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Abstract

We present a method to estimate the quantile of a variable subject to missingness,
under the missing at random assumption. Our proposed estimator is locally efficient,√
n-consistent, asymptotically normal, and doubly robust, under regularity conditions.

We use Monte Carlo simulation to compare our proposal to the one-step and inverse-
probability weighted estimators. Our estimator is superior to both competitors, with
a mean squared error up to 8 times smaller than the one-step estimator, and up to 2.5
times smaller than an inverse probability weighted estimator. We develop extensions for
estimating the causal effect of treatment on a population quantile among the treated.
Our methods are motivated by an application with a heavy tailed continuous outcome.
In this situation, the efficiency bound for estimating the effect on the mean is often
large or infinite, ruling out

√
n-consistent inference and reducing the power for testing

hypothesis of no treatment effect. Using quantiles (e.g., the median) may yield more
accurate measures of the treatment effect, along with more powerful hypothesis tests.
In our application, the proposed estimator of the effect on the median yields hypothesis
tests of no treatment effect up to two times more powerful, and its variance is up to
four times smaller than the variance of its mean counterpart.

1 Introduction

Estimation of quantiles in missing data models is a statistical problem with applications
to a variety of research areas. For example, policy makers may be interested in evaluating
the effect of an educational program on the tails of the skill distribution. In this case
quantile treatment effects may be useful since they capture intervention effects that are
heterogeneous across the outcome distribution. Quantiles may also be useful in economics
research to compute inequality indicators such as the Gini coefficient, and may be used
in adaptive clinical trials to estimate stopping rules in interim analyses since quantile
estimation does not require completion of the study.

Our methods are motivated by an application to estimation of the causal effect of
treatment on an outcome whose distribution exhibits heavy tails. The data we consider

1



arises as part of various sales and services programs targeted to introduce new features
to users of the AdWords advertisement platform at Google Inc. A important question for
decision makers is thus to quantify the causal effect of these programs on the advertisers’
spend through AdWords. The outcome we consider exhibits heavy tails, as there is a small
but non-trivial number of advertisers who spend large quantities through on AdWords.
Heavy tailed distributions are often characterized by large or infinite variance, which in
turn yields a large or infinite efficiency bound for estimating the effect of treatment on
the mean. As a consequence, the variance of all regular estimators is also large, possibly
precluding

√
n-consistent inference and statistical significance at most plausible sample

sizes.
As an alternative to estimation of the effect on the mean, in this document we present

a methodology to estimate the causal effect on the q-th quantile. Our estimator is locally
efficient in the non-parametric model and asymptotically linear, under certain regularity
conditions. In our application, estimating a collection of quantiles of interest (e.g., 25%,
50% and 75%) allows us to make statements about treatment effects, even though we would
have difficulty making similar statements for the mean, due to the large variability caused
by the heavy tailed distribution.

Our goal is to estimate an unconditional quantile. An alternative goal, not considered
here, is to estimate an outcome quantile conditional on the values of certain covariates.
Though we do not estimate conditional quantiles, we use covariate information in order to
correctly identify the unconditional quantiles under the missing at random assumption.

In order to assess the performance of the proposed estimator in our real data appli-
cation, we use Monte Carlo simulations based on a real dataset to approximate the bias,
variance, mean squared error, and coverage probability of the confidence interval estima-
tors for our application. Our results corroborate the theoretical property that the proposed
estimator has the best performance across various modeling scenarios in comparison to the
available alternatives of one-step and inverse-probability weighted estimation. We also use
the simulation study to demonstrate that estimation of the effect on the median has a
smaller variance and improved power compared to the effect on the mean. In the worst
case scenario, a hypothesis test for a zero effect using the effect on the mean as a test
statistic yields a power of 0.16, whereas its mean counterpart yields a power of 0.84.

Various proposals exist that address the problem we consider. None of them, however,
has the properties achieved by our estimator, which are outlined in the abstract. Wang and
Qin (2010) consider pointwise estimation of the distribution function using the augmented
inverse probability weighted estimator applied to an indicator function, where the miss-
ingness probabilities and observed outcome distribution functions are estimated via kernel
regression. They propose to use the distribution function to estimate the relevant quantiles
using a plug-in estimator (i.e., the inverse of the distribution function). Their approach
suffers from various flaws stemming from the fact that the estimated distribution function
may be ill-defined: direct inverse probability weighting may generate estimates outside
[0, 1], and pointwise estimation may yield a non-monotonic function. In addition, their
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approach may not be used in high dimensions since kernel estimators suffer from the curse
of dimensionality. Zhao et al. (2013) propose similar estimators for non-ignorable miss-
ing data, under the assumption that the missingness mechanism is linked to the outcome
through a parametric model that can be estimated from external data sources. Liu et al.
(2011), Cheng and Chu (1996), and Hu et al. (2011) consider estimators that yield esti-
mated distribution functions in the parameter space, relying either on kernel estimators for
the outcome distribution function, or knowledge of the true missingness probabilities. Firpo
(2007) proposes to estimate the quantiles by minimizing an inverse probability weighted
check loss function. Their estimator achieves non-parametric consistency by means of a
propensity score estimated as a logistic power series whose degree increases with sample
size. Melly (2006), Frölich and Melly (2013), and Chernozhukov et al. (2013) consider es-
timation of the quantiles under a linear parametric model for the distribution and quantile
functions, respectively. Unfortunately their parametric assumptions are seldom realistic
and generally yield inconsistent and irregular estimators.

Our paper is organized as follows. In Section 2 we introduce the problem in terms
of a closely related one: estimating the distribution function of an outcome missing at
random. In Section 3 we present our proposed estimators for the quantiles of a variable
missing at random as well as the effect of treatment on the quantiles, together with their
asymptotic normality results and confidence interval estimators. In Section 4 we present a
Monte Carlo simulation study based on a real dataset, where we illustrate the performance
of our estimator and show the benefits of using the median as a location parameter for the
counterfactual distribution in the presence of heavy tails. Finally, in Section 5, we discuss
some concluding remarks.

2 Notation and Estimation Problem

Let Y denote an outcome observed only when a missingness indicator M equals one, and let
X denote a set of observed covariates satisfying Y |= M | X. We use P0 to denote the true
joint distribution of the observed data Z = (X,M,MY ). We use the word model to refer
to a set of probability distributions, and the expression nonparametric model to refer to the
set of all distributions having a continuous density with respect to a dominating measure
of interest. The word estimator is used to refer to a particular procedure or method for
obtaining estimates of P0 or functionals of it. We assume P0 is in the nonparametric
model M, and use P to denote a general P ∈ M. For a function h(z), we denote Ph =∫
hdP . For simplicity in the presentation we assume that X is finitely supported but the

results generalize to infinite support by replacing the counting measure by an appropriate
measure whenever necessary. Under the assumption that P0(M = 1 | X = x) > 0 almost
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everywhere, the distribution F0(y) ≡ Pr(Y ≤ y) is identified in terms of P0 as

F0(y) =
∑
x

Pr0(Y ≤ y | X = x)Pr0(X = x)

=
∑
x

Pr0(Y ≤ y |M = 1, X = x)Pr0(X = x)

=
∑
x

PY,0(y | 1, x)pX,0(x),

where we have denoted PY (y | 1, x) ≡ Pr(Y ≤ y |M = 1, X = x) and pX(x) ≡ Pr(X = x).
We use f to denote the density corresponding to F and e(x) to denote Pr(M = 1 | X = x),
following the convention in the propensity score literature. Consider the q-th quantile of
the outcome distribution:

χ = F−1(q),

where we define the generalized inverse as F−1(q) = inf{y : F (y) ≥ q}. We use the notation
χ(P ) to refer to the functional that maps an observed distribution P into a real number.
Given a consistent estimator P̂ of P0, the plug-in estimator χ(P̂ ) is typically consistent, but
it may be an inefficient and

√
n-inconsistent estimator. To remedy this, various methods

exist in the semi-parametric statistics literature. The analysis of the asymptotic properties
of such methods often relies on so-called von Mises expansions (von Mises, 1947) and on the
theory of asymptotic lower bounds for estimation of regular parameters in semi=parametric
models (see, e.g., Bickel et al., 1997; Newey, 1990).

The efficient influence function D(Z) is one of the key concepts introduced by semi-
parametric efficient estimation theory. This function characterizes all efficient, asymptoti-
cally linear estimators χn. Specifically, the following holds for any such estimator (see e.g.,
Bickel et al., 1997):

√
n(χn − χ) =

1√
n

n∑
i=1

D(Zi) + oP (1/
√
n). (1)

This property of an estimator is very desirable since it allows the use of the central limit
theorem to construct asymptotically valid confidence intervals and hypothesis tests. For
our target of inference χ, the efficient influence function in the non-parametric models given
below in Lemma 1.

Lemma 1 (Efficient Influence Function). The efficient influence function of χ at P in the
non-parametric model is equal to

D(Z) = − 1

fY (χ)

[
M

e(X)

{
I(−∞,χ](Y )− PY (χ | 1, X)

}
+ PY (χ | 1, X)− q

]
, (2)

where we have omitted the dependence of D on P . We add it explicitly whenever the
omission may lead to confusion.
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This lemma is a direct consequence of the functional delta method applied to the non-
parametric estimator of F0(y), and the Hadamard derivative of the quantile functional
given in Lemma 21.4 of van der Vaart (2000). Note that if there is no missingness, then
P (M = 1) = 1, and D(Z) reduces to

D(Z) = − 1

fY (χ)
(I(−∞,χ](Y )− q).

Then (1) is the standard asymptotic linearity result for the sample median (see, e.g.,
corollary 21.5 of van der Vaart, 2000).

An equally important concept for the analysis of the estimators that we consider is the
von Mises expansion of the parameter functional given in Lemma 2 below.

Lemma 2 (von Mises expansion). The quantile function χ(P ) satisfies

χ(P )− χ(P0) = −P0D(P ) +R2(P, P0), (3)

where

R2(P, P0) =
1

f(χ)
P0

(e0
e
− 1
)

(h0,χ − hχ) +O(χ0 − χ)2.

Here we have denoted χ = χ(P ), χ0 = χ(P0), h0,χ(x) = P0(Y ≤ χ | M = 1, X = x), and
hχ(x) = P (Y ≤ χ |M = 1, X = x). D is defined in (2).

Proof. Consider a Taylor expansion of the function F0(y) around χ = χ(P ) as follows:

F0(y) = F0(χ) + f0(χ)(y − χ) +O(y − χ)2.

Then

χ− χ0 = −q − F0(χ)

f0(χ)
+O(χ− χ0)

2,

for χ0 = χ(P0). Substitute this in the expression

R2(P, P0) = P0D(P ) + χ(P )− χ(P0),

to find

R2(P, P0) =
1

f(χ)
P0

{e0
e

(h0,χ − hχ) + hχ − q
}
− q − F0(χ)

f0(χ)
+O(χ− χ0)

2

=
1

f(χ)
P0

(e0
e
− 1
)

(h0,χ − hχ) + P0

(
1

f(χ)
− 1

f(χ0)

)
(q − h0,χ) +O(χ− χ0)

2.

Because q = P0h0,χ0 , the term in the middle is O(χ− χ0)
2, and the result follows.
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This expansion suggests a natural correction to the plug-in estimator:

χn,OS = χ(P̂ ) + PnD(P̂ ), (4)

often referred to as the one-step estimator. Using results from empirical process theory,
and under the assumption that R2(P̂ , P0) = oP (1/

√
n), it may be proved that this estima-

tor satisfies (1). This estimator was first proposed for a general parameter χ(P ) by Levit
(1976). Estimator (4) may have sub-optimal performance in finite samples because compu-
tation of D involves inverse probability weighting, and thus may yield unstable estimates.
Alternatively, in the next section we propose to use an estimator χn = χ(Pn) for a suitable
estimator Pn satisfying

1

n

n∑
i=1

Dn(Zi) = oP (1/
√
n), (5)

where Dn denotes D(Pn). Using M -estimation and empirical process theory we derive the
conditions under which this estimator satisfies (1). We present the proposed estimation
algorithm along with theoretical results establishing its asymptotic properties.

3 Targeted Minimum Loss Based Estimator

The proposed estimation algorithm is given by the following iterative procedure, and con-
stitutes an application of the general targeted minimum loss based estimator (TMLE)
developed by van der Laan and Rubin (2006).

1. Initialize. Obtain initial estimates en and PY,n of e0 and PY,0. We discuss possible
options to estimate these quantities below.

2. Compute χn. For the current estimate PY,n, compute

Fn(y) =
1

n

n∑
i=1

PY,n(y | 1, Xi),

and χn = F−1n (q).

3. Update PY,n. Let pY,n denote the density associated to PY,n, and consider the expo-
nential model

pY,ε(y | 1, x) = c(ε, pY,n) exp{εDY,n(z)}pY,n(y | 1, x),

where c(ε, pY,n) is a normalizing constant and

DY,n(z) =
1

en(x)
{I(−∞,χn](y)− PY,n(y | 1, x)}
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is the score of the model. Estimate ε as

ε̂ = arg max
ε

n∑
i=1

Mi log pY,ε(Yi | 1, Xi).

Note that this MLE solves the score equation

n∑
i=1

Mi

en(Xi)
{I(−∞,χn](Yi)− PY,ε̂(Yi | 1, Xi)} = 0, (6)

which is key to attaining (5). The updated estimator of pY is given by

puY,n(y | 1, x) = p̂Y,ε̂(y | 1, x).

4. Iterate. Let pY,n = puY,n and iterate steps 2-3 until convergence, i.e., until ε̂ ≈ 0.

The TMLE of χ0 = χ(P0) is denoted by χn,TMLE and is defined as χn in the last iteration.
We also use P ?n to denote the estimate of P0 obtained in the last iteration. In the remaining
of this section we discuss the asymptotic properties of the resulting estimator.

Note that, by construction,

1

n

n∑
i=1

P ?Y,n(χn,TMLE | 1, Xi) = q.

This, together with (6) shows that (5) follows. Empirical process theory may now be used
to prove (1), under consistency of the initial estimators of e and PY . Specifically, under
the assumptions:

i) D(Pn) converges to D(P0) in L2(P0) norm,

ii) there exists a Donsker class H so that D(Pn) ∈ H with probability tending to one,

Theorem 19.24 of van der Vaart (2000) and the von Mises expansion of Lemma 2 show
that

χn − χ =
1

n

n∑
i=1

D(P0) +R2(P
?
n , P0),

where R2 is defined in the lemma. Under the assumption that R2(P
?
n , P0) = oP (1/

√
n),

asymptotic linearity follows. This asymptotic linearity result together with the central limit
theorem may be used to construct confidence intervals and hypothesis tests. In particular,
we have

√
n(χn,TMLE−χ0) has asymptotic distribution N(0, σ2), where σ2 = V (D(P0)(Z)).

This variance may be estimated using a plug-in estimator.
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3.1 Discussion of Consistency Assumptions

The most important assumption is perhaps the consistency assumption that R2(P
?
n , P0) =

oP (1/
√
n), which may be broken down into two assumptions:

A.1 R
(1)
2 (P ?n , P0) =

√
n 1
f(χ)P0

(
e0
e − 1

)
(h0,χ − hχ) = oP (1)

A.2
√
n(χTMLE

n − χ0)
2 = oP (1)

Assumption A.1 is standard in the analysis of doubly robust estimators. Using the Cauchy-

Schwarz inequality repeatedly, |R(1)
2 (P, P0)| may be bounded as

|R(1)
2 (P̂ , P0)| ≤ ||1/en||∞ ||en − e0||P0 ||hn,χTMLE

n
− h0,χTMLE

n
||P0 ,

where ||f ||2P :=
∫
f2(o)dP (o), and ||f ||∞ := sup{f(o) : o ∈ O}. A set of sufficient condi-

tions for A.1 to hold is, for example, ||en − e0||P0 = OP (1/
√
n) (e.g., e0 is estimated in a

correctly specified parametric model) and ||hn,χTMLE
n
− h0,χTMLE

n
||P0 = oP (1).

Assumption A.2 is stronger and suggests that consistency of the initial estimator PY,n
at rate n−1/4 or faster is required, thus ruling out double robustness. However, this require-
ment may be avoided by making use of the fact that the propensity score is a balancing
score (Rosenbaum and Rubin, 1983). Specifically, if only en may be assumed consistent
at rate n−1/4 or faster, then A.2 may be arranged by making sure that the initial estima-
tor PY,n includes a non-parametric component adjusting for en. For example, if PY,n is a
kernel-based estimator of P0(Y ≤ y | M = 1, en(X)) using the optimal bandwidth, then
the convergence rate of χTMLE

n is at least n−2/5, which would satisfy A.2.
The consistency rate of the initial estimators en and PY,n determines the rate at which

R2(P
?
n , P0) convergence to zero, and thus determine the consistency and asymptotic linear-

ity of χn,TMLE. When the number of covariates is large, the curse of dimensionality precludes
the use of non-parametric estimators. In those scenarios, we advocate for the use flexible,

data adaptive estimators to fit these quantities, so that the assumption R2(P
?
n , P0)

P−→ 0
remains plausible. One such an estimator may be constructed by proposing a library of
candidate algorithms and selecting a convex combination of them, where the weights are
chosen to minimize the cross-validated risk. This algorithm is discussed by van der Laan
et al. (2007), and is implemented in the R library SuperLearner.

3.2 Estimating the Causal Effect on the Treated

In this subsection we discuss estimation of the causal effect of treatment on an outcome
quantile among the treated. Specifically, let X denote a set of pre-treatment variables, let
T denote a binary variable indicating the treatment group, and let Y denote the outcome
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of interest. We adopt the structural causal model (Pearl, 2009)

X = gX(UX)

T = gT (X,UT )

Y = gY (T,X,UY ),

where gX , gT , and gY are unknown deterministic functions, and UX , UT , and UY represent
exogenous unmeasured variables with unrestricted distributions. As in the previous section,
we denote the true distribution of the observed data with P0. We define the potential
outcomes Yt := gY (t,X,UY ) : t ∈ {0, 1} as the outcome that would have been observed
if, contrary to the fact, P (T = t) = 1. We assume that (i) T |= Y1 | X, and that (ii)
e(x) = P (T = 1 | X = x) < 1 almost everywhere. Assumption (i) is often referred to as
the no unmeasured confounders or ignorability assumption, and states that all factors that
are simultaneous causes of T and Y must be measured. Assumption (ii) is referred to as
the positivity assumption, and ensures that all units have a non-zero chance of falling in
the control arm T = 0 so that there is enough experimentation. Let F (t)(y) := P (Yt ≤
y | T = 1) denote the distribution function of Yt conditional on T = 1, then our target
estimand is given by χ = χ(1) − χ(0), where

χ(t) = inf{y : F (t)(y) ≥ q}.

That is, χ quantifies the causal effect of setting T = 1 vs T = 0 on the q-th quantile,
restricted to treated units. Note that Y1 = Y on the event T = 1, so that F (1)(y) = P (Y ≤
y | T = 1) and χ(1) may be optimally estimated by the sample quantile of Y among treated

units, which we denote with χ
(1)
n . Thus, we focus on estimation of χ(0). Under assumptions

(i) and (ii) above, the distribution function F (0) identified as

F (0)(y) =
∑
x

PY (y | 0, x)pX(x | 1),

where PY (y | 0, x) := Pr(Y ≤ y | T = 0, X = x) and pX(x | 1) := Pr(X = x | T = 1).
The efficient influence function for estimation of χ(0) in the non-parametric model may be
found using similar techniques as in the previous section as

D(0)(Z) = − 1

f (0)(χ(0))

[
1− T
E(T )

e(X)

1− e(X)

{
I(−∞,χ(0)](Y )− PY (χ(0) | 0, X)

}
+

T

E(T )
{PY (χ(0) | 0, X)− q}

]
, (7)

where f (0) is the probability density function associated to F (0). An expansion similar to
that of Lemma 3 may be shown to hold, with a corresponding remainder term R2 containing
only second order terms.

The estimation algorithm involves the following steps:
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1. Initialize. Obtain initial estimates en and PY,n of e0 and PY,0.

2. Compute χ
(1)
n . For the current estimate PY,n, compute

F (0)
n (y) =

1∑
i Ti

n∑
i=1

TiPY,n(y | 0, Xi),

and χ
(0)
n = inf{y : F

(0)
n (y) ≥ q}.

3. Update PY,n. Let pY,n denote the density associated to PY,n, and consider the expo-
nential model pY,ε(y | 0, x) = c(ε, pY,n) exp{εDY,n(z)}pY,n(y | 0, x), where c(ε, p̂Y ) is
a normalizing constant and

D̂Y,n(z) =
en(X)

1− en(x)
{I

(−∞,χ(0)
n ]

(y)− PY,n(y | 0, x)}

is the score of the model. Estimate ε as ε̂ = arg maxε
∑n

i=1(1−Ti) log pY,ε(Yi | 0, Xi).
The updated estimator of pY is given by puY,n(y | 0, x) = p̂Y,ε̂(y | 0, x).

4. Iterate. Let p̂Y,n = p̂uY,n and iterate steps 2-3 until convergence, i.e., until ε̂ ≈ 0.

The TMLE of χ
(0)
0 is denoted by χ

(0)
n,TMLE and is defined as the value of χ

(0)
n in the last

iteration. The estimator of χ0 is then defined as χn,TMLE = χ
(1)
n − χ(0)

n,TMLE. Arguments in
the previous section may be used to show that, under analogous consistency and regularity
conditions on the initial estimators PY,n and en, the estimator satisfies

√
n(χn,TMLE − χ) =

1√
n

n∑
i=1

D(Zi) + oP (1),

with D(Z) = D(1)(Z)−D(0)(Z), where

D(1)(Z) =
1

fY (χ(1) | T = 1)

T

E(T )
{I(−∞,χ(1)](Y )− q}

is the influence function of the empirical quantile among the treated χ
(1)
n . Thus, χn,TMLE has

asymptotic distribution N(χ0, σ
2/n), where σ2 = V (D(P0)(Z)). The latter variance may

be estimated using a plug-in estimator to construct confidence intervals and hypothesis
tests.

4 Simulation Studies

In this section we illustrate the properties of the proposed estimation algorithm using a
real data set. We compare the performance of our proposed estimator to the performance
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of the one-step estimator in expression (4), and the inverse-probability weighted estimator
proposed by Firpo (2007) defined as the minimum of

f(χ(0)) =
n∑
i=1

(1− Ti)en(Xi)

1− en(Xi)
(Yi − χ(0))(q − I(−∞,χ(0)](Yi)),

which we denote χ
(0)
n,IPW, and compute using the quantreg R package (Koenker, 2013). We

estimate the effect on the 25%, 50%, and 75% quantiles.
We also compare the performance of our proposed estimator χn,TMLE for the effect on the

median among the treated versus the performance of an analogous estimator of the effect on
the mean among the treated in terms of mean squared error and power for testing the null
hypothesis of no treatment effect. As a measure of the causal effect, we use the effect on
the quantiles among the treated, which is defined in the previous section. We use data from
one of the AdWords programs at Google. Treatment consists of proactive consultations by
sales representatives that help identify advertisers’ business goals and suggest changes to
improve performance. Since advertisers do not always adopt the proposed changes, a unit
is considered treated if it is offered and accepts treatment. As a result, treatment is not
randomized and we must use methods for observational data to assess the effect of such
programs. We have standardized the outcome to a variable with mean 10 and standard
deviation 5 before carrying out our analyses. These values are selected arbitrarily and
do not reflect any particular feature of the data. Figure 1 shows the distribution of the
logarithm of the standardized outcome, which can be seen to exhibit heavy tails and a
large variability, even in the logarithmic scale. The original dataset consists of 40,303 units,
with 29,362 being treated. To adjust for confounders of the relation between treatment
and spend through AdWords, we use 93 variables containing baseline characteristics of the
customer as well as activity on their AdWords account.

4.1 Estimator Performance

In order to compare the performance of the estimators, we simulated 1,000 datasets from
the observed data as follows. First, we fit a logistic regression to estimate the probability
of treatment conditional on the covariates. Second, we fit a linear quantile regression to
the outcome separately for the control and the treated group, for 500 quantiles, using
the quantreg R package (Koenker, 2013). We then generate a sample by first drawing
covariates from the empirical distribution (i.e., sampling with replacement), and then using
the parametric fits to draw a treatment indicator and an outcome. First, for each generated
dataset, we estimated the effect of treatment on the 25%, 50%, and 75% quantiles. We
approximate the bias, variance, mean squared error, coverage of a 95% Gaussian-based
confidence interval using empirical means across the 1,000 simulated datasets. We compare
the performance of the estimators in 3 scenarios using different initial estimators for e and
PY :
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log(Y)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 1: Histogram of the natural logarithm of the standardized outcome.

Scenario 1: Correctly specified parametrization for e and PY .

Scenario 2: Incorrectly specified parametrization for e but correctly specified for PY .

Scenario 3: Correctly specified parametrization for e but incorrectly specified for PY . Ac-
cording to the discussion about double robustness in Section 3.1, PY is estimated
using a correctly specified parametrization for the distribution of the outcome con-
ditional only on the propensity score.

If both parametrizations are misspecified, all estimators are expected to be inconsistent,
with unknown asymptotic bias depending on the true data generating mechanism and the
limit of the initial estimators en and PY,n. As a consequence, simulation results from that
scenario would be of little practical guidance and the scenario is not considered simulations.
Misspecification of the above parametrizations was performed by completely ignoring all
covariates and using marginal distributions as estimators. This type of misspecification is
highly unlikely to occur in practice and provides a worst case scenario. Estimation of P̂Y
is carried out by fitting a parametric quantile regression algorithm on m equally spaced
quantiles using the R package quantreg. Then the initial density estimate p̂Y has point
mass 1/m at each of the initial quantiles, and the effect of the MLE in step 3 of Section 3
is to update the probability mass of each point. We simulated data using four sample
sizes: 5,000, 10,000, 20,000 and 40,000. We compare the estimator performance in terms
of percent bias, variance, MSE, and coverage probability of a 95% normal-based confidence
interval. The results are presented in Table 1.
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Results First of all, we note that the TMLE outperforms the one-step estimator in almost
all situations, particularly for smaller sample sizes. We conjecture this is due to the fact that
the TMLE is a plug-in estimator that falls within bounds of the observed outcome space
and therefore has enhanced finite sample properties, compared to the inverse-probability
weighting involved in the one-step estimator. In the worst case scenario, for q = 0.25 and
n = 5, 000, the TMLE is 10 times more efficient than the one-step estimator. As sample
size increases, the performance of both estimators seems to be more similar.

q Sc. n
Rel. MSE % Bias Rel. Var. Cov. Prob.

IPW OS TMLE IPW OS TMLE IPW OS TMLE IPW OS TMLE

0.25

1

5,000 1.77 10.03 1.13 -3.24 9.89 7.28 1.76 9.91 1.06 0.95 0.95 0.95
10,000 1.79 2.09 0.96 -1.20 3.11 2.74 1.79 2.07 0.94 0.97 0.96 0.96
20,000 1.69 1.05 0.99 -1.37 1.90 1.23 1.68 1.03 0.98 0.96 0.94 0.95
40,000 1.70 0.98 0.89 -0.89 1.01 0.17 1.69 0.97 0.89 0.95 0.95 0.96

2

5,000 – 1.02 0.79 – 10.32 4.89 – 0.89 0.77 – 0.95 0.97
10,000 – 1.00 0.78 – 5.89 1.90 – 0.92 0.77 – 0.94 0.97
20,000 – 0.96 0.72 – 3.94 0.93 – 0.88 0.72 – 0.95 0.98
40,000 – 0.97 0.76 – 2.63 0.53 – 0.90 0.76 – 0.95 0.97

3

5,000 1.77 2.29 1.93 -3.24 -5.23 -5.14 1.76 2.26 1.89 0.95 0.98 0.98
10,000 1.79 2.21 1.92 -1.20 -4.56 -3.40 1.79 2.16 1.89 0.97 0.99 0.99
20,000 1.69 1.83 1.78 -1.37 -3.18 -1.86 1.68 1.78 1.76 0.96 0.98 0.98
40,000 1.70 1.70 1.57 -0.89 -2.83 -0.85 1.69 1.62 1.56 0.95 0.98 0.98

0.5

1

5,000 2.52 2.30 1.18 -3.77 0.08 2.18 2.50 2.30 1.17 0.95 0.94 0.93
10,000 2.18 3.25 1.16 -1.75 0.97 0.79 2.17 3.25 1.16 0.94 0.93 0.93
20,000 2.00 0.98 0.98 -0.89 0.64 0.68 2.00 0.98 0.97 0.95 0.94 0.94
40,000 2.03 0.98 0.95 0.19 0.70 0.49 2.03 0.97 0.95 0.96 0.95 0.94

2

5,000 – 0.81 0.80 – -0.75 -1.19 – 0.81 0.80 – 0.95 0.95
10,000 – 0.91 0.85 – 0.60 -0.06 – 0.91 0.85 – 0.94 0.95
20,000 – 0.80 0.80 – 0.02 -0.32 – 0.80 0.80 – 0.95 0.95
40,000 – 0.83 0.80 – 0.39 0.23 – 0.83 0.80 – 0.95 0.95

3

5,000 2.52 3.25 2.76 -3.77 -6.34 -7.99 2.50 3.20 2.67 0.95 0.98 0.98
10,000 2.18 2.44 2.28 -1.75 -3.77 -4.20 2.17 2.41 2.24 0.94 0.97 0.97
20,000 2.00 2.01 1.99 -0.89 -1.35 -1.16 2.00 2.00 1.99 0.95 0.98 0.98
40,000 2.03 2.05 2.03 0.19 -1.54 -1.00 2.03 2.02 2.02 0.96 0.98 0.99

0.75

1

5,000 3.23 1.75 1.58 -2.26 -6.78 -1.51 3.23 1.70 1.58 0.95 0.93 0.86
10,000 2.89 1.85 1.32 -0.27 -2.64 -0.56 2.89 1.84 1.32 0.94 0.94 0.91
20,000 3.01 1.27 1.29 -2.07 -1.57 -0.19 3.00 1.26 1.29 0.95 0.93 0.91
40,000 2.99 1.01 1.19 -0.44 -0.55 -0.14 2.99 1.01 1.19 0.96 0.93 0.90

2

5,000 – 0.93 1.08 – -11.46 -8.58 – 0.80 1.00 – 0.91 0.89
10,000 – 0.93 1.09 – -5.55 -3.93 – 0.87 1.06 – 0.92 0.88
20,000 – 0.89 1.03 – -2.22 -0.94 – 0.86 1.03 – 0.91 0.90
40,000 – 0.89 1.04 – -1.20 -0.75 – 0.88 1.03 – 0.92 0.89

3

5,000 3.23 3.38 3.61 -2.26 7.88 -14.52 3.23 3.32 3.39 0.95 0.98 0.96
10,000 2.89 2.69 2.95 -0.27 9.48 -6.40 2.89 2.50 2.86 0.94 0.97 0.97
20,000 3.01 2.90 3.07 -2.07 9.08 -5.24 3.00 2.56 2.96 0.95 0.96 0.96
40,000 2.99 3.48 2.94 -0.44 10.63 -2.26 2.99 2.55 2.90 0.96 0.94 0.96

Table 1: Simulation results for different scenarios for the initial estimators (Sc.) and sample
sizes (n). % Bias is the bias relative to the true parameter value. Rel. Var. and Rel. MSE
are the variance and MSE scaled by n relative to the non-parametric efficiency bound,
respectively. Cov. Prob. is the coverage probability of a 95% confidence interval.
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When the parametrizations for the initial estimators are correctly specified but the
propensity score is incorrectly estimated by the sample proportion of treated units (scenario
2), the TMLE and OS estimators are sometimes super-efficient, having a relative MSE that
is smaller than the efficiency bound. This is a particularity of this dataset and the initial
estimators used, and should not be expected to hold in general. This super-efficiency arises
because the misspecification of the treatment mechanism as the sample proportion makes
the TMLE and one-step estimators asymptotically equivalent to the MLE in a correctly
specified parametric model, which is often a more efficient estimator, though not doubly
robust. Another possible explanation is that the asymptotic properties expected for the
estimators have not yet taken effect for the finite sample sizes we analyzed, but would
be observed in larger sample sizes not considered here for computational constraints. In
any case, theoretical results show that this is not to be expected uniformly across data
generating mechanisms and different estimators.

The bias of the IPW estimator when the propensity score is incorrectly specified (sce-
nario 2) was always larger then 50% and often larger than 100%, therefore results for that
scenario are not presented. This is expected since this estimator is only consistent under
consistent estimation of the propensity score. When the outcome estimator is incorrect
(scenario 3), the IPW has similar performance to the OS estimator and the TMLE. This
is also expected since in this case the latter estimators are expected to behave asymptoti-
cally like the IPW. However, the efficiency gains obtained by using an outcome regression
(scenario 1) are evident, with a mean square error up to 2.5 times smaller for the TMLE.

% Bias
√
n×MSE Power

Scenario n Mean Median Mean Median Mean Median

1

5,000 -3.541 2.178 5.202 2.621 0.649 0.944
10,000 -4.082 0.787 4.750 2.605 0.894 0.999
20,000 -4.283 0.683 5.302 2.387 0.982 1.000
40,000 -4.566 0.490 5.843 2.355 0.995 1.000

2

5,000 -1.601 -1.186 4.503 2.166 0.704 0.981
10,000 -3.415 -0.064 4.165 2.224 0.922 1.000
20,000 -4.411 -0.323 4.346 2.157 0.990 1.000
40,000 -4.364 0.226 4.848 2.164 1.000 1.000

3

5,000 -180.361 -7.989 45.416 4.010 0.279 0.458
10,000 -30.632 -4.203 15.514 3.650 0.162 0.848
20,000 -30.990 -1.156 13.175 3.410 0.366 0.995
40,000 -30.427 -1.001 17.052 3.443 0.571 1.000

Table 2: Simulation results comparing TMLE of the effect on the mean vs the effect on
the median as a measure of the causal effect of treatment among the treated.
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4.2 Comparison with the Effect on the Mean

In order to compare the effect on the median to the effect on the mean as a measure of
the causal effect of treatment, we use the TMLE for the average treatment effect on the
treated presented in Chapter 8 of van der Laan and Rose (2011). This estimator provides
a fair comparison since it is also doubly robust and locally efficient in the non-parametric
model. Table 2 contains a comparison between both estimators in terms of their percent
bias, the squared root of the mean squared error scaled by n, and the power for testing the
hypothesis of no treatment effect.

Note, in particular, the loss of power for the test based on the mean as compared to
its median counterpart. In all scenarios, the hypothesis test based on the mean requires
at least four times the sample size to achieve the power obtained with the test based on
the median. This is very relevant in our setting since the sample size is not subject to
modification but rather fixed by the number of AdWords customers available in a certain
time period. In addition, note that the MSE of the estimator for the mean effect scaled by
n seems to be increasing in scenario 1. This could be an indication that the effect on the
mean is not estimable at a consistency rate of

√
n.

For all the sample sizes we considered, the estimator of the effect on the mean has a
very large bias under scenario 3. This bias is due to inverse probability weighting extreme
values of the outcome, and it vanishes as n→∞, as predicted by theory. When estimated
with n = 105, this percent bias is equal to 11.06%, and it reduces to 0.38% when n = 106.

5 Concluding Remarks

We have proposed an estimator of the quantile function in missing data problems, with ex-
tensions to estimation of causal effects. Our estimator has properties not achieved by other
estimators proposed in the literature; it is doubly robust, locally efficient, and asymptoti-
cally linear. Our double robustness result is not analogous to the standard double robust-
ness of other estimators, in the sense that the initial estimator for the outcome regression
may not be arbitrarily misspecified. Rather, double robustness in our setting means that
it is always possible to construct an estimator that, though misspecified, yields a consis-
tent estimator of the target parameter, under correct specification of the propensity score.
The asymptotic properties of our estimator have been demonstrated analytically, and its
finite sample superiority has been illustrated empirically using data arising from one of the
applications that motivated the development of our methods.
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