
Gipfeli - High Speed Compression Algorithm

Rastislav LenhardtI, II and Jyrki AlakuijalaII

IUniversity of Oxford IIGoogle
United Kingdom Switzerland GmbH

rastislav.lenhardt@cs.ox.ac.uk jyrki@google.com

Abstract. Gipfeli is a high-speed compression algorithm that uses back-
ward references with a 16-bit sliding window, based on 1977 paper by
Lempel and Ziv, enriched with an ad-hoc entropy coding for both literals
and backward references. We have implemented it in C++ and fine-tuned
for very high performance. The compression ratio is similar to Zlib in the
fastest mode, but Gipfeli is more than three times faster. This positions
it as an ideal solution for many bandwidth-bound systems, intermediate
data storage and parallel computations.

1 Introduction

Over recent years improvements in memory bandwidth have lagged behind advances
in CPU performance. This puts other parts of the system under pressure and often
makes I/O operations a bottleneck. Gipfeli1 is a new high-speed compression algo-
rithm which tries to address this issue by trading CPU performance used in data
compression for improvements in I/O throughput by reducing the amount of data
transferred. Its goal is to decrease both running-time and memory usage. An overview
of throughput of different I/O components of a computer is given in Table 1.

There are several other high-speed compression algorithms. The main competitors
are Snappy [1] (currently being the key part of the Google infrastructure and some-
times referred to also as Zippy), QuickLZ [2] and FastLZ [3]. The goal of this work is
to have the algorithm with the best compression ratio in this category.

Recent trends and developments in computing often require that we reconsider past
paradigms. Frequency increase of single CPU cores is hindered by physical limitations
and demand for lower energy consumption. However, the overall CPU performance
is boosted by using multi-core CPUs; Intel predicts a many-core era with massive
parallel applications in the near future [4]. This trend is reinforced by significant
growth in data usage by individuals and organisations.

A typical application of massively parallel computation might involve an individual
system with four CPUs, each having six cores, with the shared network storage among
many individual systems. In this scenario, since Gipfeli is designed to work well in

1 Gipfeli is a Swiss name for croissant. We chose this name, because croissants can be compressed well and
quickly.

SATA HDD 7.2k rpm read / write average speed 80 MB/s
Solid State Drives read / write average speed 180 MB/s
Ethernet 1 Gigabit/s maximum speed 128 MB/s
Gipfeli compression speed > 220 MB/s
Gipfeli decompression speed > 350 MB/s

Table 1. Throughput

parallel (see Section 3), the data in Table 1 suggest that speed of network I/O storage
would need to be over 40 Gigabits/s to make Gipfeli compression a bottleneck.

Gipfeli uses backward references, as introduced by Lempel and Ziv in their famous
1977 paper [5], with very light-weight hashing and a 16-bit sliding window. This
has already been suggested in the previous work of Williams [6], Fiala and Greene
[7]. The algorithm consists of two main parts. The first part, LZ77, builds on the
implementation in Snappy with several improvements discussed in Section 3. The
main difference is the second part, which is rare in the area of high-speed compression
algorithms: it is an application of entropy coding. Gipfeli uses a static entropy code
for backward references and an ad-hoc entropy code for literals based on sampling
the input. Sampling is neccessary, because there is not enough time and memory to
read the whole input in order to gather all the statistics and build a conversion table.
We also could not use Huffman codes [8] or arithmetic coding [9], because of their
slow performance.

Gipfeli is open-source and available at http://code.google.com/p/gipfeli/.

Organisation. The paper starts with an overview of the algorithm and a descrip-
tion of the compression format in Section 2. It is followed in Section 3 by the key
features and tricks we implemented and explanations of decisions we made in order to
accelarate the algorithm and make it more useable. In our benchmarks in Section 4,
we compare Gipfeli with other high-speed compression algorithms and consider also
Zlib [10], the industry standard for compression. We run it with the compile-time
option FASTEST switched on to make Zlib run even faster than in the fastest mode
choosable at run-time. In the last section, Section 5, we reflect on the results of bench-
marks and argue why Gipfeli is the best trade-off. Moreover we discuss our real-world
experiment and possible applications.

LZ 77

matching engine

Entropy encoding of commands

input split to 64 kB blocks

content

output

commands

Entropy encoding of content

Fig. 1. Diagram of the algorithm

2 Compression Format

Figure 1 shows that the input string is processed in blocks of size 64 kB. The first
part of the algorithm is the LZ77 matching engine, which either outputs parts of the
string or notices that the same part has already been output and references it. In the
next stage, we apply entropy coding to this output.

Example. Input abcdeeabcdef can be represented by the LZ77 matching engine as:
(i) output abcdee; (ii) copy string of length 5 from the position 6 symbols backwards;
(iii) output f.

The final compressed string has the form ABBB...B, where A contains the length
of the uncompressed string and is followed by blocks B, where each block B is the
result of compressing an input block of length at most 216.

Each block B consists of two parts: the first part contains commands and starts
with their count; the second part contains content.

There are two types of commands :

• The emit literals command has a parameter length, which takes the next length
symbols from the content and moves them to the output.

• The emit copy command represents a backward reference and has parameters
length and distance. The command goes distance symbols back from the end of
the output produced so far and copies from there length symbols to the end of the
output.

2.1 Encoding Emit Literal Command

The whole compression is performed in blocks of size 216, allowing length, the param-
eter of the emit literal command, to have values between 1 and 65536. Therefore we
can encode value length− 1, using 16 bits.

Since small lengths occur much more often in all reasonably compressible files (see
Table 2 for statistics about text and html input), we use a shorter code in this case.

length proportion length proportion
1 44.32% 6 3.16%
2 20.67% 7 1.88%
3 11.59% 8 1.38%
4 7.63% 9 1.00%
5 5.01% ≥ 10 3.40%

Table 2. Length in Emit literal command for text / html input

If length is at most 53 then the prefix 00 (representing the emit literal command)
is followed by 6 bits representing the value. Otherwise we use values 53 to 63 to

specify the bit length (6 to 16) of the value length − 1, followed by this value using
the specified number of bits.

2.2 Encoding Emit Copy Command

The command starts with a prefix which determines the number of bits used to
represent length and number of bits used to represent distance.

length distance prefix length bits distance bits
4 - 7 1 - 1024 010 2 10
4 - 7 1025 - 8192 011 2 13
4 - 7 8193 - 65536 100 2 16

8 - 15 1 - 1024 101 3 10
8 - 15 1025 - 65536 110 3 16

16 - 67 1 - 65536 111 6 16

Table 3. Static entropy code used to encode backward references.

The entropy code for backward references is based on the gathered statistics for
text and html input data (see Table 4 and Table 5).

length proportion
4 - 7 81%

8 - 15 15%
16 - 67 4%

Table 4. Distribution of length of backward references

bits representing distance proportion bits representing distance proportion
1 0.2% 9 7.4%
2 0.1% 10 8.9%
3 0.2% 11 10.5%
4 0.7% 12 11.8%
5 1.5% 13 13.3%
6 3.0% 14 14.8%
7 4.3% 15 10.8%
8 5.8% 16 6.6%

Table 5. Distribution of distance of backward references

2.3 Entropy Code for Content

The entropy code for the content of a particular block is used only when it is advan-
tageous to do so. We discuss later how we decide whether to use it.

We order 8-bit symbols according to their frequency and split them into three
groups:

• for the most frequent 32 symbols, we use 6 bits (prefix 0 + index)
• for the next 64 symbols, we use 8 bits (prefix 10 + index)
• for the last 160 symbols, we use 10 bits (prefix 11 + value)

where index is the alphabetical order of the symbol in the group, and value is the
8-bit char value of the symbol.

We need to communicate which symbols are in which group. We use a two-level
bitmask to specify which 96 of the 256 symbols are in the first two groups. In the top
level we specify for every block of 8 symbols whether one or more of them are in the
first or second group; in this case, in the second level we specify exactly which of these
8 symbols are present. Finally, we use 12 bytes (a bitmask of length 96) to separate
symbols of the first and the second group. If these 96 symbols are not specified in the
first place, then no entropy coding is performed and each symbol is represented by
its value, i.e. by 8 bits.

Sampling input to build the entropy code. For performance reasons, we do not
read the whole content extracted from input block to determine which symbols occur
most often and whether to perform entropy encoding. We use five samplers, which
remember for each symbol if they have seen it or not. One small sampler looks at one
symbol from each 43, three medium samplers look each at two symbols from each 43
and the large one looks at three symbols from each 43.

This information allows us to estimate the frequency of each symbol. It helps us
to determine whether entropy coding makes sense, as we save two bits on the first 32
symbols, but we lose two bits on the last 160 symbols. It also induces a natural order
on symbols, so we can split them into the groups in this order. This method, in which
we use the estimated numbers from Table 6 (which need to be adjusted depending
on the number of symbols in the last SMMML category, i.e. symbols spotted by all
five samplers), proved to work very well in practice for identifying the split.

3 The Key Implementation Features

Limited memory usage, optimal parallel performance. A fast and useful al-
gorithm must necessarily use as few resources as possible. Therefore we implemented
Gipfeli such that its working memory, not taking into account input and output, fits
comfortably in the Level-1 and Level-2 caches of a single CPU core. The implemen-
tation uses only slightly more than 64 kB. This is crucial, because accessing Level-1
and Level-2 caches is an order of magnitude faster than accessing RAM, which is still

samplers proportion samplers proportion
∅ < 0.08% SMM 0.55%
S 0.19% MMM 0.62%
M 0.20% SML 0.63%
L 0.22% MML 0.72%
SM 0.34% SMMM 0.9%
MM 0.36% SMML 1.14%
SL 0.37% MMML 1.67%
ML 0.41% SMMML > 4%

Table 6. Relative proportion of symbols given the combination of samplers that have
seen them.

much faster than accessing a hard drive. A direct consequence is that when we run six
parallel compressions on CPU with six cores, there is no slow down. In other words,
six cores of the same CPU can compress six times as much in the same time as a
single core.

Very light-weight hashing in the LZ77 part. We allocate a large amount of
memory for the hash table alone, in order to discover backward references in the
LZ77 part of the algorithm. In our implementation the best performance trade-off
is to allow 215 hash table entries. We always read four consecutive symbols as an
unsigned 32-bit integer and hash it to a value less than 215. Each entry of the hash
table is a 16-bit unsigned integer, which allows us to reference backwards as far as
the size of the block. This has already been implemented in Snappy.

References to the previous blocks and no need to reset the hash table.
Unlike Snappy, we have added to Gipfeli support for backward references to the
previous block. Each 16-bit value of a hash table entry represents how far from the
beginning of the block are the four symbols that were hashed to this entry. If this
value is smaller than the current distance from the beginning of the block then it
represents a position within the current block. Otherwise it represents a position
from the previous block.

The size of the block and the size of the entry value is 16-bit, therefore each entry of
hash table reference to the valid position with the exception when we are in the first
block. Therefore we initially reset all hash table entries to 0 to obtain this property.
There is still one special case, and it is position 0 of the first block, which we can
solve simply by not looking for backward reference in this case.

As we move to the next block, we adjust the pointer to the start of this block.
Observe that our semantics for the values in hash table gives automatically support
for backward reference to the previous block without any need to adjust the values
in the hash table.

High performance for incompressible input. Most of the algorithms become
much slower for non-compressible inputs. Snappy and Gipfeli are exceptions (see jpeg
in Table 7) thanks to an idea of Steinar Gunderson, who suggested we keep increasing
the size of steps when looking for the next backward reference if we are not successful
in finding one for some time.

Writing and reading bits. The static entropy code for backward references and the
ad-hoc entropy code for literals are bit-based. That brings new challenges, because
just writing bits to the output in the compression phase and reading bits from the
input in the decompression phase constitutes a significant portion of the running time
of the whole algorithm (20 - 30%).

Our experiments have shown that the best way to manipulate bits is to use an
unsigned 64-bit integer as a buffer and then always write the whole buffer at once to
the output. The next improvement is used mainly after applying the ad-hoc entropy
code to literals: since each symbol can be represented by at most 10 bits, we can
always safely pack six of them to one 64-bit integer and write it at once.

The other improvement concerns backward references. There are six different prefix
codes (see Table 3), and it helps siginificantly if we avoid branching. We can achieve
this by noticing that the bit length of distance and length determine in which case
we are. So we can have static tables of constants that determine how to build the bit
value for the given backward reference. This also explains why we tried to keep the
entropy code simple and did not allow higher variability.

Fast construction of entropy code for content. Recall the sampling technique
explained in the previous section. Despite its simplicity, it works very well and achieves
over 20% savings for the content from text files. That is very close to the theoretical
optimal 25% for this code, which we get if we save two bits for every 8-bit symbol.

Even though the main savings (over 75%) comparing to Snappy are from entropy
code used for commands, it still makes sense to do entropy code for the content. It is
computationally cheap and decreases the number of bits to be written to the output,
so it makes the final phase of the algorithm faster. It is a little counter-intuitive, but
when writing the output is an expensive operation, improvement in the compression
ratio also often leads to an improvement in performance.

Unaligned stores are much better than memcpy for short lengths. As the
statistics show (Table 2 and Table 4) we often need to copy only a few bytes (either
to the output or during the creation of intermediate content from the input). A much
faster solution than using memcpy is to perform unaligned stores of unsigned 32- or
64-bit integers at the pointer position.

File Compression ratio Speed
description Snappy QuickLZ Gipfeli Snappy QuickLZ Gipfeli

text 1 59.8% 54.9% 46.4% 311 MB/s 266 MB/s 220 MB/s
text 2 56.2% 49.3% 40.6% 341 MB/s 271 MB/s 236 MB/s
text 3 57.1% 51.9% 43.6% 327 MB/s 277 MB/s 229 MB/s
html 23.6% 19.4% 19.7% 780 MB/s 466 MB/s 528 MB/s
url addresses 50.9% 43.4% 39.1% 428 MB/s 307 MB/s 272 MB/s
protocol buffer 23.2% 15.8% 17.5% 870 MB/s 512 MB/s 713 MB/s
jpeg 99.9% 100% 99.9% 5 GB/s 374 MB/s 2 GB/s
pdf 82.1% 100% 81.5% 1500 MB/s 382 MB/s 909 MB/s
C source code 42.4% 42.3% 37.9% 431 MB/s 279 MB/s 273 MB/s
LSP source code 48.4% 47.7% 42.9% 425 MB/s 237 MB/s 246 MB/s
executable 51.1% 45.7% 44.7% 397 MB/s 313 MB/s 253 MB/s

Table 7. Comparison of Snappy, QuickLZ and Gipfeli

4 Benchmarks

In this section we compare the speed and compression ratio of Gipfeli and its com-
petitors. All files in our benchmarks are from previous benchmarks of either QuickLZ
or Snappy. These files are originally from the Calgary and the Canterbury corpus
[11]. We decided to pick several of them representing the overall performance of the
algorithms and putting more emphasis on text and html content. The benchmarks
were performed on an Intel Xeon W3690 CPU using only one of its cores, where each
core has its own 32 kB L1 instruction cache, 32 kB L1 data cache and 256 kB L2
cache.

The results are presented in Table 7 and plotted for one text file in Fig. 2. To
put the performance in context with Zlib (in the default and the fastest compression
mode), we performed a standard comparison on the first 1 GB of data from English
Wikipedia (see Table 8).

Similarly to most of the compression algorithms, the decompression phase of Gipfeli
is faster than the compression phase. In all cases, it is at least 60% faster.

Program Compression ratio Time Speed
Snappy 53% 2.8 s 354 MB/s
QuickLZ 46% 3.5 s 284 MB/s
Zlib fastest 43% 13.5 s 74 MB/s
Gipfeli 41% 4.3 s 232 MB/s
Zlib default 32% 41.7 s 24 MB/s

Table 8. First 1 GB of English Wikipedia

Compression ratio

T
im

e
[i

n
m

s]
 to

 c
om

pr
es

s
1

M
B

 34% 40% 46% 52% 58%

0

4

8

12

16

snappyquicklz
gipfeli

zlib fastest

Fig. 2. Benchmark for plaintext.txt

5 Applications and Conclusion

The benchmarks in this paper show that Gipfeli can achieve compression ratios that
are 30% better than Snappy with slow-down being only around 30%. Gipfeli achieves
even higher speed for html content and remote procedure calls (protocol buffer in
Table 7) than for text content. We argue, using the I/O data from the introduction,
that once the compression algorithm is fast enough, i.e. computations are bound
by external I/O costs, we need to compress as densely as possible. At that point,
improvements in the compression ratio are more important than running time.

The encouraging outcome of the benchmarks led us to test Gipfeli in a real-world
setting to support our theoretical assumptions with practical experiment. Our case
study was MapReduce technology [12] used inside Google to run distributed compu-
tations. A typical computation processes terabytes of data and runs on thousands of
machines. In short, MapReduce consists of two phases: the first phase, Map, applies
some computation in parallel to all the input items to produce the intermediate items,
which are then merged in the second phase, Reduce.

Currently, Snappy and Zlib are both options used inside MapReduce. We replaced
Snappy by Gipfeli and our experiment confirmed our expectations: the computation
was faster (up to 10%) and led to lower RAM usage. Since Gipfeli can compress
better, it is now a candidate replacement for both Snappy and Zlib (which is currently
used in the situations where a better compression ratio is needed) in MapReduce.
Other plausible applications are: the replacement of Snappy in Bigtable technology
[13], which is used to store large amounts of data; and in Google’s internal remote
procedure calls.

Gipfeli is currently in the alpha phase. The algorithm has not gone through com-
plete testing, but a few terabytes of data have been successfully pushed through it.
Compared to Snappy, QuickLZ and FastLZ, which have been tuned for several years,

Gipfeli is still young. We have open sourced it to allow additional improvements and
optimisations by the community.

Acknowledgement. We would like to thank Steinar Gunderson for several optimisa-
tions of the code and for well-written and well-optimised code for matching backward
references in Snappy, which we partly reuse.

References

1. S. Gunderson, “Snappy.” http://code.google.com/p/snappy/.
2. L. M. Reinhold, “Quicklz.” http://www.quicklz.com.
3. A. Hidayat, “Fastlz.” http://www.fastlz.org.
4. S. Borkar, “Platform 2015 : Intel processor and platform evolution for the next

decade,” Systems Technology, 2006.
5. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.
6. R. Williams, “An extremely fast ziv-lempel data compression algorithm,” in Data

Compression Conference, 1991. DCC ’91., pp. 362 –371, apr 1991.
7. E. R. Fiala and D. H. Greene, “Data compression with finite windows,” Commun.

ACM, vol. 32, pp. 490–505, April 1989.
8. D. Huffman, “A method for the construction of minimum-redundancy codes,”

Proceedings of the IRE, vol. 40, pp. 1098 –1101, sept. 1952.
9. I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compres-

sion,” Commun. ACM, vol. 30, pp. 520–540, June 1987.
10. P. Deutsch and J.-L. Gailly, “ZLIB Compressed Data Format Specification version

3.3.” RFC 1950 (Informational), May 1996.
11. R. Arnold and T. Bell, “A corpus for the evaluation of lossless compression algo-

rithms,” in Data Compression Conference, 1997. DCC ’97. Proceedings, pp. 201
–210, mar 1997.

12. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-
ters,” in Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, (Berkeley, CA, USA), pp. 10–10, USENIX
Association, 2004.

13. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system
for structured data,” in Proceedings of the 7th Conference on USENIX Symposium
on Operating Systems Design And Implementation, pp. 205–218, 2006.

