 were stated in terms of g, instead of the individual gis, because it is
difficult to provide suitable conditions on the “component” constraints without accounting for their
interactions.

For a point w where two or more constraints intersect, the subdifferential of g(w) consists of all
convex combinations of subgradients of the intersecting constraints, with the consequence that even
if each of the subgradients of the gi(w)s has norm at least ρ′, subgradients of g(w) will generally
have norms smaller than ρ′. Exactly how much smaller depends on the particular constraints under
consideration. We illustrate this phenomenon with the following examples, but note that, in practice,
γ should be chosen experimentally for any particular problem, so the question of the d and m-
dependence of γ is mostly of theoretical interest.

Box Constraints Consider the m = 2d box constraints gi(w) = −wi − 1 and gi+d(w) = wi − 1,
all of which have gradients of norm 1. At most d constraints can intersect (at a corner of the [−1, 1]d

box), all of which are mutually orthogonal, so the norm of any convex combination of their gradients
is lower bounded by that of their average, ρ = 1/

√
d. Hence, one should choose γ >

√
dLf .

As in the above example, γ ∝
√

min(m, d) will suffice when the subgradients of intersecting
constraints are at least orthogonal, and γ can be smaller if they always have positive inner products.
However, if subgradients of intersecting constraints tend to point in opposing directions, then γ may
need to be much larger, as in our next example:

Ordering Constraints Suppose the m = d − 1 constraints order the components of w as w1 ≤
w2 ≤ · · · ≤ wd, for which gi(w) = (wi − wi+1)/

√
2, gradients of which again have norm 1. All

of these constraints may be active simultaneously, in which case there is widespread cancellation in
the average gradient (e1 − ed)/(m

√
2), where ei is the ith standard unit basis vector. The norm of

this average gradient is ρ = 1/m, so we should choose γ > (d− 1)Lf .
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In light of this example, one begins to wonder if a suitable γ will necessarily exist—fortunately,
the convexity of g enables us to prove a trivial bound as long as g(v) is strictly negative for some
v ∈ W:

Lemma 2 Suppose that there exists a v ∈ W for which g(v) < 0, and let Dw ≥
supw,w′∈W ‖w − w′‖2 bound the diameter of W . Then ρ = −g(v)/Dw satisfies the condi-
tions of Lemma 1.

Proof Let w ∈ W be a point for which g(w) = 0, and ∇̌ ∈ ∂g(w) an arbitrary subgradient. By
convexity, g(v) ≥ g(w) +

〈
v − w, ∇̌

〉
. The Cauchy-Schwarz inequality then gives that:

g(v) ≥ −‖v − w‖2
∥∥∇̌∥∥

2
,

from which the claim follows immediately.

Linear Constraints Consider the constraints Aw � b, with each row of A having unit norm,
bmin = mini bi > 0, and W being the `2 ball of radius r. It follows from Lemma 2 that γ >
(2r/bmin)Lf suffices. Notice that the earlier box constraint example satisfies these assumptions
(with bmin = 1 and r =

√
d).

As the above examples illustrate, subgradients of g will be large at the boundary if subgradients of
the gis are large, and the constraints intersect at sufficiently shallow angles that, representing bound-
ary subgradients of g as convex combinations of subgradients of the gis, the components reinforce
each other, or at least do not cancel too much. This requirement is related to the linear regularity
assumption introduced by Bauschke (1996), and considered recently by Wang et al. (2015).

3. A Light Touch

This section presents the main contribution of this paper: an algorithm that stochastically samples
a small subset of the m constraints at each SGD iteration, updates the parameters based on the
subgradients of the sampled constraints, and carefully learns the distribution over the constraints to
produce a net performance gain.

We first motivate the approach by considering an oracle, then explain the algorithm and present
convergence results for the convex (Section 3.2) and strongly convex (Section 3.3) cases.

3.1. Wanted: An Oracle For the Most Violated Constraint

Because FullTouch only needs to differentiate the most violated constraint at each iteration, it fol-
lows that if one had access to an oracle that identified the most-violated constraint, then the overall
convergence rate (including the cost of each iteration) could only depend on m through γ. This
motivates us to learn to predict the most-violated constraint, ideally at a significantly better than
linear-in-m rate.
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Algorithm 2 (LightTouch) Minimizes f on W subject to the constraints gi(w) ≤ 0 for i ∈
{1, . . . ,m}. The algorithm learns an auxiliary probability distribution p (lines 9–13) estimating
how likely it is that each constraint is the most-violated. We assume that k ≤ m: if k > m, then the
user is willing to check m constraints per iteration anyway, so FullTouch is the better choice. Like
FullTouch, this algorithm finds a potentially-infeasible solution w̄ which is only projected onto the
feasible region at the end. Notice that while the p-update checks only k constraints, it does require
O(m) arithmetic operations. This issue is discussed further in Section 5.1.

Hyperparameters: T , η, k
1 Initialize w(1) ∈ W arbitrarily
2 Initialize p(1) ∈ ∆m to the uniform distribution
3 Initialize µ(1)

j = max{0, gj(w(1))} // 0 if w(1) is feasible
4 For t = 1 to T :
5 Sample ∆̌(t) // stochastic subgradient of f(w(t))
6 Sample i(t) ∼ p(t)

7 Let ∆̌
(t)
w = ∆̌(t) + γ∇̌max{0, gi(t)(w(t))}

8 Update w(t+1) = Πw(w(t) − η∆̌
(t)
w ) // Πw projects its argument ontoW w.r.t. ‖·‖2

9 Sample S(t) ⊆ {1, . . . ,m} with
∣∣S(t)

∣∣ = k uniformly without replacement
10 Let ∆̂

(t)
p = γµ(t) + (γm/k)

∑
j∈S(t) ej(max{0, gj(w(t))} − µ(t)

j )

11 Let µ(t+1)
j = max{0, gj(w(t))} if j ∈ S(t), otherwise µ(t+1)

j = µ
(t)
j

12 Update p̃(t+1) = exp(ln p(t) + η∆̂
(t)
p ) // element-wise exp and ln

13 Project p(t+1) = p̃(t+1)/
∥∥p̃(t+1)

∥∥
1

14 Average w̄ = (
∑T
t=1 w

(t))/T
15 Return Πg(w̄) // optional if small constraint violations are acceptable

To this end, we further relax the problem of minimizing h(w) (defined in Lemma 1) by replacing
γmax(0, g(w)) with maximization over a probability distribution (as in Clarkson et al. (2010)),
yielding the equivalent convex-linear optimization problem:

max
p∈∆m

min
w∈W

h̃ (w, p) (3)

where h̃ (w, p) = f (w) + γ
m∑
i=1

pi max {0, gi (w)} .

Here, ∆m is the m-dimensional simplex. We propose optimizing over w and p jointly, thereby
learning the most-violated constraint, represented by the multinoulli distribution p over constraint
indices, at the same time as we optimize over w.

3.2. LightTouch: Stochastic Constraint Handling

To optimize Equation 3, our proposed algorithm (Algorithm 2, LightTouch) iteratively samples
stochastic gradients ∆̌

(t)
w w.r.t. w and ∆̂

(t)
p w.r.t. p of h̃(w, p), and then takes an SGD step on w and

a multiplicative step on p:

w(t+1) = Πw

(
w(t) − η∆̌(t)

w

)
and p(t+1) = Πp

(
exp

(
ln p(t) + η∆̂(t)

p

))
,
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where the exp and ln of the p-update are performed element-wise, Πw projects onto W w.r.t. the
Euclidean norm, and Πp onto ∆m via normalization (i.e. dividing its parameter by its sum).

The key to getting a good convergence rate for this algorithm is to choose ∆̌w and ∆̂p such that they
are both inexpensive to compute, and tend to have small norms. For ∆̌w, this can be accomplished
straightforwardly, by sampling a constraint index i according to p, and taking:

∆̌w = ∆̌ + γ∇̌max {0, gi (w)} ,

where ∆̌ is a stochastic subgradient of f and ∇̌max(0, gi(w)) is a subgradient of max(0, gi(w)).
Calculating each such ∆̌w requires differentiating only one constraint, and it is easy to verify that
∆̌w is a subgradient of h̃ w.r.t. w in expectation over ∆̌ and i. Taking Gf to be a bound on the
norm of ∆̌ and Gg on the norms of subgradients of the gis shows that ∆̌w’s norm is bounded by
Gf + γGg.

For ∆̂p, some care must be taken. Simply sampling a constraint index j uniformly and defining:

∆̂p = γmej max {0, gj (w)} ,

where ej is the jth m-dimensional standard unit basis vector, does produce a ∆̂p that in expec-
tation is the gradient of h̃ w.r.t. p, but it has a norm bound proportional to m. Such potentially
large stochastic gradients would result in the number of iterations required to achieve some target
suboptimality being proportional to m2 in our final bound.

A typical approach to reducing the variance (and hence the expected magnitude) of ∆̂p is mini-
batching: instead of sampling a single constraint index j at every iteration, we could instead sample
a subset S of size |S| = k without replacement, and use:

∆̂p =
γm

k

∑
j∈S

ej max {0, gj (w)} .

This is effective, but not enough, because reducing the variance by a factor of k via minibatching
requires that we check k times more constraints. For this reason, in addition to minibatching, we
center the stochastic gradients, as is done by the well-known SVRG algorithm (Johnson and Zhang,
2013), by storing a gradient estimate γµ with µ ∈ Rm, at each iteration sampling a set S of size
|S| = k uniformly without replacement, and computing:

∆̂p = γµ+
γm

k

∑
j∈S

ej (max {0, gj(w)} − µj) . (4)

We then update the jth coordinate of µ to be µj = max {0, gj(w)} for every j ∈ S. The norms
of the resulting stochastic gradients will be small if γµ is a good estimate of the gradient, i.e.
µj ≈ max(0, gj(w)).

The difference between µj and max(0, gj(w)) can be bounded in terms of how many consecutive
iterations may have elapsed since µj was last updated. It turns out (see Lemma 14 in Appendix C.2)
that this quantity can be bounded uniformly by O((m/k) ln(mT )) with high probability, which
implies that if the gis are Lg-Lipschitz, then |gj(w)− µj | ≤ Lgη(Gf + γGg)O((m/k) ln(mT )),
since at most O((m/k) ln(mT )) updates of magnitude η(Gf + γGg) may have occurred since µj
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was last updated. Choosing η ∝ 1/
√
T , as is standard, moves this portion (the “variance portion”)

of the ∆̂p-dependence out of the dominant O(1/
√
T ) term and into a subordinate term in our final

bound.

The remainder of the ∆̂p-dependence (the “mean portion”) depends on the norm of E[∆̂p] =
γ
∑

j ej max(0, gj(w)). It is here that our use of multiplicative p-updates becomes significant, be-
cause with such updates the relevant norm is the `∞ norm, instead of e.g. the `2 norm (as would be
the case if we updated p using SGD), thus we can bound

∥∥∥E[∆̂p]
∥∥∥
∞

with no explicitm-dependence.

The following theorem on the convergence rate of LightTouch is proved by applying a mirror de-
scent bound for saddle point problems while bounding the stochastic gradient norms as described
above.

Theorem 3 Suppose that the conditions of Lemma 1 apply, with g(w) = maxi(gi(w)). Define
Dw ≥ max{1, ‖w − w′‖2} as a bound on the diameter of W (notice that we also choose Dw to
be at least 1), Gf ≥

∥∥∆̌(t)
∥∥

2
and Gg ≥

∥∥∇̌max(0, gi(w))
∥∥

2
as uniform upper bounds on the

(stochastic) gradient magnitudes of f and the gis, respectively, for all i ∈ {1, . . . ,m} and w,w′ ∈
W . We also assume that all gis are Lg-Lipschitz w.r.t. ‖·‖2, i.e. |gi(w)− gi(w′)| ≤ Lg ‖w − w′‖2.
Our result will be expressed in terms of a total iteration count Tε satisfying:

Tε = O

(
(lnm)D2

w (Gf + γGg + γLgDw)2 ln 1
δ

ε2

)
.

Define:

k =


m (1 + lnm)

3/4
√

1 + ln 1
δ

√
1 + lnTε

T
1/4
ε

 .
If k ≤ m, then we optimize Equation 1 using Tε iterations of Algorithm 2 (LightTouch), basing the
stochastic gradients w.r.t. p on k constraints at each iteration, and using the step size:

η =

√
1 + lnmDw

(Gf + γGg + γLgDw)
√
Tε
.

If k > m, then LightTouch would check more thanm constraints per iteration anyway, so we instead
use Tε iterations of Algorithm 1 (FullTouch) with the step size:

η =
Dw

(Gf + γGg)
√
Tε
.

In either case, we perform Tε iterations, requiring a total of Cε “constraint checks” (evaluations
or differentiations of a single gi):

Cε =Õ

(
(lnm)D2

w (Gf + γGg + γLgDw)2 ln 1
δ

ε2

+
m (lnm)

3/2D
3/2
w (Gf + γGg + γLgDw)

3/2 (ln 1
δ

)5/4
ε3/2

)
.

9



COTTER GUPTA PFEIFER

and with probability 1− δ:

f (Πg (w̄))− f (w∗) ≤ h (w̄)− h (w∗) ≤ ε and ‖w̄ −Πg (w̄)‖2 ≤
ε

γρ− Lf
,

where w∗ ∈ {w ∈ W : ∀i.gi(w) ≤ 0} is an arbitrary constraint-satisfying reference vector.

Proof In Appendix C.2.

The most important thing to notice about this theorem is that the dominant terms in the bounds on
the number of iterations and number of constraint checks are roughly γ2 lnm times the usual 1/ε2

convergence rate for SGD on a non-strongly convex objective. The lower-order terms have a worse
m-dependence, however, with the result that, as the desired suboptimality ε shrinks, the algorithm
performs fewer constraint checks per iteration until ultimately (once ε is on the order of 1/m2) only
a constant number are checked during each iteration.

3.3. MidTouch: Strong Convexity

To this point, we have only required that the objective function f be convex. However, roughly
the same approach also works when f is taken to be λ-strongly convex, although we have only
succeeded in proving an in-expectation result, and the algorithm, Algorithm 3 (MidTouch), differs
from LightTouch not only in that the w updates use a 1/λt step size, but also in being a two-phase
algorithm, the first of which, like FullTouch, checks every constraint at each iteration, and the
second of which, like LightTouch with k = 1, checks only two. The following theorem bounds the
convergence rate if we perform T1 ≈ mτ2 iterations in the first phase and T2 ≈ τ3 in the second,
where the parameter τ determines the total number of iterations performed:

Theorem 4 Suppose that the conditions of Lemma 1 apply, with g(w) = maxi(gi(w)). Define
Gf ≥

∥∥∆̌(t)
∥∥

2
and Gg ≥

∥∥∇̌max(0, gi(w))
∥∥

2
as uniform upper bounds on the (stochastic) gradi-

ent magnitudes of f and the gis, respectively, for all i ∈ {1, . . . ,m}. We also assume that f is λ-
strongly convex, and that all gis are Lg-Lipschitz w.r.t. ‖·‖2, i.e. |gi(w)− gi(w′)| ≤ Lg ‖w − w′‖2
for all w,w′ ∈ W . If we run Algorithm 3 (MidTouch) with the p-update step size η = λ/2γ2L2

g for
Tε1 iterations in the first phase and Tε2 in the second:

Tε1 =Õ

(
m (lnm)

2/3 (Gf + γGg + γLg)
4/3

λ4/3ε2/3
+
m2 (lnm) (Gf + γGg)

λ
√
ε

)
,

Tε2 =Õ

(
(lnm) (Gf + γGg + γLg)

2

λ2ε
+
m3/2 (lnm)

3/2 (Gf + γGg)
3/2

λ3/2ε3/4

)
,

requiring a total of Cε “constraint checks” (evaluations or differentiations of a single gi):

Cε =Õ

(
(lnm) (Gf + γGg + γLg)

2

λ2ε
+
m3/2 (lnm)

3/2 (Gf + γGg)
3/2

λ3/2ε3/4

+
m2 (lnm)

2/3 (Gf + γGg + γLg)
4/3

λ4/3ε2/3
+
m3 (lnm) (Gf + γGg)

λ
√
ε

)
,

10



LIGHTTOUCH

Algorithm 3 (MidTouch) Minimizes a λ-strongly convex f on W subject to the constraints
gi(w) ≤ 0 for i ∈ {1, . . . ,m}. The algorithm consists of two phases: the first T1 iterations
proceed like FullTouch, with every constraint being checked; the final T2 iterations proceed like
LightTouch, with only a constant number of constraints being checked during each iteration, and
an auxiliary probability distribution p being learned along the way. Notice that while second-phase
p-update checks only one constraint, it, like LightTouch, requires O(m) arithmetic operations. This
issue is discussed further in Section 5.1.

Hyperparameters: T1, T2, η
1 // First phase
2 Initialize w(1) ∈ W arbitrarily
3 For t = 1 to T1:
4 Sample ∆̌(t) // stochastic subgradient of f(w(t))

5 Let ∆̌
(t)
w = ∆̌(t) + γ∇̌max{0, g(w(t))}

6 Update w(t+1) = Πw(w(t) − (1/λt)∆̌
(t)
w ) // Πw projects its argument ontoW w.r.t. ‖·‖2

7 // Second phase
8 Average w(T1+1) = (

∑T1

t=1 w
(t))/T1 // initialize second phase to result of first

9 Initialize p(T1+1) ∈ ∆m to the uniform distribution
10 Initialize µ(T1+1)

j = max{0, gj(w(T1+1))}
11 For t = T1 + 1 to T1 + T2:
12 Sample ∆̌(t)

13 Sample i(t) ∼ p(t)

14 Let ∆̌
(t)
w = ∆̌(t) + γ∇̌max{0, gi(t)(w(t))}

15 Update w(t+1) = Πw(w(t) − (1/λt)∆̌
(t)
w )

16 Sample j(t) ∼ Unif{1, . . . ,m}
17 Let ∆̂

(t)
p = γµ(t) + γmej(t)(max{0, gj(t)(w(t))} − µ(t)

j(t)
)

18 Let µ(t+1)
k = µ

(t)
k if k 6= j(t), otherwise µ(t+1)

j(t)
= max{0, gj(t)(w(t))}

19 Update p̃(t+1) = exp(ln p(t) + η∆̂
(t)
p ) // element-wise exp and ln

20 Project p(t+1) = p̃(t+1)/
∥∥p̃(t+1)

∥∥
1

21 Average w̄ = (
∑T1+T2

t=T1+1 w
(t))/T2

22 Return Πg(w̄) // optional if small constraint violations are acceptable

then:
E
[
‖Πg(w̄)− w∗‖22

]
≤ E

[
‖w̄ − w∗‖22

]
≤ ε,

where w∗ = argmin{w∈W:∀i.gi(w)≤0} f(w) is the optimal constraint-satisfying reference vector.

Proof In Appendix D.

Notice that the above theorem bounds not the suboptimality of Πg(w̄), but rather its squared Eu-
clidean distance from w∗, for which reason the denominator of the highest order term depends on
λ2 rather than λ. Like Theorem 3 in the non-strongly convex case, the dominant terms above, both
in terms of the total number of iterations and number of constraint checks, match the usual 1/ε
convergence rate for unconstrained strongly-convex SGD with an additional γ2 lnm factor, while
the lower-order terms have a worse m-dependence. As before, fewer constraint checks will be per-
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Table 2: Comparison of the number of iterations, and number of constraint checks, required to
achieve ε-suboptimality with high probability when optimizing a non-strongly-convex ob-
jective, up to constant and logarithmic factors, dropping the Lg, Gf and Gg dependencies,
and ignoring the one-time cost of projecting the final result in FullTouch and LightTouch.
For LLO-FW, the parameter to the local linear oracle has magnitude O(

√
dν). See Sec-

tion 4, Appendix C, the non-smooth stochastic result of Hazan and Kale (2012, Theorem
4.3), and Garber and Hazan (2013, Theorem 2). Notice that because this table compares
upper bounds to upper bounds, subsequent work may improve these bounds further.

#Iterations to achieve #Constraint checks to achieve

ε-suboptimality ε-suboptimality

FullTouch γ2D2
w

ε2
mγ2D2

w

ε2

LightTouch (lnm)γ2D4
w

ε2
(lnm)γ2D4

w

ε2 +
m(lnm)

3/2γ
3/2D3

w

ε3/2

Projected SGD D2
w

ε2 N/A (projection)

Online Frank-Wolfe D3
w

ε3 N/A (linear optimization)

LLO-FW dν2D2
w

ε2 N/A (local linear oracle)

formed per iteration as ε shrinks, reaching a constant number (on average) once ε is on the order of
1/m6.

4. Theoretical Comparison

Table 2 compares upper bounds on the convergence rates and per-iteration costs when applied to a
convex (but not necessarily strongly convex) problem for LightTouch, FullTouch, projected SGD,
the online Frank-Wolfe algorithm of Hazan and Kale (2012), and a Frank-Wolfe-like online algo-
rithm for optimization over a polytope (Garber and Hazan, 2013). The latter algorithm, which we
refer to as LLO-FW, achieves convergence rates comparable to projected SGD, but uses a local
linear oracle instead of a projection or full linear optimization. To simplify the presentation, the
dependencies on Lg, Gf and Gg have been dropped—please refer to Theorems 3 and 4 and the
cited references for the complete statements. Table 3 contains the same comparison (without online
Frank-Wolfe) for λ-strongly convex problems.

At each iteration, all of these algorithms must find a stochastic subgradient of f . In addition,
each iteration of LightTouch and MidTouch must perform O(m) arithmetic operations (for the
m-dimensional vector operations used when updating p)—this issue will be discussed further in
Section 5.1. However, projected SGD must project its iterate onto the constraints w.r.t. the Eu-
clidean norm, online Frank-Wolfe must perform a linear optimization subject to the constraints, and
LLO-FW must evaluate a local linear oracle, which amounts to essentially local linear optimization.

LightTouch, MidTouch and FullTouch share the same γ-dependence, but the m-dependence of the
convergence rate of LightTouch and MidTouch is logarithmically worse. The number of con-
straint evaluations, however, is better: in the non-strongly convex case, ignoring all but the m
and ε dependencies, FullTouch will check O(m/ε2) constraints, while LightTouch will check only

12
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Table 3: Same as Table 2, except that the results bound the number of iterations or constraint
checks required to achieve E[‖w − w∗‖22] ≤ ε, and the objective function is assumed to
be λ-strongly convex. The bound given for FullTouch assumes that the constant η used
in Algorithm 1 has been replaced with the standard decreasing 1/λt step size used in
strongly-convex SGD. The MidTouch bounds each contain four terms, listed in order of
most-to-least dominant (in ε). For LLO-FW, the parameter to the local linear oracle has
magnitude O(

√
dν). See Section 4, Appendix D, and Garber and Hazan (2013, Theorem

3).
#Iterations to achieve ε-suboptimality

FullTouch γ2D2
w

λ2ε

MidTouch (lnm)γ2D2
w

λ2ε +
m

3/2(lnm)
3/2γ

3/2D
3/2
w

λ3/2ε3/4
+

m(lnm)
2/3γ

4/3D
4/3
w

λ4/3ε2/3
+ m2(lnm)γDw

λ
√
ε

Projected SGD D2
w

λ2ε

LLO-FW dν2D2
w

λ2ε

#Constraint checks to achieve ε-suboptimality

FullTouch mγ2D2
w

λ2ε

MidTouch (lnm)γ2D2
w

λ2ε +
m

3/2(lnm)
3/2γ

3/2D
3/2
w

λ3/2ε3/4
+

m2(lnm)
2/3γ

4/3D
4/3
w

λ4/3ε2/3
+ m3(lnm)γDw

λ
√
ε

Projected SGD N/A (projection)

LLO-FW N/A (local linear oracle)

Õ((lnm)/ε2 + m/ε3/2), a significant improvement when ε is small. Hence, particularly for prob-
lems with many expensive-to-evaluate constraints, one would expect LightTouch to converge much
more rapidly. Likewise, for λ-strongly convex optimization, the dominant (in ε) terms in the bounds
on the number of constraint evaluations go as m/ε for FullTouch, and as (lnm)/ε for MidTouch,
although the lower-order terms in the MidTouch bound are significantly more complex than in the
non-strongly convex case (see Table 3 for full details).

Comparing with projected SGD, online Frank-Wolfe and LLO-FW is less straightforward, not only
because we’re comparing upper bounds to upper bounds (with all of the uncertainty that this entails),
but also because we must relate the value of γ to the cost of performing the required projection,
constrained linear optimization or local linear oracle evaluation. We note, however, that for non-
strongly convex optimization, the ε-dependence of the convergence rate bound is worse for online
Frank-Wolfe (1/ε3) than for the other algorithms (1/ε2), and that unless the constraints have some
special structure, performing a projection can be a very expensive operation.

For example, with general linear inequality constraints, each constraint check performed by
LightTouch, MidTouch or FullTouch requires O(d) time, whereas each linear program optimized
by online Frank-Wolfe could be solved in O(d2m) time (Nemirovski, 2004, Chapter 10.1), and
each projection performed by SGD in O((dm)3/2) time (Goldfarb and Liu, 1991). When the
constraints are taken to be arbitrary convex functions, instead of linear functions, projections may
be even more difficult.
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Algorithm 4 (Practical LightTouch) Our proposed “practical” algorithm combining LightTouch
and MidTouch, along with the changes discussed in Section 5.

Hyperparameters: T , ηw, ηp
1 Initialize w(1) ∈ W arbitrarily
2 Initialize p(1) ∈ ∆m to the uniform distribution
3 Initialize µ(1)

j = max{0, gj(w(1))} // 0 if w(1) is feasible
4 For t = 1 to T :
5 Let η(t)w = ηw/t if f is strongly convex, ηw/

√
t otherwise

6 Set k(t)f , k(t)g and k(t)p as described in Section 5.2
7 Sample ∆̌

(t)
1 , . . . , ∆̌

(t)

k
(t)
f

i.i.d. // stochastic subgradients of f(w(t))

8 Sample i(t)1 , . . . , i
(t)

k
(t)
g

∼ p(t) i.i.d.

9 Let ∆̌
(t)
w = (1/k

(t)
f )
∑k

(t)
f

j=1 ∆̌
(t)
j + (γ/k

(t)
g )
∑k(t)g

j=1 ∇̌max{0, g
i
(t)
j

(w(t))}

10 Update w(t+1) = Πw(w(t) − η(t)w ∆̌
(t)
w ) // Πw projects its argument ontoW w.r.t. ‖·‖2

11 Sample S(t) ⊆ {1, . . . ,m} with
∣∣S(t)

∣∣ = k
(t)
p uniformly without replacement

12 Let ∆̂
(t)
p = γµ(t) + (γm/k

(t)
p )
∑
j∈S(t) ej(max{0, gj(w(t))} − µ(t)

j )

13 Let µ(t+1)
j = max{0, gj(w(t))} if j ∈ S(t), otherwise µ(t+1)

j = µ
(t)
j

14 Update p̃(t+1) = exp(ln p(t) + ηp∆̂
(t)
p ) // element-wise exp and ln

15 Project p(t+1) = p̃(t+1)/
∥∥p̃(t+1)

∥∥
1

16 Average w̄ = (
∑T
t=1 w

(t))/T
17 Return Πg(w̄) // optional if small constraint violations are acceptable

We believe that in many cases γ2 will be roughly on the order of the dimension d, or number of
constraints m, whichever is smaller, although it can be worse for difficult constraint sets (see Sec-
tion 2.2). In practice, we have found that a surprisingly small γ—we use γ = 1 in our experiments
(Section 6)—often suffices to result in convergence to a feasible solution. With this in mind, and in
light of the fact that a fast projection, linear optimization, or local linear oracle evaluation may only
be possible for particular constraint sets, we believe that our algorithms compare favorably with the
alternatives.

5. Practical Considerations

Algorithms 2 and 3 were designed primarily to be easy to analyze, but in real world-applications
we recommend making a few tweaks to improve performance. The first of these is trivial: using a
decreasing w-update step size η(t)

w = ηw/
√
t when optimizing a non-strongly convex objective, and

η
(t)
w = ηw/t for a strongly-convex objective. In both cases we continue to use a constant p-update

step size ηp. This change, as well as that described in Section 5.2, is included in Algorithm 4.

5.1. Constraint Aggregation

A natural concern about Algorithms 2 and 3 is that O(m) arithmetic operations are performed per
iteration, even when only a few constraints are checked. When each constraint is expensive, this is
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a minor issue, since this cost will be “drowned out” by that of checking the constraints. However,
when the constraints are very cheap, and the O(m) arithmetic cost compares disfavorably with the
cost of checking a handful of constraints, it can become a bottleneck.

Our solution to this issue is simple: transform a problem with a large number of cheap con-
straints into one with a smaller number of more expensive constraints. To this end, we parti-
tion the constraint indices 1, . . . ,m into m̃ sets {Mi} of size at most dm/m̃e, defining g̃i(w) =
maxj∈Mi gj(w), and then apply LightTouch or MidTouch on the m̃ aggregated constraints g̃i(w) ≤
0. This makes each constraint check dm/m̃e times more expensive, but reduces the dimension of p
from m to m̃, shrinking the per-iteration arithmetic cost to O(m̃).

5.2. Automatic Minibatching

Because LightTouch takes a minibatch size k as a parameter, and the constants from which we
derive the recommended choice of k (Theorem 3) are often unknown, a user is in the uncomfortable
position of having to perform a parameter search not only over the step sizes ηw and ηp, but also the
minibatch size. Furthermore, the fact that the theoretically-recommended k is a decreasing function
of T indicates that it might be better to check more constraints in early iterations, and fewer in later
ones. Likewise, MidTouch is structured as a two-phase algorithm, in which every iteration checks
every constraint in the first phase, and only a constant number in the second, but it seems more
sensible for the number of constraint checks to decrease gradually over time.

In addition, for both algorithms, it would be desirable to support separate minibatching of the loss
and constraint stochastic subgradients (w.r.t. w), in which case there would be three minibatching
parameters to determine: kf , kg and kp. This makes things even harder for the user, since now there
are three additional parameters that must be specified.

To remove the need to specify any minibatch-size hyperparameters, and to enable the minibatch
sizes to change from iteration-to-iteration, we propose a heuristic that will automatically determine
the minibatch sizes k(t)

f , k(t)
g and k(t)

p for each of the stochastic gradient components at each itera-
tion. Intuitively, we want to choose minibatch sizes in such a way that the stochastic gradients are
both cheap to compute and have low variance. Our proposed heuristic does this by trading-off the
computational cost and “bound impact” of the overall stochastic gradient, where the “bound impact”
is a variance-like quantity that approximates the impact that taking a step with particular minibatch
sizes has on the relevant convergence rate bound.

Suppose that we’re about to perform the tth iteration, and know that a single stochastic subgradient
∆̌ of f(w) (corresponding to the loss portion of ∆̌w) has variance (more properly, covariance matrix
trace) v̄(t)

f and requires a computational investment of c̄(t)
f units. Similarly, if we define ∆̌g by

sampling i ∼ p and taking ∆̌g = γ∇̌max{0, gi(w)} (corresponding to the constraint portion of
∆̌w), then we can define variance and cost estimates of ∆̌g to be v̄(t)

g and c̄(t)
g , respectively. Likewise,

we take v̄(t)
p and c̄(t)

p to be estimates of the variance and cost of a (non-minibatched version of) ∆̂p.

In all three cases, the variance and cost estimates are those of a single sample, implying that a
stochastic subgradient of f(w) averaged over a minibatch of size k(t)

f will have variance v̄(t)
f /k

(t)
f

and require a computational investment of c̄(t)
f k

(t)
f , and likewise for the constraints and distribution.
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In the context of Algorithm 4, with minibatch sizes of k(t)
f , k(t)

g and k(t)
p , we define the overall bound

impact b and computational cost c of a single update as:

b =
η

(t)
w v̄

(t)
f

k
(t)
f

+
η

(t)
w v̄

(t)
g

k
(t)
g

+
ηpv̄

(t)
p

k
(t)
p

and c = c̄
(t)
f k

(t)
f + c̄(t)

g k
(t)
g + c̄(t)

p k
(t)
p .

We should emphasize that the above definition of b is merely a useful approximation of how these
quantities truly affect our bounds.

Given the three variance and three cost estimates, we choose minibatch sizes in such a way as to
minimize both the computational cost and bound impact of an update. Imagine that we are given
a fixed computational budget c. Then our goal will be to choose the minibatch sizes in such a way
that b is minimized for this budget, a problem that is easily solved in closed form:

[
k

(t)
f , k(t)

g , k(t)
p

]
∝


√√√√η

(t)
w v̄

(t)
f

c̄
(t)
f

,

√√√√η
(t)
w v̄

(t)
g

c̄
(t)
g

,

√√√√ηpv̄
(t)
p

c̄
(t)
p

 .
We propose choosing the proportionality constant (and thereby the cost budget c) in such a way that
k

(t)
f = 2 (enabling us to calculate sample variances, as explained below), and round the two other

sizes to the nearest integers, lower-bounding each so that k(t)
g ≥ 2 and k(t)

p ≥ 1.

While the variances and costs are not truly known during optimization, they are easy to estimate
from known quantities. For the costs c̄(t)

f , c̄(t)
g and c̄(t)

p , we simply time how long each past stochastic
gradient calculation has taken, and then average them to estimate the future costs. For the variances
v̄

(t)
f and v̄(t)

g , we restrict ourselves to minibatch sizes k(t)
f , k

(t)
g ≥ 2, calculate the sample variances

v
(t)
f and v(t)

g of the stochastic gradients at each iteration, and then average over all past iterations
(either uniformly, or a weighted average placing more weight on recent iterations).

For v̄(t)
p , the situation is a bit more complicated, since the p-updates are multiplicative (so we should

use an `∞ variance) and centered as in Equation 4. Upper-bounding the `∞ norm with the `2

norm and using the fact that the minibatch S(t) is independently sampled yields the following crude
estimate:

v(t)
p = γ2m2

 1

k
(t)
p

∑
i∈S(t)

(
µi −max

{
0, gi

(
w(t)

)})2

 ,

We again average v(t)
p across past iterations to estimate v̄(t)

p .

6. Experiments

We validated the performance of our practical variant of LightTouch (Algorithm 4) on a YouTube
ranking problem in the style of Joachims (2002), in which the task is to predict what a user will
watch next, given that they have just viewed a certain video. In this setting, a user has just viewed
video a, was presented with a list of candidate videos to watch next, and clicked on b+, with b−
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being the video immediately preceding b+ in the list (if b+ was the first list element, then the
example is thrown out).

We used an anonymized proprietary dataset consisting of n = 612 587 training pairs of feature
vectors (x+, x−), where x+ is a vector of 12 features summarizing the similarity between a and b+,
and x− between a and b−.

We treat this as a standard pairwise ranking problem, for which the goal is to estimate a function
f(Φ(x)) = 〈w,Φ(x)〉 such that f(Φ(x+)) > f(Φ(x−)) for as many examples as possible, subject
to the appropriate regularization (or, in this case, constraints). Specifically, the (unconstrained)
learning task is to minimize the average empirical hinge loss:

min
w∈W

1

n

n∑
i=1

(
max

{
0, 1−

〈
w,Φ

(
x+
i

)
− Φ

(
x−i
)〉})

.

All twelve of the features were designed to provide positive evidence—in other words, if any one
increases (holding the others fixed), then we expect f(Φ(x)) to increase. We have found that using
constraints to enforce this monotonicity property results in a better model in practice.

We define Φ(·) as in lattice regression using simplex interpolation (Garcia et al., 2012; Gupta et al.,
2016), an approach which works well at combining a small number of informative features, and
more importantly (for our purposes) enables one to force the learned function to be monotonic via
linear inequality constraints on the parameters. For the resulting problem, the feature vectors have
dimension d = 212 = 4096, we chose W to be defined by the box constraints −10 ≤ wi ≤ 10
in each of the 4096 dimensions, and the total number of monotonicity-enforcing linear inequality
constraints is m = 24 576.

Every Φ(x) contains only d + 1 = 13 nonzeros and can be computed in O(d ln d) time. Hence,
stochastic gradients of f are inexpensive to compute. Likewise, checking a monotonicity constraint
only requires a single comparison between two parameter values, so although there are a large
number of them, each constraint is very inexpensive to check.

6.1. Implementations

We implemented all algorithms in C++. Before running our main experiments, we performed crude
parameter searches on a power-of-four grid (i.e. . . . , 1/16, 1/4, 1, 4, 16, . . .). For each candidate
value we performed roughly 10 000 iterations, and chose the parameter that appeared to result in the
fastest convergence in terms of the objective function.

LightTouch Our implementation of LightTouch includes all of the suggested changes of Section 5,
including the constraint aggregation approach of Section 5.1, although we used no aggregation until
our timing comparison (Section 6.3). For automatic minibatching, we took weighted averages of
the variance estimates as v̄(t+1) ∝ v(t) +νv̄(t). We found that up-weighting recent estimates (taking
ν < 1) resulted in a noticeable improvement, but that the precise value of ν mattered little (we used
ν = 0.999). Based on the grid search described above, we chose γ = 1, ηw = 16 and ηp = 1/16.
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Figure 1: Comparison of convergence rates of LightTouch, FullTouch and ApproxSGD on the
YouTube ranking problem of Section 6. The two plots show the objective function (av-
erage training hinge loss) f(Πg(w

(t))) as a function of the number of iterations, and as
a function of the total number of times a single constraint function gi was evaluated or
differentiated, respectively.

FullTouch Our FullTouch implementation differs from that in Algorithm 1 only in that we used a
decreasing step size η(t)

w = ηw/
√
t. As with LightTouch, we chose γ = 1 and ηw = 16 based on a

grid search.

ProjectedSGD We implemented Euclidean projections onto lattice monotonicity constraints using
IPOPT (Wächter and Biegler, 2006) to optimize the resulting sparse 4096-dimensional quadratic
program. However, the use of a QP solver for projected SGD—a very heavyweight solution—
resulted in an implementation that was too slow to experiment with, requiring nearly four minutes
per projection (observe that our experiments each ran for millions of iterations).

ApproxSGD This is an approximate projected SGD implementation using the fast approximate
update procedure described in Gupta et al. (2016), which is an active set method that, starting from
the current iterate, moves along the boundary of the feasible region, adding constraints to the active
set as they are encountered, until the desired step is exhausted (this is reminiscent of the local linear
oracles considered by Garber and Hazan (2013)). This approach is particularly well-suited to this
particular constraint set because (1) when checking constraints for possible inclusion in the active
set, it exploits the sparsity of the stochastic gradients to only consider monotonicity constraints
which could possibly be violated, and (2) projecting onto an intersection of active monotonicity
constraints reduces to uniformly averaging every set of parameters that are “linked together” by
active constraints. Like the other algorithms, we used step sizes of η(t)

w = ηw/
√
t and chose ηw = 64

based on the grid search (recall that ηw = 16 was better for the other two algorithms).

In every experiment we repeatedly looped over a random permutation of the training set, and gener-
ated plots by averaging over 5 such runs (with the same 5 random permutations) for each algorithm.
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Figure 2: Comparison constraint-handling of LightTouch and FullTouch on the YouTube rank-
ing problem of Section 6. The two plots show the constraint violation magnitude
max{0, g(w(t))}, and the average number of constraints checked per iteration up to this
point, respectively, both as functions of the number of iterations.

6.2. Constraint-check Comparison

In our first set of experiments, we compared the performance of LightTouch, FullTouch and Approx-
SGD in terms of the number of stochastic subgradients of f drawn, and the number of constraints
checked. Because LightTouch’s automatic minibatching fixes k(t)

f = 2 (with the other two mini-
batch sizes being automatically determined), in these experiments we used minibatch sizes of 2
for FullTouch and ApproxSGD, guaranteeing that all three algorithms observe the same number of
stochastic subgradients of f at each iteration.

The left-hand plot of Figure 1 shows that all three algorithms converge at roughly comparable per-
iteration rates, with ApproxSGD having a slight advantage over FullTouch, which itself converges
a bit more rapidly than LightTouch. The right-hand plot shows a striking difference, however—
LightTouch reaches a near-optimal solution having checked more than 10× fewer constraints than
FullTouch. Notice that we plot the suboptimalities of the projected iterates Πw(w(t)) rather than
of the w(t)s themselves, in order to emulate the final projection (line 7 of Algorithm 1 and 17
of Algorithm 4), and guarantee that we only compare the average losses of feasible intermediate
solutions.

In Figure 2, we explore how well our algorithms enforce feasibility, and how effective automatic
minibatching is at choosing minibatch sizes. The left-hand plot shows that both FullTouch has
converged to a nearly-feasible solution after roughly 10 000 iterations, and LightTouch (unsurpris-
ingly) takes more, perhaps 100 000 or so. In the right-hand plot, we see that, in line with our
expectations (see Section 5.2), LightTouch’s automatic minibatching results in very few constraints
being checked in late iterations.
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6.3. Timing Comparison

Our final experiment compared the wall-clock runtimes of our implementations. Note that, because
each monotonicity constraint can be checked with only a single comparison (compare with e.g.
O(d) arithmetic operations for a dense linear inequality constraint), the O(m) arithmetic cost of
maintaining and updating the probability distribution p over the constraints is significant. Hence, in
terms of the constraint costs, this is nearly a worse-case problem for LightTouch. We experimented
with power-of-4 constraint aggregate sizes (Section 5.1), and found that using m̃ = 96 aggregated
constraints, each of size 256, worked best.

FullTouch, without minibatching, draws a single stochastic subgradient of f and checks every con-
straint at each iteration. However, it would seem to be more efficient to use minibatching to look
at more stochastic subgradients at each iteration, and therefore fewer constraints per stochastic sub-
gradient of f . Hence, for FullTouch, we again searched over power-of-4 minibatch sizes, and found
that 16 worked best.

For ApproxSGD, the situation is less clear-cut. On the one hand, increasing the minibatch size
results in fewer approximate projections being performed per stochastic subgradient of f . On the
other, averaging more stochastic subgradients results in less sparsity, slowing down the approximate
projection. We found that the latter consideration wins out—after searching again over power-of-4
minibatch sizes, we found that a minibatch size of 1 (i.e. no minibatching) worked best.
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Figure 3: Plot of the objective function (average
training hinge loss) f(Πg(w

(t))) as a
function of runtime for our implemen-
tations of LightTouch, FullTouch and
ApproxSGD, on the YouTube ranking
problem of Section 6.

Figure 3 contains the results of these ex-
periments, showing that both FullTouch and
LightTouch converge significantly faster than
ApproxSGD. Interestingly, ApproxSGD is
rather slow in early iterations (clipped off
in plot), but accelerates in later iterations.
We speculate that the reason for this behav-
ior is that, close to convergence, the steps
taken at each iteration are smaller, and there-
fore the active sets constructed during the ap-
proximate projection routine do not grow as
large. FullTouch enjoys a small advantage over
LightTouch until both algorithms are very close
to convergence, but based on the results of Sec-
tion 6.2, we believe that this advantage would
reverse if there were more constraints, or if the
constraints were more expensive to check.

7. Conclusions

We have proposed an efficient strategy for large-scale heavily constrained optimization, building on
the work of Mahdavi et al. (2012), and analyze its performance, demonstrating that, asymptotically,
our approach requires many fewer constraint checks in order to converge.
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We build on these theoretical results to propose a practical variant. The most significant of these
improvements is based on the observation that our algorithm takes steps based on three separate
stochastic gradients, and that trading off the variances of computational costs of these three compo-
nents is beneficial. To this end, we propose a heuristic for dynamically choosing minibatch sizes in
such a way as to encourage faster convergence at a lower computational cost.

Experiments on a real-world 4096-dimensional machine learning problem with 24 576 constraints
and 612 587 training examples—too large for a QP-based implementation of projected SGD—
showed that our proposed method is effective. In particular, we find that, in practice, our technique
checks fewer constraints per iteration than competing algorithms, and, as expected, checks ever
fewer as optimization progresses.
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Table 4: New notation in Appendix A.
Symbol Description Definition
A Convex domain of dual variables
F Filtration ∆̌(t), ∆̌

(t)
w , ∆̂

(t)
α are Ft-measurable

‖·‖, ‖·‖∗ Unspecified norm and its dual
‖·‖w, ‖·‖w∗ Norm onW and its dual
‖·‖α, ‖·‖α∗ Norm on A and its dual
Ψ,Ψ∗ A d.g.f. and its convex conjugate
Ψw,Ψ

∗
w A d.g.f. onW and its convex conjugate

Ψα,Ψ
∗
α A d.g.f. on A and its convex conjugate

∆̌ Stochastic subgradient
∆̌w Primal stochastic subgradient
∆̂α Dual stochastic supergradient
R∗ Bound on w∗-centered radius ofW R∗ ≥ ‖w − w∗‖
Rw∗ Bound on w∗-centered radius ofW Rw∗ ≥ ‖w − w∗‖w
Rα∗ Bound on α∗-centered radius of A Rα∗ ≥ ‖α− α∗‖α
σ Bound on ∆̌ error σ ≥

∥∥E[∆̌(t) | Ft−1]− ∆̌(t)
∥∥
∗

σw Bound on ∆̌w error σw ≥
∥∥∥E[∆̌

(t)
w | Ft−1]− ∆̌

(t)
w

∥∥∥
w∗

σα Bound on ∆̂α error σα ≥
∥∥∥E[∆̂

(t)
α | Ft−1]− ∆̂

(t)
α

∥∥∥
α∗

1− δσ Probability that σ bound holds
1− δσw Probability that σw bound holds
1− δσα Probability that σα bound holds

Appendix A. Mirror Descent

Mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003) is a meta-algorithm for
stochastic optimization (more generally, online regret minimization) which performs gradient up-
dates with respect to a meta-parameter, the distance generating function (d.g.f.). The two most
widely-used d.g.f.s are the squared Euclidean norm and negative Shannon entropy, for which the
resulting MD instantiations are stochastic gradient descent (SGD) and a multiplicative updating al-
gorithm, respectively. These are precisely the two d.g.f.s which our constrained algorithm will use
for the updates of w and p. We’ll here give a number of results which differ only slightly from
“standard” ones, beginning with a statement of an online MD bound adapted from Srebro et al.
(2011):

Theorem 5 Let ‖·‖ and ‖·‖∗ be a norm and its dual. Suppose that the distance generating function
(d.g.f.) Ψ is 1-strongly convex w.r.t. ‖·‖. Let Ψ∗ be the convex conjugate of Ψ, and takeBΨ(w|w′) =
Ψ(w)−Ψ(w′)− 〈∇Ψ(w′), w − w′〉 to be the associated Bregman divergence.

Take ft :W → R to be a sequence of convex functions on which we perform T iterations of mirror
descent starting from w(1) ∈ W:

w̃(t+1) = ∇Ψ∗
(
∇Ψ

(
w(t)

)
− η∇̌ft

(
w(t)

))
,

w(t+1) = argmin
w∈W

BΨ

(
w
∣∣∣ w̃(t+1)

)
,
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where ∇̌ft(w(t)) ∈ ∂ft(w(t)) is a subgradient of ft at w(t). Then:

1

T

T∑
t=1

(
ft

(
w(t)

)
− ft (w∗)

)
≤
BΨ

(
w∗
∣∣ w(1)

)
ηT

+
η

2T

T∑
t=1

∥∥∥∇̌ft (w(t)
)∥∥∥2

∗
,

where w∗ ∈ W is an arbitrary reference vector.

Proof This proof is essentially the same as that of Srebro et al. (2011, Lemma 2). By convexity:

η
(
ft

(
w(t)

)
− ft (w∗)

)
≤
〈
η∇̌ft

(
w(t)

)
, w(t) − w∗

〉
≤
〈
η∇̌ft

(
w(t)

)
, w(t) − w̃(t+1)

〉
+
〈
η∇̌ft

(
w(t)

)
, w̃(t+1) − w∗

〉
.

By Hölder’s inequality, 〈w′, w〉 ≤ ‖w′‖ ‖w‖∗. Also, Ψ(w) = supv(〈v, w〉 −Ψ∗(v)) is maximized
when ∇Ψ∗(v) = w, so ∇Ψ(∇Ψ∗(v)) = v. These results combined with the definition of w̃(t+1)

give:

η
(
ft

(
w(t)

)
− ft (w∗)

)
≤
∥∥∥η∇̌ft (w(t)

)∥∥∥
∗

∥∥∥w(t) − w̃(t+1)
∥∥∥

+
〈
∇Ψ

(
w(t)

)
−∇Ψ

(
w̃(t+1)

)
, w̃(t+1) − w∗

〉
.

Using Young’s inequality and the definition of the Bregman divergence:

η
(
ft

(
w(t)

)
− ft (w∗)

)
≤ 1

2

∥∥∥η∇̌ft (w(t)
)∥∥∥2

∗
+

1

2

∥∥∥w(t) − w̃(t+1)
∥∥∥2

+BΨ

(
w∗
∣∣∣ w(t)

)
−BΨ

(
w∗
∣∣∣ w̃(t+1)

)
−BΨ

(
w̃(t+1)

∣∣∣ w(t)
)
.

Applying the 1-strong convexity of Ψ to cancel the
∥∥w(t) − w̃(t+1)

∥∥2
/2 and BΨ(w̃(t+1) | w(t))

terms:

η
(
ft

(
w(t)

)
− ft (w∗)

)
≤ η2

2

∥∥∥∇̌ft (w(t)
)∥∥∥2

∗
+BΨ

(
w∗
∣∣∣ w(t)

)
−BΨ

(
w∗
∣∣∣ w̃(t+1)

)
.

Summing over t, using the nonnegativity of BΨ, and dividing through by ηT gives the claimed
result.

It is straightforward to transform Theorem 5 into an in-expectation result for stochastic subgradients:

Corollary 6 Take ft : W → R to be a sequence of convex functions, and F a filtration. Sup-
pose that we perform T iterations of stochastic mirror descent starting from w(1) ∈ W , using the
definitions of Theorem 5:

w̃(t+1) = ∇Ψ∗
(
∇Ψ

(
w(t)

)
− η∆̌(t)

)
,

w(t+1) = argmin
w∈W

BΨ

(
w
∣∣∣ w̃(t+1)

)
,
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where ∆̌(t) is a stochastic subgradient of ft, i.e. E[∆̌(t) | Ft−1] ∈ ∂ft(w
(t)), and ∆̌(t) is Ft-

measurable. Then:

1

T

T∑
t=1

E
[
ft

(
w(t)

)
− ft (w∗)

]
≤
BΨ

(
w∗
∣∣ w(1)

)
ηT

+
η

2T

T∑
t=1

E

[∥∥∥∆̌(t)
∥∥∥2

∗

]
,

where w∗ ∈ W is an arbitrary reference vector.

Proof Define f̃t (w) =
〈
∆̌(t), w

〉
, and observe that applying the non-stochastic MD algorithm of

Theorem 5 to the sequence of functions f̃t results in the same sequence of iterates w(t) as does
applying the above stochastic MD update to the sequence of functions ft. Hence:

1

T

T∑
t=1

(
f̃t

(
w(t)

)
− f̃t (w∗)

)
≤
BΨ

(
w∗
∣∣ w(1)

)
ηT

+
η

2T

T∑
t=1

∥∥∥∆̌(t)
∥∥∥2

∗
. (5)

By convexity, ft(w(t)) − ft(w
∗) ≤

〈
E[∆̌(t) | Ft−1], w(t) − w∗

〉
, while f̃t(w

(t)) − f̃t(w
∗) =〈

∆̌(t), w(t) − w∗
〉

by definition. Taking expectations of both sides of Equation 5 and plugging in
these inequalities yields the claimed result.

We next prove a high-probability analogue of the Corollary 6, based on a martingale bound of
Dzhaparidze and van Zanten (2001):

Corollary 7 In addition to the assumptions of Corollary 6, suppose that, with probability 1− δσ, σ
satisfies the following uniformly for all t ∈ {1, . . . , T}:∥∥∥E

[
∆̌(t)

∣∣∣ Ft−1

]
− ∆̌(t)

∥∥∥
∗
≤ σ.

Then, with probability 1− δσ − δ, the above σ bound will hold, and:

1

T

T∑
t=1

(
ft

(
w(t)

)
− ft (w∗)

)
≤
BΨ

(
w∗
∣∣ w(1)

)
ηT

+
η

2T

T∑
t=1

∥∥∥∆̌(t)
∥∥∥2

∗
+

√
2R∗σ

√
ln 1

δ√
T

+
2R∗σ ln 1

δ

3T
,

where w∗ ∈ W is an arbitrary reference vector and R∗ ≥ supw∈W ‖w − w∗‖ bounds the radius of
W centered on w∗.

Proof Define f̃t (w) =
〈
∆̌(t), w

〉
as in the proof of Corollary 6, and observe that Equa-

tion 5 continues to apply. Define a sequence of random variables M0 = 0, Mt =
Mt−1 +

〈
E[∆̌(t) | Ft−1]− ∆̌(t), w(t) − w∗

〉
, and notice that M forms a martingale w.r.t. the

filtration F . From this definition, Hölder’s inequality gives that:

|Mt −Mt−1| ≤
∥∥∥E
[
∆̌(t)

∣∣∣ Ft−1

]
− ∆̌(t)

∥∥∥
∗

∥∥∥w(t) − w∗
∥∥∥ ≤ R∗σ.

the above holding with probability 1− δσ. Plugging a = R∗σ and L = TR2
∗σ

2 into the Bernstein-
type martingale inequality of Dzhaparidze and van Zanten (2001, Theorem 3.3) gives:

Pr

{
1

T
MT ≥ ε

}
≤ δσ + exp

(
− 3Tε2

6R2
∗σ

2 + 2R∗σε

)
.
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Solving for ε using the quadratic formula and upper-bounding gives that, with probability 1−δσ−δ:

1

T

T∑
t=1

〈
E
[
∆̌(t)

∣∣∣ Ft−1

]
− ∆̌(t), w(t) − w∗

〉
≤

√
2R∗σ

√
ln 1

δ√
T

+
2R∗σ ln 1

δ

3T
.

As in the proof of Corollary 6, ft(w(t))− ft(w∗) ≤
〈
E[∆̌(t) | Ft−1], w(t) − w∗

〉
, while f̃t(w(t))−

f̃t(w
∗) =

〈
∆̌(t), w(t) − w∗

〉
by definition, which combined with Equation 5 yields the claimed

result.

Algorithm 2 (LightTouch) jointly optimizes over two sets of parameters, for which the objective is
convex in the first and linear (hence concave) in the second. The convergence rate will be determined
from a saddle-point bound, which we derive from Corollary 7 by following Nemirovski et al. (2009);
Rakhlin and Sridharan (2013), and simply applying it twice:

Corollary 8 Let ‖·‖w and ‖·‖α be norms with duals ‖·‖w∗ and ‖·‖α∗. Suppose that Ψw and Ψα

are 1-strongly convex w.r.t. ‖·‖w and ‖·‖α, have convex conjugates Ψ∗w and Ψ∗α, and associated
Bregman divergences BΨw and BΨα , respectively.

Take f : W × A → R to be convex in its first parameter and concave in its second, let F be a
filtration, and suppose that we perform T iterations of MD:

w̃(t+1) = ∇Ψ∗w

(
∇Ψw

(
w(t)

)
− η∆̌(t)

w

)
,

w(t+1) = argmin
w∈W

BΨw

(
w
∣∣∣ w̃(t+1)

)
,

α̃(t+1) = ∇Ψ∗α

(
∇Ψα

(
α(t)
)

+ η∆̂(t)
α

)
,

α(t+1) = argmin
α∈A

BΨα

(
α
∣∣∣ α̃(t+1)

)
,

where ∆̌
(t)
w is a stochastic subgradient of f(w(t), α(t)) w.r.t. its first parameter, and ∆̂

(t)
α a stochastic

supergradient w.r.t. its second, with both ∆̌
(t)
w and ∆̂

(t)
α being Ft-measurable. We assume that, with

probabilities 1− δσw and 1− δσα (respectively), σ2
w and σ2

α satisfy the following uniformly for all
t ∈ {1, . . . , T}:∥∥∥E

[
∆̌(t)
w

∣∣∣ Ft−1

]
− ∆̌(t)

w

∥∥∥
w∗
≤ σw and

∥∥∥E
[
∆̂(t)
α

∣∣∣ Ft−1

]
− ∆̌(t)

w

∥∥∥
α∗
≤ σα.

Under these conditions, with probability 1−δσw−δσα−2δ, the above σw and σα bounds will hold,
and:

1

T

T∑
t=1

(
f
(
w(t), α∗

)
− f

(
w∗, α(t)

))
≤
BΨw

(
w∗
∣∣ w(1)

)
+BΨα

(
α∗
∣∣ α(1)

)
ηT

+
η

2T

T∑
t=1

(∥∥∥∆̌(t)
w

∥∥∥2

w∗
+
∥∥∥∆̂(t)

α

∥∥∥2

α∗

)

+

√
2 (Rw∗σw +Rα∗σα)

√
ln 1

δ√
T

+
2 (Rw∗σw +Rα∗σα) ln 1

δ

3T
,

where w∗ ∈ W and α∗ ∈ A are arbitrary reference vectors, and Rw∗ ≥ ‖w − w∗‖w and Rα∗ ≥
‖α− α∗‖α bound the radii ofW and A centered on w∗ and α∗, respectively.
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Proof This is a convex-concave saddle-point problem, which we will optimize by playing two con-
vex optimization algorithms against each other, as in Nemirovski et al. (2009); Rakhlin and Sridha-
ran (2013). By Corollary 7, with probability 1− δσw − δ and 1− δσα − δ, respectively:

1

T

T∑
t=1

(
f
(
w(t), α(t)

)
− f

(
w∗, α(t)

))

≤
BΨw

(
w∗
∣∣ w(1)

)
ηT

+
η

2T

T∑
t=1

∥∥∥∆̌(t)
w

∥∥∥2

w∗
+

√
2Rw∗σw

√
ln 1

δ√
T

+
2Rw∗σw ln 1

δ

3T
,

1

T

T∑
t=1

(
f
(
w(t), α∗

)
− f

(
w(t), α(t)

))

≤
BΨα

(
α∗
∣∣ α(1)

)
ηT

+
η

2T

T∑
t=1

∥∥∥∆̂(t)
α

∥∥∥2

α∗
+

√
2Rα∗σα

√
ln 1

δ√
T

+
2Rα∗σα ln 1

δ

3T
.

Adding these two inequalities gives the claimed result.

Appendix B. SGD for Strongly-Convex Functions

For λ-strongly convex objective functions, we can achieve a faster convergence rate for SGD by
using the step sizes ηt = 1/λt. Our eventual algorithm (Algorithm 3) for strongly-convex heavily-
constrained optimization will proceed in two phases, with the second phase “picking up” where the
first phase “left off”, for which reason we present a convergence rate, based on Shalev-Shwartz et al.
(2011, Lemma 2), that effectively starts at iteration T0 by using the step sizes ηt = 1/λ(T0 + t):

Theorem 9 Take ft :W → R to be a sequence of λ-strongly convex functions on which we perform
T iterations of stochastic gradient descent starting from w(1) ∈ W:

w(t+1) = Πw

(
w(t) − ηt∇̌ft

(
w(t)

))
,

where ∇̌ft
(
w(t)

)
∈ ∂ft

(
w(t)

)
is a subgradient of ft at w(t), and

∥∥∇̌ft (w(t)
)∥∥

2
≤ G for all t. If

we choose ηt = 1
λ(T0+t) for some T0 ∈ N, then:

1

T

T∑
t=1

(
ft

(
w(t)

)
− ft (w∗)

)
≤ G2 (1 + lnT )

2λT
+
λT0

2T

∥∥∥w(1) − w∗
∥∥∥2

2
,

where w∗ ∈ W is an arbitrary reference vector and G ≥
∥∥∇̌ft (w(t)

)∥∥
2

bounds the subgradient
norms for all t.
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Proof This is nothing but a small tweak to Shalev-Shwartz et al. (2011, Lemma 2). Starting from
Equations 10 and 11 of that proof:

T∑
t=1

(
ft

(
w(t)

)
− ft (w∗)

)
≤G

2

2

T∑
t=1

ηt +
T∑
t=1

(
1

2ηt
− λ

2

)∥∥∥w(t) − w∗
∥∥∥2

2
−

T∑
t=1

1

2ηt

∥∥∥w(t+1) − w∗
∥∥∥2

2
.

Taking ηt = 1
λ(T0+t) :

T∑
t=1

(
ft

(
w(t)

)
− ft (w∗)

)
≤G

2

2λ

(
1

T0 + 1
+

∫ T0+T

t=T0+1

dt

t

)
+
λT0

2

∥∥∥w(1) − w∗
∥∥∥2

2
− λ (T0 + T )

2

∥∥∥w(T+1) − w∗
∥∥∥2

2
.

Dividing through by T , simplifying and bounding yields the claimed result.

As we did Appendix A, we convert this into a result for stochastic subgradients:

Corollary 10 Take ft :W → R to be a sequence of λ-strongly convex functions, and F a filtration.
Suppose that we perform T iterations of stochastic gradient descent starting from w(1) ∈ W:

w(t+1) = Πw

(
w(t) − ηt∆̌(t)

)
,

where ∆̌(t) is a stochastic subgradient of ft, i.e. E[∆̌(t) | Ft−1] ∈ ∂ft(w
(t)), and ∆̌(t) is Ft-

measurable. If we choose ηt = 1
λ(T0+t) for some T0 ∈ N, then:

1

T

T∑
t=1

E
[
ft

(
w(t)

)
− ft (w∗)

]
≤ G2 (1 + lnT )

2λT
+
λT0

2T

∥∥∥w(1) − w∗
∥∥∥2

2
,

wherew∗ ∈ W is an arbitrary reference vector andG ≥
∥∥∆̌(t)

∥∥
2

bounds the stochastic subgradient
norms for all t.

Proof Same proof technique as Corollary 6, but based on Theorem 9 rather than Theorem 5.

We now use this result to prove an in-expectation saddle point bound:

Corollary 11 Let ‖·‖α and ‖·‖α∗ be a norm and its dual. Suppose that Ψα is 1-strongly convex
w.r.t. ‖·‖α, and has convex conjugate Ψ∗α and associated Bregman divergence BΨα .
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Take f :W×A → R to be λ-strongly convex in its first parameter and concave in its second, let F
be a filtration, and suppose that we perform T iterations of SGD on w and MD on α:

w(t+1) = Πw

(
w(t) − 1

λ (T0 + t)
∆̌(t)
w

)
,

α̃(t+1) = ∇Ψ∗α

(
∇Ψα

(
α(t)
)

+ η∆̂(t)
α

)
,

α(t+1) = argmin
α∈A

BΨα

(
α
∣∣∣ α̃(t+1)

)
,

where ∆̌
(t)
w is a stochastic subgradient of f(w(t), α(t)) w.r.t. its first parameter, and ∆̂

(t)
α a stochastic

supergradient w.r.t. its second, with both ∆̌
(t)
w and ∆̂

(t)
α being Ft-measurable. Then:

1

T

T∑
t=1

E
[
f
(
w(t), α∗

)
− f

(
w∗, α(t)

)]
≤G

2
w (1 + lnT )

2λT
+
λT0

2T

∥∥∥w(1) − w∗
∥∥∥2

2
+
BΨα

(
α∗
∣∣ α(1)

)
ηT

+
η

2T

T∑
t=1

E

[∥∥∥∆̂(t)
α

∥∥∥2

α∗

]
,

where w∗ ∈ W and α∗ ∈ A are arbitrary reference vectors, and Gw ≥
∥∥∥∆̌

(t)
w

∥∥∥
2

bounds the
stochastic subgradient norms w.r.t. w for all t.

Proof As we did in the proof of Corollary 8, we will play two convex optimization algorithms
against each other. By Corollaries 10 and 6:

1

T

T∑
t=1

E
[
f
(
w(t), α(t)

)
− f

(
w∗, α(t)

)]
≤G

2
w (1 + lnT )

2λT
+
λT0

2T

∥∥∥w(1) − w∗
∥∥∥2

2
,

1

T

T∑
t=1

E
[
f
(
w(t), α∗

)
− f

(
w(t), α(t)

)]
≤
BΨα

(
α∗
∣∣ α(1)

)
ηT

+
η

2T

T∑
t=1

E

[∥∥∥∆̂(t)
α

∥∥∥2

α∗

]
,

Adding these two inequalities gives the claimed result.

Appendix C. Analyses of FullTouch and LightTouch

We begin by proving that, if γ is sufficiently large, then optimizing the relaxed objective, and pro-
jecting the resulting solution, will bring us close to the optimum of the constrained objective.

Lemma 1 In the setting of Section 2, suppose that f is Lf -Lipschitz, i.e. |f(w)− f(w′)| ≤
Lf ‖w − w′‖2 for all w,w′ ∈ W , and that there is a constant ρ > 0 such that if g(w) = 0
then

∥∥∇̌∥∥
2
≥ ρ for all ∇̌ ∈ ∂g(w), where ∂g(w) is the subdifferential of g(w).

For a parameter γ > 0, define:

h (w) = f (w) + γmax {0, g (w)} .
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If γ > Lf/ρ, then for any infeasible w (i.e. for which g(w) > 0):

h (w) > h (Πg (w)) = f (Πg (w)) and ‖w −Πg (w)‖2 ≤
h (w)− h (Πg (w))

γρ− Lf
,

where Πg (w) is the projection of w onto the set {w ∈ W : g(w) ≤ 0} w.r.t. the Euclidean norm.

Proof Let w ∈ W be an arbitrary infeasible point. Because f is Lf -Lipschitz:

f (w) ≥ f (Πg (w))− Lf ‖w −Πg (w)‖2 . (6)

Since Πg(w) is the projection of w onto the constraints w.r.t. the Euclidean norm, we must have by
the first order optimality conditions that there exists a ν ≥ 0 such that:

0 ∈ ∂ ‖w −Πg (w)‖22 + ν∂g (Πg (w)) .

This implies that w − Πg(w) is a scalar multiple of some ∇̌ ∈ ∂g(Πg(w)). Because g is convex
and Πg (w) is on the boundary, g(w) ≥ g(Πg(w)) +

〈
∇̌, w −Πg(w)

〉
=
〈
∇̌, w −Πg(w)

〉
, so:

g(w) ≥ ρ ‖w −Πg(w)‖2 . (7)

Combining the definition of h with Equations 6 and 7 yields:

h (w) ≥ f (Πg (w)) + (γρ− Lf ) ‖w −Πg(w)‖2 .

Both claims follow immediately if γρ > Lf .

C.1. Analysis of FullTouch

We’ll now use Lemma 1 and Corollary 7 to bound the convergence rate of SGD on the function h of
Lemma 1 (this is FullTouch). Like the algorithm itself, the convergence rate is little different from
that found by Mahdavi et al. (2012) (aside from the bound on ‖w̄ −Πg(w̄)‖2), and is included here
only for completeness.

Lemma 12 Suppose that the conditions of Lemma 1 apply, with g(w) = maxi(gi(w)). Define
Dw ≥ supw,w′∈W ‖w − w′‖2 as the diameter ofW ,Gf ≥

∥∥∆̌(t)
∥∥

2
andGg ≥

∥∥∇̌max(0, gi(w))
∥∥

2
as uniform upper bounds on the (stochastic) gradient magnitudes of f and the gis, respectively.

If we optimize Equation 1 using Algorithm 1 (FullTouch) with the step size:

η =
Dw

(Gf + γGg)
√
T
,

then with probability 1− δ:

f (Πg (w̄))− f (w∗) ≤ h (w̄)− h (w∗) ≤ UF , and ‖w̄ −Πg (w̄)‖2 ≤
UF

γρ− Lf
,

where w∗ ∈ {w ∈ W : ∀i.gi(w) ≤ 0} is an arbitrary constraint-satisfying reference vector, and:

UF ≤
(

1 + 2
√

2
)
Dw (Gf + γGg)

√
1 + ln

1

δ

√
1

T
+

8DwGf ln 1
δ

3T
.
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Proof We choose Ψ(w) = ‖w‖22 /2, for which the mirror descent update rule is precisely SGD.
Because Ψw is (half of) the squared Euclidean norm, it is trivially 1-strongly convex w.r.t. the
Euclidean norm, so ‖·‖ = ‖·‖∗ = ‖·‖2. Furthermore, BΨ(w∗ | w(1)) ≤ D2

w/2 and R∗ ≤ Dw.

We may upper bound the 2-norm of our stochastic gradients as
∥∥∥∆̌

(t)
w

∥∥∥
2
≤ Gf + γGg. Only the

f -portion of the objective is stochastic, so the error of the ∆̌
(t)
w s can be trivially upper bounded, with

probability 1, with σ = 2Gf . Hence, by Corollary 7 (taking Ft to be e.g. the smallest σ-algebra
making ∆̌(t), . . . , ∆̌(t) measurable), with probability 1− δ:

1

T

T∑
t=1

(
h
(
w(t)

)
− h (w∗)

)
≤ D2

w

2ηT
+
η (Gf + γGg)

2

2
+

2
√

2DwGf

√
ln 1

δ√
T

+
8DwGf ln 1

δ

3T
.

Plugging in the definition of η, moving the average defining w̄ inside h by Jensen’s inequality, sub-
stituting f(w∗) = h(w∗) because w∗ satisfies the constraints, applying Lemma 1 and simplifying
yields the claimed result.

In terms of the number of iterations required to achieve some desired level of suboptimality, this
bound on UF may be expressed as:

Theorem 13 Suppose that the conditions of Lemmas 1 and 12 apply, and that η is as defined in
Lemma 12.

If we optimize Equation 1 using Tε iterations of Algorithm 1 (FullTouch):

Tε = O

(
D2
w (Gf + γGg)

2 ln 1
δ

ε2

)
,

then UF ≤ ε with probability 1 − δ. where w∗ ∈ {w ∈ W : ∀i.gi(w) ≤ 0} is an arbitrary
constraint-satisfying reference vector.

Proof Based on the bound of Lemma 12, define:

x =
√
T ,

c =
8

3
DwGf ln

1

δ
,

b =
(

1 + 2
√

2
)
Dw (Gf + γGg)

√
1 + ln

1

δ
,

a =− ε,

and consider the polynomial 0 = ax2 + bx+ c. Roots of this polynomial are xs for which UF = ε,
while for xs larger than any root we’ll have that UF ≤ ε. Hence, we can bound the T required to en-
sure ε-suboptimality by bounding the roots of this polynomial. By the Fujiwara bound (Wikipedia,
2015):

Tε ≤ max

{
4
(
9 + 4

√
2
)
D2
w (Gf + γGg)

2 (1 + ln 1
δ

)
ε2

,
16DwGf ln 1

δ

3ε

}
, (8)
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Table 5: New notation in Appendix C.2.
Symbol Description Definition
‖·‖w, ‖·‖w∗ Norm onW and its dual ‖·‖w = ‖·‖w∗ = ‖·‖2
‖·‖p, ‖·‖p∗ Norm on ∆m and its dual ‖·‖p = ‖·‖1, ‖·‖p∗ = ‖·‖∞
Ψw,Ψ

∗
w A d.g.f. onW and its convex conjugate Ψw(w) = ‖w‖22 /2

Ψp,Ψ
∗
p A d.g.f. on ∆m and its convex conjugate Ψp(p) =

∑m
i=1 pi ln pi

Rw∗ Bound on w∗-centered radius ofW Rw∗ = Dw ≥ ‖w − w∗‖2
Rp∗ Bound on p∗-centered radius of ∆m Rp∗ = 1 ≥ ‖p− p∗‖1
σw Bound on ∆̌w error σw = Gf + γGg

σp Bound on ∆̂p error σp ≥
∥∥∥E[∆̂

(t)
p | Ft−1]− ∆̂

(t)
p

∥∥∥
∞

1− δσw Probability that σw bound holds 1− δσw = 1
1− δσp Probability that σp bound holds

giving the claimed result.

C.2. Analysis of LightTouch

Because we use the reduced-variance algorithm of Johnson and Zhang (2013), and therefore update
the remembered gradient µ one random coordinate at a time, we must first bound the maximum
number of iterations over which a coordinate can go un-updated:

Lemma 14 Consider a process which maintains a sequence of vectors s(t) ∈ Nm for
t ∈ {1, . . . , T}, where s(1) is initialized to zero and s(t+1) is derived from s(t) by indepen-
dently sampling k = |St| ≤ m random indices St ⊆ {1, . . . ,m} uniformly without replacement,
and then setting s(t+1)

j = t for j ∈ St and s(t+1)
j = s

(t)
j for j /∈ St. Then, with probability 1− δ:

max
t,j

(
t− s(t)

j

)
≤ 1 +

2m

k
ln

(
2mT

δ

)
.

Proof This is closely related to the “coupon collector’s problem” (Wikipedia, 2014). We will begin
by partitioning time into contiguous size-n chunks, with 1, . . . , n forming the first chunk, n +
1, . . . , 2n the second, and so on.

Within each chunk the probability that any particular index was never sampled is ((m − k)/m)n,
so by the union bound the probability that any one of the m indices was never sampled is bounded
by m((m− k)/m)n:

m

(
m− k
m

)n
≤ exp

(
lnm+ n ln

(
m− k
m

))
≤ exp

(
lnm− nk

m

)
.

Define n = d(m/k) ln(2mT/δ)e, so:

m

(
m− k
m

)n
≤ exp

(
lnm− ln

(
2mT

δ

))
≤ δ

2T
.
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This shows that for this choice of n, the probability of there existing an index which is never sampled
in some particular batch is bounded by δ/2T . By the union bound, the probability of any of dT/ne
batches containing an index which is never sampled is bounded by (δ/2T )dT/ne ≤ (δ/2n) +
(δ/2T ) ≤ δ.

If every index is sampled within every batch, then over the first ndT/ne ≥ T steps, the most steps
which could elapse over which a particular index is not sampled is 2n − 2 (if the index is sampled
on the first step of one chunk, and the last step of the next chunk), which implies the claimed result.

We now combine this bound with Corollary 7 and make appropriate choices of the two d.g.f.s to
yield a bound on the LightTouch convergence rate:

Lemma 15 Suppose that the conditions of Lemma 1 apply, with g(w) = maxi(gi(w)). Define
Dw ≥ supw,w′∈W max{1, ‖w − w′‖2} as a bound on the diameter ofW (notice that we also choose
Dw to be at least 1), Gf ≥

∥∥∆̌(t)
∥∥

2
and Gg ≥

∥∥∇̌max(0, gi(w))
∥∥

2
as uniform upper bounds on

the (stochastic) gradient magnitudes of f and the gis, respectively, for all i ∈ {1, . . . ,m}. We
also assume that all gis are Lg-Lipschitz w.r.t. ‖·‖2, i.e. |gi(w)− gi(w′)| ≤ Lg ‖w − w′‖2 for all
w,w′ ∈ W .

Define:

k =


m (1 + lnm)

3/4
√

1 + ln 1
δ

√
1 + lnT

T 1/4

 .
If k ≤ m and we optimize Equation 1 using Algorithm 2 (LightTouch), basing the stochastic gradi-
ents w.r.t. p on k constraints at each iteration, and using the step size:

η =

√
1 + lnmDw

(Gf + γGg + γLgDw)
√
T
,

then it holds with probability 1− δ that:

f (Πg (w̄))− f (w∗) ≤ h (w̄)− h (w∗) ≤ UL, and ‖w̄ −Πg (w̄)‖2 ≤
UL

γρ− Lf
,

where w∗ ∈ {w ∈ W : ∀i.gi(w) ≤ 0} is an arbitrary constraint-satisfying reference vector, and:

UL ≤ 67
√

1 + lnmDw (Gf + γGg + γLgDw)

√
1 + ln

1

δ

√
1

T
.

If k > m, then we should fall-back to using FullTouch, in which case the result of Lemma 12 will
apply.

Proof We choose Ψw(w) = ‖w‖22 /2 and Ψp(p) =
∑m

i=1 pi ln pi to be the squared Euclidean
norm divided by 2 and the negative Shannon entropy, respectively, which yields the updates of
Algorithm 2. We assume that the ∆̌(t)s are random variables on some probability space (depending
on the source of the stochastic gradients of f ), and likewise the its and jts on another, so Ft may be
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taken to be the product of the smallest σ-algebras which make ∆̌(1), . . . , ∆̌(t) and i1, j1, . . . , it, jt
measurable, respectively, with conditional expectations being taken w.r.t. the product measure.
Under the definitions of Corollary 8 (taking α = p), with probability 1− δσw − δσp − 2δ′:

1

T

T∑
t=1

h̃
(
w(t), p∗

)
− 1

T

T∑
t=1

h̃
(
w∗, p(t)

)
≤
BΨw

(
w∗
∣∣ w(1)

)
+BΨp

(
p∗
∣∣ p(1)

)
ηT

+
η

2T

T∑
t=1

(∥∥∥∆̌(t)
w

∥∥∥2

w∗
+
∥∥∥∆̂(t)

p

∥∥∥2

p∗

)

+

√
2 (Rw∗σw +Rp∗σp)

√
ln 1

δ′√
T

+
4 (Rw∗σw +Rp∗σp) ln 1

δ′

3T
.

As in the proof of Lemma 12, Ψw is 1-strongly convex w.r.t. the Euclidean norm, so ‖·‖w = ‖·‖w∗ =
‖·‖2, BΨw(w∗ | w(1)) ≤ D2

w/2 and Rw∗ ≤ Dw. Because Ψp is the negative entropy, which is 1-
strongly convex w.r.t. the 1-norm (this is Pinsker’s inequality), ‖·‖p = ‖·‖1 and ‖·‖p∗ = ‖·‖∞,
implying that Rp∗ = 1. Since p(1) is initialized to the uniform distribution, BΨp(p

∗ | p(1)) =

DKL(p∗ | p(1)) ≤ lnm.

The stochastic gradient definitions of Algorithm 2 give that
∥∥∥∆̌

(t)
w

∥∥∥
w∗
≤ Gf + γGg and σw ≤

2(Gf + γGg) with probability 1 = 1 − δσw by the triangle inequality, and h̃(w∗, p(t)) = f(w∗)
becausew∗ satisfies the constraints. All of these facts together give that, with probability 1−δσp−δ′:

1

T

T∑
t=1

h̃
(
w(t), p∗

)
− f (w∗)

≤D
2
w + 2 lnm

2ηT
+

η

2T

T∑
t=1

(
(Gf + γGg)

2 +
∥∥∥∆̂(t)

p

∥∥∥2

∞

)

+

√
2 (2Dw(Gf + γGg) + σp)

√
ln 1

δ′√
T

+
4 (2Dw (Gf + γGg) + σp) ln 1

δ′

3T
.

We now move the average defining w̄ inside h̃ (which is convex in its first parameter) by Jensen’s
inequality, and use the fact that there exists a p∗ such that h̃(w, p∗) = h(w) to apply Lemma 1:

UL ≤
D2
w + 2 lnm

2ηT
+

η

2T

T∑
t=1

(
(Gf + γGg)

2 +
∥∥∥∆̂(t)

p

∥∥∥2

∞

)
(9)

+

√
2 (2Dw(Gf + γGg) + σp)

√
ln 1

δ′√
T

+
4 (2Dw (Gf + γGg) + σp) ln 1

δ′

3T
.

By the triangle inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2:∥∥∥∆̂(t)
p

∥∥∥2

∞
≤ 2

∥∥∥E
[
∆̂(t)
p

∣∣∣ Ft−1

]∥∥∥2

∞
+ 2

∥∥∥E
[
∆̂(t)
p

∣∣∣ Ft−1

]
− ∆̂(t)

p

∥∥∥2

∞

≤ 2γ2L2
gD

2
w + 2

∥∥∥E
[
∆̂(t)
p

∣∣∣ Ft−1

]
− ∆̂(t)

p

∥∥∥2

∞

≤ 2γ2L2
gD

2
w + 2σ2

p.
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Substituting into Equation 9 and using the fact that a+ b ≤ (
√
a+
√
b)2:

UL ≤
D2
w + 2 lnm

2ηT
+
η

2

(
Gf + γGg +

√
2γLgDw

)2
+ ησ2

p (10)

+

√
2 (2Dw(Gf + γGg) + σp)

√
ln 1

δ′√
T

+
4 (2Dw (Gf + γGg) + σp) ln 1

δ′

3T
.

We will now turn our attention to the problem of bounding σp. Notice that because we sample
i.i.d. jts uniformly at every iteration, they form an instance of the process of Lemma 14 with

µ
(t)
j = max(0, gj(w

(s
(t)
j ))), showing that with probability 1− δσp:

max
t,j

(
t− s(t)

j

)
≤ 1 +

2m

k
ln

(
2mT

δσp

)
. (11)

By the definition of ∆̂
(t)
p (Algorithm 2):∥∥∥E

[
∆̂(t)
p

∣∣∣ Ft−1

]
− ∆̂(t)

p

∥∥∥2

∞

=γ2

∥∥∥∥∥∥
 m∑
j=1

ej max
{

0, gj

(
w(t)

)}
− µ(t)

− m

k

∑
j∈St

(
ej max

{
0, gj

(
w(t)

)}
− ejµ(t)

j

)∥∥∥∥∥∥
2

∞

≤γ2

(
m− k
k

)2

max
j

(
max

{
0, gj

(
w(t)

)}
− µ(t)

j

)2

≤γ2

(
m− k
k

)2

L2
g

∥∥∥∥w(t) − w(s
(t)
j )

∥∥∥∥2

2

≤γ2

(
m− k
k

)2

L2
gη

2 (Gf + γGg)
2
(
t− s(t)

j

)2

≤γ2

(
m− k
k

)2

L2
gη

2 (Gf + γGg)
2

(
1 +

2m

k
ln

(
2mT

δσp

))2

≤6γ2
(m
k

)4
L2
gη

2 (Gf + γGg)
2

(
1 + ln

(
mT

δσp

))2

where in the second step we used the definition of the∞-norm, in the third we used the Lipschitz
continuity of the gis (and hence of their positive parts), in the fourth we bounded the distance
between two iterates with the number of iterations times a bound on the total step size, and in the
fifth we used Equation 11. This shows that we may define:

σp =
√

6γ
(m
k

)2
Lgη (Gf + γGg)

(
1 + ln

(
mT

δσp

))
,

and it will satisfy the conditions of Corollary 8. Notice that, due to the η factor, σp will be decreasing
in T . Substituting the definitions of η and σp into Equation 10, choosing δσp = δ′ = δ/3 and using
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the assumption that Dw ≥ 1 gives that with probability 1− δ:

UL ≤ 2
(

1 +
√

2
)√

1 + ln 3
√

1 + lnmDw (Gf + γGg + γLgDw)

√
1 + ln

1

δ

(
1√
T

)
+

(
2
√

3 +
8

3

)
(1 + ln 3)

3/2
(m
k

)2
(1 + lnm)

3/2Dw (Gf + γGg)

(
1 + ln

1

δ

)3/2(1 + lnT

T

)
+ 2

(
3 + 2

√
2

3

)
(1 + ln 3)2

(m
k

)4
(1 + lnm)

7/2Dw (Gf + γGg)

(
1 + ln

1

δ

)2
(

(1 + lnT )2

T 3/2

)
.

Rounding up the constant terms:

UL ≤ 7
√

1 + lnmDw (Gf + γGg + γLgDw)

√
1 + ln

1

δ

(
1√
T

)
+ 19

(m
k

)2
(1 + lnm)

3/2Dw (Gf + γGg)

(
1 + ln

1

δ

)3/2(1 + lnT

T

)
+ 41

(m
k

)4
(1 + lnm)

7/2Dw (Gf + γGg)

(
1 + ln

1

δ

)2
(

(1 + lnT )2

T 3/2

)
.

Substituting the definition of k, simplifying and bounding yields the claimed result.

In terms of the number of iterations required to achieve some desired level of suboptimality, this
bound on UL and the bound of Lemma 12 on UF may be combined to yield the following:

Theorem 3 Suppose that the conditions of Lemmas 1 and 15 apply. Our result will be expressed
in terms of a total iteration count Tε satisfying:

Tε = O

(
(lnm)D2

w (Gf + γGg + γLgDw)2 ln 1
δ

ε2

)
.

Define k in terms of Tε as in Lemma 15. If k ≤ m, then we optimize Equation 1 using Tε iterations of
Algorithm 2 (LightTouch) with η as in Lemma 15. If k > m, then we use Tε iterations of Algorithm 1
(FullTouch) with η as in Lemma 12. In either case, we perform Tε iterations, requiring a total of
Cε “constraint checks” (evaluations or differentiations of a single gi):

Cε =Õ

(
(lnm)D2

w (Gf + γGg + γLgDw)2 ln 1
δ

ε2

+
m (lnm)

3/2D
3/2
w (Gf + γGg + γLgDw)

3/2 (ln 1
δ

)5/4
ε3/2

)
.

and with probability 1− δ:

f (Πg (w̄))− f (w∗) ≤ h (w̄)− h (w∗) ≤ ε and ‖w̄ −Πg (w̄)‖2 ≤
ε

γρ− Lf
,

where w∗ ∈ {w ∈ W : ∀i.gi(w) ≤ 0} is an arbitrary constraint-satisfying reference vector.
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Proof Regardless of the value of k, it follows from Lemmas 15 and 12 that:

UL, UF ≤ 67
√

1 + lnmDw (Gf + γGg + γLgDw)

√
1 + ln

1

δ

√
1

T
+

8DwGf ln 1
δ

3T
.

As in the proof of Theorem 13, we define:

x =
√
T ,

c =
8

3
DwGf ln

1

δ
,

b =67
√

1 + lnmDw (Gf + γGg + γLgDw)

√
1 + ln

1

δ

√
1

T
,

a =− ε,

and consider the polynomial 0 = ax2 + bx + c. Any upper bound on all roots x =
√
T of this

polynomial will result in a lower-bound the values of T for which UL, UF ≤ ε with probability
1− δ. By the Fujiwara bound (Wikipedia, 2015):

Tε = max

{
(134)2 (1 + lnm)D2

w (Gf + γGg + γLgDw)2 (1 + ln 1
δ

)
ε2

,
16DwGf ln 1

δ

3ε

}
,

giving the claimed bound on Tε. For Cε, we observe that we will perform no more than k + 1
constraint checks at each iteration (k + 1 by LightTouch if k ≤ m, and m + 1 by FullTouch if
k > m), and substitute the above bound on Tε into the definition of k, yielding:

(k + 1)Tε ≤2Tε +m (1 + lnm)
3/4

√
1 + ln

1

δ
T

3/4
ε

√
1 + lnTε

≤max

{
2 (134)2 (1 + lnm)D2

w (Gf + γGg + γLgDw)2 (1 + ln 1
δ

)
ε2

,
32DwGf ln 1

δ

3ε

}

+ max

{
(134)

3/2m (1 + lnm)
3/2D

3/2
w (Gf + γGg + γLgDw)

3/2 (1 + ln 1
δ

)5/4
ε3/2

,

(
16

3

)3/4 m (1 + lnm)
3/4D

3/4
w G

3/4
f

(
1 + ln 1

δ

)5/4
ε3/4

√1 + lnTε.

giving the claimed result (notice the
√

1 + lnTε factor on the RHS, for which reason we have a Õ
bound on Cε, instead of O).

Appendix D. Analysis of MidTouch

We now move on to the analysis of our LightTouch variant for λ-strongly convex objectives, Algo-
rithm 3 (MidTouch). While we were able to prove a high-probability bound for LightTouch, we were
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unable to do so for MidTouch, because the extra terms resulting from the use of a Bernstein-type
martingale inequality were too large (since the other terms shrank as a result of the strong convex-
ity assumption). Instead, we give an in-expectation result, and leave the proof of a corresponding
high-probability bound to future work.

Our first result is an analogue of Lemmas 12 and 15, and bounds the suboptimality achieved by
MidTouch as a function of the iteration counts T1 and T2 of the two phases:

Lemma 16 Suppose that the conditions of Lemma 1 apply, with g(w) = maxi(gi(w)). Define
Gf ≥

∥∥∆̌(t)
∥∥

2
and Gg ≥

∥∥∇̌max(0, gi(w))
∥∥

2
as uniform upper bounds on the (stochastic) gradi-

ent magnitudes of f and the gis, respectively, for all i ∈ {1, . . . ,m}. We also assume that f is λ-
strongly convex, and that all gis are Lg-Lipschitz w.r.t. ‖·‖2, i.e. |gi(w)− gi(w′)| ≤ Lg ‖w − w′‖2
for all w,w′ ∈ W .

If we optimize Equation 1 using Algorithm 3 (MidTouch) with the p-update step size η = λ/2γ2L2
g,

then:

E
[
‖Πg(w̄)− w∗‖22

]
≤ E

[
‖w̄ − w∗‖22

]
≤

2 (Gf + γGg)
2 (2 + lnT1 + lnT2) + 8γ2L2

g lnm

λ2T2
+

3m4 (1 + lnm)2 (Gf + γGg)
2

λ2T 2
1

,

where w∗ = argmin{w∈W:∀i.gi(w)≤0} f(w) is the optimal constraint-satisfying reference vector.

Proof As in the proof of Lemma 12, the first phase of Algorithm 3 is nothing but (strongly convex)
SGD on the overall objective function h, so by Corollary 10:

1

T1

T1∑
t=1

E
[
h
(
w(t)

)
− h (w∗)

]
≤ G2

w (1 + lnT1)

2λT1
,

so by Jensen’s inequality:

E
[
h
(
w(T1+1)

)
− h (w∗)

]
≤ G2

w (1 + lnT1)

2λT1
. (12)

For the second phase, as in the proof of Lemma 15, we choose Ψp(p) =
∑m

i=1 pi ln pi to be negative
Shannon entropy, which yields the second-phase updates of Algorithm 3. By Corollary 11:

1

T2

T2∑
t=T1+1

E
[
h̃
(
w(t), p∗

)
− h̃

(
w∗, p(t)

)]

≤G
2
w (1 + lnT )

2λT2
+
λT1

2T2

∥∥∥w(T1+1) − w∗
∥∥∥2

2
+
BΨp

(
p∗
∣∣ p(T1+1)

)
ηT2

+
η

2T2

T2∑
t=T1+1

E

[∥∥∥∆̂(t)
p

∥∥∥2

p∗

]
.
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As before, ‖·‖p = ‖·‖1, ‖·‖p∗ = ‖·‖∞, and BΨp(p
∗ | p(T1+1)) = DKL(p∗ | p(T1+1)) ≤ lnm.

Hence:

1

T2

T2∑
t=T1+1

E
[
h̃
(
w(t), p∗

)
− h̃

(
w∗, p(t)

)]

≤G
2
w (1 + lnT2)

2λT2
+
λT1

2T2

∥∥∥w(T1+1) − w∗
∥∥∥2

2
+

lnm

ηT2
+

η

2T2

T2∑
t=T1+1

E

[∥∥∥∆̂(t)
p

∥∥∥2

∞

]
.

Since h is λ-strongly convex and w∗ is optimal,
∥∥w(T1+1) − w∗

∥∥2

2
≤ 2

λ(h(w(T1+1)) − h(w∗)). By
Equation 12:

1

T2

T2∑
t=T1+1

E
[
h̃
(
w(t), p∗

)
− h̃

(
w∗, p(t)

)]

≤G
2
w (2 + lnT1 + lnT2)

2λT2
+

lnm

ηT2
+

η

2T2

T2∑
t=T1+1

E

[∥∥∥∆̂(t)
p

∥∥∥2

∞

]
.

Since the (uncentered) second moment is equal to the mean plus the variance, and using the fact
that h̃(w∗, p(t)) = f(w∗) since all constraints are satisfied at w∗:

1

T2

T2∑
t=T1+1

E
[
h̃
(
w(t), p∗

)]
− f (w∗) (13)

≤G
2
w (2 + lnT1 + lnT2)

2λT2
+

lnm

ηT2
+

η

2T2

T2∑
t=T1+1

(
E
[∥∥∥∆̂(t)

p

∥∥∥
∞

])2
+
ησ2

p

2
,

where σ2
p is the variance of

∥∥∥∆̂
(t)
p

∥∥∥
∞

. Next observe that:

(
E
[∥∥∥∆̂(t)

p

∥∥∥
∞

])2
=

(
E

[
max

j∈{1,...,m}
γmax

{
0, gj

(
w(t)

)}])2

≤γ2L2
gE

[∥∥∥w(t) − w∗
∥∥∥2

2

]
≤

2γ2L2
g

λ
E
[
h̃
(
w(t), p∗

)
− h̃ (w∗, p∗)

]
,

the first step using the fact that the gjs are Lg-Lipschitz and Jensen’s inequality. For the second
step, we choose p∗ such that w∗, p∗ is a minimax optimal pair (recall that w∗ is optimal by assump-
tion), and use the λ-strong convexity of h̃. Substituting into Equation 13 and using the fact that
h̃(w∗, p∗) = f(w∗):(

1−
ηγ2L2

g

λ

) 1

T2

T2∑
t=T1+1

E
[
h̃
(
w(t), p∗

)]
− f (w∗)

 ≤ G2
w (2 + lnT1 + lnT2)

2λT2
+

lnm

ηT2
+
ησ2

p

2
.
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Substituting η = λ/2γ2L2
g and using Jensen’s inequality:

E
[
h̃ (w̄, p∗)

]
− f (w∗) ≤ G2

w (2 + lnT1 + lnT2)

λT2
+

4γ2L2
g lnm

λT2
+

λσ2
p

2γ2L2
g

. (14)

We now follow the proof of Lemma 15 and bound σ2
p . By the definition of ∆̂

(t)
p (Algorithm 3):

σ2
p =E

[∥∥∥E
[
∆̂(t)
p

∣∣∣ Ft−1

]
− ∆̂(t)

p

∥∥∥2

∞

]

=γ2E

∥∥∥∥∥∥
 m∑
j=1

ej max
{

0, gj

(
w(t)

)}
− µ(t)

−m(ejt max
{

0, gjt

(
w(t)

)}
− ejtµ

(t)
jt

)∥∥∥∥∥∥
2

∞


≤γ2 (m− 1)2 E

[
max
j

(
max

{
0, gj

(
w(t)

)}
− µ(t)

j

)2
]
.

The indices j are sampled uniformly, so the maximum time maxj(t − s(t)
j ) since we last sampled

the same index is an instance of the coupon collector’s problem Wikipedia (2014). Because the gjs
are Lg-Lipschitz:

σ2
p ≤γ2 (m− 1)2 L2

gE

[
max
j

∥∥∥∥w(t) − w(s
(t)
j )

∥∥∥∥2

2

]

≤
γ2 (m− 1)2 L2

gG
2
w

λ2T 2
1

E

[
max
j

(
t− s(t)

j

)2
]

≤
γ2m4

(
1 + (lnm)2 + π2/6

)
L2
gG

2
w

λ2T 2
1

≤
3γ2m4 (1 + lnm)2 L2

gG
2
w

λ2T 2
1

,

the second step because, between iteration s(t)
j and iteration t we will perform t − s(t)

j updates of
magnitude at most Gw/λT1, and the third step because, as an instance of the coupon collector’s
problem, maxj(t− s(t)

j ) has expectation mHm ≤ m+m lnm (Hm is the mth harmonic number)
and variance m2π2/6. Substituting into Equation 14:

E
[
h̃ (w̄, p∗)

]
− f (w∗) ≤ G2

w (2 + lnT1 + lnT2)

λT2
+

4γ2L2
g lnm

λT2
+

3m4 (1 + lnm)2G2
w

2λT 2
1

.

By the λ-strong convexity of h̃:

E
[
‖w̄ − w∗‖22

]
≤ 2G2

w (2 + lnT1 + lnT2)

λ2T2
+

8γ2L2
g lnm

λ2T2
+

3m4 (1 + lnm)2G2
w

λ2T 2
1

.

Using the facts that ‖Πg(w̄)− w∗‖ ≤ ‖w̄ − w∗‖ because w∗ is feasible, and that Gw = Gf +γGg,
completes the proof.
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We now move on to the main result: a bound on the number of iterations (equivalently, the number
of stochastic loss gradients) and constraint checks required to achieve ε-suboptimality:

Theorem 4 Suppose that the conditions of Lemmas 1 and 16 apply, with the p-update step size η
as defined in Lemma 16. If we run Algorithm 3 (MidTouch) for Tε1 iterations in the first phase and
Tε2 in the second:

Tε1 =Õ

(
m (lnm)

2/3 (Gf + γGg + γLg)
4/3

λ4/3ε2/3
+
m2 (lnm) (Gf + γGg)

λ
√
ε

)
,

Tε2 =Õ

(
(lnm) (Gf + γGg + γLg)

2

λ2ε
+
m3/2 (lnm)

3/2 (Gf + γGg)
3/2

λ3/2ε3/4

)
,

requiring a total of Cε “constraint checks” (evaluations or differentiations of a single gi):

Cε =Õ

(
(lnm) (Gf + γGg + γLg)

2

λ2ε
+
m3/2 (lnm)

3/2 (Gf + γGg)
3/2

λ3/2ε3/4

+
m2 (lnm)

2/3 (Gf + γGg + γLg)
4/3

λ4/3ε2/3
+
m3 (lnm) (Gf + γGg)

λ
√
ε

)
,

then:
E
[
‖Πg(w̄)− w∗‖22

]
≤ E

[
‖w̄ − w∗‖22

]
≤ ε,

where w∗ = argmin{w∈W:∀i.gi(w)≤0} f(w) is the optimal constraint-satisfying reference vector.

Proof We begin by introducing a number τ ∈ R with τ ≥ 1 that will be used to define the iteration
counts T1 and T2 as:

T1 =
⌈
mτ2

⌉
and T2 =

⌈
τ3
⌉
.

By Lemma 16, the above definitions imply that:

E
[
‖Πg(w̄)− w∗‖22

]
≤

2 (Gf + γGg)
2 (4 + lnm+ 5 ln τ) + 8γ2L2

g lnm

λ2τ3
+

3m4 (1 + lnm)2 (Gf + γGg)
2

λ2m2τ4

≤
10 (1 + lnm) (Gf + γGg + γLg)

2 (1 + ln τ)

λ2τ3
+

3m2 (1 + lnm)2 (Gf + γGg)
2

λ2τ4
.

Defining ε = E
[
‖Πg(w̄)− w∗‖22

]
and rearranging:

λ2ε

(
τ

(1 + ln τ)
1/3

)4

≤ 10 (1 + lnm) (Gf + γGg + γLg)
2

(
τ

(1 + ln τ)
1/3

)
+ 3m2 (1 + lnm)2 (Gf + γGg)

2 .
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We will now upper-bound all roots of the above equation with a quantity τε, for which all τ ≥ τε will
result in ε-suboptimality. By the Fujiwara bound (Wikipedia, 2015), and including the constraint
that τ ≥ 1:

τε

(1 + ln τε)
1/3
≤max

1, 2

(
10 (1 + lnm) (Gf + γGg + γLg)

2

λ2ε

)1/3

,

2

(
3m2 (1 + lnm)2 (Gf + γGg)

2

2λ2ε

)1/4
 .

Substituting the above bound on τε into the definitions of T1 and T2 gives the claimed magnitudes
of these Tε1 and Tε2, and using the fact that the Cε = O(mTε1 + Tε2) gives the claimed bound on
Cε.
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