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Abstract. This paper introduces an extension of the action language
AL to Hybrid AL. A program in Hybrid AL specifies both a transition
diagram and associated computations for observing fluents and execut-
ing actions. The semantics of AL is defined in terms of Answer Set Pro-
gramming (ASP). Similarly, the semantics of Hybrid AL is defined using
Hybrid ASP which is an extension of ASP that allows rules to control
sequential execution of arbitrary algorithms.

Constructing a mathematical model of an agent and its environment based on
the theory of action languages has been studied and has applications to planning
and diagnostic problems, see [10] for an overview. In the realm of diagnostic
problems, the goal is to find explanations of unexpected observations. We are
interested in solving diagnostic problems such as those that arise diagnosing
malfunctions of a large distributed software system, as described in [14].

The approach to solving a diagnostic problems described in [1] is based on
the idea of using a mathematical model of the agent’s domain, created using a
description in the action language AL [2] to find explanations for unexpected
observations. Central to this approach is the notion of the agent loop [10] which
we modify to underline the relevance to the diagnostic problem.
1. Observe the world, check that observations are consistent with expectations,
and update the knowledge base.
2. Select an appropriate goal G.
3. Explain unexpected observations and search for a plan (a sequence of actions)
to achieve G.
4. Execute an initial part of the plan, update the knowledge base, go back to
step 1.

The description and the facts from the knowledge base are translated into
a logic program in a language of answer set programming (ASP) [11]. An ASP
solver is then used to find stable models of the program, which are descriptions
of possible trajectories of the underlying domain. These can be used to carry out
steps 1 and 3 of the agent loop.

The two assumptions for the applicability of the agent loop are: (1) the agent
is capable of making correct observations, performing actions, and recording
these observations and actions (not defeasible), and (2) normally the agent is
capable of observing all relevant exogenous actions occurring in its environment
(defeasible). Hybrid AL is introduced to help solve a diagnostic problem where
both (1) and (2) are defeasible, and where to decrease the size of the search space



2

the following are assumed: (A1) the agent is normally capable of determining
a small set of possible actions occurring in its environment by computationally
simulating its environment for a number of steps starting from a known state
in the past, or by performing other relevant external computations (here, by a
small set we mean a set that can practically be represented by the enumeration),
(A2) the agent has a description of at least one past state, and that description
is sufficient to satisfy the assumption A1.

Under these assumptions, the agent may need to perform sequential com-
putations (where the choice of the computations at step j may depend on the
output of computations at step j − 1) in order to determine sets of possible
actions and states of the domain. Our hypothesis is that under these assump-
tions, computational efficiency can be improved if ASP-like processing and the
external computations are merged. Such a merging can reduce the number of
possible actions and states that need to determine the next action.

One way to address such issues is to extend AL to a richer action language
that provides mechanism for performing computations and passing input and
output parameters between the computation steps. Hybrid AL, introduced in
this paper is one such extension. While descriptions in AL are translated into
ASP, the descriptions in Hybrid AL are translated into Hybrid ASP (H-ASP)
which is an extension of ASP, introduced by the authors in [3] that allows rules
to control sequential execution of arbitrary algorithms. This functionality makes
H-ASP well suited for solving a diagnostic problem under our assumptions.

The outline of this paper is as follows. In section 1, we will discuss an example
to motivate our need to extend AL to Hybrid AL, and we will briefly describe
AL and H-ASP. In section 2 we will introduce Hybrid AL. In section 3 we will
revisit the example from section 1 and show how it can be described in Hybrid
AL. Section 4 contains discussion of related work and conclusions.

1 Motivation for Hybrid AL and Preliminaries

To motivate the introduction of Hybrid AL, we will consider an example of a
hypothetical video processing system (figure 1). The system selects a video from
a video library. The choice depends on the initial state and time. It then checks
the quality of the video. If the check fails, then a system is said to malfunction,
which is unexpected.

We are interested in creating a diagnostic agent of this system. We will as-
sume that the agent is only able to determine a subset of the videos v1, ..., vk
dependent on the initial state, one of which was chosen by the system. The agent
will then investigate k possible trajectories of the system - one for each possible
video. For each such trajectory, the agent will check quality of the video and
determine whether it could have caused unexpected behavior.

Since the subset of the videos selected by the agent is time dependent, it may
not be practical to pre-compute the values of properties of the videos. Instead,
if the system malfunctions, then the agent will access the video library, select a



3

Fig. 1. Video processing system

Fig. 2. Hybrid transition diagram

set of videos and run the quality check algorithm on each of the selected videos
to explain the unexpected behavior of the system.

A key concept related to action languages is that of a transition diagram,
which is a labeled directed graph where vertices are states of a dynamic domain,
and edges are labeled with subsets of actions. In Hybrid AL, one considers
hybrid transition diagrams, which are directed graphs with two types of
vertices: action states and domain states. A domain state is a pair (A,p)
where A is a set of propositional atoms and p is a vector of sequences of 0s and
1s. We can think of A as a set of values of the properties of a system, and p
as the description of the parameters used by external computations. An action
state is a tuple (A,p, a) where A and p are as in the domain state, and a is a
set of actions. An out edge from a domain state must have an action state as
its destination. An out edge from an action state must have a domain state as
its destination. Moreover, if (A,p) is a domain state that has an out-edge to an
action state (B, r, a), then A = B and p = r. There is a simple bijection between
the set of transition diagrams and the set of hybrid transition diagrams.

An example of a hybrid transition diagram is in Figure 2. Two actions a1 and
a2 can be performed in the state (A1,p1). Thus, the action states are (A1,p1, a1)
and (A1,p1, a2). The consequents of applying action a1 at the state (A1,p1)
are two domain states (A2,p2) and (A3,p3), for action a2 at (A1,p1) it is the
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domain state (A4,p4).

We will now briefly review action language AL. Our review is based on Chap-
ter 8 of [10] where one can find more details. AL has three special sorts: statics,
fluents, and actions. The fluents are partitioned into two sorts: inertial and
defined. Statics and fluents are referred to as domain properties. Intuitively,
statics are properties of the system that don’t change with time. Inertial fluents
are properties that are subject to the law of inertia. Their values can be directly
influenced by actions, and in the absence of such a change the values remain
unchanged. Defined fluents are properties defined in terms of other fluents and
cannot be directly influenced by actions. A domain literal is a domain property
p or its negation ¬p. If a domain literal l is formed by a fluent, it is referred to
as fluent literal; otherwise it is a static literal. A set S of domain literals is
called complete if for any domain property p either p or ¬p is in S. S is called
consistent if there is no p such that p ∈ S and ¬p ∈ S.

AL allows the following types of statements:
1. Causal Laws: a causes lin if p0, ..., pm,
2. State constraints: l if p0, ..., pm, and
3. Executability conditions: impossible a0, ..., ak if p0, ..., pm
where a is an action, l is an arbitrary domain literal, lin is a literal formed by
an inertial fluent, p0, ..., pm are domain literals, k ≥ 0 and m ≥ −1.

A system description SD in AL specifies a transition diagram. Intuitively,
state constraints specify sets of allowed states. Given a state S, the set of ex-
ecutability conditions specifies concurrent actions executable at S, i.e. sets of
actions that can decorate out edges of S. Given a state S and a set of actions
A, causal laws together with state constraints determine the set of possible con-
sequent states that result from executing A at S, i.e. neighbor states connected
to S by out edges decorated by A.

Formally, a complete and consistent set σ of domain literals is a state of
a transition diagram defined by SD if σ is the unique answer set of program
Πc(SD) ∪ σnd, where σnd is the collection of all domain literals of σ formed by
inertial fluents and statics (the definition of Πc(SD) is omitted for brevity).

A system description SD of AL is called well founded if for any complete
and consistent set of fluent literals σ satisfying the state constraints of SD, the
program Πc(SD)∪σnd has at most one answer set. Sufficient conditions for well-
foundedness are expressed in terms of the fluent dependency graph, which is
a directed graph such that its vertices are arbitrary domain literals and where
it has an edge: (a) from l to l′ if l is formed not by a defined fluent and SD
contains a state constraint with the head l and the body contains l′, (b) from
f to l′ if f is a defined fluent and SD contains a state constraint with head f
and body containing l′ and not containing f , (c) from ¬f to f for every defined
fluent f . A fluent dependency graph is said to be weakly acyclic if it does not
contain any paths from defined fluents to their negations.

Proposition (Proposition 1 in [9]) If a system description SD of AL is weakly
acyclic, then SD is well-founded.
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A transition 〈σ0, a, σ1〉 is described in terms of a program Π(SD, σ0, a) (the
definition of Π(SD, σ0, a) is omitted for brevity). A state-action-state triple
〈σ0, a, σ1〉 is a transition of T (SD) iff Π(SD, σ0, a) has an answer set A such
that σ1 = {l : h(l, 1) ∈ A}.

We now give a brief overview of H-ASP restricted to the relevant rules. A
H-ASP program P has an underlying parameter space S and a set of atoms At.
Elements of S, called generalized positions, are of the form p = (t, x1, . . . , xm)
where t is time and xi are parameter values. We let t(p) denote t and xi(p)
denote xi for i = 1, . . . ,m. The universe of P is At × S. A pair (Z,p) where
Z ⊆ At and p ∈ S will be referred to as a hybrid state. For M ⊆ At×S, we write
GP(M) = {p ∈ S : (∃a ∈ At)((a,p) ∈ M)}, WM (p) = {a ∈ At : (a,p) ∈ M},
and (Z,p) ∈ M if p ∈ GP(M) and WM (p) = Z. A block B is an object of the
form B = a1, . . . , an, not b1, . . . , not bm where a1, . . . , an, b1, . . . , bm ∈ At.
We let B− = not b1, . . . , not bm, and B+ = a1, . . . , an. We write M |= (B,p),
if (ai, p) ∈M for i = 1, . . . , n and (bj , p) /∈M for j = 1, . . . , m.

Advancing rules are of the form: a← B : A,O. Here B is a block, O ⊆ S,
for all p ∈ O A(p) ⊆ S, and for all q ∈ A(p), t(q) > t(p). A represents a
partial function S → 2S , and is called an advancing algorithm. The idea is that
if p ∈ O and B is satisfied at p, then A can be applied to p to produce a set of
generalized positions O′ such that if q ∈ O′, then t(q) > t(p) and (a, q) holds.

Stationary-i rules are of the form: a ← B1;Bi : H,O (where for i = 1 we
mean a← B1 : H,O). Here Bi are blocks and H is a Boolean algorithm defined
on O. The idea is that if (p1, pi) ∈ O (where for i = 1 we mean p1 ∈ O), Bk

is satisfied at pk for k = 1, i, and H(p1, pi) is true (where for i = 1 we mean
H(p1)), then (a, pi) holds.

A H-ASP Horn program P is a H-ASP program which does not contain
any negated atoms in At. For I ∈ S, the one-step provability operator TP,I(M)
consists of M together with the set of all (a, J) ∈ At×S such that (1) there exists
a stationary-i rule a← B1;Bi : H,O such that (p1, pi) ∈ O ∩ (GP(M) ∪ {I})i,
M |= (Bk, pk) for k = 1, i, and H(p1,pi) = 1, and (a, J) = (a, pi) or (2)
there exists an advancing rule a← B : A,O. such that p ∈ O ∩ (GP(M) ∪ {I})
such that J ∈ A(p) and M |= (B, p).

An advancing rule is inconsistent with (M, I) if for all p ∈ O∩(GP(M)∪{I})
either M 6|= (B, p) or A(p) ∩ GP(M) = ∅. A stationary-i rule is inconsistent
with (M, I) if for all (p1, pi) ∈ O ∩ (GP(M) ∪ {I})i there is a k such that
Mk 6|= (Bk, pk) or H(p1, pi) = 0.

We form the Gelfond-Lifschitz reduct of P over M and I, PM,I as follows. (1)
Eliminate all rules that are inconsistent with (M, I). (2) If the advancing rule is
not eliminated by (1), then replace it by a← B+ : A+, O+ where O+ is the set
of all p in O ∩ (GP(M)∪ {I}) such that M |= (B−, p) and A(p)∩GP(M) 6= ∅,
and A+(p) = A(p)∩GP(M). (3) If the stationary-i rule is not eliminated by (1),
then replace it by a ← B+

1 ; B+
i : H|O+ , O+ where O+ is the set of all (p1, pi)

in O ∩ (GP(M)∪ {I})i such that M |= (B−k ,pk) for k = 1, i, and H(p1,pi) = 1.

Then M is a stable model of P with initial condition I if
∞⋃
k=0

T k
PM,I ,I(∅) = M.
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We will now introduce additional definitions which will be used later on in this
paper. We say that an advancing algorithm A lets a parameter y be free if the
domain of y is Y and for all generalized positions p and q and all y′ ∈ Y ,
whenever q ∈ A(p), then there exist q′ ∈ A(p) such that y(q′) = y′ and q
and q′ are identical in all the parameter values except possibly y. An advancing
algorithm A fixes a parameter y if A does not let y be free.

We will use T to indicate a Boolean algorithm or a set constraint that always
returns true. As a short hand notation, if we omit a Boolean algorithm or a set
constraint from a rule, then by that we mean that T is used.

We say that a pair of generalized positions (p, q) is a step (with respect to
a H-ASP program P ) if there exists an advancing rule “a← B : A,O” in P such
that p ∈ O and q ∈ A(p). Then we will say that p is a source and q is a desti-
nation. We will assume that the underlying parameter space of P contains a pa-
rameter Prev. For a step (p, q), then we will have Prev(q) = (x1(p), ..., xn(p)).
We define the advancing algorithm GeneratePrev as GeneratePrev(p) = {q|
q ∈ S and Prev(q) = (x1(p), ..., xn(p))} for a generalized position p. (This can
be implemented efficiently using references, rather than copies of data). We can
then define a Boolean algorithm isStep(p, q) equal true iff
Prev(q) = (x1(p), ..., xn(p)) and [t(q) = t(p) + stepSize].

For two one-place Boolean algorithms A, B, the notation A ∨ B, A ∧ B,
or A means a Boolean algorithm that for every generalized position q returns
A(q)∨B(q), A(q)∧B(q) or not A(q) respectively. The same holds for two place
Boolean algorithms.

For a domain state at time t we will assume that subsequent action states
are at time t + 0.1 and the subsequent domain states are at time t + 1. Thus,
advancing algorithms executing in domain states will increment time by 0.1, and
advancing algorithms executing in action states will increment time by 0.9.

Finally, for a set of atoms M , rules(M) will denote a set of stationary-1 rules
{m← : T |m ∈M}.

2 Action Language Hybrid AL

In this section, we shall define Hybrid AL. Our definitions mirror the presenta-
tion of AL given in [10].

Syntax. In Hybrid AL, there are two types of atoms: domain atoms and
action atoms. There are two sets of parameters: domain parameters and
time. The domain atoms are partitioned into three sorts: inertial, static and
defined. A domain literal is a fluent atom p or its negation ¬p. For a gener-
alized position q, let q|domain denote a vector of domain parameters.

A domain algorithm is a Boolean algorithm P such that for all the gener-
alized positions q and r, if q|domain = r|domain, then P (q) = P (r). An action
algorithm is an advancing algorithm A such that for all q and for all r ∈ A(q)
time(r) = time(q) + 0.9. For an action algorithm A, the signature of A, sig(A),
is the vector of parameter indices i0, i1, ..., ik of domain parameters such that A
fixes parameters i0, i1, ..., ik.
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Hybrid AL allows the following types of statements.
1. Action association statements: associate a with A,
2. Signature statements: A has signature i0, ..., ik,
3. Causal laws: a causes 〈lnd, L〉 if p0, ..., pm : P ,
4. State constraints: 〈l, L〉 if p0, ..., pm : P ,
5. Executability conditions: impossible a0, ..., ak if p0, ..., pm : P , and
6. Compatibility conditions: compatible a0, a1 if p0, ..., pm : P
where a is an action, A is an action algorithm, i0, ..., ik are parameter indices,
lnd is a literal formed by an inertial or a static atom, L is a domain algorithm,
p0, ..., pm are domain literals, P is a domain algorithm, l is a domain literal, and
a0, ..., ak are actions k ≥ 0 and m ≥ −1. No negation of a defined fluent can
occur in the heads of state constraints.

The following short-hand notation can be used for convenience.
(a) If L or P are omitted then the algorithm T is assumed to be used.
(b) For an action a, if the action association statement is omitted, then the
action association statement ”associate a with 0” is implicitly used for a. Here,
0 is an action algorithm with an empty signature that for a generalized position
p, produces the set of all generalized positions {q : time(q) = time(p) + 0.9}.

Semantics. Similarly to AL, a system description SD in Hybrid AL serves
as a specification of the hybrid transition diagram T (SD) defining all possible
trajectories of the corresponding dynamic system. Hence, to define the semantics
of Hybrid AL, we will define the states and the legal transitions of this diagram.

The H-ASP programs discussed below assume the parameter space consist-
ing of parameters t (time), domain parameters and the parameter Prev. Such a
parameter space will be called the parameter space of SD.

States. We let Πc(SD) be the logic program defined as follows.
1. For every state constraint 〈l, L〉 if p0, ..., pm : P , Πc(SD) contains the clause
l← p0, ..., pm : P ∨ L.
2. For every defined domain atom f , Πc(SD) contains the closed world assump-
tion (CWA): ¬f ← not f.

For any set σ of domain literals, we let σnd denote the collection of all domain
literals σ formed by inertial domain atoms and statics.

Definition 1. Let (σ,q) be a hybrid state. If σ is a complete and consistent set
of domain literals, then (σ,q) is a state of the hybrid transition diagram defined
by a system description SD if (σ,q) is the unique answer set of the program
Πc(SD) ∪ rules(σnd) with the initial condition q.

The definitions of the fluent dependency graph, weak acyclicity, sufficient con-
ditions for well-foundedness are the same as those defined for AL.

Transitions. To describe a transition 〈(σ0,p), a, (σ1,q)〉 we construct a pro-
gram Π(SD, (σ0,p), a), which as a similarly named program for AL, consists
of a logic program encoding of the system description SD, initial state (σ0,p)
and an action a such that the answer sets of this program determine the states
the system can move into after execution of a in (σ0,p).
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The encoding Π(SD) of the system description SD consists of the encoding
of the signature of SD and rules obtained from the statements of SD. The
encoding of the signature sig(SD) into a set of stationary-1 rules is as follows:
(A) for each constant symbol c of sort sort name other than fluent, static or
action sig(SD) contains: sort name(c)←,
(B) for every defined fluent f of SD, sig(SD) contains: fluent(defined, f)←,
(C) for every inertial fluent f of SD, sig(SD) contains: fluent(inertial, f)←,
(D) for each static f of SD, sig(SD) contains: static(f)←, and
(E) for every action a of SD, sig(SD) contains: action(a)←

Next will specify the encoding of statements of SD.
(1) For every action algorithm A, we have an atom alg(A). If A has signature
(i0, ..., ik), then we add the following rules for all j ∈ {0, ..., k} that specify all
the parameters fixed by A: fix value(ij)← action state, exec(alg(A)).
(2) Inertia axioms for parameters: For every domain parameter i, we have an
advancing rule discard← action state, not fix value(i) : Default [i]
where Default [i] (p) = {q| pi = qi}. The inertia axioms for parameters will
cause the values of parameters not fixed by one of the action algorithms to be
copied to the consequent states. discard here is a placeholder atom.
(3) For every causal law: a causes 〈lin, L〉 if p0, ..., pm : P , Π(SD) contains
(i). A stationary-1 rule generating atom exec(alg(A)) specifying that algorithm
A associated with action a will be used:
exec(alg(A))← action state, occurs(a), h(p0), ..., h(pm) : P.
(ii) An advancing rule executing A to compute changes to domain parameters:
h(lin)← action state, occurs(a), h(p0), ..., h(pm) : A,P.
(iii) A stationary-2 rule to apply L to the successor states:
h(lin)← action state, occurs(a), h(p0), ..., h(pm); : isStep∧[source(P )∨dest(L)].
(4) For a one-place boolean algorithmD, source(D) indicates a two-place Boolean
algorithm source(D)(p,q) = D(p), and destination(D)(p,q) = D(q).
(5) For every state constraint: 〈l, L〉 if p0, ..., pm : P , Π(SD) contains
h(l)← domain state, h(p0), ..., h(pm) : P ∨ L.
(6) Π(SD) contains CWA for defined fluents
¬holds(f)← domain state, fluent(defined, f), not holds(f).
(7) For every executability condition: impossible a0, ..., ak if p0, ..., pm : P ,Π(SD)
contains
¬occurs(a0) ∨ ... ∨ ¬occurs(ak)← action state, h(p0), ..., h(pm) : P.
(8) Π(SD) contains inertia axioms for inertial fluents. That is, for every inertial
fluent f stationary-2 rules,
holds(f)← fluent(inertial, f), holds(f);not ¬holds(f) : isStep and
¬holds(f)← fluent(inertial, f), ¬holds(f); not holds(f) : isStep.
(9) Π(SD) contains propagation axioms for static and defined fluents. These
are used to copy statics and defined fluents from domain states to the successor
action states. For every static or defined fluent f stationary-2 rules
holds(f)← domain state, static(f), holds(f); : isStep,
¬holds(f)← domain state, static(f), ¬holds(f); : isStep,
holds(f)← domain state, fluent(defined, f), holds(f); : isStep, and
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¬holds(f)← domain state, fluent(defined, f), ¬holds(f); : isStep.
(10) Π(SD) contains CWA for actions: for every every action a, there is a clause
¬occurs(a)← action state, not occurs(a).
(11) For every action algorithm A, B such that sig(A)∩ sig(B) 6= ∅, we have a
stationary-2 rule prohibiting executing the algorithms in the same state, unless
they are explicitly marked as compatible
fail← action state, exec(alg(A)), exec(alg(B)),
not compatible(alg(A), alg(B)), and
not compatible(alg(B), alg(A)); not fail : isStep.
(12) For every compatibility condition: compatible a0, a1 if p0, ..., pm : P ,
Π(SD), there is a clause
compatible(alg(A0), alg(A1))← action state, h(p0), ..., h(pm),
occurs(a0), occurs(a1) : P
where Ai is the action algorithm associated with ai.
(13) Π(SD) has axioms for describing the interleaving of domain and action
states. These are a stationary-2 rule and an advancing rule:
domain state← action state; :
action state← domain state : CreateActionState
where for a generalized position p,
CreateActionState(p) =
{q| where p|domain = q|domain & time(q) = time(p) + 0.1}.
(14) Π(SD) contains rules making an action state with no actions invalid: For
every action a:
valid action state← action state, occurs(a)
and a rule to invalidate the state without actions:
fail← action state, not valid action state, not fail.
(15) Π(SD) contains the rule for generating the value of Prev parameter:
discard← GeneratePrev, T .

The inertia axioms and the propagation axioms guarantee that the set of
fluents of a domain state and its successor action state are identical. The inertial
axioms also guarantee that an action state and its successor domain state contain
the same inertial fluents, if those fluents are not explicitly changed by causal laws.

A relation holds(f,p) will indicate that a fluent f is true at a generalized
position p. h(l,p) where l is a domain literal will denote holds(f,p) if l = f or
¬holds(f,p) if l = ¬f . occurs(a,p) will indicate that action a has occurred at
p. The encoding h(σ0,p) of the initial state is a set of stationary-1 rules:
h(σ0, p) = {h(l)←: isDomainT ime[t(p)] | l ∈ σ0}
where isDomainT ime[x](q) returns true iff t(q) = x.

Finally the encoding occurs(a, p) of the action a is
occurs(a, p) = {occurs(ai)←: isActionT ime[t(p)] | ai ∈ a}
where isActionT ime[x](q) returns true iff t(q) = x+ 0.1.

We then define Π(SD, (σ0,p), a) = Π(SD) ∪ h(σ0, p) ∪ occurs(a, p).

Definition 2. Let a be a nonempty collection of actions and (σ0,p) and (σ1,q)
be two domain states of the hybrid transition diagram T (SD) defined by a system
description SD. A state-action-state triple 〈(σ0,p), a, (σ1,q)〉 is a transition
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of T (SD) iff Π(SD, (σ0,p), a) has a stable model M with the initial condition
p, such that (σ1,q) is a hybrid state.

Hybrid AL provides a superset of the functionality of AL. We prove this
by defining a translation of a description SD in AL into E(SD), which is a
description in Hybrid AL. We will then show that there is a correspondence
between the states and transitions of T (SD) with those of T (E(SD)).

The signature of E(SD) contains exactly the domain and action atoms of SD,
and no domain parameters. For every action law: ”a causes lin if p0, ..., pm” of
SD, E(SD) contains an action law ”a causes (lin, T ) if p0, ..., pm : T”. For every
state constraint: ”l if p0, ..., pm” of SD, E(SD) contains a state constraint ”(l, T )
if p0, ..., pm : T”. Finally, for every executability condition: ”impossible a0, ..., ak
if p0, ..., pm” of SD, E(SD) contains an executability condition: ”impossible
a0, ..., ak if p0, ..., pm : T”. We then have the following two equivalence theorems.

Theorem 1. Let SD be a system description in action language AL, and let
σ be a complete and consistent set of domain literals. Then σ is a state of a
transition diagram T (SD) iff for all generalized positions q from the parameter
space of E(SD) (σ, q) is a state of the hybrid transition diagram T (E(SD)).

Theorem 2. Let SD be a system description in action language AL. If a state-
action-state triple (σ0, a, σ1) of T (SD) is a transition of T (SD), then for all
generalized positions q0 and q1 such that q0|domain = q1|domain and t(q0) + 1 =
t(q1) from the parameter space of E(SD), ((σ0,q0), a, (σ1,q1)) is a transition
of T (E(SD)). Moreover, if a state-action-state triple ((σ0,q0), a, (σ1,q1)) of
T (E(SD)) is a transition of T (E(SD)) then (σ0, a, σ1) is a transition of T (SD).

Sketch of a proof. First we construct the translation Π(SD, σ0, a) of SD and a
similar translation Π(E(SD), (σ0,q0), a) of E(SD). There is an equivalence of
the one step provability operators of the two Gelfond-Lifschitz transforms with
respect to domain atoms. Using this, one can define a bijection between the set of
stable models specifying transitions {(σ0, a, σ1)} of T (SD), and the set of stable
models specifying transitions {((σ0,q0), a, (σ1,q1))} of Π(E(SD), (σ0,q0), a).

3 Example

We will now revisit the example from Figure 1 and describe it in Hybrid AL.
In our domain, the only action is selectVideo. The algorithm selectVideoAlg will
produce a set of possible videos. Each such video will be stored in the parameter
video of a possible state. The selected video quality will be checked by the domain
algorithm checkQuality.

Our specification of actions has two statements:
associate selectVideo with selectVideoAlg and
selectVideoAlg has signature video.
In addition, there is a causal law,
selectVideo causes selected if not selected, and a state constraint,
malfunction if selected: -checkQualityAlg.

The translation of our specification into H-ASP is as follows.
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% The encoding of the signature and action declaration:
fluent(inertial, selected):- . fluent(defined, malfunction):- . action(selectVideo):-
fix_value(video):- exec(alg(selectVideAlg))

% Inertia axioms for parameters
discard:- action_state, not fix_value(video): Default[video]

% Causal laws for: selectVideo causes selected if not selected
exec(alg(selectVideoAlg)):- action_state, occurs(selectVideo), -holds(selected)
holds(selected):- action_state, occurs(selectVideo), -holds(selected): selectVideoAlg, T
holds(selected):- action_state, occurs(selectVideo), -holds(selected);

: isStep && [source(T) || dest(-T)]

% State constraint: malfunction if selected: -checkQualityAlg
holds(malfunction):- domain_state, holds(selected): -checkQualityAlg || -T

% CWA for the defined fluent:
-holds(malfunction):- domain_state, fluent(defined, malfunction), not holds(malfunction)

% Inertia axioms for the inertial fluent:
holds(selected):- fluent(inertial, selected), holds(selected); not -holds(selected);: isStep
-holds(selected):- fluent(inertial, selected), -holds(selected); not holds(selected);: isStep

% Propagation axioms: for defined fluents and CWA for the action:
holds(malfunction):- domain_state, fluent(defined, malfunction), holds(malfunction);: isStep
-holds(malfunction):- domain_state, fluent(defined, malfunction), -holds(malfunction);: isStep
-occurs(selectVideo):- action_state, not occurs(selectVideo)

% Interleaving of action and domain states, rules for generating action states:
domain_state:- action_state; : . action_state:- domain_state: CreateActionState

% Invalidate an action state with no actions; the rule for generating Prev parameter
valid_action_state:- action_state, occurs(selectVideo)
fail:- action_state, not valid_action_state, not fail
discard:- : GeneratePrev, T

We can now simulate our domain. A generalized positions will be written
as a vector of 3 elements (time, video, Prev). The initial hybrid state has the
generalized position p0 = (0, ∅, ()) (where ∅ is the initial value indicating that
no data is available). The initial hybrid state can be encoded as:

domain_state:- : isDomainTime[0]
-holds(selected):- : isDomainTime[0] . -holds(malfunction):- : isDomainTime[0]

it is not difficult to see that it is a valid state according to our definitions.
The action selectV ideo executed at time 0 can be encoded as:
occurs(selectVideo):- : isActionTime[0]

We will assume that selectVideoAlg returns two videos: v1 and v2, and that
checkQualityAlg succeeds on v1 and fails on v2. For brevity we will omit atoms
specifying the signature, i.e. fluent(inertial, selected), fluent(defined, malfunc-
tion) and action(selectVideo), as these will be derived in every state. Our stable
model will then consists of the following hybrid state encodings:
* Generalized position: (0, 0, ())
Atoms: -holds(selected). -holds(malfunction). domain_state

* Generalized position: (0.1, 0, Prev=(0))
Atoms: -holds(selected). -holds(malfunction). action_state. discard

occurs(selectVideo). exec(alg(selectVideo)). valid_action_state. fix_value(video)

* Generalized position: (1, v1, Prev=(0))
Atoms: holds(selected). -holds(malfunction). domain_state. discard

* Generalized position: (1, v2, Prev=(0))
Atoms: holds(selected). holds(malfunction). domain_state. discard
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4 Conclusions

In this paper we have introduced HybridAL - an extension of the action language
AL, that provides a mechanism for specifying both a transition diagram and
associated computations for observing fluents and executing actions. This type
of processing cannot be done easily with the existing action languages such asAL
or H [6] without extending them. We think, however that this capability will be
useful for improving computational efficiency in applications such as diagnosing
malfunctions of large distributed software systems.

While the semantics of AL is defined using ASP, the semantics of Hybrid
AL is defined using H-ASP - an extension of ASP that allows ASP type rules
to control sequential processing of data by external algorithms. Hybrid AL and
H-ASP can be viewed as part of the effort to expand the functionality of ASP
to make it more useful along the lines of DLV DB [13], V I [5], GRINGO [8] that
allow interactions with the external data repositories and external algorithms.
In [12], Redl notes that HEX programs [7] can be viewed as a generalization
of these formalisms. Thus we will briefly compare H-ASP and HEX, as target
formalisms for translating from a AL-like action language. HEX programs are
an extension of ASP programs that allow accessing external data sources and
external algorithms via external atoms. The external atoms admit input and
output variables, which after grounding, take predicate or constant values for
the input variables, and constant values for the output variables. Through the
external atoms and under the relaxed safety conditions, HEX programs can
produce constants that don’t appear in the original program.

There is a number of relevant differences between H-ASP and HEX. H-ASP
has the ability to pass arbitrary binary information sequentially between exter-
nal algorithm. While the same can be implemented in HEX, the restriction that
the values of the output variables are constants means that a cache that uses
constants as tokens, needs to be built around a HEX-based system to retrieve
data. H-ASP also explicitly supports sequential processing required for AL-like
processing, whereas HEX does not. Such enhancements can also provide the po-
tential for performance optimization. On the other hand, HEX allows constants
returned by algorithms to be used as any other constants in the language. This
gives HEX expressive advantage over H-ASP where the output of the algorithms
cannot be easily used as regular constants.

In [4], the authors have described the use of H-ASP for diagnosing failures
of Google’s automatic whitelisting system for Dynamic Remarketing Ads, which
is an example of a large distributed software system. The approach did not in-
volve constructing a mathematical model of the diagnosed domain. The results
of this paper can be viewed as a first step towards developing a solution to the
problem of diagnosing malfunctions of a large distributed software system based
on constructing a mathematical model of the diagnosed domain. The next steps
in this development is to create a software system for Hybrid AL.
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