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Abstract— Pedestrian detection is of crucial importance to
autonomous driving applications. Methods based on deep
learning have shown significant improvements in accuracy,
which makes them particularly suitable for applications, such
as pedestrian detection, where reducing the miss rate is very
important. Although they are accurate, their runtime has been
at best in seconds per image, which makes them not practical
for onboard applications. We present a Large-Field-Of-View
(LFOV) deep network for pedestrian detection, that can achieve
high accuracy and is designed to make deep networks work
faster for detection problems.

The idea of the proposed Large-Field-of-View deep network
is to learn to make classification decisions simultaneously
and accurately at multiple locations. The LFOV network
processes larger image areas at much faster speeds than typical
deep networks have been able to, and can intrinsically reuse
computations. Our pedestrian detection solution, which is a
combination of a LFOV network and a standard deep network,
works at 280 ms per image on GPU and achieves 35.85 average
miss rate on the Caltech Pedestrian Detection Benchmark.

I. INTRODUCTION

Pedestrian detection is naturally very important in applica-
tions such as driving assistance or autonomous driving. These
applications are becoming more and more mainstream with
several auto makers already offering pedestrian detection
warning systems [1], [2], [3], and others planning to have
fully integrated such systems within a couple of years [4].

Pedestrian detection has also seen intense development
in computer vision [5], [6], [7], [8], [9], incorporating
various classification algorithms to recognize pedestrians:
Adaboost, SVM, Decision Forests [7], [8], [9]. Recently,
deep learning methods have become the top performing
approaches for pedestrian detection [10], [11], [12], and have
also shown overwhelmingly good results in other computer
vision applications [13], [14], [15], [16], and in other do-
mains [17], [18], [19]. Deep networks are also versatile, as
they do not need task-specific or hand-crafted features and
can perform equally well on both rigid (e.g. traffic signs,
cars) and deformable object categories without having to
explicitly model parts and their relationships. Furthermore,
deep networks readily transfer knowledge between domains
by training on one domain and improving results by fine-
tuning in another [15]. However, their main drawback has
been the speed of classification.

The task of detection is more complex than classification
alone, as it is required to also localize where the object
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is, including its extents and scale. One of the most com-
mon approaches for detection has been the sliding win-
dow approach [20], [5], in which a classifier is applied
to a window of pre-specified size, then the same task is
repeated for the neighbouring window and so on. A cascade-
of-classifiers [20] is typically employed to save time, by
applying simpler models first and complex models on only
the hardest patches. Irrespective of the of use of a cascade, a
sliding-window style detection requires thousands of classi-
fications per image, which increases the computational time
of the individual classifier by the number of locations tested.

We propose an alternative way to perform detection that
is based on deep networks. Instead of exhaustively sliding
a classifier, we deploy a Large-Field-Of-View deep neural
network that understands larger areas of the image, and thus
examines fewer positions in the image. The LFOV deep
network is trained so that it can do multiple detections
simultaneously at multiple locations, Figure 1. As a result,
much fewer of those classifiers can be distributed in the
image to fully cover it for detection. Secondly, because of
its deep architecture, the LFOV network can reuse compu-
tations, that is, the computations for detecting pedestrians
at multiple locations are shared within the network. It also
can take advantage of context, due to the large field of view
of operation. Thirdly, the LFOV deep network is designed
so that it is faster than if we would have deployed separate
classifiers with the same input dimensions and same capacity
(Section III-E). In combination with a standard deep network,
the LFOV classifier is much faster than any prior deep
learning techniques and achieves competitive performance.

The contributions of this work are as follows: The main
objective of the proposed LFOV deep network is to provide
an algorithmic speedup for the very powerful but otherwise
extremely slow deep networks. Our end-to-end pedestrian
detection solution, which is entirely based on deep learning,
provides more than 60x speedup over the single deep network
approach, for both CPU and GPU implementations. This
is done with a very small loss in accuracy compared to a
standard deep learning method. Secondly, we show that a
deep network can be successful at simultaneously making
decisions at multiple locations. Lastly, we demonstrate that
the LFOV deep network can be made faster than individual
smaller networks. This realization is very important to be
able to achieve a speed advantage. We also show that our
solution is very competitive with the state-of-the-art in both
accuracy and computational time, by running the whole
detection at 280 ms per image on an NVIDIA Tesla K20
GPU, whereas prior such methods are on the order of
seconds [12].



Fig. 1. Large-field-of-view deep classifier is a deep network that is trained
to detect simultaneously multiple objects on a regular grid. At a single scale,
a larger portion of the image is taken as input. The output label is here 16
dimensional, where each position encodes whether there is a pedestrian in
the corresponding 4x4 grid cell of the input image. For example, here two
pedestrians can be discovered by the application of a single LFOV classifier,
while all possible 16 locations are tested simultaneously. The LFOV is run
at multiple scales, similar to other detectors.

The LFOV deep network alone can also be viewed as
a new way to generate proposals for a detection task that
requires precise localization, such as pedestrian or traffic sign
detection. The LFOV network, when used as a mechanism
for generating proposal boxes, takes about 100ms per image
on GPU, and also has very high recall for pedestrian detec-
tion (Section IV-B), which is hard to achieve through other
standard bounding-box proposal methods.

We implemented our LFOV classifier using the open
source system [13], and provided all details to the best of
our knowledge (Section III-A), so that they can be easily
reproduced. We submitted our results to the open pedestrian
detection benchmark [21], so they can be directly comparable
with others.

II. PREVIOUS WORK

Pedestrian detection has been a topic of many recent
works, many of which have had significant impact [22], [5],
[23], [6], [24], [7], [8], [25], [9]. The algorithm of Viola and
Jones for face detection, which proposed fast features and
cascade of Adaboost classifiers [20], has been applied to
pedestrian detection [26], generating interest in this domain
too. Dalal and Triggs [5] developed the HOG features, again
for the purposes of pedestrian detection. This work has been
influential to many other computer vision problems.

An important recent work has been of Dollar et al [24],
who developed a publicly available toolbox and a bench-
marking dataset [6], [27]. As a result, many present and
future methods can be evaluated in the same setting. Another
important work has been on increasing the speed of pedes-
trian detection with proposed methods reaching speeds of
100 to 135 fps [7]. These methods are the fastest reported for

pedestrian detection. A lot of methods have introduced or ex-
perimented with a large variety of features, thus pushing the
progress of pedestrian detection and steadily improving the
state-of-the-art [9]. Some methods, based on the Deformable
Parts Models, have also been successfully applied in the
context of pedestrian detection [28], [29]. Other methods
have explored multi-scale solutions, or employed context or
motion features [28].

Deep learning methods have been applied to pedestrian
detection, improving on the detection accuracy over many
prior methods [10], [11], [12]. However, their run-time has
been somewhat slow, i.e. about 1-1.5 seconds per image [12],
or even reaching runtimes in the order of minutes [30].
Our method is also based on deep networks, and because
of that is very accurate, and at the same time is several
times faster than other deep network methods. Prior deep
networks have used edge filters to initialize weights rather
than learning from raw pixels values, or have used deep nets
in combination in a deformable-parts model style to model
parts [10]. We train our deep network LFOV classifier from
raw pixel values and without hand-made or any special fea-
tures, and we show that it can achieve competitive results. In
addition, our framework allows for simultaneous processing
at multiple locations, and thus reuses computation and takes
advantage of context, whereas prior methods take advantage
of context by running separate classifiers, e.g. for cars [29],
or other pedestrians [31].

In the domain of object detection, the sliding window
detection has been the most common. It essentially samples
the image densely and evaluates all patches and is often
applied in a cascade-style, i.e. progressively employes harder
classifiers. Our approach is closer to the traditional sliding
window cascades as it will de facto examine all locations. It
differs by offering a larger field of view to make its decision,
and thus speed up the detection.

An alternative to a cascade approach is to first identify
proposal boxes [32], [33]. Previous methods that apply
proposal windows are much slower (in tens of seconds)
and have not been applied to applications that demand
accurate localization. For example, in the most recent work
of Girshick et al [33], detection with proposal boxes takes 53
seconds per frame for a CPU implementation and 13 seconds
per frame on GPU. When using the LFOV classifier as a
mechanism for generating proposal boxes, it runs about 100
ms per image, and it can recall a large portions of pedestrians,
which typically take very small areas of the image.

Recent work has focused on reducing the computational
time needed for detection of deep nets [34], [35]. These
methods optimize detection by reusing computation or make
computations more efficient. These approaches are still rel-
atively slow, more than one second per image, and not
suitable for time-sensitive problems. Instead of speeding up
the computations after the models are learned, our LFOV
classifier is designed to reuse computations at the time of
training.



Fig. 2. Procedure for generating examples for training for the LFOV classifier: each of these examples is generated by positioning a pedestrian in the
center of each cell of a 4x4 grid, in as many cell positions as possible.

III. LARGE-FIELD-OF-VIEW DEEP NETWORK

The Large-Field-of-View (LFOV) classifier is a deep neu-
ral network which works on larger areas of the image as
input. For the input it takes, e.g. the bottom left image of
Figure 1, it is trained to output whether there is a pedestrian
at multiple locations. To be specific, we subdivide the input
image into a 4x4 grid and for each grid cell, the network
learns whether there is a pedestrian that is centered within
this cell or not (Figure 1). The LFOV deep neural network
is applied to the input (details provided in Section III-
A) and the output that the network is going to learn is
a 16 dimensional output, in which each output dimension
corresponds to one cell in the grid, and its interpretation
is whether this cell has a pedestrian or not. In fact, for
convenience we used a 17-dimensional output, details are
below.

A. LFOV architecture

The Large-Field-of-View (LFOV) classifier is going to
be used as a first stage in generating proposal boxes for
pedestrian detection. We implemented it here as a very
simple convolutional network. We have also designed it so
that its computational time is very fast. The architecture is
inspired by the original work of Krizhevsky et al [13] but is
much simpler.

More specifically the LFOV classifier works on 64x64
RGB image input and has the following layers:

- A 5x5 convolutional layer with a filter depth of 32, with a
stride of 2. It is followed by a normalization layer, as defined
by [13] and a pooling layer (3x3, stride of 2).

- A 1x1 convolutional layer of depth 32. This type of layer
was first introduced here [36] and is added as it essentially
adds depth to the full network at very little computational
cost.

- A fully connected layer of depth 512. It is followed by
a standard dropout layer [37] of 0.5 dropout rate.

- Finally, a fully connected layer of 17 outputs is attached
at the end, to which a cross-entropy cost is applied. Each

output is responsible for one of the cells in the 4x4 grid, plus
an additional output for detecting a pedestrian that spans the
full image. Although we did not have to add the pedestrian
that takes the full image, we found it useful to seamlessly
detect pedestrians at this higher resolution as well.

All layers, except the 1x1 convolutional one, are followed
by a rectified linear unit. Figure 3 visualizes the architecture.

The main idea of LFOV classifier is that the deep network
classifier, through several layers of inference, is capable of
learning about the presence of pedestrians at different smaller
scales. Indeed we observed that it can learn very successfully
the presence of pedestrians at these lower scales, but at the
same time the pedestrian at 1x1 grid is learned with higher
success rate than the ones at the 4x4 grid. Furthermore, in
our implementation, to save time, we use an input image
size of 64x64, so we are effectively detecting pedestrians
of very low resolution, 16x16, in each grid cell. We note
here that larger and more complex deep network can also
be directly trained over the 4x4 grid inputs. We did not
pursue that approach, because applying a LFOV classifier
at full resolution would be too slow for applications such as
pedestrian detection, which strive for at least several frames
per second in processing time.

Note that, as our model uses fully-connected layers in
the design, the decision about a pedestrian in a cell will
be dependent on the information that is available in the
neighbouring cells and the whole grid, which will provide
context. That said, the design of our classifier is block-wise,
so we will not always have full context available e.g. the most
top-right pedestrian may not have full context. We could
avoid that by testing overlapping decisions, but we chose
not to, in the interest of speed.

B. Training the LFOV network

Figure 2 visualizes how we generated examples for train-
ing the LFOV network. More specifically, for each positive
example, we generate all possible square boxes around the
pedestrian, so that the person falls into all of the cells of the
4x4 grid, where possible. Pedestrians that are not centered



Fig. 3. Architecture of the Large-field-of-view (LFOV) deep network which
runs as a first stage of our pedestrian detection. We use ‘s’ to denote the
step size, and ‘d’ to denote the filter depth per layer.

in a cell are not considered as positive examples. Figure 2
shows examples that are used as inputs to our network. Note
that although the pedestrians may look quite hard to spot
in those images at a first glance, our LFOV network can
successfully learn to detect them (even when rescaled so
that each pedestrian is approximately 16x16 pixels in size).
Section IV-B has details about the successful recall of the
trained LFOV classifier, i.e. what percentage of the available
pedestrians in all images have been found by LFOV classifier
on the test data. As the pedestrians came at different sizes,
we generate data at different scales, which is later rescaled
to the same size network. Similarly, at detection time, the
network is applied at multiple scales.

To generate negative examples, we sampled randomly
across the image and included examples that do not have
pedestrians in any of the boxes. Pedestrians that are in-
between grid cells are not included as either positive or
negative. Because of this, for the last stage of the classifier,
we harvested hard negative examples, by running the trained
classifier and including additional negative examples that are
not classified correctly. This is necessary because the random
sampling of negative examples will generate too many and
‘too easy’ examples, which do not benefit the classifier.

Pre-training. As is standard with deep neural networks,
we used pre-training from an equivalent network that was
trained on Imagenet dataset [13]. Pre-training was applied
only to our baseline (last-stage) classifier. While this is not
a strict requirement, because of the richness of the features
obtained from a more diverse dataset, pre-training can be
helpful for tasks for which training data may not be fully
sufficient. We observed a very small improvement with pre-
training.

C. Detection with LFOV

When detecting with a regular sliding window classifier
the step size at which each classifier is tested is very
important. For too large step sizes, one can miss important
detections, conversely, small sizes, e.g. 1 or 2 pixels will
make the processing extremely slow. We choose a step size
of 4 pixels for our baseline algorithm, as a good tradeoff for
all our evaluations. It is likely that better results are achieved
with more dense sampling, both in terms of final accuracy
and in terms of increase in pedestrian recall.

The LFOV classifier was implemented to use the same step
size as dense sampling would. Let us assume that the LFOV
network is implemented with a 4x4 grid and is considering
an input of size 64x64. This means that within each grid
cell we are considering detecting a pedestrian of size 16x16.
When applying the LFOV classifier, for this example, we
can see that at positions 0, 16, 32, and 48 in both horizontal
and vertical directions, we would detect simultaneously a
pedestrian if there is one. However, for the desired step size
of 4 pixels, in this example, we would not very successfully
detect a pedestrian, where its top left corner starts at positions
4, 8, 12, 20, etc. To do that we actually apply a local sliding
window to cover all displacements, so as to test all locations
at the desired step size. Note however, because of the LFOV
trick, we only need to test these displacements to cover the
top left grid cell and the LFOV classifier will automatically
be testing all step sizes for all the grid cells necessary. After
doing the local dense sampling of steps 0, 4, 8, 12, the next
step size we need to test with the LFOV classifier will be
directly 64 rather than 16.1 In effect, for this example, the
step sizes the LFOV classifier needs to take are as follows:
0, 4, 8, 12, 64, 68, 72, 76, 140, etc.

D. LFOV Cascade

Since we need the final pedestrian detector to work fast,
we are going to use a cascade of deep networks, where the
LFOV classifier is the first stage.

Our algorithm consists essentially of 3 stages: 1) A LFOV
classifier, Figure 3, which works at larger blocks of the
image and is specifically designed to be fast (as described
in Section III-A). Its purpose is to generate proposal boxes
where pedestrians can be detected. 2) A small deep network
that uses the same deep network model architecture as the
LFOV (as shown in Figure 3), but works on 16x16 image
inputs instead of the large-field 64x64 inputs. This classifier
is applied to all candidate boxes that the LFOV produces
as positive classifications. It also has a single 1-dimensional
output, which determines whether the input image contains
a pedestrian or not. 3) The last stage is a standard deep
network as in Krizhevsky et al [13]. Naturally it is applied
to all candidates that the previous stages have generated.
The middle classifier is only needed for speed, and can lose
a bit of precision (as shown later in our experiments). The
architecture of the last stage is described in Figure 4.

The first two stages are trained to have high recall.

E. Design of the Large-Field-of-View Network

The most important component of the LFOV deep network
is that it is several times faster than the cumulative work of
standard deep networks of the same capacity. This means that
the LFOV network is beneficial in terms of speed compared
to other deep network models. Here are the details.

Among the models at the first stage, out fastest model for
16x16 input size (of 1 convolutional and 1 fully connected

1In theory the next step can be at 64+12=76 since the last grid cell
would have covered these additional step sizes, but our implementation is
more straightforward and did not take advantage of that possible speedup.



Fig. 4. Architecture of the deep network classifier which runs as a third
and final stage of our detection algorithm.

layer) which is trained to have sufficiently high recall,
works at 0.5 milliseconds per 128 patches on GPU (the
model we actually used had an additional 1x1 convolution
and is slower, taking 0.67 milliseconds). An image of this
size typically has about 80K candidates. This makes the
processing of this image at least 80000*0.0005=40 seconds.
When we divide by 128, we get 40/128 = 0.3125 seconds,
which means it needs at least 300 ms to apply the fastest
possible individual network (it will take more than 400 ms
for the model with 1x1 convolutions). The LFOV classifier
that can simultaneously localize 16 pedestrians and has 4x4
larger field of view, with the architecture as in Figure 3,
works at 3 msec per 128 input images. Per image we evaluate
4500 large-field-of-view patches, so 4500/128*3=105 msec.
Compare this to the standard classifier, we can see that we
have 3x speedup compared the best timing we can achieve
with the same architecture, but with a standard deep network
classifier. Thus the LFOV classifier has the advantage of
working on the same input (with the same capacity) but
doing that several times faster. This is a key observation in
the design of the LFOV classifier. We note that the quality
of detections for LFOV does not diminish, it achieves its
speedup through reuse of computations, rather than trading
off quality as prior fast detectors [24], [9].

IV. EXPERIMENTAL EVALUATION

A. Caltech pedestrian detection dataset

We evaluated our results on the Caltech Pedestrian de-
tection dataset [6], which has been the main benchmark for
pedestrian detection and a large number of methods have
been evaluated on it [21].

We use the standard training and test protocols established
in the Caltech benchmark and report the results by measuring
the average miss rate, as had prior methods. We use the
code provided in the toolbox of this benchmark [6] to do
the evaluation. The results below are obtained when training
with the standard Caltech-Training dataset for training. Other

works have included additional Inria dataset, but we chose
not to because the Inria dataset is less relevant to pedestrian
detection for autonomous driving. Our baseline classifier has
started training from a model pretrained on Imagenet, as
in [13].

Figure 5 shows the performance of our method in com-
parison to the state-of-the-art methods, using Piotr Dollar’s
evaluation toolbox and results provided therein [6]. We tested
on the Caltech Test set in the ‘reasonable’ setting, as is
standard for all methods. Figure 5 shows the average miss
rate and the false positive rate per image vs. the miss rate,
which follows the standard evaluation protocol. In the interest
of showing less cluttered plot, we visualize only the best
methods and also a number of common methods, as is
suggested by [27]. Table I shows additional details, including
the most recent successful approaches.

As seen in Figure 5, the LFOV pedestrian detector
achieves average miss rate of 35.85%, and is among the best
performing results. When the middle stage of the cascade is
ignored (LFOV-2St), our method performs at 35.31%. The
InformedHaar [38] classifier is the best so far with average
miss rate at 34.6%. We also note that further improvements
have been reported after the preparation of the manuscript,
reaching 29% when training on Caltech and Inria datasets,
and 22% when using additional motion features [39].

Table I provides additional information regarding runtime
and training data and additional approaches. There we focus
on comparable methods that have used primarily Caltech data
as their main training source. The runtime of our method is
280 ms on GPU, which very good, especially considering
that deep network methods have been notoriously slow
to run either on CPU or GPU, especially when applied
to detection. We can notice that most methods have not
considered runtime as very important and did not report it.
Prior deep-learning based methods work at more than one
second per frame. Fast methods, such as WordChannels [40]
or VeryFast [7], which run at more than 16 frames per second
of GPU or CPU, are at the same time not among the best
performing. We also note that prior methods that have used
deep learning techniques [10], [12], use other fast features
such as HOG [5], for early elimination of most patches.
Despite prior deep network-based methods [10], [12] taking
more sophisticated deep learning approaches and applying
much faster features for early elimination, we can see that
our LFOV classifier is both better in accuracy and also 3-5
times faster, compared to [10], [12].

Although we do not use explicitly context to detect pedes-
trians it is implicit in our model since the large network can
in principle observe larger areas of the image (and make use
of context). We can see that our method outperforms others
that have used context. For example, Ouyang and Wang [31]
use two-pedestrian detection to improve on single-pedestrian
detection, Ouyang et al [41] jointly detect two neighbouring
pedestrians. Yan et al [29] use a vehicle detector to help
remove false alarms and improve on the pedestrian detection.
Considering that adding context in prior methods is likely to
increase computational time and slow down the detection, the



TABLE I
COMPARISON OF OUR METHOD TO STATE-OF-THE-ART RESULTS FOR PEDESTRIAN DETECTION, INCLUDING TIME FOR TESTING. WE FOCUS ON

RECENT METHODS THAT USED CALTECH TRAINING DATA AS THEIR MAIN DATA SOURCE.

Method Average miss rate (%) Timing (seconds per image) Training dataset
MultiResC [28] (multires) 48.5 Caltech
DBN-Mut [41] (deep) 48.2 Caltech, Inria
Roerei [9] 46.13 1 Inria
MOCO[42] 45.5 Caltech
MultiSDP [11] (deep, w. context) 45.4 Caltech, Inria + Context
WordChannels [40] (multires) 42.3 0.06 (GPU) Caltech, Inria
MT-DPM [29] 40.5 1 Caltech
JointDeep[10] (deep) 39.3 Caltech, Inria
SDN[12] (deep) 37.9 1-1.5 (GPU) Caltech, Inria
MT-DPM+Context [29] (w. context) 37.64 Caltech + Context
ACF+SDt [43] (w. motion) 37.3 Caltech + Motion
InformedHaar [38] 34.6 1.6 Caltech, Inria
Ours (LFOV, deep) 35.85 0.28 (GPU) Caltech, Pretr.
Ours (LFOV-2St, deep) 35.31 0.55 (GPU) Caltech, Pretr.

Fig. 5. Results on Caltech test data compared to state-of-the-art results in
pedestrian detection. Plots are ordered by their average miss rate.

LFOV classifier has an advantage, as the context is built-in
in the large field of view and no extra computation is needed.
We believe, however, that some additional sources of context,
such as the presence of a vehicle as in Yan et al [29] can
further improve our proposed method. Additionally, motion
information can be quite helpful, e.g. Park et al [43] utilize
motion stabilization to improve the baseline classifier. Since
some pedestrians are extremely hard to identify as individual
examples, without any motion data, we believe that it can
greatly improve our classifier too.

Figure 6 shows some example detections. Here we can see
both successful detections, but also some missed and false
alarms.

B. LFOV network recall

We here compute the average recall each of the stages
our classifier can provide. The first stage (LFOV) can be

viewed as a mechanism for generating proposal boxes, and
we believe it can be suitable for detecting other objects,
e.g. traffic signs. Table II shows the recall of each network
(prior to NMS). The recall measures what percentage of the
available pedestrians in all images have been found by the
classifier on the test data.

As seen, the recall of LFOV deep network is reduced by
adding more stages of the cascade, which is as expected.
At the same time, the cascade is needed for obtaining
speedup. We can also observe that the NMS algorithm is
also contributing to a considerable loss in recall.

C. Timing

We measured the timing of each of the stages on the GPU
and estimated the final runtime2. The LFOV classifier which
is applied at the first stage takes about 105 ms, The second
stage takes about 20-25 milliseconds, depending how many
boxes are sampled. The last stage takes about 150ms, for a
baseline model that runs at about 50 milliseconds per 128
patches. Overall the full LFOV-based detection algorithm
works at 280 ms per frame on the GPU. If, on the other hand,
we apply the baseline model to all input candidate windows,
it will need 30.47 seconds, which is a 108.8 speedup of
the LFOV classifier. For a faster baseline algorithm, e.g.
30ms, we will have 18.2 seconds for the baseline and 220
milliseconds for LFOV, which is 83x speedup. We also
measured the corresponding CPU runtime in both cases.
Table III shows the speedups we can achieve for our classifier
when running on both CPU and GPU (where our CPU
implementation is not optimized and somewhat slow). As
seen the speedups for both are larger than 60x, which is a
very good algorithmic speedup of the LFOV classifier.

We note here that the final runtime is not yet real-time,
and a 2-3 times speedup is desirable. For clarity, we kept our
algorithm and implementation simple. Easy speed ups are
possible in the implementation itself, for example, reusing
computations while doing the sliding of the LFOV classifier,
can probably give large improvements in speed.

2Timings are approximate, since only individual stages’ performance is
measured on the GPU.



TABLE II
RECALL OF EACH STAGE OF OUR CLASSIFIER MEASURED ON THE CALTECH TEST SET. RESULTS AFTER NON-MAXIMUM SUPPRESSION (NMS) ARE

SHOWN AT THE BOTTOM.

Classifier Pedestrian Recall
Baseline (Stage 3) 93.49
LFOV (Stages 1,3) 89.55
LFOV (Stages 1,2,3) 87.08
LFOV w. NMS (Stages 1,3) 82.29
LFOV w. NMS (Stages 1,2,3) 78.01

TABLE III
SPEEDUP OF OUR LFOV DEEP NEURAL NETWORK DETECTOR COMPARED TO THE BASELINE DEEP NEURAL NETWORK.

Classifier Speed CPU (seconds) Speed GPU (seconds)
LFOV (Stages 1,2,3) 122 0.22-0.28
Baseline 7738 18.2-30
Speedup 63 83-108

Fig. 6. Example detections.



V. CONCLUSION AND FUTURE WORK

This paper proposes a Large-Field-of-View classifier,
which is a deep network which processes larger areas of the
image and simultaneously makes decisions of the presence
of pedestrians at multiple locations. The LFOV network is
designed in such a way that it is faster than the cumulative
time of standard deep networks. As a result, it can process
the full image much faster. Our method can be applied at 3.6
fps on GPU for online pedestrian detection, and can also be
valuable as and offline speedup for detection algorithms: it is
a way to reliably detect small objects (such as pedestrians)
without losing much recall and keeping original precision,
and at the same time increasing the speed by more than 60
times.

Deep networks have been shown to be ”large capacity”
classifiers, so future improvements in deeper and more com-
plex networks are bound to yield even more accuracy gains.
So we believe the proposed combination of employing deep
networks for both improved accuracy and for doing more
work, e.g. as in this case for detecting multiple pedestrians
simultaneously, is a novel direction which can allow for new
practical applications.

We demonstrated end-to-end detection solution that is
based entirely on deep neural networks, but the proposed
solution can become even more interesting when the capacity
of the neural networks becomes bigger, i.e. when they can
handle larger inputs. For example, right now we can consider
a 4x larger field of view, and thus getting the neural network
do 16x detections simultaneously. But for networks with even
larger fields of view, one can obtain even more speedups.
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