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a b s t r a c t

Memory analysis has gained popularity in recent years proving to be an effective technique
for uncovering malware in compromised computer systems. The process of memory
acquisition presents unique evidentiary challenges since many acquisition techniques
require code to be run on a potential compromised system, presenting an avenue for
anti-forensic subversion. In this paper, we examine a number of simple anti-forensic
techniques and test a representative sample of current commercial and free memory
acquisition tools. We find that current tools are not resilient to very simple anti-forensic
measures. We present a novel memory acquisition technique, based on direct page table
manipulation and PCI hardware introspection, without relying on operating system
facilities - making it more difficult to subvert. We then evaluate this technique’s further
vulnerability to subversion by considering more advanced anti-forensic attacks.

ª 2013 Johannes Stüttgen and Michael Cohen. Published by Elsevier Ltd. All rights
reserved.

1. Introduction

Since host-based memory forensics was first proposed,
rapid advances in the analysis techniques for memory
images have taken place. Modern tools are capable of
extracting detailed information about system state, config-
uration, and anomalies. In particular, memory analysis has
proven useful for the detection of rootkits and other mal-
ware infecting the host, as well as the analysis of malicious
software.

As this analytical capability matures, applications are
emerging for application of memory analysis in many con-
texts, such as remote forensics (Cohen et al., 2011), malware
classification, and even self healing of compromised sys-
tems (Grizzard, 2006). Direct memory access can be used in
the forensic context to obtain a complete point-in-time
static forensic image or to enable an external memory
analysis module to perform runtime live analysis. In this

paper we refer to the process of accessing the physical
memory as “memory acquisition”, regardless of its intent.

Memory analysis is attractive for malware analysis as it
is seen as a way to examine the system from an external
and impartial point of view.While malware may attempt to
hide by hooking operating system services (Florio, 2005),
analysis of memory images offers the opportunity to
examine the rootkit’s hooks and code outside of the path of
the ordinary operating system functionality.

Anti-Forensics has been broadly defined as “any attempt
to compromise the availability or usefulness of evidence
to the forensic process” (Harris, 2006). Thus anti-forensic
attacks fall into two broad categories – those techniques
which prevent evidence from being acquired, and those
techniques which remove data from the collected evidence
such that thecollectedevidencecannotbe suitablyanalyzed.

A number of effective anti-forensic techniques against
memory acquisition have been proposed. Substitution at-
tacks, inwhich data fabricated by the attacker is substituted
in place of valid data during the acquisition process have
been implemented (Bilby, 2006; Milkovic, 2012). Alterna-
tively a rootkit might disrupt the acquisition process
altogether (e.g. hang the hardware) when detecting the
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presence of a forensic agent. This approach is especially
effective against memory acquisition, since the volatility of
the evidence does not permit the investigator to reacquire
the memory under the same conditions.

Although there have been efforts to test memory
forensic acquisition tools (Inoue et al., 2011), and even so-
lidify the criteria bywhich these tools can be tested (Carrier
and Grand, 2004; Vömel and Freiling, 2012), robustness of
the tools against anti-forensic interference is not yet
explored during these tests (Wundram et al., 2013). Thus,
while one can gain assurances about the forensic sound-
ness of acquisition tools under ideal lab conditions, it is
impossible to extrapolate this to acquisition of a hostile
system, potentially employing anti-forensic techniques.

Due to lack of research and understanding of anti-
forensic techniques in memory acquisition, current com-
mercial or free memory acquisition tools do not appear to
implement mechanisms to protect their operations against
anti-forensic attacks. Due to the increasing popularity of
these tools, there is currently an invigorated research in-
terest in developing anti-forensic techniques specifically
targeting these tools (Milkovic, 2012;Haruyamaand Suzuki,
2012).

Related Work: A number of memory acquisition tech-
niques have been proposed in the literature (Vömel and
Freiling, 2011). In assessing the exposure of different
memory acquisition techniques to anti-forensic subversion,
we can broadly divide techniques into those which rely on
the operating system software integrity and those who rely
on the hardware.

Many operating systems already present a view of
physical memory through a special device or kernel API. For
example, in Windows the operating system presents the
section object \\.\PhysicalMemory, to allow reading
from physical memory. Earlier memory acquisition tools
directly opened this device from user-space (Garner, 2006).
More recent versions of Windows deny direct access to the
device from user space, necessitating a kernel driver to
open the device from kernel space. A number of more
direct kernel API routines are utilized in current tools, such
as MmMapIOSpace and the undocumented MmMapMemor-

yDumpMdl (MoonSols, 2012).
Bypassing memory acquisition tools that depend on the

operating system was demonstrated by the ddefy tool
(Bilby, 2006). This tool hooks the physical memory device
and filters certain pages from being read through this
interface, providing instead a cached copy (prior to kernel
modification). In principle, any OS facility can be hooked in
a similar manner in order to subvert the acquisition tool.
Additionally, many acquisition tools have a user mode
process to write and process the image. This increases the
attack surface of the tool, by allowing standard user space
hooks to modify the memory image as it is written to disk
(Milkovic, 2012).

Hardware-based solutions were proposed as being
resilient to rootkit manipulation. Dedicated hardware can
access the memory bus directly without CPU management
(Carrier and Grand, 2004). It is even possible to re-purpose
existing hardware to extract physical memory. For example,
the Firewire hardware may be used for direct memory
access (DMA) to the physical address space (Boileau, 2006).

Unfortunately, even hardware-based acquisition can be
defeated using very low level manipulation of the memory
controller’s hardware registers (Rutkowska, 2007). By
remapping some parts of the physical address space into an
IO device, the CPU’s view of this range is different from the
hardware DMA view.

A more subversion resistant approach is taken by
BodySnatcher (Schatz, 2007). It involves loading a new,
trusted OS for acquisition. While avoiding rootkit interfer-
ence and guaranteeing the atomicity of the image, the
technique has severe drawbacks. For example the operating
system of the host is halted, making it unsuitable for pro-
duction environments. Additionally, the acquisition OS
needs to have drivers for the device used to extract the
memory image to (e.g. the network interface), making it
highly platform dependent.

Recent advances in hardware virtualization allow
running the acquisition software on a higher privilege level
than the operating system. For example the Hypersleuth
(Martignoni et al., 2010) and VIS (Yu et al., 2011) tools
leverage the Intel VMX instruction set to virtualize the
operating system on the fly. Running in VMX root-mode,
the acquisition software essentially acts as a thin hyper-
visor and thus is not prone to subversion by operating
system level rootkits. Also, the hypervisor based acquisition
tool can guarantee the atomicity of the image, by adopting
a copy-on-write based imaging approach. However, this
approach depends on the ability to load a new hypervisor
on the fly. In environments where a hypervisor is already
running, this will not work unless nested hardware virtu-
alization is supported and active. With Hyper-V being
shipped with Windows 8 and many web servers being
virtual instances, this is increasingly often the case. Also,
the ability to virtualize the operating system on the fly
means a rootkit can do the same thing, defeating the
acquisition hypervisor (Rutkowska, 2006; Zovi, 2006; King
and Chen, 2006).

A possible solution to this problem is to go even deeper,
and execute memory acquisition software on a firmware
level. By running in System Management Mode (SMM), the
program is isolated from any operating system and even
hypervisor based malware (Wang et al., 2011), while still
being able to create an atomic memory image without
completely halting the host. Unfortunately, only the BIOS
can load code into SMM. The acquisition software thus has
to be installed by flashing a new BIOS onto the target ma-
chine. This requires a reboot, making this technique un-
suitable for ad-hoc analysis.

Contributions: In this paper, we advance the field of
forensic memory acquisition by considering the efficacy of
forensic tools when facing determined and skilled adver-
saries, willing to use anti-forensic techniques. We find that
the current generation of forensic memory acquisition tools
are ill equipped to face this adversarial challenge. By un-
derstanding theweaknesses present in current tools we are
able to further the state of the art by developing more
robust solutions, thereby increasing the complexity
required by the attacker to effectively bypass forensic tools.

Forensic tool testing is a contemporary research topic.
There have been attempts to quantify testable criteria by
which to assess the correctness of memory acquisition
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tools. However, this line of reasoning completely ignores
the fact that memory acquisition tools are running in a
hostile environment. The following paper demonstrates
that whilst many acquisition tools produce correct and
forensically sound images under idealized lab conditions,
they completely fail when simple anti-forensic attacks are
present. This makes it hard to gain assurances about the
tool’s correctness from simple tool testing procedures.

In this work, we experimentally implement a range of
previously published and novel anti-forensic techniques.
We then apply these techniques against a representative
sample of contemporary popular memory acquisition tools.
Unfortunately, we find that all tools tested can be subverted
by simple anti-forensic attacks.

We then introduce a novel technique to combat these
attacks, and still acquire a usable memory image. We incor-
porated this novel acquisition technique into the open source
“WinPmem” memory acquisition tool (Cohen, 2012a), mak-
ing it resilient to current published anti-forensic attacks. We
critically analyze potential countermeasures to our novel
technique and offer scope for further research.

2. Physical memory acquisition

The physical address space is the entire range of mem-
ory addresses that can appear on the memory bus. How-
ever, the physical address space contains more than simply
RAM, as Fig. 1 illustrates. When the system boots, the BIOS
creates a physical memory layout which consists of seg-
ments of usable memory interleaved with ranges reserved
for ROM, PCI resources and the BIOS use itself. Most mod-
ern motherboard chipsets are able to route memory access
around some reserved regions such that all available RAM
chips are utilized. Therefore, usually the highest physical
memory address (and hence the size of the raw memory
image acquired) is larger than the total amount of RAM
installed.

In order to learn about the BIOS allocated memory
layout, an operating system must issue a BIOS service
interrupt (INT 0x15 with AX holding the value 0xE820

(Microsoft Corporation et al., 2006)) early in the boot
sequence, while the processor is still running in real mode.

This BIOS configured memory layout is subsequently
refined by configuring PCI plug and play devices and
remapping their DMA buffers within the reserved regions
(PCI Special Interest Group, 2005). Although the operating
system itself does not utilize reserved regions, they may
still be backed by RAM. An acquisition tool failing to acquire
reserved regions which are not mapped to DMA devices
potentially allows malware to hide code or data there. This
is explored further in Section 3.2.

When running in protected mode, the CPU can not ac-
cess physical memory directly. Instead, the kernel creates a
continuous virtual address space that is transparently
mapped by the Memory Management Unit (MMU). Fig. 1
illustrates at a high level how memory is accessed with
modern Intel/AMD based architectures. The control regis-
ter, CR3, contains the addresses of page tables set up in
memory. These tables are maintained by the operating
system, for the hardware Memory Management Unit
(MMU) to use in translating memory access. The details of
this page translation process are described elsewhere
(Intel, 2013a), however for our purposes it is important to
note that virtual addresses can be translated to any region
of the physical address space by suitable page table entries
(PTE).

For efficiency, peripheral device communication can be
conducted over the system memory bus by routing some
addresses to registers or buffers on a device’s board (e.g.,
Video hardware often has its own memory chips, allowing
direct memory copy to the video buffers over the high
speed system memory bus). This mapping is termed Direct
Memory Access (DMA) and is configured via the PCI
controller during kernel initialization. The physical address
space therefore, contains directly mapped device DMA
buffers in addition to physical memory.

Hence, reading these DMA mapped regions from the
physical address space does not result in a read operation
from system memory, rather it activates various hardware
devices connected to the system. These read operations
may trigger interrupts, system crashes, or even data cor-
ruption if not performed according to the device’s specific
PCI bus protocols.

For the memory acquisition tool, it is extremely
important to ensure that DMA regions are avoided
during acquisition in order to minimize the chance of un-
recoverable system crashes. From a forensic point of view,
we are usually most interested in acquiring the physical
memory which only forms a part of the physical address
space.

As illustrated in Fig. 1, the acquisition tool has two
problems to solve:

1. Enumeration of address space layout: The tool has to
determine which parts of the physical address space are
backed by physical memory as opposed to peripheral
device DMA buffers. DMA regions must be avoided to
prevent system crashes.

2. Physical memory mapping: Since the tool must
access physical memory via the virtual address space,
the tool must create a page table mapping between a
region in the physical address space and the virtual
address space.

Fig. 1. Physical Memory utilization on modern architectures. The MMU
translates memory access from the virtual address space into the physical
address space using page tables and the Control Register CR3. The physical
address space consists of reserved and available regions configured by the
hardware BIOS. The operating system configures hardware DMA buffers
within reserved regions for direct access to device memory.
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2.1. Common software solution

There are common solutions for both problems, which
are very similar among available tools even on different
operating systems.

Enumeration of address space layout: Unfortunately, it is
impossible to issue the BIOS service interrupt Int 15 while
running in protected mode once the operating system is
booted. Therefore, when memory acquisition tools attempt
to obtain the physical memory layout, they must rely on
data structures or APIs within the operating system kernel,
which are easily susceptible to manipulation.

For example, on Microsoft Windows systems the sym-
bol MmPfnDatabase stores an array with information on
every page frame on the system and how it is utilized by
the kernel. However, this symbol is usually not exported,
and is only accessible through the KdDebugBlock structure
(which is also not exported but used by the kernel
debugger.). The exported API MmGetPhysicalMemoryR-
anges() (Russinovich, 1999) returns the list of physical
address ranges which are available for use, as prepared by
the BIOS, and most windows memory acquisition software
we tested use this API.

On Linux, the symbol iomem_resource, populated
during system boot, contains a tree of resource structures
representing system RAM regions, as well as DMA regions
assigned. Resource regions are named using a simple string,
with regions used by the system named “System RAM”.
Linux acquisition tools (Sylve, 2012; Cohen, 2011) directly
parse this data structure and only acquire regions named
“System RAM”, again allowing for the possibility of hidden
data in non-system regions.

Physical memory mapping: As illustrated in Fig. 1, soft-
ware running in protected mode can not access physical
memory directly. Instead, the required physical memory
region must be mapped into the virtual address space, by
setting up the appropriate page tables. There are a number
of OS provided APIs to achieve this.

For example, on Windows, the API ZwMapVie-

wOfSection can be used to map a file into the virtual
address space such that any read operations from the
mapped regions are serviced from the file contents.
This technique is then used to map parts of the section ob-
ject \\.\PhysicalMemory, which provides a controlled
operating system view of the physical memory.

Alternatively, Windows also provides the API MmMa-

pIOSpace() to allow drivers to map regions of IO or
Physical Memory space into the kernel address space (for
example, in order to directly access the PCI-configured
DMA buffers). Additionally, undocumented APIs exist,
such as MmMapMemoryDumpMdl(), normally used during
the system’s crash dump handling.

The Linux operating system has a non-paging kernel,
allowing it to have a permanent, linear mapping between
the kernel virtual address space and the physical address
space. This means that the entire physical address space is
always mapped into the virtual address space at a constant
offset. Therefore, the API kmap() on many platforms is
simply a macro which translates the physical page frame
number to that linearly mapped kernel virtual address that
corresponds to it.

3. Anti-forensic techniques

Recent interest in anti-forensics has concentrated on
leveraging standard rootkit techniques such as API hooking
in both userspace and kernelspace to disable memory
acquisition tools, or selectively redact evidence from the
acquired image (Milkovic, 2012; Bilby, 2006).

Strategically, the rootkit’s task is to remain hidden,
causing as little noticeable interruption to normal system
activity. However, once the rootkit detects a memory
acquisition tool is running, it requires that acquisition to be
thwarted or redacted. Therefore, the rootkit must trade-off
more intrusive, system wide techniques which might
destabilize the system with simple techniques which
would attack the acquisition software alone.

Due to the reliance of acquisition tools on obscure and
undocumented exported system APIs, it is quite easy to
differentiate the forensic agent from normal system pro-
cesses. This may allow the rootkit to direct its anti-forensic
action towards specific forensic agents, while leaving reg-
ular software unaffected.

In the following sections we examine experimentally
how simple anti-forensic techniques affect several of the
most popular memory acquisition tools.

3.1. Active anti-forensics

We have created a small Python kernel patcher (shown
in Listing 1) that demonstrates a few simple techniques.

In a few lines, this script utilizes the Technology Preview
edition of the Volatility Framework (Walters, 2007; Cohen,
2012b) and the WinPmem driver with enabled write sup-
port (Cohen, 2012a), to subvert memory acquisition in
three ways:

Kernel debugger block hiding: The static kernel structure
KdDebugBlock is used to find the base address of the
kernel image and several non-exported symbols. It can be
found by scanning for the OwnerTag member, which is
the static string “KDBG”. Haruyama and Suzuki already
demonstrated that overwriting this tag is effective in

Listing 1. A kernel patcher script based on the Technology Preview Edition
of the Volatility Memory Analysis Framework (Cohen, 2012b), is able to
locate arbitrary kernel functions in the running system and patch them.
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thwarting analysis by frameworks like Volatility (Haruyama
and Suzuki, 2012). As we show in Section 3.1.1, this tech-
nique can even disruptmemory acquisition, as some drivers
rely on the KDBG to resolve some symbols.

Hooking of memory enumeration APIs: As mentioned in
Section2,memoryacquisitiondriversneed to enumerate the
physical address space prior to acquisition. On the Microsoft
Windows family of operating systems, all tested drivers use
the undocumented symbol MmGetPhysicalMemoryR-

anges() to obtain a map of the physical address space. By
patching this function to always return NULL, which is the
failure indicator for this function, we prevent drivers from
learning about the physical address space layout. As reading
from device memory can crash the kernel, this effectively
prevents memory acquisition. The patch is relatively stable,
as usage of this API is discouraged by Microsoft, so regular
drivers don’t use it. An actual rootkit could of course simply
return a modified version of the memory map, which ex-
cludes ranges it is trying to hide. Acquisition would then
appear successful, while being incomplete.

Hooking of memory mapping APIs: To actually access
physical memory, acquisition drivers need to map it
into the kernels virtual address space (see Section 2).
The three kernel APIs commonly used for this purpose
are ZwMapViewOfSection(), MmMapIOSpace() and the
undocumented symbol MmMapMemoryDumpMdl(). For
demonstration purposes, we patch MmMapMemor-

yDumpMdl() to return NULL. As this symbol is also undoc-
umented and usage is discouraged, this patch is relatively
stable. Because the other two APIs are often used by drivers,
patching them will quickly result in system instability.
However, a more sophisticated rootkit can easily install
hooks that filter mapping operations on hidden pages. This
would also be a very stable modification, subverting any
memory acquisition tools using the other two APIs.

Note that because of Kernel Patch Protection this script
will not work on 64-bit kernels without disabling Patch
Guard (Microsoft Corporation, 2006). However, as rootkits
more and more start to subvert this protection (Rusakov,
2012, 2011), we believe it is safe to assume an attacker is
able to do this. For testing purposes, we have enabled debug
mode on our test systems, which disables Patch Guard.

3.1.1. Evaluation against active anti-forensics
We evaluated our proof-of-concept techniques against

several popularmemory acquisition tools. For this study, we
have requested evaluation copies of “Moonsols Dumpit”,

“HBGary Fastdump Pro”, “GMG Systems’ Kntdd” and
“Guidance’s WinEn” for the purpose of forensic tool testing.
Only Moonsols responded positively to our request.
Additionally, we included open source or free tools such as
“WindowsMemoryReader”, “Winpmem”, “Mandiant
Memoryze” and “Access Data’s FTK Imager”.We believe that
most other tools exhibit similar deficiencies. However, since
we are unable to test these, readers are encouraged to use
Listing 1 to reproduce these tests themselves.

Our test system is an �86-64 Intel computer, running a
fully patched Windows 7 �86-64 with Service Pack 1. We
have tested Memoryze (Mandiant, 2011), FTK Imager
(AccessData, 2012), Win64dd (MoonSols, 2012), WinPmem
(Cohen, 2012a), and WindowsMemoryReader (ATC-NY,
2012b), using their default settings to produce a raw
image. In cases where the tool could produce a crashdump
format image, the tests were repeated for this format. All
patches in Listing 1 were tested individually, as well as
simultaneously. A summary of the evaluation results is
depicted in Table 1, where a PASSmeans the acquisition tool
was able to create an image of memory despite the
employed anti-forensic method.

The data shows that every tested acquisition tool was
subverted by at least one of the tested anti-forensic
methods. After employing all anti-forensic techniques
simultaneously, none of the tools were able to acquire a
single byte of memory. Some tools even crashed the kernel
while trying, a very undesirable effect when analysing
production systems. This may be due to missing error
checkingwithin the acquisition toolwhichmay assume that
Kernel APIs can never fail.

Mandiant Memoryze: Destroying the KDBG Owner Tag
had no impact on the performance of Memoryze. Also,
hooking MmMapMemoryDumpMdl() had no effect, as
Memoryze only supports the \\.\PhysicalMemory and
MmMapIOSpace()methods for mapping physical memory.
Hooking MmGetPhysicalMemoryRanges() caused
Memoryze to crash the kernel immediately, making it
impossible to acquire any memory at all and forcing the
target machine to reboot without an error message.

Accessdata FTK Imager: Similarly to Memoryze, destroy-
ing the KDBG Owner Tag or Hooking MmMapMemor-

yDumpMdl() did not affect FTK Imager, as it maps memory
by calling ZwMapViewOfSection() on the \\.\Phys-

icalMemory device. However, hooking MmGetPhysi-

calMemoryRanges() will result in an empty image,
without any apparent warnings.

Table 1
Successful acquisitions with active anti-forensics.

Acquisition tool Version Format KDBG MmGetPhysical
memory-ranges()

MmMap-MemoryDump-
Mdl()

Memoryze 2.0 raw PASS FAIL PASS
FTK Imager 3.1.2 raw PASS FAIL PASS
Win64dd 1.4.0 raw PASS/FAIL FAIL FAIL
Win64dd 1.4.0 dmp FAIL FAIL FAIL
DumpIt 1.4.0 raw PASS FAIL FAIL
WinPmem 1.3.1 raw FAIL FAIL PASS
WinPmem 1.3.1 dmp FAIL FAIL PASS
WindowsMemoryReader 1.0 raw PASS FAIL PASS
WindowsMemoryReader 1.0 dmp PASS FAIL PASS
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Moonsols Win64dd: When creating a raw image, trash-
ing of the KDBGOwner Tag resulted in spontaneous reboots
during acquisition with Win64DD. In our tests, an incom-
plete dump of 100 MB was created before the fault
occurred. The log did not include any error messages.
Similar behaviour was experienced when hooking
MmGetPhysicalMemoryRanges() or MmMapMemor-

yDumpMdl(), which is the default memory mapping
method of Win64DD. The tool behaved in the same way
when creating a crash dump (dmp). However, when
providing all arguments on the command-line and creating
a raw image, the KDBG method did not cause Win64dd to
crash anymore. It was still impossible to create a crash-
dump, though. We presume Win64dd’s interactive mode
queries the driver for some information, that triggers it to
search for the KDGB, regardless of the image format.

Moonsols DumpIt: Moonsols offers a packaged version of
it’s memory acquisition tools called DumpIt. This tool only
supports the raw output format and does not seem to be
affected by overwriting of the KDBG-Owner-Tag. It is still
vulnerable to the other two anti-forensic methods.

WinPmem: Overwriting the KDBG Owner Tag causes
WinPmem to fail. In contrast to other tools we tested, it
does not crash the kernel. However, there is no error
message indicating the reason for the failure. The hooking
of MmGetPhysicalMemoryRanges() also causes an
abort, displaying the error message to obtain memory ge-
ometry. Hooking MmMapMemoryDumpMdl() does not affect
WinPmem, as it utilizes the \\.\PhysicalMemory and
MmMapIOSpace() methods for memory mapping.

ATC-NY WindowsMemoryReader: The KDBG method did
not affect WindowsMemoryReader at all. It was even able
to create a crash-dump. However, the resulting dump could
not be parsed by WinDBG completely, as the contained
KDBG block was corrupted. Hooking of MmMapMemor-

yDumpMdl() had no effect, as it is not used by Window-
sMemoryReader. The MmGetPhysicalMemoryRanges()

method however completely disabled both, raw and dmp

output. It caused an error in the driver to crash the kernel,
immediately rebooting the host.

3.1.2. Platform dependence
The demonstrated problems are not Windows specific.

We have also conducted experiments with other operating
systems, with similar results. On Mac OSX 10.8 Mountain
Lion, we have tested MacMemoryReader in version 3.0.2
(ATC-NY, 2012a), as well as OXSPmem (Stüttgen, 2012)
version RC1. Both function in a similar way, with the same
inherent problems malicious software can exploit.

On EFI enabled systems, rather than using the BIOS
Interrupt 15 routine, memory geometry is obtained by
calling an EFI routine while the CPU is still in real mode.
This physical memory map is handed to the kernel on
startup, and subsequently cached in kernel data structures.

The platform expert component of the OSX kernel stores
a pointer to this structure in the symbol PE_state.boo-
tArgs. Zeroing this structure, or simply zeroing the size
member, will prevent acquisition drivers from obtaining a
map of physical address space, effectively preventing
acquisition. Of course a more sophisticated rootkit could
modify this map to exclude any data it protects. Acquisition

will then succeed, without any indication of subversion.
However, hidden data will not be included in the image,
reducing its evidentiary efficacy.

This procedure is very easy to implement, for example, a
simple proof of concept is depicted in Listing 2. A malicious
OSX kernel extension calling this 2-line function can
completely prevent both tools from acquiring even a single
byte of memory.

Similarly to theWindows acquisition tools, OSX physical
memory mapping can also be easily subverted. On OSX,
physical memorymapping is achieved by creating an object
of IOMemoryDescriptor, and then calling it’s crea-

teMappingInTask() method. By either hooking the
constructor or mapping method, malicious software can
perform the exact same attacks as with the above
mentioned Windows memory mapping functions.

3.2. Passive techniques

As already mentioned in Section 2, the BIOS memory
map divides the physical address space into two categories:
available and reserved. Available means the memory is
backed by RAM and usable by the operating system.
Reserved indicates regions where devices might create
DMA mappings. The left part of Fig. 2, depicts the layout as
it exists on one of our test machines.

The BIOS memory map is subsequently refined during
device configuration, and parts of the address space in the
reserved regions finally contain devicememorymapped IO.

Listing 2. OSX Memory-Map Overwriting.

Fig. 2. Hidden memory on a test system with 4 GB of RAM.
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However, because of the way the BIOS set up the reserved
regions, small segments in the reserved regions can still be
backed by RAM.We call these segments “HiddenMemory”,
as they can be used by rootkits to hide data from memory
acquisition tools.

We have located these regions by identifying segments
in reserved memory that are not mapped by devices,
writing known values to them and then reading these back
to ensure the write persisted. On our test machine, the final
configuration contains 4 easily locatable segments of hid-
denmemory, as shown on the right side of Fig. 2. They have
a total size of 52 pages (1, 23, 12 and 16), which sums up to
212,992 bytes of hidden memory.

3.2.1. Evaluation against passive anti-forensics
For this test, all hidden memory segments were filled

with a known string. We then acquired a raw memory
image and compared the data at the corresponding offsets
with the known string. Note that some tools provide mul-
tiple settings onwhichmemory regions to acquire. Because
the hiddenmemory segments lie inside regions reported as
memory mapped IO by the operating system, we have ac-
quired the test images using the most extended setting
possible.

Mandiant Memoryze, AccessData FTK Imager, Winp-
mem and Moonsols DumpIt don’t allow the acquisition of
anything other than the “available” regions. In the resulting
image, these regions are zero-padded, except for Memo-
ryze, which uses the 0xBA byte for padding. The known
string was not acquired.

ATC-NY WindowsMemoryReader allows very fine tun-
ing on the parts of memory that are acquired. It even re-
solves all device DMA mappings and provides options to
include them in the image. Unfortunately, it regards regions
that are neither “available” nor memory mapped IO as non-
existent, so they can not be selected for acquisition. They
are zero padded in the image, the known string could not
be acquired. When using the most extensive setting -“r” to
acquire all resources, the system crashed before the entire
memory could be acquired.

Moonsols Win64dd is an exception in this test, because
it allows to choose a mode that acquires the entire physical
address space. In our test this did acquire the known string
from the first 3 hidden memory segments. However the
machine crashed and rebooted while imaging the reserved
memory region containing the 4th segment. This resulted
in the image file being incomplete, missing the last hidden
segment.

4. Improving memory acquisition

Previous sections illustrated some commonweaknesses
in current memory acquisition tools. Specifically, the use of
non-standard or undocumented API imports makes the
tool easily identifiable, allowing malware to install simple,
stable hooks specifically targeting forensic agents, while
leaving the rest of the system unaffected.

Our goal is to make memory acquisition more resilient
to malware subversion by utilizing the hardware itself,
rather than relying on kernel APIs. Our driver is therefore
not vulnerable to the simple anti-forensic techniques

demonstrated above. Additionally, not using exotic APIs,
makes it harder to differentiate our acquisition driver from
ordinary drivers without thorough code analysis.

4.1. Hardware-based physical memory layout detection

As discussed in Section 2.1, obtaining the physical
memory map via BIOS or EFI service routines can only be
run in real mode, and this can only be done early in the
operating system’s boot sequence.

Section 2.1 also points out that data may be hidden in
reserved regions which are not used by the operating sys-
tem. Forensic memory acquisition tools should aim to
recover all available data, including data in reserved re-
gions. However the danger with reading DMA mapped
devicememory is that the hardwaremay become activated,
crash the system or corrupt data.

Therefore, rather than finding the memory regions
which are safe to read (e.g. via the MmGetPhysicalMe-

moryRanges() routine), we instead directly enumerate
the memory ranges which are not safe to read, and avoid
those.

The process of configuring PCI plug and play devices is
well documented and follows a standard configuration
protocol (PCI Special Interest Group, 2002). The legacy PCI
configuration protocol, uses two special IO ports (PCI_-
CONFIG_DATA is at 0�CFC and PCI_CONFIG_ADDRESS is
at 0�CF8) to read the configuration space of all devices and
secondary PCI buses on themain system bus. Amodern and
more efficient configuration method is provided by PCI
Express (PCI Special Interest Group, 2005), but most
hardware also supports the old protocol.

It is therefore possible to enumerate all active PCI de-
vices, and retrieve their Base Address Register (BAR)
configuration and DMA buffer sizes. Secondary buses on
the main PCI bus must also reserve memory ranges for
themselves, which can also be read using this method (PCI
Special Interest Group, 1998). It should be noted here, that
querying the PCI controller involves IO port assembly in-
structions and not operating system routines - hence this
can not be hooked in the usual way.

In addition to DMA buffers, standard memory regions
that are assigned to hardware, such as the ISA bus hole
ranges, are automatically added to the list of excluded
memory ranges.

Note that there might be other devices that are not
registered on the PCI bus but might have memory mapped
into the physical address space. Examples include the High
Precision Event Timer (HPET) on the LPC Bus, as well as
local APICs, I/O APICs and BIOS ROMs.While it is possible to
locate MMIO ranges used by these devices by parsing the
MP (Intel, 1997) or ACPI Tables (Hewlett-Packard et al.,
2011), excluding them from acquisition might not be wise
in this context. These tables are not expected to be updated
after the system has booted (Hewlett-Packard et al., 2011;
Intel, 1997), making them an easy target for rootkit
manipulation. While there are programming rules enforc-
ing register alignment for reads in some of these MMIO
regions (Intel, 2004, 2013b), reading them does not violate
any of the documented constraints and did not cause any
problems in our experiments. Of course we weren’t able to
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test all available hardware configurations. Some devices
might exist that cause problems when being read and don’t
adhere to the PCI specifications. A broad evaluation of
different devices should be focus of future research.

Once these memory ranges are obtained, we need to
determine the highest addressable physical memory in the
system.Whilst the OS stores this value internally, we do not
wish to query the OS. Calculating or obtaining this value
from the hardware is not an obvious matter since, as
described in Section 2, the memory chipset may not back
some reserved regions with RAM at all. Instead the physical
address space is extended, leading to the highest physical
memory address being much larger than the total memory
installed. We therefore allow this setting to be user
selectable, and prefer to acquire past the end of physical
memory (yielding simply zero blocks).

4.2. Hardware-based mapping of physical memory

Rather than rely on kernel APIs to set up the required
page table mapping to allow physical memory pages to be
accessible from the kernel’s virtual address space, we rely
on direct manipulation of page tables. Ordinarily, inter-
fering with the kernel’s management of the page tables is
risky due to the required synchronization requirements
and detailed understanding of kernel page table manage-
ment, especially on multi-core systems, where race con-
ditions can occur by simultaneous manipulation of page
table by different cores.

To avoid directly manipulating the kernel’s own page
tables, we ask the kernel to allocate a single non-pageable
page for our own use. This causes the kernel to create a
page table entry (PTE) to our own private allocation. Since
this memory is non-paged, we can be confident that the
PTE mapping to this memory will not be changed while we
are using it, guaranteeing that our driver has exclusive ac-
cess to this PTE.

There are multiple methods to achieve this, depending
on the operating system. On Windows, the regular non-
paged pool allocations usually have large page PTEs, and
hence can not be used for our technique. Instead, we create
an unused, page sized, static char array for this purpose
within the driver’s binary. We then call the MmPro-

beAndLockPages routine to ensure this allocation does
not get paged out for the life of the driver. On Linux we use
vmalloc() and on Mac OS X IOMallocAligned(). The
created page-sized mapping is further referred to as the

“Rogue Page”. Of course we could simply use the APIs the
operating system offers to drivers that need to manipulate
the page tables. However, by doing something very com-
mon like allocating memory, we keep a lower profile and
make it harder for malware to identify our module as a
memory acquisition driver.

The driver then walks the page tables directly using the
value of CR3 to find the Directory Table Base (DTB), and
determines the PTE’s virtual memory address. While page
table addresses are usually specified in the physical address
space, most operating systems have PTEs permanently
mapped into the kernel address space for quick access. As
illustrated in Fig. 3, the driver first obtains the address for
the Page Map Level 4 (PML4) from the CR3 register. It then
uses parts of the virtual address of the rogue page, to locate
the corresponding Page Table Pointer Table entry (PTPTE)
and finally the Page Table entry (PTE). The PTE, in turn,
refers to the Page Frame Number, which is the physical
offset of the page divided by the page size.

For each physical page we wish to access (further
referred to as the Target Page), the driver changes the Page
Frame Number in the PTE to match the physical address of
the target page. It then flushes the virtual address of the
rogue page from the Translation Look-aside Buffer (TLB). All
further reads from the virtual address of the rogue page
will now be performed from the physical target page by the
system’s MMU. Once the TLB is flushed, the MMU will
automatically translate our buffer’s virtual address into the
physical page in hardware.

This algorithm does not call any operating system func-
tionality once the rogue page has been locked intomemory.
We simply write to the PTE address directly, and copy
memory out of the rogue page to the user space buffers.

Note that depending on the caching type in the PTE that
holds the original mapping to a physical page, writing to
the rogue mapping could cause cache incoherence and is
strongly discouraged. Thus, operating systems usually
prevent the creation of an incompatible second mapping to
the same physical page (Vidstrom, 2006). However, this is
not a problem for the purpose of memory acquisition, as we
only need to read from this mapping. Of course it is possible
that reading from the rogue page results in stale data that
has already been replaced in one of the CPU caches.
Because of the inherent atomicity issues that come with
any software based acquisition procedure (Vömel and
Freiling, 2011), we don’t believe this to be a problem. By
effectively bypassing the operating system in the creation

Fig. 3. Complete Technique.
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of the roguemapping, this approach is even more powerful
than using one of the APIs that would prevent the mapping
in some situations.

4.3. Evaluation

We have integrated these techniques into the open
source acquisition tool Winpmem. We then tested it
against all anti-forensic techniques presented in Section 3
on a Windows 7 �64 virtual machine as well as a phys-
ical Intel Ivy-Bridge System with 4 GB of RAM running
Windows 8 �64. Both systems were equipped with Intel
510 Series Solid State Drives, to minimize the storage
bottleneck when writing the image. The tool was able to
acquire the entire address space on both fully compromised
systems with a broken KDBG and hooks in MmMapMemor-

yDumpMdl() and MmGetPhysicalMemoryRanges(). It
also correctly acquired the contents of hidden memory.

We didn’t have any problems with non-deterministic
stability issue, like experienced with Win64dd and Win-
dowsMemoryReader when acquiring the entire address
space. Actually, we believe our approach to be generally
more stable than current established techniques, because
we are in no danger to trigger any bug checks in the kernel,
when running on a low IRQL level.

It is not possible to do an exact performance evaluation
against other approaches, as we acquire a large amount of
memory that current tools simply can’t, which is why we
obviously have to read and write more data. However, in
comparison to current techniques our approach is signifi-
cantly slower. For example the unpatched version of
Winpmem wrote a zero padded image of the 4.8 GB
physical address space on our test machine in 22 s at
218MB/s. Our tool created a 6.3 GB image in 3min and 20 s,
about 9 times slower at 31.5 MB/s. While this does have a
negative impact on the atomicity of the image, we believe
to be sufficient in real world scenarios, given the benefits
the technique provides. Depending on the chosen storage
medium, the bottleneck could also be the network or hard-
disk (We are still almost three times faster than 100BASE-T
Ethernet).

Furthermore, we believe IO throughput can be signifi-
cantly improved in the future, by mapping bigger ranges of
memory. Our current implementation writes each page
separately, which can not utilize the large file IO buffers of
the operating system in an optimal way.

5. Discussion

Our technique is simple to implement. Since we do not
rely on the OS for mapping physical pages or enumerating
memory, simple hooking techniques, such as demonstrated
in the ddefy tool are ineffective. By flushing the TLB
completely just before copying the memory out, we
remove the possibility of a split TLB type attack (Sparks and
Butler, 2005). Also, the technique is completely operating
system independent and works on all systems with the x86
architecture. We have successfully tested it on Windows,
Linux, and Mac OS X systems with implementations based
on the Linux pmem (Cohen, 2011) Winpmem (Cohen,
2012a) and OSXPmem (Stüttgen, 2012) drivers.

The following discussion evaluates our solution against
possible anti-forensic attacks that a rootkitmight implement.

5.1. Access to ring 0

Our memory acquisition technique depends upon being
able to run in kernel mode. The obvious countermeasure a
rootkit may implement is to prevent our driver from being
loaded into kernel mode – for example, by hooking the
Service Control Manager (SCM) interface.

Although our driver requires access to ring 0, there are
few signatures that can be employed to detect our driver’s
intentions. Currently, it is trivial for a rootkit to identify a
memory acquisition driver simply by inspecting the mod-
ule’s import table. This is especially true for a driver that
uses undocumented functions which are not usually im-
ported by legitimate drivers (e.g. MmMapMemoryDumpMdl
as is used by the Win64DD driver (MoonSols, 2012)).

By rejecting the driver from loading, the rootkit reveals
its existence, so it must only do this as a last resort, when it
is certain that a forensic agent is running. Since our driver
does not import any special OS functions, a much more
thorough analysis must be conducted to determine its
intentions.

5.2. Interception of data buffers

Once the physical memory is accessible, memory
acquisition drivers typically write it to disk, or copy it to
user buffers. A simple anti-forensic technique is to mark
certain regions of memory using a magic string and then
hooking all kernel file operations and kernel to user space
copy operations, searching for themagic strings. If these are
found, the rootkit has an opportunity to scrub the data.

This attack can be easily circumvented by encrypting or
obfuscating the raw data as it is copied to userspace. Our
solution can use simple RC4 encryption to prevent the
rootkit from identifying the data as it is passed from kernel
space to user space.

5.3. Debug registers

An effective anti-forensic technique is the use of the
debug registers to alert the rootkit of reading certain
memory regions (halfdead, 2008). Modern CPUs have a set
of debug registers which can be used to set hardware
breakpoints onmemory access (Intel, 2013c). The processor
can contain four distinct memory access breakpoints stored
in debug registers D0-D3. Ordinarily, the debug registers
contain a virtual address and will trap when the processor
accesses the breakpoint in the virtual address space. This
kind of breakpoint is ineffective against our imaging driver
since, in the kernel’s virtual address space, we are accessing
our own private memory page. The PTE manipulation
simply makes the desired physical memory page available
through this virtual page.

However, the Debug Control Register (D7) can configure
the breakpoint to be an I/O read or write breakpoint. This
has the effect of generating a trap when the CPU executes
an in or out assembler op code with an operand matching
the breakpoint. Our acquisition process will not be affected
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by this (since we do not use in/out instructions to read
physical memory). Unfortunately, our PCI introspection
routine which is used to read the DMA memory regions
does use these instructions as part of obtaining the physical
memory layout.

A malicious rootkit can thus hook our PCI enumeration
routine and cause a “fake” PCI device to appear on the
system bus by returning a pre-fabricated configuration
space buffer when querying for a specific device id (PCI
Special Interest Group, 2002). This configuration can
claim that this fake device is occupying a specific memory
region for a DMA buffer, causing our tool to exclude it from
the imaging process.

5.4. Shadow page tables

Another weakness of our technique is its reliance on the
operating system on finding the page tables in the first
place. All addresses in CR3 and Page Tables are physical
addresses. Hence walking the Page Tables requires a
physical-to-virtual translation function, which relies on the
operating system. A rootkit could hook this translation
function and employ a shadow-paging approach to hook
write access to PTEs. This would require removing write
access to the page tables and hooking the page fault
handler (Ooi, 2009).

There is no way to prevent a rootkit from doing this, nor
to detect it has happened. However, there is a simple so-
lution for this problem. If the memory driver creates its
own page tables and changes CR3 to point to these custom
tables, we can remain in complete control over the trans-
lation process without alerting the rootkit. The details of
this implementation are left for future research.

6. Conclusion

It is commonly believed that running any software, and
especially a forensic agent, on a compromised system
can not be trusted since the system may be hooked so
as to “lie” to the forensic tool. Since memory acquisition
tools must run on potentially compromised systems, they
must be vulnerable to subversion by a pre-installed
malware. However, we believe this view fails to take into
account the practical aspects of rootkit engineering - which
are to maintain system stability and hide from forensic
agents.

We believe that by advancing the robustness of acqui-
sition techniques, we are furthering the “arms race” be-
tween malware and forensic tools by raising the level of
complexity required to adequately recognize and subvert
forensic agents. Although our technique is not perfect, the
countermeasures discussed in Section 5 illustrate the level
of complexity required to successfully subvert acquisition is
much increased. For example, to successfully counter our
acquisition technique, the rootkit may need to manipulate
kernel page tables directly, adding complexity and reducing
the rootkit’s ability to keep the system stable after it has
been compromised.

Although we found problems with all tested tools, we
were able to add our technique to the open source WinP-
mem acquisition tool and also correct the errors we

identified in Section 3.1.1. The flexibility offered by an open
source tool is obvious, as the tool can be recompiled with
only the needed acquisition methods linked in, controlling
its import tables. The tool can also be customized and re-
signed such that a rootkit is unable to recognize it as a
forensic agent. This flexibility is missing in commercial
tools, many of which even have clear copyright strings
embedded within the driver’s binary, making it trivial for a
rootkit to identify them and prevent them from loading
into the kernel.
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