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Abstract

We study the dynamic mechanism design problem of a seller who repeatedly sells independent
items to a buyer with private values. In this setting, the seller could potentially extract the entire
buyer surplus by running efficient auctions and charging an upfront participation fee at the beginning
of the horizon. In some markets, such as internet advertising, participation fees are not practical
since buyers expect to inspect items before purchasing them. This motivates us to study the design
of dynamic mechanisms under successively more stringent requirements that capture the implicit
business constraints of these markets. We first consider a periodic individual rationality constraint,
which limits the mechanism to charge at most the buyer’s value in each period. While this prevents
large upfront participation fees, the seller can still design mechanisms that spread a participation fee
across multiple initial auctions. These mechanisms have the unappealing feature that they provide
close-to-zero buyer utility in earlier auctions in exchange for higher utility in later auctions. To
address this problem, we introduce a martingale utility constraint, which imposes the requirement
that from the perspective of the buyer, the next item’s expected utility is equal to the present one’s.
Our main result is providing a dynamic auction satisfying martingale utility and periodic individual
rationality whose loss in profit with respect to first-best (full extraction of buyer surplus) is optimal
up to polylogarithmic factors. The proposed mechanism is a dynamic two-tier auction with a hard
floor and a soft floor that allocates the item whenever the buyer’s bid is above the hard floor and
charges the minimum of the bid and the soft floor.

Keywords: dynamic mechanism design, martingales, approximations, dynamic auctions, internet
advertising, revenue management.



1 Introduction

In this paper, we study the problem of designing mechanisms for markets in which independent items

are sold to buyers via repeated auctions. This problem is particularly relevant for display advertising

markets, where advertisers (the buyers) increasingly acquire impressions (the items) from online plat-

forms called ad exchanges (Muthukrishnan, 2009). In these platforms, impressions arrive one-by-one in

an online fashion, and advertisers submit bids in real-time after inspecting the context associated with

each impression. As of today, advertisers spend over 10 billion dollars per year in real-time bidding

markets (eMarketer, 2017).

While a seller could repeatedly run the optimal single-item auction for each item, a repeated setting

allows for dynamic mechanisms that link incentives across auctions and improve on the optimal single-

item auction. The intuition is simple: in a single-item setting with private values, the seller needs

to pay an information rent for inducing a buyer to reveal her private information, thus limiting the

seller’s ability to extract surplus (Myerson, 1981). In a repeated setting with independent values, a

buyer’s information at any given period is still private, however, from today’s perspective there is no

information asymmetry for future time periods. The seller can thus design mechanisms that charge in

advance for the right to get allocated efficiently in the future. By linking auctions together, the seller

can bundle items and extract a larger portion of the buyer surplus.1

Such mechanisms allow the seller to extract almost the entire buyer surplus, although with – what

we argue are – impractical rules that violate the implicit business requirements of real-time bidding

markets. Our main contribution is to identify constraints inspired by business requirements in real-

time markets, design mechanisms satisfying such constraints, and analyze their performance relative to

first-best (full extraction of buyer surplus). While we focus mostly on internet advertising markets, our

results can be applied to other settings such as supply chain contracting and repeated principal-agent

relationships.

The most basic constraint is that mechanisms should charge payments at the end of each period

and should provide incentives for buyers to participate. This dynamic individual rationality (DIR)

constraint prevents the seller from extracting the expected surplus for the first item, leaving the seller

with no alternative other than running the optimal single-item auction for the first item. At the end

1This is similar to the practice of reservation contracts in internet advertising. In reservation contracts, the seller
agrees to deliver a fixed number of impressions satisfying a coarse targeting criteria over a particular time horizon. In this
setup, the buyer cannot inspect individual impressions and bid in real-time based on specific viewer information as in ad
exchanges. A major business goal in internet advertising is to capture the revenue advantages of reservation contracts in
real-time markets.
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of the first period, however, both parties are informationally symmetric, and the seller can charge an

additional upfront payment for all subsequent items (Besanko, 1985).

The mechanism just described, however, goes against the essence of ad exchanges, where buyers

are granted the possibility to bid in real-time based on specific viewer information. When bids are

submitted it is often expected (or required) for the ad exchange to honor the semantic of ‘bid’: the

mechanism should respect the buyer’s desire not to pay more than a given amount for a given impres-

sion. This leads to the second constraint we impose: buyers should derive a positive utility per auction.

This periodic individual rationality (PIR) constraint limits mechanisms to charge each buyer at most

her value for an item, and prevents the seller from charging upfront fees.2 However, the seller is still

able to push this constraint to its limits by spreading an “upfront payment” across multiple initial

auctions. For example, by promising buyers that items will be efficiently allocated in the future, the

seller can incentivize buyers to initially pay their values. As observed by Biais et al. (2007) and Krishna

et al. (2013), this constraint allows for mechanisms in which buyers’ utilities are backloaded, that is,

buyers are forced to forfeit their utility in earlier auctions, only to be rewarded in later auctions. This

is undesirable as buyers typically prefer that the utility accrued from the mechanism is smooth over

time.

A third requirement is that the flow utility (expected utility per auction) of a buyer is “stationary”

throughout time. If we impose, however, that the flow utility of the buyer is the same for all items,

then the best possible mechanism involves offering the optimal single-item auction for each item. To

capture the desire for stationary flow utilities while still allowing for interesting dynamics, we introduce

the concept of martingale utilities (MU), which imposes the requirement that from the perspective of

a buyer, the next item’s expected utility is equal to the present one’s. This constraint is motivated by

the common practice of smooth delivery or pacing of ads in internet advertising markets. Typically,

advertisers have a strong preference for receiving items and spending money uniformly throughout

time (Bhalgat et al., 2012). Allocating impressions and spending money smoothly throughout time is

a proxy for a more fundamental measure we seek to be stationary over time: the utility that the buyer

accrues from the mechanism. Figure 1 provides a pictorial representation of a buyer’s expected flow

utility under optimal mechanisms satisfying these successively more stringent requirements.

2The periodic individual rationality constraint can be motivated by the presence of consumer withdrawal
rights (Krähmer and Strausz, 2015). For example, the European Union recently introduced legislation on “distance
sales contracts” governing internet and mail order contracts. Section 37 of Directive 2011/83/EU of the European Parlia-
ment and of the Council grants a consumer the right “to test and inspect the goods he has bought to the extent necessary”
and the right of withdrawal after inspecting the goods. In the case of withdrawal, the seller is required to reimburse the
buyer.
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Figure 1: Comparison of a buyer’s expected flow utility (the utility per item) under optimal mecha-
nisms satisfying successively more stringent requirements.

The main question we investigate in this paper is whether it is possible to achieve close to full surplus

extraction in a dynamic setting with limited payments and martingale utilities. We formulate this

question within the framework of dynamic mechanism design and provide simple dynamic mechanisms

satisfying these requirements. Throughout this paper, we compare the seller’s profit under different

mechanisms against first-best and show that the average profit of the proposed mechanisms converge

to first-best as agents become more patient. We provide sharp characterizations of convergence rates

to first-best as a function of the discount rate and prove that the proposed mechanisms are optimal

up to polylogarithmic factors. In doing so, we quantify the loss in profit the seller has to take, relative

to first-best, to impose these requirements. While the seller has to take a loss to impose periodic

individual rationality, an important conclusion from our analysis is that martingale utilities can be

imposed at no additional loss (up to polylogarithmic factors).

There are barriers that need to be overcome to apply those mechanisms in practice. The main one

is that mechanisms are designed for single-buyer settings. While many advertising sub-markets are thin

and can be considered mostly single-buyer, it is important to generalize our ideas to multiple-buyer

setting. We believe the mechanisms described in this paper can be extended to accommodate multiple

buyers. A second barrier is the assumption of a common prior shared by the seller and buyer. In

settings without priors, the seller should take into account the implications on incentives of attempting

to “learn” the distribution of buyer’s values. We refer the reader to Kanoria and Nazerzadeh (2017)

for promising steps in this direction. Nevertheless, we hope that structural insights provided here can

be useful to guide the design of mechanisms for real-time markets.
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1.1 Main Contributions

We consider the problem of a seller auctioning items that arrive sequentially over an infinite time

horizon. The seller has an opportunity cost for each item he sells. To simplify the exposition and

highlight the dynamic incentives at play, we assume that there is one buyer with private values that

are independent across items. Both parties are risk neutral and discount future payoffs with a common

rate.

We employ the framework of promised utility to formulate the dynamic mechanism design problem.

This framework, originally introduced by Green (1987), Spear and Srivastava (1987) and Thomas

and Worrall (1990), hinges upon the remarkable observation that, when values are independently

distributed, an optimal contract can be designed by considering the expected discounted utility of the

buyer as the state variable. This forward-looking variable summarizes the stream of all future utilities

and allows to formulate the problem recursively via dynamic programming. While this framework

can easily accommodate various constraints, the resulting dynamic program is challenging to solve

because the action space is complex (the space of all single-item mechanisms). In particular, the

classical Myersonian approach cannot be applied to characterize an optimal mechanism because the

seller’s objective incorporates continuation values, which are typically nonlinear functions. Instead of

characterizing optimal dynamic mechanisms, we provide simple dynamic approximation mechanisms3

that are incentive compatible and whose expected discounted profits converge to first-best as the

discount rate converges to one. We are particularly interested in the regime where the discount rate is

close to one since advertisers typically participate in a large number of auctions per day. We prove these

results by studying the dynamics induced by these stateful mechanisms using martingale concentration

arguments.

Our first contribution is the introduction of the Deferred Utility Mechanism, a simple incentive

compatible approximation mechanism satisfying PIR. The proposed mechanism has three phases: an

initial savings phase in which the buyer pays her full surplus to the seller in each period, and a sub-

sequent income phase in which the buyer is allowed to purchase the item from the seller at cost. The

mechanism transitions to the income phase when the present value of all buyer payments exceeds a

predefined threshold. The buyer’s utilities under this mechanism are backloaded, that is, she experi-

ences zero flow utility in earlier auctions and considerable flow utility in later auctions (see Figure 1b).

If the present value of all buyer payments falls below a predefined threshold, the mechanism enters a

3An approximation mechanism is a sub-optimal mechanism with theoretical guarantees on performance relative to
some benchmark.
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temporary no-trade phase in which items are not allocated. This phase acts as a threat to guarantee

incentive compatibility.

We show that the average discounted profit of the Deferred Utility Mechanism approaches first-best

at a rate of (1 − β)1/2, where β ∈ (0, 1) denotes the discount rate (we ignore polylogarithmic factors

throughout this paper). Note that in the case of dynamic individual rationality inefficiencies only arise

in the first period, and the convergence rate to first-best under DIR is (1−β). As expected, the conver-

gence rate of the Deferred Utility Mechanism to first-best is slower since the mechanism is constrained

to be periodic individually rational and cannot charge large upfront payments. Additionally, we show,

using a perfect information relaxation, that the convergence rate of the Deferred Utility Mechanism

is tight, in the sense that no other mechanism subject to periodic individual rationality can achieve a

better convergence rate. This quantifies the loss in profit the seller has to take to satisfy PIR.

Our second contribution is the introduction of the Martingale Utility Mechanism, a simple incentive

compatible approximation mechanism satisfying both PIR and MU. The proposed mechanism is a

dynamic two-tier auction with a hard floor and a soft floor. The item is allocated whenever the bid is

higher than the hard floor. If the bid is above the soft floor, then the auction works like a second-price

auction and the buyer pays the soft floor. If the bid lies between the hard floor and the soft floor,

then the auction works like a first-price auction and the buyer pays her bid. While this auction is

not truthful in a one-shot setting, the mechanism attains truthful reporting via dynamic incentives:

the mechanism gives incentives to the buyer to report her value by dynamically adjusting the floors

of future auctions based on her present bid. Interestingly, similar two-tier auctions have been used in

internet advertising markets, albeit with static floors, which do not guarantee truthful reporting.4 We

show that the average discounted profit of this mechanism approaches first-best at a rate of (1−β)1/2.

Convergence to first-best follows because, as the discount rate increases, the soft floor can be chosen

higher and in the limit the seller can run a sequence of truthful “almost” first-price auctions.

1.2 Further Applications

Our analysis can be extended to supply chain contracting with private price information and repeated

principal-agent models with hidden cost. The first application involves a manufacturer (the principal)

that repeatedly sells a perishable good to a retailer (the agent) facing a newsvendor problem. The retail

price in each period is privately observed by the retailer before making the ordering decision. Because

the good is perishable, inventory is not carried over and, in the event of a stock out, unmet demand

4See, for example, http://www.mopub.com/2013/04/12/introducing-soft-price-floors/.
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is lost. The manufacturer offers the retailer a dynamic contract that maximizes his expected total

discounted profits. This model is a natural extension of Lariviere and Porteus (2001) to a repeated

setting with private retail prices. In the second application, a principal contracts with an agent to

repeatedly produce output on her behalf. The agent’s marginal production cost in each period is

privately observed by the agent before making her production decision. This model captures many

real-word examples such as retail franchising, labor contracts, and procurement contracts (Laffont and

Martimort, 2001).

In both settings the Deferred Utility Mechanism has three phases as before. In the savings phase

the principal allocates efficiently and captures the entire surplus from efficient trade. Truthful reporting

during the savings phase is achieved exclusively via future promises. In the income phase the principal

also allocates efficiently and the agent captures the entire surplus. The mechanism transitions to the

income phase when the present value of all transfers exceeds a predefined threshold. In the Martingale

Utility Mechanism the principal allocates efficiently and transfers are determined using a dynamic

threshold. The principal captures the entire surplus from efficient trade when the agent type is inferior

to this threshold, and the agent is provided the additional surplus generated when her type is superior

to this threshold. Truthful reporting is achieved via dynamic incentives: if the agent reports a type

superior (inferior) to the current threshold, the threshold is adjusted to provide larger (smaller) surplus

in the next period. Appendix D gives an in depth exposition of these applications.

1.3 Related Work

In this section we discuss the connection of our work to several streams of literature. First, our

paper naturally relates to problems of dynamic mechanism design. Pavan et al. (2014) and Kakade

et al. (2013) provide necessary and sufficient conditions for optimal mechanisms in large classes of

environments in which agents’ information changes over time. This approach involves relaxing most

incentive compatibility constraints, solving the relaxed problem, and then showing that the candidate

mechanism satisfies all incentive compatibility constraints. To the best of our knowledge, this approach

cannot be extended to accommodate constraints such as the ones we consider in this paper. Balseiro

et al. (2016) study a dynamic mechanism design when buyers face a cumulative budget constraint

and the seller has limited commitment power, that is, he cannot commit to uphold the rules of future

auctions. Without budget constraints the optimal mechanism with limited commitment reduces to

repeatedly implementing Myerson’s optimal auction, which we show to be far from optimal in our

setting in which the seller can commit to a dynamic mechanism. Papadimitriou et al. (2014) study
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the computational complexity of designing optimal dynamic mechanisms and show a strong separation

between adaptive, non-adaptive and randomized dynamic mechanisms.

A related stream of work including Vulcano et al. (2002), Gallien (2006), Board and Skrzypacz

(2015) and Gershkov and Moldovanu (2014) studies dynamic pricing and revenue management problems

using dynamic mechanism design. In these models the designer sells multiple non-perishable items over

a finite horizon, introducing option value of waiting for better future opportunities for the seller. This

option value is not present in our setting because items are perishable. Chen and Farias (2015) study

the design of posted pricing policies in a revenue management setting with customers who arrive

dynamically throughout the horizon and can strategically time their purchases. They consider robust

pricing policies with a sub-martingale constraint on prices, which incentivizes buyers to purchase items

on arrival instead of waiting. In this paper, we impose a martingale restriction on flow utilities,

instead of prices, in order to capture the desire for stationary mechanisms. Akan et al. (2015) employ

a mechanism design approach to characterize a firm’s optimal screening strategy when consumers

learn their valuations for future consumption over time. Deb and Said (2015) study a model in which

consumers arrive over two time periods and the firm cannot commit in advance to the contractual terms

it offers in the second period. Our model differs in that goods sold are independent and perishable,

instead of durable; and buyers are not unit-demand. Krähmer and Strausz (2015) argue that sellers no

longer benefit from sequential screening with ex-post participation constraints. Moreover, the optimal

selling contract with ex-post participation constraints is static and coincides with the optimal posted

price contract in the static screening model. In our model, the seller can still improve upon the static

allocation with ex-post participation constraints because there are multiple independent items for sale

allowing incentives to be linked across auctions. Finally, the result that all inefficiency arises in the

first period under risk-neutrality, independent private information and dynamic individual rationally

was originally established by Besanko (1985).

The papers closer to ours are Biais et al. (2007), Krishna et al. (2013) and Belloni et al. (2015),

where they characterize the optimal dynamic mechanism using the promised utility framework when

the agent is liquidity constrained or has limited liability, i.e., under periodic individual rationality

constraints. Biais et al. (2007) consider an entrepreneur with limited liability that needs to finance

an investment project and explore the optimal financial contract when the entrepreneur can divert

operating cash flows. Krishna et al. (2013) study a setting in which a principal contracts with an agent

to operate a firm over an infinite time horizon when the agent is liquidity constrained and privately

observes the sequence of cost realizations. In both settings, agents are initially incentivized with future
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promises and agents utilities are backloaded. Belloni et al. (2015) provide a sharp characterization of

the optimal dynamic mechanism in a procurement setting and show that the optimal mechanism may

require randomization (ironing) even when the virtual value is non-decreasing. While these papers

characterize the structure of the optimal dynamic mechanism, the principal still needs to compute

the value function to implement the optimal mechanism, which might be challenging in some settings.

Additionally, it is not possible to fully characterize the mechanism in closed-form. Instead, here we

introduce dynamic approximation mechanisms that are easy to implement and asymptotically achieve

first-best. In recent and simultaneous work, Mirrokni et al. (2016) and Ashlagi et al. (2016) show

how to compute a (1 + ε)−approximation of an optimal dynamic mechanism in polynomial time in a

finite horizon model with periodic individual rationality constraints. While those papers compare the

profit of their mechanisms against the profit of an optimal dynamic mechanism (that can be obtained

via dynamic programming), the objective of our paper is to compare dynamic mechanism satisfying

successively more stringent requirement against first-best (full surplus extraction). To the best of our

knowledge, ours is the first paper to consider the notion of martingale utilities, show that first-best

can be asymptotically achieved via simple repeated auctions in the presence of periodic individual

rationality and martingale constraints, and provide sharp bounds on the rate of convergence to first-

best as a function of the discount rate.

Our work is related to the literature on linking incentives constraints in mechanism design. Jack-

son and Sonnenschein (2007) show that linking decisions across identical and independent repeated

problems allows the principal to improve on the isolated problem. In their model, agents learn all

the values for each problem at time zero and participation decisions are made at the beginning. In-

stead, our model is motivated by online markets in which values are sequentially revealed as items

become available for sale, agents are uncertain about their value for future items, and participation

decisions are made for every item. When values are known in advance, the seller can improve his

revenue by bundling items together: by selling different goods together, the seller is able to reduce

the relative variance of buyers’ valuations, therefore reducing the information asymmetry and making

the revenue-optimal auction more effective. There is a stream of literature going back to Manelli and

Vincent (2006) that studies bundling in non-dynamic mechanisms. We refer the reader to Hart and

Nisan (2012); Babaioff et al. (2014); Yao (2015) for a modern discussion on the power of bundling in

non-dynamic settings.
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2 Model and Problem Formulation

We study a discrete-time infinite horizon setting in which items are sequentially available for sale.

We index the sequence of items by t ∈ N. Future payoffs are discounted according to the discount

rate β ∈ (0, 1). There is one buyer (she) whose value for the tth item, which we denote by vt, is

independently and identically distributed with cumulative distribution function F (·) and density f(·).

We denote F̄ (·) = 1 − F (·). Values are supported in the bounded set V , [0, v̄] and the density is

strictly positive on its domain. The distribution of values is common-knowledge. The value of the tth

item is privately observed by the buyer when the tth item arrives. The buyer has a quasilinear utility

function given by the difference between the discounted sum of the valuations generated by the items

won minus the payments over all auctions she participates. The seller (he) incurs a cost of c ∈ [0, v̄) for

selling each item, which is assumed to be common knowledge. The objective of the seller is to maximize

expected discounted profit as given by the difference of the payments collected over all auctions and

the cost of the goods sold.

2.1 Dynamic Mechanisms

The timing of events is as follows. Initially, the seller announces a dynamic mechanism. A dynamic

mechanism is a contingency plan, which the seller commits to honor, specifying an allocation and

payment function for every possible state of nature. Then, the following steps are sequentially repeated

as a new item becomes available for sale. Firstly, the buyer learns her valuation for the current item and

submits a report to the seller. Secondly, the seller publicly announces the outcome of the mechanism

for that item, and the payment the buyer should make to the seller. By the Revelation Principle we

can focus without loss on direct mechanisms in which the buyer reports her value truthfully to the

seller.

We refer to the game associated with the sale of an individual item as the stage game and to the

corresponding single-item mechanism as the stage mechanism. More formally, a stage mechanism is

a pair of functions (q, z) ∈ M where q : V → [0, 1] is an allocation function and z : V → R+ is a

payment function. That is, when the buyer reports v for the item, q(v) determines the probability

that the item is allocated and z(v) determines the payment to be charged. A dynamic mechanism π

is a non-anticipative, adaptive policy that determines a stage mechanism (qπt , z
π
t ) ∈ M for each time

period t (i.e., it makes decisions based on the history of past buyer’s reports and seller’s actions).
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Given a direct dynamic mechanism π ∈M the discounted profit of the seller is given by

Ππ = Eπ
[ ∞∑
t=1

βt−1
(
zπt (vt)− cqπt (vt)

)]
,

where the expectation is taken with respect to the history induced by π. Similarly, the discounted

utility of the buyer is given by

Uπ = E

[ ∞∑
t=1

βt−1
(
vtq

π
t (vt)− zπt (vt)

)]
.

Finally, in order to compare the utility of the buyer and the profit of the seller for different discount

rates β it is useful to define the notion of average discounted utility and average discounted profit per

item as Π̄π = (1− β)Ππ and Ūπ = (1− β)Uπ, respectively.5

Recursive formulation A challenge with the previous formulation is that the stage mechanism offered

at time t potentially depends on the history observed up to time t. We employ the framework of

promised utility to characterize an optimal dynamic mechanism. Because the seller has commitment

power and values are independent, Lemma 1 in Thomas and Worrall (1990) implies that it suffices

to consider the expected discounted utility-to-go of the buyer wt = E
[∑∞

s=t β
s−t(vsqπs (vs)− zπs (vs)

)]
as the state variable to guarantee dynamic incentive compatibility. We can formulate the mechanism

design problem recursively by having the seller arrive at time t, before vt is realized, with a previously

made promise wt. The seller then delivers the promised utility wt by choosing a stage mechanism and

the continuation value wt+1 for the next time period.

Because the problem has an infinite horizon with discounting and values are identically and inde-

pendently distributed, without loss we can restrict attention to time-independent dynamic mechanisms

in which the state variable is the discounted promised utility w ∈ U , [0, ū]. Let y+ = max(y, 0) be the

positive part of a number y ∈ R. Here ū = Ev [(v − c)+] /(1 − β) is an upper bound on the promised

utility, which corresponds to the expected social welfare under the first-best allocation. We extend the

space of stage mechanism to triples (q, z, u) ∈M′ where q and z are allocation and payment functions,

respectively, as before, and u : V → U is the promise function. That is, when the buyer reports a value

of v for the item, u(v) determines the discounted utility-to-go in the next time period.

5The infinite horizon discounted model can be interpreted as a random time horizon model with geometric length, i.e.,
after each time period the problem stops with probability (1 − β). Under this alternative interpretation, the expected
number of items sold is (1− β)−1.
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In this recursive formulation a dynamic mechanism is a contingency plan (qπ(v;w), zπ(v;w), uπ(v;w))

that determines the stage mechanism offered at each state w ∈ U , together with an initial state wπ ∈ U .

The dynamic mechanism induces a stochastic process (wπt )t≥1 which captures the evolution of the

promised utility under the mechanism. This process evolves according to wπt+1 = uπ(vt;w
π
t ) with

the initial condition w1 = wπ. We emphasize that the promised utility is a state introduced by the

mechanism that allows linking decisions across time periods with the objective of improving profits

and efficiency. Even though buyer’s valuations are independent, the buyer’s decisions across time are

linked by the state of the mechanism.

Feasible mechanisms A feasible mechanism should satisfy the following constraints. To simplify the

notation, we drop the superscript π when referring to a general mechanism. First, the allocation should

be feasible, that is,

0 ≤ q(v;w) ≤ 1 , (1)

for every state w ∈ U and value v. Additionally, the promised utility should be attainable, that is,

0 ≤ u(v;w) ≤ ū , (2)

for every state w ∈ U and value v. The mechanism should satisfy the following promise keeping

constraint for each state w ∈ U

w = Ev [vq(v;w)− z(v;w) + βu(v;w)] , (PK)

which imposes that the actual utility delivery by the mechanism coincides with the one promised. The

mechanism should be dynamic incentive compatible for each state w ∈ U of the mechanism, that is,

when the buyer’s value is v she should be better off reporting her value truthfully over misreporting

some value ṽ

vq(v;w)− z(v;w) + βu(v;w) ≥ vq(ṽ;w)− z(ṽ;w) + βu(ṽ;w) . (DIC)

This implies, by the one-shot deviation principle, that reporting the value truthfully is weakly dominant

for the buyer at every point in time (and regardless of the history).
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2.2 Dynamic Revenue Equivalence

In a static setting the celebrated Revenue Equivalence Theorem pins down the payment of a direct

mechanism given the allocation. The following result extends this result to our dynamic setting and

provides a tractable characterization of a feasible dynamic mechanism. This result essentially adapts

Lemma 1 in Besanko (1985) to the promised utility framework. All proofs are deferred to the appendix.

Lemma 2.1. A dynamic mechanism (q(v;w), z(v;w), u(v;w)) is feasible if and only if it satisfies con-

straints (1), (2), the allocation q(v;w) is non-decreasing in v, and for every state w ∈ U

z(v;w)− βu(v;w) = −U(0;w) + vq(v;w)−
∫ v

0
q(x;w)dx , (3)

where U(0;w) = w −
∫∞

0 F̄ (x)q(x;w)dx is the discounted utility-to-go of the lowest type.

Using the envelope theorem we establish that given a feasible allocation and a feasible promise

function, the payment is pinned down by the dynamic incentive compatibility constraint and the

promise keeping constraint. This result readily implies a recursive version of the Revenue Equivalence

Theorem: any two feasible dynamic mechanisms with the same allocation and promise function achieve

the same expected profit for the seller. Additionally, this lemma provides a straightforward method to

construct dynamic incentive compatible mechanisms: for any feasible allocation rule and an attainable

promised function, equation (3) pins down a payment rule that makes the mechanism dynamic incentive

compatible. While in this paper we study the case of a single buyer, the promise utility framework

and the previous result can be easily extended to accommodate multiple buyers.

Lemma 2.1 shows that in a dynamic setting the seller can incentivize the agent to report truthfully

by making an instantaneous payment or making future promises. For example, the seller can potentially

charge a large payment today and in return promise to provide rents in the future (for example, by

allocating efficiently). A priori, it is not clear that such intertemporal substitution of income is beneficial

for the seller. The key observation is that while in the current period the buyer’s information is private,

from today’s perspective there is no information asymmetry for future time periods. Thus the seller

can charge in advance for the right to get allocated efficiently in the future. Because both parties are

informationally symmetric for future time periods, the seller does not need to pay information rents

for future periods and he can extract a higher surplus.
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2.3 Benchmarks

Dynamic mechanisms are compared against two benchmarks. As a first benchmark we consider the

first-best outcome (FB), which is the discounted profit an omniscient seller – who observes the realiza-

tion of values – could extract from the buyer. In this case the seller allocates the item whenever the

values is above his marginal cost, and charges the buyer her value. Here the seller achieves full surplus

extraction, and his discounted profit is given by

ΠFB =
1

1− β
Ev
[
(v − c)+

]
. (4)

The corresponding mechanism is static and given by qFB(v) = 1{v ≥ c} and zFB(v) = v1{v ≥ c}. This

mechanism, while not incentive compatible, provides an upper bound to the objective value of any

feasible mechanism.

As a second benchmark we consider the optimal static incentive compatible mechanism (S), which

amounts to repeatedly allocating items according to Myerson’s optimal auction. Let φ(v) = v − (1 −

F (v))/f(v) denote the buyer’s virtual value, which is assumed to be increasing.6 In this case a posted-

price scheme is optimal. The optimal price φ−1(c) solves the problem maxr≥c(r − c)P{v ≥ r} and the

seller’s discounted profit is given by

ΠS =
1

1− β
Ev
[
(φ(v)− c)+

]
. (5)

The corresponding mechanism is qS(v) = 1{φ(v) ≥ c} and zS(v) = φ−1(c)1{φ(v) ≥ c}. This mechanism

is clearly feasible and provides a lower bound to the objective value of an optimal dynamic mechanism.7

It is convenient to note that the ratio Π̄FB/Π̄S between these two benchmarks can be arbitrarily

large. A folklore example involves the truncated equal revenue distribution, given by the cumulative

distribution function F (v) = 1 − 1/v for v ∈ [1, v̄) and F (v̄) = 1. For c = 0, we have Π̄FB = E[v] =

1 + log v̄ while Π̄S = maxr∈[1,v̄] rP{v ≥ r} = 1. Therefore, Π̄FB/Π̄S = 1 + log v̄ →∞ when v̄ →∞.

6This assumption is typical in the mechanism design literature. Examples of distributions satisfying this condition are
uniform, exponential, truncated normal, and Weibull, among others. Interestingly, we do not require this assumption to
characterize and analyze our approximation mechanisms.

7To simplify the exposition we describe the optimal static mechanism in term of histories. The same mechanism in
the promised utility formulation can be given by: q(v;w) = 1{v ≥ r(w)} where r(w) is such Ev[(v− r(w))+] = (1− β)w,
z(v;w) = r(w)1{v ≥ r(w)} and u(v;w) = w. The initial state is wS = Ev[(v−φ−1(c))+]/(1−β). Because the mechanism
is static, the initial state wS is absorbing and all other states are irrelevant.
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3 Design Principles

We next formally define the desirable properties a practical dynamic mechanism should satisfy in the

markets we consider.

Dynamic Individual Rationality While the seller is committed to honor his promises, the buyer is free

to walk away at any time. The first desirable property is that the mechanism should provide incentives

for the buyer to participate; such a mechanism is said to be self-enforcing from the buyer’s stand point.

More formally, a mechanism is dynamic individually rational for each state w ∈ U if the discounted

utility-to-go of the buyer is non-negative for all values v

vq(v;w)− z(v;w) + βu(v;w) ≥ 0 . (DIR)

An optimal dynamic mechanism under DIR allocates the item according to Myerson’s optimal

auction in the first period and allocates the item efficiently onwards. The seller incorporates a large

participation fee in the first auction that allows him to extract the buyer’s entire surplus from the

second auction onwards. Truthful reporting in the first period is guaranteed by offsetting the first

instantaneous payment with a promise of large future reward. Here the seller exploits that at the point

of contracting the only private information is the buyer’s value for the first auction and that there is

no information asymmetry for future time periods. Thus, the seller only pays the buyer an information

rent for the first time period and achieves close to full surplus extraction. This result is well-known

in the mechanism design literature and was originally established by Besanko (1985). Appendix C

provides a closed-form characterization of an optimal dynamic mechanism subject to DIR and shows

that the average discounted profit of this mechanism converges at a rate 1− β to first-best.

Periodic Individual Rationality An optimal dynamic mechanism satisfying DIR can induce the buyer

to make a large upfront payment in the first auction in exchange of repeatedly allocating the item

efficiently in the future. In some markets, however, large participation fees are not plausible and

buyers expect to inspect items before paying. We exclude such mechanisms by imposing the stronger

periodic individually rationality constraint (PIR), which imposes that the buyer should derive a positive

utility from each auction:

vq(v;w)− z(v;w) ≥ 0 . (PIR)
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This constraint limits the instantaneous payment of the buyer to be less than or equal to her value for

the current item and restricts the use of large upfront fees.

Optimal mechanisms satisfying PIR attempt to spread the “upfront payment” across multiple

auctions. In earlier auctions the seller captures the entire surplus from trade and truthful reporting

is achieved by future promises: in return, the item is afterwards allocated efficiently and the buyer

pays the seller’s marginal cost for each item. Section 4 introduces the Deferred Utility Mechanism,

a simple approximation mechanism satisfying PIR that exhibits this behaviour. We show that the

average discounted profit of this mechanism converges to first-best at a rate (1 − β)1/2, and that no

other mechanism can converge faster to first-best.

Martingale Utilities While PIR limits payments to at most the buyer’s value, it allows for non-

stationary mechanisms in which the buyer is initially incentivized with promised future payments

and in return derives little-to-no flow utility in earlier auctions. This is undesirable as buyers typ-

ically prefer that the utility accrued from the mechanism is smooth over time, instead of back-

loaded. Thus motivated we study optimal mechanisms under the constraint that the flow utility

`(w) = Ev [vq(v;w)− z(v;w)] is a martingale, that is, Ev
[
`
(
u(v;w)

)]
= `(w) for all states w ∈ U . This

imposes that the expected utility of the buyer for the next auction, conditioning on the current state,

is equal to expected utility of the current auction. The previous constraint is equivalent to requiring

that the promised utility is a martingale, that is, the mechanism satisfies

Ev [u(v;w)] = w , (MU)

for all states w ∈ U (see Lemma B.2 in the appendix for a proof).8 This last constraint is more

tractable from an analytical perspective and in the rest of paper we work exclusively with it.

The MU constraint implies that promised future payments are now limited as the mechanism

needs to consistently provide rents throughout the horizon. Section 5 introduces the Martingale Utility

Mechanism, a simple approximation mechanism satisfying PIR and MU that achieves truthful reporting

via a combination of instantaneous payments and promised future payments. Additionally, the average

discounted profit of this mechanism converges to first-best at a rate (1− β)1/2.

8This equivalence only holds in the time-discounted model. In a finite horizon model with T time periods, the
corresponding constraint on the promised utilities is E [wt+1 | wt] = (1− 1/(T − t+ 1))wt for all t = 1, . . . , T , which
implies that the promised utility is a supermartingale.
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4 Dynamic Mechanisms with Periodic Individual Rationality

An optimal dynamic mechanism under PIR can be recursively characterized by the Principle of Op-

timality. Let ΠPIR(w) be the optimal expected profit-to-go of the seller when the promised utility is

w ∈ U . We have:

ΠPIR(w) = max
(q,z,u)∈M

Ev[z(v)− cq(v) + βΠPIR(u(v))] (6)

s.t (1), (2), (PK), (DIC), (PIR) .

Given a value function ΠPIR(·) solving the previous Bellman Equation, the optimal profit of the seller is

given by ΠPIR = maxw∈U Π
PIR(w), and the initial state wPIR is a maximizer of the previous problem.9

In this setting an optimal dynamic mechanism cannot be characterized in closed-form. Using

Lemma 2.1 it is still possible to eliminate payments from the inner optimization problem in (6), and

obtain a simpler problem constrained only by (1), (2) and (PIR). In this case, however, the allocation

and utility functions are coupled by (PIR) and the objective is not separable. This leads to an infinite

dimensional optimization problem over the space of feasible allocations, and because the objective is

non-linear it is not possible to optimize the objective in a pointwise fashion, as done in the single-item

setting (Myerson, 1981). Belloni et al. (2015) provide sufficient conditions under which the optimal

stage mechanism can be characterized given the value function. In order to implement the optimal

dynamic mechanism, however, the seller needs to determine the value function, and it is not possible to

fully characterize the mechanism in closed-form. Additionally, they show that the optimal mechanism

may require randomization (ironing) even when the virtual value is non-decreasing. Thus motivated, we

consider a dynamic approximation mechanism that is easy to implement and asymptotically optimal.

We first provide the intuition behind the derivation of the approximation mechanism.

Let SPIR(w) = w + ΠPIR(w) be the social welfare generated by an optimal mechanism. After

eliminating payments using Lemma 2.1, we obtain the simpler equivalent recursion

SPIR(w) = max
(q,u)

Ev[(v − c)q(v) + βSPIR(u(v))] (7)

9The optimal value function ΠDIR(·) is a fixed-point of the Bellman operator (TΠ)(w) =
max(q,z,u)∈M′:(1),(2),(PK),(DIC),(DIR) Ev[z(v) − cq(v) + βΠ(u(v))] for all w ∈ U . A unique optimal solution can be
shown to exist because the Bellman operator T is a contraction mapping under the sup-norm when β < 1.
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subject to (1), (2) and

βu(v) ≤ w +

∫ v

0
q(x)dx−

∫ v̄

0
F̄ (x)q(x)dx . (PIR’)

Note that SPIR(w) is non-decreasing in w because the constraint set of the inner optimization problem

expands as w increases. Suppose the state is not close to ū. For any fixed allocation q the seller would

like to set the promise function as large as possible and constraint (PIR’) should be binding. This

pins down the promise function. The change in the promised utility from one auction to the next is

at most 2v̄/β, which is small relatively to ū when agents are patient. Thus, continuation values are

approximately linear in the region of achievable states from the current state. Performing a first-order

expansion of the value function around w we obtain SPIR(u(v)) ≈ SPIR(w) + d
dwS

PIR(w)(u(v) − w),

which implies after taking expectations that βE[SPIR(u(v))] ≈ βSPIR(w) + d
dwS

PIR(w)(1− β)w because

βE[u(v)] = w from (PIR’). Therefore, the allocation has a negligible impact on the second term of (7)

and the seller optimizes the objective by maximizing flow profit. Thus, allocating efficiently according

to q(v) = 1{v ≥ c} is nearly optimal. A similar argument shows that allocating efficiently is nearly

optimal when u(v) is close to ū.

This argument readily suggests an approximation mechanism for the seller: allocate efficiently

whenever possible, set the promise function so that (PIR’) is binding and determine payments using

Lemma 2.1. However, we must deal with two issues: (i) when the promised utility is low the mechanism

needs to be modified so that the promised utility never drop below zero and (ii) the initial state needs

to be determined to maximize expected profits. We address these issues in the next section.

4.1 The Deferred Utility Mechanism

In this section we propose the Deferred Utility Mechanism (DUM), a dynamic mechanism satisfying

dynamic incentive compatibility and periodic individual rationality that asymptotically achieves first-

best as the discount rate converges to one. We study the problem when the discount rate satisfies the

following assumption.

Assumption 4.1. The discount rate satisfies β > (v̄ − c)/(Ev [(v − c)+] + v̄ − c) ≥ 1/2.

For example, when values are U [0, 1] and the seller cost is zero, this assumption requires that

β ≥ 2/3, or at least 3 items are sold on average if we interpret discounting as geometric lifetimes.

We denote the approximation mechanism by (qDUM, zDUM, uDUM). Let w = Ev [(v − c)+] and w̄ =
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Ev [(v − c)+] /(1− β)− (v̄ − c). The allocation function is given by

qDUM(v;w) =

0 , if w ∈ [0, w) ,

1{v ≥ c} , if w ∈ [w, ū] ,

the payment function is given by

zDUM(v;w) =


0 , if w ∈ [0, w) ,

v1{v ≥ c} , if w ∈ [w, w̄] ,

c1{v ≥ c} , if w ∈ (w̄, ū] ,

and the promise function is given by

uDUM(v;w) =


1
βw , if w ∈ [0, w) ,

1
β (w + ∆DUM(v)) , if w ∈ [w, w̄] ,

1
β (w + ∆DUM(c)) , if w ∈ (w̄, ū] ,

where we denote by ∆DUM(x) = (x−c)+−Ev [(v − c)+] the mean adjusted surplus. The initial promised

utility is chosen so that wDUM ∈ [w, w̄]. The next result uses Lemma 2.1 to show that the proposed

dynamic mechanism is feasible.

Proposition 4.2. Suppose Assumption 4.1 holds. The Deferred Utility Mechanism (qDUM, zDUM, uDUM)

is periodic individually rational and dynamic incentive compatible for all initial states w ∈ [0, ū].

The proposed mechanism has three phases depending on the value of the promised utility. The

savings phase is characterized by promised utilities in the intermediate range [w, w̄]. In this phase the

item is allocated according to a first-price auction (FPA) with reserve price c, i.e., the buyer obtains

the item when her value is above the cost c and pays her value. In a single-item setting the first-price

auction is known to be non-truthful as bidders have an incentive to shade their bids. In our dynamic

setting, the mechanism attains truthful reporting via dynamic incentives: the buyer is promised a

relatively higher (lower) discounted surplus in future auctions when her report is high (low). Thus

the seller provides an incentive for the buyer to pay her value via future promises. The income phase

is characterized by promised utilities in the highest range (w̄, ū]. In this phase the item is allocated

efficiently according to a second-price auction (SPA) with reserve price c, i.e., the buyer obtains the

item when her value is above the cost c and pays this cost. The no-trade phase is characterized by

promised utilities in the lowest range [0, w). In this phase the item is not allocated and no payments
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are collected, and in return the promised utility is monotonically increasing to prevent the promised

utility from being negative. The no-trade phase plays a critical role in guaranteeing DIC. For example,

if the buyer decides to consistently report c in the savings phase, the state would eventually reach the

no-trade phase and items would not be allocated until the state leaves that phase.10

Dynamics The initial promised utility wDUM is chosen to lie in the savings phase. In the savings

phase the seller’s expected flow profit is Ev [(v − c)+] and thus he extracts the whole buyer surplus

in each auction. The mechanism substitutes present surplus with future surplus, i.e., it provides no

surplus to the buyer in the current auction in return for positive surplus in the future. In this phase the

promised function satisfies Ev[uDUM(v;w)] = w/β, and thus the promised utility drifts upwards towards

the income phase. Because the seller derives his profit during the savings phase, the initial promised

utility wDUM is chosen to carefully balance two effects. If the initial promised utility is high, the time

spent in the savings phase is low as the promised utility would quickly drift towards the unprofitable

income phase. Alternatively, if the initial promised utility is low, the time spent in the savings phase

is low again as the promised utility could likely fall into the no-trade phase. Figure 2 illustrates the

dynamics of the approximation mechanism.

Compared to an optimal mechanism with dynamic individual rationality, the seller can no longer

extract the buyer’s surplus via large upfront payments. Because payments are limited to be smaller

than values, the seller instead spreads the “upfront payment” across the multiple auctions of the savings

phase and employs a first-price auction as an instrument to collect this payment.

The proposed mechanism resembles a deferred annuity contract between a principal and an agent.

Interpreting the discount rate as the buyer having a geometric lifetime, we can interpret the mechanism

as an insurance contract: the buyer invests money into the account during the savings phase until a

given level is reached, and then the buyer gets a “lifetime” of payments in the form of being provided

the entire surplus from efficient allocation.11

10While the buyer might be indifferent between reporting a lower value or truthful bidding, the seller strictly prefers
the latter. The seller can modify the mechanism so that the buyer is strictly better off reporting truthfully, at the expense
of a small loss in profit (see, e.g., Fiat et al. (2013)).

11Because the drift in the income phase is non-positive, the promised utility might alternate between the income and
savings phase. However, the length of these incursions into the savings phase are small.
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Figure 2: Dynamics of approximation mechanism for periodic individual rationality. The left plot
shows the evolution of the state, and the right plot shows the evolution of the mean flow profit of the
seller and mean flow utility of the buyer. Values are U [0, 1], the seller’s cost is c = 0.3, and the discount
rate is β = 0.95. Results are obtained using Monte Carlo simulation of 50,000 sample paths.

4.2 Performance Analysis

The next result compares the performance of the approximation mechanism to that of the first-best

mechanism.12

Theorem 4.3. Suppose Assumption 4.1 holds. Let wDUM = w +
√

2v̄
(1−β)1/2

log1/2
(

1
1−β

)
. We have

ΠDUM ≤ ΠPIR ≤ ΠFB ≤ ΠDUM + Õ

(
1

(1− β)1/2

)
.

A straightforward corollary of the previous result is that the average profit of the mechanism

(qDUM, zDUM, uDUM) and the optimal PIR mechanism achieve first-best as the discount rate converges

to one:

lim
β→1

Π̄DUM = lim
β→1

(1− β)ΠDUM = Ev
[
(v − c)+

]
= Π̄FB .

The rate of convergence to first-best is (1− β)1/2, which is slower than the rate of convergence under

an optimal DIR mechanism, since in this case the mechanism is constrained to be periodic individually

rational and cannot charge large upfront payments. Also the initial promised utility is higher than the

one provided by an optimal DIR mechanism (see Appendix C). We next provide some intuition for

12We say f(β) is big O of g(β) or f(β) = O(g(β)) if and only if there exists C > 0 and β0 ∈ (0, 1) such that
|f(β)| ≤ C|g(β)| for all β0 ≤ β < 1. We say f(β) is soft O of g(β) or f(β) = Õ(g(β)) if and only if f(β) = O

(
g(β) logk g(β)

)
for some k > 0. We say f(β) is big Omega of g(β) or f(β) = Ω(g(β)) if and only if there exists C > 0 and β0 ∈ (0, 1)
such that |f(β)| ≥ C|g(β)| for all β0 ≤ β < 1.
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this result.

Let SDUM = ΠDUM + wDUM be the social welfare generated by the mechanism. Ignore momentarily

the possibility of the state going below w and entering the no-trade phase. Because the mechanism

allocates efficiently whenever possible and payments are an internal transfer of wealth, we obtain that

SDUM ≈ Ev [(v − c)+] /(1−β) = ΠFB. This implies ΠDUM ≈ ΠFB−wDUM and thus the seller would like

to pick the initial promised utility as small as possible to maximize the number of time periods spent

in the savings phase. Recall that in order to enforce DIC, the promised utility has to decrease with

positive probability, which could eventually lead the mechanism to the undesirable no-trade phase.

Hence the previous analysis is incomplete as it does not take into account the possibility of entering

the no-trade phase. The loss in profit with respect to the first-best given in Theorem 4.3 arises from

the fact that the initial promised utility should be chosen large enough so that the probability that the

state falls to the no-trade phase is small. We next briefly discuss convergence to first-best.

As the discount rate increases the promised utility concentrates around its expected path, which

has an upward drift during the savings phase (since Ev[uDUM(v;w)] = w/β because Ev[∆DUM(v)] = 0).

Hence, the initial promised utility wDUM can be chosen to be lower relative to ΠFB while guaranteeing

that the probability that the promised utility hits the no-trade phase is small, which allows the seller

to increase the number of time periods spent in the savings phase and, in the limit, achieve first-best.

4.3 The Cost of Periodic Individual Rationality

We next study the cost of imposing PIR on the seller’s profit by measuring the loss in profit the seller

has to take in order to guarantee the PIR constraint. We denote this loss by ΠFB−ΠPIR. Theorem 4.3

shows that the cost of imposing PIR is bounded from above as ΠFB−ΠPIR ≤ Õ
(
(1− β)−1/2

)
. The next

result shows that no other mechanism satisfying PIR can achieve a loss smaller than Ω
(
(1− β)−1/2

)
.

This implies that the convergence rate of the Deferred Utility Mechanism given in Theorem 4.3 is

tight, in the sense that no other mechanism satisfying PIR can convergence faster to first-best (up

to polylogarithmic factors). We prove the result by considering a model in which buyer’s values are

discrete.

Theorem 4.4. Suppose that the seller’s cost is c = 0 and the buyer’s value is a non-degenerate and

positive two-point distribution. Then ΠFB −ΠPIR ≥ Ω
(
(1− β)−1/2

)
.

The proof proceeds by using structural properties of the optimal value function to simplify the

optimal mechanism design problem. As described above, it is possible to eliminate the payment and
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promise functions from the mechanism design problem. Because there are no distortions at the top, the

problem reduces to optimally determining the probability of selling the item when the buyer’s value is

low. Let qt be the probability of selling the item when the type is low at time t. When the promised

utility is close to ū, the seller cannot profit since promises are delivered by providing all surplus to the

buyer. Hence, the seller profits only when the promised utility is not close to ū. In this case, we obtain

that E[wt+1|wt] = wt/β regardless of qt because (PIR’) is binding. Therefore, the seller would like to

pick the initial promised utility as small as possible. When the state is close to zero, however, the seller

must reduce the volatility of the promised utility process, at a loss, by setting qt ≈ 0 to avoid being

absorbed at w = 0. Because of stochastic fluctuations in the promised utility process, every mechanism

needs to incur a minimal loss of Ω
(
(1− β)−1/2

)
to avoid being absorbed by the lower boundary.

Bounding the loss in profit with respect to first-best of an optimal non-anticipative policy is chal-

lenging. Instead, we provide an upper bound to this problem using a perfect information relaxation in

which the seller knows in advance all realizations of the buyer’s value. We then characterize the opti-

mal objective value of the perfect information relaxation in terms of the expected deviations from the

origin of a reflected random walk, and we conclude by bounding these deviations using concentration

inequalities.

5 Dynamic Mechanisms with Martingale Utilities

As before, an optimal dynamic mechanism can be recursively characterized by the Principle of Op-

timality. Let ΠMU(w) be the optimal expected profit-to-go of the seller when the promised utility is

w ∈ U . We have:

ΠMU(w) = max
(q,z,u)∈M′

Ev[z(v)− cq(v) + βΠMU(u(v))] (8)

s.t (1), (2), (PK), (DIC), (PIR), (MU) .

Given a value function ΠMU(·) solving the previous Bellman Equation, the optimal profit of the seller

is given by ΠMU = maxw∈U Π
MU(w), and the initial state wMU is a maximizer of the previous problem.

Because an optimal dynamic mechanism cannot be characterized in closed-form, we consider a dynamic

approximation mechanism that is easy to implement and asymptotically optimal.

We next provide the intuition behind the derivation of the approximation mechanism. Let SMU(w) =

w +ΠMU(w) be the social welfare of an optimal mechanism. Using Lemma 2.1 to eliminate payments
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as before, we obtain the simpler equivalent recursion

SMU(w) = max
(q,u)

Ev[(v − c)q(v) + βSMU(u(v))] (9)

subject to (1), (2), (MU) and (PIR’). It is not hard to see that SMU(w) is nondecreasing and concave

in w, where the latter follows because the constraint set of the inner optimization problem is linear and

the objective is concave. Fix an allocation q and let βūq(v) be the right-hand side of (PIR’), that is,

u(v) ≤ ūq(v). The seller determines the promise function by solving a knapsack problem with concave

and non-decreasing rewards: the knapsack has a capacity of w given by (MU), “objects” are indexed

by v, and u(v) denotes the amount of v put into the knapsack. Object v has a reward f(v)SMU(u(v)),

volume f(v)u(v), and upper bounds u(v) ≤ ūq(v). Because the ratio of reward to volume is the

same for all objects, the seller would like to simultaneously increase u(v) across all objects as much

as possible until the knapsack is full. Since the upper bounds ūq(v) are non-decreasing in v, it follows

that there exists a threshold s such that u(v) = ūq(v) for v ≤ s and u(v) = ūq(s) for v > s. That is,

(PIR’) is binding for types lower than s and the threshold should satisfy Ev [ūq(min(v, s))] = w. This

pins down the promise function. Performing a first-order expansion of the value function around w, as

before, and using that the flow utility is a martingale, we obtain that the allocation has a negligible

impact on the second term of (9) and the seller optimizes flow profit by allocating efficiently according

to q(v) = 1{v ≥ c}. This argument readily suggests an approximation mechanism for the seller.

5.1 The Martingale Utility Mechanism

In this section we propose the Martingale Utility Mechanism (MUM), a dynamic mechanism satisfying

dynamic incentive compatibility, periodic individual rationality, and martingale utilities that asymp-

totically achieves first-best as the discount rate converges to one. We study the problem when the

discount rate satisfies the following assumption.

Assumption 5.1. The discount rate satisfies β > 1− Ev [(v − c)+] /(v̄ − c) and β ≥ 1/2.

For example, when values are U [0, 1] and the seller cost is zero, this assumption requires that

β ≥ 1/2, or at least 2 items are sold on average if we interpret discounting as geometric lifetimes.

We denote the Martingale Utility Mechanism by (qMUM, zMUM, uMUM). Let w = Ev [(v − c)+]. The
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allocation function is given by

qMUM(v;w) =

(w/u) 1{v ≥ c} , if w ∈ [0, w) ,

1{v ≥ c} , if w ∈ [w, ū] ,

the payment function is given by

zMUM(v;w) =

(w/u)c 1{v ≥ c} , if w ∈ [0, w) ,

min(v, sMUM(w))1{v ≥ c} , if w ∈ [w, ū] ,

where we let soft floor sMUM(w) be a solution of the equation

(1− β)w = Ev
[
(v − sMUM(w))+

]
, (10)

and the promise function is given by

uMUM(v;w) =

w , if w ∈ [0, w) ,

1
β

(
w +

(
min(v, sMUM(w))− c

)+ − Ev[(v − c)+]
)
, if w ∈ [w, ū] .

The initial promised utility will be chosen so that wMUM ∈ [w, ū]. The next result uses Lemma 2.1 to

show that the proposed dynamic mechanism is feasible.

Proposition 5.2. Suppose Assumption 5.1 holds. The Martingale Utility Mechanism (qMUM, zMUM, uMUM)

is dynamic incentive compatible, periodic individually rational and satisfies the martingale utilities con-

straint for all states w ∈ [0, ū]. Additionally, the soft floor satisfies c ≤ sMUM(w) ≤ v̄.

The proposed mechanism has an allocation phase characterized by promised utilities in the range

[w, ū]. In this phase items are allocated according to a two-tier auction with a hard floor c and soft

floor sMUM(w) ≥ c. The item is allocated whenever the value is higher than c. If the value is above

the soft floor sMUM(w), then the auction works like a SPA (second-price auction) and the buyer pays

the soft floor sMUM(w). If the value lies between the hard floor c and the soft floor sMUM(w), then the

auction works like a FPA (first-price auction) and the buyer pays her value. The soft floor is dynamic

and determined using (10) as a function of the promised utility. In particular, the soft floor sMUM(w)

is decreasing in the promised utility, and equals c when the promised utility is ū and equals v̄ when

the promised utility is zero. While this auction is not truthful in a single-item setting, the mechanism

attains truthful reporting via dynamic incentives: if the buyer reports a high (low) value, the soft
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floor in the next auction goes down (up) leading to higher (lower) future surplus. The mechanism

also has a throttled phase characterized by promised utilities in the lowest range [0, w). In this phase

the item is allocated with small probability whenever the value is above the cost. The probability is

set low enough to guarantee that the promised utility remains constant. The throttled phase plays a

critical role in guaranteeing DIC. For example, if the buyer decides to consistently report c, the state

would eventually reach the throttled phase and the item would start being awarded only with small

probability.

Dynamics The initial promised utility wMUM is chosen to lie in the allocation phase. Recall that in

this phase, the lower the promised utility, the higher the soft floor. Thus if the initial promise is low,

the seller’s expected flow profit is higher. However, because the promised utility is a martingale, the

lower the initial promised utility, the larger the likelihood that the state could drift downwards into

the unprofitable throttled phase. The initial promised utility is chosen to carefully balance these two

effects. Figure 3 illustrates the dynamics of the approximation mechanism.

The DIR and PIR mechanism given in Section C and Section 4 have two consecutive phases:

first the seller profits either by charging a large upfront fee or by running a sequence of first-price

auctions, and then the buyer derives the bulk of her surplus by getting allocated efficiently. Because

the mechanism is now constrained to satisfy (PIR) and (MU), the seller can no longer incentivize the

buyer exclusively using future promises. Instead the mechanism here described incentivizes the buyer

using a combination of instantaneous payments and future promises, and implements a soft floor/hard

floor auction in which both parties simultaneously derive surplus. In particular, the seller captures the

entire surplus when the value is below the soft floor and the buyer is provided the additional surplus

generated when the value is above the soft floor.

5.2 Performance Analysis

The next result compares the performance of the approximation mechanism to that of the first-best

mechanism.

Theorem 5.3. Suppose Assumption 5.1 holds. Let wMUM = w + v̄
β

1
(1−β)1/2

log
(

1
1−β

)
. We have

ΠMUM ≤ ΠMU ≤ ΠFB ≤ ΠMUM + Õ

(
1

(1− β)1/2

)
.

A straightforward corollary of the previous result is that both the proposed mechanism (qMUM, zMUM, uMUM)
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Figure 3: Dynamics of approximation mechanism for martingale utilities. The left plot shows the
evolution of the state, and the right plot shows the evolution of the mean flow profit of the seller and
mean flow utility of the buyer. Values are U [0, 1], the seller’s cost is c = 0.3, and the discount rate is
β = 0.95. Results are obtained using Monte Carlo simulation of 50,000 sample paths.

and the optimal MU mechanism achieve first-best as the discount rate converges to one:

lim
β→1

Π̄MUM = lim
β→1

(1− β)ΠMUM = Ev
[
(v − c)+

]
= Π̄FB .

The rate of convergence to first-best is (1− β)1/2, which is slower than the rate of convergence under

an optimal DIR mechanism, yet similar to the rate of convergence of an optimal PIR mechanism. We

next provide some intuition for this result.

Ignoring momentarily the possibility of the state going below w and entering the throttled phase,

we obtain, as in Section 4.2, that ΠMUM ≈ ΠFB − wMUM because the proposed mechanism allocates

efficiently whenever possible. Hence the seller is better off when the promised utility is smaller, which

is expected because the soft floor employed in the two-tier auction increases as the promised utility

decreases. The initial promised utility is chosen to balance the loss in profit derived from eventually

entering the unprofitable throttled phase (which increases as wMUM decreases) and the profit collected

by the two-tier auction (which increases as wMUM decreases). We next briefly discuss convergence to

first-best.

As the discount rate increases, the promised utility concentrates around the initial promised utility

wMUM because the process is a martingale. Hence, the initial promised utility wMUM can be chosen to

be relatively closer to w while guaranteeing that the loss in profit derived from eventually entering

the throttled phase is small, which allows the seller to increase the soft floor employed in the two-tier

auction. In the limit the soft floor converges to v̄ and the two-tier auction reduces to a first-price
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auction with reserve price c. Thus the dynamic mechanism asymptotically achieves first-best since the

seller is running a sequence of truthful “almost” first-price auctions.

While in Theorem 5.3 the initial state is chosen to maximize seller’s profit, the buyer can be

provided any utility in the range [0, ū] by setting the initial state appropriately. In particular, any

initial state w satisfying (1 − β)w2 → ∞ as β → 1 would guarantee that the average social welfare

achieved by the Martingale Utility Mechanism converges to first-best as agents become more patient.

For example, by setting the initial state to the utility of the buyer under the optimal static mechanism

wS = Ev[(v−φ−1(c))+]/(1−β), the seller can guarantee the same level of buyer utility as in the optimal

static mechanism and, at the same time, improve efficiency.13

In light of Theorem 4.4, the convergence rate of the Martingale Utility Mechanism given in Theo-

rem 5.3 is tight, in the sense that no other mechanism satisfying PIR and MU can convergence faster

to first-best (up to polylogarithmic factors). The loss in profit is mainly driven by the PIR constraint:

it is possible to design mechanisms satisfying DIR and MU whose the convergence to first-best is of

order (1 − β) (for example, by considering a mechanism that allocates efficiently and charges in each

period the expected utility of the next period).

6 Numerical Experiments

In this section we numerically study the dynamic mechanism design problem for different values of the

discount rate β, and in each setting compare the proposed approximation mechanism to an optimal

dynamic mechanism. In order to compute an optimal dynamic mechanism, we discretize values by

setting a uniform grid with 50 points and discretize the state space (the promised utility) by setting

a logarithmic grid with 500 points. Dynamic program (6) and (8) are solved via policy iteration with

the stopping condition that the nth iterate Π(n) satisfies ‖Π(n) −Π(n−1)‖∞ ≤ ε with ε = 0.0001 (see

Bertsekas 2012, Chapter 2 for an overview of policy iteration). Because Π is concave (since the action

space is convex and the flow profit is linear), we can write it as the minimum of linear envelopes and

thus the inner problems in each value iteration can be solved via linear programming. We estimate the

performance of the approximation mechanisms in Section 4 and Section 5 using Monte Carlo simulation

of 1,000 sample paths; the resulting mean standard errors are small in all examples. Throughout these

experiments we assume that values are U [0, 1] and the seller’s cost is c = 0.3. Results for different

distribution of values and seller’s costs are similar, and not reported.

13We thank an anonymous referee for suggesting this analysis.
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Figure 4: Plots of seller’s average profit and average social welfare of optimal mechanisms as a function
of the discount rate. Values are U [0, 1] and the seller’s cost is c = 0.3.

Figure 4a plots the average discounted seller’s profit Π̄π for different mechanisms as a function of the

discount rate (we report average discounted performance metrics so that we can compare results across

different discount rates). Consistent with our theoretical results, we observe that the seller’s optimal

profit under dynamic individual rationality Π̄DIR, periodic individual rationality Π̄PIR, and martingale

utilities Π̄MU converge to first-best. The theoretical analyses of Theorem 4.3 and Theorem 5.3 show

that rate of convergence to first-best of Π̄PIR and Π̄MU is (1−β)1/2. Furthermore, Theorem 4.4 implies

that this convergence rate is tight up to polylogarithmic factors. From our numerical experiments we

observe that the loss in performance of our approximation mechanisms Π̄DUM and Π̄MUM relative to

the respective optimal values Π̄PIR and Π̄MU are not substantial when the discount rate is large (see

Figure 5). Even though the convergence rates to first-best of the Deferred Utility Mechanism and the

Martingale Utility Mechanism are similar up to polylogarithmic factors, we observe that in practice the

expected profit of the Martingale Utility Mechanism is lower, as expected, because of the additional

martingale utility constraint. Finally, the profit improvement relative to the optimal static auction is

substantial in this particular instance: the relative difference is (ΠFB −ΠS)/ΠS ≈ 94% and the seller

can benefit considerably by adopting a dynamic mechanism when agents are patient.

Figure 4b plots the average discounted social welfare for different mechanisms as a function of

the discount rate, where the average discounted social welfare of dynamic mechanism π ∈ M is given

by S̄π = Π̄π + Ūπ. We observe that the social welfare of an optimal mechanism under dynamic

individual rationality S̄DIR, periodic individual rationality S̄PIR, and martingale utilities S̄MU converge

to first-best. This is a straightforward consequence of the fact that under these mechanisms the seller’s
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Figure 5: Comparison of the seller’s average profit from an optimal mechanism (obtained from dynamic
programming) and the approximation mechanism for different models, as a function of the discount
rate. Values are U [0, 1] and the seller’s cost is c = 0.3. The approximation mechanisms’ performance
is estimated using Monte Carlo simulation for discount rates β ∈ {0.9, 0.95, 0.99, 0.995, 0.999, 0.9995},
while the dynamic programs are solved via value iteration for discount rates β ∈ {0.9, 0.95, 0.99, 0.995}.
Dynamic programs for larger discount rates were challenging to solve numerically.

profit converges to first-best and the participation constraint guarantees that the buyer’s utility is

non-negative. Thus, social efficiency is achieved at the expense of the buyer; in the limit the entire

social surplus is captured by the seller.

Figure 6 compares the drift δ(w) = Ev [u(v;w)]−w, flow profit ρ(w) = Ev [z(v;w)− cq(v;w)], flow

utility `(w) = Ev [vq(v;w)− z(v;w)], and social welfare Ev [(v − c)q(v;w)] of an optimal mechanism

for different models when the discount rate is β = 0.95. We first discuss an optimal mechanism under

PIR, which is obtained by numerically solving dynamic program (6). The plots of the flow profit and

flow utility suggest three clear phases. When the state is low no trade is materialized (akin to the

no-trade phase of the approximation mechanism), when the state is high the item is allocated efficiently

and the buyer captures the entire surplus (akin to the income phase), and in intermediate states the

item is allocated efficiently and the seller captures the entire surplus (akin to the savings phase). As

in our approximation mechanism, the initial state is chosen to be low and the state drifts upwards to

the absorbing state ū. Thus, under an optimal mechanism the buyer pays her full surplus to the seller

during earlier auctions and then the buyer is allowed to purchase the item from the seller at cost. We

note that, in contrast to our approximation mechanism, the transition between phases in an optimal

mechanism is smooth.

We now turn to an optimal mechanism under MU, which is obtained by numerically solving dynamic
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Figure 6: Plots of drift, flow profit, flow utility and flow social welfare as a function of the state for an
optimal mechanisms under PIR and MU constraints, respectively. Values are U [0, 1], the seller’s cost
is c = 0.3, the discount rate is β = 0.95, Ev [(v − c)+] ≈ 0.238 and u ≈ 4.76.
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program (8). Since the mechanism satisfies the martingale utility constraint (MU), the drift is zero

and the flow utility increases linearly with the state (since the promise keeping constraint implies that

`(w) = (1−β)w−βδ(w) and here δ(w) = 0). The plot of the flow profit suggests two phases. When the

state is low, trade is materialized with low probability (akin to the throttled phase of the approximation

mechanism). Otherwise, the item is allocated according to an auction that yields lower flow profits as

the state increases (akin to the allocation phase). Though not shown, the auction in this last phase

resembles the soft floor/hard floor auction of our approximation mechanism (with a soft floor that is

decreasing with the state). Note that the initial state does not necessarily maximize the initial flow

profit. As in our approximation mechanism, the initial state is chosen to balance the potential loss

of eventually hitting the throttled phase and the seller’s flow profit; which both increase as the state

decreases.

7 Conclusions

In this paper, we show that the seller can asymptotically achieve first-best via simple dynamic auctions

satisfying appealing business constraints. We have purposely designed our model to be the simplest

possible extension of a classical setting to crisply highlight the effects at play. In particular, we assume

that there is a single buyer with independent and identically distributed values in an infinite horizon

model with discounting. While our analysis is exclusively focused on the case of a single buyer with

discounting, we conjecture that our approximation mechanisms and performance results extend to the

case of multiple buyers. Extending our results to a finite horizon should be possible. The stationarity

of values is not burdensome and can be relaxed at the expense of more complicated mechanisms.

The independence of values is critical for our results and is predicated on the fact that, in internet

advertising markets, user visiting websites arrive essentially at random, so intertemporal correlation in

values (which is driven by the context associated with each impression) is typically weak.

A critical assumption in our model is that the buyer’s value distribution is known by the seller. An

interesting research direction, which is currently outside the scope of this paper, is to explore the design

of practical mechanisms in a prior-free or less prior dependent setting. Another avenue of research is

to study the robustness of the proposed mechanisms, in terms of profit and incentive properties, to

statistical errors introduced by the estimation of values. We conjecture that the mechanisms herein

presented can be suitably modified to remain robust to statistical errors and model misspecification

(by imposing, for example, that the buyer is strictly better off reporting truthfully).
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A Proof of selected results

A.1 Proof of Theorem 4.4

Suppose that the seller’s cost is c = 0 and the buyer’s value is v1 with probability f1 and v2 with
probability f2 = 1− f1. Because values are non-degenerate and positive we have that 0 < v1 < v2 and
f1, f2 ∈ (0, 1).

We prove the result in four steps. First, we use structural properties of the optimal value function to
simplify the optimal mechanism design problem. Second, we provide an upper bound to the simplified
problem using a perfect information relaxation in which the seller knows in advance all realizations of
the buyer’s value. In this step we characterize the optimal objective value of the perfect information
relaxation in terms of the expected deviations from the origin of a reflected random walk. Third, we use
the perfect information bound to control the cost of imposing PIR. Fourth, we conclude by bounding
the latter stochastic deviations using concentration inequalities.

Step 1 The optimal value function under PIR satisfies the Bellman equation

Π(w) = max
(qi,zi,ui)i

∑
i
fi (zi + βΠ(ui))

s.t w =
∑

i
fi(viqi − zi + βui) , (PK)

viqi − zi ≥ 0 , ∀i , (PIR)

viqi − zi + βui ≥ viqj − zj + βuj , ∀i, j 6= i , (DIC)

0 ≤ qi ≤ 1 , 0 ≤ ui ≤ ū , ∀i ,

with boundary conditions Π(0) = 0 and ū = f1v1 + f2v2. The optimal objective value is given by
ΠPIR = maxw∈U Π(w).

The following result is a discrete analogue of Lemma 2.1. We state the result without proof as this
follows directly from Lemma 1 in Krishna et al. (2013).
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Lemma A.1. Let Ui = viqi − zi + βui be the utility-to-go of type i = 1, 2. Without loss of optimality
we can replace the dynamic incentive compatibility constraint by q1 ≤ q2 and U2 = U1 + (v2 − v1)q1.

Combining the previous lemma with the promise keeping constraint w = f1U1 + f2U2, we obtain
that U1 = w − f2(v2 − v1)q1 and U2 = w + f1(v2 − v1)q1 because f1 + f2 = 1. Note that (PIR) can be
written as ui ≤ Ui/β. Let S(w) = w+Π(w) be the social welfare generated by an optimal mechanism.
Using the promised keeping constraint to eliminate payments from the objective we obtain the new
Bellman equation

S(w) = max
(qi,ui)i

∑
i
fi (viqi + βS(ui))

s.t U1 = w − f2(v2 − v1)q1 ,

U2 = w + f1(v2 − v1)q1 ,

0 ≤ ui ≤ Ui/β , ∀i , (PIR’)

0 ≤ q1 ≤ q2 ≤ 1 , ui ≤ ū , ∀i .

Because the objective is increasing in the allocation of the highest type, we obtain that q2 = 1, i.e.,
there is no distortion at the top. Note that S(w) is non-decreasing in w because the constraint set
of the inner optimization problem expands as w increases. Thus, for any fixed allocation q1 the seller
would like to set the promise function as large as possible and (PIR’) should be binding whenever
ui ≤ ū. This implies that ui = min(Ui/β, ū).

Consider the two-point random variable

ξt =

{
−f2(v2 − v1) , w.p. f1 ,
f1(v2 − v1) , w.p. f2 .

The previous discussion implies that the state evolves according to wt+1 = min
(
(wt+ξtqt)/β, ū

)
, where

with some abuse we denote by qt , q1,t the allocation of the lowest type at time t (since we know
that the highest type is always allocated the item). The seller’s problem can be cast as the following
stochastic control problem

S(w) =
f2v2

1− β
+ max

q∈Q
E

[ ∞∑
t=1

f1v1β
t−1qt

]
s.t wt+1 = min

(
(wt + ξtqt)/β, ū

)
,

w1 = w ,

wt ≥ 0 , 0 ≤ qt ≤ 1 ,

where Q denotes the set of all adaptive, non-anticipative policies q = (qt)
∞
t=1 that map a history at time

t to an allocation qt of the lowest type. Note that the state ū is absorbing: since 1
β

(
ū−f2(v2−v1)

)
> ū

we have that if wt = ū, then wt+1 = ū regardless of qt and ξt. As a consequence, if the state hits the
upper bound ū, it is optimal to set qt = 1 thereafter. This observation implies that we can replace the
dynamics by wt+1 = (wt + ξtqt)/β without loss of optimality (because wt+1 ≥ ū if wt ≥ ū).

Step 2 Consider a perfect information relaxation in which the decision maker has access to all real-
izations of the random variables ξ = (ξt)

∞
t=1. Given a sample path ξ ∈ R∞ we can calculate the optimal

value for the sample path in “hindsight” by solving a deterministic linear program. The expected value
with perfect information provides an upper bound on S(w). More formally, we denote by SH(ξ;w) the
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optimal (deterministic) vale of the perfect information problem for sample path ξ, where H stands for
hindsight. We then have S(w) ≤ E [SH(ξ;w)], where the perfect information problem is given by

SH(ξ;w) =
f2v2

1− β
+ max

(wt,qt)∞t=1

∞∑
t=1

f1v1β
t−1qt

s.t wt+1 = (wt + ξtqt)/β ,

w1 = w ,

wt ≥ 0 , 0 ≤ qt ≤ 1 .

It is not hard to see that the perfect information problem admits a simple optimal solution: greedily
set qt as large as possible. This implies that qt = 1 whenever ξt > 0 and qt = min{1, wt/(f2(v2 − v1))}
when ξt < 0. Consider the scaled stochastic process ŵt = βt−1wt. Because ŵt+1 = ŵt + βt−1ξtqt, this
process evolves according to the reflected geometric random walk

ŵt+1 = max{ŵt + βt−1ξt, 0} .

We next provide a closed-form expression for the optimal objective value of the perfect information
problem using Skorokhod’s map for reflected random walks. Using that qt = 1 whenever ξt > 0, we
obtain that the optimal objective value is given by

SH(ξ;w) =
f2v2

1− β
+ f1v1

∞∑
t=1

βt−11{ξt > 0}+ f1v1

∞∑
t=1

βt−1qt1{ξt < 0} .

We can eliminate the third term by considering the state dynamics. These are given by

ŵs+1 − w =
s∑
t=1

βt−1qtξt = f1(v2 − v1)
s∑
t=1

βt−11{ξt > 0} − f2(v2 − v1)
s∑
t=1

βt−1qt1{ξt < 0} .

Because β ∈ (0, 1), the series on the right-hand side are absolutely convergent and ŵ∞ , lims→∞ ŵs
is finite. Letting s → ∞, multiplying the second equation by ρ , f1v1/(f2(v2 − v1)) > 0, and adding
these last two equations together we obtain that

SH(ξ;w) =
f2v2

1− β
+
f1v1

f2

∞∑
t=1

βt−11{ξt > 0} − ρ (ŵ∞ − w) .

Let Xt = −
∑t

s=1 β
s−1ξs be the state of the geometric random walk by time t. Skorokhod’s

map (see, e.g., Asmussen, 2008, ch. IX.2) implies that the reflected random walk satisfies ŵt+1 =
w −Xt + max1≤s≤t(Xs − w)+. Taking expectations we obtain that

E [SH(ξ;w)] = ΠFB − ρE
[
max
s≥1

(Xs − w)+

]
, (11)

where we used that P{ξt > 0} = f2; ΠFB = (f1v1 + f2v2)/(1 − β); and E [limt→∞Xt] = 0 from
Dominated Convergence Theorem because β ∈ (0, 1) and E[ξt] = 0.
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Step 3 We now proceed to bound the cost of imposing PIR. Using that S(w) = w +Π(w) and (11)
we obtain

ΠFB −Π(w) = ΠFB + w − S(w) ≥ ΠFB + w − E [SH(ξ;w)] ≥ w + ρE
[
max
s≥1

(Xs − w)+

]
.

The second term can be further bounded from below as follows

E
[
max
s≥1

(Xs − w)+

]
≥ E

[
(X∞ − w)+

]
≥
(
E
[
X+
∞
]
− w

)+
,

where the second inequality follows because (X∞ − w)+ = (X+
∞ − w)+ because w ≥ 0 together with

Jensen’s inequality. Using that ΠPIR = maxw≥0Π(w) we obtain the lower bound

ΠFB −ΠPIR ≥ min
w≥0

{
w + ρ

(
E
[
X+
∞
]
− w

)+}
= min(ρ, 1)E

[
X+
∞
]
,

where the last equality follows because the minimum of the right-hand is achieved at w = 0 if ρ ∈ (0, 1)
and at the break-point w = E [X+

∞] if ρ ∈ [1,∞).

Step 4 We next lower bound the expectation E [X+
∞]. Because the random variable X∞ is mean zero,

we obtain that E [X+
∞] = E |X∞| /2. Let Qt =

∑t
s=1

(
βs−1ξs

)2
be the quadratic variation process.

Marcinkiewicz-Zygmund inequality implies that there exists a constant c1 > 0 independent of t such

that E
∣∣Xt

∣∣ ≥ c1E
∣∣Q1/2

t

∣∣ for all t (Marcinkiewicz and Zygmund, 1937). Because the random steps are
lower bounded by |ξs| ≥ (v2 − v1) min(f1, f2), we have that the quadratic variation process is lower

bounded by Q
1/2
t ≥ (v2 − v1) min(f1, f2)

(
(1− β2t)/(1− β2)

)1/2
. Since β ∈ (0, 1), we obtain from

Dominated Convergence Theorem

E |X∞| = lim
t→∞

E |Xt| ≥ c1 lim inf
t→∞

E
∣∣Q1/2

t

∣∣ ≥ c1(v2 − v1) min(f1, f2)
(
1− β2

)−1/2
.

Therefore, there exists some constant c2 > 0 such that E [X+
∞] ≥ c2(1 − β)−1/2 since (1 − β2) =

(1− β)(1 + β) and the result follows.

A.2 Proof of Proposition 5.2

First note that 0 ≤ w ≤ ū because β ∈ (0, 1). Recall that the soft floor sMUM(w) is a solution of
equation (10). Note that G(s) , Ev[(v − s)+] can be written as G(s) =

∫ v̄
s F̄ (x)dx, and thus it

is decreasing and continuous (because the density is strictly positive). Additionally, we have that
G(c) = Ev[(v − c)+] = (1 − β)ū and G(v̄) = 0. Thus we obtain that for all w ∈ [0, ū] there exists a
unique sMUM(w) solving the latter equation, and the soft floor satisfies that c ≤ sMUM(w) ≤ v̄.

Periodic individual rationality follows because payments are never larger than values for all w ∈
[0, ū]. The martingale constraint follows by construction when w ∈ [0, w). When w ∈ [w, ū] we have
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that

Ev [uMUM(v;w)] =
1

β

(
w + Ev

[(
min(v, sMUM(w))− c

)+]− Ev[(v − c)+]
)

=
1

β
(w − Ev [(v −min(v, sMUM(w)))1{v ≥ c}])

=
1

β

(
w − Ev

[
(v − sMUM(w))+1{v ≥ c}

])
=

1

β

(
w − Ev

[
(v − sMUM(w))+

])
= w ,

where we used that x − min(x, y) = (x − y)+ together with the fact that sMUM(w) ≥ c and that the
soft floor is chosen so to be solution of equation (10).

In order for the mechanism to be dynamic incentive compatible it suffices to show that it satisfies
(2) and (3) because the allocation is trivially non-decreasing. Equation (3) follows from the definition
of the mechanism together with the fact that G(c) = Ev [(v − c)+]. Constraint (2) is trivially satisfied
when w ∈ [0, w). When w ∈ [w, ū] we use that the promise function is non-decreasing in v to obtain

uMUM(v;w) ≥ uMUM(0;w) =
1

β

(
w − Ev

[
(v − c)+

])
≥ 1

β

(
w − Ev

[
(v − c)+

])
= 0 ,

because w ≥ w and w = Ev [(v − c)+]. Because uMUM(v;w) is non-decreasing in v it suffices to show
that uMUM(v̄;w) ≤ ū. Using the formula for the soft floor sMUM(w) to eliminate w together with
ū = Ev [(v − c)+] /(1− β) and sMUM(w) ≥ c can write the condition that uMUM(v̄;w) ≤ ū as follows

Ev
[
(v − sMUM(w))+

]
+ (1− β)(sMUM(w)− c) ≤ Ev

[
(v − c)+

]
.

The expression on the left-hand side is convex in sMUM(w) and attains its maximum at one of its end
points sMUM(w) = c or sMUM(w) = v̄. The inequality trivially holds when sMUM(w) = c. Evaluating at
sMUM(w) = v̄ we obtain (1− β)(v̄ − c) ≤ Ev [(v − c)+], which is implied by Assumption 5.1.

A.3 Proof of Theorem 5.3

Let {wMUM
t }∞t=1 denote the stochastic process that governs the evolution of the state under the approx-

imation mechanism (qMUM, zMUM, uMUM). This process evolves according to wMUM
t = uMUM(vt−1, w

MUM
t−1 )

with initial condition wMUM ∈ [w, ū]. Let τ = inf {t ≥ 1 : wMUM
t ≤ w} be the first time that the state

falls below w. We have that during time t = 1, . . . , τ − 1 the dynamic mechanism allocates according
to hard floor/soft floor auction.

By construction, the mechanism guarantees that the promised utility stochastic process {wMUM
t }∞t=1

is a martingale, that is, the process satisfies E[wMUM
t+1 |wMUM

t ] = wMUM
t . The next result characterizes

some properties of this process.

Lemma A.2. Under the approximation mechanism (qMUM, zMUM, uMUM),

1. Let b = β2(wMUM − w)2/(4v̄2). The c.d.f. of the stopping time τ satisfies

P(τ < t) ≤ exp

(
− b

t− 1

)
.
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2. Suppose b ≥ 1/(4(1− β)). The stopping time τ satisfies

E[βτ ] ≤
(
1 + 8b

)
(1− β) exp

(
−2
(
(1− β)b

)1/2)
.

Let L(w) = Ev [(v − c)+]−Ev [(min(v, sMUM(w))− c)1{v ≥ c}] be the difference in expected profit
between the first-best allocation and the mechanism that allocates according to the hard floor/soft
floor auction when the promised utility is w. Because the soft floor is chosen according to (10) we
obtain

L(w) = Ev [(v −min(v, sMUM(w)))1{v ≥ c}] = Ev
[
(v − sMUM(w))+1{v ≥ c}

]
= (1− β)w , (12)

where we used that x−min(x, y) = (x− y)+ together with the fact that sMUM(w) ≥ c because w ≤ u.
We are now in position to prove the main result. We have that ΠMUM ≤ ΠFB, because the

mechanism in consideration is primal feasible and thus is bounded by first-best. In the remainder of
the proof we prove the last inequality, that is

ΠMUM ≥ ΠFB − Õ
(

1

(1− β)1/2

)
.

Step 1 The expected performance of approximation mechanism can be decomposed as follows:

ΠMUM =
∞∑
t=1

E[βt−1(zMUM(vt;wt)− cqMUM(vt;wt))]

=
Ev [(v − c)+]

1− β
−
∞∑
t=1

E
[
βt−1

(
(vt − c)+ − zMUM(vt;wt) + cqMUM(vt, wt)

)︸ ︷︷ ︸
Rt

]

= ΠFB −
∞∑
t=1

E[Rt] ,

where the second equation follows because values are i.i.d. and using that
∑∞

t=0 β
t−1 = 1/(1−β). The

error terms Rt measure the difference in expected performance between the first-best allocation and
the mechanism in consideration. We can decompose the error terms Rt as follows

∞∑
t=1

E[Rt] =
∞∑
t=1

E[Rt1{t < τ}]︸ ︷︷ ︸
E1

+
∞∑
t=1

E[Rt1{t ≥ τ}]︸ ︷︷ ︸
E2

.

In the remainder of the proof we upper bound the error terms E1 and E2, respectively.
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Step 2 We next upper bound the error term E1. Because when t < τ we have that wMUM
t ∈ [w, ū],

and we obtain

E1 =
∞∑
t=1

E[Rt1{t < τ}] =
∞∑
t=1

E
[
βt−1

(
(vt − c)+ − (min(vt, s

MUM(wMUM
t ))− c)1{vt ≥ c}

)
1{t < τ}

]
=

∞∑
t=1

βt−1E [L (wMUM
t )1{t < τ}] = (1− β)

∞∑
t=1

βt−1E [wMUM
t 1{t < τ}]

≤ (1− β)
∞∑
t=1

βt−1E [wMUM
τ∧t ] = wMUM(1− β)

∞∑
t=1

βt−1 = wMUM ,

where the second equality follows because the mechanism allocates according to the hard floor/soft floor
auction when t < τ , the third equality because values are i.i.d. and τ is a stopping time together with
the definition of L(·), the third equality from (12), the inequality because the stopped martingale is
non-negative because uMUM(v;w) ≥ 0, the fifth equality from the Optional Stopping Theorem because
the stopping time τ ∧ t is bounded, and the last from the geometric series

∑∞
t=0 β

t = 1/(1− β).

Step 3 We next bound the error term E2. We have

E2 =
∞∑
t=1

E[Rt1{t ≥ τ}] ≤ v̄
∞∑
t=1

E[βt−11{t ≥ τ}] = v̄βE

[ ∞∑
t=τ

βt

]
=

v̄β

1− β
E [βτ ] ,

where the first inequality follows because |Rt| ≤ βt−1v̄ since the flow profit is at most v̄, and the second
equality from Tonelli’s Theorem.

Step 4 Putting everything together and using Lemma A.2 we obtain that the error terms are bounded
by

E1 + E2 ≤ wMUM + v̄
(
1 + 8b

)
β exp

(
−2
(
(1− β)b

)1/2)
,

with b = β2(wMUM − w)2/(4v̄2) such that b ≥ 1/(4(1 − β)). We balance the error terms by setting

the initial promised utility to wMUM = w + v̄
β

1
(1−β)1/2

log
(

1
1−β

)
. With this choice we have that b ≥

1/(4(1− β)) for β ≥ 1− 1/e. This leads to

E1 + E2 ≤ Õ
(

1

(1− β)1/2

)
,

and the result follows.
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B Additional Proofs

B.1 Proof of Lemma 2.1

Fix the state w ∈ W. To simplify the exposition we drop the dependence on the state.

Only if part Let U(v) = vq(v)− z(v) + βu(v) be the expected utility-to-go of the buyer when her
realized value is v. From the dynamic incentive compatibility constraint (DIC) we have that for
any feasible mechanism U(v) = maxṽ vq(ṽ) − z(ṽ) + βu(ṽ). Applying the Envelope Theorem we
obtain:

dU(v)

dv
= q(v) .

This implies that the allocation q(v) is non-decreasing in the value v because the U(v) is convex
in the value v (since it is the maximum of linear functions). Convexity of U(v) implies absolute
continuity and integrating we obtain that:

U(v) = U(0) +

∫ v

0
q(x) dx . (B-13)

Using the definition of U(v) we get that the envelope condition corresponding to the DIC constraint
is given by:

vq(v)− z(v) + βu(v) = U(0) +

∫ v

0
q(x) dx . (B-14)

where U(0) = −z(0) + βu(0) is the utility of the lowest type.
The promise keeping constraint (PK) gives that w = E[U(v)] which combined with equa-

tion (B-13) implies that the utility of the lowest type is given by

U(0) = w − Ev
[∫ v

0
q(x) dx

]
= w −

∫ ∞
0

F̄ (x)q(x) dx ,

where the last equation follows from integrating by parts. Solving for payments in (B-14) and using
the previous equality we obtain

z(v) = βu(v)− w + vq(v)−
∫ v

0
q(x) dx+

∫ ∞
0

F̄ (x)q(x) dx

and the result follows.
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If part We need to show that constraints (PK) and (DIC) are satisfied. Using (3) in the promise
keeping constraint gives

Ev [vq(v)− z(v) + βu(v;w)] = w + Ev
[∫ v

0
q(x)dx

]
−
∫ ∞

0
F̄ (x)q(x)dx = w ,

where the last equation follows from integrating by parts the second term and cancelling terms.
Further, the monotonicity of the allocation together with the envelope condition are necessary

and sufficient conditions for incentive compatibility (see, e.g., Theorem 4.3 in Milgrom (2004)).
We reproduce the result for completeness. Let U(v, ṽ) = vq(ṽ) − z(ṽ) + βu(ṽ) be the expected
utility-to-go of the buyer when her realized value is v and she reports ṽ. For the dynamic incentive
compatibility constraint to hold we need to show that U(v, v) ≥ U(v, ṽ) for all v, ṽ. Using (3) we
obtain that

U(v, ṽ) = w + (v − ṽ)q(ṽ) +

∫ ṽ

0
q(x)dx−

∫ ∞
0

F̄ (x)q(x)dx .

When ṽ ≤ v we have that

U(v, v)− U(v, ṽ) =

∫ v

ṽ
q(x)dx− (v − ṽ)q(ṽ) ≥ 0 ,

where the equality follows from cancelling constant terms and the inequality because q(x) is non-
decreasing. A similar result holds for ṽ ≥ v and the result follows.

B.2 Proof of Proposition 4.2

First note that w ≤ w̄ from Assumption 4.1. Periodic individual rationally follows because payments
are at most the value.

In order for the mechanism to be dynamic incentive compatible it suffices to show that it satisfies
(2) and (3) because the allocation is trivially non-decreasing. Equation (3) follows trivially when
w ∈ [0, w). When w ∈ [w, w̄] we have that (3) can be written as

zDUM(v;w) = βuDUM(v;w)− w + vqDUM(v;w)−
∫ v

0
qDUM(x;w) dx+

∫ ∞
0

F̄ (x)qDUM(x;w) dx

= ∆DUM(v) + v1{v ≥ c} − (v − c)+ + Ev[(v − c)+] = v1{v ≥ c} ,

where the second equality follows because
∫∞
c F̄ (x) dx = Ev[(v−c)+] and the last because ∆DUM(v) =

(v − c)+ − Ev[(v − c)+]. When w ∈ (w̄, ū] we obtain that (3) can be written as

zDUM(v;w) = v1{v ≥ c} − (v − c)+ = c1{v ≥ c} ,

where the first equality follows from the formulas for the promised utility and allocation functions.
Constraint (2) is satisfied when w ∈ [0, w) because 0 ≤ uDUM(v;w) ≤ ū since uDUM(v;w) =

w/β ≤ w/β = Ev[(v − c)+]/β and β ≥ 1/2 from Assumption 4.1. When w ∈ [w, w̄] we have

uDUM(v;w) ≥ uDUM(0;w) =
1

β

(
w − Ev[(v − c)+]

)
= 0 ,

and

uDUM(v;w) ≤ uDUM(v̄; w̄) =
1

β

(
w̄ + (v̄ − c)+ − Ev[(v − c)+]

)
= ū ,
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from the definition of w̄. When w ∈ (w̄, ū] we have that

uDUM(v;w) ≤ uDUM(v; ū) =
1

β
(ū− Ev[(v − c)+]) = ū ,

because Ev[(v − c)+] = (1− β)ū and

uDUM(v;w) ≥ uDUM(v; w̄) =
1

β
(w̄ − Ev[(v − c)+]) =

1

β
(w̄ − w) ≥ 0 ,

because w̄ ≥ w.

B.3 Proof of Theorem 4.3

Let {wDUM
t }∞t=1 denote the stochastic process that governs the evolution of the state under the ap-

proximation mechanism (qDUM, zDUM, uDUM). This process evolves according to wDUM
t+1 = uDUM(vt, w

DUM
t )

with initial condition wDUM. Let τ = inf {t ≥ 1 : wDUM
t 6∈ [w, w̄]} be the first time that the promised

utility falls outside the interval [w, w̄]. During t = 1, . . . , τ − 1 the dynamic mechanism allocates
according to the first-best auction.

By construction, the mechanism guarantees that the scaled stochastic process {βt−1wDUM
t }∞t=1

is a martingale whenever wDUM
t in [w, w̄], that is, the process satisfies E[βtwDUM

t+1 |wDUM
t ] = βt−1wDUM

t

because E[∆DUM(v)] = 0. The next result leverages this property to characterize some properties
of the stopping time τ .

Lemma B.1. Under the approximation mechanism (qDUM, zDUM, uDUM),

1. The probability that the promised utility first falls below w before exceeding w is bounded by

P{wDUM
τ ≤ w} ≤ exp

(
−(1− β)(wDUM − w)2

2v̄2

)
.

2. The stopping time τ satisfies

E[βτ ] ≤ wDUM

w̄
+ P{wDUM

τ ≤ w} .

We are now in position to prove the main result. We have that

ΠDUM ≤ ΠFB ,

because the mechanism is consideration is primal feasible and thus is bounded by first-best. In the
remainder of the proof we prove the last inequality, that is

ΠDUM ≥ ΠFB − Õ
(

1

(1− β)1/2

)
.
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Step 1 The expected performance of approximation mechanism can be decomposed as follows:

ΠDUM =
∞∑
t=1

E[βt−1(zDUM(vt;wt)− cqDUM(vt;wt))]

=
Ev[(v − c)+]

1− β
−
∞∑
t=1

E
[
βt−1

(
(vt − c)+ − zDUM(vt;wt) + cqDUM(vt, wt)

)︸ ︷︷ ︸
Rt

]

= ΠFB −
∞∑
t=1

E[Rt] ,

where the second equation follows because values are i.i.d. and using that
∑∞

t=0 β
t−1 = 1/(1− β).

The error terms Rt measure the difference in expected performance between the first-best allocation
and the mechanism in consideration.

Step 2 Because the mechanism allocates according to first-best up to time τ we obtain

∞∑
t=1

E[Rt] =
∞∑
t=1

E[Rt1{t < τ}] +
∞∑
t=1

E[Rt1{t ≥ τ}] =
∞∑
t=1

E[Rt1{t ≥ τ}]

≤ v̄
∞∑
t=1

E[βt−11{t ≥ τ}] =
v̄

β
E

[ ∞∑
t=τ

βt

]
=

v̄

β(1− β)
E [βτ ]

≤ 2v̄

1− β

(
wDUM

w̄
+ exp

(
−(1− β)(wDUM − w)2

2v̄2

))
,

where the first inequality follows because |Rt| ≤ βt−1v̄ since the flow profit is at most v̄, the second
equality from Tonelli’s Theorem, the last equation because the sum is a geometric series, and the
last inequality from Lemma B.1 and β ≥ 1/2 from Assumption 4.1.

Step 3 Setting wDUM = w +
√

2v̄
(1−β)1/2

log1/2
(

1
1−β

)
, we obtain that the error term is bounded by

∞∑
t=1

E[Rt] ≤
2v̄

1− β

(
w

w̄
+

√
2v̄

w̄

1

(1− β)1/2
log1/2

(
1

1− β

)
+ 1− β

)

=
2v̄w

(1− β)w̄
+

2
√

2v̄2

(1− β)w̄

1

(1− β)1/2
log1/2

(
1

1− β

)
+ 2v̄

= Õ

(
1

(1− β)1/2

)
,

and the last bound follows because (1− β)w̄ → Ev [(v − c)+] as β → 1.

B.3.1 Proof of Lemma B.1

We prove each item at a time.
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Item 1 Consider an alternate process (w̃DUM
t )t coupled with the same realization of values (vt)t

in which the promised utility evolves according to

w̃DUM
t+1 =

1

β
(w̃DUM

t + ∆DUM(vt)) ,

regardless of whether the state lies within the interval [w, w̄] or not. Because both processes coincide
up to time τ , we can upper bound the probability that the promised utility falls below w before it
goes above w̄ by the probability that the process βt−1w̃DUM

t ever goes below w, that is,

P{wDUM
τ ≤ w} = P{w̃DUM

τ ≤ w} ≤ P{βτ−1w̃DUM
τ ≤ w} ≤ P{∪∞t=1β

t−1w̃DUM
t ≤ w}

= P{ min
t=1,...,∞

βt−1w̃DUM
t ≤ w} = P{ max

t=1,...,∞
wDUM − βt−1w̃DUM

t ≥ wDUM − w} ,

where the first inequality follows because β ∈ (0, 1) and w̃DUM
τ ≥ 0. Because the scaled process

βtw̃DUM
t+1 = βt−1w̃DUM

t + βt−1∆DUM(vt) ,

is a martingale with differences bounded by |βtw̃DUM
t+1 − βt−1w̃DUM

t | = βt−1|∆DUM(vt)| ≤ βt−1v̄, we
obtain via Azuma’s inequality for maxima (see, e.g., McDiarmid 1998, Section 3.5)

P{wDUM
τ ≤ w} ≤ exp

(
−(wDUM − w)2

2v̄2
∑∞

t=0 β
2t

)
≤ exp

(
−(1− β)(wDUM − w)2

2v̄2

)
,

where the last inequality follows because
∑∞

t=0 β
2t ≤

∑∞
t=0 β

t = 1/(1− β) because β ∈ (0, 1). The
result follows.

Item 2 Because the stopping time t∧ τ is finite and βt∧τ−1wDUM
t∧τ is a martingale we obtain by the

Optional Stopping Theorem that

βwDUM = E
[
βt∧τwDUM

t∧τ
]

= E [βτwDUM
τ 1{wDUM

τ ≥ w̄, τ ≤ t}] + E [βτwDUM
τ 1{wDUM

τ ≤ w, τ ≤ t}] + E
[
βtwDUM

t 1{τ > t}
]

≥ w̄E [βτ1{wDUM
τ ≥ w̄, τ ≤ t}] ,

where the inequality follows discarding the second and third terms because wDUM
t ≥ 0 for all t.

This implies that E [βτ1{wDUM
τ ≥ w̄, τ ≤ t}] ≤ βwDUM/w̄. We can write the expectation E

[
βt∧τ

]
as follows

E
[
βt∧τ

]
= E [βτ1{wDUM

τ ≥ w̄, τ ≤ t}] + E [βτ1{wDUM
τ ≤ w, τ ≤ t}] + E

[
βt1{τ > t}

]
≤ βwDUM

w̄
+ P{wDUM

τ ≤ w}+ βt ,

where the inequality follows from the previous bound, using that βτ ≤ 1 because β ∈ (0, 1), and
discarding the events {τ ≤ t} and {τ > t} in the second and third terms, respectively. Because
βt∧τ ≤ 1 since β ∈ (0, 1) we obtain from Dominated Convergence Theorem that

E [βτ ] = lim
t→∞

E
[
βt∧τ

]
≤ βwDUM

w̄
+ P{wDUM

τ ≤ w} ,

and the result follows because β ≤ 1.
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B.4 Equivalence of Martingale Constraints

In this section we show that martingale constraints in terms of continuation and flow utilities are
equivalent.

Lemma B.2. Let (q(v;w), z(v;w), u(v;w)) be a feasible dynamic mechanism. Then Ev
[
`
(
u(v;w)

)]
=

`(w) for all states w ∈ U if and only if Ev [u(v;w)] = w for all states w ∈ U .

Proof. We prove each direction at a time.

Continuation implies flow By the promise keeping constraint we have that

`(w) = w − βEv [u(v;w)] = (1− β)w , (B-15)

where the last equation follows because the continuation utility is a martingale, i.e, Ev [u(v;w)] = w.
Thus

Ev
[
`
(
u(v;w)

)]
= (1− β)Ev [u(v;w)] = (1− β)w = `(w) ,

where the first equality follows from using (B-15) pointwise for w = u(v;w), the second because
the continuation utility is a martingale, and the last equality follows from (B-15).

Flow implies continuation Let (wt)t be the stochastic process given by w1 = w and wt+1 =
u(vt;wt). By the promise keeping constraint we have that the continuation utility can be written
as

w =
∞∑
t=1

βt−1Ewt

[
`
(
wt
)]

=
`(w)

1− β
, (B-16)

because Ewt

[
`
(
wt
)]

= `(w) since the flow utility is a martingale. By the promise keeping constraint
we have that

Ev [u(v;w)] =
1

β
(w − `(w)) = w ,

because `(w) = (1− β)w from (B-16).

B.5 Proof of Lemma A.2

We provide the proof of each item separately.

Item 1 We have that the c.d.f. of the stopping time can be upper bounded by

P(τ < t) = P(wMUM
i ≤ w for some i = 1, . . . , t− 1) = P

(
max

i=1,...,t−1
wMUM − wMUM

i∧τ ≥ wMUM − w
)
.

When t < τ we have the promised utility evolves according to the martingale

wMUM
t+1 =

1

β
(wMUM

t + ∆MUM
t ) ,
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where ∆MUM
t =

(
min(vt, s

MUM(wMUM
t ))− c

)+ −Ev[v− c]+. The martingale differences are bounded
by

∣∣wMUM
t+1 − wMUM

t

∣∣ =

∣∣∣∣1− ββ wMUM
t +

1

β
∆MUM
t

∣∣∣∣ ≤ 1

β
((1− β)ū+ v̄) ≤ 2v̄

β
,

where the first inequality follows because wMUM
t ≤ ū and |∆MUM

t | ≤ v̄, and the last because ū =
E [(v − c)+] /(1−β) ≤ v̄/(1−β). Because the stopped martingale wMUM

t∧τ is a martingale, we obtain
from Azuma’s inequality for maxima (see, e.g., McDiarmid 1998, Section 3.5) that

P(τ < t) ≤ exp

(
−β

2(wMUM − w)2

4v̄2(t− 1)

)
.

Item 2. The expectation in the statement of the lemma is given as follows.

E[βτ ] =

∞∑
t=1

βtP(τ = t) =

∞∑
t=1

βtP(τ < t+ 1)−
∞∑
t=1

βtP(τ < t) .

Note that the first term can equivalently be expressed as follows

∞∑
t=1

βtP(τ < t+ 1) =
∞∑
t=1

βt−1P(τ < t)− P(τ < 1) =
1

β

∞∑
t=1

βtP(τ < t)

where we used that P(τ < 1) = 0. Hence the expectation is bounded as follows:

E[βτ ] =
1− β
β

∞∑
t=1

βtP(τ < t) ≤ 1− β
β

∞∑
t=1

βt exp

(
−β

2(wMUM − w)2

4v̄2(t− 1)

)
=

1− β
β

∞∑
t=0

f(t) ,

where we denote f(t) = β exp (−at− b/t) with a = ln
(
β−1

)
and b = β2(wMUM − w)2/(4v̄2). Be-

cause the function f(t) is unimodal (initially non-decreasing and then non-increasing), we can
bound the summation by

∞∑
t=0

f(t) ≤ max
t≥0

f(t) +

∫ ∞
0

f(t) dt = β exp(−2(ab)1/2) + 2β

(
b

a

)1/2

K1

(
2(ab)1/2

)
≤
(
1 + 4K1(1)eb

)
β exp

(
−2(ab)1/2

)
≤
(
1 + 8b

)
β exp

(
−2
(
(1− β)b

)1/2)
.

where the first equality follows because maxt≥0 f(t) = β exp(−2(ab)1/2) and denoting by K1(z) =
z/4

∫∞
0 exp(−z2/4x−1/x) dx the modified Bessel function of the second kind of order 1; the second

inequality because K1(x)/K1(y) ≥ ey−xx/y for y ≥ x (Laforgia, 1991) and setting y = 2(ab)1/2

and x = 1; and the last because K1(1)e ≤ 2 and a ≥ 1 − β. Here we used that y ≥ x because
b ≥ 1/(4(1− β)). The result follows.

C Mechanism Design with Dynamic Individual Rationality

An optimal dynamic mechanism can be recursively characterized by the Principle of Optimality. Let
ΠDIR(w) be the optimal expected profit-to-go of the seller when the promised utility is w ∈ U . We
have that the optimal value function satisfies the following Bellman equation (see, e.g., Bertsekas
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(2012, Chapter 1)):

ΠDIR(w) = max
(q,z,u)∈M′

Ev[z(v)− cq(v) + βΠDIR(u(v))] (C-17)

s.t (1), (2), (PK), (DIC), (DIR) .

Given a value function ΠDIR(·) solving the previous Bellman Equation, the optimal profit of the
seller is given by ΠDIR = maxw∈U Π

DIR(w), and the initial state wDIR is a maximizer of the previous
problem.

In this setting an optimal dynamic mechanism can be characterized in closed-form. The fol-
lowing result shows an optimal dynamic mechanism that allocates the item according to Myerson’s
optimal auction in the first period and allocates the item efficiently onwards. The seller incorporates
a large participation fee in the first auction that allows him to extract the buyer’s entire surplus
from the second auction onwards. The next result characterizes an optimal dynamic mechanisms
in terms of histories, instead of recursively using the promised utility framework.

Proposition C.1. Suppose the hazard rate f(v)/(1 − F (v)) is non-decreasing in v. An optimal
dynamic mechanism is given by

• when t = 1 the allocation is q(v) = 1{φ(v) ≥ c} and the payment is z(v) = φ−1(c)1{φ(v) ≥
c}+ β

1−βEv [(v − c)+], and

• when t > 1 the allocation q(v) = 1{v ≥ c} and the payment is z(v) = c1{v ≥ c}.

Here the seller exploits that at the point of contracting the only private information is the buyer’s
value for the first auction and that there is no information asymmetry for future time periods. Thus,
the seller only pays the buyer an information rent for the first time period and achieves close to full
surplus extraction. This result is well-known in the mechanism design literature and was originally
established by Besanko (1985), who showed that with risk-neutrality and independent private
information, all inefficiency arises in the first period only. In this case the expected discounted
profit of the seller is

ΠDIR = Ev
[
(φ(v)− c)+

]
+

β

1− β
Ev
[
(v − c)+

]
.

This implies that an optimal mechanism achieves first-best as the discount rate converges to one:

lim
β→1

Π̄DIR = lim
β→1

(1− β)ΠDIR = Ev
[
(v − c)+

]
= Π̄FB ,

where the rate of convergence to first-best is O (1− β), i.e. Π̄FB − Π̄DIR ≤ O(1− β).
We prove the result by characterizing in closed-form the optimal value function in (C-17).

Using Lemma 2.1 we can eliminate payments from the inner optimization problem in the Bellman
Equation, and obtain a simpler problem constrained only by (1), (2) and (DIR). The resulting
problem is easy to solve because, after eliminating payments, (DIR) only restricts the allocation.
Thus the inner optimization problem is separable in the allocation and the promise functions, which
allows us to explicitly characterize an optimal mechanism by optimizing the objective pointwise
over the realization of values. We shall see, however, that when we introduce additional constraints
the problem is not longer separable and, in most cases, an optimal mechanism may not be obtained
in closed-form.

In this case an alternative proof can be provided using a standard relaxation approach from
the dynamic mechanism design literature (Ëso and Szentes, 2007; Kakade et al., 2013; Pavan et al.,
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2014). This approach involves relaxing most incentive compatibility constraints, solving the re-
laxed problem, and then showing that the candidate mechanism satisfies all incentive compatibility
constraints. In the relaxed problem all incentive compatibility constraints, other that the one of
the first auction, are relaxed. This corresponds to an environment where the value of the buyer
for the first auction is private and all future values are observed by the seller. Thus this problem
can be reduced to a single-item mechanism design problem (with proper continuation values) that
can be solved in a straightforward manner using standard techniques. In particular, in the case
of (DIR) the mechanism can align all incentives for future time periods via a large participation
fee, and it is possible to un-relax an optimal mechanism from the relaxed problem. While this ap-
proach can handle non-independent valuations, to the best of our knowledge, this approach cannot
be extended to accommodate constraints such as the ones we later consider in this paper. Our
proof of Proposition C.1, while somewhat longer, better illustrates the use of the promised utility
framework, which is the cornerstone of our analysis.

C.1 Proof of Proposition C.1

We prove the result in four steps. First, we use Lemma 2.1 to eliminate payments from the
optimization problem and rewrite the seller’s optimization problem in terms of social welfare.
Second, we characterize the optimal value function. Third, we determine an optimal initial state
and optimal seller’s profit by optimizing over the initial state. Fourth, we determine an optimal
mechanism.

Step 1 (Reformulation) Using Lemma 2.1 we can eliminate payments from the optimization
problem. The DIR constraint is now given by

w +

∫ v

0
q(x)dx−

∫ ∞
0

F̄ (x)q(x)dx ≥ 0 ,

for all v. Because the allocation q(x) is non-decreasing, it suffices to impose the DIR constraint at
the lowest type: ∫ ∞

0
F̄ (x)q(x)dx ≤ w . (C-18)

Denoting by SDIR(w) , w + ΠDIR(w) the social welfare generated by an optimal mechanism, we
obtain that the mechanism design problem (C-17) can be written as

SDIR(w) = max
q,u

Ev[(v − c)q(v) + βSDIR(u(v))] (C-19)

s.t (1), (2), (C-18), q(x) non-decreasing in v .

Step 2 (Optimal value function) Let γ ≥ 0 be the Lagrange multiplier of the individual rationality

constraint (C-18), let h(γ) = Ev
[(
v − γ F̄ (v)

f(v) − c
)+
]
, and let g(w) = minγ≥0 {h(γ) + γw}. We

shall prove that S(w) = g(w) + βū solves the Bellman equation S(w) = T (S)(w) where T (·) is the
Bellman operator in (C-19). We first prove the following properties.

Lemma C.2. The following hold:

(i) h(γ) is differentiable and strictly convex. Moreover, the derivative is h′(γ) = −Ev [(v − v(γ))+]
where v(γ) is the unique root of v − γF̄ (v)/f(v)− c = 0 over v ∈ [0, v̄].
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(ii) γ∗(w) ∈ arg maxγ≥0

{
h(γ) + γw

}
is unique, bounded and continuous for w > 0.

(iii) g(w) is concave and differentiable for w > 0.

(iv) g(w) is non-decreasing.

(v) g(ū) = (1− β)ū.

We are in position to prove the result. Because the objective in (C-19) is separable we obtain
that

T (S)(w) = maxq

{
Ev[(v − c)q(v)]

}
s.t (1), (C-18), q(x) non-decreasing in v︸ ︷︷ ︸

(I)

+ β maxu

{
S(u(v))

}
s.t (2)︸ ︷︷ ︸

(II)

We solve the first problem by introducing a Lagrange multiplier γ ≥ 0 for constraint (C-18) and
considering its dual problem. Note that in (I) the objective and constraint (C-18) are linear, and
the feasible set Q = {q : 0 ≤ q(v) ≤ 1, q(x) non-decreasing in v} is convex with a feasible interior
point. Hence, by the Strong Duality Theorem (p.224 in Luenberger (1969)) we obtain

(I) = min
γ≥0

max
q∈Q

{
Ev
[(
v − γ F̄ (v)

f(v)
− c
)
q(v)

]}
+ γw

= min
γ≥0

h(γ) + γw = g(w) ,

where the second equality follows from optimizing pointwise over v to obtain that q(v) = 1{v −
γF̄ (v)/f(v)− c ≥ 0} is optimal for all γ ≥ 0 (here we used that q(v) is non-decreasing because the
hazard rate f(v)/F̄ (v) is non-decreasing), and the last from our definition of g(w). For the second
problem we have that

(II) = S(ū) = ū ,

because the optimal u(v) under the value function S(w) is given by u(v) = ū since S(w) is non-
decreasing in w (because g(w) is non-decreasing) and the last equation because S(ū) = ū since
g(ū) = (1− β)ū. We thus obtain that

T (S)(w) = g(w) + βū = S(w) ,

and we conclude that S(w) satisfies the Bellman equation.

Step 3 (Optimal initial state) An optimal initial state is obtained by solving for the optimal
seller’s profit:

ΠDIR = max
w∈U

ΠDIR(w) = max
w∈U

{SDIR(w)− w} = max
0≤w≤ū

{g(w) + βū− w} .

We claim that wDIR = −h′(1) = Ev
[
(v − φ−1(c))+

]
is an optimal solution (the last expression

follows from property (i) above). Because the proposed solution is interior, and the objective is
convex and differentiable at the proposed solution; it suffices to check that the proposed solution
satisfies the first-order condition 0 = g′(wDIR)−1. By the Envelope Theorem, we have that g′(w) =
γ∗(w) where γ∗(w) ∈ arg maxγ≥0

{
h(γ)+γw

}
. This implies that γ∗(wDIR) = 1. In turn, because the

solution of the inner optimization problem is interior, and the objective is convex and differentiable;
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the first-order condition of the inner optimization problem gives that h′(γ∗(wDIR))+wDIR = 0. Using
that γ∗(wDIR) = 1 we conclude that wDIR = −h′(1) as claimed.

Additionally, we obtain that the optimal seller’s profit is given by

ΠDIR = g(wDIR) + βū− wDIR = h(1) + βū = Ev
[
(φ(v)− c)+

]
+

β

1− β
Ev
[
(v − c)+

]
,

where the second equality follows because γ∗(wDIR) = 1 is optimal for the inner problem.

Step 4 (Optimal mechanism) In the first auction we have that w1 = wDIR and γ∗(w1) = 1. From
step 2 we have that the allocation is q(v) = 1{φ(v) ≥ c} and the promise function is u(v) = ū.
From (3) we obtain that the payment is given by

z(v) = βu(v)− wDIR + vq(v)−
∫ v

0
q(x)dx+

∫ ∞
0

F̄ (x)q(x)dx

=
β

1− β
Ev
[
(v − c)+

]
+ φ−1(c)1{v ≥ φ−1(c)} ,

where the last equation follows because
∫∞

0 F̄ (x)q(x)dx = Ev
[
(v − φ−1(c))+

]
= wDIR and

∫ v
0 q(x)dx =

(v − φ−1(c))1{v ≥ φ−1(c)}.
In the second auction we have that w2 = ū and γ∗(w2) = 0. From step 2 we have that the

allocation is q(v) = 1{v ≥ c} and the promise function is u(v) = ū. From (3) we obtain that the
payment is given by

z(v) = βu(v)− ū+ vq(v)−
∫ v

0
q(x)dx+

∫ ∞
0

F̄ (x)q(x)dx

= c1{v ≥ c} ,

where the last equation follows because
∫∞

0 F̄ (x)q(x)dx = Ev [(v − c)+] = (1−β)ū and
∫ v

0 q(x)dx =
(v − c)1{v ≥ c}. Because the promise function is u(v) = ū, then ū is an absorbing state and the
same mechanism is used onwards.

C.2 Proof of Lemma C.2

We prove each item at a time.

Item i Differentiability of h(γ) = Ev[h(γ, v)] where h(γ, v) =
(
v − γF̄ (v)/f(v)− c

)+
follows from

Liebniz’s rule because the function h(γ, v) is differentiable almost everywhere with respect to γ
and its derivative hγ(γ, v) = −F̄ (v)/f(v)1{v − γF̄ (v)/f(v) − c ≥ 0} is bounded by an integrable
function as follows: |hγ(γ, v)| ≤ F̄ (v)/f(v). The derivative is given by h′(γ) = −

∫ v̄
0 F̄ (v)1{v −

γF̄ (v)/f(v)− c ≥ 0}dv. Because the hazard rate is increasing and c ∈ [0, v̄) we have that h′(γ) =
−
∫ v̄
v(γ) F̄ (v)dv = −Ev [(v − v(γ))+] where v(γ) is the unique root of v − γF̄ (v)/f(v) − c = 0 over

v ∈ [0, v̄]. Because the density f(·) is strictly positive on its domain we conclude that h(γ) is strictly
convex.

Item ii When w > 0 we have that the optimal solution is bounded because all solutions such that
γ ≥ h(0)/w are dominated by γ = 0 since the objective is lower bounded by g(w, γ) = h(γ) +γw ≥
h(0) = g(w, 0) because h(γ) ≥ 0. The Maximum Theorem implies that γ∗(w) is continuous because
the objective is jointly continuous, strictly convex in γ and the feasible set is compact.

E.C. 11



Item iii Concavity of g(w) follows because g(w) is the minimum of affine functions in w. Differen-
tiability of g(w) follows from Theorem 3 of Milgrom and Segal (2002) because the objective g(w, γ)
is equidifferentiable in w since gw(w, γ) = γ, and γ∗(w) is bounded and continuous for w > 0.

Item iv Non-decreasingness of g(w) follows trivially because γ ≥ 0.

Item v This follows because γ = 0 is an optimal solution when w = ū. The optimality of γ = 0
follows because h(γ) is convex and the derivative of the objective evaluated at γ = 0 is non-negative.
That is,

gγ(ū, 0) = ū+ h′(0) = ū− Ev
[
(v − c)+

]
= βū ≥ 0 ,

where the last equality follows because ū = Ev [(v − c)+] /(1− β).

D Appendix to Section 1.2

In this section we give a more in depth exposition of the models and the proposed mechanisms
under the different requirements for the applications discussed in Section 1.2.

D.1 Supply Chain Contracting with Private Price Information

Consider a supply chain contract in which a manufacturer (the principal) repeatedly sells a perish-
able good to a retailer (the agent) facing a newsvendor problem. The manufacturer has a publicly
observed marginal cost c > 0.14 The retailer faces uncertain demand in period t, denoted by dt,
and needs to place an order quantity before demand is realized. The retail price in each period,
denoted by vt, is privately observed by the retailer before making the ordering decision and satisfies
vt ≥ c. The realized demands (dt)t≥1 and retail prices (vt)t≥1 are assumed to be independent and
identically distributed across time periods with cumulative distribution functions G(d) and F (v).
Because the good is perishable, inventory is not carried over and, in the event of a stock out, unmet
demand is lost.

The manufacturer offers a non-linear pricing contract to the retailer that specifies a wholesale
price as a function of the order quantity. Since the manufacturer has commitment power in our
model, we can restrict attention to direct mechanism in which the retailer reports the retail price
truthfully to the manufacturer. In this setting a stage mechanism is a pair of functions (q, z) ∈M
where q : R+ → R+ is a supply function and z : R+ → R+ is a payment function. That is,
when the retailer reports a price v, q(v) determines the number of units shipped to the retailer
and z(v) determines the payment to be charged. Given a direct dynamic mechanism π ∈ M
the discounted profit of the manufacturer is as before and the discounted utility of the retailer is
given by Uπ = E

[∑∞
t=1 β

t−1
(
vt min(dt, q

π
t (vt))− zπt (vt)

)]
. We study the manufacturer’s problem

of designing a contract that maximizes his expected total discounted profits.
This model is a natural extension of Lariviere and Porteus (2001) to a repeated setting with

private retail prices. In Lariviere and Porteus (2001) the retail price is publicly observed and
distortion is introduced because the manufacturer is restricted to price-only contracts in which
the retailer can buy as much as she wants at the posted price. Lobel and Xiao (2016) study the
design of supply contracts under DIR in a dynamic setting when the retailer has private demand
information and leftover inventory is carried over to the next time period. Kakade et al. (2013)

14While for simplicity we assume that the manufacturer’s cost is linear, the same analysis can be easily extended
to convex costs.
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study the design of optimal mechanisms under DIR in a similar model with perishable goods in
which the price and demand process are potentially non-stationary.

First-best mechanism In this case the first-best outcome (FB) corresponds to the case of an inte-
grated firm. The average optimal expected profit of the integrated firm is given by the newsvendor
problem

Π̄FB = Ev
[
max
q≥0
{vD(q)− cq}

]
,

where we denote by D(q) = Ed [min(d, q)] the expected sales when q units are offered. The function
D(q) is non-decreasing and concave, with derivative D′(q) = 1−G(q). The integrated firm optimally
determines the quantity q as a function of the retail price v by equating marginal revenue to
marginal cost. Because the retail price is never below the marginal manufacturing cost, the optimal
ordering quantity is given by the critical fractile formula qFB(v) = G−1

(
(v − c)/v

)
. An omniscient

manufacturer who observes the realization of retail prices could achieve the profit of the integrated
firm by charging the retailer’s revenue zFB(v) = vD (qFB(v)).

Optimal static mechanism The optimal static incentive compatible mechanism (S) corresponds
to the case of a decentralized supply chain in which the manufacturer needs to provide incentives
for the retailer to report the realized price truthfully. Let F (v) be the cumulative distribution
function and f(v) be the density of the retail price. Assume that the virtual value of the retail
price φ(v) = v − (1 − F (v))/f(v) increasing in v. A standard application of the envelope formula
yields that the average optimal profit is given by

Π̄S = Ev
[
max
q≥0
{φ(v)D(q)− cq}

]
,

that is, the manufacturer faces another newsvendor problem in which the marginal revenue is
replaced by φ(v) to reflect the informational rent that needs to be paid to the retailer. When
φ(v) < c the seller’s objective is decreasing in the order quantity and the optimal solution is
qS(v) = 0. Conversely, when φ(v) ≥ c the optimal ordering quantity is again given by the critical
fractile formula qS(v) = G−1

(
(φ(v) − c)/φ(v)

)
. The envelope formula yields that the optimal

payment is given by zS(v) = vD (qS(v))−
∫ v

0 D (qS(x)) dx. Because the allocation is non-decreasing
(from the monotonicity of the virtual value), the optimal mechanism can be implemented via the
non-linear pricing contract zS(q) = infv {zS(v) : qS(v) ≥ q}.

Dynamic Individual Rationality The optimal dynamic mechanism under DIR supplies in the first
time period the optimal order quantity of the decentralized supply chain qS(v) and from then
on supplies the optimal order quantity of the integrated supply chain qFB(v). In the first time
period the retailer is charged the optimal payment of the decentralized supply chain zS(v) together
with an additional upfront fee of β/(1 − β)Π̄FB. In return the retailer obtains all future goods at
marginal cost c. By charging a large enough payment in the first time period and exploiting that
both parties are informationally symmetric for future periods, the principal can achieve almost full
surplus extraction. The average optimal profit of this mechanism is given by

Π̄DIR = (1− β)Π̄S + βΠ̄FB ,

and the convergence rate to first-best is (1− β).
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Periodic Individual Rationality The Deferred Utility Mechanism has three phases as before. In the
savings phase the manufacturer implements the optimal mechanism of the integrated supply chain:
the manufacturer supplies qFB(v) and extracts the maximum possible retailer surplus by setting
the payment equal to the retailer’s revenue zFB(v). Truthful reporting during the savings phase is
achieved exclusively via future promises. In the income phase the retailer is supplied the optimal
order quantity of the integrated supply chain qFB(v) at marginal cost c. The mechanism initially
starts with a promised utility in the low end of the saving phase. Because the PIR constraint is
binding in the savings phase, the envelope formula (3) implies that Ev[u(v;w)] = w/β and the state
drifts upwards. Thus after an initial period in the savings phase, the mechanism will likely switch
to the income phase. Let Π̄FB(v) = vD

(
qFB(v)

)
− cqFB(v) be the optimal profit of the integrated

supply chain when the retail price is v. In the initial savings phase the retailer derives no rent and
the manufacturer keeps the entire surplus of efficient trade Π̄FB(v), while in the later income phase
the whole surplus of the supply chain Π̄FB(v) is collected by the retailer. Thus the retailer’s utilities
are backloaded. Theorem 4.3 implies that the rate of convergence to first-best of this mechanism
is (1− β)1/2.

Martingale Utilities The Martingale Utility Mechanism has the following structure in this setting.
The retailer is supplied the optimal order quantity of the integrated supply chain qFB(v) and the
payment is determined using a dynamic threshold s. Let Π̄FB(v) = vD

(
qFB(v)

)
− cqFB(v) be the

optimal profit of the integrated supply chain when the retail price is v. The manufacturer captures
the entire surplus from efficient trade Π̄FB(v) when the price is below this threshold, and the
additional surplus Π̄FB(v) − Π̄FB(s) generated when the price is above this threshold is provided
to the retailer. That is, the retailer pays her revenue z(v) = vD

(
qFB(v)

)
when v ≤ s and pays the

manufacturer’s marginal cost z(v) = sD
(
qFB(s)

)
+c
(
qFB(v)−qFB(s)

)
when v > s. Thus the retailer

derives a positive flow utility only if the price is above the threshold s. The threshold is dynamic
and set so that the average continuation utility is equal to the agent’s expected flow utility of the
current period, or equivalently (1−β)w = Ev

[
(Π̄FB(v)− Π̄FB(s))+

]
. Truthful reporting is achieved

via a combination of instantaneous payments and promised future payments. Theorem 5.3 implies
that the rate of convergence to first-best of this mechanism is (1− β)1/2.

D.2 Principal-Agent Model with Private Cost Information

Consider a dynamic principal-agent problem as in Krishna et al. (2013). The model herein presented
is general and captures many real-word examples such as retail franchising, labor contracts, and
procurement contracts. A principal contracts with an agent to repeatedly produce output on her
behalf. The principal obtains a revenue R(q) when the agent produces q publicly observed units in
a time period. The agent’s marginal production cost in time period t, denoted by ct, is privately
observed by the agent. The realized costs (ct)t≥1 are assumed to be independent and identically
distributed across time periods with support [0, c̄], cumulative distribution function F (c). The
agent is informed about her cost when making her production decision. We assume that the
revenue function R : R→ R+ is concave, increasing, differentiable and satisfies R(0) = 0.

The principal offers a contract to the agent that specifies a payment as a function of the number
of units produced. Since the principal has commitment power, we can restrict attention to direct
mechanism in which the agent reports her cost truthfully to the principal. In this setting a stage
mechanism is a pair of functions (q, z) ∈M as before. That is, when the agent reports a cost of c,
q(c) determines the number of units to be produced by the agent and z(c) determines the payment
to be made to the agent. Given a direct dynamic mechanism π ∈ M the discounted profit of the
principal is Ππ = E

[∑∞
t=1 β

t−1
(
R (qπt (ct))− zπt (ct)

)]
, and the discounted utility of the agent is
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given by Uπ = E
[∑∞

t=1 β
t−1
(
zπt (ct)− ctqπt (ct)

)]
. We study the principal’s problem of designing a

contract that maximizes his expected total discounted profits.

First-best mechanism In the first-best outcome (FB) there is no asymmetry of information be-
tween the principal and the agent. The average optimal expected profit is given by

Π̄FB = Ec
[
max
q≥0
{R(q)− cq}

]
.

We assume that limq→0R
′(q) =∞ and limq→∞R

′(0) = 0 to guarantee that the solution is interior
for all costs c ∈ [0, c̄] and the first-order method holds (see, e.g., Laffont and Martimort (2001)).
The optimal production quantity is given by the qFB(c) = (R′)−1(c) and the payment to be charged
is zFB(c) = cqFB(c).

Optimal static mechanism In the optimal static incentive compatible mechanism (S) the principal
needs to provide incentives for the agent to report the realized cost truthfully. Let F (c) be the
cumulative distribution function and f(c) be the density of the agent’s production cost. Assume
that the virtual cost ψ(c) = c + F (c)/f(c) is increasing. A standard application of the envelope
formula yields that the average optimal profit is given by

Π̄S = Ec
[
max
q≥0
{R(q)− ψ(c)q}

]
,

where the marginal cost of the agent is replaced by ψ(c) to reflect the informational rent that needs
to be paid to the agent. The optimal production quantity is given by qS(v) = (R′)−1

(
ψ(c)

)
and the

envelope formula yields that the optimal payment is given by zS(c) = cqS(c) +
∫ c̄
c q

S(x)dx. When
the principal’s revenue function is linear with slope r > 0, the optimal static mechanism reduces
to take-it-or-leave-it offer with price ψ−1(r).

Dynamic Individual Rationality The optimal dynamic mechanism under DIR produces in the first
time period the optimal incentive compatible quantity qS(c) and “pays” zS(c)−β/(1−β)Π̄FB, that
is, the difference between the optimal incentive compatible payment and an additional upfront fee.
In return the principal transfers ownership of the firm to the agent: from then on the first-best
quantity qFB(c) is produced and the agent captures the entire benefit of production R (qFB(c)). The
average optimal profit of this mechanism is given by

Π̄DIR = (1− β)Π̄S + βΠ̄FB ,

and the convergence rate to first-best is (1− β).

Periodic Individual Rationality The Deferred Utility Mechanism has three phases as before. In
the savings phase the principal implements the first-best mechanism: the agent produces qFB(c)
and gets paid zFB(v), the minimum possible amount to cover her cost. Truthful reporting during
the savings phase is achieved exclusively via future promises. In the income phase the principal
transfers ownership of the firm to the agent: the first-best quantity qFB(c) is produced and the
agent captures the entire benefit of production R (qFB(c)). The mechanism initially starts with
a promised utility in the low end of the saving phase. Because the PIR constraint is binding in
the savings phase, the envelope formula (3) implies that Ec[u(c;w)] = w/β and the state drifts
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upwards. Thus after an initial period in the savings phase, the mechanism will likely switch to the
income phase. Let Π̄FB(c) = R

(
qFB(c)

)
− cqFB(c) be the first-best profit when the agent’s cost is c.

In the initial savings phase the agent derives no utility and the principal keeps the entire surplus of
efficient trade Π̄FB(c), while in the later income phase the whole surplus Π̄FB(c) is collected by the
agent. Thus the agent’s utilities are backloaded. Theorem 4.3 implies that the rate of convergence
to first-best of this mechanism is (1− β)1/2.

Martingale Utilities The Martingale Utility Mechanism has the following structure in this setting.
The first-best quantity qFB(c) is produced and payments are determined using a dynamic threshold
s. Let Π̄FB(c) = R

(
qFB(c)

)
−cqFB(c) be the first-best profit when the agent’s cost is c. The principal

captures the entire surplus from efficient trade Π̄FB(c) when the cost is above to this threshold,
and the additional surplus Π̄FB(c) − Π̄FB(s) generated when the cost is below this threshold is
provided to the agent. That is, the agent is paid her cost z(c) = cqFB(c) when c ≥ s and is paid the
principal’s marginal revenue z(v) = sqFB(s) + R

(
qFB(c)

)
− R

(
qFB(s)

)
when c < s. Thus the agent

derives a positive flow utility only if the cost is below the threshold s. The threshold is dynamic
and set so that the average continuation utility is equal to the agent’s expected flow utility of the
current period, or equivalently (1−β)w = Ec

[
(Π̄FB(c)− Π̄FB(s))+

]
. Truthful reporting is achieved

via a combination of instantaneous payments and promised future payments. Theorem 5.3 implies
that the rate of convergence to first-best of this mechanism is (1− β)1/2.
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