
Bayes and Big Data: The Consensus Monte Carlo Algorithm

Steven L. Scott1, Alexander W. Blocker1, Fernando V. Bonassi1, Hugh A. Chipman2,
Edward I. George3, and Robert E. McCulloch4

1Google, Inc.
2Acadia University

3University of Pennsylvania, The Wharton School
4University of Chicago, Booth School of Business

October 31, 2013

Abstract

A useful definition of “big data” is data that is too big to comfortably process on a single
machine, either because of processor, memory, or disk bottlenecks. Graphics processing units
can alleviate the processor bottleneck, but memory or disk bottlenecks can only be eliminated
by splitting data across multiple machines. Communication between large numbers of machines
is expensive (regardless of the amount of data being communicated), so there is a need for
algorithms that perform distributed approximate Bayesian analyses with minimal communica-
tion. Consensus Monte Carlo operates by running a separate Monte Carlo algorithm on each
machine, and then averaging individual Monte Carlo draws across machines. Depending on the
model, the resulting draws can be nearly indistinguishable from the draws that would have been
obtained by running a single machine algorithm for a very long time. Examples of consensus
Monte Carlo are shown for simple models where single-machine solutions are available, for large
single-layer hierarchical models, and for Bayesian additive regression trees (BART).

1 Introduction

This article describes a method of performing approximate Monte Carlo simulation from a Bayesian

posterior distribution based on very large data sets. When the data are too large for a single

processor, the obvious solution is to divide them among multiple processors. There are two basic

methods of computing on the divided data. The first is to divide the work among multiple cores

on the same chip, either on a multi-core central processing unit (CPU), or on a massively parallel

graphics processing unit (GPU). The multi-core approach can be extremely effective (Suchard,

Wang, Chan, Frelinger, Cron, and West, 2010; Lee, Yao, Giles, Doucet, and Holmes, 2010), but it

has two limitations. The first is that multi-core computing cannot alleviate bottlenecks related to

memory or disk. The second issue is programming. The multi-threaded code necessary for multi-

core computing can be difficult to write, even for expert programmers, because it is subject to

race conditions that are poorly understood and difficult to debug. GPU programming in particular

1



requires very low level memory management that is difficult to abstract to higher level programming

languages.

The alternative to multi-core computing is multi-machine computing, where data are divided

among many different machines. Multi-machine computing provides scalable memory, disk, and

processing power, so it can eliminate bottlenecks in all three traditional computing resources.

However, multi-machine computing comes with a very high cost (in terms of efficiency) of com-

municating between machines. The multi-machine and multi-core approaches are complementary.

If a multi-core solution is available it can be embedded in a multi-machine strategy, making each

machine faster.

The primary difference between the multi-machine and multi-core computing models is com-

munication, which is fast in multi-core systems and slow in multi-machine systems. Different com-

munication costs imply that different algorithms are necessary for multi-core and multi-machine

environments. On a multi-core system one can effectively parallelize a sequential algorithm by

distributing the work required to implement an expensive step. For example, Suchard et al. (2010)

achieve substantial speed increases by implementing a data augmentation algorithm on a GPU.

Their algorithm is a standard data augmentation with the computationally intensive loop over the

data done in parallel. Section 2 of this article presents a case study demonstrating the inefficiency

of that algorithm in a multi-machine environment. It illustrates a fact which is well known to par-

allel computing experts, but often surprising to novices: passing messages among a large number

of machines is expensive, regardless of the size of the messages being passed.

For Monte Carlo algorithms to succeed in a multi-machine environment, they must avoid regular

communication between machines. Consensus Monte Carlo attacks the communication problem by

dividing the data across multiple machines, with each machine independently sampling from the

posterior distribution given its data. Posterior draws from each machine are then combined to form

a consensus, system-wide belief about the model unknowns. The consensus Monte Carlo algorithm

is embarrassingly parallel, as defined by the mapreduce framework (Dean and Ghemawat, 2008),

so it can be run on virtually any system for parallel computing, including Hadoop (White, 2012),

multi-core systems, or networks of workstations (Anderson et al., 1995).

Consensus Monte Carlo is one of several attempts to scale traditional statistical computation.

Zhang, Duchi, and Wainwright (2012), and references therein, describe the literature on averaging

frequentist point estimates for parameters of statistical models. Guha, Kidwell, Hafen, and Cleve-

land (2009) discuss distributed methods of visualizing large data sets. Kleiner, Talwalkar, Sarkar,

and Jordan (2011) extend the bootstrap to distributed data with the “bag of little bootstraps.” To

the extent that bootstrap samples can be viewed as approximating posterior samples, this work can

be considered an alternative to the work presented here. Returning to Bayesian inference, Huang

and Gelman (2005) proposed a consensus Monte Carlo approach that is similar to ours, but with

a different rule for combining posterior draws. For certain classes of models (and certain classes

2



of model summaries), Bayesian inference can be conducted without Monte Carlo through clever

approximations such as INLA (Rue, Martino, and Chopin, 2009), or variational Bayes (e.g. Hinton

and Van Camp, 1993; Ghahramani and Beal, 2001; Jaakkola and Jordan, 2000). These approaches

are effective, but there can be reasons to prefer Monte Carlo. For example, the computational

cost of INLA is exponential in the dimension of the parameter space (or hyperparameter space

in the case of hierarchical models), and the approximate posteriors delivered by variational Bayes

give good approximations to individual marginal distributions, but not to the joint distribution as

a whole. Posterior simulation by Monte Carlo is considerably more expensive than deterministic

approximation algorithms, but it delivers the full posterior distribution. Although the approach

presented here is limited to continuous parameter spaces, Monte Carlo methods can generally be

applied to arbitrarily complex models.

The remainder of the article is structured as follows. Section 2 contains the case study, men-

tioned above, illustrating the high cost of communicating between processes in a multi-machine

environment. Section 3 describes the consensus Monte Carlo algorithm, and then Section 4 pro-

vides a series of examples illustrating consensus Monte Carlo on a variety of simulated and real

data sets. Section 5 is a concluding discussion.

2 Coordinating many machines is expensive

This Section presents timings from a multi-machine MCMC algorithm, with the aim of illustrating

just how expensive multi-machine communication can be. We focus on a single layer hierarchical

logistic regression model

yij ∼ Binomial(nij , pij)

logit(pij) = xTijβi

βi ∼ N (µ,Σ)

µ|Σ ∼ N (0,Σ/κ)

Σ−1 ∼W (I, ν),

(1)

where W (I, ν) is the Wishart distribution with sum of squares matrix I and scale parameter ν.

The precise numerical values of ν and κ used in the hyperprior are unimportant for this example.

This model was applied to an internet advertising data set, where yij is the number of clicks on

an advertisement with characteristics xij that was shown nij times. The hierarchy corresponds to

different internet domains (e.g. espn.com vs. nytimes.com). There are slightly more than 600,000

domains in our data set, each with its own βi. The vector xij contains an intercept and 7 dummy

variables describing the color, font, and similar characteristics of the advertisement, so that the

dimension of xij is 8. The number of distinct configurations of xij in each domain is small. It

3



(a) (b)

Figure 1: Step times for the naive MCMC algorithm in Section 2 with (a) 500 and (b) 50 machines.

is bounded above by 27 = 128, but it is rarely more than a few dozen, and often just a single

observation.

The obvious parallel MCMC algorithm for this model partitions the complete data by domain

across a set of worker machines, and assigns one worker to be the “master node” responsible for

the prior distribution. The algorithm then alternates between drawing each βi given current values

of µ and Σ, and then drawing µ and Σ given the set of βi’s. During the parallel data augmentation

step, each machine simulates from p(βi|µ,Σ,y) for its domains, and adds the draw to a set of

low dimensional sufficient statistics (
∑

i βi,
∑

i βiβ
T
i ). When a machine finishes drawing βi for all

of its domains, it sends its sufficient statistics to the master node, which accumulates sufficient

statistics from different machines as they become available. Once all machines have reported, the

master node draws µ and Σ, broadcasts them to the workers, and the cycle repeats. The algorithm

was implemented in Pregel (Malewicz, Austern, Dehnert, Horn, Leiser, and Czajkowski, 2010), a

system for distributed graph computing written by professional software engineers who are experts

in parallel computation. The statistical computations were done in optimized C++ code.

There are potential issues with the adequacy of this model, the convergence rate of the MCMC

algorithm, and the specific method used to sample the logistic regression coefficients. Set all these

aside and focus on the amount of time required to perform an MCMC iteration. Figure 1 plots

the time taken by each step in the algorithm from two separate runs with the same data on 500

and 50 machines. The draws of βi and (µ,Σ) are separate “SuperSteps” in Pregel, so each panel in

Figure 1 represents 10,000 MCMC iterations, with two SuperSteps per MCMC iterate. The 500-

machine run completed in 2.75 hours, which is very close to 1 iteration per second. The 50-machine

run completed in around 5 hours. Notice that a ten-fold reduction in computing resources only

produced a two-fold increase in compute time, so there is at least a factor of 5 inefficiency at play.

Job failures are a fact of life in multi-machine computing and are often discussed as a source

4



of delay. Jobs can fail either because of faulty hardware or because of evictions in favor of higher

priority jobs. To protect against job failures, Pregel periodically saves its state so that it can

recover from a failure without completely restarting. The state-saving iterations are highlighted

with triangles in Figure 1. Both runs lose about the same amount of time saving state. The

iterations containing job failures are highlighted with circles. Each recovery from a failure takes a

few tens of seconds. The 500 machine run experienced more failures, but not enough to materially

factor into the efficiency difference between the two runs.

The source of the inefficiency can be seen in the lower of the two black bands in Figure 1. The

bands represent even and odd numbered SuperSteps corresponding to the expensive βi draws in

the even steps and the cheap (µ,Σ) draws in the odd steps. As expected, increasing the number

of machines leads to a decrease in the amount of time spent on the expensive step. The surprising

thing is how much more expensive the “cheap” steps become. In the 50 machine run, the (µ,Σ)

draw takes a median of roughly 102 = 100 milliseconds. In the 500 machine run it takes roughly

102.4 ≈ 250 milliseconds. Logging in the C++ code shows that the actual time spent drawing µ

and Σ is less than 1 millisecond, with the rest lost to communication overhead. The inefficiency

is not coming from rare, catastrophic machine failures, but the consistently higher communication

cost in iterations where no failures occurred. Ironically, CPU was the limiting resource in the single

machine version of this problem, but on a relative scale we wound up devoting almost no CPU time

to our job!

We wish to emphasize that time is not being lost in what one might think are the obvious places:

an imbalanced workload among the machines, inhomogeneous hardware, an inefficient broadcast of

the parameters, or reduction of the sufficient statistics, or a long transmission time on the network.

All these possibilities were investigated and found to be performing efficiently. The problem is that

we are communicating between machines at all. There is simply an overhead involved in getting a

set of machines ready to send and receive messages, even if those machines are dedicated to your

job. The cost is high enough that, in this case, a 500 machine job could achieve at most 4 iterations

per second, on average, even if the machines had no data to process. The clear lesson is that if

Bayesian posterior simulation is to be distributed across multiple machines, it must be done in a

way that uses minimal communication.

3 Consensus Monte Carlo

The idea behind consensus Monte Carlo is to break the data into groups (called “shards”), give each

shard to a worker machine which does a full Monte Carlo simulation from a posterior distribution

given its own data, and then combine the posterior simulations from each worker to produce a set of

global draws representing the consensus belief among all the workers. Let y represent the full data,

let ys denote shard s, and let θ denote the model parameters. For models with the appropriate

5



independence structure the system can be written

p(θ|y) ∝
S∏
s=1

p(ys|θ)p(θ)1/S . (2)

Notice that the prior distribution p(θ) =
∏
s p(θ)

1/S is broken into S components to preserve the

total amount of prior information in the system. Equation (2) assumes that batches of observations

are conditionally independent across shards, given parameters, but it allows for arbitrary depen-

dence within the elements of ys. Thus, for example, it can be used with hierarchical models with

hyperparameters θ, as long as data in a single level of the hierarchy are not split across two different

machines.

If each worker returned its posterior distribution as a mathematical function, then the worker-

level distributions could be multiplied to form the overall “consensus” posterior given the complete

data. The difficulty is that the workers-level distributions are reported as Monte Carlo draws, so

we need a way of combining the draws.

3.1 Combining draws by weighted averages

Suppose worker s generates draws θs1, . . . , θsG from p(θ|ys) ∝ p(ys|θ)p(θ)1/S . One way to com-

bine draws across workers is to simply average them. Suppose each worker is assigned a weight,

representable as a matrix Ws. The consensus posterior for draw g is

θg =

(∑
s

Ws

)−1∑
s

Wsθsg. (3)

When each p(θ|ys) is Gaussian, the joint posterior p(θ|y) is also Gaussian, and equation (3) can

be made to yield exact draws from p(θ|y). To see this, suppose S = 2, and that θ|y1 ∼ N (µ1,Σ1),

and θ|y2 ∼ N (µ2,Σ2). Then standard Bayesian calculations for the normal distribution give

p(θ|y) ∝ p(θ|y1)p(θ|y2)

∝ N (θ|µ̃, V )
(4)

where V −1 = Σ−1
1 + Σ−1

2 and µ̃ = V (Σ−1
1 µ1 + Σ−1

2 µ2). Now let θ1 be a draw from N (µ1,Σ1) and

let θ2 be a draw from N (µ2,Σ2). It is easily verified that

V
(
Σ−1
1 θ1 + Σ−1

2 θ2
)
∼ N (µ̃, V ) . (5)

Taken together, equations (4) and (5) suggest the algorithm in Figure 2. Although the algorithm

is exact only for Gaussian posteriors, there are two reasons to believe that it is broadly useful. The

first is that under standard regularity conditions for asymptotic theory, posterior distributions tend

6



1. Divide y into shards y1, . . . ,yS .

2. Run S separate Monte Carlo algorithms to sample θsg ∼ p(θ|ys) for g = 1, . . . , G, with each
shard using the fractionated prior p(θ)1/S .

3. Combine the draws across shards using weighted averages: θg = (
∑

sWs)
−1 (

∑
sWsθsg).

Figure 2: The consensus Monte Carlo algorithm.

towards a Gaussian limit in large samples (Le Cam and Yang, 2000). The second is that we will see

examples in Section 4 where applying the method to non-Gaussian posteriors (without theoretical

justification) works surprisingly well.

3.2 Choosing Weights

The weight Ws = Σ−1
s is optimal (for Gaussian models), where Σs = V ar(θ|ys). An obvious Monte

Carlo estimate of Σs is sample variance of θs1, . . . , θsG. If the dimension of θ is very large, or if the

model is very simple, one may prefer to weight sub-optimally in order to simplify the computation.

If θ is high dimensional then it may be preferable to ignore the covariances in Σs, and simply weight

each scalar element of θ by the reciprocal of its marginal posterior variance.

In many “big data” problems the analyst is in control of the sharding process, so data can be

sharded by randomly assigning each observation (or cluster of correlated observations) to a shard.

One is tempted to argue that the posterior distributions in each shard will have roughly the same

shape, and so the draws from different shards can be combined with equal weighting. However, large

samples on each shard are necessary for the preceding argument to apply. In particular, each worker

must have enough information to estimate all components of θ. Almost by definition, models that

are complex enough to require very large data sets will have subsets of parameters that cannot be

estimated on every shard. Section 4.3 provides an example where shard-level posterior distributions

can be very different, even with IID data, because some observations are more informative than

others. In practice, information-based weighting will usually be necessary.

3.3 Other potential consensus strategies

Strategies other than averaging could be used to form consensus posterior estimates. We focus on

averages because they are simple and stable. For example, one could empirically estimate each

worker-level posterior density using a kernel density estimate and then apply equation (2) directly.

This approach might work well in small models, but as the dimension of θ increases the kernel

density estimates will become unreliable.

Huang and Gelman (2005) suggest four alternative methods for consensus posteriors, all of which

are variants of either an explicit normal approximation or importance resampling. The consensus

7



Monte Carlo method from Figure 2 is also rooted in normal theory, but it has the potential to

capture non-normal features of the posterior such as fat tails or skewness that would be lost under

an explicit normal approximation. We have not explored importance resampling methods because of

the potential for importance resampling to collapse to a single point in high dimensions, and because

of the potential difficulty in evaluating the likelihood p(ys|θ) in complex models, like hierarchical

generalized linear models similar to equation (1). On the other hand, consensus distributions based

on averaging are obviously limited to continuous parameter spaces, while importance resampling

methods could be applied more generally (e.g. to mixtures, or regression models with spike-and-slab

priors).

3.4 More complex models

3.4.1 Nested hierarchical models

If the data have nested structure, where yij ∼ f(y|φj) and φj ∼ p(φ|θ), then consensus Monte

Carlo can be applied to the hyperparameters in a straightforward way. If the data are partitioned

so that no group is split across multiple shards, then the model satisfies equation (2). One can

run the consensus Monte Carlo algorithm, storing the draws of θ and discarding the draws of φj .

Combining the draws of θsg based using empirical weights Ws estimated from the within-shard

Monte Carlo variance produces a set of draws θ1, . . . , θG approximating p(θ|y).

Conditional on the simulated draws of θ, sampling φj ∼ p(φj |y, θ) = p(φj |yj , θ) is an embar-

rassingly parallel problem. The simulated draws of θ can be broadcast back to the workers, which

can simulate each φj in parallel. Each worker machine simulates φjg given the corresponding θg,

with no need to communicate with other workers. Because θ ∼ p(θ|y) the second set of φj draws

will have marginal distribution p(φj |y), whereas the first, discarded set follows p(φj |ys).
This procedure can be recursively applied as needed if the data are nested more than two levels

deep.

3.4.2 Nonparametric regression

In a nonparametric regression model y ∼ N
(
f(x), σ2

)
the goal is to compute p(f(x)|y) where

the form of f is unknown. Many nonparametric models either have no parameters to average or

else the “model parameters” are non-numerical constructs like decision trees (see Denison, Mallick,

and Smith, 1998; Chipman, George, and McCulloch, 2010). However, the predictive distributions

from these models are often nearly Gaussian (possibly after conditioning on latent variables), so

consensus Monte Carlo can be used to combine their predictive distributions at particular values

of x. Given training data y and a set of locations x1, . . . ,xK , where predictions are desired, one

can run S separate Monte Carlo simulations to produce draws from p(f(xk)|ys). At each xk,

each worker’s draws can be weighted by the inverse of the Monte Carlo estimate of the the within-

8



8.8 8.9 9.0 9.1 9.2 9.3 9.4

0
1

2
3

4
5

6
7

parameter

de
ns

ity

Figure 3: Example of small sample bias. The solid line is the posterior distribution of µ2 as described in
Section 3.5. The dashed line is the consensus Monte Carlo estimate. The dotted line is the consensus Monte
Carlo estimate with a jackknife bias correction applied.

worker posterior variance s2sk =
∑G

g=1(fsg(xk)− f̄s(xk))2/(G−1), and averaged to form a consensus

posterior distribution.

3.5 The potential for small-sample bias

Oddly enough, small sample bias can play a role when analyzing large data sets. When the data

are divided among many machines, bias that vanishes in the full data may still be present in each

shard. Zhang, Duchi, and Wainwright (2012) discuss the issue of small sample bias in the context

of frequentist point estimation. A similar effect can exist in Bayesian analysis, where the consensus

posterior needs to be shifted because of an accumulation of small sample biases.

Figure 3 shows the effect of small sample bias in a toy simulation where yi ∼ N (µ, 1), with

p(µ) ∝ 1, where the parameter of interest is µ2. The Figure is based on a simulation of n = 10, 000

observations from y ∼ N (3, 1), with 10 equally weighted shards. The solid line in the Figure is

the posterior distribution based on all 10, 000 observations, while the dashed line is the consensus

Monte Carlo estimate.

Not all problems will exhibit meaningful small sample bias. In some cases the shard-level models

will have sufficiently large sample sizes that small-sample bias is not an issue. In others, models can

be unbiased even in small samples. When small sample bias is a concern jackknife bias correction

can be used to mitigate it through subsampling. The idea behind jackknife bias correction is to

shift the draws from a distribution by a specified amount B determined by subsampling. Suppose

E(θ|y) = θ +B/n, so that the posterior mean is a biased estimate of θ. On each worker machine,

9



take a subsample of size αn, where 0 < α < 1. Let ysub denote the resulting distributed subsample,

and construct consensus Monte Carlo draws from p(θ|ysub). Then E(θ|ysub) = θ + B
αn . Simple

algebra gives an estimate of the bias term

B

n
≈ (E(θ|ysub)− E(θ|y))

(
α

1− α

)
.

Subtracting the estimated value of B/n from each draw in the original consensus distribution gives

a set of first order bias corrected draws. The dotted line in Figure 3 shows the effect of the bias

correction in our example.

4 Examples

This section proceeds through a set of examples illustrating the consensus Monte Carlo algorithm.

In each case, the goal is to see how the algorithm compares to a single machine algorithm run on

the same data. Thus the examples will have to be simple enough (or else the data small enough)

for a single machine run to be possible.

4.1 Binomial data with a beta prior

Figure 4(a) shows three Monte Carlo approximations to the posterior distribution of a binomial

success probability. The data are 1000 Bernoulli outcomes with a single success, and the assumed

prior is uniform. Two of the distributions in Figure 4 are made by directly drawing from the

Be(2, 1001) distribution. The distribution marked “Consensus” was constructed by distributing

the data across 100 independent Monte Carlo samplers, each with a Be(.01, .01) prior distribution.

One of the samplers is assigned the shard of data containing 9 failures and the single success. The

remaining 99 samplers each observe 10 failures. The posterior draws were then combined using

an unweighted average. This example is interesting because even though the posterior is highly

non-Gaussian, consensus Monte Carlo does an effective job capturing the distribution. Figure 4(b)

highlights that the approximation is imperfect, in that it slightly under-weights the tails.

This example also illustrates that the procedure can be sensitive to the scale of the analysis.

The shard-level prior Be(.01, .01) is not the same as the full Be(1, 1) prior raised to the .01 power.

If the 100 workers had each been given the uniform prior then the estimated distribution would

be seriously incorrect, as shown by Figure 5(a). The prior is very important because only a

single success was observed. Giving each worker an additional “prior success” corresponding to

the uniform prior adds a substantial amount of prior information to the system. The influence of

the prior, and thus the need for prior adjustment, becomes less dramatic when the data are more

informative.

Figure 5(b) shows a different simulation where the workers are given different amounts of work

10



0.000 0.002 0.004 0.006 0.008 0.010 0.012

0
10

0
20

0
30

0

N = 10000   Bandwidth = 0.0001827

D
en

si
ty

Single Machine
Consensus
Another Single Machine

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●
●●
●

●●●●●
●●●●●● ●

●●
●
●
●●

●

● ●

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Single Machine

C
on

se
ns

us

(a) (b)

Figure 4: (a) Posterior draws from binomial data. (b) A qq plot showing that the tails of the consensus
Monte Carlo distribution in panel (a) are slightly too light.

to do. There were 5 workers each assigned 100, 20, 20, 70, and 500 binomial observations. The data

were simulated from the binomial distribution with success probability .01. The workers were each

given a Be(1/5, 1/5) prior to match the Be(1, 1) uniform prior used in the single machine analysis.

This distribution is slightly less skewed than the one in Figure 4, because the simulation produced

more than one success. The distribution is still noticeably non-Gaussian, and the consensus Monte

Carlo estimate is very similar to the two single machine analyses.

4.2 Gaussian Data

The next test case is a multivariate normal model with unknown mean and variance. The test case

has µ = (1, 2, 3, 4, 5) and

Σ =


1.00 0.99 0.98 0.00 −0.70

0.99 1.00 0.97 0.00 −0.75

0.98 0.97 1.00 0.00 −0.60

0.00 0.00 0.00 1.00 0.00

−0.70 −0.75 −0.60 0.00 1.00

 .

The model includes three deviates that are highly correlated with one another, one that is indepen-

dent of everything else, and one that is anticorrelated with the first three. We consider a problem

with 100 workers and examine how consensus Monte Carlo handles draws of Σ. We focus on Σ

because the marginal posterior of µ is multivariate T , which is sufficiently close to normal for the

11



0.00 0.02 0.04 0.06 0.08 0.10

0
10

0
20

0
30

0

N = 1000   Bandwidth = 0.0002871

D
en

si
ty

Single Machine
Consensus
Another Single Machine

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
20

40
60

80
10

0
12

0

N = 10000   Bandwidth = 0.0004677

D
en

si
ty

Single Machine
Consensus
Another Single Machine

(a) (b)

Figure 5: The consensus Monte Carlo distribution (a) performs badly when each worker receives a uniform
prior, and (b) performs well with imbalanced shards, when properly weighted.

consensus draws to be nearly exact.

Figure 6 shows posterior draws of Σ based on simulated data with 50 observations per worker.

The scale is different in each of the panels (which are arrayed as the elements of Σ) to maximally

highlight differences in the consensus and single-machine draws. When viewed on the same scale,

the differences between parameter values are far more important than the differences between

methods. The consensus Monte Carlo estimates (shown as green dashed lines) of the posterior

appear to have a bias away from zero when compared to the single machine algorithm (the solid

lines).

The dotted blue lines are a jackknife bias corrected density estimate based on a 20% subsample.

With 50 observations per worker, a 20% subsample is 10 observations. When paired with corrected

prior distribution (obtained by dividing both the prior sum of squares and prior sample size by

S), a much smaller sub-sample would lead to an improper posterior. The bias correction generally

seems to help in Figure 6(a), though for the variance term in element 4 it provides an adjustment

were none is necessary.

Interestingly, when we double the sample size to 100 in Figure 6(b) the unadjusted consensus

Monte Carlo estimates match the single machine algorithm quite closely, while the jackknife bias

adjustment winds up introducing a bias towards zero similar to the one it removed in Figure 6(a).

We tried one more run with 1000 observations per worker, which we chose not to display because all

distributions matched sufficiently closely that it was difficult to visually distinguish between them.

12



parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

parameter

de
ns

ity

(a) (b)

Figure 6: (a) Posterior distribution of Σ based on 100 workers, with 50 observations per worker. Red
(solid) line is the single machine algorithm. Green (dashed) line is the consensus Monte Carlo estimate.
Blue (dotted) line is the bias corrected consensus estimate. (b) Same, but with 100 observations per worker.
With 1000 observations per worker all plots overlap essentially perfectly.

4.3 Logistic regression

Logistic regression is a widely used model for internet data because of the interest in whether a

particular stimulus results in a user action such as a click, mouse-over, or similar observable event.

Table 1(a) is a set of simulated data based on a hypothetical set of binary predictors that occur

independently with the frequencies shown in Table 1(b). The first variable is an intercept, and the

last is a rarely occurring variable that is highly predictive of an event when it occurs.

Figure 7(a) shows the posterior distribution of the coefficients in a logistic regression of y on x1

through x5. The single machine “overall” MCMC estimate is compared to consensus Monte Carlo

estimates under three different weighting schemes. The “matrix” scheme weights each worker’s

draws using the inverse of the sample variance matrix for β draws from that worker. The “scalar”

weighting scheme weights each individual component of β by the inverse of its scalar sample vari-

ance, ignoring covariances. The “equal” scheme simply averages all draws with equal weights.

Despite the fact that all 100 workers faced identical sampling distributions, the equal weighting

scheme fails badly because the workers are only “equal” a priori. They don’t see the same data.

Out of 10,000 total observations, there are only 104 in which x5 is active, and only 71 of those

produce an event. Thus, many workers (roughly 1/3) have no information with which to measure

the effect of x5, and roughly another third have only a single observation, so a small subset of

workers has all the information about this coefficient. The different subsets of workers can be seen

13



y n x1 x2 x3 x4 x5

266 2755 1 0 0 1 0

116 2753 1 0 0 0 0

34 1186 1 0 1 0 0

190 717 1 1 0 1 0

61 1173 1 0 1 1 0

37 305 1 1 1 0 0

68 301 1 1 1 1 0

119 706 1 1 0 0 0

18 32 1 0 0 0 1

13 17 1 0 1 1 1

18 24 1 0 0 1 1

8 10 1 1 0 1 1

2 2 1 1 1 0 1

7 13 1 0 1 0 1

2 2 1 1 1 1 1

3 4 1 1 0 0 1

x1 x2 x3 x4 x5
frequency 1 .2 .3 .5 .01
coefficient -3 1.2 -.5 .8 3

(a) (b)

Table 1: (a) Data for the logistic regression in Figure 7. (b) The probability that each variable is active,
and the true logistic regression coefficients used in the simulation.

in Figure 7(b). Those with no information about β5 sample from the prior. Those that only get

to see a single observation sample from one of the the skewed distributions, depending on whether

the single observation corresponded to a success or a failure. The subset of informed workers able

to see multiple observations sample from the nearly normal distributions centered around 3. The

empirical weighting schemes (“matrix” and “scalar”) are aware of the information asymmetry and

can use it to place more weight on workers that have more information.

The information asymmetry is the main reason the equal weighting scheme misses so badly

in Figure 7(a). The Figure also shows substantial agreement between the single-machine overall

MCMC algorithm and the “matrix” and “scalar” weighting schemes. Both schemes do a good job

capturing not only the location and spread of the marginal distribution of the coefficients, but also

the correlations between coefficients. The “scalar” scheme tends to be over-dispersed relative to

the “matrix” scheme, but not terribly so.

Figure 8 shows how the various schemes perform as the sample size grows to 1,000 and 10,000

observations per worker. Both the matrix and scalar weighting methods do about equally well

combining the worker draws. The equal weighting scheme is not shown in these plots. It still

missed badly with 1000 observations per worker, but it performs about as well as the other methods

with 10,000 observations per worker. With so many observations, the differences between pairwise

marginal distributions are vanishingly small when seen on a common scale.

14



parameter

de
ns

ity

x1

 2 

 4 
 6 

 1 

 2 
 3 

 4  1 

 2 
 3 

 4 

 0.5 

 1  1.5  2 

 2.5  3
  7

 

x2

 2 

 1 

 2 
 0.5 

 1  0.2 

 0.4 

 0
.6

 

 1 

 3 

x3

 2 

 4 

 6 
 1 

 2 

 3  1 

 2 

 3 

 4 
 0.5 

 1 
 1.5 

 2 
 2.5 

 3 

x4

 0.5 

 0.2 

 0.4 

 0.2 

 0.4 
 0.05 

 0.1 

 0.15  0.2 

 0.65 

x5

x1

−
4

0
2

4
6

parameter

de
ns

ity

 1
 

 2 

 1 

 2 

 3  0.5 

 1 

 1
.5

 

 2
 

 0.2 

 0.4 
 0

.6
 

 0.8 

 1
 

 2 

 4 

 6
 

 1 

 2  3 

 4
  5 

 6 

 0.5 

 1 

 1.5 

 2 

 2.5 

 3 

 10 

 0.5 

 1  1.5 

 2 

 2.5 

 3 

 5 

 6.5 

 0
.5

 

 1  0.2 

 0.4 

 0
.6

 

 0
.8

 

 0.2 

 0.4 

 0
.6

 

 0
.8

 

 0.1 

 0.2 

 0.3 

 0
.4

 

 0.5 

 1
.1

 

x2

parameter

de
ns

ity

 1  2 

 1 

 2  0.5 

 1 

 1.5  2 

 0.2 

 0.4 

 0.6 

 0
.8

 

 1 

 2.6 

 1 
 0.2  0.1 

 0.2 

 0.05 

 0.1 

 0
.1

5  0
.2

 x3

−
4

0
2

4
6

parameter

de
ns

ity

 0.5 
 1 

 0.2 

 0.4 

 0
.6

 

 1
 

 0.2 

 0.4 

 0
.6

 

 0
.8

 

 0.05 

 0.1 

 0
.1

5 

 0
.2

 

 0.55 

 0.65 

x4

 0.05 

−4 0 2 4 6

 1
  1

 
 0

.1
 

 1
  0
.1

 

 0
.0

5 

−4 0 2 4 6

 1
 

 0
.0

5 

parameter

de
ns

ity

x5

overall matrix scalar equal

−40 −20 0 20 40

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

parameter
de

ns
ity

(a) (b)

Figure 7: Logistic regression with 100 observations per worker. Panel (a) is a pairs plot comparing the
single machine MCMC estimate of the posterior distribution with the consensus Monte Carlo estimate under
three different weighting schemes. Plots on and above the diagonal show the distributions on a scale just large
enough to fit the plots in each dimension. Plots below the diagonal are on a common scale. The diagonal
shows the marginal distribution of each coefficient. Panel (b) shows the worker-level marginal distributions
for β5.

4.4 Hierarchical models

We now consider fitting a hierarchical model to a large distributed data set of internet advertising

data. The model is the hierarchical Poisson regression described in equation (6), where yij is the

number of times advertisement i from advertiser j was clicked, Eij is the number of times it was

shown, and xij is a small set of predictor variables, including dummy variables describing the type

of ad format the ad was shown in (e.g. part of a vertical vs. horizontal configuration, along the

top vs. along the side, etc.), and a continuous “quality score” assigned by another model.

yij ∼ Po(Eijλij)

log λij = βTj xij

βj ∼ N (µ,Σ)

µ ∼ N (0,Σ/κ)

Σ−1 ∼W (I, ν)

(6)

15



parameter

de
ns

ity
x1

 20 

 40 
 60 

 8
0 

 1
00

 

 2
20

 

 10 

 20 

 30 

 40 

 50 

 60 

 70 

 120 

 10 
 20 

 30  40 

 50  6
0 

 7
0  80 

x2

 10 

 10  10 

 2
0 

 30 

 4
0 

 50 

 60 

 9
0 

 170  180 

 10 
 20 

 30 

 40  50
 

 6
0  70 

 100 

 110 

 10 

 20 

 30 

 40 

 50 

 6
0 

 7
0 

 110 

x3

 20 

 40 

 60 

 80 
 100 

 10 

 20 
 30 

 40 

 50 

 60 

 70 

 80 

 160 

 10 

 20 

 30 

 40 

 50 

 60 

 70 

 150 

x4

 5  5
 

 10 

 1
5 

 2
0 

 25 

 30 

 5
0 

 80 

 5 

 10 

 15 

 20  2
5 

 3
0  35 

 60 

 5 

 10 

 15  20
 

 25 

 30 

 35 

 50 

x5

x1

−
3

−
1

1
2

3

parameter

de
ns

ity

 20 

 40  60 

 80 

 100 

 200 

 10  20 

 30 

 40
 

 50 

 60 

 70 

 1
00

 

 10 

 20  30 

 40  50 

 6
0 

 7
0  90 

 10  10 

 10 

 20 

 30 
 40 

 5
0  60  140 

 10 

 20 
 30 

 40 

 5
0  6

0 

 70 

 100 

 10 

 20 
 30 

 40  50 

 6
0  7

0 

 120 

 5 

 5 

 10 

 15 

 20 

 2
5 

 70 

 5 

 10 

 15
 

 20  25 

 30 

 3
5 

 50 

 5 

 10 

 15  20 

 25 
 30 

 3
5 

 40 

x2

parameter

de
ns

ity

 10 

 20 

 30 

 40  5
0 

 60
 

 120 

 10 

 20 

 30 

 40 

 50 

 60
 

 7
0 

 1
10

 

 10 

 20  30 

 40 

 5
0 

 60 

 70
 

 1
10

 

 5 

 10  15 

 20 

 2
5  50 

 5 

 10 

 1
5 

 20 

 25  3
0 

 40 

 2 
 4 

 6 

 8  10 

 12  14
 

 16 

 1
8 

 20  30 

 3
6 

x3

−
3

−
1

1
2

3

parameter

de
ns

ity

 5 

 10  15 

 20 

 2
5  3
0  8

0 

 5 

 10 

 15  20 

 25  30 

 40 

 5 

 10 

 15 

 20 

 25 

 3
0 

x4

−3 −1 1 2 3 −3 −1 1 2 3

parameter

de
ns

ity

x5

overall matrix scalar

parameter

de
ns

ity

x1

 200 

 400 

 600  2200 

 100 

 200  300 

 4
00

 

 500  1
10

0 

 100 

 200  300 

 400 

 500  1
50

0 

x2

 200 

 400 

 600  800 

 100 

 200 

 300 

 400 

 5
00

 

 6
00

  1200 

 100 

 200 

 300 

 400  5
00

 

 6
00

  1400 

x3

 200 

 400  600 
 800 

 200 

 400 

 600 

 800 

 1000 

 200 

 400 

 600 

 800 

 1000 

x4

 50 

 100 

 1
50

  2
00

 

 550 

 750 

 50 

 100 

 150 

 2
00

 

 2
50

 

 50 

 100 

 150 

 2
00

  2
50

 

 500 

x5

x1

−
3

−
1

1
2

3

parameter

de
ns

ity

 200 

 400 

 6
00

 

 800 

 100 

 200 

 300 

 400 

 500 

 1000 

 1
20

0 

 100 

 200 

 300  4
00

 

 5
00

 

 1100 

 200 

 400 
 600  1400 

 100 

 200  300 

 400  5
00

 

 1200 

 100 

 200 

 300  40
0 

 500 

 600 

 1000 

 50 

 100 

 1
50

 

 200 

 500 

 50 

 100 

 150 

 2
00

  250 

 50 

 100 

 1
50

  200 

 2
50

  5
00

 

x2

parameter

de
ns

ity

 200 

 400 

 6
00

 

 800 

 100 

 200 
 300 

 4
00

 

 500 

 900 
 1200 

 100 

 200 

 3
00

 

 400 

 600 

 900 

 50 

 100 

 150 

 2
00

 

 350 

 50 

 100 

 1
50

 

 200 

 400 

 50 

 100 

 1
50

 

 2
00

 

 250 

 500 x3

−
3

−
1

1
2

3

parameter

de
ns

ity

 50 

 100 

 1
50

  20
0 

 500 

 50 

 100 

 150 

 2
00

 

 250 

 5
50

 

 50 

 100 

 150 

 2
00

 

 250 

 5
50

 

x4

−3 −1 1 2 3 −3 −1 1 2 3

parameter

de
ns

ity

x5

overall matrix scalar

(a) (b)

Figure 8: Logistic regression with (a) 1,000 and (b) 10,000 observations per worker. Compare to Figure 7(a).
The equal weighting scheme is not shown here, to better focus on matrix and scalar schemes.

The data consist of nearly 24 million observations regarding the performance of individual

advertising creatives nested within around 11,000 advertisers using a particular Google advertising

product. The data were divided into 867 shards, so that no shard contained more than 50,000

observations. A few shards contained between 10,000 and 20,000 observations, with a median

shard size of about 27,000 observations. Most shards were close to the median.

The model from equation (6) was run on a single machine for 10,000 MCMC iterations using the

MCMCglmm package from CRAN (Hadfield, 2010). Figure 9 shows the posterior draws of µ based

on the first 5 shards of data under a single machine run and the consensus Monte Carlo algorithm

with 5 workers. We used only 5 of the 867 shards because of the long compute time for the single

machine run. The shards were combined by averaging draws based on the scalar precisions of each

element of µ. There is general agreement between the single machine and consensus algorithms.

The largest disagreement is on AdFormat 6, which only one of the 5 shards had any information

about. There was one shard that exhibited slow mixing on the AdFormat 5 coefficient, leading to

a somewhat overdispersed consensus distribution. That could presumably be improved through a

longer run time or by using a more efficient Monte Carlo algorithm on the worker machine. There

were only two shards with information about AdFormat 4, but its single machine and consensus

estimates agree closely. The posterior correlations between elements of µ are not particularly

strong, but to the extent that non-spherical errors are present (e.g. between AdFormat 4 and the

Intercept), they appear to be well captured by consensus Monte Carlo.

Figure 10 shows what happens to the computing time as the number of shards increases. The

16



parameter

de
ns

ity

Intercept

 0.05 
 0.1 

 0.05 

 0.1 

Quality

 0.1 
 0.2 

 0.1 
 0.2 

AF 1

 0.05  0.05 

AF 2

 0.05 

 0.1 
 0.05 

 0.1 

AF 3

 0.02 
 0.02 

AF 4

 0.02  0.02 

AF 5

 0.01 

AF 6

In
te

rc
ep

t

−
10

5

parameter

de
ns

ity  0.05 
 0.05 

 0.1  0.02  0.02  0.05 
 0.02 

 0.04 

 0.01  0.01  0.01 
 0.02 Q

ua
lit

y

parameter

de
ns

ity  0.05  0.05  0.05  0.05  0.02  0.02  0.02  0.01 A
F

 1

−
10

5

parameter

de
ns

ity  0.02  0.02  0.01  0.01 

 0
.0

1 

 0.01 A
F

 2

parameter

de
ns

ity

 0.02 
 0.01 

 0.02 
 0.01 

A
F

 3

−
10

5

parameter

de
ns

ity

 0.005 

A
F

 4

parameter

de
ns

ity

 0.002 

A
F

 5
−10 5

−
10

5

−10 5 −10 5 −10 5

parameter

de
ns

ity

A
F

 6

overall consensus

parameter

de
ns

ity

Intercept

parameter

de
ns

ity

Quality

parameter

de
ns

ity

AdFormat 1

parameter

de
ns

ity

AdFormat 2

parameter

de
ns

ity

AdFormat 3

parameter

de
ns

ity

AdFormat 4

parameter

de
ns

ity

AdFormat 5

parameter

de
ns

ity

AdFormat 6

1 2 3 4 5

(a) (b)

Figure 9: Posterior draws of µ based on the first 5 shards described in Section 4.4. (a) Posterior draws
from the single-machine and consensus Monte Carlo algorithms. (b) Draws from the five worker machines.

single machine algorithm scales linearly up to about 20 shards, at which point it encounters a

resource limit and begins slowing down. We stopped experimenting with the single machine run

after 30 shards, because resource bottlenecks caused the machine to stop functioning, and we could

not get the run to finish. With consensus Monte Carlo the job completes within about 20-30

minutes, regardless of the number of shards. These times are with off-the-shelf R code. Optimized

code would improve both the single machine behavior and the run time on each worker machine.

In this application, the estimands of interest require the advertiser specific coefficients βj . As

mentioned in Section 3.4.1, these can be obtained with independent MCMC runs on each adver-

tiser’s data, given the draws of µ and Σ.

4.5 Nonparametric regression

We consider nonparametric regression models of the form

yi ∼ N
(
f(xi), σ

2
)

(7)

17



Figure 10: Time required to complete 10,000 MCMC draws with different numbers of shards under the single
machine and consensus Monte Carlo algorithm.

independently across observations. Such models often lack interpretable sets of model parameters,

so Bayesian inference focuses on the posterior distribution p(f(x)|y) at a particular value of x. As

mentioned in Section 3.4.2, Consensus Monte Carlo can be applied to nonparametric regression

models by fitting a separate model on each worker machine and averaging the draws from the

worker-level predictive distributions.

As an example, consider BART (Chipman, George, and McCulloch, 2010), a tree-based algo-

rithm for nonparametric regression, where

f(x) =

T∑
t=1

ft(x) (8)

and each ft(x) is a decision tree. Each interior node j of tree t compares a specific element νtj of

x to a specific cutpoint χtj . Starting at the root of the tree, if node j has children and xνtj ≤ χtj

then x falls to the left child, otherwise it falls to the right. If node j is a leaf then it contains a

mean parameter Mtj giving the contribution of tree t to ft(x). BART is an additive model that

combines contributions from many trees.

The prior distribution for BART recommended by Chipman et al. (2010) consists of a prior over

the topology of each tree, a prior over the parameters Mjt, and a prior on the residual variance

σ2. The prior probability that a node at depth d splits into children at depth (d+ 1) is a/(1 + d)b.

If there is a split, a variable νtj is chosen uniformly from the set of available variables, and a

cutpoint χtj uniformly from the set of available cutpoints. If there is no split, then the node is a

leaf containing mean parameter Mtj with prior distribution Mtj ∼ N
(
0, τ2

)
, independently across

t and j. A conditionally conjugate inverse gamma prior is assigned to σ2.

We tested the consensus Monte Carlo algorithm with BART using simulated data from Fried-

18



5 10 15 20

5
10

15
20

bart mean

co
ns

en
su

s 
ba

rt
, n

o 
pr

io
r 

ad
ju

st
m

en
t

5 10 15 20

5
10

15
20

bart 5%

co
ns

en
su

s 
ba

rt
, n

o 
pr

io
r 

ad
ju

st
m

en
t

5 10 15 20 25

10
15

20

bart 95%

co
ns

en
su

s 
ba

rt
, n

o 
pr

io
r 

ad
ju

st
m

en
t

5 10 15 20

10
15

20

bart mean

co
ns

en
su

s 
ba

rt
, p

rio
r 

ad
ju

st
m

en
t

5 10 15 20

−
5

0
5

10

bart 5%

co
ns

en
su

s 
ba

rt
, p

rio
r 

ad
ju

st
m

en
t

5 10 15 20 25

20
25

30
35

bart 95%

co
ns

en
su

s 
ba

rt
, p

rio
r 

ad
ju

st
m

en
t

Figure 11: Comparing consensus BART with the single machine algorithm. The three columns compare
posterior means (left) and posterior 5% (center) and 95% (right) percentiles from the single-machine and
consensus posterior distributions. In the top row the 30 workers were run with the same prior as the single
machine. In the bottom row the prior was raised to the 1/30 power.

man’s test function (Friedman, 1991)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (9)

where ε ∼ N
(
0, 32

)
is an independent error term. Our full data set contained 20,000 observa-

tions where each component of xi was independently simulated from U(0, 1). We also simulated

x6, . . . , x10 as additional superfluous predictors. We chose 20,000 observations because that is close

to the largest data set that the single-machine BART algorithm could handle in a reasonable time

period. The consensus Monte Carlo algorithm was implemented using the parallel package from R

on a 30 processor machine.

Figure 11 summarizes the results of two model runs on the same set of simulated data. In the

top row, the single machine algorithm and the worker machines in consensus Monte Carlo each used

the recommended prior from Chipman et al. (2010). In the bottom row the prior was raised to the

1/30 power to account for the fact that there are 30 workers. With no prior adjustment the single

19



machine and consensus algorithms essentially agree on both the posterior mean and the upper

and lower posterior quantiles. When the prior is adjusted, the consensus Monte Carlo posterior

becomes overdispersed. The prior distribution plays a significant role in determining the size of

each tree in the BART algorithm. Weakening the prior results in much larger trees, and generally

more diffuse posterior distributions. Averaging over shards mitigates the overdispersion, but not

enough to match the single machine algorithm. Alternative strategies for prior adjustment, such

as only modifying the prior on Mtj and σ2, might still prove to be effective, and could potentially

be necessary in other applications.

Interestingly, the consensus Monte Carlo algorithm actually fits the data slightly better than

the single machine algorithm. The correlation between the posterior means and the true function

values for the single machine run was .992. The same correlation for consensus Monte Carlo was

.995. The reason is that the Monte Carlo algorithm used to fit BART tends to have trouble mixing

as sample sizes grow large. The consensus Monte Carlo posterior is based on 30 rapidly mixing

workers, while the single machine algorithm is based on one slow mixing worker.

5 Discussion

The idea of distributing a Bayesian calculation to a group of independent workers is a natural one,

justified by equation (2). This article has shown that there are models, some with non-Gaussian

posteriors, for which the draws from workers can be combined using simple weighted averages.

Consensus Monte Carlo scales to very large numbers of machines in ways that multi-core algo-

rithms cannot. It can be implemented with existing code, whether single or multi-threaded, and it

is agnostic to the specific algorithm used to generate the worker-level draws. It is similarly agnostic

to the method used to parallelize the computation. It can be used on a cluster of computers, a

single multi-core or multi-processor computer, or an arbitrary collection of machines that need not

be linked by a high speed network.

A fundamental weakness of the algorithm is its limitation to unknowns of fixed dimension in

continuous parameter spaces. For example, label switching and changing numbers of dimensions

would make it difficult to use consensus Monte Carlo to cluster observations based on infinite

Dirichlet process mixtures. Similar issues make consensus Monte Carlo ill suited to model averaging

using spike and slab priors.

There is a long list of open questions that needs to be addressed on consensus Monte Carlo.

We need to better understand how the algorithm behaves as posterior distributions move away

from Gaussianity. To the extent that averaging fails in non-Gaussian models other methods of

consensus should be explored. Improvements to the algorithm will probably involve a small num-

ber of between-machine communications, a handful of which would not fundamentally change the

character of the method. Consensus Monte Carlo is likely to be useful with models that violate

equation (2), such as hierarchical models with crossed random effects, or Gaussian processes with

20



non-trivial covariances functions, but these directions need to be explored.

The examples in Section 4 provide useful but sometimes contradictory lessons for practitioners.

Consensus Monte Carlo was found to perform well on a variety of models, but subtle adjustments to

the prior were sometimes necessary to achieve good results. In Section 4.1 adjusting the prior was

critical to the method’s success, while in Section 4.5 it was detrimental. Until a more solid theory

can be established, the best advice we can give practitioners is to try consensus Monte Carlo on a

simulated data set to determine conditions under which it performs well in a particular problem.

References

Anderson, T. E., Culler, D. E., and Patterson, D. (1995). A case for now (networks of workstations).

Micro, IEEE 15, 54–64.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). Bart: Bayesian additive regression

trees. The Annals of Applied Statistics 4, 266–298.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.

Communications of the ACM 51, 107–113.

Denison, D. G. T., Mallick, B. K., and Smith, A. F. M. (1998). Automatic Bayesian curve fitting.

Journal of the Royal Statistical Society, Series B, Methodological 60, 333–350.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics 19, 1–67.

Ghahramani, Z. and Beal, M. J. (2001). Propagation algorithms for variational Bayesian learning.

Advances in neural information processing systems 507–513.

Guha, S., Kidwell, P., Hafen, R., and Cleveland, W. S. (2009). Visualization databases for the

analysis of large complex datasets. In International Conference on Artificial Intelligence and

Statistics, 193–200.

Hadfield, J. D. (2010). Mcmc methods for multi-response generalized linear mixed models: The

MCMCglmm R package. Journal of Statistical Software 33, 1–22.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by minimizing the

description length of the weights. In Proceedings of the sixth annual conference on Computational

learning theory, 5–13. ACM.

Huang, Z. and Gelman, A. (2005). Sampling for Bayesian computation with large datasets. Tech.

rep., Columbia University Department of Statistics.

Jaakkola, T. S. and Jordan, M. I. (2000). Bayesian parameter estimation via variational methods.

Statistics and Computing 10, 25–37.

21



Kleiner, A., Talwalkar, A., Sarkar, P., and Jordan, M. I. (2011). A scalable bootstrap for massive

data. arXiv preprint arXiv:1112.5016 .

Le Cam, L. M. and Yang, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts. Springer-

Verlag.

Lee, A., Yao, C., Giles, M. B., Doucet, A., and Holmes, C. C. (2010). On the utility of graphics

cards to perform massively parallel simulation of advanced Monte Carlo methods. Journal of

Computational and Graphical Statistics 19, 769–789.

Malewicz, G., Austern, Matthew H. Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and Cza-

jkowski, G. (2010). Pregel: A system for large-scale graph processing. In SIGMOD’10, 135–145.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent gaussian

models by using integrated nested laplace approximations. Journal of the royal statistical society:

Series b (statistical methodology) 71, 319–392.

Suchard, M. A., Wang, Q., Chan, C., Frelinger, J., Cron, A., and West, M. (2010). Understanding

GPU programming for statistical computation: Studies in massively parallel massive mixtures.

Journal of Computational and Graphical Statistics 19, 419–438.

White, T. (2012). Hadoop: the definitive guide. O’Reilly.

Zhang, Y., Duchi, J. C., and Wainwright, M. J. (2012). Communication-efficient algorithms for

statistical optimization. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference

on, 6792–6792. IEEE.

22


	Introduction
	Coordinating many machines is expensive
	Consensus Monte Carlo
	Combining draws by weighted averages
	Choosing Weights
	Other potential consensus strategies
	More complex models
	Nested hierarchical models
	Nonparametric regression

	The potential for small-sample bias

	Examples
	Binomial data with a beta prior
	Gaussian Data
	Logistic regression
	Hierarchical models
	Nonparametric regression

	Discussion

