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Abstract

In this work we investigate under what circumstances a TV campaign should be
complemented with online advertising to increase combined reach. First, we use prob-
abilistic models to derive necessary and sufficient conditions. We then test these opti-
mality conditions on empirical findings of a large collection of TV campaigns to answer
two important questions: i) which characteristics of a TV campaign make it favorable
to shift part of its budget to online advertising?; and ii) if it should shift, how much cost
savings and additional reach can advertisers expect? First, we use classification meth-
ods such as linear discriminant analysis, logistic regression, and decision trees to decide
whether a TV campaign should add online advertising; secondly, we train linear and
support vector regression models to predict optimal budget allocation, cost savings, or
additional reach. To train these models we use optimization results on roughly 26, 000
campaigns. We do not only achieve excellent out-of-sample predictive power, but also
obtain simple, interpretable, and actionable rules that improve the understanding of
media mix advertising.
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1 Introduction

Online media has become increasingly important for advertisers to complement their tele-

vision (TV) ads. In order to make best use of their advertising budget, advertisers need to

figure out the optimal budget allocation between TV and online media. Jin et al. (2013)

introduce probabilistic models to estimate combined TV & online ads effectiveness and use

these models to find the optimal budget split which maximizes reach. This optimization

yields two important results: the optimal shift of budget to online media, as well as the

expected additional reach after adding online media – also referred to as extra reach.

In this work we apply these optimization algorithms to a large collection of campaigns with

a variety of target demographics, budgets, maximal TV reach, etc. We then train predictive

models to find those characteristics of a campaign that make it more likely to benefit from

shifting advertising budget; and if it should shift, we predict the attained extra reach and

cost savings. Such prediction models can be used by advertisers for simple, yet predictively

powerful rules to find TV campaigns that would most likely benefit from adding online

advertising.

In Section 2 we study bivariate reach surfaces and show that marginal cost per reach is

the single most important metric that determines the optimal budget allocation. Section 3

summarizes the TV data and the optimization results. In Section 4.2 we train classification

models to decide whether a campaign should shift budget to online advertising. Section 4.3

presents several regression models with excellent predictions of optimal shift, extra reach,

and cost savings. Finally, Section 5 summarizes the main findings and discusses future

work. Detailed analytical derivations and proofs can be found in Appendix B.

2 Methodology

Before going into detailed theoretical analysis of the budget allocation problem, we present

terminology and notation used throughout this work.

2.1 Notation and terminology

Table 1 lists the most important abbreviations; notation for derivatives can be found in

Appendix A.

Let an advertiser have a total budget B (or, equivalently, cost C) and let them buy I ≥ 0

impressions of advertising content. Rather than on the absolute impressions level, we use
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the industry standard of gross ratings points (GRPs) to measure the size of a campaign.

GRPs are impressions I normalized by the total population P times 100; G = I
P · 100. For

example, a campaign size of 200 GRPs means that - on average - two impressions per person

are shown. In order to evaluate the economical efficiency of a campaign, it is common to

consider cost per point (cpp), which is the average cost per GRP, cpp = C
G . Since advertisers

usually buy a set of GRPs for certain price, cpp is constant as a function of GRPs. We thus

often use budget and GRPs interchangeably to refer to the size of a campaign.

Advertisers want to know how many different people they can reach with a given number of

impressions (budget). Let Rk ≤ P be the total number of different people reached at least

k times.1 Again, we usually use relative reach, rk = R
P , to make campaigns for different

target audiences comparable. We typically view k+ reach as a function of GRPs or cost,

rk = rk(g) = rk(c). For example, Figure 1a shows two single-channel reach curves, with

different shape and slope of each curve. In particular, note that channel 2 (dark red, solid)

has lower reach than channel 1 (green, dashed) at the same GRP level. However, at the

last observed data point (here: GRP = 100), channel 2 has a higher marginal reach than

channel 1, i.e., the curve has a larger slope at GRP = 100. This is important for advertisers

as it means that it is more reach-efficient to show the 101st GRP on channel 2.

In the theoretical analysis below the cost per effective reach point (Rossiter and Danaher,

1998), cperp = C
Rk

, will play the principal role in determining the optimal shift. Contrary

to cpp, cperp is increasing with the size of a campaign since the reach curve is concave as a

1The specific choice of k depends on the interest of advertisers. For example, the industry standard in
the United States is 3+ reach; in Germany, it is 1+ reach.

Symbol Description Variable type Computation

B = C total budget = cost of an advertising campaign currency

I content impressions (ad, video, . . . ) count

P total (target) population count

Rk
k+ absolute reach, i.e., the absolute

number of different people who have seen the content
count

G GRPs = gross rating points % I
P × 100

rk
k+ relative reach, i.e., percentage of people

who are reached at least k times
% Rk

P × 100

frequency
average number of times user sees an impression
(among those who have seen it at least k times)

GRPs
rk

cpp cost per point currency C
GRPs

cperp cost per effective reach point currency C
rk

Table 1: Abbreviations and notation
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Figure 1: Reach in the single channel and the two-channel scenario.

function of GRPs. It is exactly this non-linear increase that determines the optimal budget

allocation.

2.2 Bivariate probability surface

For a campaign that uses multiple advertising channels combined reach is a function of

the multidimensional budget vector (B1, . . . , BN ). In this work we consider the N = 2

channel scenario (e.g., TV and online media), where combined k+ reach, rk(B1, B2), can

be represented as a surface along the two channel dimensions (Fig. 1b). Here each point

on the surface represents the proportion of the target audience that has been reached on

channel 1 or channel 2 as a function of budget on each channel. At the boundary of B1 = 0

or B2 = 0 it reduces to two single-channel reach curves in Figure 1a.

2.2.1 Modeling reach as a probability

Like Jin et al. (2013), we model relative k+ reach as the probability that a randomly drawn

person u sees at least k impressions, i.e.,

rk = P (Iu ≥ k) , (1)

where Iu are the number of impressions of person u. Such a probabilistic view allows us to

use parametric probability models to compute entire reach curves (see e.g., Jin et al., 2012;

Goerg, 2014; Cannon et al., 2002).
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2.3 Reach optimization at fixed budget

Jin et al. (2013) consider two optimization scenarios: i) maximize combined reach, at

constant budget; ii) minimize budget, at constant reach. By default, the constant budget

(reach) is the historically attained budget (reach) on channel 1. For analytic derivations

we restrict ourselves to the “maximize reach, constant budget” case; similar derivations can

be obtained for “minimize budget, constant reach”. In the applications section we again

consider both scenarios and provide classification and regression models for each.

In Figure 1b the fixed budget constraint is shown as the dashed, red line in the (B1, B2)

plane. At constant budget combined reach reduces to a one-dimensional curve along the

surface (red, solid). It can thus be parametrized by the one-dimensional variable τ , which

represents the budget share of channel 2: let B1(τ) = (1 − τ)B and B2(τ) = τB. For τ

moving from 0 to 1, budget allocation moves from point A to B, and combined reach

[0, 1] 3 rk(τ) = r1&2
k ((1− τ)B, τB) (2)

moves from C to E. The additional k+ reach of a media mix compared to the channel

1-only campaign (τ = 0) equals

ek(τ) = rk(τ)− rk(0) ∈ [−1, 1], (3)

where ek stands for the extra k+ reach (Fig. 1c).

In the example from Fig. 1, 100 GRPs on channel 1 yield higher reach than on channel

2. However, as the red rk(τ) curve along the surface shows, combined reach achieves its

maximum at τ∗ ≈ 0.5 (see also Fig. 1c). This means that moving 50% of advertising

budget from channel 1 to channel 2 would increase the combined campaign reach compared

to single-channel advertising.

2.4 Optimality conditions for maximizing combined reach

Remark For better readability, we drop the subscript k in rk for the remainder of Section

2.4. This will avoid confusion with derivative subscripts rx := ∂
∂xr(x, y) (see also Appendix

A).

The optimal budget allocation τ∗ occurs either at the single-channel boundary, τ∗ = 0 or
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τ∗ = 1, or where

∂

∂τ
r(τ) = r′(τ) = 0. (4)

Lemma 2.1 A two-channel campaign achieves maximum combined reach at constant bud-

get when
∂

∂x
r(x(τ∗), y(τ∗)) =

∂

∂y
r(x(τ∗), y(τ∗)), (5)

or at the boundary, τ∗ ∈ {0, 1}.

Proof In Appendix B.

Lemma 2.1 formally shows that budget should be shifted from channel 1 to channel 2 as

long as the marginal increase reach on channel 2 (y) is greater than on channel 1 (x).

Without any modeling assumptions about the reach curves and surfaces, (19) can not be

simplified any further. However, for the single-channel case (τ = 0) we obtain a simpler

condition.

Corollary 2.2 A single-channel campaign should add another channel if

ry(B, 0) > rx(B, 0), (6)

or equivalently

Cy(r, 0) < Cx(r, 0), (7)

where Cy(r, 0) = 1
ry(B,0)

is marginal cost per reach of channel 2 (y) at maximum reach

(analogous for Cx(r, 0)).

Lemma 2.1 and Corollary 2.2 show that – in theory – the sole predictor of shift versus no

shift is the difference between the marginal cost per reach of channels 1 and 2. Figure 1a

illustrates this condition (6): if the campaign on channel 1 has already reached the flat part

of the curve for large budget (rx(B, 0) ≈ 0), then it is more likely to be a good candidate

for shifting (since 0 ≈ rx < ry).

In general, TV-only advertisers do not (yet) have information about reach and reach effi-

ciency for the online channel. Thus for the empirical analysis and predictive modeling in

Section 4.2 and 4.3 we only use data from the one-dimensional TV reach curve, rTV (g),

g ∈ [0, G].
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2.5 Estimating marginal cost per reach

So far we have considered reach as a function of GRPs and cost. It is useful to consider

the inverse relation, C(rk), cost as a function of reach. As shown above, marginal cost per

reach is the sole indicator whether a campaign should shift or not.2 Advertisers, however,

often do not know their marginal cost, but only their average (or total) cost. Goerg (2014)

presents methodology to estimate the entire reach curve using only total GRPs and reach.

The functional form of this reach GRP curve is

rk(g) =
Gtotal · rtotalk · g

(Gtotal − g) · 1
ιk
· rtotalk + g ·Gtotal

, (8)

where ιk is a nuisance parameter that represents the expected number of total impressions

for the first person to see k impression.3 Trivially, ι1 = 1 since the first impression must go

to the first person. For k > 1, they approximate it with ιk ≈ k + log2 k.4

The marginal reach per GRP at g = Gtotal equals

r′k(g = Gtotal) =
1

ιk

(
rtotalk

Gtotal

)2

. (9)

And consequently the marginal cost per reach at total GRP and reach has a surprisingly

simple form of

C ′(rk) = ιk · cperptotal · frequencytotal, (10)

where cperptotal is cost per effective reach point at the total size of the campaign.

The regression and classification models in Section 4.2 and 4.3 show that (10) does indeed

provide excellent predictions.
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3 DATA SUMMARY

Number of campaigns (ignoring demo targeting) 2,914
Number of demographic groups 9
Number of all analyzed campaigns (by demo) 26,222
Start date 2015-01-01
End date 2015-09-30
Effective frequency (k+ reach) 3
YouTube Watchpage cost per mille (cpm) (in USD) 20
Maximum possible shift 100%

Table 2: Control settings for optimization.

3 Data summary

For the remainder of this work we investigate the two channel scenario for TV (channel

1) and YouTube (channel 2). The analysis is based on 2, 914 quarterly TV campaigns in

the US from 2015-01-01 to 2015-09-30. Each campaign was optimized for 9 different target

demographics split by age and gender. We further restricted the campaigns to only those

that had at least 100 GRPs per quarter for all demographics. This yields a total of 26,222

analyzed campaigns for this meta study. The TV campaign data used in the optimization

results and this meta study is based on Nielsen’s Cross Media Panel (Nielsen Solutions,

2013) and Nielsen’s Monitor-Plus.

The optimization results for the optimal media mix between TV and YouTube depend on

several control settings (Table 2). Changes in these controls will, in general, give different

results.

Computations and figures were done in R (R Core Team, 2014); tables were generated with

the stargazer R package (Hlavac, 2014).

2The derivations above assumed 1+ reach. For k+ reach with k > 1 derivations become a bit more
cumbersome. While the relationship between shift and marginal cost is not as direct, we still use marginal
cost as a proxy that determines shift and extra reach.

3In the rare (empirical) case that Gtotal < 1
ι

rtotal
k

1−rtotal
k

the reach curve estimate in (8) must be replaced

with rk(g) =
g·rtotal

k

Gtotal+(g−Gtotal)·rtotal
k

. See Goerg (2014) for details.
4Note that this is an approximation and obtaining exact values for ιk for k > 1 remains a task for future

work.
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Figure 2: TV plans in the TV-only plan and their likelihood to shift (green).

3.1 EDA

In most scatterplots each point represents one campaign, and many figures are split by age

group and/or gender. Interpreting the demographic groups is straightforward, e.g., A[18,35)

refers to adults from 18 to 34 years old; F[35,55) refers to females from 35 to 54 years old;

M[55,100) refers to males from 55 to 99 years old.

Figure 2a shows TV reach as a function of GRPs for the TV-only plan and Fig. 2b shows the

frequency of positive shift campaigns split by gender and optimization method. They show

two expected patterns: first, larger campaigns are more likely to shift; secondly, adding

online advertising is more beneficial for campaigns with younger (and male) audiences.

Figure 3 and Table 3 summarize the three optimized metrics (shift, reach, savings).5 Overall

about 29% of TV campaigns would benefit from online advertising. This proportion varies

across demographic targets with the lowest proportion (12%) for F[55,100), and highest

(53%) for M[18,35) (see also Figure 2b). Of those campaigns that do shift, the average shift

(for reach optimization) is 50% with an average attained extra reach of 7 percentage points

5Recall that the shareshift methodology (Jin et al., 2013) allows to maximize reach (at constant cost) or
minimize cost (at constant reach). In this manuscript these two scenarios are usually displayed separately;
if such a distinction is missing in figures or tables, then reach optimization results are shown by default.
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Table 3: Averages for optimization results grouped by demo and optimization scenario. Averages
are reported in %; for ’Avg. extra reach’ in percentage points (pp).

Demo Optimization P(shift >0) Avg. shift Avg. extra reach Avg. cost savings

A[18,35) cost 45.4 70.7 0 27.5
A[35,55) cost 25.5 44.7 0 16.4
A[55,100) cost 15.7 34.5 0 12.7
F[18,35) cost 42.2 69.5 0 27.7
F[35,55) cost 29.4 44.6 0 16.6
F[55,100) cost 11.9 35.7 0 13.1
M[18,35) cost 53.0 72.6 0 28.3
M[35,55) cost 22.9 44.9 0 15.5
M[55,100) cost 19.8 34.6 0 12.3

A[18,35) reach 45.4 62.3 9.2 0
A[35,55) reach 25.4 38.5 4.7 0
A[55,100) reach 15.7 30.3 2.7 0
F[18,35) reach 42.2 61.2 9.5 0
F[35,55) reach 29.3 38.2 4.8 0
F[55,100) reach 11.9 31.8 2.8 0
M[18,35) reach 53.0 63.5 9.3 0
M[35,55) reach 23.0 38.5 4.3 0
M[55,100) reach 19.8 29.8 2.8 0

Google Inc. 9



3.1 EDA 3 DATA SUMMARY

age: [18,35) age: [35,55) age: [55,100)

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

gender: A
gender: F

gender: M

0.000.250.500.751.000.000.250.500.751.000.000.250.500.751.00
Optimal shift

de
ns

ity

Optimization cost reach

(a) Optimal shift

0

10

20

30

0

10

20

30

0

10

20

30

gender: A
gender: F

gender: M

0% 20% 40%
Attained Extra reach 

de
ns

ity

Age [18,35) [35,55) [55,100)

(b) Attained extra reach

0

2

4

6

0

2

4

6

0

2

4

6

gender: A
gender: F

gender: M

0% 25% 50% 75%
Cost savings 

de
ns

ity

Gender [18,35) [35,55) [55,100)

(c) Optimal cost savings

Figure 3: Overview of optimization results (only when shift is beneficial).

age: [18,35) age: [35,55) age: [55,100)

0%
30%
60%
90%

0%
30%
60%
90%

0%
30%
60%
90%

gender: A
gender: F

gender: M

3.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.5
TV cpp (log10)

O
pt

im
al

 s
hi

ft

Optimization cost reach

TV GRPs (TV-only plan) 0 1000 2000 3000 4000

(a) Optimal shift

age: [18,35) age: [35,55) age: [55,100)

0

20

40

0

20

40

0

20

40

gender: A
gender: F

gender: M

3.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.5
TV cpp (log10)

Ex
tra

 re
ac

h 
(p

p)

TV GRPs (TV-only plan) 2500 5000 7500

(b) Extra reach

age: [18,35) age: [35,55) age: [55,100)

-25%
0%

25%
50%
75%

-25%
0%

25%
50%
75%

-25%
0%

25%
50%
75%

gender: A
gender: F

gender: M

3.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.53.5 4.0 4.5 5.0 5.5
TV cpp (log10)
O

pt
im

al
 s

av
in

gs

TV GRPs (TV-only plan) 0 1000 2000 3000

(c) Cost savings

Figure 4: Predictive relationship between cost per GRP (cpp) on TV and optimal shift, extra
reach, and cost savings.

(pp). In the cost savings scenario, the average shift (of those that do shift) lies at 57% with

an average cost savings of 22%.

Figure 4 and 5 display a) optimal shift from cost per TV GRP (cpp), b) attained extra

reach, and c) optimal cost savings, respectively, broken down by age and gender.

Figure 4a and 4b) show that it is difficult to predict optimal shift, while it does better at

predicting extra reach. The main reason for this lies in the flatness of the extra reach curve

(recall Figure 1c in Section 2), which makes the optimal shift (x-axis) very sensitive to

noise, whereas the attained optimum (y-axis) is relatively stable. Table 4 shows the results

of performing both an ordinary least squares (OLS) as well as a robust linear regression6

6We use the R function rlm. It performs linear regression, but instead of minimizing the sum of squared
residuals, it minimizes a Huber-type loss of residuals, which is more robust to outliers. See Huber (1981)
for an overview.

Google Inc. 10



3.1 EDA 3 DATA SUMMARY

Table 4: Linear regression estimates for ’reach’ optimization. ρ2 is the squared correlation between
data and fit (on original scale).

Dependent variable: Extra reach (pp)

normal robust
linear

all all shift > 0 only

(1) (2) (3)

Constant −0.83∗∗∗ (0.01) −0.54∗∗∗ (0.02) −0.98∗∗∗ (0.02)
log10.orig.tv.cpp 0.20∗∗∗ (0.001) 0.13∗∗∗ (0.004) 0.24∗∗∗ (0.01)
age.group[35,55) 0.52∗∗∗ (0.01) 0.46∗∗∗ (0.02) 0.55∗∗∗ (0.03)
age.group[55,100) 0.70∗∗∗ (0.01) 0.51∗∗∗ (0.02) 0.71∗∗∗ (0.03)
genderF 0.004∗∗∗ (0.001) 0.001∗∗∗ (0.0002) 0.005∗∗∗ (0.001)
genderM −0.003∗∗∗ (0.001) −0.001∗∗∗ (0.0002) −0.004∗∗∗ (0.001)
log10.orig.tv.cpp:age.group[35,55) −0.12∗∗∗ (0.002) −0.11∗∗∗ (0.004) −0.13∗∗∗ (0.01)
log10.orig.tv.cpp:age.group[55,100) −0.17∗∗∗ (0.002) −0.12∗∗∗ (0.004) −0.17∗∗∗ (0.01)

ρ2 0.56 0.53 0.56
Observations 26,222 26,222 7,669

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 5: Marginal cost per effective reach point (cperp) on TV as a predictor of optimal shift,
extra reach, and cost savings.

of extra reach on log10(cpp) and demographic information. For example, the slope estimate

for the (omitted) youngest age group for log10(cpp) of β̂j = 0.2 (see Table 4): this means

that – all others equal – a campaign with a 10% higher TV cpp can expect additional reach

of log10(1.10) · β̂j · 100 = 0.83 percentage points (pp) in a media mix scenario; for the older

[55,100) target demographic the increase is only 0.14 pp. The other coefficient estimates

also confirm the findings from Figure 4 that differences are more pronounced across age

groups than across gender. If any, then a campaign with a male target demo can expect

slightly lower extra reach. Figure 5 confirms the theoretical findings in Section 2.4 that

marginal cost per effective reach point (cperp) (see e.g., Rossiter and Danaher, 1998) is an

even better predictor of optimal shift, extra reach, and optimal cost savings (see Section

4.3 for details).

3.2 TV viewing buckets

In order to better understand why online advertising can be more efficient at reaching new

audiences, it is useful to consider TV viewing buckets. Here the population is split in three

equally sized buckets, with different levels of TV viewing consumption. More precisely, we

first computed 33.3% quantiles of TV viewing time per day, and then put each member of

the population in its corresponding bucket: light, medium, and heavy.

Figure 6 compares TV, YouTube, and extra reach across the TV viewing buckets. By

construction, TV has much higher reach for heavy TV viewers. YouTube, on the other

hand, has a quite balanced reach across TV viewing buckets. As a result (Fig. 6c) extra

reach is mostly due to large reach increases for light TV viewers, whereas medium and

heavy TV viewers do not get as much additional reach (some campaigns even decrease their
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Figure 6: Where does YouTube gain new audiences compared to TV?: TV, YouTube, and extra
reach split by TV viewing time of the population.

combined reach in those buckets).

The distribution across light to heavy viewers can also be useful to explain when a campaign

is more likely to shift. As a univariate quantity to summarize the distribution over buckets

consider the light-to-heavy ratio of TV reach and GRPs, which describes the (in)equality

across buckets. Figure 7 shows that a campaign with a high light-to-heavy reach ratio will

more likely benefit from adding online advertising. Furthermore, the patterns in size of the

points (proportional to log10(TV cperp)) suggest that adding average TV cperp can further

improve predictions.
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4 Predicting The Optimal Media-Mix

In Section 4.2 and 4.3 we use common classification and regressions techniques from statistics

and machine learning. We will not discuss mathematical or statistical details of each method

but refer to standard text books in statistical modeling and machine learning such as Bishop

(2006); Hastie et al. (2001).

4.1 Notation

Before presenting the results we review notation used for several classification and regression

models – using the classic linear model as a baseline example, y = Xβ + ε.7

For the predicted variable y we either use: a) y = 1 (shift > 0) (for classification), or b) y

as some continuous variable like optimal shift or cost savings (for regression). In some cases

we use link functions directly on the response variable or in generalized linear models.

For the predictor matrix X we use all the information we have about a campaign from TV

data, e.g., GRPs, reach, frequency, cpp, cperp, demographics, etc. In many cases we also

use variables on log-scale to account for multiplicative effects (which is especially important

for socio-economic quantities such as budget and population sizes). As we are interested

in a prediction tool for TV-only campaigns, we restrict the analysis to TV data only; no

online media information is used as a predictor.

Dropping marginal cperp from generalized linear models Lemma 2.1 shows that –

in theory – marginal cperp is the single most important variable to for predicting likelihood

of shifting. If we could only choose one variable to use as a predictor marginal cperp is a

better option than average cpp, average cperp, or average frequency. The prediction models

we use below, however, are mostly multivariate and many of them are generalized linear

models.

Since we compute marginal cperp as a constant times average cperp times frequency, it is

clear that on log-scale these three variables are perfectly collinear

log(marginal cperp) = log(const) + log(average cperp)− log(frequency) (11)

= log(const) + log(average cperp)− (logGRPs− log reach) . (12)

Since we are mostly interested in good predictions, and not in inference about a coefficient

βj for marginal cperp, we will neither use (logarithm of) marginal cperp nor (logarithm

7We do use more advanced methods than linear regression, but the predictor and predicted variables
remain the same throughout.
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of) frequency as part of the X matrix (if GRPs, average cpp, and reach are included), but

allow the model to determine the best combination of logarithmic average cperp, logarithmic

GRPs, and logarithmic reach to give the best fit.

4.2 Classify which campaigns should shift

Out of 26,222 campaigns 29.25% would benefit to shift part of their TV budget to YouTube,

and thus increase their combined reach at constant budget. While these recommendations

were obtained through a combination of several layers of probabilistic model estimates, it

would be useful to have a good rule of thumb to say whether a campaign is likely to shift

or not. A trivial baseline model assigns each campaign the label with highest frequency

(“majority vote”); for this dataset, the majority label is ’no shift’, yielding an overall clas-

sification error of 29.25%.

In this Section we use linear discriminant analysis (LDA) (Section 4.2.1), logistic regression

(Section 4.2.2), Support Vector Machines (SVM) (Section 4.2.3), and decision trees (Section

4.2.4) to classify campaign in ’shift’ versus ’no shift’. Decision trees in particular have very

good prediction accuracy and yield interpretable rules.

4.2.1 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) aims to find a linear combination of of variables, z =

β′X, so that a simple threshold rule on z can discrimate well between classes in y. In two

dimensions this corresponds to a rotation of coordinates such that a horizontal (or vertical)

lines can separate the classes to the top and bottom (or left and right).

Figure 8a suggests to use a LDA for the logarithm (log10) TV GRPs and TV cperp

z = β1 log10 cperp+ β2 log10GRPs ≶ c, (13)

where βi parametrize the coordinate rotation, and c is the optimal threshold for classifi-

cation. Without loss of generality assume that β1 = 1.8 The estimated optimal classifier,

β̂ = (1, 0.28) and 10ĉ = 1.03 × 106, has a 5.76% training error (CV: 5.83%). Since (13) is

on log10 scale, this is equivalent to using the transformed variable

10z = cperp ·GRP0.28 ≶ 10c. (14)

8One can always divide (13) by β1 and thus make β̃1 = 1, β̃2 = β2/β1, and c̃ = c/β1.
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Figure 8: Linear discriminant analysis (LDA) on cperp and GRPs: two-dimensional scatterplot
of the original data including class assignments (by color) and the resulting densities of the LDA
estimate. Optimal threshold represented by dashed, blue line.

The density estimates in Fig. 8b show how 10z can clearly separate shift vs. no shift cam-

paigns.

As a more interpretable proxy, one can also use z̃ = cperp ·GRP
1
4 with 10

̂̃c = 8.79× 105 in

(14) (shown in Fig. 8c), which has a 5.52% training error (CV: 5.55%).

4.2.2 Logistic regression

Here we interpret optimal shift as a probability. An advertiser should shift budget with

probability p, and this probability depends on the characteristics of a campaign. Logistic

regression tries to model this probability as a generalized linear function of the predictor

variables X, p = logit−1(Xβ), where logit−1 is the inverse of the logit(p) = log(p/(1 − p))
link function.

Table 5 summarizes the results of a logistic regression for P (I(shift > 0) | X), where the

model matrix X contains previously described metrics of the TV campaign (and others).

The CV error for logistic regression with LASSO (Tibshirani, 1994) lies at 3.06%. This

means that logistic regression achieves a 90% error reduction compared to the 29.25%

baseline.
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Table 5: Logistic regression estimates for P (shift > 0 | X). The left GLM is a baseline model with
only few predictors for better interpretation and statistical inference; the right is a GLM with a
large variety of available predictors – mainly used for prediction.

shift.greater.zero
GLM GLM LASSO (CV)

(1) (2) (3)

Constant −223.0∗∗∗ (5.1) −244.0∗∗∗ (8.6) −148.0
log10.lhr.orig.tv.reach 0.5∗ (0.3) 0.0
age.group[35,55) −3.1∗∗∗ (0.1) 19.0∗∗ (7.9) −1.5
age.group[55,100) −7.8∗∗∗ (0.2) 33.0∗∗∗ (7.7) 0.0
genderF −0.02 (0.1) −0.005 (0.1) 0.0
genderM 0.2 (0.1) 0.1 (0.1) 0.0
log10.orig.tv.grps 13.0∗∗∗ (0.3) 9.5∗∗∗ (0.5) 6.0
log10.orig.tv.reach 8.1∗∗∗ (0.7) 4.1
log10.lhr.orig.tv.reach:age.group[35,55) −1.5∗∗ (0.7) 0.8
log10.lhr.orig.tv.reach:age.group[55,100) −5.8∗∗∗ (0.8) 0.0
age.group[35,55):log10.orig.tv.cperp −4.6∗∗∗ (1.5) −0.001
age.group[55,100):log10.orig.tv.cperp −8.4∗∗∗ (1.5) −1.0
log10.orig.tv.cperp 36.0∗∗∗ (0.8) 43.0∗∗∗ (1.5) 26.0

Class. error 0.03 0.03 0.031
Observations 26,222 25,620 25,620

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 9: Pruned decision tree fit for I(shift > 0) with a cross validation error of 5.56%. Every
node represents the predicted label; every branch a decision rule. The two numbers below each
node are the proportion of true labels; the percentage below each node refers to the percentage of
observations in each node (thus the two proportions add up to the percentage).

4.2.3 Support Vector Machines (SVM)

Support vector machines (SVMs) (Burges, 1998) are a popular machine learning classifi-

cation method. An SVM tries to find a hyperplane through a set of points, such that it

divides the space into a subspace with points from (mostly) one class and the complemen-

tary subspace with points (mostly) from the other class. Here we use linear as well as a

non-linear extension, a radial SVMs. For details see the References in the e1071 R package

(Dimitriadou et al., 2010).

A linear (radial) SVM to predict positive shift has a training error of 2.97% (radial: 1.85%).

The 10-fold cross validation error is 3.03% (radial: 1.93%).
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0 1 total

0 0.68 0.03 0.71
1 0.02 0.26 0.29

total 0.71 0.29 1.00

Table 6: Normalized cross tabulation of predictions (row) versus data (columns) of pruned decision
tree (total: 26,222 observations).
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Figure 10: Classification tree and random forest cross-validation (CV) error for predicting I(shift >
0).

Table 7: Importance of each variable in random forest (ordered by mean decrease in accuracy error
when adding the variable).

FALSE TRUE MeanDecreaseAccuracy MeanDecreaseGini

orig.tv.cperp 0.160 0.430 0.240 5, 180
orig.tv.grps 0.068 0.100 0.078 1, 082
orig.tv.cpp 0.053 0.120 0.074 2, 391
age.group 0.036 0.088 0.051 507

orig.tv.reach 0.035 0.047 0.039 647
lhr.orig.tv.reach 0.027 0.032 0.028 511
lhr.orig.tv.grps 0.021 0.039 0.026 349

gender 0.004 0.010 0.006 150
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4.2.4 Decision trees and random forests

Decision trees are a powerful non-linear classification technique, with a straightforward

interpretation. A decision tree looks at one variable at a time and tries to find the best

threshold to split the data; it then splits the data into two subgroups and starts this best

variable and threshold selection again. This iterative process results in a tree, where each

node is a rule and a data point is classified in each bin based on whether it satisfies the

rule or not (’yes’ or ’no’). Every level further down the tree gives more fine grained (but

eventually overfitting) predictions.

Figure 9 shows the (regularized / pruned) decision tree, which achieves 5.13% training error

rate (5.56% for CV). Table 6 shows a cross tabulation of predictions versus observed data.

The label in the rounded box at each node represents the class label and the proportion

below the box indicates the classification error at this node.

A Random Forest (Breiman, 2001; Therneau et al., 2013) improves the error to 2.26%

(Figure 10). It also allows us to rank variables by importance, i.e., their ability to decrease

classification error (Table 7). As above, TV-only cperp is the most important variable to

predict shift versus no shift.

4.3 Predicting optimal shift and extra reach

In the previous section we presented a collection of classification models to tell advertisers

if a specific TV campaign is likely to benefit from online advertising. Once advertisers

determine if a TV campaign is a good candidate for online advertising, the next questions

are: how large should the online media portion be and how much extra reach can be

expected.

In this section we thus build models to predict optimal shift and extra reach from TV

campaign characteristics, such as target demographics, total budget, GRPs, and total reach.

We make the assumption that the classification models above can successfully separate

between shift and no-shift campaigns. For training the prediction models we thus restrict

the data to only those campaigns that had a positive shift.

4.3.1 Linear regression (OLS, robust)

Table 8 displays parameter estimates for multivariate regression predicting optimal shift,

for a generalized linear model with a logarithmic link function and a robust linear fit (no

link function).
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Table 8: Linear regression estimates for ’reach’ optimization results and only campaigns with shift
> 0. ρ2 is the squared correlation between data and fit (on original scale).

Dependent variable: optimal shift (logit)

glm: gaussian robust glm: gaussian
link = logit linear link = logit

Subset of variables Subset of variables All LASSO

(1) (2) (3)

Constant 3.60∗∗∗ (0.19) 2.90∗∗∗ (0.40) −3.50
lhr.orig.tv.reach 4.00∗∗∗ (0.46) 1.20 (0.98) 0.01
lhr.orig.tv.grps −0.15
log10.orig.tv.cperp 0.87
log10.orig.tv.cpp −0.22
log10.orig.tv.reach −0.49
age.group[35,55) −0.56∗∗∗ (0.05) −0.68∗∗∗ (0.12) −0.06
age.group[55,100) −0.84∗∗∗ (0.08) −1.20∗∗∗ (0.17) −0.11
orig.tv.cperp −0.0000
orig.tv.cpp 0.0000
orig.tv.reach 0.00
orig.tv.grps 0.0000
genderF 0.01 (0.02) −0.01 (0.02) 0.01
genderM 0.04∗∗ (0.02) 0.07∗∗∗ (0.02) −0.003
log10.orig.tv.grps −3.30∗∗∗ (0.11) −2.70∗∗∗ (0.09) 0.00
log10.lhr.orig.tv.reach −1.50∗∗∗ (0.19) −4.50∗∗∗ (0.39) −0.05
log10.orig.tv.freq 4.80∗∗∗ (0.10) 5.50∗∗∗ (0.17)
lhr.orig.tv.reach:age.group[35,55) −2.40∗∗∗ (0.32) −2.20∗∗∗ (0.68)
lhr.orig.tv.reach:age.group[55,100) −3.20∗∗∗ (0.35) −2.40∗∗∗ (0.78)
log10.orig.tv.grps:log10.lhr.orig.tv.reach 0.66∗∗∗ (0.09) 2.20∗∗∗ (0.17)
log10.lhr.orig.tv.grps −0.01

ρ2 0.73 0.7 0.89
Observations 7,669 7,669 7,669

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 11: SVR model check: data versus fit. Solid, black line represents perfect prediction

4.3.2 Support vector regression (SVR)

Support vector regression (SVR) is an extension of SVMs: while in SVMs the hyperplane

is the means to separating data points into classes, in SVRs the hyperplane is the actual

regression function that should be estimated, and the sign of the residuals represents the

two classes (see Schölkopf and Smola, 2002, for an overview). Similarly to SVMs, SVRs

also benefit from its ability to easily model non-linear dependencies.

For extra reach and optimal shift predictions SVRs have much better predictive power than

(generalized) linear models. For predicting optimal shift (on logit scale) the cross validated

squared correlation between data and fit, ρ2, equals 64.97% for the linear SVR; the radial

SVR achieves 83.62%. Similarly for predicting (the logit of) extra reach: 86.84% for linear

SVR (radial: 94.85%).

Figure 11 compares data versus fit for both kernels. The linear SVR deviates from the 45◦

line and slightly underestimates large reach and overestimates small reach. The radial SVR,

on the other hand, adapts to different dependencies for small and large campaigns and thus

can accurately predict reach for a wide range of TV campaigns.

5 Discussion

In this meta study we predict optimal budget allocation between YouTube and TV from

TV-only campaigns. We train classification and regression models on TV-only advertising
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data to decide whether a campaign should shift budget to YouTube and to predict how

much shift and extra reach advertisers can expect.

We find that the most critical variable for predicting shift is cost per effective reach point

(cperp) on TV, and – to lesser extent – the size of the campaign, measured by GRPs. A

linear discriminant analysis (LDA) on cperp and GRP yields a decision rule with a very

low 5.8% error rate. It is a simple threshold rule, based on well known metrics in TV

advertising, with a clear interpretation: a campaign benefits from adding online advertising

if TV is too costly, and the cost threshold gets smaller for larger campaigns. Using more

advanced classification methods we can reduce the misclassification rate below 3%.

Similarly, regression models give good predictions for optimal shift, optimal savings, and

extra reach. Linear regression models have good predictive power (squared correlation

coefficient ρ2 ≈ 93%), but they are outperformed by non-linear methods such as kernel

support vector regression (SVR) (ρ2 ≈ 99%); however, the latter lose the interpretability of

linear regression.

Overall, our works provides recommendation for advertisers, who can use these models to

set expectations about how a particular campaign might fare with online media in their

advertising mix.
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A Notation for derivatives

Let s : R2 → R, (x, y) 7→ s(x, y) be a differentiable function. We use common notation, sx,

to denote the partial derivative of s with respect to x, ∂
∂xs(x, y) (and sy for ∂

∂ys(x, y)).

Let h : R→ R, τ 7→ h(τ) be one-dimensional differentiable functions of τ . The derivative of

h with respect to τ is denoted as h′(τ).

Let (x(τ), y(τ)) be a generic one-dimensional curve in R2 parametrized by τ ∈ [0, 1]. We

denote h(τ) := h(x(τ), y(τ)) as the mapping of the curve from R to R via h(x, y). The

derivative of h with respect to τ can be computed with the total derivative

ḣ(τ) =
∂

∂τ
h(τ) = hx(x(τ), y(τ)) · x′(τ) + hy(x(τ), y(τ)) · y′(τ). (15)

If we view h(τ) merely as a one-dimensional function of τ , rather than a one-dimensional

curve in a higher-dimensional space, we use h′(τ) to denote its derivative.

B Analytical derivations and proofs

Proof of Lemma 2.1 The derivative of rk(τ) = rk(x(τ), y(τ)) with respect to τ equals

(dropping the k subscript to avoid confusion with partial derivative notation)

ṙ(τ) = rx(x(τ), y(τ)) · x′(τ) + ry(x(τ), y(τ)) · y′(τ) (16)

= rx(x, y) · (−B) + ry(x, y) ·B (17)

= B · [ry(x, y)− rx(x, y)] (18)

Thus combined reach is increasing at τ ∈ [0, 1] if (dividing by B > 0)

ry(x(τ), y(τ)) > rx(x(τ), y(τ)). (19)
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The optimal budget allocation τ∗ is achieved when (19) holds with equality or at the bound-

ary τ∗ ∈ {0, 1}.

Proof of Corollary 2.2 Follows from Lemma 2.1 and since single-channel campaign has

τ = 0, and thus x(0) = B and y(0) = 0.
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