
ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 1

Real-Time Pedestrian Detection With Deep
Network Cascades

Anelia Angelova1

anelia@google.com

Alex Krizhevsky1

akrizhevsky@google.com

Vincent Vanhoucke1

vanhoucke@google.com

Abhijit Ogale2

ogale@google.com

Dave Ferguson2

daveferguson@google.com

1 Google Research
1600 Amphitheatre Parkway
Mountain View, CA, USA

2 Google X
1600 Amphitheatre Parkway
Mountain View, CA, USA

Abstract

We present a new real-time approach to object detection that exploits the efficiency
of cascade classifiers with the accuracy of deep neural networks.

Deep networks have been shown to excel at classification tasks, and their ability to
operate on raw pixel input without the need to design special features is very appealing.
However, deep nets are notoriously slow at inference time.

In this paper, we propose an approach that cascades deep nets and fast features, that
is both very fast and very accurate. We apply it to the challenging task of pedestrian
detection. Our algorithm runs in real-time at 15 frames per second. The resulting ap-
proach achieves a 26.2% average miss rate on the Caltech Pedestrian detection bench-
mark, which is competitive with the very best reported results. It is the first work we are
aware of that achieves very high accuracy while running in real-time.

1 Introduction
Pedestrian detection has been an important problem for decades, given its relevance to a
number of applications in robotics, including driver assistance systems [8], road scene un-
derstanding [16] or surveillance systems. The two main practical requirements for fielding
such systems are very high accuracy and real-time speed: we need pedestrian detectors that
are accurate enough to be relied on and are fast enough to run on systems with limited com-
pute power. This paper addresses both of these requirements by combining very accurate
deep-learning-based classifiers within very efficient cascade classifier frameworks [38].

Pedestrian detection methods have employed a variety of techniques and features [4, 5,
11, 12, 33, 38, 39, 42]. Some have focused on increasing the speed of detection [4, 5, 38],
whereas others have focused on accuracy [25, 31, 42]. Recently a novel range of methods
have emerged, based on Deep Neural Networks, showing impressive accuracy gains [24].

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Coelingh, Eidehall, and Bengtsson} 2010

Citation
Citation
{Ess, Leibe, Schindler, , and van Gool} 2008

Citation
Citation
{Viola, Jones, and Snow} 2003

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Benenson, Matthias, Tuytrlaars, and Gool} 2013

Citation
Citation
{Ding and Xiao} 2012

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

Citation
Citation
{Park, Ramanan, and Folwkes} 2010

Citation
Citation
{Viola, Jones, and Snow} 2003

Citation
Citation
{Wojek, Walk, and Schiele} 2009

Citation
Citation
{Zhang, Bauckhage, and Cremers} 2014

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Benenson, Matthias, Tuytrlaars, and Gool} 2013

Citation
Citation
{Viola, Jones, and Snow} 2003

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Paisitkriangkrai, Shen, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2014

Citation
Citation
{Zhang, Bauckhage, and Cremers} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

2 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

Figure 1: Performance of pedestrian detection methods on the accuracy vs speed axis. Our
DeepCascade method achieves both smaller miss-rates and real-time speeds. Methods for
which the runtime is more than 5 seconds per image, or is unknown, are plotted on the left
hand side. The SpatialPooling+/Katamari methods use additional motion information.

However, Deep Neural Network (DNN) models are known to be very slow [19, 21, 23],
especially when used as sliding-window classifiers. We propose a very competitive DNN
approach for pedestrian detection that is both very accurate and runs in real-time. To achieve
this, we combine a fast cascade [4] with a cascade of DNNs [24]. Compared to existing
approaches, ours is both very accurate and very fast, running in real-time at 67 milliseconds
on GPU per image, or 15 frames per second (FPS). To our knowledge, no competing method
exists that achieves both very high accuracy and real-time performance. Figure 1 visualizes
existing methods as plotted on the accuracy - computational time axis, measured on the
challenging Caltech pedestrian detection benchmark [12]. As can be seen in this figure, our
approach is the only one to reside in the high accuracy, high speed region of space, which
makes it particularly appealing for practical applications.

We are not the first to consider the use of a DNN in a cascade. Ouyang et al. and Luo
et al. [25, 29] both apply deep networks in combination with fast feature cascades. These
approaches are conceptually similar to ours, but have not been able to capture the full speed
benefit of cascades, with processing times still too slow for real-time performance, e.g. 1-1.5
seconds per image on GPU [25]. Conversely, we here take advantage of the very fast features
for elimination, VeryFast [4], and of small and large deep networks [3, 24]. Our proposed
approach is unique, as it the first one to produce a pedestrian detector at real-time speeds (15
FPS) that is also very accurate.

In agreement with previous DNN research, our method shows that, applying DNNs to
raw image values provides excellent results. It is also advantageous to achieve real-time per-
formance. This is in contrast to common DNN-based approaches [25, 29], who apply DNNs
only to processed, edge-like features rather than raw pixel input, which is a disadvantage in
terms of speed. Further, we show that cascades incorporating DNNs are very good at gen-
eralization and transfer learning, with strong performance on the Caltech pedestrian dataset
from a system that used no Caltech data during training.

Getting real-time solutions for pedestrian detection has been hard. Recently proposed
WordChannel features [9] provide a real-time solution on the GPU (16 FPS), but at a notable

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{Giusti, Ciresan, Masci, Gambardella, and Schmidhuber} 2013

Citation
Citation
{Iandola, Moskewicz, Karayev, Girshick, Darrell, and Keutzer} 2014

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Angelova, Krizhevsky, and Vanhoucke} 2015

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Costea and Nedevschi} 2014

ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 3

Figure 2: The architecture of the baseline deep network for pedestrian detection. S denotes
the step size, whereas D refers to the number of convolutional kernels or units per layer.

loss in average miss rate (42%). The seminal VeryFast method [4] runs at 100 FPS but with
even further loss in miss rate. In the related domain of general object detection, which utilize
similar capacity DNNs as ours, and also take advantage of evaluating fewer candidates per
image, the most accurate method is of Girshick et al. [19], which takes 53 seconds per frame
on CPU and 13 seconds per frame on GPU, which is 195 times slower.

We further note that our approach is easy to implement, as it is based on open source
code. More specifically, we use the ‘Doppia’ open source implementation provided by Be-
nenson and collaborators [2] of the VeryFast algorithm [4]. Our deep neural networks are
implemented in the open source cuda-convnet2 code [1, 24].

The main contribution of this work is a pedestrian detection system that is both more
accurate than previous works and runs in real-time. As such, it can be practically deployed
within a real-life pedestrian detection system. No other prior work has demonstrated such
capabilities. We expect our work to impact future methods by providing a simple to imple-
ment, accurate and effective real-time solution. Thus, future methods can continue to further
push the boundaries in accuracy in pedestrian detection, while simultaneously keeping the
methods fast and practically relevant.

2 Previous work

Pedestrian detection has been a central topic in computer vision research, spanning more
than 20 years of research [6, 28, 32, 36]. A wide variety of methods have been applied to
pedestrian detection over the years, with continued improvement in performance [4, 5, 6, 7,
9, 10, 12, 13, 33, 38, 39, 42]. Some methods focus on improving the base features used [6,
9, 10, 42], whereas others focus on the learning algorithms [13, 25], or other techniques such
as incorporating Deformable Parts Models [33, 40] or using context [13, 29, 40, 41]. Dollar
et al. [12, 14] developed a benchmark and evaluation toolbox that has been instrumental in
tracking progress in the field. Benenson et al. [6] have recently proposed a comparative paper
that evaluates performance of various features and methods on pedestrian detection.

Viola and Jones proposed a cascade-of-classifiers approach [38], which has been widely
used for real-time applications. The method has been extended by employing different types
of features and techniques [13, 26, 27], but fundamentally the concept of the cascade, with
early rejection of majority of test examples, has been widely utilized to achieve real-time
performance. Perhaps the most popular feature used for pedestrian detection (and several
other image-based detection tasks) is the HOG feature developed by Dalal and Triggs [10].
Although not real-time, about 1 FPS, this work has been instrumental to the development
of faster and more accurate features for pedestrian detection, which are used in the top per-
forming methods in combination with SVM or Decision forests [5, 12, 26]. Deformable Parts
Models [17] have shown success on the pedestrian detection task [33, 40]. Deep learning-
based techniques have also been applied to pedestrian detection and have led to improve-

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{dop}

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{cud}

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Oren, Papageorgiou, Sinha, Osuna, and Poggio} 1997

Citation
Citation
{Papageorgiou, Evgeniou, and Poggio} 1998

Citation
Citation
{Rohr} 1993

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Benenson, Matthias, Tuytrlaars, and Gool} 2013

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Chen, Ding, Xiao, and Han} 2013

Citation
Citation
{Costea and Nedevschi} 2014

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

Citation
Citation
{Dollar, Appel, and Perona} 2010

Citation
Citation
{Park, Ramanan, and Folwkes} 2010

Citation
Citation
{Viola, Jones, and Snow} 2003

Citation
Citation
{Wojek, Walk, and Schiele} 2009

Citation
Citation
{Zhang, Bauckhage, and Cremers} 2014

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Costea and Nedevschi} 2014

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Zhang, Bauckhage, and Cremers} 2014

Citation
Citation
{Dollar, Appel, and Perona} 2010

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Park, Ramanan, and Folwkes} 2010

Citation
Citation
{Yan, Zhang, Lei, S.Liao, and Li} 2013

Citation
Citation
{Dollar, Appel, and Perona} 2010

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Yan, Zhang, Lei, S.Liao, and Li} 2013

Citation
Citation
{Zeng, Ouyang, and Wang} 2013

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2012

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Viola, Jones, and Snow} 2003

Citation
Citation
{Dollar, Appel, and Perona} 2010

Citation
Citation
{Martin, Vazquez, Lopez, Amores, and Leibe} 2013

Citation
Citation
{Matthias, Benenson, Timofte, and Gool} 2013

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Benenson, Matthias, Tuytrlaars, and Gool} 2013

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

Citation
Citation
{Martin, Vazquez, Lopez, Amores, and Leibe} 2013

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2010

Citation
Citation
{Park, Ramanan, and Folwkes} 2010

Citation
Citation
{Yan, Zhang, Lei, S.Liao, and Li} 2013

4 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

Figure 3: The architecture of the tiny deep network for pedestrian detection, which is a part
of the DNN cascade.

ments in accuracy [3, 25, 29, 30, 37]. These approaches are still slow, ranging from over a
second per image [25] to several minutes [37]. The faster approaches do not apply deep nets
to the raw pixel input so their accuracy is reduced.

Improving the speed of pedestrian detection has also been an active area. Benenson et
al. proposed a method reaching speeds of 100 to 135 FPS [4] for detection in a 480x640
image, albeit with significantly lower accuracy. Other researchers have focused specifically
on speeding up Deep Neural Networks [19, 21, 23], but with no real-time solutions yet.

3 Deep Network Cascades
This section describes our main architecture and our approach to build very fast cascades
with deep networks. By far the most accurate detector is based on deep networks [24].
However it is extremely slow when applied to 100,000 candidate windows. To complement
it, we use a tiny deep network from our prior work [3] that can make the classifier work at 2
FPS, thus speeding it up by 80x. Finally, we insert a fast feature cascade [4] with which our
method achieves a real-time 15 FPS solution (Section 3.1).

The architecture of the baseline deep neural network is based on the original deep net-
work of Krizhevsky et al. [24], which has been widely adopted and used by many researchers.
However it is extremely slow when ran in a sliding window fashion. One key difference here
is that we reduced the depths of some of the convolutional layers and the sizes of the recep-
tive fields, which is specifically done to gain speed advantage. Our baseline architecture is
shown in Figure 2.

Even with the proposed speedsups, this network is still slow and not appropriate for real-
time applications. To speed it up we utilize the idea of a tiny convolutional network from our
prior work [3]. The tiny DNN classifier features only three hidden layers: a 5x5 convolution,
a 1x1 convolution, and a very shallow fully-connected layer of 512 units; it is so designed for
speed. When ran in a cascade, it will process all image patches first, and pass through only
the patches that have high confidence values. The architecture of the tiny network is shown
in Figure 3. It reduces the massive computational time that is needed for a sliding window
detector to evaluate a full DNN at all candidate locations and scales. The combination of
these two deep networks works 80 times faster than the original sliding window. While not
true real-time, this simple method obviously saves a large amount of computations and is a
viable solution for offline processing, as well. This speedup is also a crucial component in
achieving real-time performance in our fast cascade method, described below.

3.1 Fast Deep Network Cascade
Deep network approaches, are very accurate, as seen later in our experiments, but also slow.
Benenson et al. [4] introduced a cascade-based approach that can achieve an impressive 100

Citation
Citation
{Angelova, Krizhevsky, and Vanhoucke} 2015

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Sermanet, Kavukcuoglu, Chintala, and LeCun} 2013

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Sermanet, Kavukcuoglu, Chintala, and LeCun} 2013

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{Giusti, Ciresan, Masci, Gambardella, and Schmidhuber} 2013

Citation
Citation
{Iandola, Moskewicz, Karayev, Girshick, Darrell, and Keutzer} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Angelova, Krizhevsky, and Vanhoucke} 2015

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Angelova, Krizhevsky, and Vanhoucke} 2015

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 5

or 135 frames per second. We propose here a hybrid approach that will combine the best
of both approaches. More specifically, we employ the soft-cascade from Benenson et al. [4]
to evaluate all patches in an image and reject the easy ones. The VeryFast cascade quickly
starts to reduce recall with each stage, and, although fast, produces a high average miss rate
in the end [6]. Our goal is to be able to eliminate many patches and at the same time keep the
recall high. For that purpose we used only 10% of the stages in that cascade. Specifically,
we use a cascade of only 200 stages, instead of the 2000 used in the original work.

We note that our network is trained using the publicly available ‘cuda-convnet2’ code
provided by Krizhevsky [1] and fast cascade follows the GPU implementation provided by
Benenson et al. [2, 4], making our approach easily accessible for re-implementation and use.

3.2 Runtime
We measure the runtime on a standard NVIDIA K20 Tesla GPU. The soft-cascade takes
about 7 milliseconds (ms). About 1400 patches are passed through per image from the fast
cascade. The first stage of the cascade runs at 0.67 ms per batch of 128, so it can process the
patches in 7.3 ms. The second stage of the cascade (which is the baseline classifier) takes
about 53ms. The overall runtime is about 67ms per 640x480 image, which is 15 frames per
second. Previous methods, e.g. Luo et al. [25] have similarly employed a hybrid approach,
HOG-based cascade and a deep network at the bottom of the cascade, but their runtime is
about 1-1.5 seconds also on GPU, which is 22 times slower.

3.3 Implementation details
Pretraining. We make use of pre-training, that is, the weights are initialized from the
weights of a network that has been trained on Imagenet. This is standard practice for deep
networks, as the number of parameters is much larger than the available data for training. We
compared experimentally to a network trained without pre-training, and observed a positive
effect on the accuracy. Other works have noted similar effects, and since pretraining is easy
to incorporate, it is a preferred choice in our work and others [19].

Data generation. A standard procedure for data generation is used, in which we crop a
square box around pedestrian examples. At the time of data generation, the cropped square
images are resized to 72x72. Additional random crops of size 64x64, to match the input size
of the network, are taken at each iteration during training of the DNN. This is a standard data
augmentation technique for training convolutional networks and allows more diverse ‘views’
of the training examples. The tiny network follows the same procedure, with an additional
resizing of the input. We further collect hard negatives, which is important because the
initial generated dataset is sampled uniformly from the available examples, and contains a
large fraction of easy examples. Additionally, we eliminated the pedestrian examples that
are smaller than 10 pixels in width, as these examples are indistinguishable when seen as
individual patch and are not useful for methods that do not apply motion (as is ours).

4 Experimental evaluation
4.1 Datasets
We evaluated our results on the now standard Caltech Pedestrian detection dataset [12], as
this dataset serves as a standard benchmark for pedestrian detection methods. We further
consider additional pedestrian datasets. Details are below.

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{cud}

Citation
Citation
{dop}

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

6 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

10−3 10−2 10−1 100

.20

.30

.40

.50

.64

.80

1

Performance on Caltech−USA test set

false positives per image

m
is

s
ra

te

37.87% SDN
35.85% LFOV
31.11% DeepCascade
30.17% DeepCascadeID
29.24% SpatialPooling
26.21% DeepCascadeED

Figure 4: Results of our DeepCascade methods on the Caltech test data for pedestrians. The
best state-of-the-art method (SpatialPooling) and the best state-of-the-art Deep Networks
methods SDN, LFOV are shown for comparison. All other methods are shown in Table 1.
Our network performs much better in the area of the curve with small number of false posi-
tives, which is the target area for a practical pedestrian detection system.

Caltech dataset. The Caltech dataset contains about 50,000 labeled pedestrians. The
dataset is collected from a dashboard color camera and contains suburban and city scenes.
In our experiments we used about two thirds of the available pedestrians as some of them are
of very small sizes and poor quality. We further generated about 4M negative examples.

Independent pedestrian dataset. We independently collected pedestrian dataset which
is comparable in size to the Caltech one. It contains higher quality images of pedestrians due
to the better resolution of the cameras used. We wanted to measure performance when not
training on the Caltech data, but on an independent dataset of similar size.

Extra pedestrian dataset. We complemented the Caltech training set with additional
examples to further experiment with the effects of adding more data. This dataset consists of
the Caltech training dataset as above, plus the publicly available ETH [16] and Daimler [15]
pedestrian datasets. The Daimler dataset [15] contains only grayscale images and the ETH
dataset [16] is collected from a mobile platform, in this case a stroller.

4.2 Evaluation of the Fast Deep Network Cascade

In our evaluation, we use the training and test protocols established in the Caltech pedestrian
benchmark and report the results by measuring the average miss rate as prior methods did.
We use the code provided in the toolbox of this benchmark [12] to do the evaluation.

We first evaluate the performance of the Fast Deep Network Cascade as described in
Section 3.1. Our results are summarized in Table 1, where we list the current state-of-the-art
pedestrian detection methods. Figure 4 shows the performances of our DeepCascade algo-
rithm, as compared to the most relevant state-of-the-art methods. We tested on pedestrians

Citation
Citation
{Ess, Leibe, Schindler, , and van Gool} 2008

Citation
Citation
{Enzweiler and Gavrila} 2009

Citation
Citation
{Enzweiler and Gavrila} 2009

Citation
Citation
{Ess, Leibe, Schindler, , and van Gool} 2008

Citation
Citation
{Dollar, Wojek, Schiele, and Perona} 2009

ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 7

Dataset Avg. miss rate FPS
Roerei [5] 46.13 1
MOCO[7] 45.5
WordChannels [9] 42.3 16
JointDeep[29] 39.3
MT-DPM+Context [40] 37.64
ACF+SDt [34] (w. motion) 37.3
SDN [25] 37.8 0.67
LFOV [3] 35.8 3.6
InformedHaar [42] 34.6 0.63
Hosang et al. [22] 32.4
SpatialPooling [31] 29.0 0.13
Hosang et al. (w. extra data) [22] 23.3
SpatialPooling+/Katamari (w. motion): [6, 31] 22.0
DeepCascade 31.11 15
DeepCascadeID on indep. data 30.17 15
DeepCascadeED w. extra data 26.21 15

Table 1: Summary of results of the DeepCascade methods compared to the state-of-the-art
methods. Our method is the only one that has a low average miss rate and runs in real-time,
at 15 frames per second (FPS).

of at least 50 pixels (’reasonable set’). Our fast deep network cascade, trained on Caltech
is denoted as DeepCascade. We denote DeepCascadeID and DeepCascadeED, the cascade
when trained on independent dataset and when trained on the extra dataset. Compared to
the state-of-the-art, we can see that our methods with average miss rates of 31.11%, 30.17%,
and 26.21%, outperform most approaches, including all deep learning-based ones. The only
exception are the approaches that use additional motion features SpatialPooling+ and Kata-
mari [6, 31] which both perform at 22%. A recent method of Hosang et al. [22] reported
very competitive methods ranging from 32.4% to 23.3% for various scenarios, including pre-
training and extra data (results available after preparation of our manuscript). This method
directly applies DNNs in a sliding window fashion which is very slow in practice. The Deep-
Cascade approach, is outperformed by the SpatialPooling method that directly optimizes the
area under the curve and by the recent method of [22]. The SpatialPooling method performs
better than most other methods for very high false positive values, and this part of the curve
is not useful for practical applications. For example, for driving assistance applications, the
goal is to reduce the false alarms as much as possible because they may cause unexpected or
dangerous behavior of the vehicle.

When looking at the performance of our DeepCascadeID method, which is not trained on
Caltech, we can see that it is competitive with the best methods that are trained on Caltech
data. When comparing to prior methods that use an independent dataset only, we can see
the performance of our deep-net based system is even more impressive. For example, when
training on the KITTI pedestrian dataset [18], the best known average miss rate is 61.2%,
whereas when training on INRIA [10], the average miss rate is 50.2% [6]. Both miss rates
are much higher than 31.1% of our method. Our model with extra data (DeepCascadeED)
is much better and outperforms the state-of-the-art methods on this benchmark and achieves
a 26.2% average miss rate. This points to the strengths of DNNs, namely that more data

Citation
Citation
{Benenson, Matthias, Tuytrlaars, and Gool} 2013

Citation
Citation
{Chen, Ding, Xiao, and Han} 2013

Citation
Citation
{Costea and Nedevschi} 2014

Citation
Citation
{Ouyang and Wang} 2013{}

Citation
Citation
{Yan, Zhang, Lei, S.Liao, and Li} 2013

Citation
Citation
{Park, Zitnick, Ramanan, and Dollar} 2013

Citation
Citation
{Luo, Zeng, Wang, and Tang} 2014

Citation
Citation
{Angelova, Krizhevsky, and Vanhoucke} 2015

Citation
Citation
{Zhang, Bauckhage, and Cremers} 2014

Citation
Citation
{Hosang, Omran, Benenson, and Schiele} 2015

Citation
Citation
{Paisitkriangkrai, Shen, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2014

Citation
Citation
{Hosang, Omran, Benenson, and Schiele} 2015

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Paisitkriangkrai, Shen, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2014

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Paisitkriangkrai, Shen, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2014

Citation
Citation
{Hosang, Omran, Benenson, and Schiele} 2015

Citation
Citation
{Hosang, Omran, Benenson, and Schiele} 2015

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

8 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

Dataset Average miss rate
DNN-only cascade of DNNs 35.90
DNN-only cascade, indep data 32.52

Table 2: Average miss rate comparison for the DNN-only cascade of DNNs. The DNN-only
cascade is run with a less dense sampling.

can eliminate engineering of special features. More specifically, we see that more and high
quality data can give similar or better results as do well engineered features, and obtain
outstanding performance.

Apart from achieving very good accuracy, our method is much faster and runs at 15
frames per second, which is real-time performance. Other real-time algorithms, we are aware
of, VeryFast [4] at 100 FPS and WordChannels [9] at 16 FPS (on GPU) have high average
miss rate of 50% and 42%, respectively.

To gain more understanding of the behavior of the system, we visualize the activations of
each of the stages of the DNN-only cascade, respectively the first tiny network and the final
stage, Figure 5. Figure 6 visualizes example detections on the Caltech test data of the fast
cascade DNN method when trained on Caltech data (top) and when trained on Independent
data (bottom). As we can see, although, the networks are trained on non-overlapping data,
they perform quite similarly qualitatively, as well.

4.3 Evaluation of the deep net-only cascade
We investigate in this section the performance of the cascade that involves only the two deep
networks. Table 2 shows the performance of the DNN-only cascade. We also include results
when trained on the Independent data and see that it has very good performance, similar to
the fast cascade. We note that the results of both DNN-only cascades are also better than
all prior methods with the exception of SpatialPooling [31] and the motion feature-based
ones [6]. The results of this cascade are slightly worse in terms of average miss rate, than the
fast cascade, because a coarser sampling is applied here (every 4 pixels). We chose to use a
coarser sampling to optimize for speed. It is clear, though that more dense sampling can be
reasonably expected to produce results comparable or better than the DeepCascade.

4.4 The effects of pre-training
Since starting from a pre-trained model on the ImageNet dataset is very convenient, as it
allows the method to converge faster and/or use less data to achieve good results, we inves-
tigated here what effect pre-training has for this particular task. In summary, we find that
pre-training is helpful by a small amount. We have observed a very similar trend in several
other unrelated image recognition and detection problems [20, 35].

When we compared the pretrained and the non-pretrained models, the model that is
trained without pre-training in the fast cascade obtained a larger average miss rate of by
3.27%. In terms of precision and recall, we observed that its precision is much poorer, for
similar recall values. Figure 7 visualizes the filters that have been learned in the first convolu-
tional layer with and without pre-training. As seen, the filters that have been trained without
any pre-training are actually resembling of low level filters that are common in the dataset for
pedestrian detection. Conversely, the filters learned with pre-training are more general and
do not change significantly from their initialization. However, as noted above, pre-training
does seem to help in the final performance. Our observation is that the pre-trained model

Citation
Citation
{Benenson, Matthias, Tomofte, and Gool} 2012

Citation
Citation
{Costea and Nedevschi} 2014

Citation
Citation
{Paisitkriangkrai, Shen, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2014

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 9

Figure 5: Left: Activations for the tiny deep neural network for different input examples.
Each panel shows the convolutional layer, the normalization and pooling, then the 1x1 con-
volutional one and finally the fully-connected one. Right: Activations for the baseline deep
neural network for an input example. Only the convolutional layers are shown.

Figure 6: Example detections of the Fast Cascade of DNNs on the Caltech test data. The
top row corresponds to detections with a model trained on Caltech data, the bottom row is
for a model trained on Independent data. Interestingly, the two models often make similar
mistakes, although they are trained on non-overlapping datasets (see the right-most column).

is more successful in eliminating false alarms, which may indicate that although the filters
without pre-training are better at detecting pedestrians, the filters trained on 1000 diverse
object categories are better to discriminate and eliminate what is not a pedestrian. We also
included the learned filters when training on the larger extra data. Comparing to the one
trained on Caltech only, the former filters seem to be more expressive, which can also result
from having more diverse training data. We naturally observed that the models trained on
extra data perform better.

Discussion. While using additional data makes the method not strictly comparable to
others, we observe notable improvements, which have been obtained with no special tuning
or changes in the infrastructure. Additionally, we observed that using independent, similar
size, but better quality data, can achieve better results, even when possibly paying a penalty
for mismatch between the training and test data. These findings can be useful for future
works which may want to focus on getting more and diverse high quality data.

10 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

Figure 7: The filters learned by the first convolutional layer when training on the Caltech
training set with pre-training (left) and on the same dataset without pre-trainig (middle);
training on the extra pedestrian dataset without pre-training produces the filters at the right.
The non-pretrained filters resemble parts of pedestrians, but the pre-trained filters seem to be
better at distinguishing what is not a pedestrian and better handle hard negatives.

5 Conclusion and future work

We have presented a Deep Neural Network-based algorithm for pedestrian detection which
combines the ideas of fast cascade and a deep network. It is simple to implement as it is based
on open source implementations. Our method ranks among the best ones for pedestrian
detection and runs in real-time, at 15 frames per second. This is the only method we are
aware of that is both real-time and achieves high accuracy.

We hope this method will help future works to continue to improve pedestrian detectors
in terms of both accuracy and speed so that more methods can be usable for pedestrian
detection for real-time applications. Future work can include increasing the depth of the
deep networks cascade by adding more tiny deep networks and exploring the efficiency-
accuracy trade-offs. We further plan to explore using motion information from the images,
because clearly motion cues are extremely important for such applications. One challenge is
to be able to do this at sufficiently high computational speeds.

References
[1] https://code.google.com/p/cuda-convnet/ A. Krizhevsky, Cudaconvnet.

[2] https://bitbucket.org/rodrigob/doppia Doppia: open source implementation of pedes-
trian detection algrithms.

[3] A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with a large-field-
of-view deep network. ICRA, 2015.

[4] R. Benenson, M. Matthias, R. Tomofte, and L. Van Gool. Pedestrian detection at 100
frames per second. CVPR, 2012.

[5] R. Benenson, M. Matthias, T. Tuytrlaars, and L. Van Gool. Seeking the strongest rigid
detector. CVPR, 2013.

[6] R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten years of pedestrian detection,
what have we learned? 2nd Workshop on Road scene understanding and Autonomous
driving, ECCV, 2014.

[7] G. Chen, Y. Ding, J. Xiao, and T. Han. Detection evolution with multi-order contextual
co-occurrence. CVPR, 2013.

ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES 11

[8] E. Coelingh, A. Eidehall, and M. Bengtsson. Collision warning with full auto brake
and pedestrian detection - a practical example of automatic emergency braking. 13th
International IEEE Conference on Intelligent Transportation Systems (ITSC), 2010.

[9] A. Costea and S. Nedevschi. Word channel based multiscale pedestrian detection with-
out image resizing and using only one classifier. CVPR14, 2014.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR,
2005.

[11] Y. Ding and J. Xiao. Contextual boost for pedestrian detection. CVPR, 2012.

[12] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark.
CVPR, 2009.

[13] P. Dollar, R. Appel, and P Perona. Crosstalk cascades for frame-rate pedestrian detec-
tor. ECCV, 2010.

[14] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of
the state of the art. PAMI, 2012.

[15] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Survey and experi-
ments. IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), 2009.

[16] A. Ess, B. Leibe, K. Schindler, , and L. van Gool. A mobile vision system for robust
multi-person tracking. CVPR, 2008.

[17] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part based models. PAMI, 2010.

[18] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI
vision benchmark suite. CVPR, 2012.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. http://arxiv.org/pdf/1311.2524v4.pdf,
2013.

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. CVPR, 2014.

[21] A. Giusti, D. Ciresan, J. Masci, L. Gambardella, and J. Schmidhuber. Fast image
scanning with deep max-pooling convolutional neural networks. ICIP, 2013.

[22] J. Hosang, M. Omran, R. Benenson, and B. Schiele. Taking a deeper look at pedestri-
ans. CVPR, 2015.

[23] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv technical report,
2014.

[24] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. NIPS, 2012.

12 ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES

[25] P. Luo, X. Zeng, X. Wang, and X. Tang. Switchable deep network for pedestrian
detection. CVPR, 2014.

[26] J. Martin, D. Vazquez, A. Lopez, J. Amores, and B. Leibe. Random forests of local
experts for pedestrian detection. ICCV, 2013.

[27] M. Matthias, R. Benenson, R. Timofte, and L. Van Gool. Handling occlusions with
franken-classifiers. ICCV, 2013.

[28] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian detection
using wavelet templates. CVPR, 1997.

[29] W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. ICCV, 2013.

[30] W. Ouyang and X. Wang. Single pedestrian detection aided by multi-pedestrian detec-
tion. CVPR, 2013.

[31] S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Strengthening the effectiveness
of pedestrian detection. ECCV, 2014.

[32] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian detection system.
Proceedings of Intelligent Vehicles, Stuttgart, Germany, 1998.

[33] D. Park, D. Ramanan, and C. Folwkes. Multiresolution models for object detection.
ECCV, 2010.

[34] D. Park, L. Zitnick, D. Ramanan, and P. Dollar. Exploring weak stabilization for motion
feature extraction. CVPR, 2013.

[35] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an
astounding baseline for recognition. CVPR Workshop on Deep Learning in Computer
Vision, 2014.

[36] K. Rohr. Incremental recognition of pedestrians from image sequences. CVPR, 1993.

[37] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with
unsupervised multi-stage feature learning. CVPR, 2013.

[38] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and
appearance. ICCV, 2003.

[39] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. CVPR,
2009.

[40] J. Yan, X. Zhang, Z. Lei, S.Liao, and S. Li. Robust multi-resolution pedestrian detection
in trafïňĄc scenes. CVPR, 2013.

[41] X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual deep learning for pedestrian
detection. ICCV, 2013.

[42] S. Zhang, C. Bauckhage, and A. Cremers. Informed haar-like features improve pedes-
trian detection. CVPR, 2014.

