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Abstract

Despite their better revenue and welfare guarantees for repeated auctions, dynamic

mechanisms have not been widely adopted in practice. This is partly due to the

complexity of their implementation as well as their unrealistic use of forecasting for

future periods. We address these shortcomings and present a new family of dynamic

mechanisms that are simple to compute and require no distribution knowledge of future

periods.

This paper introduces the concept of non-clairvoyance in dynamic mechanism de-

sign, which is a measure-theoretic restriction on the information that the seller is

allowed to use. A dynamic mechanism is non-clairvoyant if the allocation and pricing

rule at each period does not depend on the type distributions in future periods.

We develop a framework for characterizing, designing, and proving lower bounds

for dynamic mechanisms (clairvoyant or non-clairvoyant). This framework is used to

characterize the revenue extraction power of non-clairvoyant mechanisms with respect

to mechanisms that are allowed unrestricted use of distributional knowledge.
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1 Introduction

Dynamic mechanism design is a powerful tool for designing auctions that are repeated over

time. Optimizing auctions across different time periods instead of optimizing each period

individually can lead to improvements both in terms of revenue and allocation efficiency.

So, why isn’t the adoption of dynamic mechanisms more widespread? A crucial limitation

is that they tend to be too detail-dependent: they require the designer to have reliable

forecasts of the distributions of the agent’s valuations in all periods. Moreover, mechanisms

often require all buyers to share those beliefs. A second reason is their computational and

descriptive complexity. Current approaches require a lengthy pre-processing step, wherein

a large linear or dynamic program is solved and its solution is written to a table that is then

used to implement the actual mechanism. The resulting allocation and pricing rules tend

to be non-intuitive. Our goal in this paper is to design mechanisms that address the points

raised above.

We will consider the design of sequential auctions. A firm wants to sell T products over

T periods of time. In the classic setup, each buyer’s valuation is drawn independently in

each period from common knowledge distributions F1, . . . , FT . Even though the valuation

distributions and the allocation problems are independent across timesteps, the incentive

constraints bind across periods. Jackson and Sonnenschein [JS07] observe that linking appar-

ently independent decisions together can lead to improved outcomes. A similar phenomenon

was also observed by Manelli and Vincent [MV07]. Gains can be obtained for example by

offering the buyer a higher price today in exchange for a discount tomorrow. There is a

practice in the industry of offering discounts to buyers that have previously purchased their

products. Papadimitriou et al. [PPPR16] quantify the revenue gap between applying the

optimal Myerson auction to sell the item in each period and using the optimal mechanism

that links decisions across time. They show that the latter can obtain arbitrarily times more

revenue.

One difficulty in applying the theory of optimal dynamic mechanism design to practice

is the difficulty of building good forecasts. Properly linking decisions across time requires

precise knowledge of the distributions in each period. A retailer selling goods across time
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typically has a good estimate of the value of the goods he has to sell in the current period.

In future periods, he might not know the goods he will obtain from his supplier, the state of

the economy, or the competing products in the market — all of which will affect the demand

of the buyer.

This makes it hard for the seller not only to design an optimal mechanism, but also to

design any non-trivial dynamic incentive compatible mechanism. Dynamic incentive compat-

ibility means that agents in each period are incentivized to report their types based on their

knowledge of the current types and in expectation over their types in the future. So if neither

the seller nor the agents can build good forecasts, how can they verify that a mechanism is

even dynamic incentive compatible? This motivates this paper’s central question:

Can we design dynamic mechanisms that don’t need to predict the future?

In other words, can we design dynamic mechanisms such that the allocation and payments

at time t do not rely on forecasts of the buyer’s value distributions Ft+1, . . . , FT ? We can

just run the static optimal in each period: in each period t, the seller learns Ft and posts

the optimal price for that period. If we can’t rely on distributions of future periods, is the

revenue of the optimal static mechanism all we can achieve?

Can we design dynamic mechanisms that don’t need to predict the future

and yet achieve revenue comparable to mechanisms that know the future?

The main result of this paper is an affirmative answer to this question. We show a

mechanism that uses only information about the current and past distributions and the

current and past reported types to allocate and price buyers and that obtains at least 1/5

of the revenue of the optimal mechanism that has knowledge about all distributions past,

present and future.

A major contribution of this paper is to define the notion of a non-clairvoyant mechanism.

It consists of an allocation and pricing rule that, for each period t, maps the distributions

F1, . . . , Ft and types θ1, . . . , θt sampled from those distributions to an allocation and pay-

ments. What does it mean for non-clairvoyant mechanisms to be incentive compatible? In

traditional mechanism design, dynamic incentive compatibility means that it is the optimal
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strategy for the agent to report her current type truthfully in expectation over her types

in future periods. We say that a mechanism is dynamic incentive compatible in the non-

clairvoyant sense if for any continuation future Ft+1, . . . , FT , it is incentive compatible for

the buyer to report her type in period t. This is quite a strong notion, since we don’t even

require that agents and designer to agree on the forecast for future periods. Besides dynamic

incentive compatibility, we will also require ex-post individual rationality, i.e., that the utility

of the agent for the mechanism is non-negative for every realization of her types.

To understand the relative power of non-clairvoyant and clairvoyant mechanisms (i.e.

mechanisms that know all the distributions F1, . . . , FT ) we must consider two scenarios:

scenario A : F1, . . . , Ft, F
′
t+1, . . . , F

′
T scenario B : F1, . . . , Ft, F

′′
t+1, . . . , F

′′
T

The non-clairvoyant designer needs to design a mechanism that allocates the same way for

the first t periods in both scenarios. The clairvoyant designer can tailor his allocation and

payments in the first t periods to his knowledge of whether he is in scenario A or B.

Motivation and Industrial Applications Our initial motivation for considering this

problem is an industrial application in the sale of Internet advertisement. Ad auction is

clearly a setting of repeated auctions but the common practice in the industry is to run

independent auctions for each ad impression. We believe a major innovation in Internet

advertisement would be the design of mechanisms that take into account the interaction

between different items. We sought to overcome the major difficulties in applying the existing

algorithms to our problem: the first major issue was the computational complexity of the

solution. There are billions of ad requests every day and computing a linear or dynamic

program with that state space is clearly infeasible in practice. A second problem is that

previous algorithms assumed that we knew exactly how many items we had to sell as well

as the demand forecast for each. In particular, approaches based on backward induction not

only require us to know what items we will receive but in what order.

A more realistic model we would like to analyze is the following: in each period the search

engine receives a query from a certain user and needs to decide which ad to serve for that
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request. Based on the user’s characteristics (e.g. male or female, age group, geographic loca-

tion), the seller has an estimate of the distribution of the buyer’s for the current impression.

Although the seller can build a good estimate for each type of impression, it is impossible to

know ahead of time the exact type of each impression in the future and the order in which

those types will arrive.

Main Result Our main theorem (Theorem 7.1) shows that there is a non-clairvoyant

mechanism for selling one item per period to multiple buyers, which we call the NonClair-

voyantBalance mechanism, that obtains at least 1/5 of the revenue that can be obtained

by any clairvoyant mechanism. Since the revenue of the optimal dynamic mechanism can

be arbitrarily times more than the static one, obtaining at least 1/5 of the optimal dynamic

revenue often means obtaining much larger revenue than the optimal static auction.

The mechanism sells in each period 1/5 of the item using the Myerson auction for that

distribution in that period and 2/5 of the item as a plain second price auction. The remaining

2/5 of the item will provide the dynamic component of the mechanism: for the remaining

2/5 we will use a parameter bi called bank balance computed for each agent as a function of

her previous reports and the previous distributions. Then we will run a modification of the

optimal money burning auction of Hartline and Roughgarden [HR08]. The Myerson auction

component will capture the revenue that can be obtained in each individual period. The

combination of the second price and the money burning components will be responsible for

capturing the gains from inter-period interactions.

We complement this result with an impossibility theorem (Theorem 6.1) showing that

no non-clairvoyant mechanism can obtain a better-than-1/2 fraction of the revenue of the

optimal clairvoyant mechanism for all sequences of distributions. For two periods and any

number of buyers, we can design a non-clairvoyant mechanism that extracts at least 1/2 of

the optimal clairvoyant revenue. For multiple periods and one buyer, the NonClairvoy-

antBalance mechanism described extracts at least 1/3 of the optimal clairvoyant revenue.

For 2 periods, we derive the optimal mechanism matching the given lower bound.
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Techniques The main technique used in the paper both to design non-clairvoyant mech-

anisms and to upper bound the revenue of the clairvoyant mechanism is a framework which

we call bank account mechanisms. First, we show that for any clairvoyant mechanism that

is dynamic incentive compatible and ex-post individually rational, there is a bank account

mechanism with the same properties and at least the same revenue (Theorem 5.2). Bank

account mechanisms have several nice properties. First, any mechanism in that format is

dynamic incentive compatible by design (Theorem 5.1). Second, its revenue naturally de-

composes into intra-period revenue (which can be bounded by the Myerson revenue for that

period) and inter-period revenue, which we call bank account spend (Lemma 5.7). Perhaps

more importantly, bank account mechanisms naturally lend themselves to the design of

non-clairvoyant mechanisms. This statement is formalized in the following non-clairvoyant

reduction: any non-clairvoyant dynamic mechanism can be written as a non-clairvoyant bank

account mechanism (Theorem 6.2).

Robustness and Detail Independence Non-clairvoyance can be seen as a form of robus-

tification of dynamic mechanisms. By requiring the mechanism not to use any distributional

information from future periods, we obtain mechanisms that are much less detail-dependent,

in the spirit of Wilson’s doctrine [Wil87]. In this sense, we share the philosophy of Berge-

mann and Morris [BM12] in their theory of robust dynamic mechanism design, which seeks to

design mechanisms that work irrespective of beliefs that agents might have. While we make

the mechanisms free of beliefs about the future, we still assume beliefs about the present

(i.e., the seller in period t has forecast Ft for demand during that period). In that sense we

are more in line with Yogi Berra,1 who says “It’s tough to make predictions, especially about

the future.”

1The origin of this quote is greatly disputed. While most commonly attribute it to Yogi Berra, a similar
quote is attributed to Samuel Goldwyn. Recently, it came out that this quote is much older, and is attributed
to the Danish physicist Niels Bohr. A letter to The Economist [Pre07] reads: “It is said that Bohr used
to quote this saying to illustrate the differences between Danish and Swedish humor. Bohr himself usually
attributed the saying to Robert Storm Petersen (1882-1949), also called Storm P., a Danish artist and writer.
However, the saying did not originate from Storm P. The original author remains unknown (although Mark
Twain is often suggested).”

5



Simpler Mechanisms without Backward Induction The constraints imposed by non-

clairvoyance naturally produce simpler mechanisms. To illustrate the simplicity of the Non-

ClairvoyantBalance mechanism, it is useful to compare it with previous approaches to

designing dynamic mechanisms. All previous approaches require some form of expensive pre-

processing step. In [PPPR16], the allocation and pricing are determined by the solutions of

a large linear program that has one variable for each sequence of reports. If the distributions

are independent, this requires a number of variables that are exponential both in the number

of buyers and the number of periods. Another approach is to replace the linear program by

a dynamic program that is solved via backward induction. This is the approach taken by

Ashlagi et al [ADH16] and by [MLTZ16]. The mechanism extracts a (1− ε) fraction of the

optimal revenue, but it is no longer exponential in the number of periods. In both cases,

it is only analyzed for a single buyer. The mathematical characterization of the optimal

mechanism for multiple buyers is also presented in [ADH16], but it is not made algorithmic

beyond a single buyer. Ashlagi et al. [ADH16] also propose a second mechanism which

extracts at least 1/2 of the optimal revenue but requires solving a simpler dynamic program

and produces a simpler allocation rule; however, it still requires backward induction and

only applies to one buyer.

Non-clairvoyance clearly prevents the designer from using any form of backward induc-

tion, since, at period t, we don’t know the distributions in future periods. In fact, we don’t

even know how many more items we will have to allocate. The NonClairvoyantBalance

mechanism requires no backward induction: in each period t, it uses the distributions of the

buyers at that period to construct an optimal auction (which is based on virtual values, fol-

lowing the Myersonian approach, and hence polynomial in the number of buyers), a second

price auction, and a money burning auction (which also admits a virtual value description,

and thus is also polynomial in the number of buyers).

In summary, we get an auction that requires no pre-processing and no backward induc-

tion. Moreover, the computation in each period is polynomial in the number of buyers.
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1.1 Roadmap

We spent the first half of the paper discussing the single buyer case, since the analysis is

simpler and the notation lighter. In Section 3, we describe the notion of a non-clairvoyant

mechanism. In Section 4, we describe the NonClairvoyantBalance mechanism for one

buyer. In Section 5, we introduce the bank account framework and use it to show that

the NonClairvoyantBalance mechanism obtains at least 1/3 of the optimal clairvoyant

revenue. In Section 6, we show that no non-clairvoyant mechanism can obtain better than

1/2 of the optimal clairvoyant revenue. For 2 periods, we present a mechanism achieving the

optimal ratio of 1/2. In Section 7, the results are extended to multiple buyers. Appendix E

argues that all computations performed by the NonClairvoyantBalance mechanism can

be done in polynomial time. In Section 8, we derive the optimal non-clairvoyant mechanism

for 2 periods. In Section 9, we survey related work.

2 Repeated Auctions Model

Auction Setup The standard dynamic mechanism design setting with finite time horizon

describes an economic setup where a designer repeatedly selects an outcome over T periods

based on reports by strategic agents. For the sake of clarity, the first part of our paper focuses

on the single agent case and then extends it to multiple agents in Section 7. In each period

t ∈ [T ], the agent has type θt ∈ Θ, which is drawn from distribution Ft independent across

timesteps. Her valuation for outcome xt ∈ O being implemented is given by v : Θ×O → R.

Our assumption that the agent types are independent across timesteps is inspired by our

main application in Internet advertisement: each time an impression arrives, the advertiser’s

value is a function of properties of the impression that are publically observable (e.g., as

geographic and demographic information) plus some privately observable information (e.g.,

browser cookies).2 The publically observable information will determine the distribution

2Browser cookies are small pieces of data sent from websites and stored in the user’s Web browser so that
when the user revisits the same website the cookies can be used to identify the user’s previous actions. Such
data is encrypted and can only be read by the website that placed it. For example, if a user visits an online
store, a cookie is placed on his browser. In an auction, only the advertiser corresponding to that store will
be able to read that cookie, making it a private signal.

7



from which the buyer’s type is sampled, while the private information will determine the

realization of the type. Unless buyers are starting a new campaign, they already have an

established notion of value for the combination of cookie and demographic information,

so the allocation for one impression will not affect the value of others. We also consider

implementing dynamic mechanisms with a short span (say a few hours or a day) in which

there is a large enough volume of queries that we can reap the benefit of dynamic queries but

the time span is short enough for the valuations to remain stable. Concerns about valuations

that shift over time arise when we try to apply dynamic mechanisms over large time spans

when the market is likely to move. This issue, however, lies beyond the scope of the current

paper.

Continuing the description of the model, the following events happen at each period t:

1. the agent learns her type θt ∼ Ft;

2. the agent reports type θ̂t to the designer;

3. the designer implements an outcome xt ∈ O and charges the agent pt; and

4. the agent accrues utility ut = v(θt, xt)− pt.

The final utility of the agent is the sum over her utility in all periods, i.e.,
∑T

t=1 ut.

A mechanism can be described in terms of a pricing and an outcome function, which map

the distributional knowledge of the seller F1..T = (F1, F2, . . . , FT ) and the history of reports

θ̂1..t = (θ̂1, θ̂2, . . . , θ̂t) to an outcome xt and payment pt:

• Outcome: xt : Θt × (∆Θ)T → O,

• Payment: pt : Θt × (∆Θ)T → R,

where Θ is the space of types for the agents and ∆Θ is a set of distributions over Θ.

We use a semicolon to separate the report and distribution parameters: xt(θ̂1..t;F1..T ) and

pt(θ̂1..t;F1..T ). We will omit the distributional parameters F1..T when clear from the context

and write it simply as xt(θ̂1..t) and pt(θ̂1..t).

We define the utility of the buyer with type θt in step t given a history of reports θ̂1..t

and seller distribution knowledge F1..T as:

ut(θt; θ̂1..t;F1..T ) = v(θt, xt(θ̂1..t;F1..T ))− pt(θ̂1..t;F1..T ),
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and again we omit F1..T when clear from context.

Incentive Constraints We will adopt the traditional notion of incentive compatibility

in dynamic settings, where agents have incentives to report their types truthfully in each

period. This can be defined easily by backward induction: in the last period, regardless of

the history so far, it should be incentive compatible for an agent to report her true type.

This corresponds to the usual notion of incentive compatibility in (static) mechanism design:

θT = arg maxθ̂T uT (θT ; θ̂1..T−1, θ̂T ;F1..T )

for all θ̂1..T−1, θT . To simplify notations, from now on we will omit the ‘for-all’ quantification

and assume that all expressions are quantified as ‘for-all’ in their free variables.

For the next-to-last-period, it should be incentive compatible for the agent to report her

true type given that she will report her true type in the following period:

θT−1 = arg maxθ̂T−1
uT−1(θT−1; θ̂1..T−2, θ̂T−1;F1..T ) + EθT∼FT [uT (θT ; θ̂1..T−2, θ̂T−1, θT ;F1..T )].

Proceeding by backward induction for all periods, we require that:

θt = arg maxθ̂t ut(θt; θ̂1..t−1, θ̂t;F1..T ) + Ut(θ̂1..t−1, θ̂t;F1..T ), (DIC)

where the second term is the continuation utility, i.e., the expected utility obtained from the

subsequent periods of the mechanism:

Ut(θ̂1..t;F1..T ) := Eθt+1..T∼Ft+1..T
[
∑T

τ=t+1 uτ (θτ ; θ̂1..t, θt+1..τ ;F1..T )].

A well-known fact in dynamic mechanism design is that the property DIC implies that the

agent’s expected overall utility U0 = E[
∑

t ut(θt; θ̂1..t)] is maximized when the agent reports

truthfully in each period.

Participation Constraints We will also enforce participation constraints, which require

the agent to derive non-negative utility from the mechanism. Again inspired by our main
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motivation, we will enforce those constraints ex-post, i.e., in every realization of the agent

types. It is desirable in an auction setting where the buyers and sellers have an ongoing

business relationship (e.g., Internet advertisement) to ensure that buyers derive non-negative

utility from the auction. We will refer to this constraint as ex-post individual rationality:

∑T
t=1 ut(θt; θ1..t;F1..T ) ≥ 0. (eP-IR)

Revenue optimization We will focus on the problem of maximizing revenue subject to

DIC and eP-IR constraints. Fixing a set of distributions F1..T , we can define the revenue-

optimal mechanism for those distributions as:

Rev∗(F1..T ) := maxEθ1..T∼F1..T
[
∑T

t=1 pt(θ1..t;F1..T )] s.t. (DIC) and (eP-IR). (RevMax)

Static mechanisms Informally, a mechanism is said to be static if the allocation and

pricing functions xt, pt at time t depend only on the distributional knowledge F1..T and the

reported type θt at that period. This can be made formal in a measure-theoretic sense by

asking xt and pt to be measurable with respect to the σ-algebra generated by (θt, F1..T ).

Under this definition, the revenue optimization problem restricted to static mechanisms

becomes separable: the optimal solution consists in applying for each period t the opti-

mal mechanism for that period, i.e., the mechanism xt(θt;FT ), pt(θt;Ft) that maximizes

Eθt∼Ft [pt(θt, Ft)] subject to single-period incentive compatibility and individual rationality.

We can define RevS(F1..T ) as the revenue of the optimal static mechanism. Since the

static problem is more constrained, we clearly have Rev∗(F1..T ) ≥ RevS(F1..T ). Papadim-

itriou et al. [PPPR16] show that the ratio Rev∗(F1..T )/RevS(F1..T ) can be arbitrarily large.

We reproduce this example in Appendix A.

Single item per period setting Although most of our results hold for a general setting,

we will present them for single item auctions. In the auction setting the agent type is a

single real number representing how much she values one unit of the good, i.e., Θ = R+.

The outcome O = [0, 1] corresponds to the probability that the item is allocated to the

agent. The value corresponds to a product v(θt, xt) = θt · xt.

10



Cassandra’s curse The major shortcoming of the traditional notion of DIC is that it

requires both buyers and the seller to agree on the distributions from which types are drawn

in all periods. We note that the optimal static mechanism for a single period (Myerson’s

auction) require no such assumptions since it is dominant strategy incentive compatible. So,

if the seller knows of the type distributions, he can extract the optimal revenue regardless

of any buyer belief.

What can be done in dynamic mechanism design, though, if the seller doesn’t want to

rely on sharing the buyer’s belief? A mechanism that doesn’t want to rely on the buyer

sharing beliefs with the seller must satisfy (DIC) for every possible distribution F1, . . . , FT

corresponding to beliefs that the buyer might have. In particular it should hold even when

each Ft is a point mass distribution. This is the same as ensuring that the buyer is unwilling

to deviate even if she knew the realization of her value in all future steps, which can be

phrased as follows:

∀θ̂1..t−1, θt+1..T , θt = arg maxθ̂t ut..T (θt..T ; θ̂1..t−1, θ̂t, θt+1..T ). (super-DIC)

We know at least one auction that satisfies this property: the optimal static auction.

However, this auction can be arbitrarily worse in terms of revenue than the optimal dynamic

auction by the example in Appendix A.

Next, we show that even if the seller knows all the distributions, if he shares no belief

with the buyer, it is impossible to improve over the optimal static mechanism. We call this

phenomenon Cassandra’s curse. In Greek mythology, Cassandra had the power of prophecy

but the curse that nobody would believe her. Cassandra foresaw the destruction of Troy

and unsuccessfully tried to warn the Trojans. Similarly, the power of knowing all the future

distributions is useless to the seller if he is unable to convince buyers to share the same

beliefs.

Theorem 2.1 (Cassandra’s curse). For the auction setting where v(θt, xt) = θt · xt, any

revenue that can be obtained in a mechanism satisfying super-DIC and eP-IR can be obtained

by running a static individually rational and incentive compatible mechanism in each period.

The theorem in particular says that, for robust versions of DIC, dynamic mechanisms
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fail to obtain revenue improvement over static mechanisms; however, we argue that some

level of robustness to distributional assumptions can be achieved. Non-clairvoyance, which

is the main theme of this paper, can be seen as robustification of the DIC constraints with

respect to distributional assumptions.

In Appendix C we provide a proof of Theorem 2.1 as well as a discussion of other natural

notions of incentive and participation constraints.

3 Clairvoyance in Dynamic Mechanism Design

3.1 Example: The clairvoyant fisherman

We will discuss the central notion of this paper via a sequence of examples, which will

have as their main characters a fisherman (seller/he) and a fishbuyer (buyer/she) and the

plot will center around the repeated sale of fish. In this story the fisherman is born with

a superpower of seeing the future (clairvoyance), but then loses it later in life and has to

rethink his business strategy.

Example 1: One salmon To build the setting gradually first consider the scenario where

the fisherman catches one salmon and offers it to the buyer for purchase. It is known to the

fisherman that the buyer’s valuation for a salmon is uniform distributed in [0, 1]. After the

buyer inspects the fish, her valuation v ∈ [0, 1] is realized. Following the Myersonian advice,

the revenue-optimal mechanism for the fisherman will be to post a price of 1/2, which causes

him to sell the item with probability 1/2 and obtain 1/4 of revenue in expectation (revenue

1/2 with 1/2 probability).

Example 2: Two salmons There are only salmons in the sea, and the fisherman catches

and sells one fish a day. On day 1, he catches a salmon and sells it to the buyer. Then on day 2

he again catches a salmon and sells it. The valuations on both days are independent, and the

fisherman must sell the fish on the day it is caught. While at first glance this may seem like

two independent instances of the same problem, the revenue can be improved by considering

them together. It follows from a well-known observation of Manelli and Vincent [MV07] and
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Jackson and Sonnenschein [JS07] that jointly solving two at-first-sight independent problems

can generate a better (revenue-wise) outcome than solving each independently. The catch is

that incentive constraints bind the problem together.

The seller also can’t charge in the first period the expected value for the item in the

second period, since it violates the ex-post participation constraint. Below, we show a

mechanism with revenue strictly better than 1/2 that is ex-post individually rational and

dynamic incentive compatible:

• In the first period, elicit the valuation v1 from the buyer, give her the item if v1 ≥ 1/2,

and charge her 1/2.

• In the second period, if the previous item wasn’t sold, post again a price of 1/2. If

the item was sold, first charge the buyer a fee of f = min(v1 − 1/2, 3/8) to be able to

inspect the fish (before that, the buyer knows her value distribution but not yet her

actual value). If the buyer accepts, she inspects the item, learns her value v2 and then

has the opportunity to purchase for a price of p2 = 1−
√

2f + 1/4.

First, we check that is it always incentive compatible for the buyer to accept the fee and

then purchase the product at the set price. The utility of the buyer for this option is:

−f +

∫ 1

p2

[v2 − p2]dv2 = −f +
1

2
(p2 − 1)2 = −f +

1

2

(
2f +

1

4

)
=

1

8
≥ 0.

Notably, the utility of the buyer in the second period doesn’t depend on whether she buys

the item or not in the first period nor her valuation reported in the first period (even though

the mechanism used in the second period can depend on that). Therefore the buyer has no

incentive to misreport her valuation in the first period. Also, since the fee is bounded by

the utility of the buyer in the first period, this mechanism is ex-post individually rational.

Finally, we argue that this mechanism has both improved efficiency and improved revenue

over posting price 1/2 in each period. The welfare generated in the first period is 3/8, and

in the second period depends on v1. If v1 ≤ 1/2, then the welfare is also 3/8; but if v1 > 1/2,

then the welfare is larger since the price posted is p2 < 1/2. Therefore, the total welfare (in

fact, 111/128 ≈ 0.867) is strictly larger than 3/4 (which is the welfare of posting a price of
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1/2 in each period). As we argued, the utility of the buyer is the same 1/8 in each period in

the new mechanism. Therefore, the seller’s revenue is strictly larger (in fact, increased from

1/2 to 79/128 ≈ 0.617).

Example 3: Clairvoyance In a more realistic world, there are all sorts of fish in the

ocean: salmons, tunas, mackerels, sardines, etc. Here we will assume that for each type of

fish, the distribution of values is known. For simplicity, we assume in this example that all

are uniform — say, a salmon is uniform in [0, 1] and a tuna is uniform in [0, 10].

For this example, assume that the fisherman can see the future and knows exactly which

type of fish he will catch in each period. Since he is known for his clairvoyance, everyone

in the village will believe him (especially the buyer). If he sees that the fish he will catch

in the next period is a salmon, he will reason about the second period assuming the buyer’s

valuation will be uniform in [0, 1] in that period. If the buyer didn’t believe him and really

thought it would be a tuna, the mechanism would be no longer incentive compatible for the

buyer.

If the fisherman can see that he will catch a salmon today and a salmon tomorrow, he

can apply the auction in the previous example; however, if the fisherman can see that today

he will catch a salmon and tomorrow a tuna, he might prefer the following mechanism:

• In the first period, elicit the buyer’s value v1 for the salmon and give her the item for

free regardless of her valuation.

• In the second period, he first charges a fee of f = v1 for the buyer to be able to inspect

the tuna. Once the buyer pays the fee, she learns her value v2 and has the opportunity

to buy it at a price of p2 = 10−
√

25 + 2f .

Similar to the previous example, if the buyer shares the same beliefs as the fisherman,

then the mechanism is dynamic incentive compatible and ex-post individually rational.

For the seller to apply this procedure, he needs to know in period 1 which fish he will

catch in period 2. In the examples above, if the second period is a salmon, then the price

posted in the first period is 1/2 (Example 2); if it is a tuna, then the price posted is 0
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(Example 3). And more importantly, the mechanism is only incentive compatible if the

fisherman can convince the buyer that his prediction for period 2 is valid.

Example 4: Non-clairvoyance Consider a world where the fisherman can no longer pre-

dict the future and yet must still sell fish. We still assume that the buyer’s value distribution

for each type of fish is common knowledge, we just don’t know which fish will be caught in

each period. In this world, he must decide in period 1 his sale mechanism without knowledge

about what items he will be selling in the future. Consider, for example, that he caught a

salmon in period 1 and is unsure whether in period 2 he will be selling a salmon or a tuna.

In such a case, he can announce the following mechanism:

• In the first period, elicit the buyer’s value v1 for the salmon and sell her the salmon

for price 1/2 if v1 ≥ 1/2.

• In the second period:

– if he catches a tuna, he charges a fee of f = (v1 − 1/2)+ for the buyer to be able

to inspect the tuna. Once the buyer pays the fee, she has the opportunity to buy

it for a price of p2 = 10−
√

25 + 2f ;

– if he catches a salmon, he charges a fee of f = min((v1−1/2)+, 3/8) for the buyer

to be able to inspect it. Once the buyer pays the fee, she has the opportunity to

buy it for price p2 = 1−
√

2f + 1/4.

The selling mechanism in period 1 doesn’t depend on the knowledge of the fish caught

in period 2. As the reader can easily verify, regardless of the second period being a salmon

or a tuna, we always obtain expected revenue above that can which be obtained by posting

the Myersonian price in each period.

Finally, we argue that the mechanism is incentive compatible. If the buyer believes that

in the second period a salmon will be caught, then she will reason about the mechanism

that in the second period charges a fee of f = min((v1 − 1/2)+, 3/8) and posts a price

p2 = 1 −
√

2f + 1/4, and will conclude that it is incentive compatible and thus will report

her value truthfully in the first period. If the buyer believes that the fish in the second period
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will be a tuna, she will reason about the mechanism that charges a fee of f = (v1 − 1/2)+

and posts a price of p2 = 10−
√

25 + 2f . She will also conclude that it is in her best interest

to report truthfully in the first period. Therefore, no matter what the buyer believes about

the second period, she will always report her value truthfully in the first period. This is

what we will define formally as a non-clairvoyant dynamic mechanism.

Thus, our main result in this paper is that the clairvoyant fisherman is not much more

powerful than the non-clairvoyant fisherman in terms of revenue extraction.

3.2 Non-Clairvoyant Mechanism Design

Examples 3 and 4 in the previous section show that solving the optimization problem

RevMax to compute the optimal revenue for a certain Rev∗(F1..T ) requires the seller to

know all the distributions from the beginning of the period. The allocation and payment on

period 1 will depend on his knowledge of what is the distribution in period on the second pe-

riod. In the fisherman story, as well as our practical motivation in Internet advertising, this is

an unreasonable assumption. When we auction an ad impression for a certain demographic,

it is unclear what the demographic of the next impression will be.

The examples also highlight an even more serious problem: it is not enough for the seller

to know the future. He also needs the buyer to agree on the same distributions; otherwise,

the mechanism is not incentive compatible. Next, we will define a family of mechanisms

that eliminate this issue by requiring the mechanism not to depend on the distributional

knowledge about future periods.

This motivates the central concept in this paper: non-clairvoyance. Informally, a mech-

anism is said to be non-clairvoyant if it depends on distributional knowledge about the

present and past but no the future. This notion can be made precise in a measure-theoretic

sense: the allocation and pricing function are measurable with respect to the σ-algebra in-

duced by (θ1..t, F1..t). This means that xt and pt can be written as: xt(θ1..t;F1..t) instead of

xt(θ1..t;F1..T ).

The notions of DIC and eP-IR are mathematically the same as before. Yet, when DIC

and non-clairvoyance are considered together, we obtain a stronger notion of incentive com-

patibility that allows buyers to verify incentive compatibility without knowledge about the
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future or agreement between the buyer and seller about future distributions. We illustrate

this using an example:

Example 3.1. Consider a setting with a single buyer, two periods and one item being sold

per period. The following is a non-clairvoyant incentive compatible mechanism:

• Period 1: elicit type θ̂1 of the buyer, and give the item for free.

• Period 2: charge min(Eθ2∼F2 [θ2], θ̂1) in advance, and run a second price auction with

reserve r such that

Eθ2∼F2 [max(0, θ2 − r)] = min(Eθ2∼F2 [θ2], θ̂1).

First, we note that the mechanism is non-clairvoyant since it uses no information about F2

in the first period. Now notice that fixed any F1, F2 we can easily verify that the mechanism

satisfies DIC.

Now, let’s look at this mechanism from the perspective of the buyer. In period 1, the

buyer wants to verify if it is indeed optimal for her to report her type truthfully. She must

do so without knowing F2 since this information is not available to either the buyer or the

seller in period 1. Since reporting truthfully is optimal for any distribution F2, reporting

truthfully is also optimal without knowledge of F2.

A Cure for Cassandra’s curse. Now let us interpret theis example in the light of Cas-

sandra’s curse (Theorem 2.1). At the center of the myth are two of Cassandra’s central

qualities: prophecy (the ability to see the future) and trust (the ability to convince others of

her predictions). Both the myth and Theorem 2.1 argue that the former without the latter

is useless. But how good is trust without prophecy?

In the previous example, the buyer trusts that the seller will know the right distribution

at each timestep once he reaches that period. The seller is not required to know the future,

just the present. The seller is an anti-Cassandra of sorts, who has trust but not prophecy.

And this is enough to improve over the static mechanisms.

To be precise, the reason we can improve over the static mechanism is that buyer and

seller still share beliefs about the present and they know that for any given t they will agree
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on the distributions when they reach that period. In the fisherman example, they know they

will agree on the distribution once the fish is caught, and they know that the first fish will

be a salmon, but they may disagree as to which type of fish will be caught in the future.

Entangled Design. We also remark that the design problem changed in a fundamental

way. To see that, recall that a mechanism by our definition is a function that produces an

allocation and a payment for all sequences of distributions F1..T = (F1, . . . , FT ). In traditional

dynamic auction design, the problem for each sequence of distributions (F1, F2, F3) and the

problem for (F1, F
′
2, F

′
3) are completely independent, since all the allocation and pricing for

each subsequence are different. With the non-clairvoyant restriction, the allocation in the

first period must be the same in both cases. The problem of designing auctions for different

distribution sequences becomes entangled.

Non-clairvoyant Revenue Maximization In Section 2, we defined Rev∗(F1..T ) as the

optimal revenue of a dynamic auction for a sequence of distributions F1..T without imposing

any measurability constraints. We call this quantity the optimal clairvoyant revenue for F1..T .

In that section we also defined RevS(F1..T ) as the revenue of the optimal static mechanism.

It doesn’t make sense to define the optimal clairvoyant revenue for a sequence F1..T , since

due to the non-clairvoyance constraint, the incentive constraint is not separable across differ-

ent distribution sequences. Instead we will define a non-clairvoyant revenue approximation.

Given a certain non-clairvoyant mechanism M, we define its revenue on a sequence of

distributions F1..T in the natural way:

RevM(F1..T ) = Eθ1..T∼F1..T
[
∑

t p
M(θ1..t;F1..t)].

We say that the non-clairvoyant dynamic mechanism M is an α-approximation to the

clairvoyant benchmark if, for all sequences of distributions F1..T ,

RevM(F1..T ) ≥ 1
α
·Rev∗(F1..T ).

The main question in this paper is whether we can design non-clairvoyant mechanisms
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that provide good approximations. The optimal static mechanism is non-clairvoyant, but

the example in Appendix A shows that it fails to guarantee any approximation α. Given

that fact, it is not clear in principle if we can obtain α <∞ at all.

4 A non-clairvoyant 3-approximation

We start by describing the central mechanism we analyze in the paper for the single buyer

case. Later in Section, 7 we generalize this result for multiple buyers. Our main result

is a non-clairvoyant mechanism that is a 3-approximation to the revenue of the optimal

clairvoyant mechanism.

NonClairvoyantBalance Mechanism The mechanism will maintain a variable called

balance bt, which is a function bt : Θt × (∆Θ)t → R+, and will be defined recursively. We

will discuss the precise meaning of the balance later, but for now think of it as some part of

the utility that the agent generates which is set aside to be used later for the mechanism.

Our mechanism will proceed as follows: in each period t, it will run a uniform combination

of the following three mechanisms:

1. Give for free: Allocate the item no matter what the agent type is, and charge her

nothing. Increment the balance by her value:

xFt = 1 pFt = 0 bFt = bt−1 + θt.

2. Posted price: Define a target utility to be st = min(3bt−1,Eθt∼Ft [θt]). Charge this

amount from the agent in advance independently of her report, and deduct this amount

from the balance. Then, choose a price rt such that the utility of the agent under rt is

st, i.e., Eθt∼Ft [(θt − rt)+] = st. Since st ≤ E[θt], the price rt will be non-negative. Run

a posted price auction with this price:

xPt = 1{θt ≥ rt} pPt = st + rt · 1{θt ≥ rt} bPt = bt−1 − st.
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3. Myerson’s auction: Find the posted price r∗t that maximizes the revenue that can

be obtained from this period, i.e., r∗t = arg maxr r · Pr[θt ≥ r] and post price r∗t :

xMt = 1{θt ≥ r∗t } pMt = r∗t · 1{θt ≥ r∗t } bMt = bt−1.

We describe the mechanism in each period as a uniform combination of those three:

xt = 1
3

[
xFt + xPt + xMt

]
pt = 1

3

[
pFt + pPt + pMt

]
bt = 1

3

[
bFt + bPt + bMt

]
,

where the functions above are functions of xt(F1..t, θ1..t), pt(F1..t, θ1..t), bt(F1..t, θ1..t).

Before we formally analyze the mechanism just described, it is useful to understand

the intuitive reasons why it is non-clairvoyant, dynamic incentive compatible, and ex-post

individually rational.

• Non-clairvoyance is straightforward, since the allocation and payment rule in period

t depends only on θt, Ft, and the balance bt−1 carried from the previous periods, which

is itself a function of θ1..t−1, F1..t−1.

• Ex-post individual rationality: fix any sequence of distributions F1..T = (F1, . . . , FT )

and agent types θ1..T = (θ1, . . . , θT ). We note that the balance variable has the prop-

erty that 0 ≤ bt ≤
∑t

τ=1 uτ . This happens because we only decrease the balance in

the Posted Price mechanism, and we do so while keeping it non-negative. We only

increase it in the Give For Free mechanism, where we bound it by the utility achieved

from that mechanism. The condition, in particular, implies that
∑t

τ=1 uτ ≥ 0.

• Dynamic incentive compatibility: When deciding on a strategy in each period,

the agent needs to worry about two things: (i) the utility she obtains in this period,

which corresponds to θtxt − pt, and (ii) how her strategy in this period will affect the

subsequent periods.

If we ignore the second issue about the effect of the current strategy in future periods,

the mechanism run in each period is incentive compatible since it is a combination of

three posted price mechanisms. In other words, fixing bt−1, the single period mechanism
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described by xt, pt is incentive compatible. So, the only reason that the agent might

think of deviating is to improve her utility in future periods.

The only way that the agent can affect a future period is through the balance. The

main idea behind the mechanism is to spend the balance in such a way that the agent

doesn’t care (in expectation) about what the balance will be in future periods. Clearly,

the balance doesn’t affect the Give For Free or the Myerson auction. The only effect

is in the Posted Price mechanism xPt , p
P
t , since it, in turn, can affect the value of the

parameter st. However, we set the mechanism in such a way that:

Eθt∼Ft [θtxPt − pPt ] = −st + Eθt∼Ft [(θt − rt)+] = −st + st = 0.

So, in expectation, the agent doesn’t care about what value st will be in future periods,

since she won’t derive utility from the Posted Price mechanism anyway.

The intuition given above carries over to a general class of mechanisms called bank ac-

count mechanisms, which will be discussed in the next section. Remarkably, despite the

fact that bank account mechanisms are a subclass of the set of dynamic mechanisms, we

will show that they always contain the revenue-optimal clairvoyant mechanism. Our main

strategy for proving that the NonClairvoyantBalance Mechanism is a 3-approximation

is to compare it with the optimal bank balance mechanism. This analysis will be done in

Section 5.

5 Bank Account Mechanisms

Now we define a general family of auctions containing the auction presented in the previous

section, which we call bank account mechanisms. We choose this name since they are based

on the thought experiment where a buyer “deposits” part of this utility in an account as an

investment, which will result in a more favorable auction in future periods. The idea of a

bank account is only an abstract device used in the construction of the mechanism and not

a real entity that buyers reason about. We initially present our definition in the standard

clairvoyant, where there is a fixed sequence of distributions F1..T , and allow all functions
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defining the mechanism to depend on all distributions. To avoid overloading notation, we

omit the distribution dependence.

Our auction will have two salient features: first, each period depends on the previous

periods only through a single scalar variable called balance; and second, in this framework,

the designer needs to specify single-period auctions that are single-period incentive compat-

ible together with a valid balance update policy. That is, once a valid balance update policy

is in place, all the designer needs to worry about are single-period incentive compatibility

constraints.

A bank account mechanism B in terms of the following functions for each period:

• A static single-period mechanism xBt (θt, b), p
B
t (θt, b) parametrized by a balance b ∈ R+

that is (single-period) incentive-compatible for each b, i.e.,:

v(θt, x
B
t (θt, b))− pBt (θt, b) ≥ v(θt, x

B
t (θ′t, b))− pBt (θ′t, b). (IC)

Note that we don’t require the mechanism to be (single-period) individually rational.

We also require the utility of the agent to be balance independent in expectation, i.e.,:

Eθt∼Ft [v(θt, x
B
t (θt, b))− pBt (θt, b)] is a non-negative constant not depending on b.

(BI)

• A balance update policy bBt (θt, b) which maps the previous balance and the report to

the current balance, satisfying the following balance update conditions:

0 ≤ bBt (θt, b) ≤ b+ v(θt, x
B
t (θt, b))− pBt (θt, b). (BU)

Given the balance update functions, we can define bt : Θt → R+ recursively as:

b0 = 0 and b1(θ1) = bB1 (θ1, 0) and bt(θ1..t) = bBt (θt, b
B
t−1(θ1..t−1)),
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which allows us to define a dynamic mechanism in the standard sense as:

xt(θ1..t) = xBt (θt, bt−1(θ1..t−1)) pt(θ1..t) = pBt (θt, bt−1(θ1..t−1)).

In what follows, we will abuse notations by dropping the superscript B and refer to

xt(θ1..t) and xt(θt, bt−1) interchangeably. Our first theorem is that any bank account mecha-

nism (in particular, the NonClairvoyantBalance mechanism) satisfies DIC and eP-IR.

In fact, it also satisfies stronger versions of those properties: the mechanism is per-period

incentive compatible, i.e., the buyer’s utility in each given period is maximized by reporting

truthfully in that period:

θt ∈ arg maxθ̂t ut(θt; θ1..t−1, θ̂t), (pp-IC)

and the expected continuation utility is independent of the type reported, i.e.:

Ut(θ1..t−1, θ̂t) is independent of θ̂t. (indCont)

It is straightforward from the definition of (DIC) to see that conditions (pp-IC) and (indCont)

imply (DIC).

The mechanism also satisfies a stronger version of (eP-IR): it is ex-post individually

rational for every prefix and every realization of the random variables:

t∑
τ=1

uτ (θτ ; θ1..τ ) ≥ 0,∀t. (prefix-epIR)

Moreover, each individual period is individually rational in expectation:

Eθt [ut(θt; θ1..t)] ≥ 0,∀t. (Epp-IR)

The proof follows from the argument given in the previous section and is made formal in

Appendix B.1.

Theorem 5.1. Any bank account mechanism satisfying IC, BI, and BU is dynamic incentive

compatible (DIC) and ex-post individually rational (eP-IR). Moreover, it also satisfies the
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stronger properties of (pp-IC), (indCont), (prefix-epIR) and (Epp-IR).

The reason we focus on bank account mechanisms and the reason they are useful both

in designing optimal dynamic mechanisms and proving lower bounds, is that any dynamic

incentive compatible and ex-post individually rational mechanism can be converted to a

bank account mechanism without loss of revenue or welfare. Therefore, in designing or

characterizing the revenue optimal mechanism, it is enough to focus on the subclass of bank

account mechanisms. Formally:

Theorem 5.2. Given any dynamic mechanism (xt, pt)t satisfying DIC and eP-IR, there

exists a bank account mechanism with at least the same revenue and at least the same welfare.

In particular, for any given setting, there is a revenue-optimal mechanism in the form of a

bank account mechanism.

In the rest of section we give an overview of the proof of Theorem 5.2. The first step

of the proof is a symmetrization lemma. Central to this lemma is the concept of partially-

realized utility, which measures the expected utility of a agent conditioned on some prefix of

the type vector:

Ūt(θ1..t) =
∑t

τ=1 ut(θτ ; θ1..τ ) + Ut(θ1..t)

In addition, the dynamic mechanism after the symmetrization will satisfy the payment-

frontloading and symmetry properties:

Definition 5.3 (Payment-frontloading). A dynamic mechanism is payment-frontloading, if

ut(θ1..t) = 0 for t < T and uT (θ1..T ) ≥ 0. (PF)

The property is a stronger version of eP-IR.

Definition 5.4 (Symmetry condition). A dynamic mechanism satisfies the symmetry con-

dition, if for every t < s:

if Ūt(θ1..t) = Ūt(θ
′
1..t) then:

xs(θ1..t, θt+1..s) = xs(θ
′
1..t, θt+1..s) and ps(θ1..t, θt+1..s) = ps(θ

′
1..t, θt+1..s).

(Symm)
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Lemma 5.5 (Symmetrization). Any dynamic mechanism satisfying DIC and eP-IR can be

transformed into a mechanism (xt, pt)t with at least the same welfare and at least the same

revenue as the original dynamic mechanism, satisfying three properties: (i) DIC; (ii) PF;

(iii) Symm.

At first glance, our symmetrization lemma resembles the promised utility framework of

Thomas and Worrall [TW90], which can be viewed as a symmetrization of the mechanism

with respect to the continuation utilities Ut. Their result can be viewed as an application

of the Principle of Optimality of the Theory of Dynamic Programming [Ber00], which de-

scribes the structure of an optimal solution that can be obtained by solving an infinite-size

dynamic program. The symmetrization obtained in [TW90] is insufficient for our needs.

Our solution is to transform the optimization program to a different space and apply the

Principle of Optimality to the transformed program. In Appendix B, we provide a proof of

Lemma 5.5 from first principles (i.e. without invoking the Theory of Dynamic Programming).

Proof of Theorem 5.2. A direct consequence of Lemma 5.5 is that we can write xt = xt(θt, Ūt−1)

and pt = pt(θt, Ūt−1). Also, Ūt = Ūt(θt, Ūt−1) because by the payment frontloading property

Ūt = E[
∑T

s=t+1 v(θs, xt(θt..s, Ūt−1))− ps(θt..s, Ūt−1)|θt]

This allows us to define a bank account mechanism as follows. First we define the bank

balance:

bBt (θ1..t) = Ūt(θ1..t)− µt for t < T and bBT (θ1..T ) = −µT = 0

where µt = minθ1..t Ūt(θ1..t) for t < T and µT = 0. It will be useful to notice that by Jensen’s

inequality µ0 ≥ µ1 ≥ . . . ≥ µT = 0. The allocation is the same as the original mechanism

xBt (θ1..t) = xt(θ1..t) and payments are computed as follows:

pBt (θ1..t) = pt(θ1..t)− bBt (θ1..t) + bBt−1(θ1..t−1)
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Since there is a one-to-one mapping between Ūt and bBt , allocations, payments, and bank ac-

count updates can be computed from the previous state of the bank accounts, i.e., xBt (θ1..t) =

xBt (θt, bt−1) = xBt (θt, b
B
t−1(θ1..t−1)) and same for payments pBt . It will be useful to notice that

we set payments and balance in such a way that:

v(θt, xt)− pt + bBt = Ūt − µt (♦)

This is true because for t < T , the per period utility v(θt, xt)−pt is zero since the mechanism

has the payment frontloading property; for t = T , bBT = −µT = 0, and v(θT , xT )− pT = ŪT ,

since by the payment frontloading property the agent has non-zero utility only in the last

period.

We will use this fact to check that the mechanism is a valid bank account mechanism.

First note that by design bBt (θ1..t) is always non-negative and bB0 = 0. Now we only need to

check conditions IC, BI, and BU.

Condition IC follows from the definition of pBt and the fact that the original mechanism

is DIC, since the maximization problem in IC becomes the same optimization in DIC with

an additional constant term. For t = T this is trivial since bBT (θ1..t) = 0. For t < T we have:

uBt (θt; θ1..t−1, θ̂t) = v(θt, x
B
t (θ1..t−1, θ̂t))− pBt (θ1..t−1, θ̂t)

= v(θt, xt(θ̂t, Ūt))− pt(θ1..t−1, θ̂t) + Ūt(θ1..t−1, θ̂t)−
(
Ūt−1(θ1..t−1) + µt − µt−1

)
since the term Ūt−1(θ1..t−1) + µt − µt−1 is a constant in θ̂t and Ūt(θ1..t−1, θ̂t) = Ut(θ1..t−1, θ̂t)

by the payment frontloading property. To check condition BI, we apply equation (♦):

Eθt [v(θt, x
B
t )−pBt ] = Eθt [v(θt, xt)−pt+bBt −bBt−1] = Eθt [Ūt−µt−(Ūt−1−µt−1)] = µt−1−µt ≥ 0

This establishes BI since the outcome is a constant that just depends on t but not on the

value of bBt . Now, for condition BU we again apply equation (♦):

bBt−1 + v(θt, xt)− pBt = bBt−1 + v(θt, xt)− pt + bBt − bBt−1 = Ūt − µt ≥ bBt

26



where the last inequality holds with equality for all t < T .

5.1 Spend, Deposit and an Interpretation

It is useful to decompose the balance update policy bt(θt, bt−1) in two components that we

will call spend and deposit. With such decomposition, the bank account balance will be

updated in the most natural way: the next balance is set to the current balance plus deposit

minus spend.

We define the spend as:

st(bt−1) = [−minθt v(θt, xt(θt, bt−1))− pt(θt, bt−1)]+

where [x]+ = max(x, 0). So if we decompose the payment in pt(θt, bt−1) = st(bt−1) +

p′t(θt, bt−1), now, for each bank balance bt−1, the single-period mechanism defined by xt(θt, bt−1)

and p′t(θt, bt−1) is incentive compatible and individually rational.

We now define the deposit as:

dt(θt, bt−1) = bt(θt, bt−1)− bt−1 + st(bt−1)

which implies that the balance update can be written as:

bt(θt, bt−1) = bt−1 + dt(θt, bt−1)− st(bt−1),

The following lemma is a trivial consequence of the definitions:

Lemma 5.6 (Interpretation of BU and BI). Condition BU is equivalent to st(bt−1) ≤ bt−1

and 0 ≤ dt(θt, bt−1) ≤ u′t(θt, bt−1) where u′t(θt, bt−1) = v(θt, xt(θt, bt−1)) − p′t(θt, bt−1). Condi-

tion BI says that E[u′t(θt, bt−1)]− st(bt−1) ≥ 0 and doesn’t depend on bt−1.

Now we are ready to give an interpretation of bank account mechanisms: imagine that

the agent has a bank account. The account belongs to the agent, so depositing money in it

just means the agent is setting some money aside, and she is not spending it just yet. In

any given period, three things happen:
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1. before the agent learns her type the mechanism asks the agent to spend an amount st

from the account as a function of the current balance bt−1. The mechanism does so

with a promise that her expected utility from the mechanism minus the spend should

be constant. Given that, the agent should be indifferent to how much she spends, since

she will recover in (expected) utility later on.

2. then the agent participates in a single-period truthful and individually rational mech-

anism (xt, p
′
t).

3. later the agent is asked to deposit part of this utility from the single-period mechanism

to the account. The amount in the account still belongs to the agent. It can, of

course, affect how much the agent will be required to spend in future periods, but as

we argued before, the agent is indifferent to how much she spends given the promise

of the mechanism.

This view allows to provide good upper bounds on how much revenue can be extracted

by a dynamic mechanism. By Theorem 5.2 the optimal mechanism can be expressed as a

bank account mechanism (xt, p
′
t, st, dt), therefore:

Lemma 5.7 (Revenue upper bound). The revenue of any dynamic mechanism (xt, p
′
t, st, dt)

can be bounded by E[
∑

t st(θ1..t)] plus the revenue of the optimal static mechanism.

Proof. Since pt = st + p′t we have that: Rev ≤ E[
∑

t st(θ1..t)] + E[
∑

t p
′
t(θ1..t)]. But

Eθt∼Ft [p′t(θt, bt−1)] can be bounded by the revenue of the optimal single-period static mech-

anism for that distribution.

5.2 NonClairvoyantBalance is a 3-approximation

With this machinery in place, the fact that the NonClairvoyantBalance mechanism

from Section 4 is a 3-approximation becomes quite easy:

Theorem 5.8. The revenue of the NonClairvoyantBalance mechanism is at least 1/3

of the revenue of the optimal dynamic mechanism.
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Proof. The revenue of the NonClairvoyantBalance mechanism is

Rev = E
[∑

t
1
3
[pFt (θ1..t) + pPt (θ1..t) + pMt (θ1..t)]

]
.

Clearly, E[
∑

t p
M
t (θ1..t)] is the revenue of the optimal static mechanism, in this case the

Myerson auction. So by Lemma 5.7, all we need to prove is that E[
∑

t p
P
t (θ1..t) + pFt (θ1..t)] is

greater than the sum of the spends of any optimal bank account mechanism. We will show

the stronger statement that if (xt, p
′
t, st, dt) is any bank account mechanism, and θ1..T is any

realization of types then:

∑
t p

P
t (θ1..t) + pFt (θ1..t) ≥

∑
t st(bt−1(θ1..t−1)) (∗)

Since the realization of the random variables is fixed, let’s abbreviate the balance, spend,

and deposit in the generic bank account mechanism by bt, st and dt. By Lemma 5.6 we know

that dt ≤ u′t ≤ θt, st ≤ bt−1, and st ≤ Eθ̂t∼Ft [u
′
t(θ1..t−1, θ̂t)] =: λt so:

bt+1 = bt − dt + st dt ≤ θt st ≤ min(λt, bt−1) (BalConst)

The way to pick dt, st to optimize
∑

t st subject to BalConst is to use the greedy algorithm

that always deposits as much as possible dt = θt and always spends as much as possible st =

min(λt, bt−1). It should be clear from the principle of local optimality that it is never useful

to delay spending outstanding balance. Finally notice that the NonClairvoyantBalance

mechanism implements exactly the optimal Greedy policy scaled by a factor of 1/3: the Give

For Free Mechanism adds 1
3
θt to the balance and the Posted Price Mechanism consumes

min(bt−1,
1
3
λt), proving (∗). Those two facts together prove the theorem.

6 Non-clairvoyance Gap

We argue that an inherent gap exists between clairvoyant and non-clairvoyant mechanisms.

Formally, we show that no non-clairvoyant mechanism can provide a better-than-2 approx-

imation to the clairvoyant benchmark. Our lower bound is based on the following idea:
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consider a pair of distributions F1, F2 and two possible situations: (i) only one item with

distribution F1; and (ii) an item with distribution F1 followed by another item of distribu-

tion F2. The non-clairvoyant mechanism must allocate the same way in both cases. If the

non-clairvoyant mechanism receives a second item, he can allocate and charge a payment for

it; however, if not, his revenue will be the one obtained from the first item.

We recall that given a sequence of distributions F1..T we denote by Rev∗(F1..T ) the

revenue of the optimal clairvoyant mechanism and given a non-clairvoyant mechanism M

defined by xt(θ1..t;F1..t) and pt(θ1..t;F1..t) we define its revenue on a sequence of distributions

F1..T by RevM(F1..T ). Given this definitions we prove the following lower bound:

Theorem 6.1 (Lower bound). For every δ > 0 there are distributions F1, F2 such that for

every non-clairvoyant mechanism M either RevM(F1) ≤ 1+δ
2
Rev∗(F1) or RevM(F1, F2) ≤

1+δ
2
Rev∗(F1, F2). In particular, if a non-clairvoyant mechanism is an α-approximation to

the clairvoyant benchmark, then α ≥ 2.

The central ingredient in the proof (given in Appendix D) is a characterization of non-

clairvoyant mechanisms as bank account mechanisms. We define a non-clairvoyant bank

account mechanism as a bank account mechanism with the measure-theoretic restriction

that the allocation and payment function at time t must be measurable with respect to the

balance bt, the reported type θt and the sequence of distributions F1..t corresponding to the

current and past periods. In other words, it is simply a bank account mechanism that is not

allowed to depend on distributional knowledge about the future.

Our main characterization is that any non-clairvoyant mechanism can be written as a

non-clairvoyant bank account mechanism with the same revenue:

Theorem 6.2. Given any non-clairvoyant dynamic mechanism satisfying DIC and eP-IR,

there exists a non-clairvoyant bank account mechanism with the same revenue.

The characterization in Theorem 6.2 is a non-clairvoyant analogue of Theorem 5.2, and

although their proofs share some similarities, there are new challenges to overcome due to

the measure-theoretic restrictions imposed by non-clairvoyance: notably the proof of The-

orem 5.2 starts by changing the original mechanism to an equivalent payment frontloading

mechanism. This clearly breaks non-clairvoyance, so any non-clairvoyant reduction must
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avoid this step. Also, in the proof of Theorem 5.2, we symmetrize the mechanism around

the concept of partially realized utility, which is not well-defined for non-clairvoyant mech-

anisms. To overcome those problems, we will use two ideas. The first is a stong property

implied by non-clairvoyance, which is the fact that the continuation utility must be constant

in the reported type (Lemma D.1). The second idea is to symmetrize the mechanism by re-

sampling types of previous periods conditioned on a certain event, which in a way resembles

the Myersonian ironing procedure.

In Section 8, we present a matching upper bound for 2 periods. More formally, there

is a 2-period non-clairvoyant dynamic mechanism satisfying DIC and eP-IR that is a 2-

approximation to any 2-period clairvoyant mechanism.

7 Multiple Buyers

In this section, we extend our results to multiple buyer cases. Our decision to focus on a

single buyer was driven by the desire to keep notation as simple as possible and to focus on

the complications introduced by non-clairvoyance. Once the single buyer case is understood,

however, most of the results presented so far extend to the multi-buyer setting. Our char-

acterization results (Theorems 5.2 and 6.2) extend with essentially no change in the proofs.

The lower bound also naturally extends. The only major difference is in the extension of the

NonClairvoyantBalance mechanism. Now we need to keep a balance for every buyer,

so the state will be a vector. As a consequence, we will be required to reason about utility

tradeoffs not only across time periods but across buyers. In the single buyer case, we solved

this problem by decreasing the posted price of each buyer based on the bank balance in a

greedy manner. Here, instead, we will need to be more careful and decide which auction

to use based on the result of an optimization program. This program will resemble what is

often called the optimal money burning auction [HR08].

7.1 Multi-buyer dynamic mechanism design

We start by extending the concepts in the paper to multiple buyers. Consider a set N of

n agents who participate in the mechanism for T periods. For each agent i ∈ N and each
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t ∈ {1, . . . , T} the type θit of agent i in period t is drawn independently from a distribution

F i
t . When we omit the superscript i we refer to the vector of types θt = (θ1

t , . . . , θ
n
t ). As

usual in mechanism design we refer to θ−it as the vector of types of all agents except i. Agent

i has a value vi : Θ×O → R+. A dynamic mechanism corresponds to pairs of maps:

• Outcome: xt : ΘtN × (∆Θ)TN → O

• Payment: pt : ΘtN × (∆Θ)TN → R

Similarly to the single buyer case, we can define the notion of continuation utility

U i
t (θ̂1..t;F1..T ) as the expected total utility of a buyer in periods t + 1 to T if her history

of reports up to period t is θ̂1..t and all the buyers report truthfully from period t + 1 on-

wards. This allows us to define the analogue of condition DIC for multiple buyers, which

we call Dynamic Bayesian Incentive Compatibility. We call it Bayesian since each buyer

takes expectations over the behavior of all other buyers assuming they bid truthfully. The

condition can be written as follows:

θt = arg maxθ̂t Eθ−it
[
uit(θ

i
t; θ̂1..t−1, (θ

−i
t , θ̂

i
t)) + U i

t (θ̂1..t−1, (θ
−i
t , θ̂

i
t))
]

(DBIC)

We recall that while the condition DIC for a single buyer can be justified by the dynamic

version of the revelation principle, no such equivalence can be obtained for multiple buyers.

What we have here is an ex-post incentive compatibility: it is optimal for a buyer to report

her type truthfully as long as all the other buyers also do so. We refer to [AS13] or [PST14]

for a discussion of the relation between incentive compatibility in dynamic settings and the

revelation principle, as well as [MR92] and [BM05] for the comparison of dominant-strategy

implementation, ex-post implementation, and Bayesian implementation.

The condition eP-IR is generalized in the natural way. Every buyer derives non-negative

utility in every sample path if she is behaving truthfully.

The notion of non-clairvoyance corresponds again to the same measure theoretic restric-

tion that the allocation and payment functions in time t must be measurable with respect

to (θ1..t, F1..t), i.e., can’t depend on distributional knowledge of future periods.
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7.2 Multi-buyer bank account mechanisms

We define a bank account mechanism for n buyers as:

• A static single-period mechanism xBt (θt, b), p
B
t (θt, b) parametrized by an n-dimensional

bank balance b ∈ Rn
+ that is single-period Bayesian incentive compatible, i.e., satisfies

the multi-buyer version of IC and satisfies the multi-buyer version of BI which means

that:

Eθt [vi(θit;xBt (θt, b))− pBt (θt, b)] is a non-negative constant not depending on b

• A balance update policy bBt (θt, b) satisfying a multi-buyer equivalent of condition BU:

0 ≤ bB,it (θt, b) ≤ bi + uB,it (θt, b)

Given the update function and starting with balance bi0 = 0 for all i, we can reconstruct

the mechanism in the similar way we did for single buyer mechanisms.

Also, we will describe the payment pit and balance update policy bit in terms of spend sit

and deposit dit like we did in Section 5.1:

sit(bt−1) =

[
−min

θit

Eθ−it
[
vi(θit, xt(θt, bt−1))− pit(θt, bt−1)

]]+

dit(θt, bt−1) = bit(θt, bt−1)− bit−1 + sit(bt−1)

Both the clairvoyant (Theorem 5.2) and non-clairvoyant (Theorem 6.2) reductions still

hold in the multi-buyer setting. Their proofs are essentially the same by simply adapting

the notation to multiple buyers.

7.3 A non-clairvoyant 5-approximation for multiple buyers

Now, we are ready to extend the NonClairvoyantBalance mechanism discussed in

Section 4 to multiple buyers. We are back to the auction setting, where θit ∈ R+ and
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O = {x ∈ [0, 1]n;
∑

i x
i ≤ 1}. Given xt ∈ O we will refer to xit as the i-th component of xt

and vi(θit, xt) = θit · xit.

We start by observing that Lemma 5.7 still holds in the multi-buyer case. The revenue of

any bank account mechanism can be bounded by the revenue of the optimal static mechanism

plus the sum of spends E[
∑

t

∑
i s
i
t(θ1..t)]. A natural strategy given this lemma is to combine

the optimal static mechanism (in this case the Myerson auction) with the mechanism that

tries to spend as much as possible from the bank accounts.

Why is doing that harder for multiple buyers? In the one buyer case, we did it by a simple

greedy algorithm that would combine a mechanism that always deposits as much as possible

and a mechanism that always spends as much as possible. In the multi-buyer case, however,

the amounts we deposit and spend for each buyer i in a certain period are bounded by a

function of the buyer’s utility in that period. Therefore deposit and spend decisions can’t

be made independently. In that world, a clairvoyant mechanism has two major advantages:

• the clairvoyant mechanism knows for which agent to deposit since it knows which agent

will have capacity to spend in future periods.

• the clairvoyant mechanism knows from which agent to spend, since he knows which

agents will and which agents won’t have ability to spend in future periods.

To address those issues, we do the following:

• we sell some fraction of the item using a second price auction and deposit the utility

of the winner. We argue that this is the maximum possible total deposit and the

maximum possible deposit for the winner. From all the other buyers, we charge their

deposits against the revenue of the second price auction in that period.

• we replace the greedy algorithm in the single buyer case with the money burning

mechanism of Hartline and Roughgarden [HR08] and argue that it will maximize the

spend. Also we argue that not knowing which buyer will have the ability to spend in

future periods can harm the spend by at most a factor of 2, since each balance that

could have been spent but was not can be charged against an amount of spend at an

earlier period.
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Now, we are ready to define the multi-buyer version of the NonClairvoyantBalance

mechanism. As before we will define three mechanisms that are parametrized by the balance

bt together with a balance update policy. As done in Section 4, we will count the spend as

part of the payment:

1. Second Price Auction: We will allocate the item to the buyer with the highest type

(breaking ties arbitrarily). We will deposit the utility of the top bidder in her bank

account. In other words, if we order the buyers such that θ1
t ≥ θ2

t ≥ . . . ≥ θnt , then:

xS,1t = 1, xS,jt = 0 pS,1t = θ2
t , pS,jt = 0 bS,1t = b1

t−1 + θ1
t − θ2

t , bS,jt = bjt−1

for all j ≥ 2. This mechanism guarantees the largest possible deposit in the bank

accounts.

2. Money Burning Auction: Given the bank account states bt−1 we will compute the

single-period mechanism that maximizes the sum of expected utilities of the buyers

subject to each buyer i having utility at most 5
2
bit−1, this is, we want to compute the

allocation and payment rule xBt , p̃
B
t satisfying Bayesian incentive compatibility and

individual rationality and maximizing:

max
∑

i Eθt [ũ
B,i
t (θt)] s.t. E[ũB,it ] ≤ 5

2
bit−1,∀i (BIC) and (IR)

Money burning mechanisms have this name since they correspond to the welfare max-

imization problem when the revenue obtained is burned. Hartline and Roughgarden

[HR08] provide a comprehensive study of such mechanisms and show that they can

also be written as a virtual value maximization for a different notion of virtual values.

In fact we can deduce from their result that the solution to the problem above corre-

sponds to the auction where we transform the values to the space of virtual values for

utilities and run a (scaled) second price auction in that space. So in that sense it is

not very different from Myerson’s auction other than the fact that the notion of virtual

values is non-standard. Given a solution to the problem above, we define the money

burning mechanism using the allocation obtained from the program and payment and
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balance as follows:

pB,it = p̃B,it + E[ũB,it ] bB,it = bit−1 − E[ũB,it ]

In the language of spends and deposits: we run the mechanism from the program after

spending its expected utility from the bank accounts.

3. Myerson’s Auction: We run the static optimal auction given by xM and pM . Bank

accounts are unchanged, i.e.:

bM,i
t = bit−1

Now, the non-clairvoyant balance mechanism is the mechanism defined by:

xit =
1

5
xM,i
t +

2

5
xS,it +

2

5
xB,it pit =

1

5
pM,i
t +

2

5
pS,it +

2

5
pB,it bit =

1

5
bM,i
t +

2

5
bS,it +

2

5
bB,it

In Appendix E we argue that each component of the NonClairvoyantBalance mech-

anism can be implemented in polynomial time. Next we provide an approximation guarantee

with respect to the clairvoyant benchmark:

Theorem 7.1. The multi-buyer version of the NonClairvoyantBalance mechanism is

a non-clairvoyant 5-approximation to the clairvoyant benchmark.

Proof. Fix a time horizon T and distributions F i
t for t = 1..T and i = 1..n. Let (x∗, p∗) be

the optimal clairvoyant mechanism for this setting. By the multi-buyer version of Theorem

5.2, we can write the bank account mechanism in terms of a spend policy s∗t , a deposit policy

d∗t , and an IC and IR payment function p′∗t such that:

p∗it = p′
∗i
t + s∗it b∗it = b∗it−1 − s∗it + d∗it

Similarly, let xt, p
′
t, st, dt describe the NonClairvoyantBalance mechanism where the

spend term corresponds to the expected utility of the Money Burning.

Step 1: Bounding p′∗ using the Myerson component. Our first observation is that since

for each period x∗t , p
′∗
t is individually rational and Bayesian incentive compatible, its revenue
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must be dominated by the Myerson auction: Eθt
[∑

i p
′∗i
t (θ1..t)

]
≤ Eθt

[∑
i p

M,i
t (θt)

]
. This

already tells us that the revenue we obtain from selling 1/5 fraction of each item using My-

erson’s auction dominates within a factor of 5 the E
[∑

i,t p
′∗i
t

]
component of the revenue of

the optimal clairvoyant mechanism.

Step 2: Lower bound to the balance of the non-clairvoyant mechanism. We are left to

show that the remaining component E
[∑

i,t s
∗i
t

]
of the revenue of the optimal clairvoyant

mechanism is dominated by the combination of the Second Price Auction and the Money

Burning Auction within a factor of 5. We will show by induction that for every fixed sequence

of types and for all buyers θ1..T the following invariant holds. Since the types for all buyers

are fixed for all periods, we will omit the type vectors in the notation.

bit +
∑t

τ=1 s
i
τ ≥ 2

5
(b∗it +

∑t
τ=1 s

∗i
τ −

∑t
τ=1 θ

(2)
τ x∗iτ ) (7.1)

where θ
(2)
τ is the second highest type. This is true for t = 0 since both balances are initially

zero. Now, assume it is valid for t then substituting the balance update formula bit+1 =

bit − sit+1 + dit+1 for both the non-clairvoyant and the clairvoyant mechanism we obtain:

bit+1 +
∑t+1

τ=1 s
i
τ − dit+1 ≥ 2

5
(b∗it+1 +

∑t+1
τ=1 s

∗i
τ −

∑t
τ=1 θ

(2)
τ x∗iτ − d∗it+1)

By Lemma 5.6, d∗it+1 ≤ u′∗it+1 ≤ θit+1x
∗i
t+1. If i is not the agent with the highest type then

θit+1 ≤ θ
(2)
t+1 and we are done by the fact that dit+1 ≥ 0 and θ

(2)
t+1x

∗i
t+1 ≥ d∗it+1. If i is the agent

with the highest type, then

dit+1 = 2
5
(θit+1 − θ

(2)
t+1) ≥ 2

5
(θit+1 − θ

(2)
t+1)x∗it+1 ≥ 2

5
(d∗it+1 − θ

(2)
t+1x

∗i
t+1)

since we only deposit in the Second Price Auction mechanism for the top agent. Substituting

this bound we obtain the invariant for t+ 1.

Step 3: Charging scheme for spend. We will construct a charging scheme to re-attribute

the spends of the non-clairvoyant mechanism in a way that makes it resemble more the
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spends of the optimal clairvoyant mechanism. For each fixed θ1..T we will define a charging

scheme cit ≥ 0 such that for each period t we have
∑

i c
i
t ≤

∑
i s
i
t. We will do so in such a

way that we can more easily compare s∗it with cit.

We know by Lemma 5.6 that there is a solution to the Money Burning problem in period

t with E[ũit] ≥ s∗it since the clairvoyant mechanism with balance b∗t−1 provides such a solu-

tion. Therefore, by rescaling the mechanism there must be a solution to the money burning

problem with constraints E[ũit] ≤ 5
2
bit−1 such that E[ũit] = min

(
s∗it ,

5
2
bit−1

)
. In particular this

means that: ∑
i s
i
t ≥ 2

5

∑
i min

(
s∗it ,

5
2
bit−1

)
This motivates to define the following charging scheme:

cit = min
(

2
5
s∗it , b

i
t−1

)
Based on how we compute the charge we divide the set of agents in each period in a set At of

agents ahead and a set Bt of agents behind. We say agent i is behind (i ∈ Bt) if bit−1 ≤ 2
5
s∗it

and we say that i is ahead (i ∈ At) otherwise. For i ∈ Bt we can produce a good bound on

the total spend using (7.1):

cit = bit−1 ≥ 2
5
(b∗it−1 +

∑t−1
τ=1 s

∗i
τ −

∑t−1
τ=1 θ

(2)
τ x∗iτ )−

∑t−1
τ=1 s

i
τ

Re-organizing the expression and using that s∗it ≤ b∗it−1 we get:

cit +
∑t−1

τ=1 s
i
τ + 2

5

∑t−1
τ=1 θ

(2)
τ x∗iτ ≥ 2

5

∑t
τ=1 s

∗i
τ (7.2)

A similar bound can be used to bound an ahead agent i ∈ At. Let t′ be the last period before

t where i ∈ Bt′ . This is well-defined since all agents are behind in period zero. Therefore

equation (7.2) holds for t′. Now, we can sum
∑t

τ=t′+1 c
i
τ ≥ 2

5

∑t
τ=t′+1 s

∗i
τ to that bound and

get: ∑t′−1
τ=1 s

i
τ +

∑t
τ=t′ c

i
τ + 2

5

∑t′−1
τ=1 θ

(2)
τ x∗iτ ≥ 2

5

∑t
τ=1 s

∗i
τ (7.3)

Step 4: Bounding the spend of the non-clairvoyant mechanism. Either if i ∈ Bt (equation
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7.2) or i ∈ At (equation 7.3) we can bound the spend as follows:

∑t
τ=1 s

i
τ +

∑t
τ=1 c

i
τ + 2

5

∑t
τ=1 θ

(2)
τ x∗iτ ≥ 2

5

∑t
τ=1 s

∗i
τ

Summing over all agents i and using the fact that
∑

i c
i
t ≤

∑
i s
i
t we have:

2
∑

i

∑T
τ=1 s

i
τ + 2

5

∑t
τ=1 θ

(2)
τ ≥ 2

5

∑
i

∑t
τ=1 s

∗i
τ

Dividing the previous expression by 2 we see that the sum of total spends of the non-

clairvoyant mechanism together with the revenue obtained from the second price auction

component gives us a 5-approximation to the total spend of the optimal clairvoyant mecha-

nism.

Stronger incentive guarantees. While our mechanism provides 1/5 of the revenue of any

Dynamic Bayesian Incentive Compatible (DBIC) mechanism, it actually satisfies a stronger

notion of incentive compatibility: it is optimal for an agent to report her true type even if

she knows the types of other agents in the period when she is reporting. This corresponds

to the notion of Strong Dynamic Bayesian Incentive Compatibility:

θt = arg maxθ̂t u
i
t(θ

i
t; θ̂1..t−1, (θ

−i
t , θ̂

i
t)) + U i

t (θ̂1..t−1, (θ
−i
t , θ̂

i
t)), ∀θ−it (sDBIC)

Lemma 7.2. The NonClairvoyantBalance mechanism satisfies (sDBIC).

Proof. By the BI property, the expected utility in subsequent rounds is not a function of

the current reported type, so it is enough to argue that the three components of the Non-

ClairvoyantBalance mechanism are dominant strategy incentive compatible in the static

sense. This is trivial to check for the second price and Myerson components. For the Money

Burning auction, we refer the reader to Appendix E where we discuss how to construct this

component.
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8 Optimal non-clairvoyant approximation for 2-periods

When the notion of non-clairvoyance was initially defined, it wasn’t at all clear that it would

be possible to obtain a non-clairvoyant mechanism with revenue performance at all close to

the optimal mechanism that knows all the distributions, since the only obvious candidate

(the static mechanism) is arbitrarily bad on certain distributions.

We showed that non-clairvoyance comes at a cost. No non-clairvoyant mechanism can

obtain better than 2-approximation for all distributions and that a 5-approximation is pos-

sible. That begs the question on how to obtain the optimal non-clairvoyant mechanism, i.e.,

the mechanism with best possible approximation.

In the final section we obtain the best mechanism for two periods. For this special case,

we provide a mechanism with 2-approximation to the optimal clairvoyant mechanism.

We now define the special 2-period version of the NonClairvoyantBalance mech-

anism using the same three mechanisms we used for the multi-buyer version, except that

the Money Burning Auction is slightly different on the coefficients (2 instead of 5/2) in the

spend constraints:

max
∑

i Eθt [ũBt (θt)] s.t. E[ũBt ] ≤ 2bit−1,∀i (IC) and (IR)

Then the 2-period version of the NonClairvoyantBalance mechanism is defined by:

xi1 = 1
2

[
xM,i

1 + xS,i1

]
pi1 = 1

2

[
pM,i

1 + pS,i1

]
bi1 = 1

2

[
bM,i

1 + bS,i1

]
xi2 = 1

2

[
xM,i

2 + xB,i2

]
pi2 = 1

2

[
pM,i

2 + pB,i2

]
bi2 = 1

2

[
bM,i

2 + bB,i2

]
Theorem 8.1. The 2-period version of the NonClairvoyantBalance mechanism is a

non-clairvoyant 2-approximation to the 2-period clairvoyant benchmark.

Proof. The proof is almost implied by the arguments we made in the proof of Theorem 7.1.

Since there are only 2 periods in total, then

• The spend of the clairvoyant mechanism in the first period is zero:
∑

i s
∗i
1 = 0. There-

fore the non-clairvoyant mechanism doesn’t lose any spend for not including Money
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Burning Auction in the first period.

• The total spend only depends on the balance from the first period (b1). Therefore

the non-clairvoyant mechanism doesn’t lose any spend for not including Second Price

Auction in the second period.

• The total spend only comes from the second period. Hence the Money Burning Auction

is optimal in the spend.

Putting the above three observations together, we can conclude that for any type vector

sequence θ1..2,

θ
(2)
1 +

∑
i s
i
1 + si2 ≥ 1

2

∑
i s
∗i
1 + s∗i2

Combining this with the fact that the non-clairvoyant mechanism sells half of the item via

Myerson’s Auction, we conclude that it is a non-clairvoyant 2-approximation.

9 Related Work

Dynamic mechanism design The literature on dynamic mechanism design is too extensive

to survey here: we refer to the survey by Bergemann and Said [BS11] for a comprehensive

treatment on the subject. Here, we discuss a few representative papers in the literature.

For efficiency (social-welfare) maximization, Bergemann and Välimäki [BV10] propose

the dynamic pivot mechanism, which is a natural generalization of the VCG mechanism to

a dynamic environment where agents receive private information over time, and Athey and

Segal [AS13] propose the team mechanism to achieve budget-balanced outcomes (see also

Bergemann and Välimäki [BV03, BV06], Cavallo, Parkes, and Singh [CPS06, CPS09], and

Cavallo [Cav08]).

For revenue maximization, a line of research was initiated by Baron and Besanko [BB84]

and Courty and Li [CH00] that studies the setting where the private information of agents

varies over time. The latter show an optimal dynamic contract that “screens” the agents

twice in a setting where agents initially have private information about the future distribution
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of their values (see also [BS12, AAD15] for “screening” in dynamic mechanism design).

Eső and Szentes [ES07] study a closely related two-period model, where the agents only

have a rough estimation of their private values to the item in the first round and the seller

can release additional signals to affect their values before selling the item in the second

round. In a particular setting, they propose a “handicap auction” that shares some similar

ideas with our bank account mechanism in each period: in a “handicap auction”, the agents

buy their premiums from a menu offered by the seller in the first round based on their rough

estimation of private values, and then compete with each other under unequal conditions

(premiums) in the second round after receiving additional signals from the seller. It is

similar to our bank account mechanisms in the sense that in both settings, the agents first

buy some advantages/discounts for the next round via either premium costs (in “handicap

auctions”) or spends (in bank account auctions) based on rough estimations of their values

(prior distributions of each period in our case), and then compete under different levels of

advantage after observing their realized values.

Pavan, Segal, and Toikka [PST09, PST10, PST14] generalize the idea of Myerson [Mye81]

to a multi-period setting with dynamic private information and characterize the incentive

compatibility in terms of necessary conditions and some sufficient conditions. Kakade, Lobel,

and Nazerzadeh [KLN13] propose the virtual-pivot mechanism by combining ideas of “vir-

tual values” for static optimal mechanism design [Mye81] and “dynamic pivot mechanisms”

for dynamic efficient mechanism design [BV10]. In particular, they show that the virtual-

pivot mechanisms are optimal in certain dynamic environments that are “separable”, satisfy

periodic ex-post incentive compatible and individually rational, and have simple structure in

multi-armed bandit settings (see also [Bat05, Deb08] for settings with private values evolving

through Markovian processes). Devanur, Peres, and Sivan [DPS15] and Chawla, Devanur,

Karlin, and Sivan [CDKS16] study the repeated selling of fresh copies of an item to a single

buyer who has either fixed private value [DPS15] or evolving values [CDKS16] to the copies.

One major difference between our setting and the one with dynamic private information

we just discussed above and is that we have no initial private types for the agents and the

private types/values are independent of previous outcomes. Instead, we are able to guaran-

tee ex-post individual rationality for a very general setting in our case, while weaker notions
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of individual rationality (i.e., interim individual rationality or individually rational in expec-

tation) are adopted in most of the previous studies (except for [KLN13], which guarantees

ex-post individual rationality for environments satisfying a separability condition).

There are more works primarily focused on the setting with dynamic populations and

fixed information [PS03, Gal06, Boa08, PV08, Sai08, GM09, BS10, GM10, Sai12]. In par-

ticular, the notion of non-clairvoyance we introduced is similar in spirit with the online

mechanism design setting studied by Parkes and Singh [PS03] (for welfare-maximization)

and Pai and Vohra [PV08] (for revenue-maximization) in the sense that the designer has

restricted information about dynamic arrival/departure (for online mechanisms) or dynamic

prior distributions (for non-clairvoyant mechanisms) in future periods. In contrast to the

settings with dynamic populations discussed above, however, our setting emphasizes the

dynamic arrivals of perishable goods (e.g., ad impressions), while it is still general enough

to capture the dynamic attendance of agents by setting periodic prior distributions to be

Pr[v = 0] = 1 when they are absent from the auction except that the agents have unlimited

demands. Hock [Hoc03] studies the revenue-maximization problem for selling homogeneous

items to unit demand buyers where the demand curve is unknown. In particular, he con-

siders an approach of selling the items sequentially and setting the optimal price for the

current buyer based on the demand curve estimated from bids of previous buyers, which is

also related to our notion of non-clairvoyance.

Our work is closer to the line of inquiry initiated by Papadimitriou, Pierrakos, Psomas,

and Rubinstein [PPPR16], who seek to design revenue-optimal auctions in the setting where

items are sequentially sold to the same set of buyers over time. They first show that the

problem of designing the optimal deterministic auction is NP-hard even for 1 agent and 2 pe-

riods, but they provide a polynomial time algorithm for the optimal randomized auction via

a linear programming formulation for a constant number of buyers and correlated valuations.

The formulation is exponential in the number of buyers and the support of the distribution

of agent type profiles over time. If agents have independent types over periods this causes

their formulation to become exponential in the number of periods as well. This problem was

addressed by Ashlagi, Daskalakis, and Haghpanah [ADH16], who replaced the linear pro-

gramming formulation with a dynamic program and obtained a (1 + ε)-approximation that
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is polynomial in the number of periods for a single buyer with independent valuations. For

multiple buyers they provide a mathematical characterization but not an algorithm to solve

it. Simultaneously and independently, we also provide a (1 + ε)-approximation for agents

with independent valuations using dynamic programming in the unpublished manuscript

[MLTZ16].

Another closely related stream of literature is the design of dynamic mechanism in the

time-discounted model where valuations of the buyers are drawn from an identical distri-

bution in each step. This line was initiated by Biais et al. [BMPR07] and Krishna et al.

[KLT13]. Belloni, Chen, and Sun [BCS] provide a characterization of the optimal mechanism

by extending Myerson’s ironing technique to dynamic settings. Balseiro, Mirrokni, and Paes

Leme [BMPL16] study the effect of imposing stronger constraints on the utilities of buyers,

and design closed-form mechanisms that approach the optimal in the limit. This line of

literature is incomparable with our work: their settings are i.i.d. across time (while we only

assume independence), focus on a single buyer, and are based on a fixed-point formulation

that is only possible in time-discounted models. While their model is more restricted, they

are able to provide stronger guarantees and closed-form mechanisms.

Dynamic mechanism design frameworks One major contribution of our paper is the

bank account framework, which provides a general framework to design (traditional or non-

clairvoyant) dynamic mechanisms. In particular, incorporating this framework with ex-post

individual rationality is technically challenging. Another major step in the development of

the bank account framework is to show that all non-clairvoyant mechanisms can be cast in

it. There have been other very interesting and useful frameworks, the oldest of which seems

to be the promised utility framework of Thomas and Worrall [TW90] (see Belloni et al.

[BCS16] or Balseiro et al. [BMPL16] for recent applications). More recently, Ashlagi et al.

[ADH16] designed a framework based on revenue-utility tradeoff functions. Both the results

in [TW90] and [ADH16] accommodate ex-post individual rationality and are universal in the

sense that the optimal mechanism is always contained in their class.

The main difference between bank accounts and promised utilities or revenue-utility

tradeoffs is that while the latter two are forward-looking (i.e., they define an optimal form

for one period, given the optimal solution for the next), the bank account framework is
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backward-looking. It defines an allocation and pricing rule based on the past and not the

future. To the best of our knowledge, this is the only framework capable of accommodating

non-clairvoyance.

Online supply and scheduling The term clairvoyant is borrowed from the scheduling

literature, where it is typically used to refer to an algorithm that can ‘see the future’ in the

sense that it can know, for example, the total execution time of jobs not yet completed. It is

also often used to describe an adversary that can predict all the algorithm actions, present

and future. The concept of non-clairvoyance is typically used to refer to an algorithm that

can perform a certain task well, regardless of having all information.

In that sense, one can see our paper as an online algorithm approach to dynamic mecha-

nism design. The study of incentives in problems where items arrive over time in an online

manner was initiated by Babaioff, Blumrosen and Roth [BBR10], who design auctions (and

prove lower bounds) for problems where incentives are required to be maintained and we

are required to allocate goods without information about what the total supply is. This

was extended by Goel et al. [GML13] to budgeted settings. The online supply problem was

also studied from the perspective of revenue in both the Bayesian and prior free settings by

Mahdian and Saberi [MS06] and Devanur and Hartline [DH09]. In this line of work, however,

agents review their types in the beginning of the period, and the challenge is to guarantee

a monotone allocation. Since types are only reported once, incentive constraints don’t need

to be enforced dynamically.
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[BV03] Dirk Bergemann and Juuso Välimäki. Dynamic common agency. Journal of Economic Theory,

111(1):23–48, 2003. 41

46
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A Examples from Section 2

The following example is essentially the same as the one given by [PPPR16], which shows

that the gap between dynamic and static mechanisms could be arbitrarily large.
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Example A.1. Consider a clairvoyant dynamic mechanism with two periods and a single

item auctioned in each period. In each period, the valuation of the buyer for the item is

independently drawn from the equal revenue distribution:

F1 = F2 = F, F (θ) =


0, θ ≤ 1

1− 1/θ, 1 < θ < θmax

1, θ ≥ θmax

.

Note that the revenue of the optimal static mechanism is 2, which is the revenue obtained

by running Myerson’s auction in each period. Using a dynamic mechanism we can obtain

revenue 2 + ln ln θmax. The gap is arbitrarily large as θmax tends to infinity.

The dynamic mechanism works as follows:

• In the first period, the seller allocates the item with probability 1 to the buyer and

charges her bid but no more than 1 + ln θmax, i.e., p1(θ̂1) = min(θ̂1, 1 + ln θmax).

• In the second period, the seller runs a posted-price mechanism with price r2 = θmax/e
p1−1.

In fact, the dynamic mechanism above is dynamic incentive compatible and ex-post

individually rational. This is because it can be written as a bank account mechanism (that

we discuss in Section 5). The expected revenue is,

Rev = E[p1(θ1) + p2(θ1, θ2)]

= E[min(θ1, 1 + ln θmax)] + E[r2 · 1{θ2 ≥ r2}]

= 2 + E[min(θ1 − 1, ln θmax)]

= 2 + ln ln θmax.

B Missing proofs from Section 5

B.1 Proof of Theorem 5.1

Proof of Theorem 5.1. First we prove that conditions (IC) and (BI) imply that the mecha-

nism satisfies (DIC).
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By definition,

ut(θt; θ̂1..t−1, θ̂t) = v(θt, xt(θ̂1..t−1, θ̂t))− pt(θ̂1..t−1, θ̂t)

= v(θt, x
B
t (θ̂t, bt−1(θ̂1..t−1)))− pBt (θ̂t, bt−1(θ̂1..t−1)).

Combined with (IC), we have

ut(θt; θ̂1..t−1, θ̂t) = v(θt, x
B
t (θ̂t, bt−1(θ̂1..t−1)))− pBt (θ̂t, bt−1(θ̂1..t−1))

≤ v(θt, x
B
t (θt, bt−1(θ̂1..t−1)))− pBt (θt, bt−1(θ̂1..t−1)) = ut(θt; θ̂1..t−1, θt). (B.1)

By (BI), Eθτ [uτ (θτ ; θ̂1..t−1, θ̂t, θt+1..τ )] is constant in bτ−1 = bτ−1(θ̂1..t−1, θ̂t, θt+1..τ−1), hence

also constant in θ̂t, namely,

Eθτ
[
uτ (θτ ; θ̂1..t−1, θ̂t, θt+1..τ )

]
= Eθτ

[
uτ (θτ ; θ̂1..t−1, θt, θt+1..τ )

]
.

Therefore

Eθt+1..T

[∑T
τ=t+1 uτ (θτ ; θ̂1..t−1, θ̂t, θt+1..τ )

]
= Eθt+1..T

[∑T
τ=t+1 uτ (θτ ; θ̂1..t−1, θt, θt+1..τ )

]
. (B.2)

Adding (B.1) and (B.2) together, we have

ut(θt; θ̂1..t−1, θ̂t) + Eθt+1..T

[∑T
τ=t+1 uτ (θτ ; θ̂1..t−1, θ̂t, θt+1..τ )

]
≤ ut(θt; θ̂1..t−1, θt) + Eθt+1..T

[∑T
τ=t+1 uτ (θτ ; θ̂1..t−1, θt, θt+1..τ )

]
,

which directly implies (DIC).

Now we show that condition (BU) implies (eP-IR). By summing up constraint (BU) for

t = 1 to T , we have,

∑T
t=1 bt ≤

∑T
t=1

(
bt−1 + v(θt, x

B
t (θt, bt−1))− pBt (θt, bt−1)

)
,
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which implies

∑T
t=1

(
v(θt, x

B
t (θt, bt−1))− pBt (θt, bt−1)

)
≥ bT − b0 ≥ 0. (B.3)

Again, by definition,

ut(θt; θ1..t) = v(θt, xt(θ1..t))− pt(θ1..t) = v(θt, x
B
t (θt, bt−1))− pBt (θt, bt−1).

(eP-IR) is then implied by (B.3), i.e.,

∑T
t=1 ut(θt; θ1..t) =

∑T
t=1

(
v(θt, x

B
t (θt, bt−1))− pBt (θt, bt−1)

)
≥ 0.

B.2 Proof of Lemma 5.5

The first step in the proof of Lemma 5.5 is to transform the problem of computing the

optimal mechanism satisfying DIC and eP-IR to an equivalent problem:

Lemma B.1 (Payment frontloading). For any mechanism (xt, pt) satisfying DIC and eP-IR

there is a mechanism also satisfying DIC and eP-IR with same allocation and ex-post revenue

such that the agent is charged her full surplus in all periods except the last one.

Proof. Given a mechanism (xt, pt) satisfying DIC and eP-IR define mechanism (xt, p̃t) such

that p̃t(θ1..t) = v(θt, xt(θ1..t)) for t < T and

p̃T (θ1..T ) =
T∑
t=1

pt(θ1..t)−
T−1∑
t=1

v(θt, xt(θ1..t))

The mechanism clearly has the revenue as the original, since for any θ1..T we have
∑T

t=1 pt(θ1..t) =∑T
t=1 p̃t(θ1..t). Since the ex-post allocation and ex-post revenue are the same in the two mech-

anisms for every θ1..T , the ex-post utility should also be the same. In particular, it should

always be non-negative and therefore eP-IR holds. Since DIC can be formulated in terms of

ex-post utilities it also holds after the transformation.
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We call a mechanism of the type specified in Lemma B.1 a payment frontloading mecha-

nism. One important property that we will use heavily is that since ut(θ1..t) = 0 for all t < T

then the continuation utility Ut and the partially realized utility Ūt become the same things

for all t < T .

Proof of Lemma 5.5. By Lemma B.1 we can assume (xt, pt) is a payment frontloading mech-

anism. Let’s first define property Symt:

if Ūt(θ1..t) = Ūt(θ
′
1..t) then ∀s ≥ t,

xs(θ1..t, θt+1..s) = xs(θ
′
1..t, θt+1..s) and ps(θ1..t, θt+1..s) = ps(θ

′
1..t, θt+1..s)

(Symt)

We will show that Symt works for all t by induction. Precisely: we show that if (xt, pt) is a

payment frontloading mechanism satisfying Symt for t ≤ τ − 1 then we can transform it in

a payment frontloading mechanism with at least the same revenue such that Symt holds for

all t ≤ τ .

For the inductive step, partition the set of all possible type vectors θ1..τ into classes with

the same partially-realized utility, i.e.:

Sτ (x) = {θ1..τ |Ūτ (θ1..τ ) = x}

Now, for each x choose θ∗1..τ (x) ∈ Sτ (x) maximizing the expected welfare of future periods

Wt(θ1..t) = E
[∑T

t=τ+1 v(θt, xt(θ1..τ , θτ+1..t))
]

Now, we define mechanism (x̃, p̃) such that x̃t = xt and p̃t = pt for t ≤ τ . For t > τ we have:

x̃t(θ1..t) = xt(θ̃1..τ , θτ+1..t) where θ̃1..τ = θ∗1..τ (Ūτ (θ1..τ ))

p̃t(θ1..t) = pt(θ̃1..τ , θτ+1..t) where θ̃1..τ = θ∗1..τ (Ūτ (θ1..τ ))

Now we argue that (x̃t, p̃t) has the desired properties:

• it is still a payment frontloading mechanism, since allocation and payments from each

type vector of length t are replaced by the allocation and payments of another type
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vector of length k, so the agent still has zero utility in all steps except the very last

one.

• it is still eP-IR. Let ũt(θ1..t) be the period utility of the mechanism (x̃t, p̃t). Since it is

still a payment frontloading mechanism, ũt(θ1..t) = 0 for all t < T . So it is enough to

argue that ũT (θ1..T ) ≥ 0. By the transformation, there is another type vector θ′1..T−1

such that:

ũT (θ1..T ) = v(θt, x̃t(θ1..t))− p̃t(θ1..t) = v(θt, xt(θ
′
1..t−1, θt))− pt(θ′1..t−1, θt) ≥ 0

since the original mechanism is also eP-IR and payment frontloading.

• it is still DIC. For t > τ , the DIC condition follows directly from the fact that the

original mechanism is DIC. For t = τ we use the fact that:

θτ = arg maxθ̂τ ut(θτ ; θ̂1..τ ) + Ut(θ̂1..τ ) = arg maxθ̂τ ũt(θτ ; θ̂1..τ ) + Ũt(θ̂1..τ )

where Ũt is the continuation utility of the transformed mechanism. This expression

holds since: (1) we didn’t change the period utility of period τ ; (2) we were careful to

change the mechanism to preserve partially-realized utilities; (3) since the mechanism

was a payment frontloading mechanism, the partially realized utilities coincide with

continuation utilities, so we are also preserving continuation utilities. Finally, for t < τ

we can use the same argument. Since the continuation utilities of period τ are preserved

and the period utilities between period t and τ are preserved, the continuation utility

of period t is also preserved.

• condition Symt holds for t = τ . This condition holds by design.

• condition Symt holds for t ≤ τ − 1: the condition is clearly true for s ≤ τ . For

s < τ ≤ u, consider two type vectors θ′1..s and θ′′1..s with the same continuation utility

in the original mechanism. Those must have the same continuation utility in the new

mechanism as well, since we argue the continuation utilities are preserved for t ≤ τ . By

the induction hypothesis the allocation and payments must be the same in the original
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mechanism for (θ′1..s, θs+1..u) and (θ′′1..s, θs+1..u) for any type vector θs+1..u. Therefore

Uτ (θ
′
1..s, θs+1..τ ) = Uτ (θ

′
1..s, θs+1..τ ) := x which means that both types are in the class,

i.e., (θ′1..s, θs+1..τ ), (θ
′′
1..s, θs+1..τ ) ∈ Sτ (x). Therefore:

x̃u(θ
′
1..s, θs+1..u) = xu(θ

∗
1..τ (x), θτ+1..u) = x̃u(θ

′′
1..s, θs+1..u)

p̃u(θ
′
1..s, θs+1..u) = pu(θ

∗
1..τ (x), θτ+1..u) = p̃u(θ

′′
1..s, θs+1..u)

• the expected welfare doesn’t decrease, since we always replace a suffix of the mechanism

with one with at least the same expected welfare:

Sw = E [
∑τ

t=1 v(θt, xt(θ1..t)) +Wτ (θ1..τ )] ≤ E
[∑τ

t=1 v(θt, xt(θ1..t)) +Wτ (θ
∗
1..τ (Ūτ (θ1..τ )))

]
= E

[∑τ
t=1 v(θt, x̃t(θ1..t)) + W̃τ (θ1..τ )

]
= S̃w

• the expected revenue doesn’t decrease, since expected revenue is the difference of ex-

pected welfare and expected utility and we argue that welfare doesn’t decrease and the

expected utility is the same.

C Different Notions of Incentive Compatibility and In-

dividual Rationality

C.1 Stronger IR notions

The main body of the paper focuses on satisfying DIC and eP-IR and the main design

goals. In Theorem 5.1 we argue that bank account mechanisms satisfy even stronger notions.

There are various variations over those notions that we can satisfy by slightly changing the

mechanism. For example Theorem 5.1 implies that we satisfy the following notion of expected

individual rationality continuation:

E
[∑T

τ=t uτ (θτ ; θ1..τ )|θ1..t−1

]
≥ 0
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The reader might ask whether this is possible to satisfy the same notion ex-post with respect

to the t-th type θt. In other words, can we satisfy the following notion?

E
[∑T

τ=t uτ (θτ ; θ1..τ )|θ1..t

]
≥ 0

Notice they only differ in the conditioning of the expectations. This can be achieved by any

bank account mechanism by changing the payment rule to:

p̂t(θt, b) = pt(θt, b) + bt(θt, b)− b

for t < T and in the last period to:

p̂T (θT , b) = pT (θT , b)− b

The reader can verify that the all properties studied are preserved under this notion. In fact,

condition BU implies that the previous transformation satisfies the even stronger notion of

ex-post per-period individual rationality. I.e., under the p̂t payment rules the mechanism

satisfies for all realization of types and all periods:

ut(θt; θ1..t) ≥ 0 (pp-IR)

This transformation almost preserves non-clairvoyance. If the original mechanism was

non-clairvoyant the new mechanism is what we call quasi-non-clairvoyant. A quasi-non-

clairvoyant mechanism is the one that needs to be told when the last period is at that period

so that it can tailor its allocation and payment to the fact that we are in the last period.

This is exactly what is required to implement the previous transformation.

We know there is a mechanism that is per-period individual rationality, dynamic incentive

compatible and quasi-non-clairvoyant. Can we get the previous combination with actual

non-clairvoyance instead of quasi-non-clairvoyance? The answer is unfortunately no.

Lemma C.1. Any revenue that can be obtained by a non-clairvoyant mechanism satisfies

DIC and pp-IR can also be obtained by running a static individually rational and incentive
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compatible auction in each period.

Proof. The proof follows directly from Lemma D.1 proved in the following section, which says

that a non-clairvoyant DIC mechanism must also satisfy per-period incentive compatibility.

C.2 Stronger IC notions

Similarly we can ask the same question about incentive compatibility. Can we achieve even

stronger notions of incentive compatibility? For example, can we achieve a version of DIC

that holds for every realization of types in future periods instead of in expectation over future

periods? We call a mechanism super dynamic incentive compatible:

∀θ̂1..t−1, θt+1..T , θt = arg maxθ̂t ut..T (θt..T ; θ̂1..t−1, θ̂t, θt+1..T ), (super-DIC)

where ut..t′(θt..t′ ; θ̂1..t′) =
∑t′

s=t us(θs; θ̂1..s).

Unfortunately this notion is too strong as shown in Theorem 2.1 which is restated here

for convenience:

Theorem C.2. For the auction setting where v(θt, xt) = θt · xt, any revenue that can be

obtained in a mechanism satisfying super-DIC and eP-IR can be obtained by running a static

individually rational and incentive compatible mechanism in each period.

Theorem 2.1. Consider the single period mechanism with allocation defined by x̂(θ̂) = x1(θ̂).

By the super-DIC property, for every θ2..T the payment rule p̂(θ̂) = p1(θ̂)−u2..T (θ2..T ; θ̂, θ2..T )

implements x̂. Since the payment rule p̂ is determined from x̂ up to a constant, the term

u2..T (θ2..T ; θ1, θ2..T ) must be decomposable in a term that depends only on θ1 and a term

depending on θ2..T . Say:

u2..T (θ2..T ; θ2..T ) = α(θ1) + β(θ2..T )

Since u1..T = u1(θ1; θ1) +α(θ1) + β(θ2..T ) is non-negative for every type profile we can adjust

α and β such that u1(θ1; θ1) +α(θ1) ≥ 0 for every θ1 and β(θ2..T ) ≥ 0 for every θ2..T . We can

then define the following mechanism:
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• allocate in the first period using x1(θ1) and charge p1(θ1)− α(θ1)

• allocate in all other periods using Eθ1 [xt(θ1, θ2..t)] and charge Eθ1 [xt(θ1, θ2..t)] adding an

extra charge of Eθ1 [α(θ1)] in the last period.

We obtain a mechanism that is single period incentive compatible and individually rational

for the first period, and a mechanism satisfying super-DIC and eP-IR for periods 2 to T .

Notice that the revenue is still the same.

By induction we can find a mechanism that runs a static auction in each period and has

the same revenue as the original mechanism.

D Proof of the Non-Clairvoyance Gap Theorems

D.1 Characterization of Non-Clairvoyant Mechanisms

We start by proving a strong property of non-clairvoyant mechanisms that will be used

heavily in this section:

Lemma D.1. If xt(F1..t, θ1..t), pt(F1..t, θ1..t) are a non-clairvoyant mechanism satisfying DIC

and Ut,T (F1..T , θ1..t) for t < T is the continuation utility of the corresponding clairvoyant

mechanism:

Ut,T (F1..T , θ1..t) = Eθt+1..T∼Ft+1..T

[∑T
s=t+1 v(θs, xs(F1..s, θ1..s))− ps(F1..s, θ1..s)

]
then Ut,T (F1..T , θ1..t) doesn’t depend on θ1..t, i.e., Ut,T (F1..T , θ1..t) = Ut,T (F1..T , θ

′
1..t).

Proof. Fix F1..T and θ1..t. First we show that Ut,T (F1..T , θ1..t−1, θ̂t) doesn’t depend on θ̂t. De-

fine the single period mechanism for a buyer with valuation θ̂t ∼ Ft that allocates according

to x̂t(θ̂t) = xt(F1..t, θ1..t−1, θ̂t) and charges payments according to p̂(θ̂t) = pt(F1..t, θ1..t−1, θ̂t)−

Ut,T (F1..T , θ1..t−1, θ̂t). By the fact that the dynamic mechanism is DIC this mechanism must

be incentive compatible, so the payment rule is uniquely defined by the allocation rule up

to a constant. Now, define an alternative payment rule p′t(θ̂t) = pt(F1..t, θ1..t−1, θ̂t). The

mechanism defined by x̂t, p
′
t must also be incentive compatible since the clairvoyant mecha-

nism corresponding to the prior distribution sequence F1..t is also DIC. Since those are two
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single-period incentive compatible mechanisms with the same allocation rule, the payment

rule must differ by a constant. Therefore, the difference Ut,T (F1..T , θ1..t−1, θ̂t) can’t depend

on θ̂t.

Now we use induction to show that Ut,T (F1..T , θ1..t−1, θ̂t) doesn’t depend on θt−1. Since

we know Ut,T doesn’t depend on θt we indicate it by writing Ut,T (F1..T , θ1..t−1). By definition:

Ut−1,T (F1..T , θ1..t−2) = Ut−1,t(F1..t, θ1..t−2) + Eθt∈Ft [Ut,T (F1..T , θ1..t−1)]

Since the last term doesn’t depend on θt we can remove the expectation:

Ut,T (F1..T , θ1..t−1) = Ut−1,T (F1..T , θ1..t−2)− Ut−1,t(F1..t, θ1..t−2)

Hence, Ut,T (F1..T , θ1..t−1) doesn’t depend on θt−1. Repeating the same argument we can show

Ut,T depends only on the distributions F1..T .

Now, in order to prove Theorem 6.2 we first prove a symmetrization lemma in the style

of Lemma 5.5. There are some important differences: instead of the partially realized utility

used in Lemma 5.5 we will use the utility observed so far, which is a quantity we have access

to in non-clairvoyant mechanisms since it only involves the past. The second major difference

is that it won’t involve payment frontloading, since we have no access to the future. The

reason we can get away without those is the stronger property satisfied by non-clairvoyant

mechanism described in Lemma D.1.

Lemma D.2 (Non-Clairvoyant Symmetrization). Given a non-clairvoyant dynamic mecha-

nism xt(F1..t, θ1..t), pt(F1..t, θ1..t), there is a non-clairvoyant mechanism x̃t(F1..t, θ1..t), p̃t(F1..t, θ1..t)

with the same revenue for each sequence of prior distributions, i.e., for each F1..T :

Eθ1..t∼F1..t

[∑T
t=1 pt(F1..t, θ1..t)

]
= Eθ1..t∼F1..t

[∑T
t=1 p̃t(F1..t, θ1..t)

]
satisfying the following symmetry property: if

∑t
s=1 ũs(F1..s, θ1..s) =

∑t
s=1 ũs(F1..s, θ

′
1..s) then:

x̃t′(F1..t, Ft+1,..,t′ , θ1..t, θt+1..t′) = x̃t′(F1..t, Ft+1,..,t′ , θ
′
1..t, θt+1..t′)
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p̃t′(F1..t, Ft+1,..,t′ , θ1..t, θt+1..t′) = p̃t′(F1..t, Ft+1,..,t′ , θ
′
1..t, θt+1..t′)

Proof. To prevent notations from being too verbose, define u1..t(F1..t, θ1..t) =
∑t

s=1 us(F1..s, θ1..s).

Assume the symmetric property holds for t < τ . We will construct a mechanism for which

the symmetric property holds for any t ≤ τ . Define x̃t and p̃t as follows. For t ≤ τ , let

x̃t = xt and p̃t = pt. For t > τ define:

x̃t(F1..t, θ1..t) = Eθ′1..τ∼F1..τ
[xt(F1..t, θ

′
1..τ , θτ+1..t)| u1..τ (F1..τ , θ1..τ ) = u1..τ (F1..τ , θ

′
1..τ )]

p̃t(F1..t, θ1..t) = Eθ′1..τ∼F1..τ
[pt(F1..t, θ

′
1..τ , θτ+1..t)| u1..τ (F1..τ , θ1..τ ) = u1..τ (F1..τ , θ

′
1..τ )]

In other words, we replace the allocation and payments in periods t > τ by the expected

allocation and payments over types θ′1..τ , θτ+1..t such that the total utility accrued by the

buyer in periods 1..τ is the same as in θ1..τ . Now we argue that this mechanism still has the

desired properties:

• it is still non-clairvoyant: this is clear by construction since at period t the mechanism

is only a function of F1..t and θ1..t. Notice that it is crucial that we symmetrize using

a quantity that we can measure with information available at period t.

• it is still eP-IR. To check this property let ũt be the utility under the new mechanism,

then if E is the event that u1..τ (F1..τ , θ1..τ ) = u1..τ (F1..τ , θ
′
1..τ ), then:

ũ1..T (F1..T , θ1..T ) = u1..τ (F1..τ , θ1..τ ) + Eθ′1..τ
[∑T

s=τ+1 us(F1..s, θ
′
1..τ , θτ+1..s)|E

]
= Eθ′1..τ

[
u1..τ (F1..τ , θ

′
1..τ ) +

∑T
s=τ+1 us(F1..s, θ

′
1..τ , θτ+1..s)|E

]
≥ 0

• it is still DIC. The DIC condition holds for t > τ since at that point the mechanism

is simply a distribution of mechanisms satisfying the DIC condition. For t ≤ τ , we

will use Lemma D.1 to argue that the expression in the maximization problem remains

the same. In the following expression we omit the distributions F1..t for clarity of

presentation:

ũt(θ1..t) + Ũt(θ1..t) = ut(θ1..t) + E
[∑τ

s=t+1 us(θ1..s)
]

+ Eθ′1..t [Uτ (θ
′
1..τ )|E(θ1..τ )]
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where E(θ1..τ ) is the event determining the set of θ′1..τ that we will condition on. This

event is a function of θ1..τ . However, by Lemma D.1, Uτ is a constant so the expectation

and the event we are conditioning on are irrelevant, therefore we have:

ũt(θ1..t) + Ũt(θ1..t) = ut(θ1..t) + E
[∑τ

s=t+1 us(θ1..s)
]

+ Uτ (θ
′
1..τ ) = ut(θ1..t) + Ut(θ1..t)

• the symmetry condition holds for t = τ by design.

• the symmetry condition holds for t < τ using an argument analogous to the one used

in Lemma D.1.

• the expected revenue is the same for the following reasons (again we omit distributions

F1..T for clarity:

Eθ1..T
[∑T

t=1 p̃t(θ1..t)
]

= Eθ1..τ [
∑τ

t=1 pt(θ1..τ )] +

Eθ1..TEθ′1..τ
[∑T

t=τ+1 pt(θ
′
1..τ , θτ+1..T )|u1..τ (θ1..τ ) = u1..τ (θ

′
1..τ )
]

which is equal to the original revenue since the distributions of θ1..τ and θ′1..τ are the

same.

The symmetrization condition is the main ingredient to show that all non-clairvoyant

mechanisms are bank account mechanisms. The reader is invited to contrast how much

simpler this proof is than the proof of its clairvoyant counterpart. In some sense Lemma D.1

already provides us with most of the proof:

Proof of Theorem 6.2. Assume xt, pt satisfy the conditions in the Non-Clairvoyant Sym-

metrization Lemma (Lemma D.1). Define the bank balance as bt(F1..t, θ1..t) =
∑t

s=1 ut(F1..t, θ1..t).

From symmetrization it is clear that xt, pt can be written as a bank account mechanism. The

BI condition follows directly from Lemma D.1. With the current definition of bank accounts,

condition BU becomes trivial: the first inequality follows from eP-IR and the second one

holds with equality.
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D.2 Lower bound for non-clairvoyant mechanisms

We will in this section prove Theorem 6.1. For this, let’s initially define two distributions

defined by their cdfs and parametrized by a constant µ > 0 to be defined later:

F1(θ) =
(

1− e−µ2
) θµ

θµ+ 1
for θ ≤ eµ

2

and F1(θ) = 1 otherwise

F2(θ) =
[
1− ε

θ

]+

We will consider two scenarios: the first is that there is a single item with distribution

F1 and the second is that there are two items: the first with distribution F1 and the second

with distribution F2. It is instructive to start by computing what is the optimal clairvoyant

dynamic mechanism in each of the settings. By Theorem 5.2 we can restrict our attention

to bank account mechanisms.

Scenario 1: One item with distribution F1. Since there is only one period, the optimal

mechanism is the Myerson auction. Since there is a single buyer, the auction can be described

as the posted price mechanism at price ρ maximizing ρ(1− F1(ρ)) which is ρ = eµ
2

and the

revenue is:

Rev∗(F1) = ρ(1− F1(ρ)) = 1 +
1

µ
+O(e−µ

2

)

Scenario 2: Two items with distributions F1 and F2. Since the optimal mechanism

can be described as a bank account mechanism, assume xt, pt is the optimal bank account

mechanism. By condition BU the state of the bank account in the end of period 1 is at

most u1 which is at most eµ
2
. The mechanism in the second period can be described as

spending some amount which is at most the balance from the account and running an IC

and IR mechanism. Since the distribution F2 is such that ρ(1 − F2(ρ)) = ε for all ρ (i.e.,

it is an equal-revenue distribution), the revenue obtained from the second period is at most

b1 + ε ≤ u1 + ε. So the total revenue is at most the welfare of the first period plus ε. In other

words, an upper bound to optimal revenue is Eθ1∼F1 [θ1] + ε.

Now we exhibit a mechanism that achieves that much revenue. In the first period, the

item is given for free to the buyer and we deposit her value for the item in the bank account.

In the second period, we first spend the entire balance of the bank account and then we
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post a price p(b1) satisfying condition BI. No matter what price we post, the revenue will be

b1 + ε.

The expected revenue of this mechanism is:

Rev∗(F1, F2) = Eθ1∼F1 [θ1] + ε = 1 + µ+ ε+O(µe−µ
2

)

Comparison of the two scenarios: We note that depending on whether there will be

a second item or not, we do two completely different things for the first item. If there is no

second item, we allocate the second item with very low probability and charge a very high

price if it is allocated. If there is a second item, we always allocate the first item and don’t

charge any amount for it. A non-clairvoyant mechanism needs to aim at balancing those

two extremes: it needs to allocate the first item such that, if there is no second item, the

revenue is good enough compared to the optimal single-item auction. But it also needs to

make sure the bank balance after the first period is large enough to allow for more freedom

in allocating the second item.

Non-Clairvoyant Mechanism Consider now a non-clairvoyant mechanism and let

x1(F1, θ1), p1(F1, θ1) be the auction for the first item with distribution F1. This auction

must be incentive compatible and individually rational, so it must be a distribution over

posted price mechanisms, say, we use a random posted price ρ ∼ G. Therefore:

RevM(F1) = Eρ∼G[ρ(1− F1(ρ))]

and since every non-clairvoyant mechanism can be written as a bank account mechanism

(Theorem 6.2), we can use the same argument as in the scenario 2 above to argue that:

RevM(F1, F2) ≤ ε+ Eρ∼G [E[θ1 · 1θ1≥ρ]]

Now, we are ready to prove the lower bound theorem:

Proof of Theorem 6.1. Assume that the non-clairvoyant mechanism is an α-approximation

to the clairvoyant benchmark and consider the setup with F1 and F2 described in this section,
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then:

2

α
= 2 min

(
RevM(F1)

Rev∗(F1)
,
RevM(F1, F2)

Rev∗(F1, F2)

)
≤ RevM(F1)

Rev∗(F1)
+
RevM(F1, F2)

Rev∗(F1, F2)
≤ Eρ∼G [β(ρ)] ≤ max

ρ
[β(ρ)]

where

β(ρ) :=
ρ(1− F1(ρ))

Rev∗(F1)
+
ε+ E[θ1 · 1θ1≥ρ]
Rev∗(F1, F2)

The remainder of the proof is Calculus-heavy3 and involves explicitly substituting the values

of those expressions and evaluating the maximum of β(ρ). Taking the limit as µ → ∞ will

provide us the desired bound.

Denote r1 = 1/Rev∗(F1) and r12 = 1/Rev∗(F1, F2), then

β(ρ) = r1ρ(1− F1(ρ)) + r12

(
ε+

∫ eµ2
ρ

θdF1(θ)

)
.

Taking derivative of β,

β′(ρ) = r1(1− F1(ρ)− ρF ′1(ρ))− r12ρF
′
1(ρ)

= r1 − (1− eµ2)r1
ρµ
ρµ+1

− (r1 + r12)(1− eµ2) ρµ
(ρµ+1)2

Denote ζ = 1− eµ2 and let β′(ρ) = 0,

r1(1− ζ)(ρµ+ 1)2 − r12ζ(ρµ+ 1) + (r1 + r12)ζ = 0

=⇒ ρµ+ 1 = r12ζ
2r1(1−ζ)

(
1±

√
1− 4r1(1−ζ)

r12ζ

(
1 + r1

r12

))

Since

r1
r12

= Rev∗(F1,F2)
Rev∗(F1)

= 1+µ+ε+O(µe−µ
2
)

1+1/µ+O(e−µ2 )
= µ+ ε+ o(1),

4r1(1−ζ)
r12ζ

(1 + r1
r12

) ≈ 4µ2e−µ
2 � 1. Hence β′(ρ) = 0 has two roots. Because β′(0) = r1 > 0, the

3We will omit some less important calculation details, and Taylor expansion will be repeatedly used.
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local maximum of β(ρ) is reached at the smaller root:

ρ∗µ+ 1 = r12ζ
2r1(1−ζ)

(
1−

(
1− 4r1(1−ζ)

r12ζ

(
1 + r1

r12

)
+ o(e−µ

2
)
))

= 1 + µ+ ε+ o(1)

=⇒ ρ∗ = 1 + o(1).

Therefore the maximum value is reached at either ρ∗ or eµ
2
:

maxρ β(ρ) = max(β(ρ∗), β(eµ
2
)) = 1 + 1/µ+ o(1/µ) ≤ 1 + 2/µ, for sufficiently large µ.

Hence the lower bound of α is obtained:

α ≥ 2
maxρ β(ρ)

≥ 2
1+2/µ

,

which is 2 as µ→∞.

E Polynomial Time Implementation of the NonClair-

voyantBalance mechanism

Here we show that the NonClairvoyantBalance mechanism can be implemented by

running at each period an algorithm that is polynomial in the number of buyers and in the

support of the distributions. Moreover, we want to argue that all the three components are

simple auctions: each of them corresponds to maximizing some notion of virtual values.

To discuss the computational complexity of the implementation it is useful to focus on

discrete distributions. Assume therefore that the space of valuation functions is a finite set

of non-negative numbers, i.e., Θ = {θ1, . . . , θK} ⊂ R+. In this section we will focus on a

single period so we will ignore subscripts t. Instead θj will refer to the j-th value in support

of the distribution. As before let n be the number of buyers. The distributions F i will be

discrete distributions represented by a vector of K non-negative numbers f i(θ1), . . . f i(θK)

summing to 1. We will also denote the cdf of the distribution by F i(θ) =
∑

θj≤θ f
i(θj).
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The first component of the NonClairvoyantBalance mechanism is a Second Price

Auction which doesn’t use any information about the distribution and can be easily run in

O(n) time.

The second component is the Myerson auction. The beauty of Myerson’s result is that

while at first glance the optimal auction might look like a complex linear program, allo-

cation and payments can be computed very efficiently. Elkind [Elk07] described the exact

algorithm to compute optimal auctions for distributions with finite support. It can be done

by processing the distributions of each buyer independently and computing a convex hull of

K points, which takes O(K logK) time per buyer. The outcome of this program is called

ironed virtual valuations. The optimal auction then consists of obtaining the report from

each buyer, converting to the space of ironed virtual values, and allocating to the buyer

with the top virtual value. Payments can be computed by allocation thresholds. The entire

procedure takes O(nK logK) time to compute virtual values plus additional O(n+K) time

to determine allocation and payments.

Most of our work will be focused on arguing that the third component — the Money

Burning auction with utility constraints has a simple format and can be implemented in

polynomial time.

E.1 Optimal Money Burning with Caps is a scaled virtual value

maximizer

Since the optimal Money Burning mechanism can be written as an optimization problem

in the reduced form, it is possible to directly obtain a polynomial time algorithm using the

framework of Cai, Daskalakis, and Weinberg [CDW12a, CDW12b]. For the special case of

money burning, an alternative solution goes through the techniques developed by Hartline

and Roughgarden [HR08]. A black-box application of [CDW12a, CDW12b] guarantees that

the auction is Bayesian Incentive Compatible. For Lemma 7.2 it will be useful to describe the

auction via the virtual value technique of [HR08] to show that the optimal capped money

burning auction is dominant strategy incentive compatible. We discuss the construction

below.
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Without any caps on the utilities the optimal money burning auction was analyzed by

Hartline and Roughgarden [HR08] and shown to be a virtual value maximization for a

different notion of virtual values known as virtual values for utility. As in the Myerson

auction, the virtual values of [HR08] can be computed as a function of the distribution,

and if not monotone they require to be ironed using the same procedure used to iron the

Myersonian virtual values. While originally developed for continuous distributions, the exact

approach4 described by Elkind [Elk07] can be used to compute ironed virtual values for utility

for all buyers in O(nK logK). We can summarize their result as follows:

Theorem E.1 (Hartline and Roughgarden). Given distributions F 1, . . . , F n of support Θ =

{θ1, . . . , θK}, there is an O(nK logK) algorithm that computes non-decreasing maps ϑi :

Θ → R (called ironed virtual values for utility) such that for any Bayesian incentive com-

patible and individually rational mechanism (xi, pi) and for every agent i:

Eθ∼F [ui(θ)] = Eθ∼F [ϑi(θi)xi(θ)]

Moreover, the optimal mechanism (with or without utility caps) is such that the allocation

and payments only depend on the virtual values ϑi(θi).

The proof of the theorem follows from combining Lemma 2.6, Lemma 2.8, and Theorem

2.9 in [HR08]. For the moreover part, even though their paper doesn’t consider any sort of

utility caps, the presence of caps doesn’t affect any of their proofs.

From Theorem E.1 we can describe the optimal auction as monotone allocation that

depends only on virtual values. We abuse notations and use f i to denote the distribution on

the virtual values, i.e., f i(ϑ̄i) =
∑

θi∈Θ;ϑi(θi)=ϑ̄i f
i(θi). We also define the allocation directly

in terms of virtual values xi(ϑ). Now we are ready to describe the format of the optimal

auction:

4Given a discrete distribution described by f(θ1), . . . , f(θK) non-negative and summing to 1 with θ1 <
θ2 < . . . < θK , Elkind [Elk07] defines a discrete notion of the Myersonian virtual value as ϕij = θj − (θij+1 −
θij)

1−F i(θj)
fi(θj)

. Those are then ironed by defining for each i a set ofK 2-dimensional points (F (θij),
∑
j′≤j f

i
j′ϕ

i
j′),

computing the lower convex hull and defining the ironed virtual values as the slopes of segments of the
convex hull corresponding to each point. The same exact computation can be done by replacing the original

Myersonian notion of virtual values ϕij with the definition of virtual values for utility ϑij = (θij+1−θij)
1−F i(θj)
fi(θj)

.
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Theorem E.2 (Optimal Capped Money Burning). The auction maximizing capped utility∑
i min (bi,E[ui]) is an auction parametrized by wi, qi that chooses the agent with largest

scaled virtual value wiϑi (subject to some tie breaking rule) and allocates to this agent with

probability qi.

Proof. Using Theorem E.1, we can formulate the optimal money burning with caps problem

as finding a monotone allocation function xi(ϑ) defined on the virtual values maximizing

E[ϑixi(ϑ)]. We will solve the problem:

max
∑
i

min
(
bi,E[ϑixi(ϑ)]

)
s.t. monotonicity

and will rescaled the xi by multiplying it by a probability qi such that it obeys the constraints

E[
∑

i ϑ
ixi(ϑ)] ≤ bi while keeping the same objective value. In the following formulation we

relax the constraint that the allocation needs to be monotone and obtain the following

primal-dual pair:

maxx,u
∑

i u
i

s.t. ui ≤
∑

ϑ ϑ
ixi(ϑ)f(ϑ), ∀i (wi)

ui ≤ bi, ∀i (yi)∑
i x

i(ϑ) ≤ 1, ∀ϑ (z(ϑ))

xi(ϑ) ≥ 0, ∀i, ϑ

minw,y,z
∑

i y
ibi +

∑
ϑ z(ϑ)

s.t. z(ϑ) ≥ ϑif(ϑ)wi, ∀i, ϑ (xi(ϑ))

yi + wi ≥ 1, ∀i (ui)

yi, wi, z(ϑ) ≥ 0, ∀i, ϑ

Assume we have an optimal primal-dual pair, then if for some profile of virtual values ϑ agent

i is allocated with non-zero probability, i.e., xi(ϑ) > 0 then by complementary slackness we

must have for all j 6= i:

ϑiwif(ϑ) = z(ϑ) ≥ ϑjwjf(ϑ)

where the equality follows from complementary slackness and the inequality follows from

feasibility. This means that i ∈ arg maxi ϑ
iwi, except that when f(ϑ) = 0.5

Now we still need to argue that the item is always allocated in an optimal solution. We

5Assuming that these properties (xi(ϑ) > 0 =⇒ i ∈ arg maxi ϑ
iwi and z(ϑ) = 0 =⇒ ϑiwi = 0) still hold

when f(ϑ) = 0 never changes the optimality or the feasibility of the solution.
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again use complementary slackness. If the item is not completely allocated for a profile ϑ

we must have z(ϑ) = 0 and therefore for all agents i:

0 = z(ϑ) ≥ ϑiwif(ϑ) ≥ 0

so ϑiwi must be zero except when f(ϑ) = 0.

Finally observe that even though we relaxed monotonicity in the program, the comple-

mentarity constraints imply that under any tie-breaking rule the allocation is monotone.

In order to implement the optimal auction in polynomial time we need to know the

parameters wi, qi and the tie-breaking rule. If we can compute wi, tie-breaking rules can

be handled using the same technique used in [CDW12a] to resolve them (see their proof of

Theorem 7). Given those, qi are simply the scaling that ensures E[ϑixi(ϑ)] ≤ bi without

hurting the objective function. We focus here on computing the parameters wi.

The parameters wi can be obtained by solving the dual problem via convex programming.

If wi are fixed, we can easily optimize the other variables by setting z(ϑ) = ϑif(ϑ)wi and

yi = 1− wi, so we can re-write the dual as:

minw∈[0,1]n g(w) :=
∑

i(1− wi)bi +
∑

ϑ f(ϑ) maxiw
iϑi

We can now optimize g using some of the standard techniques in convex programming,

such as the Ellipsoid Method. While in general optimization of convex functions only pro-

duces approximate solutions, since the problem comes from a linear program we can optimize

it exactly using a variation of Khachyan’s rounding procedure. The second issue is that we

must be able to evaluate g and its sub-gradients. While g is written as a sum over exponen-

tially many factors we can use the fact that f(ϑ) =
∏

i f
i(ϑi) to rewrite g as:

g(w) =
∑

i(1−wi)bi+
∑

i

∑
ϑ̄i Pr

[
ϑi = ϑ̄i and wiϑi > wjϑj, ∀j < i and wiϑi ≥ wjϑj,∀j

]
·ϑ̄iwi

where the probability above can be computed as:

Pr[. . .] = f i(ϑi)
∏

j<i

[∑
ϑj ;wjϑj<wiϑi f

j(ϑj)
]∏

j>i

[∑
ϑj ;wjϑj≤wiϑi f

j(ϑj)
]
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This way to write g also allows us to compute sub-gradients:

∂i(w) = −bi +
∑

ϑ̄i Pr
[
ϑi = ϑ̄i and wiϑi > wjϑj, ∀j < i and wiϑi ≥ wjϑj,∀j

]
· ϑ̄i

The fact we can efficiently evaluate the function g and find a subgradient enables us to apply

the Ellipsoid Method. The fact that the function comes from an LP allows us efficiently

round the solution.
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