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Figure 1: The Jump system produces omnidirectional stereo (ODS) video. (a) The multi-camera rig with the ODS viewing circle overlaid and
three rays for the left (green) and right (red) stitches. Solid rays pass through a camera and can be sampled directly. Dashed rays are sampled
from interpolated views. (b) A stitched ODS video generated from 16 input videos, shown in anaglyphic stereo here. (c) A VR headset in which
the video can be viewed.

Abstract

We present Jump, a practical system for capturing high resolution,
omnidirectional stereo (ODS) video suitable for wide scale con-
sumption in currently available virtual reality (VR) headsets. Our
system consists of a video camera built using off-the-shelf compo-
nents and a fully automatic stitching pipeline capable of capturing
video content in the ODS format. We have discovered and analyzed
the distortions inherent to ODS when used for VR display as well
as those introduced by our capture method and show that they are
small enough to make this approach suitable for capturing a wide
variety of scenes. Our stitching algorithm produces robust results
by reducing the problem to one of pairwise image interpolation
followed by compositing. We introduce novel optical flow and com-
positing methods designed specifically for this task. Our algorithm
is temporally coherent and efficient, is currently running at scale on
a distributed computing platform, and is capable of processing hours
of footage each day.
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1 Introduction

As virtual reality (VR) headsets become widely available, capturing
content for VR has emerged as a research problem of growing im-
portance. In this paper we introduce Jump, a complete VR capture
system, spanning camera design, stitching algorithms, serving for-
mat, and display that is optimized to capture real scenes and events
for today’s VR headsets and video serving platforms. In particular,
we seek to achieve the following three criteria:

Immersion: The viewer should feel immersed, i.e., present within
the captured scene.

Stereopsis: The viewer should see the recorded content in stereo.

Editing and streaming: the content should be represented in a form
that can be edited using existing tools, streamed reliably on todays
networks, and rendered in real time on todays headsets.

To satisfy these criteria, we present a solution based on omnidirec-
tional stereo (ODS) video [Ishiguro et al. 1990; Peleg et al. 2001].
This format, based on creating a time-varying panorama for each
eye, is advantageous because scene content may be represented as a
traditional video and streamed on existing video serving platforms
(it does not require depth or 3D information, nor does it require
that a view interpolation algorithm be run on client-side). Neverthe-
less, creating omnidirectional video content introduces a number of
unique challenges.

First, the ODS projection was not designed for VR. For example,
there is no proof that this projection model is capable of producing
perspective stereo pairs that can be properly fused. We show that
ODS in fact violates the epipolar constraint when reprojected to
perspective in a VR headset, and we analyze its performance in
detail. Our main conclusion is that the violation is minor and only
significant for objects that are very close or at extreme angles.

A second major challenge is designing a camera and stitching system
for producing ODS video. We perform a detailed analysis of optimal
ODS multicamera rigs as a function of field of view, number of
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cameras, and camera placement. From this analysis we present an
ODS camera system with no moving parts or unusual hardware,
consisting of several off-the-shelf cameras on a ring.

The third key contribution of this paper is an ODS video stitching
algorithm which produces high quality output completely automat-
ically. This algorithm has been implemented at scale and has pro-
cessed millions of frames of video and produced content that has
been viewed by the general public more than 20 million times. As
part of this stitching algorithm we introduce novel optical flow and
compositing methods designed specifically for this task.

The remainder of this paper is structured as follows: Section 2
gives an overview of related work while Section 3 gives a summary
of the ODS projection followed by an analysis of the distortion it
introduces when used for VR video. In Section 4 we detail our
capture setup, deriving constraints on feasible rig geometries and
quantifying the distortion introduced at capture time. Section 5
describes our approach for stitching content from such a rig, and in
Section 6 we discuss our results.

2 Related work

There are many potential formats which could be used for VR video.
Lightfields [Levoy and Hanrahan 1996] provide the greatest level of
immersion if they can be captured for a suitable volume. Lightfield
capture has been demonstrated using 2D arrays of cameras [Wilburn
et al. 2005; Yang et al. 2002], however even if arrays such as these
were generalized to capture over a sphere, the amount of data that
would have to be transmitted for client-side rendering is very large
and a practical solution for this has not yet been demonstrated. Also,
editing lightfields is itself a challenging problem [Jarabo et al. 2014].
A second format that allows for 3D translation of the viewer is free
viewpoint video [Carranza et al. 2003; Collet et al. 2015; Zitnick
et al. 2004; Smolic 2011], which allows the viewer to move freely
within some volume. While advances have been made in reducing
the data rate of these captures [Collet et al. 2015] editing this content
remains a challenging problem. Concentric mosaics [Shum and
He 1999] allow a viewer to look in any direction and allow for
movement on a disc, however severe vertical distortion is introduced
as the viewer moves radially on the disc. Omnidirectional stereo
(ODS) [Ishiguro et al. 1990; Peleg et al. 2001] allows the user to
look around but not to move. This is consistent with a large fraction
of existing VR headsets (GearVR [Samsung 2015] and Cardboard
[Google 2014]) which track head rotation but not translation. Correct
stereo is supported, provided the user does not roll their head (which
most users tend to not do). Since the output is a pair of panoramic
videos (one for the left eye and one for the right) transmission
only requires twice as much data as monoscopic video and many
common editing operations are easy (color correction, cross fades,
etc). There are also existing tools for making more complex stereo
aware edits [Koppal et al. 2010]. For these reasons we propose ODS
as a practical format for delivering VR video today.

Some attempts have been made to capture ODS video directly. The
system of Tanaka and Tachi uses a rotating prism sheet to capture
the relevant rays, but this requires a complex setup and the resulting
video is of low quality [Tanaka and Tachi 2005]. The mirror based
system of Weissig et al.has the advantage of no moving parts and
significantly higher video quality, but the vertical field of view is
limited to 60 degrees [Weissig et al. 2012]. The term “omnidirec-
tional stereo” has also been used to describe a different projection
in which two panoramic images are captured with a vertical base-
line [Shimamura et al. 2000; Gluckman et al. 1998]. Video content
for this projection can be captured by two cameras with curved
mirrors. While that vertical baseline is useful for estimating depth
from stereo correspondence, it is not useful for generating VR video.

Figure 2: The omnidirectional stereo (ODS) projection which cap-
tures stereo views in all directions by sampling rays tangential to
a viewing circle. Red and blue rays comprise left and right eyes
respectively.

Most existing methods for capturing ODS panoramas rely on the
scene being static [Peleg et al. 2001; Richardt et al. 2013] or having
only a small amount of motion suitable for video textures [Couture
et al. 2011], thereby allowing a panorama to be captured by rotating
a single camera. To allow video with large motion to be captured,
we use 16 cameras placed radially on a rig and use view interpola-
tion between adjacent cameras on that ring to provide the necessary
intermediate images. Previous mosaicing methods have used optical
flow [Richardt et al. 2013] or depth [Rav-Acha et al. 2008] to aid
compositing multiple images into a single scene, but in both cases a
much denser set of input images was used, 100-300 in the case of
[Richardt et al. 2013] instead of our 16.

In addition to the academic research in this area there are also many
companies producing 360 degree video cameras. Some such as the
Ricoh Theta or the Gear360 capture monoscopic video. This allows
for compact cameras but does not meet our target of immersion
since the stereo cue is missing. Some companies are producing
stereoscopic 360 degree cameras such as Jaunt, Facebook and Nokia
however it is difficult to evaluate these systems as they use propri-
etary stitching methods.

3 Omnidirectional stereo projection

Panoramas have been around for more than a hundred years, as their
ability to render a scene in all directions has made them popular
for scene visualization and photography. The much more recent
discovery of stereo panoramas presents exciting opportunities for
VR video, as they provide a compact representation of stereo views
in all directions. First shown in [Ishiguro et al. 1990] and popularized
by [Peleg et al. 2001], the omnidirectional stereo (ODS) projection,
shown in Figure 2, produces a stereoscopic pair of panoramic images
by mapping every direction in 3D space to a pair of rays with origins
on opposite sides of a circle whose diameter is the interpupillary
distance. The ODS projection is therefore multi-perspective, and
can be conceptualized as a mosaic of images from a pair of eyes
rotated 360 degrees on a circle. Throughout this paper we call the
circle that the rays originate from the viewing circle.

Formally, for any direction defined by an elevation φ and
azimuth θ, the viewing ray directions in vector form are
[sin(θ) sin(φ), cos(φ), cos(θ) sin(φ)] and the viewing ray origins
are ±[r cos(θ), 0,−r sin(θ)] where + is for the right eye, − is for
the left eye, and r is generally half of the average viewer’s interpupil-
lary distance[Dodgson 2004]. The image for each eye can then be
stored as an equirectangular panorama of widthw, where x = θw/2π
and y = φw/2π, or as any other panoramic image such as a cube
map.



3.1 Distortion when viewing in VR

Most prior work on ODS has produced equirectangular or cylin-
drical panoramas which are viewed as stereo pairs on a flat screen
[Ishiguro et al. 1990; Peleg et al. 2001]. It has been shown that when
these panoramas are instead viewed in a cylindrical display, with
the viewer positioned in the center, some distortion is introduced
[Couture et al. 2010]. When displaying ODS panoramas in a VR
headset a different type of distortion occurs, since we must render
perspective views depending on where the user is looking. In this
section we show that the resulting distortion introduces vertical dis-
parity, but that this distortion is small in the center of the user’s field
of view and only increases towards the edges.

To render a perspective view from an ODS panorama, each ray in
the ODS panorama should ideally be projected onto the scene’s
geometry and then back into a perspective view. If, as in our case,
the scene geometry is not known, one can instead use a proxy ge-
ometry consisting of an infinite sphere. This is equivalent to only
considering the direction of each ray but not its origin and is correct
for distant content but introduces distortion for nearby content as
shown in Figure 3.

Consider a point at (px, py, 0) being projected into an ODS
panorama with a viewing circle of radius r, as shown in Figure 4.
This point projects into an ODS panorama at (θ, φ) for the left eye
and (−θ, φ) for the right eye where
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)
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Due to the rotational symmetry of the ODS projection, this general-
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We can find the point to which these rays project into the left and
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Figure 3: A synthesized, textured square imaged by the ODS pro-
jection and then projected to perspective. The images have an
interpupillary distance of 6cm and about 100◦ FOV. The square has
been placed at the unusually close distance of 30cm to exaggerate
the vertical parallax for the figure.
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Figure 4: Top and side views of a point being projected into ODS
space (greyed out) and the angles of the rays that view it with respect
to two perspective views for a horizontal view rotated α from the
point.
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Figure 5: Vertical parallax in degrees introduced when projecting
points on a cylinder of 1m radius from an ODS panorama into a
perspective view. Both images are left eye perspective views with
a 110 degree horizontal field of view. (a) Looking horizontally. (b)
Looking 30 degrees above the horizon.
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It can be seen that unless θ = π

2
, corresponding to a point infinitely

far away, φ = 0, corresponding to a point lying on the horizon,
or α = 0, corresponding to the perspective view looking directly
towards the point, then some vertical parallax will be introduced.
The closer the point is, the greater this vertical parallax will be.

If this vertical parallax is too large then it can cause problems fusing
the left and right eye images. Qin et al.[2004] suggest that vertical
parallax of half a degree is noticeable. Figure 5a shows that when
looking horizontally there is little vertical parallax for points 1m hor-
izontally from the camera. When the user looks up, as in Figure 5b,
there is greater distortion towards the edge of the images. This
distortion exceeds the limit suggested by Qin et al.but fortunately
this distortion only occurs towards the edge of a viewer’s field of
view where it is much less noticeable. If they turn to look at the
region that has large distortion in this figure then it will move closer
to the center of their field of view and so will exhibit less distortion.
Further investigation is required to determine whether this has an
impact of comfort for long term viewing.

This distortion is particularly severe when a user is looking straight
up or straight down. For the camera design proposed in this paper
this is not an issue as it only has a vertical field of view of 120
degrees.



4 ODS capture

Directly capturing the rays necessary to build an ODS panorama
is difficult for time varying scenes. While this has been attempted
[Tanaka and Tachi 2005] the quality of such approaches is currently
below that of the computational approaches to ODS capture. Most
previous approaches [Ishiguro et al. 1990; Peleg et al. 2001; Richardt
et al. 2013] capture ODS panoramas by rotating a camera on a circle
of diameter greater than that of the ODS viewing circle as shown in
Figure 6. We use the same approach for capturing ODS video except
that instead of rotating a single camera we use a small number of
stationary cameras and hallucinate the missing viewpoints needed
to produce the ODS panorama. This method of capture introduces
some vertical distortion which we analyze below.

Figure 6: In the 2D case, all rays tangential to a viewing circle can
be captured by rotating a single camera on a larger circle.

4.1 Vertical distortion

Figure 7a shows the vertical stretching introduced when capturing
an ODS panorama with cameras on a ring with larger diameter
than the viewing circle. This stretching drops off rapidly as content
moves further from the camera. We can quantify this distortion by
considering a point offset by z1 horizontally from the camera at a
height h as shown in figure 7b. The ODS projection of the point
will appear to be ∆h higher and the vertical stretching introduced is
given by

∆h

h
=
z0
z1

=

√
R2 − r2
z1

. (2)

This distortion can be reduced by minimizing the distance between
the cameras and the ODS viewing circle. For the case of static
scenes it can be completely avoided by rotating a pair of cameras
on the viewing circle, facing tangential to the viewing circle, rather
than rotating a single camera on a much larger circle as is common
in prior work [Peleg et al. 2001; Richardt et al. 2013].

Generating an ODS panorama by taking the parallel rays to those
captured is equivalent to using a proxy geometry of an infinite sphere.
If a prior on scene depth is available then a different proxy geometry
could be used. For example, if shooting indoors then a sphere with a
smaller diameter could be used, or even a cuboid fit to the room. If
geometry is available that exactly matches the scene, this distortion
could be completely avoided, however a point in 3D space which is
visible to the ODS panorama may not be visible to the cameras due
to occlusion, and this will cause holes in the panorama.

The analysis in this section assumes that we are capturing images
from a circle. In practice since we are interpolating between a small
number of cameras the interpolated views lie on a regular polygon
instead. This means that the vertical distortion described above
varies depending on viewing angle. For a rig with 16 cameras the
distance between the ideal circle and the actual interpolated position
is 2% of the rig radius and so this effect is very small.

4.2 Rig design for video capture

Our goal is to design a video camera rig that can capture all of
the rays needed by the ODS projection shown in Figure 2, while
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Figure 7: (a) Vertical distortion caused by capturing with cameras
which lie on a larger circle than the ODS viewing circle. The red
faces are viewed by a camera. When the parallel rays are used
for rendering from a viewpoint behind the camera this leads to
the vertically stretched green faces. (b) Top and side views of this
distortion being applied to a point.

maximizing image quality and minimizing image distortions.

sin−1(r/R)
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Figure 8: Sketch of a tangential (left) and radial (right) layout. (a)
In the tangential case, the cameras align with the ODS left/right rays
by rotating ±sin−1(r/R) w.r.t. the radial direction. (b) The radial
rig geometry is fully defined by its radius R, number of cameras n,
and the horizontal field of view γ of the cameras.

We place the cameras on a circle of radius R which is greater than
the radius of the ODS viewing circle r. An ODS ray which passes
through a camera will do so at an angle sin−1(r/R) to the normal of
the circle on which the cameras lie. Two distinct camera layouts are
possible: a tangential layout and a radial one, as shown in Figure 8.

The tangential layout dedicates half of the cameras to capturing rays
for the left image and the other half to capturing rays for the right
image, and aligns each camera so that an ODS ray which passes
through it does so along its optical axis. On the other hand, the radial
layout uses all of the cameras to collect rays for both the left and
right images and so each camera faces directly outwards.

The advantage of the radial design is that image interpolation occurs
between adjacent cameras, while for the tangential design it must
occur between every other camera, which doubles the baseline for
the view interpolation problem and makes it more challenging. The



disadvantage of the radial design is that since each camera must
capture rays for the left and right image, the horizontal field of view
required by each camera is increased by 2 sin−1(r/R). In practice
this means that the radial design is better for larger rig radii and the
tangential design is better for smaller radii.

The cameras we chose to use are around 3cm wide and therefore
limit how small the rig can be made. This means that the radial
design is more appropriate and all further discussion is based on this
layout.

The rig geometry is fully described by 3 parameters (see Figure 8b):
the radius of the rig R, the horizontal field of view of the cameras γ,
and the number of cameras n. We have several conflicting goals:

• Minimize rig diameter R, thereby reducing vertical distortion
as described in Section 4.1.

• Minimize the distance between adjacent cameras, thereby re-
ducing the baseline for view interpolation.

• Have a sufficient horizontal field of view for each camera, so
that content at least some distance d from the rig center can be
stitched.

• Maximize each camera’s vertical field of view, which results
in a large vertical field of view in the output video.

• Maximize overall image quality, which generally requires us-
ing large cameras.

We now describe a rig geometry that achieves these properties.
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Figure 9: (a) To successfully stitch all points with distances of
at least d from the rig center, the central camera must observe all
points in the shaded regions (red for right eye and green for left eye).
The extreme points pleft and pright constrain the camera’s field of
view to be at least γ. (b) Here we visualize the intermediate values
used when defining γ in (6).

4.3 Rig geometry

We assume that between adjacent cameras in a ring we can synthe-
size views on a straight line lying between the two cameras and that
these synthesized views can only include points observed by both
cameras. Figure 9 shows the volume that must be observed by one
camera in order to allow stitching for all points with distances from
the rig center of at least d.

Given a ring of radius R containing n cameras, we can derive the
minimum required horizontal field of view for each camera γ as

follows:

β =
2π

n
+ cos−1 r

d
− cos−1 r

R
(3)

b2 = d2 +R2 − 2dR cosβ (4)

π − γ

2
= cos−1

(
R2 + b2 − d2

2Rb

)
(5)

γ = 2 cos−1

(
d cosβ −R√

d2 +R2 − 2dR cosβ

)
. (6)

Figure 10 visualizes the relationship between the horizontal field of
view γ, the rig radius R, and the number of cameras n, as described
in (6). Smaller rig radii require a larger field of view, as rays from
the viewing circle intersect the rig at an angle further from normal to
the circle. However, as points get close to the rig radius, the required
field of view also rises rapidly. For a 40 cm minimum distance,
this leads to an optimal rig radius between 10 and 15cm. Figure
10 also shows that increasing the number of cameras for a fixed rig
radius reduces the field of view requirements; in addition stitching
quality will be improved as image interpolation will be over a shorter
baseline. In practice the physical size of the cameras limits how
many cameras can be used.

Figure 10: Minimum number of cameras as a function of rig radius
R and horizontal field of view γ. The interpupillary distance is set
to 6.5cm and the minimum distance d is set to 40cm. Increasing
the number of cameras reduces field of view requirements while
increasing the viewing circle radius increases the required field of
view. The design choice in this work is shown as a large red dot at
R = 14cm and γ = 94◦.

We chose to use GoPro cameras due to their large field of view
(94 × 120 degrees) and reasonably small size. Our design uses
16 cameras on a 28cm diameter ring (see the red dot in Figure 10).
Using more cameras would increase the rig diameter leading to more
vertical distortion. Reducing the number of cameras would mean
we could make the rig smaller but would increase the distance of the
nearest point we could stitch.

5 Stitching pipeline

This section describes our stitching pipeline which takes 16 video
streams and produces a single stitched ODS video. The individual
stages in the pipeline are shown in Figure 11. To run in a timely
manner it is crucial that the work can be distributed across many
machines. It is also crucial that results are temporally coherent. To
allow this the optical flow implementation operates on blocks of
frames (40 in all results here) and is temporally coherent within



each block. By using overlapping blocks and discarding the first and
last 5 frames of each block, discontinuities at block boundaries are
minimized. All other stages operate on each frame individually and
are designed so that small changes in their inputs will not produce
large changes in their outputs.

5.1 Calibration

We use a standard structure from motion approach [Hartley and
Zisserman 2003], with priors provided by the nominal rig layout, to
calibrate the intrinsics and the relative pose of the individual cameras
in the rig. Each capture is calibrated individually, using 5 frames
from the first minute of footage.

5.2 Flow estimation

Interpolating views between cameras in the ring requires a per-pixel
correspondence between each pair of adjacent cameras. We solve
the general 2D optical flow correspondence problem instead of the
simpler 1D stereo problem so that we are robust to correspondences
which do not follow epipolar geometry, such as specularities and,
since we use cameras with rolling shutter, fast moving objects. Be-
fore estimating flow between adjacent cameras we transform the
images to remove the effect of camera orientation. This means that
horizontal flow is a good approximation to inverse depth (disparity),
a fact that is later used during compositing.

Optical flow is a well-studied problem, with classic methods that
seek smooth solutions that satisfy brightness constancy assumptions
[Horn and Schunk 1981; Lucas and Kanade 1981], to more recent ap-
proaches that use feature descriptors to address large displacements
[Brox and Malik 2011] or appearance variation [Liu et al. 2011].
However, the problem of correspondence for view interpolation in
our setting has different and somewhat contradictory goals:

Visual quality over metric fidelity: Techniques with low endpoint
error on standard flow benchmarks [Baker et al. 2011; Menze and
Geiger 2015] often produce dramatic artifacts such as temporal
flickering or poorly localized edges when used for our task. Our
algorithm is designed to minimize visual artifacts, not endpoint error.

Speed: Top flow techniques on the KITTI benchmark [Menze and
Geiger 2015] take minutes or hours per megapixel, and would there-
fore take several compute-years or compute-millennia to process an
hour of our footage1. In contrast, our approach takes 1.1 seconds

1An hour of footage contains 18.6 million megapixels of flow compu-
tation: 16 videos of 5.4 megapixel images at 30 FPS with forward and
backward flow.

Calibration

Flow computation

Exposure correction

Compositing

Each task requires multiple
frames from a single camera.

Each task requires one frame
from all cameras.

Requires multiple frames
from all cameras.

16 input videos

Output ODS video

Figure 11: Structure of the pipeline. Flow is computed on blocks
of 40 frames separately for each camera. Exposure correction and
compositing are carried out independently for each frame.

per megapixel on cheap commodity hardware, without the use of
GPUs or FPGAs.

Temporal coherence: Our flow estimates must be coherent from
one frame to the next. This is a slightly different problem to tradi-
tional temporally consistent optical flow since we are computing flow
between images which are separated both spatially and temporally.

The requirements of speed and visual quality are often at odds
with each other, as most fast techniques oversmooth at flow dis-
continuities [Kroeger et al. 2016], and most edge-aware techniques
[Krähenbühl and Koltun 2012; Revaud et al. 2015] are more expen-
sive than their non-edge-aware counterparts.

We present an edge-aware and temporally-consistent optical flow
algorithm built upon a fast tile-based alignment procedure and a
temporal extension of the bilateral solver [Barron and Poole 2016],
a technique for efficiently inducing joint edge-aware smoothness.

The algorithm consists of four stages:

1. Locally normalize each image to discard variation due to dif-
ferent exposure or contrast settings.

2. Compute a coarse tile-based alignment, in which for each non-
overlapping 32× 32 tile in the reference image we perform a
brute force sub-pixel accurate search for its best-matching tile
in a 256× 64 region of the neighboring image.

3. Upsample the per-tile flow field into a per-pixel flow field,
while generating a per-pixel confidence measure which reflects
the reliability of that pixel’s flow.

4. The flow/confidence estimate is used as input to a temporally-
consistent bilateral solver, which finds the flow field that best
resembles the input flow (where confidence is large) while
being as bilateral-smooth as possible (smooth within spatio-
temporal regions but not across edges).

We describe our flow algorithm in terms of a single “reference”
image I0 (the image for which flow is computed) and a neighbor-
ing image I1, though this process is performed 32 times for each
temporal frame (16 camera pairs, forward and backward).

First, we locally normalize each image by subtracting the local mean
and dividing by the local standard deviation:

I ′0 =
I0 − box (I0, r)√

ε2 + box
(
(I0 − box (I0, r))

2 , r
) (7)

where box (·, r) is a box filter of radius r = 32, and ε = 0.001
prevents normalization issues in flat image regions. I ′1 is defined
similarly. Grayscale images are used for this matching step simply
for the sake of efficiency.

Given these normalized images, for each non-overlapping 32× 32
tile in I ′0 we perform a brute-force search for the best matching
tile with a horizontal motion in [0, 224] and a vertical motion in
[−16, 16], using the single-scale alignment technique of [Hasinoff
et al. 2016]. For each tile T ′0 in the normalized reference image I ′0
we compute a 224× 32 sum of squared differences (SSD) distance
image:

D(u, v) =

32∑
y=1

32∑
x=1

(T ′0(x, y)− T ′1(x+ u, y + v))2 (8)

where T ′1 is a subimage of I ′1. This can be accelerated using sliding-
window box filtering and FFTs, as has been done with normalized
cross-correlation [Lewis 1995]. We use a Halide implementation
[Ragan-Kelley et al. 2012] to further improve performance.
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Figure 12: Given two images in (a) and (b), our flow algorithm
produces the edge-aware flow field in (c). We visualize each step of
our flow algorithm for a cropped region of these images. For each
non-overlapping tile in image 0 (d) we identify the larger search
area in image 1 (e) and compute a normalized SSD surface (f), from
which we produce a motion estimate and confidence (shown here as
the radius of the circle). Despite this being a stereo pair, significant
vertical motion is visible in (f) due to rolling shutter. With our per-
tile flow and confidence in (g) we perform a per-pixel upsampling
and confidence adjustment to get the proposed flow in (h) (visualized
with saturation ∝ u, hue ∝ v, and value ∝ c1/8, as shown in the
legend in (j)). This noisy and incomplete flow/confidence is fed
into a temporally-consistent bilateral solver to produce the final
edge-aware flow field in (i).

We then extract a subpixel flow estimate fromD by fitting a quadratic
to the 3× 3 window surrounding the argmin of D(u, v) and localiz-
ing its minimum:

D(u, v) ≈ 1

2
[u v]Ai

[
u
v

]
+ bT

i

[
u
v

]
+ ci (9)

(Ui, Vi) = −A−1
i bi (10)

We can also use this quadratic to produce a confidence for tile i:

Ci = exp

(
log |Ai|
σA

− ci
σ2
c

)
(11)

where σc = 256 and σA = 5 determine the importance of the SSD
value, and the curvature of SSD, respectively. Ci is large iff the two
tiles match well and the match is well-localized. See Figure 12f for
a visualization of this process.

These per-tile flow and confidence estimates {Ui, Vi, Ci} (shown
in Figure 12g) then undergo a series of heuristic transformations
to model assumptions about outliers, low-texture regions, repeated
texture, object boundaries which do not align with tile boundaries,
and forward/backward symmetry (see the supplementary material for
details). This results in a per-pixel flow/confidence, where for each
pixel i we have ûi as horizontal motion, v̂i as vertical motion, and
ĉi as our estimated confidence of ûi and v̂i (shown in Figure 12h).
This flow field is noisy and incomplete, but the flow estimate tends
to be accurate when the confidence is large. With this, we can use
the bilateral-solver [Barron and Poole 2016] to produce a smoothed
estimate of the flow-field which respects edges in the video sequence,
while resembling our noisy flow estimate in confident regions (shown
in Figure 12i). We use the bilateral solver to solve the following:

minimize
{ui,vi}

λ
2

∑
i,j

Ŵi,j

∥∥∥∥[uivi
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−
[
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]∥∥∥∥2
2

+
∑
i

ĉi

∥∥∥∥[uivi
]
−
[
ûi
v̂i

]∥∥∥∥2
2

(12)
where {ui, vi} is the smoothed flow field estimated by the solver.
The solver contains a smoothness term built around Ŵ , a (bistochas-
tized) bilateral affinity matrix W . To generalize the bilateral solver
to video sequences, we need only modify W to include a tempo-
ral term in addition to the spatial xy and color `uv terms used in
[Barron and Poole 2016]:

Wi,j = exp
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−
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2σ2
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2
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y
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y
j ]
∥∥2
2

2σ2
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−
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2σ2
t

)
(13)

where for each pixel i, p`i is luma, (pui , p
v
i ) is chroma, (pxi , p

y
i ) is

spatial position, and pti is time (the pixel’s frame in the video se-
quence). The parameters (σ` = 16, σuv = 8, σxy = 12, and
σt = 1) determine the size of the luma, chroma, spatial, and tem-
poral support of the solver. This approach of enforcing temporal
consistency by connecting each pixel to its nearby pixels in the
video sequence implicitly reasons about object motion by assuming
motion is small and temporally smooth for images with the same
color, which works well in practice and avoids the need for esti-
mating temporal flow across adjacent frames, as is often required
by other techniques [Lang et al. 2012]. Our approach is similar
to the temporal smoothing technique used in [Meka et al. 2016]
for intrinsic image separation, though that approach relies on using
randomly sampled connections while the bilateral solver gives us
a dense “fully connected” temporal smoothness prior. We solve
the problem in Eq. 12 using the same bilateral-space optimization
approach as presented in [Barron and Poole 2016], but we optimize
over the entire video sequence in a 6-dimensional bilateral-temporal
space, rather than a 5-dimensional space.



5.3 Exposure correction

To handle scenes with large exposure variation, which are common
in panoramic capture, each camera in the rig autoexposes indepen-
dently. This means that adjacent cameras may have very different
settings (in practice we have observed up to a 3× difference in ex-
posure between adjacent cameras). We need to compensate for this
exposure difference before compositing. If we do not then the same
point in the scene may have very different exposures in the left and
right eye stitches, which makes it difficult for a human observer to
fuse the imagery when viewing it in VR.

To compensate for exposure we estimate the average image intensity
within the overlapping region of each image pair. Since we already
have correspondence estimated between the two images we use this
when deciding which regions of the image overlap. For each image
i we calculate the average intensity in the region that overlaps with
the next image Ni and the average intensity in the region which
overlaps with the previous image Pi. We then estimate a gain to
apply to each image gi aiming to minimize

n∑
i=1

(giNi − gi+1Pi+1)2 + ε (1− gi)2 (14)

where indices are calculated using modulo arithmetic, so that index
n+ 1 is equivalent to index 1, and ε = 0.001 is a small value which
controls the strength of our prior, that gains should be close to one.

We apply the gains gi estimated in this way to each image before
compositing. This means that the final stitch is a high dynamic range
(HDR) image if the input images had different exposures. We found
this method for estimating exposure correction to be robust enough
that no temporal regularization was needed. Figure 13a shows a crop
of a stitch generated with no exposure correction. The exposure is
very different for the crowd to the left of the rink in the left-eye and
right-eye panoramas which makes it difficult to fuse. Figure 13b
shows the same scene after exposure correction has been applied,
with the resulting HDR image clamped to 8 bits. The scene is now
equally exposed in all directions and there is less variation between
the left and right eyes, however when clamping to 8 bits the rink
becomes blown out.

Ideally the HDR stitch would be transmitted and viewed using an
HDR display, but to leverage existing video streaming platforms we
must generate an 8 bit video. Local tone mapping for video is a
challenging problem [Aydin et al. 2014] and extending it to be stereo
consistent is even more challenging. Here we propose a simple
heuristic approach which generates results faithful to the original
input images while avoiding blowing out regions.

Given the gains gi already calculated, we have an estimate of how
exposure of the input cameras varies around the rig and we aim to
match this in the output. For each column of both left- and right-eye
panoramas we estimate a gain by projecting a ray horizontally for
that column, finding the two cameras on the rig which it passes
between, and taking a weighted average of the gain for those two
cameras. Concretely, if the column’s longitude is θc and the cameras’
gains and longitudes when projected into the panorama are (θ0, g0)
and (θ1, g1) then the gain for that column gc is given by:

gc =
θc − θ0
θ1 − θ0

g0 +
θ1 − θc
θ1 − θ0

g1. (15)

For each column in the output stitch we then take the max of the
gain estimates for the left eye and right eye and divide the values
in the column by this value. This favors making the stitch darker
rather than lighter and ensures that we never blow out any content
that isn’t blown out in the input videos. While this approach is not

(a)

(b)

(c)

Figure 13: A scene containing significant exposure variation, with
the top half of each image cropped from the left eye’s panorama
and the bottom half cropped from the right eye’s. (a) No exposure
correction - the left edge of the image is hard to fuse due to exposure
differences. (b) Exposure correction applied and resulting HDR
image clamped to 8 bits - the rink is blown out. (c) Exposure
correction followed by tone mapping to match input exposures.

stereo consistent (nearby objects will appear in different columns
and therefore have different gains applied) the variation this causes
is small enough to not cause problems when fusing. Figure 13c
shows the result of applying this approach.

5.4 Projection into ODS

Given the optical flow calculated in Section 5.2 we can synthesize
an image at any point between adjacent cameras on the ring. To
generate an ODS stitch we could synthesize hundreds of intermediate
images around the ring and then use existing techniques [Peleg et al.
2001]; however this approach is very slow and it is much more
efficient to project each input pixel in the original images directly
into its position in the ODS stitch.

This direct projection into the ODS stitch can be performed very
efficiently if we make two assumptions. As we linearly interpolate
from one camera to the next:

• The heading of an ODS ray which passes through the center
of the interpolated camera varies linearly.

• The projection of a 3D point in the interpolated camera varies
linearly.

Under these two assumptions, when interpolating between two cam-
eras we just need to find the fraction of the way between the cameras
at which the ODS heading for the interpolated camera and the inter-
polated feature are equal. Concretely, when interpolating between
cameras with ODS headings θ0 and θ1 we should project a point
whose heading is θa in the first camera and θb in the second (found
through optical flow) to a heading θp in the ODS stitch where

θp =
(θ1 − θb) ∗ θ0 + (θ0 − θa) ∗ θ1

θb − θa + θ0 − θ1
. (16)

The assumptions listed earlier are good approximations unless points
come too close to the rig. Figure 14 shows the error introduced by
this approximation for points at several different depths for our rig
geometry. For points 1m from the camera, the maximum value of



this error is around 0.05◦ which corresponds to an error of 1 pixel
in our full resolution stitches (8192 pixels wide).
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Figure 14: The error introduced, for points at various distances
from the rig center, by using the approximation in Eq. 16 rather than
synthesizing intermediate views explicitly and generating an ODS
stitch from those.

5.5 Compositing

The rendering approach described in Section 5.4 generates a variable
number of splats on each pixel in the stitched video. Each input pixel
creates one splat that lands somewhere in the output as determined by
the optical flow. When compositing at the same angular resolution
as the input images, more than one splat typically lands in every
output pixel. Pixels that receive zero splats are rare and are filled by
a post process diffusion step.

We do not use elaborate splat kernels as is typical in point splat-
ting [Gross and Pfister 2007]. Instead, we project the center of each
input pixel to the output, and create bilinearly-weighted fragments
on all four neighboring output pixels, yielding four output fragments
per input pixel (per eye).

The fragments in the same output pixel have to be composited to-
gether using a method that accounts for occlusion, produces anti-
aliased edges, is spatially and temporally coherent, and visually
pleasing.

The problem of compositing surface splats has been considered
before, as in Zwicker et al.’s work [2001], but their approach pro-
duces coherent results only if the depths associated with the splats
can be very accurately determined.2 The same is true for a classic
z-buffering approach where only the splat with the smallest depth
value is shown. This problem can be partially addressed with soft
z-buffering [Pulli et al. 1997], but both hard and soft z-buffering
can also yield jagged edges due to their inability to model partial
coverage.

In our case, the depth ordering of the fragments is achieved by
sorting based on the flow vector length, which is approximately equal
to disparity. Since optical flow is based on captured content, it is
unrealistic to assume that the disparity is exact. In a video sequence,
this means that the relative ordering of fragments may change from
frame to frame, causing temporal flickering. Also, subtle changes
between neighboring pixels may cause spatial discontinuities.

To be spatially and temporally coherent, we require that the compos-
ited result should be C0-continuous with respect to disparities. I.e.
an infinitesimal change in disparity should produce an infinitesimal
change in the result. Simply averaging contributions together regard-
less of disparity isC0-continuous, but ignoring occlusion in this way

2See the accompanying video for a demonstration of coherency issues
caused by fluctuating depth/disparity and Zwicker et al.’s. method.

(a) (b) (c)

Figure 15: Compositing Methods. (a) Results by averaging all
contributions to each pixel. (b) Results using our continuous com-
positing method. (c) The difference between (a) and (b).

produces “ghosting” artifacts as can seen in Figure 15. Averaging is
suitable for combining contributions that represent the same surface,
whereas separate surfaces should be composited in disparity order
using the over-operator [Porter and Duff 1984]. As in [Zwicker et al.
2001], the problem is to group contributions into surfaces and then
combine the surfaces together using the over-operator, but while
also satisfying the requirement of continuity (e.g., avoiding hard
clustering of fragments which can lead to lack of coherence).

To achieve this goal, we use an interval-based compositing algo-
rithm, where we assign a finite disparity range to each fragment (see
Figure 16a-b). Intuitively, this turns the fragment into a volumetric
object, where the disparity range models the uncertainty over the
optical flow. In our system, we assign a constant-sized disparity
range to each fragment, though other choices are possible.

Baran et al. [2011] used a similar idea to achieve continuity for com-
positing paint strokes. In their technique well-separated fragments
are composited in depth order, whereas fragments at close depths
are composited in stroke order. Transition between the two modes
happens smoothly. What follows can be seen as an application of
this technique to surface splatting. We explain this in detail below.

Each pixel is composited by sorting the endpoints of the disparity
ranges and processing these endpoints in order of increasing dispar-
ity. This allows us to consider one homogeneous span at the time
(see Figure 16c). The color contribution that a fragment makes along
such a span is proportional to the length of the span divided by the to-
tal fragment range (denoted by constant k). The alpha-premultiplied
RGBA-color c′i of span i is computed by adding together contribu-
tions from all the fragments whose disparity range overlaps with
that span:

c′i =
di+1 − di

k

∑
j∈θi

λfj (17)

where di refers to the disparity at the beginning of span i, θi to
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Figure 16: The stages of our interval-based compositing algorithm
explained using a single pixel. (a) First, the splatting algorithm
has assigned four fragments into the pixel. (b) Next, the fragments
are expanded by applying a constant offset to both directions in
disparity space. (c) Finally, spans of constant color are created and
composited using the over-operator.

the group of fragments on span i, and fj to the RGBA-color of the
fragment j in the premultiplied format. λ is a constant multiplier
that should be set to the smallest value such that surfaces still look
solid. This parameter is needed because, as is common in surface
splatting, we cannot guarantee that the weights or alpha values of
splats assigned to a pixel construct an exact partition of unity [Gross
and Pfister 2007]. For the same reason, we must normalize the color
c′i by the alpha channel if αi exceeds one:

ci =

{
c′i/αi, if αi > 1

c′i, otherwise
(18)

Finally, the composited color for each pixel is obtained by combining
the contributions of the individual spans with an over-operator:

ccomposite = c0 over c1 over ......cn (19)

In practice all the above can be done in three stages: 1) convert
fragments to start and end points 2) sort the start and end points 3)
compute the composited color in a single sweep through the start
and end points.

For all results we set λ = 5.23 and k = 0.0055, which were
experimentally found (and must be adjusted depending on image
resolution). Tuning k allows for a balance between coherence and
faithful modeling of occlusions. A very large k yields results similar
to the averaging method, whereas a very small k corresponds to com-
bining all the input fragments with the over-operation, which lacks
coherence similar to classic z-buffering. Our setting of k is small
enough such that occlusions with well separated background and
foreground disparities are handled correctly with the over-operator,
but fragments with similar disparity are averaged. In other words,
for small peturbations of the input flow there will only be small
changes in the output, even if the ordering of the fragments changes.

6 Results

We have tested our system on a wide variety of scenes, stitching
millions of frames of content. Our results are best viewed in a
VR headset, and a selection of videos processed with our proposed
system can be found at https://goo.gl/2Of8Dm. Due to the current
limitations of internet streaming platforms, these videos cannot be
streamed at their full resolution (8192 pixels wide), so full resolution
viewing is limited to local playback. ODS still images taken from a
selection of videos are shown in Figure 18.

6.1 Failure cases

Overall we have found stitching quality to be high for the majority
of scenes, but there are some cases in which artifacts are introduced.
Figure 17 shows the main failure cases we have observed:

Objects too close: If objects come closer to the camera than the
limits described in Section 4.3 then stitching is not possible.

Thin structures: Objects which are smaller than the tile size used
in our optical flow algorithm may be assigned incorrect depths,
resulting in a “ghosting” effect in the final rendering.

Semi-transparent surfaces: Because we only estimate a single
flow value per input pixel, pixels with multiple depths (ie, transparent
surfaces) may exhibit distortion.

Flow mismatches: Challenging scenes may result in incorrect flow
fields (see Figure 17d). This can produce significant artifacts but is
very rare in practice.

We found that the impact of these errors, especially thin structures
and semi-transparent surfaces, was significantly reduced by ensuring
that results are temporally coherent. Most viewers do not notice if
small or transparent objects have been assigned incorrect depths and
are “ghosting”, but viewers are likely to notice if those same objects
are ghosting more or less over time, or switching abruptly between
depths.

A different type of failure case is very fast motion. In this case
stitching quality remains high, but at playback time, due to the
fact that we capture video at 30fps, it become very obvious that
objects are moving in discrete thirtieth of a second steps instead of
smoothly. This effect is very noticeable when viewing the video in a
VR headset although it can be alleivated by capturing and playing
back at higher framerates.

6.2 Computational cost

The stitching algorithm must handle a large amount of data. Input
is sixteen 2704 × 2028 30 FPS video streams and the output is a
single 8192 × 8192 video stream, with a 8192 × 4096 panorama
for each eye (with the left eye on top of the right). The algorithm
takes about 60 seconds per frame (where each frame consists of
16 images) on a single machine, meaning an hour of video would
take 75 days to process. To allow for timely processing we use a
large number of machines in parallel. The per-frame timings for
a representative run on 390,000 frames are shown in Table 1. The
total time per frame is about five times that of when running on a
single machine, due to the single machine being able to run some
operations in parallel and to the additional overhead necessary to
run in a distributed architecture. For example, flow must be saved
to disk between stages of the pipeline, and to reduce the amount of
disk used it must be compressed, which takes some time. Even with
this overhead, parallelizing computation over 1000 cores allows for
an hour of footage to be processed in ∼10 hours.

The majority of time is spent in optical flow computation, despite
the fact that each individual flow field takes ∼5 seconds to compute.
This is because for each frame of output, sixteen forwards and
backwards flow fields must be computed, and 25% of those flow
fields are discarded due to our use of overlapping temporal blocks
to ensure temporal smoothness. Peak memory usage occurs during
compositing and is 16GB.

Our algorithm is modular, and different flow or compositing methods
can be used. By running flow on downsampled images or replacing
compositing with a simpler scheme we can significantly reduce run
time at the expense of output quality.

https://goo.gl/2Of8Dm


Figure 18: Still stereo frames taken from several stitches, represented here as anaglyphs.
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Figure 17: Failure cases - crops from one eye of the ODS stitches.
(a) As objects get closer than the limits described in section 4.3
stitching completely breaks down, here the gorilla is ~15cm from the
camera. (b) Thin structures can be missed in the flow computation
stage which leads to ghosting on the mic stand and bow. (c) Semi-
transparent surfaces can deform as shown here. (d) In very rare
cases flow mismatches occur. Here a combination of the correct
match being occluded and repeated texture providing a good match
in the wrong location leads to a severe warp.

Operation Time (sec.)
Flow computation 183
Compositing 54
Frame IO and rectification 40
Flow compression/decompression 38
Post processing/one off setup 6
Total 321

Table 1: Mean processing time per frame, averaged over 390, 000
input frames.

7 Conclusion

We presented a VR video capture, stitching, and rendering system
that captures high quality ODS video for display in today’s VR
headsets. Our system has so far processed over 150 hours of footage
and produced videos with a total of over 20 million views.

Our contributions include a detailed analysis of distortions intro-
duced by using ODS for VR video, and showed that while vertical
parallax is introduced, it is small enough to be acceptable in practice.
We also characterized the design space of possible multi-camera
ODS rigs. Based on this analysis, we focused on one specific rig
design that optimizes the design tradeoff given cameras that are cur-
rently available off the shelf. Our stitching algorithm includes novel
optical flow and compositing algorithms that yield state-of-the-art
results with a limited run-time budget.

While the system works remarkably well, its reliance on optical flow
can cause failures in a number of situations, including very large
motions (e.g., objects significantly closer than a meter), transparency,
thin structures, and repetitive content. We expect that performance
will continue to improve due both to developments in hardware
(smaller, more closely-spaced cameras), and software (e.g., better
flow algorithms).

Having a system capable of generating large amounts of ODS video
allows for further study of this format. Specifically it would be
interesting to investigate the effects of long-term viewing of ODS
video and whether it induces fatigue. While ODS video supports
only head rotation (i.e., three degrees of freedom), we hope to see
VR video solutions in the future that additionally support head
translation, enabling full 6DOF viewing experiences. In principle,
the parallax information that we compute through optical flow could
be used to derive depthmaps and re-render the scene from any new
viewpoint. In practice, however, we have found this re-rendering
task to be much more prone to visible artifacts, as people appear
to be more sensitive to motion parallax errors than stereo parallax
errors. Capturing 6DOF VR video is a fascinating and critically
important topic for future work, and we look forward to seeing
major progress on this topic in the coming years.
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1 Coarse Tile Flow Upsampling

In the main paper we described a technique for producing a coarse
per-tile alignment between a pair of images, in which a brute-force
normalized SSD computation is used to produce a set of horizontal
and vertical displacements and a corresponding confidence of that
displacement. That is, for the set of non-overlapping 32× 32 tiles in
the image of interest we have {Ui, Vi, Ci}, where Ui, Vi, andCi are
the horizontal displacement, vertical displacement, and confidence,
respectively. From this per-tile flow/confidence field we will produce
a per-pixel flow/confidence field. To do this, we will apply a series of
heuristic operations which lower the confidence of tiles likely to have
incorrect flow estimates. From this refined per-tile alignment we
produce an upsampled per-pixel flow/confidence field {ûi, v̂i, ĉi}
via an adaptive upsampling process which attempts to best warp the
tile flow to the structure of the reference image. Each image pair’s
“forward” per-pixel flow/confidence field is then combined with that
pair’s corresponding “backward” per-pixel flow/confidence field to
model our assumption that the flow field should be symmetric. Our
resulting flow/confidence field is fed into the bilateral solver as de-
scribed in the main paper, which causes the flow to be denoised and
inpainted in low-confidence regions but preserved in high-confidence
regions. The bilateral solver is an aggressive smoothing operator
which performs global optimization across entire video sequences.
It is very effective at inpainting low-confidence regions but is not
robust to incorrect flow estimates with high confidence. Our coarse
flow refinement and upsampling procedure is therefore designed to
be very conservative when assigning high confidence to pixels. A
small number of very large confidence pixels which reliably indicate
motion, are sufficient to inpaint large regions of the image in an
edge-aware fashion.

1.1 Repeated Texture

Recall that each tile’s motion was estimated by taking the (subpixel)
argmin of an SSD image:

(Ui, Vi) ≈ argmin
u,v

Di(u, v). (1)

Simplifying the structure of Di(u, v) down to a single point ignores
a great deal of information that may be present in Di(u, v). For ex-
ample, if there is repeated texture in the other image, then there may
be many local minima inDi(u, v) which have nearly as small a SSD
as the global minimum. If this is the case we would ideally propa-
gate all of these minima, however since the filtering stage requires a
single estimate for displacement we instead reduce the confidence
for this tile. To this end, after extracting the global minimum from
Di(u, v) we extract a second minimum which is at least 32 pixels
away from (Ui, Vi) in u and v. Let di = minu,v(Di(u, v)) be the
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global minimum of Di corresponding to (Ui, Vi), and let d′i be the
value of Di at this second minimum. The tile’s confidence Ci is
updated based on the ratio between di and d′i as follows.

Ci ← Ci exp

(
−wrmin(1,max(0,

(max(εd, di)− d′ir0)2

d′i
2(r1 − r0)2

))

)
,

(2)

where wr is a weight that controls the overall effect of the term, εd
is a small value that ensures that this term still has an effect even as
d approaches zero and r0 and r1 give the range of ratios over which
this term transitions from having no effect to having full effect. We
use wr = 100, εd = 50, r0 = 0.6 and r1=0.8.

1.2 Low Variance Tiles

If the tile of the reference image being matched has very little image
texture, then the motion estimated for that tile should be assigned
a low confidence. If we were to simply compute the SSD between
non-normalized image tiles, using the determinant of the A matrix in
the confidence would naturally encourage this property. But because
our images are pre-normalized to have a mean of zero and a standard
deviation of 1, our SSD measure assumes all tiles are comparably
textured. To this end, for each tile we look at the non-normalized
tile and compute it’s variance var(T ) then update the tile confidence
using

Ci ← Ci exp

(
−max

(
0,

wv
var(T )

− εv
))

. (3)

wv is a weight which controls the strength of this term and εv is a
threshold on variance below which we consider a tile to have low
variance. We use wv = 100 and εv = 25. When calculating var(T )
pixel values in the input image range from 0 to 255.

1.3 Outlier Tiles

We observe that accurate tile flow estimates tend to have nearby tiles
with similar flow. Therefore, if none of a tile’s neighbors have a flow
which is sufficiently close to that tile’s flow, we reduce that tile’s
confidence:

Ci ← Ci exp

(
− min
j∈neigh(i)

(
(Ui − Uj)2

σ2
u

+
(Vi − Vj)2

σ2
v

))
(4)

Where neigh(i) are the 4-connected neighbors of tile i and σu and
σv control the scale of the expected variation between a tile’s flow
and its neighbor. We set σu = 16 and σv = 1, thereby allowing for
large neighboring variation in horizontal motion between neighbors
(ie, large depth discontinuities) while discouraging vertical motion.
By taking the min over each neighbor, a tile’s confidence can remain
high provided there is at least one neighbor with a similar flow.

1.4 Image Aware Upsampling

Mapping a per-tile flow/confidence field to a per-pixel field requires
an upsampling step. Straightforward choices for this upsampling



operation can have a large negative impact on the quality of the
output. For example, using nearest-neighbor upsampling produces
a blocky flow field, which also does not respect the structure of
the reference image. Using bilinear or bicubic upsampling often
produces egregious oversmoothing artifacts, as interpolation incor-
rectly assumes that a pixel between four tiles has a motion which
is some average of those four tile’s motions, when the pixel’s mo-
tion is likely best modeled as being similar to one or more tiles but
not similar to the average of all tiles. We therefore use a modified
nearest-neighbor upsampling procedure: we look at the motions of
the four tiles which “bound” each pixel and assign each pixel the
motion which minimizes the error between a 3× 3 window centered
on that pixel and the corresponding window in the alternate image
indicated by that tile’s motion.

ti = argmin
t∈bound(x,y)

1∑
a=−1

1∑
b=−1

∣∣I ′0 (x+ a, y + b)− I ′1 (x+ a+ Ut, y + b+ Vt)
∣∣

Where bound(x, y) is the list of four tiles which surround pixel i,
ti is the tile index which we identify as producing the minimum
residual error for pixel i, and I ′0 and I ′1 are the normalized grayscale
images for tile-matching as defined in the main paper. With this we
can produce a per-pixel flow/confidence field, where the per-pixel
flow is simply the per-tile flow using these tile assignments, and
the per-pixel confidence is the per-tile confidence attenuated by the
per-pixel image residual.

ûi = Uti v̂i = Vti (5)

ĉi = Cti exp

(
−max(0,|I′0(x,y)−I′1(x+ûi,y+v̂i)|−εup)

σup

)
Where σup = 0.5 and εup = 0.2. Updating the per-pixel confidence
in this way means that pixels which are not well explained by any
nearby tile have very low confidence, and will therefore be inpainted
during optimization.

1.5 Flow Asymmetry

Now that we have our per-pixel “forward” and “backward” flow
fields for each image pair, we can reason about the symmetry or
asymmetry these flow fields. If the estimated flow from pixel i
in image 0 maps to pixel j in image 1, we would also expect the
estimated flow from pixel j in image 1 to map back to pixel i in
image 0. If this property does not hold, then the forward flow
estimate at pixel i should not be trusted, and its confidence will
be decreased accordingly. In a small abuse of notation, here let
ûf (x, y) = ui where pixel i is located at position (x, y) in our
“forward” flow field, and let ûb(x, y) = ui for our “backward” flow
field (with v̂f , v̂b defined similarly).

ai = (ûf (x, y) + ûb(x+ ûf (x, y), y + v̂f (x, y)))
2

+ (v̂f (x, y) + v̂b(x+ ûf (x, y), y + v̂f (x, y)))
2

ĉi ← exp

(
− ai
σ2
sym

)
ĉi (6)

Where σsym = 4. The asymmetry measure ai is squared Euclidean
distance between the flow at pixel i and the the negative backward
flow at the pixel in the alternate image that i maps to according
to its estimated flow. This same update can also be applied to the
“backward” flow.


