
MLX Drivers

Table of contents

InfiniBand Network 5

InfiniBand Interface 5

NVIDIA SM 6

InfiniBand QoS 77

IP Over InfiniBand 82

Advanced Transport 95

Optimized Memory Access 97

NVIDIA PeerDirect 103

CPU Overhead Distribution 104

Out-of-order Data Placement 104

IB Router 105

MAD Congestion Control 107

Ethernet Network 109

Ethernet Interface 110

Ethernet QoS 112

Ethtool 129

Checksum Offload 135

Ignore FCS Errors 136

RDMA over Converged Ethernet 136

Flow Control 152

Explicit Congestion Notification 160

RSS Support 162

Time Stamping 164

MLX Drivers 1

Table of contents

InfiniBand Network

InfiniBand Interface

NVIDIA SM

InfiniBand QoS

IP Over InfiniBand

Advanced Transport

Optimized Memory Access

NVIDIA PeerDirect

CPU Overhead Distribution

Out-of-order Data Placement

IB Router

MAD Congestion Control

Ethernet Network

Ethernet Interface

Ethernet QoS

Ethtool

Checksum Offload

Ignore FCS Errors

RDMA over Converged Ethernet

Flow Control

Explicit Congestion Notification

RSS Support

Time Stamping

Flow Steering 175

Wake-on-LAN 180

Q-in-Q Tunneling 180

VLAN Stripping in Linux Verbs 181

Offloaded Traffic Sniffer 182

Dump Configuration 183

Local Loopback Disable 186

kTLS Offloads 187

IPsec Crypto Offload 190

IPsec Packet Offload 193

MACsec Full Offload 200

DPU 206

QoS Configuration 206

Shared RQ Mode 211

Storage Protocols 213

SRP - SCSI RDMA Protocol 214

iSER - iSCSI Extensions for RDMA 229

Lustre 232

NVME-oF - NVM Express over Fabrics 233

Virtualization 235

SR-IOV 235

SR-IOV Live Migration 260

Enabling Paravirtualization 272

VXLAN Hardware Stateless Offloads 274

MLX Drivers 2

Flow Steering

Wake-on-LAN

Q-in-Q Tunneling

VLAN Stripping in Linux Verbs

Offloaded Traffic Sniffer

Dump Configuration

Local Loopback Disable

kTLS Offloads

IPsec Crypto Offload

IPsec Packet Offload

MACsec Full Offload

DPU

QoS Configuration

Shared RQ Mode

Storage Protocols

SRP - SCSI RDMA Protocol

iSER - iSCSI Extensions for RDMA

Lustre

NVME-oF - NVM Express over Fabrics

Virtualization

SR-IOV

SR-IOV Live Migration

Enabling Paravirtualization

VXLAN Hardware Stateless Offloads

Q-in-Q Encapsulation per VF in Linux 276

802.1Q Double-Tagging 279

Scalable Functions 280

Resiliency 281

Reset Flow 281

Docker Containers 285

Docker Using SR-IOV 285

Kubernetes Using SR-IOV 286

Kubernetes with Shared HCA 286

HPC-X 287

Fast Driver Unload 288

MLX Drivers 3

Q-in-Q Encapsulation per VF in Linux

802.1Q Double-Tagging

Scalable Functions

Resiliency

Reset Flow

Docker Containers

Docker Using SR-IOV

Kubernetes Using SR-IOV

Kubernetes with Shared HCA

HPC-X

Fast Driver Unload

MLX Drivers 4

The chapter contains the following sections:

InfiniBand Network

Ethernet Network

DPU

Storage Protocols

Virtualization

Resiliency

Docker Containers

HPC-X

Fast Driver Unload

Note

It is recommended to enable the "above 4G decoding" BIOS setting
for features that require a large amount of PCIe resources (e.g., SR-
IOV with numerous VFs, PCIe Emulated Switch, Large BAR Requests).

MLX Drivers 5

InfiniBand Network
The chapter contains the following sections:

InfiniBand Interface

NVIDIA SM

InfiniBand QoS

IP Over InfiniBand

Advanced Transport

Optimized Memory Access

NVIDIA PeerDirect

CPU Overhead Distribution

Out-of-order Data Placement

IB Router

MAD Congestion Control

InfiniBand Interface

Port Type Management

For information on port type management of ConnectX-4 and above adapter cards, please
refer to Port Type Management/VPI Cards Configuration section.

RDMA Counters

RDMA counters are available only through sysfs located under:

/sys/class/infiniband/<device>/ports/*/hw_counters/

https://docs.nvidia.compages/createpage.action?spaceKey=docadev&title=2024-08-14+19-18-39+Ethernet+Interface&linkCreation=true&fromPageId=3411577921

MLX Drivers 6

/sys/class/infiniband/<device>/ports/*/counters

For mlx5 port and RDMA counters, refer to the Understanding mlx5 Linux Counters
Community post.

NVIDIA SM
NVIDIA SM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow
executable called "opensm", accompanied by a testing application called osmtest. NVIDIA
SM implements an InfiniBand compliant SM according to the InfiniBand Architecture
Specification chapters: Management Model, Subnet Management, and Subnet
Administration.

OpenSM Application

OpenSM is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs
on top of the NVIDIA OFED stack. OpenSM performs the InfiniBand specification's
required tasks for initializing InfiniBand hardware. One SM must be running for each
InfiniBand subnet.

OpenSM defaults were designed to meet the common case usage on clusters with up to a
few hundred nodes. Thus, in this default mode, OpenSM will scan the IB fabric, initialize it,
and sweep occasionally for changes.

OpenSM attaches to a specific IB port on the local machine and configures only the fabric
connected to it. (If the local machine has other IB ports, OpenSM will ignore the fabrics
connected to those other ports). If no port is specified, opensm will select the first "best"
available port. opensm can also present the available ports and prompt for a port number
to attach to.

By default, the OpenSM run is logged to/var/log/opensm.log. All errors reported in this log
file should be treated as indicators of IB fabric health issues. (Note that when a fatal and
non-recoverable error occurs, OpenSM will exit). opensm.log should include the message
"SUBNET UP" if OpenSM was able to set up the subnet correctly.

Syntax

opensm [OPTIONS]

https://enterprise-support.nvidia.com/s/article/understanding-mlx5-linux-counters-and-status-parameters

MLX Drivers 7

For the complete list of OpenSM options, please run:

Environment Variables

The following environment variables control OpenSM behavior:

OSM_TMP_DIR - controls the directory in which the temporary files generated by
OpenSM are created. These files are: opensm-subnet.lst, opensm.fdbs, and
opensm.mcfdbs. By default, this directory is /var/log.

OSM_CACHE_DIR - opensm stores certain data to the disk such that subsequent
runs are consistent. The default directory used is /var/cache/opensm. The following
file is included in it:

guid2lid – stores the LID range assigned to each GUID

Signaling

When OpenSM receives a HUP signal, it starts a new heavy sweep as if a trap has been
received or a topology change has been found.

Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate
purposes.

Running OpenSM as Daemon

OpenSM can also run as daemon. To run OpenSM in this mode, enter:

opensm --help / -h / -?

host1# service opensmd start

MLX Drivers 8

osmtest

osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet
Administrator. osmtest provides a test suite for opensm. It can create an inventory file of
all available nodes, ports, and PathRecords, including all their fields. It can also verify the
existing inventory with all the object fields and matches it to a pre-saved one.

osmtest has the following test flows:

Multicast Compliancy test

Event Forwarding test

Service Record registration test

RMPP stress test

Small SA Queries stress test

For further information, please refer to the tool's man page.

Partitions

OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By default,
OpenSM searches for the partitions configuration file under the name
/etc/opensm/partitions.conf. To change this filename, you can use opensm with the '--
Pconfig' or '-P' flags.

The default partition is created by OpenSM unconditionally, even when a partition
configuration file does not exist or cannot be accessed.

The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is
assigned full membership in the default partition. All other end-ports are assigned partial
membership.

Note

Adding a new partition to the partition.conf file, does not require
SM restart, but signalling SM process via a HUP signal (e.g pkill -
HUP opensm).

MLX Drivers 9

File Format

General File Format

<Partition Definition>:

The default partition cannot be removed.

Note

Adjustments to the Port GUIDs, including additions, removals, or
membership alterations (denoted as "<PortGUID>=[full|limited|both]"
in the "Partition Definition") can be applied with a HUP signal to the
Subnet Manager process (e.g pkill -HUP opensm).

Warning

Performing changes in the ipoib_bc_flags (ipoib/sl/scope/rate/mtu)
and mgroup flags of an existing partition requires a restart of the
Subnet Manager to take effect.

Note

Line content followed after '#' character is comment and ignored by
parser.

 <Partition Definition>:\[<newline>\]<Partition Properties>

MLX Drivers 10

where:

PartitionName

String,
will be used with
logging. When omitted
empty string will be
used.

PKey

P_Key value for this
partition. Only low
15 bits will be used.
When omitted will be
auto-generated.

indx0

Indicates that this
pkey should be
inserted in block 0
index 0.

ipoib_bc_flags

Used to
indicate/specify
IPoIB capability of
this partition.

defmember=full|limited|both

Specifies default
membership for port
GUID list. Default is
limited.

ipoib_bc_flags are:

ipoib
Indicates that this partition may be used for IPoIB,
as a result the IPoIB broadcast group will be created
with the flags given, if any.

rate=
<val>

Specifies rate for this IPoIB MC group (default is 3
(10GBps))

[PartitionName][=PKey][,indx0][,ipoib_bc_flags]
[,defmember=full|limited]

MLX Drivers 11

mtu=
<val>

Specifies MTU for this IPoIB MC group (default is 4
(2048))

sl=
<val>

Specifies SL for this IPoIB MC group (default is 0)

scope=
<val>

Specifies scope for this IPoIB MC group (default is 2
(link local))

<Partition Properties>:

<Port List>:

<Port Specifier>:

where

PortGUID
GUID of partition member EndPort.
Hexadecimal numbers should start from 0x,
decimal numbers are accepted too.

full,
limited

Indicates full and/or limited membership
for this both port. When omitted (or
unrecognized) limited membership is
assumed. Both indicate full and limited
membership for this port.

<MCast Group>:

 \[<Port list>|<MCast Group>\]* | <Port list>

<Port Specifier>[,<Port Specifier>]

<PortGUID>[=[full|limited|both]]

MLX Drivers 12

where:

mgid=g
id

gid specified is verified to be a Multicast address IP
groups are verified to match the rate and mtu of the
broadcast group. The P_Key bits of the mgid for IP
groups are verified to either match the P_Key
specified in by "Partition Definition" or if they are
0x0000 the P_Key will be copied into those bits.

mgroup
_flag

rate=<val>

Specifi
es rate
for
this MC
group
(defaul
t is 3
(10GBps
))

mtu=<val>

Specifi
es MTU
for
this MC
group
(defaul
t is 4
(2048))

sl=<val>

Specifi
es SL
for
this MC
group
(defaul
t is 0)

mgid=gid[,mgroup_flag]*<newline>

MLX Drivers 13

scope=<val> Specifi
es
scope
for
this MC
group
(defaul
t is 2
(link
local))
.
Multipl
e scope
setting
s are
permitt
ed for
a
partiti
on.

MLX Drivers 14

NOTE:
This
overwri
tes the
scope
nibble
of the
specifi
ed
mgid.
Further
more
specify
ing
multipl
e scope
setting
s will
result
in
multipl
e MC
groups
being
created
.

qkey=<val>

Specifi
es the
Q_Key
for
this MC
group
(defaul
t:
0x0b1b
for IP
groups,
0 for
other
groups)

MLX Drivers 15

tclass=<val>

Specifi
es
tclass
for
this MC
group
(defaul
t is 0)

FlowLabel=<val>

Specifi
es
FlowLab
el for
this MC
group
(defaul
t is 0)

Note that values for rate, MTU, and scope should be specified as defined in the IBTA
specification (for example, mtu=4 for 2048). To use 4K MTU, edit that entry to "mtu=5" (5
indicates 4K MTU to that specific partition).

PortGUIDs list:

There are some useful keywords for PortGUID definition:

'ALL_CAS' means all Channel Adapter end ports in this subnet

'ALL_VCAS' means all virtual end ports in the subnet

'ALL_SWITCHES' means all Switch end ports in this subnet

'ALL_ROUTERS' means all Router end ports in this subnet

PortGUID GUID of partition member EndPort. Hexadecimal
numbers should start from 0x, decimal numbers are accepted too.
full or limited indicates full or limited membership for this port.
When omitted (or unrecognized) limited membership is assumed.

MLX Drivers 16

'SELF' means subnet manager's port. An empty list means that there are no ports in
this partition

Notes:

White space is permitted between delimiters ('=', ',',':',';').

PartitionName does not need to be unique, PKey does need to be unique. If PKey is
repeated then those partition configurations will be merged and the first
PartitionName will be used (see the next note).

It is possible to split partition configuration in more than one definition, but then
PKey should be explicitly specified (otherwise different PKey values will be generated
for those definitions).

Examples:

Default=0x7fff : ALL, SELF=full ;
Default=0x7fff : ALL, ALL_SWITCHES=full, SELF=full ;

NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306 ;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457, 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited, 0x12345d;

multicast groups added to default

Default=0x7fff,ipoib:
mgid=ff12:401b::0707,sl=1 # random IPv4 group
mgid=ff12:601b::16 # MLDv2-capable routers
mgid=ff12:401b::16 # IGMP

MLX Drivers 17

The following rule is equivalent to how OpenSM used to run prior to the partition
manager:

Effect of Topology Changes

If a link is added or removed, OpenSM may not recalculate the routes that do not have to
change. A route has to change if the port is no longer UP or no longer the MinHop. When
routing changes are performed, the same algorithm for balancing the routes is invoked.

In the case of using the file-based routing, any topology changes are currently ignored.
The 'file' routing engine just loads the LFTs from the file specified, with no reaction to real
topology. Obviously, this will not be able to recheck LIDs (by GUID) for disconnected nodes,
and LFTs for non-existent switches will be skipped. Multicast is not affected by 'file'
routing engine (this uses min hop tables).

Routing Algorithms

OpenSM offers the following routing engines:

1. Min Hop Algorithm

Based on the minimum hops to each node where the path length is optimized.

2. UPDN Algorithm

Based on the minimum hops to each node, but it is constrained to ranking rules. This
algorithm should be chosen if the subnet is not a pure Fat Tree, and a deadlock may
occur due to a loop in the subnet.

3. Fat-tree Routing Algorithm

mgid=ff12:601b::2 # All routers
mgid=ff12::1,sl=1,Q_Key=0xDEADBEEF,rate=3,mtu=2 # random group
ALL=full;

Default=0x7fff,ipoib:ALL=full;

MLX Drivers 18

This algorithm optimizes routing for a congestion-free "shift" communication
pattern. It should be chosen if a subnet is a symmetrical Fat Tree of various types,
not just a K-ary-N-Tree: non-constant K, not fully staffed, and for any CBB ratio.
Similar to UPDN, Fat Tree routing is constrained to ranking rules.

4. DOR Routing Algorithm

Based on the Min Hop algorithm, but avoids port equalization except for redundant
links between the same two switches. This provides deadlock free routes for
hypercubes when the fabric is cabled as a hypercube and for meshes when cabled
as a mesh.

5. Torus-2QoS Routing Algorithm

Based on the DOR Unicast routing algorithm specialized for 2D/3D torus topologies.
Torus- 2QoS provides deadlock-free routing while supporting two quality of service
(QoS) levels. Additionally, it can route around multiple failed fabric links or a single
failed fabric switch without introducing deadlocks, and without changing path SL
values granted before the failure.

6. Routing Chains

Allows routing configuration of different parts of a single InfiniBand subnet by
different routing engines. In the current release, minhop/updn/ftree/dor/torus-
2QoS/pqft can be combined.

MINHOP/UPDN/DOR routing algorithms are comprised of two stages:

1. MinHop matrix calculation. How many hops are required to get from each port to
each LID. The algorithm to fill these tables is different if you run standard (min hop)
or Up/Down. For standard routing, a "relaxation" algorithm is used to propagate min
hop from every destination LID through neighbor switches. For Up/Down routing, a
BFS from every target is used. The BFS tracks link direction (up or down) and avoid
steps that will perform up after a down step was used.

Note

Please note that LASH Routing Algorithm is not supported.

MLX Drivers 19

2. Once MinHop matrices exist, each switch is visited and for each target LID a decision
is made as to what port should be used to get to that LID. This step is common to
standard and Up/Down routing. Each port has a counter counting the number of
target LIDs going through it. When there are multiple alternative ports with same
MinHop to a LID, the one with less previously assigned ports is selected.

If LMC > 0, more checks are added. Within each group of LIDs assigned to same
target port:

1. Use only ports which have same MinHop

2. First prefer the ones that go to different systemImageGuid (then the previous
LID of the same LMC group)

3. If none, prefer those which go through another NodeGuid

4. Fall back to the number of paths method (if all go to same node).

Min Hop Algorithm

The Min Hop algorithm is invoked by default if no routing algorithm is specified. It can also
be invoked by specifying '-R minhop'.

The Min Hop algorithm is divided into two stages: computation of min-hop tables on every
switch and LFT output port assignment. Link subscription is also equalized with the ability
to override based on port GUID. The latter is supplied by:

This option provides the means to define a set of ports (by GUIDs) that will be ignored by
the link load equalization algorithm.

LMC awareness routes based on a (remote) system or on a switch basis.

UPDN Algorithm

The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the
subnet. A loop-deadlock is a situation in which it is no longer possible to send data

-i <equalize-ignore-guids-file>
-ignore-guids <equalize-ignore-guids-file>

MLX Drivers 20

between any two hosts connected through the loop. As such, the UPDN routing algorithm
should be sent if the subnet is not a pure Fat Tree, and one of its loops may experience a
deadlock (due, for example, to high pressure).

The UPDN algorithm is based on the following main stages:

1. Auto-detect root nodes - based on the CA hop length from any switch in the subnet,
a statistical histogram is built for each switch (hop num vs the number of
occurrences). If the histogram reflects a specific column (higher than others) for a
certain node, then it is marked as a root node. Since the algorithm is statistical, it
may not find any root nodes. The list of the root nodes found by this auto-detect
stage is used by the ranking process stage.

2. Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0.
Using the BFS algorithm, the rest of the switch nodes in the subnet are ranked
incrementally. This ranking aids in the process of enforcing rules that ensure loop-
free paths.

3. Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA
or switch) node in the subnet. During the BFS process, the FDB table of each switch
node traversed by BFS is updated, in reference to the starting node, based on the
ranking rules and GUID values.

At the end of the process, the updated FDB tables ensure loop-free paths through the
subnet.

Note

The user can override the node list manually.

Note

If this stage cannot find any root nodes, and the user did not
specify a GUID list file, OpenSM defaults back to the Min Hop
routing algorithm.

MLX Drivers 21

UPDN Algorithm Usage

Activation through OpenSM:

Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.

Use '-a <root_guid_file>' for adding an UPDN GUID file that contains the root nodes
for ranking. If the `-a' option is not used, OpenSM uses its auto-detect root nodes
algorithm.

Notes on the GUID list file:

A valid GUID file specifies one GUID in each line. Lines with an invalid format will be
discarded

The user should specify the root switch GUIDs

Fat-tree Routing Algorithm

The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be
chosen if a subnet is a symmetrical or almost symmetrical fat-tree of various types. It
supports not just K- ary-N-Trees, by handling for non-constant K, cases where not all leafs
(CAs) are present, any Constant Bisectional Ratio (CBB)ratio. As in UPDN, fat-tree also
prevents credit-loop-dead- locks.

If the root GUID file is not provided ('a' or '-root_guid_file' options), the topology has to be
pure fat-tree that complies with the following rules:

Tree rank should be between two and eight (inclusively)

Switches of the same rank should have the same number of UP-going port groups,
unless they are root switches, in which case the shouldn't have UP-going ports at all.

Note: Ports that are connected to the same remote switch are referenced as ‘port
group’.

Switches of the same rank should have the same number of DOWN-going port
groups, unless they are leaf switches.

Switches of the same rank should have the same number of ports in each UP-going
port group.

MLX Drivers 22

Switches of the same rank should have the same number of ports in each DOWN-
going port group.

All the CAs have to be at the same tree level (rank).

If the root GUID file is provided, the topology does not have to be pure fat-tree, and it
should only comply with the following rules:

Tree rank should be between two and eight (inclusively)

All the Compute Nodes have to be at the same tree level (rank). Note that non-
compute node CAs are allowed here to be at different tree ranks.

Note: List of compute nodes (CNs) can be specified using ‘-u’ or ‘--cn_guid_file’
OpenSM options.

Topologies that do not comply cause a fallback to min-hop routing. Note that this can also
occur on link failures which cause the topology to no longer be a "pure" fat-tree.

Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the
routing will not be as balanced as in case of integer CBB ratio. In addition to this, although
the algorithm allows leaf switches to have any number of CAs, the closer the tree is to be
fully populated, the more effective the "shift" communication pattern will be. In general,
even if the root list is provided, the closer the topology to a pure and symmetrical fat-tree,
the more optimal the routing will be.

The algorithm also dumps the compute node ordering file (opensm-ftree-ca-order.dump)
in the same directory where the OpenSM log resides. This ordering file provides the CN
order that may be used to create efficient communication pattern, that will match the
routing tables.

Routing between non-CN Nodes

The use of the io_guid_file option allows non-CN nodes to be located on different levels in
the fat tree. In such case, it is not guaranteed that the Fat Tree algorithm will route
between two non-CN nodes. In the scheme below, N1, N2 , and N3 are non-CN nodes.
Although all the CN have routes to and from them, there will not necessarily be a route
between N1,N2 and N3. Such routes would require to use at least one of the switches the
wrong way around.

MLX Drivers 23

To solve this problem, a list of non-CN nodes can be specified by \'-G\' or \'--io_guid_file\'
option. These nodes will be allowed to use switches the wrong way around a specific
number of times (specified by \'-H\' or \'--max_reverse_hops\'. With the proper
max_reverse_hops and io_guid_file values, you can ensure full connectivity in the Fat Tree.
In the scheme above, with a max_reverse_hop of 1, routes will be instantiated between
N1<->N2 and N2<->N3. With a max_reverse_hops value of 2, N1,N2 and N3 will all have
routes between them.

Activation through OpenSM

Use '-R ftree' option to activate the fat-tree algorithm.

Note

Using max_reverse_hops creates routes that use the switch in a
counter-stream way. This option should never be used to connect
nodes with high bandwidth traffic between them! It should only be
used to allow connectivity for HA purposes or similar. Also having
routes the other way around can cause credit loops.

Note

LMC > 0 is not supported by fat-tree routing. If this is specified, the
default routing algorithm is invoked instead.

MLX Drivers 24

DOR Routing Algorithm

The Dimension Order Routing algorithm is based on the Min Hop algorithm and so uses
shortest paths. Instead of spreading traffic out across different paths with the same
shortest distance, it chooses among the available shortest paths based on an ordering of
dimensions. Each port must be consistently cabled to represent a hypercube dimension or
a mesh dimension. Paths are grown from a destination back to a source using the lowest
dimension (port) of available paths at each step. This provides the ordering necessary to
avoid deadlock. When there are multiple links between any two switches, they still
represent only one dimension and traffic is balanced across them unless port equalization
is turned off. In the case of hypercubes, the same port must be used throughout the
fabric to represent the hypercube dimension and match on both ends of the cable. In the
case of meshes, the dimension should consistently use the same pair of ports, one port
on one end of the cable, and the other port on the other end, continuing along the mesh
dimension.

Use '-R dor' option to activate the DOR algorithm.

Torus-2QoS Routing Algorithm

Torus-2QoS is a routing algorithm designed for large-scale 2D/3D torus fabrics. The
torus-2QoS routing engine can provide the following functionality on a 2D/3D torus:

Free of credit loops routing

Two levels of QoS, assuming switches support 8 data VLs

Ability to route around a single failed switch, and/or multiple failed links, without:

introducing credit loops

changing path SL values

Very short run times, with good scaling properties as fabric size increases

Unicast Routing

Torus-2 QoS is a DOR-based algorithm that avoids deadlocks that would otherwise occur
in a torus using the concept of a dateline for each torus dimension. It encodes into a path
SL which datelines the path crosses as follows:

MLX Drivers 25

For a 3D torus, that leaves one SL bit free, which torus-2 QoS uses to implement two QoS
levels. Torus-2 QoS also makes use of the output port dependence of switch SL2VL maps
to encode into one VL bit the information encoded in three SL bits. It computes in which
torus coordinate direc- tion each inter-switch link "points", and writes SL2VL maps for
such ports as follows:

Thus, on a pristine 3D torus, i.e., in the absence of failed fabric switches, torus-2 QoS
consumes 8 SL values (SL bits 0-2) and 2 VL values (VL bit 0) per QoS level to provide
deadlock-free routing on a 3D torus. Torus-2 QoS routes around link failure by "taking the
long way around" any 1D ring interrupted by a link failure. For example, consider the 2D
6x5 torus below, where switches are denoted by [+a-zA-Z]:

For a pristine fabric the path from S to D would be S-n-T-r-D. In the event that either link
S-n or n-T has failed, torus-2QoS would use the path S-m-p-o-T-r-D.

sl = 0;
for (d = 0; d < torus_dimensions; d++)
/* path_crosses_dateline(d) returns 0 or 1 */
sl |= path_crosses_dateline(d) << d;

for (sl = 0; sl < 16; sl ++)
/* cdir(port) reports which torus coordinate direction a switch port
* "points" in, and returns 0, 1, or 2 */

sl2vl(iport,oport,sl) = 0x1 & (sl >> cdir(oport));

MLX Drivers 26

Note that it can do this without changing the path SL value; once the 1D ring m-S-n-T-o-
p-m has been broken by failure, path segments using it cannot contribute to deadlock,
and the x-direction dateline (between, say, x=5 and x=0) can be ignored for path segments
on that ring. One result of this is that torus-2QoS can route around many simultaneous
link failures, as long as no 1D ring is broken into disjoint segments. For example, if links n-T
and T-o have both failed, that ring has been broken into two disjoint segments, T and o-p-
m-S-n. Torus-2QoS checks for such issues, reports if they are found, and refuses to route
such fabrics.

Note that in the case where there are multiple parallel links between a pair of switches,
torus-2QoS will allocate routes across such links in a round-robin fashion, based on ports
at the path destination switch that are active and not used for inter-switch links. Should a
link that is one of several such parallel links fail, routes are redistributed across the
remaining links. When the last of such a set of parallel links fails, traffic is rerouted as
described above.

Handling a failed switch under DOR requires introducing into a path at least one turn that
would be otherwise "illegal", i.e. not allowed by DOR rules. Torus-2QoS will introduce such a
turn as close as possible to the failed switch in order to route around it. n the above
example, suppose switch T has failed, and consider the path from S to D. Torus-2QoS will
produce the path S-n-I-r-D, rather than the S-n-T-r-D path for a pristine torus, by
introducing an early turn at n. Normal DOR rules will cause traffic arriving at switch I to be
forwarded to switch r; for traffic arriving from I due to the "early" turn at n, this will
generate an "illegal" turn at I.

Torus-2QoS will also use the input port dependence of SL2VL maps to set VL bit 1 (which
would be otherwise unused) for y-x, z-x, and z-y turns, i.e., those turns that are illegal
under DOR. This causes the first hop after any such turn to use a separate set of VL
values, and prevents deadlock in the presence of a single failed switch. For any given path,
only the hops after a turn that is illegal under DOR can contribute to a credit loop that
leads to deadlock. So in the example above with failed switch T, the location of the illegal
turn at I in the path from S to D requires that any credit loop caused by that turn must
encircle the failed switch at T. Thus the second and later hops after the illegal turn at I (i.e.,
hop r-D) cannot contribute to a credit loop because they cannot be used to construct a
loop encircling T. The hop I-r uses a separate VL, so it cannot contribute to a credit loop
encircling T. Extending this argument shows that in addition to being capable of routing
around a single switch failure without introducing deadlock, torus-2QoS can also route
around multiple failed switches on the condition they are adjacent in the last dimension
routed by DOR. For example, consider the following case on a 6x6 2D torus:

MLX Drivers 27

Suppose switches T and R have failed, and consider the path from S to D. Torus-2QoS will
generate the path S-n-q-I-u-D, with an illegal turn at switch I, and with hop I-u using a VL
with bit 1 set. As a further example, consider a case that torus-2QoS cannot route
without deadlock: two failed switches adjacent in a dimension that is not the last
dimension routed by DOR; here the failed switches are O and T:

In a pristine fabric, torus-2QoS would generate the path from S to D as S-n-O-T-r-D. With
failed switches O and T, torus-2QoS will generate the path S-n-I-q-r-D, with an illegal turn
at switch I, and with hop I-q using a VL with bit 1 set. In contrast to the earlier examples,
the second hop after the illegal turn, q-r, can be used to construct a credit loop encircling
the failed switches.

Multicast Routing

MLX Drivers 28

Since torus-2QoS uses all four available SL bits, and the three data VL bits that are
typically available in current switches, there is no way to use SL/VL values to separate
multicast traffic from unicast traffic. Thus, torus-2QoS must generate multicast routing
such that credit loops cannot arise from a combination of multicast and unicast path
segments. It turns out that it is possible to construct spanning trees for multicast routing
that have that property. For the 2D 6x5 torus

example above, here is the full-fabric spanning tree that torus-2QoS will construct, where
"x" is the root switch and each "+" is a non-root switch:

For multicast traffic routed from root to tip, every turn in the above spanning tree is a
legal DOR turn. For traffic routed from tip to root, and some traffic routed through the
root, turns are not legal DOR turns. However, to construct a credit loop, the union of
multicast routing on this spanning tree with DOR unicast routing can only provide 3 of the
4 turns needed for the loop. In addition, if none of the above spanning tree branches
crosses a dateline used for unicast credit loop avoidance on a torus, and if multicast
traffic is confined to SL 0 or SL 8 (recall that torus-2QoS uses SL bit 3 to differentiate QoS
level), then multicast traffic also cannot contribute to the "ring" credit loops that are
otherwise possible in a torus. Torus-2QoS uses these ideas to create a master spanning
tree. Every multicast group spanning tree will be constructed as a subset of the master
tree, with the same root as the master tree. Such multicast group spanning trees will in
general not be optimal for groups which are a subset of the full fabric. However, this
compromise must be made to enable support for two QoS levels on a torus while
preventing credit loops. In the presence of link or switch failures that result in a fabric for
which torus-2QoS can generate credit-loop-free unicast routes, it is also possible to
generate a master spanning tree for multicast that retains the required properties. For
example, consider that same 2D 6x5 torus, with the link from (2,2) to (3,2) failed. Torus-
2QoS will generate the following master spanning tree:

MLX Drivers 29

Two things are notable about this master spanning tree. First, assuming the x dateline was
between x=5 and x=0, this spanning tree has a branch that crosses the dateline. However,
just as for unicast, crossing a dateline on a 1D ring (here, the ring for y=2) that is broken
by a failure cannot contribute to a torus credit loop. Second, this spanning tree is no
longer optimal even for multicast groups that encompass the entire fabric. That,
unfortunately, is a compromise that must be made to retain the other desirable properties
of torus-2QoS routing. In the event that a single switch fails, torus-2QoS will generate a
master spanning tree that has no "extra" turns by appropriately selecting a root switch. In
the 2D 6x5 torus example, assume now that the switch at (3,2) (i.e., the root for a pristine
fabric), fails. Torus-2QoS will generate the following master spanning tree for that case:

Assuming the dateline was between y=4 and y=0, this spanning tree has a branch that
crosses a dateline. However, this cannot contribute to credit loops as it occurs on a 1D
ring (the ring for x=3) that is broken by failure, as in the above example.

Torus Topology Discovery

MLX Drivers 30

The algorithm used by torus-2QoS to construct the torus topology from the undirected
graph representing the fabric requires that the radix of each dimension be configured via
torus-2QoS.conf. It also requires that the torus topology be "seeded"; for a 3D torus this
requires configuring four switches that define the three coordinate directions of the
torus. Given this starting information, the algorithm is to examine the cube formed by the
eight switch locations bounded by the corners (x,y,z) and (x+1,y+1,z+1). Based on switches
already placed into the torus topology at some of these locations, the algorithm examines
4-loops of inter-switch links to find the one that is consistent with a face of the cube of
switch locations and adds its switches to the discovered topology in the correct locations.

Because the algorithm is based on examining the topology of 4-loops of links, a torus with
one or more radix-4 dimensions requires extra initial seed configuration. See torus-
2QoS.conf(5) for details. Torus-2QoS will detect and report when it has an insufficient
configuration for a torus with radix-4 dimensions.

In the event the torus is significantly degraded, i.e., there are many missing switches or
links, it may happen that torus-2QoS is unable to place into the torus some switches
and/or links that were discovered in the fabric, and will generate a warning in that case. A
similar condition occurs if torus-2QoS is misconfigured, i.e., the radix of a torus dimension
as configured does not match the radix of that torus dimension as wired, and many
switches/links in the fabric will not be placed into the torus.

Quality Of Service Configuration

OpenSM will not program switches and channel adapters with SL2VL maps or VL
arbitration configuration unless it is invoked with -Q. Since torus-2QoS depends on such
functionality for correct operation, always invoke OpenSM with -Q when torus-2QoS is in
the list of routing engines. Any quality of service configuration method supported by
OpenSM will work with torus-2QoS, subject to the following limitations and
considerations. For all routing engines supported by OpenSM except torus-2QoS, there is
a one-to-one correspondence between QoS level and SL. Torus-2QoS can only support
two quality of service levels, so only the high-order bit of any SL value used for unicast
QoS configuration will be honored by torus-2QoS. For multicast QoS configuration, only
SL values 0 and 8 should be used with torus-2QoS.

Since SL to VL map configuration must be under the complete control of torus-2QoS, any
configuration via qos_sl2vl, qos_swe_sl2vl, etc., must and will be ignored, and a warning
will be generated. Torus-2QoS uses VL values 0-3 to implement one of its supported QoS
levels, and VL values 4-7 to implement the other. Hard-to-diagnose application issues may
arise if traffic is not delivered fairly across each of these two VL ranges. Torus-2QoS will
detect and warn if VL arbitration is configured unfairly across VLs in the range 0-3, and
also in the range 4-7. Note that the default OpenSM VL arbitration configuration does not

MLX Drivers 31

meet this constraint, so all torus-2QoS users should configure VL arbitration via
qos_vlarb_high, qos_vlarb_low, etc.

Operational Considerations

Any routing algorithm for a torus IB fabric must employ path SL values to avoid credit
loops. As a result, all applications run over such fabrics must perform a path record query
to obtain the correct path SL for connection setup. Applications that use rdma_cm for
connection setup will automatically meet this requirement.

If a change in fabric topology causes changes in path SL values required to route without
credit loops, in general, all applications would need to repath to avoid message deadlock.
Since torus- 2QoS has the ability to reroute after a single switch failure without changing
path SL values, repathing by running applications is not required when the fabric is routed
with torus-2QoS.

Torus-2QoS can provide unchanging path SL values in the presence of subnet manager
failover provided that all OpenSM instances have the same idea of dateline location. See
torus- 2QoS.conf(5) for details. Torus-2QoS will detect configurations of failed switches
and links that prevent routing that is free of credit loops and will log warnings and refuse
to route. If "no_fall- back" was configured in the list of OpenSM routing engines, then no
other routing engine will attempt to route the fabric. In that case, all paths that do not
transit the failed components will continue to work, and the subset of paths that are still
operational will continue to remain free of credit loops. OpenSM will continue to attempt
to route the fabric after every sweep interval and after any change (such as a link up) in
the fabric topology. When the fabric components are repaired, full functionality will be
restored. In the event OpenSM was configured to allow some other engine to route the
fabric if torus-2QoS fails, then credit loops and message deadlock are likely if torus-2QoS
had previously routed the fabric successfully. Even if the other engine is capable of
routing a torus without credit loops, applications that built connections with path SL
values granted under torus-2QoS will likely experience message deadlock under routing
generated by a different engine, unless they repath. To verify that a torus fabric is routed
free of credit loops, use ibdmchk to analyze data collected via ibdiagnet - vlr.

Torus-2QoS Configuration File Syntax

The file torus-2QoS.conf contains configuration information that is specific to the
OpenSM routing engine torus-2QoS. Blank lines and lines where the first non-whitespace
character is "#" are ignored. A token is any contiguous group of non-whitespace
characters. Any tokens on a line following the recognized configuration tokens described
below are ignored.

MLX Drivers 32

Either torus or mesh must be the first keyword in the configuration and sets the topology
that torus-2QoS will try to construct. A 2D topology can be configured by specifying one
of x_radix, y_radix, or z_radix as 1. An individual dimension can be configured as mesh
(open) or torus (looped) by suffixing its radix specification with one of m, M, t, or T. Thus,
"mesh 3T 4 5" and "torus 3 4M 5M" both specify the same topology.

Note that although torus-2QoS can route mesh fabrics, its ability to route around failed
components is severely compromised on such fabrics. A failed fabric components very
likely to cause a disjoint ring; see UNICAST ROUTING in torus-2QoS(8).

These keywords are used to seed the torus/mesh topology. For example, "xp_link 0x2000
0x2001" specifies that a link from the switch with node GUID 0x2000 to the switch with
node GUID 0x2001 would point in the positive x direction, while "xm_link 0x2000 0x2001"
specifies that a link from the switch with node GUID 0x2000 to the switch with node GUID
0x2001 would point in the negative x direction. All the link keywords for a given seed must
specify the same "from" switch.

In general, it is not necessary to configure both the positive and negative directions for a
given coordinate; either is sufficient. However, the algorithm used for topology discovery
needs extra information for torus dimensions of radix four (see TOPOLOGY DISCOVERY in
torus-2QoS(8)). For such cases, both the positive and negative coordinate directions must
be specified.

Based on the topology specified via the torus/mesh keyword, torus-2QoS will detect and
log when it has insufficient seed configuration.

[torus|mesh] x_radix[m|M|t|T] y_radix[m|M|t|T] z_radix[m|M|t|T]

xp_link sw0_GUID sw1_GUID
yp_link sw0_GUID sw1_GUID
zp_link sw0_GUID sw1_GUID
xm_link sw0_GUID sw1_GUID
ym_link sw0_GUID sw1_GUID
zm_link sw0_GUID sw1_GUID

GUIDx_dateline position

MLX Drivers 33

In order for torus-2QoS to provide the guarantee that path SL values do not change under
any conditions for which it can still route the fabric, its idea of dateline position must not
change relative to physical switch locations. The dateline keywords provide the means to
configure such behavior.

The dateline for a torus dimension is always between the switch with coordinate 0 and the
switch with coordinate radix-1 for that dimension. By default, the common switch in a
torus seed is taken as the origin of the coordinate system used to describe switch
location. The position parameter for a dateline keyword moves the origin (and hence the
dateline) the specified amount relative to the common switch in a torus seed.

If any of the switches used to specify a seed were to fail torus-2QoS would be unable to
complete topology discovery successfully. The next_seed keyword specifies that the
following link and dateline keywords apply to a new seed specification.

For maximum resiliency, no seed specification should share a switch with any other seed
specification. Multiple seed specifications should use dateline configuration to ensure
that torus-2QoS can grant path SL values that are constant, regardless of which seed was
used to initiate topology discovery.

portgroup_max_ports max_ports - This keyword specifies the maximum number of
parallel inter-switch links, and also the maximum number of host ports per switch, that
torus-2QoS can accommodate. The default value is 16. Torus-2QoS will log an error
message during topology discovery if this parameter needs to be increased. If this
keyword appears multiple times, the last instance prevails.

port_order p1 p2 p3 ... - This keyword specifies the order in which CA ports on a
destination switch are visited when computing routes. When the fabric contains switches
connected with multiple parallel links, routes are distributed in a round-robin fashion
across such links, and so changing the order that CA ports are visited changes the
distribution of routes across such links. This may be advantageous for some specific
traffic patterns.

The default is to visit CA ports in increasing port order on destination switches. Duplicate
values in the list will be ignored.

y_dateline position
z_dateline position

next_seed

MLX Drivers 34

Example:

Routing Chains

The routing chains feature is offering a solution that enables one to configure different
parts of the fabric and define a different routing engine to route each of them. The
routings are done in a sequence (hence the name "chains") and any node in the fabric that

Look for a 2D (since x radix is one) 4x5 torus.
torus 1 4 5

y is radix-4 torus dimension, need both
ym_link and yp_link configuration.
yp_link 0x200000 0x200005 # sw @ y=0,z=0 -> sw @ y=1,z=0

ym_link 0x200000 0x20000f # sw @ y=0,z=0 -> sw @ y=3,z=0

z is not radix-4 torus dimension, only need one of
zm_link or zp_link configuration.
zp_link 0x200000 0x200001 # sw @ y=0,z=0 -> sw @ y=0,z=1

next_seed
yp_link 0x20000b 0x200010 # sw @ y=2,z=1 -> sw @ y=3,z=1

ym_link 0x20000b 0x200006 # sw @ y=2,z=1 -> sw @ y=1,z=1

zp_link 0x20000b 0x20000c # sw @ y=2,z=1 -> sw @ y=2,z=2

y_dateline -2 # Move the dateline for this seed
z_dateline -1 # back to its original position.
If OpenSM failover is configured, for maximum resiliency
one instance should run on a host attached to a switch

from the first seed, and another instance should run
on a host attached to a switch from the second seed.
Both instances should use this torus-2QoS.conf to ensure
path SL values do not change in the event of SM failover.
port_order defines the order on which the ports would be
chosen for routing.
port_order 7 10 8 11 9 12 25 28 26 29 27 30

MLX Drivers 35

is configured in more than one part is left with the routing updated by the last routing
engine it was a part of.

Configuring Routing Chains

To configure routing chains:

1. Define the port groups.

2. Define topologies based on previously defined port groups.

3. Define configuration files for each routing engine.

4. Define routing engine chains over previously defined topologies and configuration
files.

Defining Port Groups

The basic idea behind the port groups is the ability to divide the fabric into sub-groups
and give each group an identifier that can be used to relate to all nodes in this group. The
port groups is a separate feature from the routing chains but is a mandatory prerequisite
for it. In addition, it is used to define the participants in each of the routing algorithms.

Defining a Port Group Policy File

In order to define a port group policy file, set the parameter 'pgrp_policy_file' in the
OpenSM configuration file.

pgrp_policy_file /etc/opensm/conf/port_groups_policy_file

Configuring a Port Group Policy

The port groups policy file details the port groups in the fabric. The policy file should be
composed of one or more paragraphs that define a group. Each paragraph should begin
with the line 'port-group' and end with the line 'end-port-group'.

For example:

MLX Drivers 36

Port Group Qualifiers

Rule Qualifier

Parameter Description Example

name

Each group
must have a
name. Without
a name
qualifier, the
policy fails.

name: grp1

use 'use' is an
optional
qualifier that
one can define
in order to
describe the
usage of this
port group (if
undefined, an
empty string is

use: first port group

port-group
…port group qualifiers…
end-port-group

Note

Unlike the port group's beginning and end which do not require a
colon, all qualifiers must end with a colon (':'). Also - a colon is a
predefined mark that must not be used inside qualifier values. The
inclusion of a colon in the name or the use of a port group will result
in the policy's failure.

MLX Drivers 37

Parameter Description Example

used as a
default).

There are several qualifiers used to describe a rule that determines which ports will be
added to the group. Each port group may include one or more rules out of the rules
described in the below table (at least one rule must be defined for each port group).

Paramete
r

Description

Ex
a
m
pl
e

guid
list

Comma separated list of GUIDs to include in the group.
If no specific physical ports were configured, all physical ports of the
guid are chosen. However, for each guid, one can detail specific physical
ports to be included in the group. This can be done using the following
syntax:

Specify a specific port in a guid to be chosen port-guid: 0x283@3
Specify a specific list of ports in a guid to be chosen
port-guid: 0x286@1/5/7

Specify a specific range of ports in a guid to be chosen
port-guid: 0x289@2-5

Specify a list of specific ports and ports ranges in a guid to be
chosen
port-guid: 0x289@2-5/7/9-13/18

Complex rule
port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/ 8/12

p
o
r
t
-
g
u
i
d
:
0
x
2
8
3
,
0
x
2
8
6
,
0
x
2
8
9

MLX Drivers 38

Paramete
r

Description

Ex
a
m
pl
e

port
guid
range

It is possible to configure a range of guids to be chosen to the group.
However, while using the range qualifier, it is impossible to detail specific
physical ports.
Note: A list of ranges cannot be specified. The below example is invalid
and will cause the policy to fail:
port-guid-range: 0x283-0x289, 0x290- 0x295

p
o
r
t
-
g
u
i
d
-
r
a
n
g
e
:
0
x
2
8
3
-
0
x
2
8
9

MLX Drivers 39

Paramete
r

Description

Ex
a
m
pl
e

port
name

One can configure a list of hostnames as a rule. Hosts with a node
description that is built out of these hostnames will be chosen. Since
the node description contains the network card index as well, one might
also specify a network card index and a physical port to be chosen. For
example, the given configuration will cause only physical port 2 of a host
with the node description ‘kuku HCA-1’ to be chosen. port and hca_idx
parameters are optional. If the port is unspecified, all physical ports are
chosen. If hca_idx is unspecified, all card numbers are chosen.
Specifying a hostname is mandatory.
One can configure a list of hostname/ port/hca_idx sets in the same
qualifier as follows:
port-name: hostname=kuku; port=2; hca_idx=1 , hostname=host1;
port=3, hostname=host2
Note: port-name qualifier is not relevant for switches, but for HCA’s only.

MLX Drivers 40

Paramete
r

Description

Ex
a
m
pl
e

p
o
r
t
-
n
a
m
e
:
h
o
s
t
-
n
a
m
e
=
k
u
k
u
;
p
o
r
t
=
2
;
h
c
a
_
i
d

MLX Drivers 41

d
x
=
1

Paramete
r

Description

Ex
a
m
pl
e

port
regexp

One can define a regular expression so that only nodes with a matching
node description will be chosen to the group.
Note: This example shows how to choose nodes which their node
description starts with 'SW'.

p
o
r
t
-
r
e
g
e
x
p
:
S
W

It is possible to specify one physical port to be chosen for matching
nodes (there is no option to define a list or a range of ports). The given
example will cause only nodes that match physical port 3 to be added to
the group.

p
o
r
t
-
r
e
g
e
x
p
:
S
W
:
3

MLX Drivers 42

Paramete
r

Description

Ex
a
m
pl
e

union
rule

It is possible to define a rule that unites two different port groups. This
means that all ports from both groups will be included in the united
group.

u
n
i
o
n
-
r
u
l
e
:
g
r
p
1
,
g
r
p
2

MLX Drivers 43

Paramete
r

Description

Ex
a
m
pl
e

subtra
ct
rule

One can define a rule that subtracts one port group from another. The
given rule, for example, will cause all the ports which are a part of grp1,
but not included in grp2, to be chosen.
In subtraction (unlike union), the order does matter, since the purpose is
to subtract the second group from the first one.
There is no option to define more than two groups for union/subtraction.
However, one can unite/subtract groups which are a union or a
subtraction themselves, as shown in the port groups policy file example.

s
u
b
t
r
a
c
t
-
r
u
l
e
:
g
r
p
1
,
g
r
p
2

Predefined Port Groups

There are 3 predefined, automatically created port groups that are available for use, yet
cannot be defined in the policy file (if a group in the policy is configured with the name of
one of these predefined groups, the policy fails) -

ALL - a group that includes all nodes in the fabric

ALL_SWITCHES - a group that includes all switches in the fabric

ALL_CAS - a group that includes all HCAs in the fabric

MLX Drivers 44

ALL_ROUTERS - a group that includes all routers in the fabric (supported in OpenSM
starting from v4.9.0)

Port Groups Policy Examples

Defining a Topologies Policy File

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule: grp1, grp2
end-port-group

port-group
name: grp1
port-guid: 0x281, 0x282, 0x283

end-port-group

port-group
name: grp2
port-guid-range: 0x282-0x286

port-name: hostname=server1 port=1

end-port-group

port-group
name: grp4
port-name: hostname=kika port=1 hca_idx=1

end-port-group

port-group
name: grp3
union-rule: grp3, grp4
end-port-group

MLX Drivers 45

In order to define a topology policy file, set the parameter 'topo_policy_file' in the
OpenSM configuration file.

Configuring a Topology Policy

The topologies policy file details a list of topologies. The policy file should be composed of
one or more paragraphs which define a topology. Each paragraph should begin with the
line 'topol- ogy' and end with the line 'end-topology'.

For example:

Topology Qualifiers

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause the
policy parsing to fail.

Topology Qualifiers

topo_policy_file /etc/opensm/conf/topo_policy_file.cfg

topology
…topology qualifiers…
end-topology

Note

Unlike topology and end-topology which do not require a colon, all
qualifiers must end with a colon (':'). Also - a colon is a predefined
mark that must not be used inside qualifier values. An inclusion of a
column in the qualifier values will result in the policy's failure.

MLX Drivers 46

Parameter Description Example

id
Topology ID.
Legal Values – any positive value. Must be unique. id: 1

sw-grp Name of the port group that includes all switches and
switch ports to be used in this topology.

sw-grp:
ys_switche
s

hca-grp
Name of the port group that includes all HCA's to be
used in this topology.

hca-grp:
ys_hosts

Configuration File per Routing Engine

Each engine in the routing chain can be provided by its own configuration file. Routing
engine configuration file is the fraction of parameters defined in the main OpenSM
configuration file.

Some rules should be applied when defining a particular configuration file for a routing
engine:

Parameters that are not specified in specific routing engine configuration file are
inherited from the main OpenSM configuration file.

The following configuration parameters are taking effect only in the main OpenSM
configuration file:

qos and qos_* settings like (vl_arb, sl2vl, etc.)

lmc

routing_engine

Defining a Routing Chain Policy File

In order to define a port group policy file, set the parameter 'rch_policy_file' in the
OpenSM configuration file.

MLX Drivers 47

First Routing Engine in the Chain

The first unicast engine in a routing chain must include all switches and HCAs in the fabric
(topology id must be 0). The path-bit parameter value is path-bit 0 and it cannot be
changed.

Configuring a Routing Chains Policy

The routing chains policy file details the routing engines (and their fallback engines) used
for the fabric's routing. The policy file should be composed of one or more paragraphs
which defines an

engine (or a fallback engine). Each paragraph should begin with the line 'unicast-step' and
end with the line 'end-unicast-step'.

For example:

Routing Engine Qualifiers

rch_policy_file /etc/opensm/conf/chains_policy_file

unicast-step
…routing engine qualifiers…
end-unicast-step

Note

Unlike unicast-step and end-unicast-step which do not require a
colon, all qualifiers must end with a colon (':'). Also - a colon is a
predefined mark that must not be used inside qualifier values. An

MLX Drivers 48

Parameter Description Example

id

'id' is mandatory. Without an ID qualifier for each engine, the
policy fails.

Legal values – size_t value (0 is illegal).
The engines in the policy chain are set according to an
ascending id order, so it is highly crucial to verify that the
id that is given to the engines match the order in which
you would like the engines to be set.

is: 1

engine

This is a mandatory qualifier that describes the routing
algorithm used within this unicast step.
Currently, on the first phase of routing chains, legal values are
minhop/ftree/updn.

engine:
minhop

use
This is an optional qualifier that enables one to describe the
usage of this unicast step. If undefined, an empty string is used
as a default.

use:
ftree
routing
for for
yellow
stone
nodes

config

This is an optional qualifier that enables one to define a
separate OpenSM config file for a specific unicast step. If
undefined, all parameters are taken from main OpenSM
configuration file.

config:
/etc/co
nfig/
opensm2
.cfg

topolog
y

Define the topology that this engine uses.

Legal value – id of an existing topology that is defined in
topologies policy (or zero that represents the entire fabric
and not a specific topology).
Default value – If unspecified, a routing engine will relate
to the entire fabric (as if topology zero was defined).
Notice: The first routing engine (the engine with the
lowest id) MUST be configured with topology: 0 (entire
fabric) or else, the routing chain parser will fail.

topolog
y: 1

inclusion of a colon in the qualifier values will result in the policy's
failure.

MLX Drivers 49

Parameter Description Example

fallbac
k-to

This is an optional qualifier that enables one to define the
current unicast step as a fallback to another unicast step. This
can be done by defining the id of the unicast step that this
step is a fallback to.

If undefined, the current unicast step is not a fallback.
If the value of this qualifier is a non-existent engine id,
this step will be ignored.
A fallback step is meaningless if the step it is a fallback to
did not fail.
It is impossible to define a fallback to a fall- back step
(such definition will be ignored)

-

path-
bit

This is an optional qualifier that enables one to define a specific
lid offset to be used by the current unicast step. Setting lmc >
0 in main OpenSM configuration file is a prerequisite for
assigning specific path-bit for the routing engine.
Default value is 0 (if path-bit is not specified)

Path-
bit: 1

Dump Files per Routing Engine

Each routing engine on the chain will dump its own data files if the appropriate log_flags
is set (for instance 0x43).

The files that are dumped by each engine are:

opensm-lid-matrix.dump

opensm-lfts.dump

opensm.fdbs

opensm-subnet.lst

These files should contain the relevant data for each engine topology.

Note

MLX Drivers 50

Each engine concatenates its ID and routing algorithm name in its dump files names,
as follows:

opensm-lid-matrix.2.minhop.dump

opensm.fdbs.3.ftree

opensm-subnet.4.updn.lst

In case that a fallback routing engine is used, both the routing engine that failed and
the fallback engine that replaces it, dump their data.

If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that
runs minhop, one should expect to find 2 sets of dump files, one for each engine:

opensm-lid-matrix.2.ftree.dump

opensm-lid-matrix.3.minhop.dump

opensm.fdbs.2.ftree

opensm.fdbs.3.munhop

Unicast Routing Cache

Unicast routing cache prevents routing recalculation (which is a heavy task in a large
cluster) when no topology change was detected during the heavy sweep, or when the
topology change does not require new routing calculation (for example, when one or more
CAs/RTRs/leaf switches going down, or one or more of these nodes coming back after
being down).

Quality of Service Management in OpenSM

When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags),
OpenSM looks for a QoS Policy file. During fabric initialization and at every heavy sweep,

sl2vl and mcfdbs files are dumped only once for the entire fabric and
NOT by every routing engine.

MLX Drivers 51

OpenSM parses the QoS policy file, applies its settings to the discovered fabric elements,
and enforces the provided policy on client requests. The overall flow for such requests is
as follows:

The request is matched against the defined matching rules such that the QoS Level
definition is found

Given the QoS Level, a path(s) search is performed with the given restrictions
imposed by that level

There are two ways to define QoS policy:

Advanced – the advanced policy file syntax provides the administrator various ways
to match a PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various
QoS constraints on the requested PR/MPR

Simple – the simple policy file syntax enables the administrator to match PR/MPR
requests by various ULPs and applications running on top of these ULPs

Advanced QoS Policy File

The QoS policy file has the following sections:

1. Port Groups (denoted by port-groups) - this section defines zero or more port
groups that can be referred later by matching rules (see below). Port group lists
ports by:

- Port GUID

MLX Drivers 52

- Port name, which is a combination of NodeDescription and IB port number

- PKey, which means that all the ports in the subnet that belong to partition with a
given PKey belong to this port group

- Partition name, which means that all the ports in the subnet that belong to
partition with a given name belong to this port group

- Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF
(SM's port).

2. QoS Setup (denoted by qos-setup) - this section describes how to set up SL2VL and
VL Arbitration tables on various nodes in the fabric. However, this is not supported in
OFED. SL2VL and VLArb tables should be configured in the OpenSM options file
(default location - /var/cache/opensm/opensm.opts).

3. QoS Levels (denoted by qos-levels) - each QoS Level defines Service Level (SL) and a
few optional fields:

- MTU limit

- Rate limit

- PKey

- Packet lifetime

When path(s) search is performed, it is done with regards to restriction that these
QoS Level parameters impose. One QoS level that is mandatory to define is a
DEFAULT QoS level. It is applied to a PR/MPR query that does not match any existing
match rule. Similar to any other QoS Level, it can also be explicitly referred by any
match rule.

QoS Matching Rules (denoted by qos-match-rules) - each
PathRecord/MultiPathRecord query that OpenSM receives is matched against the
set of matching rules. Rules are scanned in order of appearance in the QoS policy file
such as the first match takes precedence.

Each rule has a name of QoS level that will be applied to the matching query. A
default QoS level is applied to a query that did not match any rule.

Queries can be matched by:

- Source port group (whether a source port is a member of a specified group)

MLX Drivers 53

- Destination port group (same as above, only for destination port)

- PKey

- QoS class

- Service ID

To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria.
However, not all the fields of the PR/MPR query have to appear in the matching rule.

For instance, if the rule has a single criterion - Service ID, it will match any query that
has this Service ID, disregarding rest of the query fields. However, if a certain query
has only Service ID (which means that this is the only bit in the PR/MPR component
mask that is on), it will not match any rule that has other matching criteria besides
Service ID.

Simple QoS Policy Definition

Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to
the advanced QoS policy, it has a list of match rules and their QoS Level, but in this case a
match rule has only one criterion - its goal is to match a certain ULP (or a certain
application on top of this ULP) PR/MPR request, and QoS Level has only one constraint -
Service Level (SL).

The simple policy section may appear in the policy file in combine with the advanced
policy, or as a stand-alone policy definition. See more details and list of match rule criteria
below.

Policy File Syntax Guidelines

Leading and trailing blanks, as well as empty lines, are ignored, so the indentation in
the example is just for better readability.

Comments are started with the pound sign (#) and terminated by EOL.

Any keyword should be the first non-blank in the line, unless it's a comment.

Keywords that denote section/subsection start have matching closing keywords.

MLX Drivers 54

Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests
that did not match any of the matching rules.

Any section/subsection of the policy file is optional.

Examples of Advanced Policy Files

As mentioned earlier, any section of the policy file is optional, and the only mandatory part
of the policy file is a default QoS Level.

Here is an example of the shortest policy file:

Port groups section is missing because there are no match rules, which means that port
groups are not referred anywhere, and there is no need defining them. And since this
policy file doesn't have any matching rules, PR/MPR query will not match any rule, and
OpenSM will enforce default QoS level. Essentially, the above example is equivalent to not
having a QoS policy file at all.

The following example shows all the possible options and keywords in the policy file and
their syntax:

qos-levels
qos-level

name: DEFAULT
sl: 0

end-qos-level
end-qos-levels

 #
 # See the comments in the following example.
 # They explain different keywords and their meaning.
 #
 port-groups

 port-group # using port GUIDs

MLX Drivers 55

 name: Storage
 # "use" is just a description that is used for logging
 # Other than that, it is just a comment
 use: SRP Targets
 port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA

 port-guid: 0x1000000000FFFF

 end-port-group

 port-group
 name: Virtual Servers
 # The syntax of the port name is as follows:
 # "node_description/Pnum".
 # node_description is compared to the NodeDescription
of the node,
 # and "Pnum" is a port number on that node.
 port-name: “vs1 HCA-1/P1, vs2 HCA-1/P1”
 end-port-group

 # using partitions defined in the partition policy
 port-group
 name: Partitions
 partition: Part1
 pkey: 0x1234

 end-port-group

 # using node types: CA, ROUTER, SWITCH, SELF (for node
that runs SM)
 # or ALL (for all the nodes in the subnet)
 port-group
 name: CAs and SM
 node-type: CA, SELF
 end-port-group

 end-port-groups

 qos-setup

MLX Drivers 56

 # This section of the policy file describes how to set up
SL2VL and VL
 # Arbitration tables on various nodes in the fabric.
 # However, this is not supported in OFED - the section is
parsed
 # and ignored. SL2VL and VLArb tables should be
configured in the
 # OpenSM options file (by default -
/var/cache/opensm/opensm.opts).
 end-qos-setup

 qos-levels

 # Having a QoS Level named "DEFAULT" is a must - it is
applied to
 # PR/MPR requests that didn't match any of the matching
rules.
 qos-level
 name: DEFAULT
 use: default QoS Level
 sl: 0

 end-qos-level

 # the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet
Lifetime
 qos-level
 name: WholeSet
 sl: 1

 mtu-limit: 4

 rate-limit: 5

 pkey: 0x1234

 packet-life: 8

 end-qos-level

 end-qos-levels

MLX Drivers 57

 # Match rules are scanned in order of their appearance in the
policy file.
 # First matched rule takes precedence.
 qos-match-rules

 # matching by single criteria: QoS class

 qos-match-rule
 use: by QoS class

 qos-class: 7-9,11

 # Name of qos-level to apply to the matching PR/MPR
 qos-level-name: WholeSet
 end-qos-match-rule

 # show matching by destination group and service id
 qos-match-rule
 use: Storage targets
 destination: Storage
 service-id: 0x10000000000001, 0x10000000000008-0x10000000000FFF

 qos-level-name: WholeSet
 end-qos-match-rule

 qos-match-rule
 source: Storage
 use: match by source group only
 qos-level-name: DEFAULT
 end-qos-match-rule
 qos-match-rule
 use: match by all parameters
 qos-class: 7-9,11

 source: Virtual Servers
 destination: Storage
 service-id: 0x0000000000010000-0x000000000001FFFF

 pkey: 0x0F00-0x0FFF

 qos-level-name: WholeSet
 end-qos-match-rule
 end-qos-match-rules

MLX Drivers 58

Simple QoS Policy - Details and Examples

Simple QoS policy match rules are tailored for matching ULPs (or some application on top
of a ULP) PR/MPR requests. This section has a list of per-ULP (or per-application) match
rules and the SL that should be enforced on the matched PR/MPR query.

Match rules include:

Default match rule that is applied to PR/MPR query that didn't match any of the
other match rules

IPoIB with a default PKey

IPoIB with a specific PKey

Any ULP/application with a specific Service ID in the PR/MPR query

Any ULP/application with a specific PKey in the PR/MPR query

Any ULP/application with a specific target IB port GUID in the PR/MPR query

Since any section of the policy file is optional, as long as basic rules of the file are kept
(such as no referring to nonexistent port group, having default QoS Level, etc), the simple
policy section (qos-ulps) can serve as a complete QoS policy file.

The shortest policy file in this case would be as follows:

It is equivalent to the previous example of the shortest policy file, and it is also equivalent
to not having policy file at all. Below is an example of simple QoS policy with all the
possible keywords:

qos-ulps
 default : 0 #default SL
end-qos-ulps

qos-ulps

MLX Drivers 59

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of
appearance in the QoS policy file such as the first match takes precedence, except for the
"default" rule, which is applied only if the query didn't match any other rule. All other
sections of the QoS policy file take precedence over the qos-ulps section. That is, if a
policy file has both qos-match-rules and qos-ulps sections, then any query is matched
first against the rules in the qos-match-rules section, and only if there was no match, the
query is matched against the rules in qos-ulps section.

Note that some of these match rules may overlap, so in order to use the simple QoS
definition effectively, it is important to understand how each of the ULPs is matched.

default :0 # default SL
sdp, port-num 30000 :0 # SL for application running on
 # top of SDP when a destination
 # TCP/IPport is 30000

sdp, port-num 10000-20000 : 0

sdp :1 # default SL for any other
 # application running on top of
SDP
rds :2 # SL for RDS traffic
ipoib, pkey 0x0001 :0 # SL for IPoIB on partition with
 # pkey 0x0001

ipoib :4 # default IPoIB partition,
 # pkey=0x7FFF

any, service-id 0x6234:6 # match any PR/MPR query with a
 # specific Service ID
any, pkey 0x0ABC :6 # match any PR/MPR query with a
 # specific PKey
srp, target-port-guid 0x1234 : 5 # SRP when SRP Target is located
 # on a specified IB port GUID
any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
 # with a specific target port
GUID
end-qos-ulps

MLX Drivers 60

IPoIB

IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the
multicast group that OpenSM creates for each IPoIB partition.

Default PKey for IPoIB partition is 0x7fff, so the following three match rules are
equivalent:

SRP

Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by
the target IB port GUID. The following two match rules are equivalent:

Note that any of the above ULPs might contain target port GUID in the PR query, so in
order for these queries not to be recognized by the QoS manager as SRP, the SRP match
rule (or any match rule that refers to the target port GUID only) should be placed at the
end of the qos-ulps match rules.

MPI

SL for MPI is manually configured by an MPI admin. OpenSM is not forcing any SL on the
MPI traffic, which explains why it is the only ULP that did not appear in the qos-ulps
section.

SL2VL Mapping and VL Arbitration

ipoib:<SL>ipoib, pkey 0x7fff : <SL>
any, pkey 0x7fff : <SL>

srp, target-port-guid 0x1234 : <SL>
any, target-port-guid 0x1234 : <SL>

MLX Drivers 61

OpenSM cached options file has a set of QoS related configuration parameters, that are
used to configure SL2VL mapping and VL arbitration on IB ports. These parameters are:

Max VLs: the maximum number of VLs that will be on the subnet

High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)

VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template

VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template

SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to
SLs 0-15 (Note that VL15 used here means drop this SL).

There are separate QoS configuration parameters sets for various target types: CAs,
routers, switch external ports, and switch's enhanced port 0. The names of such
parameters are prefixed by "qos_<type>_" string. Here is a full list of the currently
supported sets:

qos_ca_ —QoS configuration parameters set for CAs.

qos_rtr_ —parameters set for routers.

qos_sw0_ —parameters set for switches' port 0.

qos_swe_ —parameters set for switches' external ports.

Here's the example of typical default values for CAs and switches' external ports (hard-
coded in OpenSM initialization):

qos_ca_max_vls 15

qos_ca_high_limit 0

qos_ca_vlarb_high
0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0

qos_ca_vlarb_low
0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4

qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

qos_swe_max_vls 15

qos_swe_high_limit 0

qos_swe_vlarb_high
0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0

MLX Drivers 62

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry
contains a VL number (values from 0-14), and a weighting value (values 0-255), indicating
the number of 64 byte units (credits) which may be transmitted from that VL when its
turn in the arbitration occurs. A weight of 0 indicates that this entry should be skipped. If
a list entry is programmed for VL15 or for a VL that is not supported or is not currently
configured by the port, the port may either skip that entry or send from any supported VL
for that entry.

Note, that the same VLs may be listed multiple times in the High or Low priority
arbitration tables, and, further, it can be listed in both tables. The limit of high-priority
VLArb table (qos__high_limit) indicates the number of high-priority packets that can be
transmitted without an opportunity to send a low-priority packet. Specifically, the number
of bytes that can be sent is high_limit times 4K bytes.

A high_limit value of 255 indicates that the byte limit is unbounded.

A value of 0 indicates that only a single packet from the high-priority table may be sent
before an opportunity is given to the low-priority table.

Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for
4KB MTU a single packet will require 64 credits, so in order to achieve effective VL
arbitration for packets of 4KB MTU, the weighting values for each VL should be multiples
of 64.

Below is an example of SL2VL and VL Arbitration configuration on subnet:

qos_swe_vlarb_low
0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4

qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

Note

If the 255 value is used, the low priority VLs may be starved.

qos_ca_max_vls 15

qos_ca_high_limit 6

MLX Drivers 63

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high
priority VL, and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such
configuration would suilt VL that needs low latency and uses small MTU when
transmitting packets. Rest of VLs are defined as low priority VLs with different weights,
while VL4 is effectively turned off.

Deployment Example

The figure below shows an example of an InfiniBand subnet that has been configured by a
QoS manager to provide different service levels for various ULPs.

QoS Deployment on InfiniBand Subnet Example

qos_ca_vlarb_high 0:4

qos_ca_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64

qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

qos_swe_max_vls 15

qos_swe_high_limit 6

qos_swe_vlarb_high 0:4

qos_swe_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64

qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

MLX Drivers 64

QoS Configuration Examples

The following are examples of QoS configuration for different cluster deployments. Each
example provides the QoS level assignment and their administration via OpenSM
configuration files.

Typical HPC Example: MPI and Lustre

Assignment of QoS Levels

MPI

Separate from I/O load

Min BW of 70%

Storage Control (Lustre MDS)

Low latency

Storage Data (Lustre OST)

Min BW 30%

MLX Drivers 65

Administration

MPI is assigned an SL via the command line

host1# mpirun –sl 0

OpenSM QoS policy file

Note: In this policy file example, replace OST* and MDS* with the real port GUIDs.

OpenSM options file

EDC SOA (2-tier): IPoIB and SRP

The following is an example of QoS configuration for a typical enterprise data center
(EDC) with service oriented architecture (SOA), with IPoIB carrying all application traffic

 qos-ulps
default

:0 # default SL (for MPI)
any, target-port-guid OST1,OST2,OST3,OST4 :1 #

SL for Lustre OST
any, target-port-guid MDS1,MDS2

:2 # SL for Lustre MDS
 end-qos-ulps

qos_max_vls 8

qos_high_limit 0

qos_vlarb_high 2:1

qos_vlarb_low 0:96,1:224

qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

MLX Drivers 66

and SRP used for storage.

QoS Levels

Application traffic

IPoIB (UD and CM) and SDP

Isolated from storage

Min BW of 50%

SRP

Min BW 50%

Bottleneck at storage nodes

Administration

OpenSM QoS policy file

Note: In this policy file example, replace SRPT* with the real SRP Target port GUIDs.

OpenSM options file

 qos-ulps
default

:0

ipoib
:1

sdp
:1

srp, target-port-guid SRPT1,SRPT2,SRPT3 :2

 end-qos-ulps

MLX Drivers 67

EDC (3-tier): IPoIB, RDS, SRP

The following is an example of QoS configuration for an enterprise data center (EDC), with
IPoIB carrying all application traffic, RDS for database traffic, and SRP used for storage.

QoS Levels

Management traffic (ssh)

IPoIB management VLAN (partition A)

Min BW 10%

Application traffic

IPoIB application VLAN (partition B)

Isolated from storage and database

Min BW of 30%

Database Cluster traffic

RDS

Min BW of 30%

SRP

Min BW 30%

Bottleneck at storage nodes

qos_max_vls 8

qos_high_limit 0

qos_vlarb_high 1:32,2:32

qos_vlarb_low 0:1,
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

MLX Drivers 68

Administration

OpenSM QoS policy file

Note: In the following policy file example, replace SRPT* with the real SRP Initiator
port GUIDs.

OpenSM options file

Partition configuration file

 qos-ulps
default

:0
ipoib, pkey 0x8001

:1
ipoib, pkey 0x8002

:2
rds

:3
srp, target-port-guid SRPT1, SRPT2, SRPT3 :4

 end-qos-ulps

qos_max_vls 8

qos_high_limit 0

qos_vlarb_high 1:32,2:96,3:96,4:96

qos_vlarb_low 0:1

qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

Default=0x7fff,ipoib : ALL=full;PartA=0x8001, sl=1, ipoib :

MLX Drivers 69

Enhanced QoS

Enhanced QoS provides a higher resolution of QoS at the service level (SL). Users can
configure rate limit values per SL for physical ports, virtual ports, and port groups, using
enhanced_qos_policy_file configuration parameter.

Valid values of this parameter:

Full path to the policy file through which Enhanced QoS Manager is configured

"null" - to disable the Enhanced QoS Manager (default value)

Enhanced QoS Policy File

The policy file is comprised of three sections:

BW_NAMES: Used to define bandwidth setting and name (currently, rate limit is the
only setting). Bandwidth names can be used in BW_RULES and VPORT_BW_RULES
sections.

Bandwidth names are defined using the syntax:

<name> = <rate limit in 1Mbps units>

Example: My_bandwidth = 50

BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL
of a specific GUID.

ALL=full;

Note

To enable Enhanced QoS Manager, QoS must be enabled in OpenSM.

MLX Drivers 70

Bandwidth rules are defined using the syntax:

<guid>|<port group name> = <sl id>:<bandwidth name>, <sl id>:
<bandwidth name>…

Examples:

0x2c90000000025 = 5:My_bandwidth, 7:My_bandwidth

Port_grp1 = 3:My_bandwidth, 9:My_bandwidth

VPORT_BW_RULES: Used to define the rules that map the bandwidth setting to a
specific SL of a specific virtual port GUID.

Bandwidth rules are defined using the syntax:

<guid>= <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…
Examples:

0x2c90000000026= 5:My_bandwidth, 7:My_bandwidth

Special Keywords

Keyword “all” allows setting a rate limit of all SLs to some BW for a specific physical
or virtual port. It is possible to combine “all” with specific SL rate limits.

Example:

0x2c90000000025 = all:BW1,SL3:BW2 In this case, SL3 will be assigned BW2
rate limit, while the rest of SLs get BW1 rate limit.

"default" is a well-known name which can be used to define a default rule used for
any GUID with no defined rule.

If no default rule is defined, any GUID without a specific rule will be configured with
unlimited rate limit for all SLs.

Keyword “all” is also applicable to the default rule. Default rule is local to each
section.

MLX Drivers 71

Special Subnet Manager Configuration Options

New SM configuration option enhanced_qos_vport0_unlimit_default_rl was added to
opensm.conf.

The possible values for this configuration option are:

TRUE: For specific virtual port0 GUID, SLs not mentioned in bandwidth rule will be
set to unlimited bandwidth (0) regardless of the default rule of the
VPORT_BW_RULES section.

Virtual port0 GUIDs not mentioned in VPORT_BW_SECTION will be set to unlimited
BW on all SLs.

FALSE: The GUID of virtual port0 is treated as any other virtual port in
VPORT_BW_SECTION.

SM should be signaled by HUP once the option is changed.

Default: TRUE

Notes

When rate limit is set to 0, it means that the bandwidth is unlimited.

Any unspecified SL in a rule will be set to 0 (unlimited) rate limit automatically if no
default rule is specified.

Failure to complete policy file parsing leads to an undefined behavior. User must
confirm no relevant error messages in SM log in order to ensure Enhanced QoS
Manager is configured properly.

A file with only 'BW_NAMES' and 'BW_RULES' keywords configures the network with
an unlimited rate limit.

HCA physical port GUID can be specified in BW_RULES and VPORT_BW_RULES
sections.

In BW_RULES section, the rate limit assigned to a specific SL will limit the total BW
that can be sent through the PF on a given SL.

In VPORT_BW_RULES section, the rate limit assigned to a specific SL will limit only
the traffic sent from the IB interface corresponding to the physical port GUID

MLX Drivers 72

(virtual port0 IB interface). The traffic sent from other virtual IB interfaces will not be
limited if no specific rules are defined.

Policy File Example

All physical ports in the fabric are with a rate limit of 50Mbps on SL1, except for GUID
0x2c90000000025, which is configured with rate limit of 25Mbps on SL1. In this example,
the traffic on SLs (other than SL1) is unlimited.

All virtual ports in the fabric (except virtual port0 of all physical ports) will be rate-limited
to 15Mbps for all SLs because of the default rule of VPORT_BW_RULES section.

Virtual port GUID 0x2c90000000026 is configured with a rate limit of 10Mbps on SL3. The
rest of the SLs on this virtual port will get a rate limit of 15 Mbps because of the default
rule of VPORT_BW_RULES section.

BW_NAMES
bw1 = 50

bw2 = 25

bw3 = 15

bw4 = 10

BW_RULES
default= 1:bw1
0x2c90000000025= 1:bw2

VPORT_BW_RULES
default= all:bw3
0x2c90000000026= 3:bw4

MLX Drivers 73

Adaptive Routing Manager and Self-Healing Networking

Adaptive Routing Manager supports advanced InfiniBand features; Adaptive Routing (AR)
and Self-Healing Networking.

For information on how to set up AR and Self-Healing Networking, please refer to HowTo
Configure Adaptive Routing and Self-Healing Networking Community post.

DOS MAD Prevention

DOS MAD prevention is achieved by assigning a threshold for each agent's RX. Agent's RX
threshold provides a protection mechanism to the host memory by limiting the agents' RX
with a threshold. Incoming MADs above the threshold are dropped and are not queued to
the agent's RX.

To enable DOS MAD Prevention:

1. Go to /etc/modprobe.d/mlnx.conf.

2. Add to the file the option below.

The threshold value can be controlled from the user-space via libibumad.

To change the value, use the following API:

IB Router Support in OpenSM

In order to enable the IB router in OpenSM, the following parameters should be
configured:

ib_umad enable_rx_threshold 1

int umad_update_threshold(int fd, int threshold);

@fd: file descriptor, agent's RX associated to this fd.
@threshold: new threshold value

https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New
https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New

MLX Drivers 74

IB Router Parameters for OpenSM

Parameter Description Default Value

rtr_pr_flow_label

Defines
whether the
SM should
create alias
GUIDs required
for router
support for
each port.
Defines flow
label value to
use in
response for
path records
related to the
router.

0 (Disabled)

rtr_pr_tclass

Defines TClass
value to use in
response for
path records
related to the
router

0

rtr_pr_sl

Defines sl
value to use in
response for
path records
related to
router.

0

rtr_p_mtu

Defines MTU
value to use in
response for
path records
related to the
router.

4 (IB_MTU_LEN_2048)

rtr_pr_rate

Defines rate
value to use in
response for
path records
related to the
router.

16 (IB_PATH_RE- CORD_RATE_100_GBS)

MLX Drivers 75

OpenSM Activity Report

OpenSM can produce an activity report in a form of a dump file which details the different
activities done in the SM. Activities are divided into subjects. The OpenSM Supported
Activities table below specifies the different activities currently supported in the SM
activity report.

Reporting of each subject can be enabled individually using the configuration parameter
activity_report_subjects :

Valid values:

Comma separated list of subjects to dump. The current supported subjects are:

"mc" - activity IDs 1, 2 and 8

"prtn" - activity IDs 3, 4, and 5

"virt" - activity IDs 6 and 7

"routing" - activity IDs 8-12

Two predefined values can be configured as well:

"all" - dump all subjects

"none" - disable the feature by dumping none of the subjects

Default value: "none"

OpenSM Supported Activities

ACtivity ID
Activity
Name

Additional Fields Comments
Descriptio
n

1
mcm_me
mber

MLid
MGid
Port Guid
Join State

Join state:
1 - Join
-1 - Leave

Member
joined/ left
MC group

2 mcg_cha
nge

MLid
MGid

Change:
0 - Create

MC group
created/de

MLX Drivers 76

ACtivity ID
Activity
Name

Additional Fields Comments
Descriptio
n

Change 1 - Delete leted

3
prtn_guid
_add

Port Guid
PKey
Block index
Pkey Index

Guid
added to
partition

4
prtn_crea
te

-PKey

Prtn Name
Partition
created

5
prtn_dele
te

PKey
Delete Reason

Delete
Reason:
0 - empty
prtn
1 - duplicate
prtn
2 - sm
shutdown

Partition
deleted

6
port_virt_
discover

Port Guid
Top Index

Port
virtualizati
on
discovered

7
vport_sta
te_chang
e

Port Guid
VPort Guid
VPort Index
VNode Guid
VPort State

VPort State:
1 - Down
2 - Init
3 - ARMED
4 - Active

Vport
state
changed

8
mcg_tree
_calc

mlid
MCast
group tree
calculated

9
routing_s
ucceed

routing engine name

Routing
done
successful
ly

10
routing_f
ailed

routing engine name
Routing
failed

MLX Drivers 77

ACtivity ID
Activity
Name

Additional Fields Comments
Descriptio
n

11
ucast_cac
he_invali-
dated

ucast
cache
invalidated

12
ucast_cac
he_rout-
ing_done

ucast
cache
routing
done

Offsweep Balancing

When working with minhop/dor/updn, subnet manager can re-balance routing during idle
time (between sweeps).

offsweep_balancing_enabled - enables/disables the feature. Examples:

offsweep_balancing_enabled = TRUE

offsweep_balancing_enabled = FALSE (default)

offsweep_balancing_window - defines window of seconds to wait after sweep before
starting the re-balance process. Applicable only if
offsweep_balancing_enabled=TRUE. Example:

offsweep_balancing_window = 180 (default)

InfiniBand QoS
Quality of service (QoS) requirements stem from the realization of I/O consolidation over
an IB network. As multiple applications and ULPs share the same fabric, a means is
needed to control their use of network resources.

MLX Drivers 78

The basic need is to differentiate the service levels provided to different traffic flows, such
that a policy can be enforced and can control each flow utilization of fabric resources.

The InfiniBand Architecture Specification defines several hardware features and
management interfaces for supporting QoS:

Up to 15 Virtual Lanes (VL) carry traffic in a non-blocking manner

Arbitration between traffic of different VLs is performed by a two-priority-level
weighted round robin arbiter. The arbiter is programmable with a sequence of (VL,
weight) pairs and a maximal number of high priority credits to be processed before
low priority is served

Packets carry class of service marking in the range 0 to 15 in their header SL field

Each switch can map the incoming packet by its SL to a particular output VL, based
on a programmable table VL=SL-to-VL-MAP (in-port, out-port, SL)

The Subnet Administrator controls the parameters of each communication flow by
providing them as a response to Path Record (PR) or Multi-path Record (MPR)
queries

MLX Drivers 79

DiffServ architecture (IETF RFC 2474 & 2475) is widely used in highly dynamic fabrics. The
following subsections provide the functional definition of the various software elements
that enable a DiffServ-like architecture over the NVIDIA OFED software stack.

QoS Architecture

QoS functionality is split between the SM/SA, CMA and the various ULPs. We take the
"chronology approach" to describe how the overall system works.

1. The network manager (human) provides a set of rules (policy) that define how the
network is being configured and how its resources are split to different QoS-Levels.
The policy also define how to decide which QoS-Level each application or ULP or
service use.

2. The SM analyzes the provided policy to see if it is realizable and performs the
necessary fab- ric setup. Part of this policy defines the default QoS-Level of each
partition. The SA is enhanced to match the requested Source, Destination, QoS-
Class, Service-ID, PKey against the policy, so clients (ULPs, programs) can obtain a
policy enforced QoS. The SM may also set up partitions with appropriate IPoIB
broadcast group. This broadcast group carries its QoS attributes: SL, MTU, RATE, and
Packet Lifetime.

3. IPoIB is being setup. IPoIB uses the SL, MTU, RATE and Packet Lifetime available on
the multicast group which forms the broadcast group of this partition.

4. MPI which provides non IB based connection management should be configured to
run using hard coded SLs. It uses these SLs for every QP being opened.

5. ULPs that use CM interface (like SRP) have their own pre-assigned Service-ID and
use it while obtaining PathRecord / MultiPathRecord (PR/MPR) for establishing
connections. The SA receiving the PR/MPR matches it against the policy and returns
the appropriate PR/MPR including SL, MTU, RATE and Lifetime.

6. ULPs and programs (e.g. SDP) use CMA to establish RC connection provide the CMA
the target IP and port number. ULPs might also provide QoS-Class. The CMA then
creates Service-ID for the ULP and passes this ID and optional QoS-Class in the
PR/MPR request. The resulting PR/MPR is used for configuring the connection QP.

PathRecord and Multi Path Record Enhancement for QoS:

As mentioned above, the PathRecord and MultiPathRecord attributes are enhanced
to carry the Service-ID which is a 64bit value. A new field QoS-Class is also provided.

MLX Drivers 80

A new capability bit describes the SM QoS support in the SA class port info. This approach
provides an easy migration path for existing access layer and ULPs by not introducing new
set of PR/MPR attributes.

Supported Policy

The QoS policy, which is specified in a stand-alone file, is divided into the following four
subsections:

Port Group

A set of CAs, Routers or Switches that share the same settings. A port group might be a
partition defined by the partition manager policy, list of GUIDs, or list of port names based
on NodeDescription .

Fabric Setup

Defines how the SL2VL and VLArb tables should be set up.

QoS-Levels Definition

This section defines the possible sets of parameters for QoS that a client might be
mapped to. Each set holds SL and optionally: Max MTU, Max Rate, Packet Lifetime and
Path Bits.

Note

In OFED this part of the policy is ignored. SL2VL and VLArb tables
should be configured in the OpenSM options file (opensm.opts).

Note

MLX Drivers 81

Matching Rules

A list of rules that match an incoming PR/MPR request to a QoS-Level. The rules are
processed in order such as the first match is applied. Each rule is built out of a set of
match expressions which should all match for the rule to apply. The matching expressions
are defined for the following fields:

SRC and DST to lists of port groups

Service-ID to a list of Service-ID values or ranges

QoS-Class to a list of QoS-Class values or ranges

CMA Features

The CMA interface supports Service-ID through the notion of port space as a prefix to the
port number, which is part of the sockaddr provided to rdma_resolve_add() . The CMA
also allows the ULP (like SDP) to propagate a request for a specific QoS-Class. The CMA
uses the provided QoS-Class and Service-ID in the sent PR/MPR.

IPoIB

IPoIB queries the SA for its broadcast group information and uses the SL, MTU, RATE and
Packet Lifetime available on the multicast group which forms this broadcast group.

SRP

The current SRP implementation uses its own CM callbacks (not CMA). So SRP fills in the
Service-ID in the PR/MPR by itself and use that information in setting up the QP.

SRP Service-ID is defined by the SRP target I/O Controller (it also complies with IBTA
Service- ID rules). The Service-ID is reported by the I/O Controller in the

Path Bits are not implemented in OFED.

MLX Drivers 82

ServiceEntries DMA attribute and should be used in the PR/MPR if the SA reports its
ability to handle QoS PR/MPRs.

IP Over InfiniBand

Upper Layer Protocol (ULP)

The IP over IB (IPoIB) ULP driver is a network interface implementation over InfiniBand.
IPoIB encapsulates IP datagrams over an InfiniBand Datagram transport service. The IPoIB
driver, ib_ipoib, exploits the following capabilities:

VLAN simulation over an InfiniBand network via child interfaces

High availability (HA) via Bonding

Varies MTU values:

up to 4k in Datagram mode

Uses any ConnectX® IB ports (one or two)

Inserts IP/UDP/TCP checksum on outgoing packets

Calculates checksum on received packets

Support net device TSO through ConnectX® LSO capability to defragment large
data- grams to MTU quantas.

IPoIB also supports the following software based enhancements:

Giant Receive Offload

NAPI

Ethtool support

Enhanced IPoIB

Enhanced IPoIB feature enables offloading ULP basic capabilities to a lower vendor
specific driver, in order to optimize IPoIB data path. This will allow IPoIB to support multiple

MLX Drivers 83

stateless offloads, such as RSS/TSS, and better utilize the features supported, enabling
IPoIB datagram to reach peak performance in both bandwidth and latency.

Enhanced IPoIB supports/performs the following:

Stateless offloads (RSS, TSS)

Multi queues

Interrupt moderation

Multi partitions optimizations

Sharing send/receive Work Queues

Vendor specific optimizations

UD mode only

Port Configuration

The physical port MTU (indicates the port capability) default value is 4k, whereas the IPoIB
port MTU ("logical" MTU) default value is 2k as it is set by the OpenSM.

To change the IPoIB MTU to 4k, edit the OpenSM partition file in the section of IPoIB
setting as follow:

Where:

mtu=5 indicates that all IPoIB ports in the fabric are using 4k MTU, (mtu=4
indicates 2k MTU)

IPoIB Configuration

Unless you have run the installation script mlnxofedinstall with the flag '-n', then IPoIB has
not been configured by the installation. The configuration of IPoIB requires assigning an IP
address and a subnet mask to each HCA port, like any other network adapter card (i.e., you
need to prepare a file called ifcfg-ib<n> for each port). The first port on the first HCA in
the host is called interface ib0, the second port is called ib1, and so on.

Default=0xffff, ipoib, mtu=5 : ALL=full;

MLX Drivers 84

IPoIB configuration can be based on DHCP or on a static configuration that you need to
supply (see below). You can also apply a manual configuration that persists only until the
next reboot or driver restart (see below).

IPoIB Configuration Based on DHCP

Setting an IPoIB interface configuration based on DHCP is performed similarly to the
configuration of Ethernet interfaces. In other words, you need to make sure that IPoIB
configuration files include the following line:

For RedHat:

For SLES:

BOOTPROTO=dhcp

BOOTPROTO='dchp'

Note

If IPoIB configuration files are included, ifcfg-ib<n> files will
be installed under:

/etc/sysconfig/network-scripts/ on a RedHat
machine

/etc/sysconfig/network/ on a SuSE machine.

Note

A patch for DHCP may be required for supporting IPoIB. For
further information, please see the REAME file available under

MLX Drivers 85

Standard DHCP fields holding MAC addresses are not large enough to contain an IPoIB
hardware address. To overcome this problem, DHCP over InfiniBand messages convey a
client identifier field used to identify the DHCP session. This client identifier field can be
used to associate an IP address with a client identifier value, such that the DHCP server
will grant the same IP address to any client that conveys this client identifier.

The length of the client identifier field is not fixed in the specification. For the NVIDIA
OFED for Linux package, it is recommended to have IPoIB use the same format that
FlexBoot uses for this client identifier.

DHCP Server

In order for the DHCP server to provide configuration records for clients, an appropriate
configuration file needs to be created. By default, the DHCP server looks for a
configuration file called dhcpd.conf under /etc . You can either edit this file or create
a new one and provide its full path to the DHCP server using the -cf flag (See a file
example at docs/dhcpd.conf).

the docs/dhcp/ directory.

Note

Red Hat Enterprise Linux 7 supports assigning static IP
addresses to InfiniBand IPoIB interfaces. However, as these
interfaces do not have a normal hardware Ethernet address, a
different method of specifying a unique identifier for the IPoIB
interface must be used. The standard is to use the option dhcp-
client-identifier= construct to specify the IPoIB interface’s dhcp-
client-identifier field. The DHCP server host construct supports
at most one hardware Ethernet and one dhcp-client-identifier
entry per host stanza. However, there may be more than one
fixed-address entry and the DHCP server will automatically
respond with an address that is appropriate for the network that
the DHCP request was received on.

MLX Drivers 86

The DHCP server must run on a machine which has loaded the IPoIB module. To run the
DHCP server from the command line, enter:

Example:

DHCP Client (Optional)

In order to use a DHCP client identifier, you need to first create a configuration file that
defines the DHCP client identifier.

Then run the DHCP client with this file using the following command:

Example of a configuration file for the ConnectX (PCI Device ID 26428), called
dhclient.conf :

dhcpd <IB network interface name> -d

host1# dhcpd ib0 -d

Note

A DHCP client can be used if you need to prepare a diskless machine
with an IB driver.

dhclient –cf <client conf file> <IB network interface name>

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier

MLX Drivers 87

Example of a configuration file for InfiniHost III Ex (PCI Device ID 25218), called
dhclient.conf :

 To use the configuration file, run:

Static IPoIB Configuration

If you wish to use an IPoIB configuration that is not based on DHCP, you need to supply
the installation script with a configuration file (using the ‘-n’ option) containing the full IP
configuration. The IPoIB configuration file can specify either or both of the following data
for an IPoIB interface:

A static IPoIB configuration

An IPoIB configuration based on an Ethernet configuration

See your Linux distribution documentation for additional information about
configuring IP addresses.

The following code lines are an excerpt from a sample IPoIB configuration file:

ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:00:10:39;
}

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;
}

host1# dhclient –cf dhclient.conf ib1

Static settings; all values provided by this file

MLX Drivers 88

Manually Configuring IPoIB

IPADDR_ib0=10.4.3.175

NETMASK_ib0=255.255.0.0

NETWORK_ib0=10.4.0.0

BROADCAST_ib0=10.4.255.255

ONBOOT_ib0=1

Based on eth0; each '*' will be replaced with a corresponding
octet
from eth0.
LAN_INTERFACE_ib0=eth0
IPADDR_ib0=10.4.'*'.'*'

NETMASK_ib0=255.255.0.0

NETWORK_ib0=10.4.0.0

BROADCAST_ib0=10.4.255.255

ONBOOT_ib0=1

Based on the first eth<n> interface that is found (for n=0,1,...);
each '*' will be replaced with a corresponding octet from
eth<n>.
LAN_INTERFACE_ib0=
IPADDR_ib0=10.4.'*'.'*'

NETMASK_ib0=255.255.0.0

NETWORK_ib0=10.4.0.0

BROADCAST_ib0=10.4.255.255

ONBOOT_ib0=1

Note

This manual configuration persists only until the next reboot or driver
restart.

MLX Drivers 89

 To manually configure IPoIB for the default IB partition (VLAN), perform the following
steps:

1. Configure the interface by entering the ifconfig command with the following items:

- The appropriate IB interface (ib0, ib1, etc.)

- The IP address that you want to assign to the interface

- The netmask keyword

- The subnet mask that you want to assign to the interface

The following example shows how to configure an IB interface:

2. (Optional) Verify the configuration by entering the ifconfig command with the
appropriate interface identifier ib# argument.

The following example shows how to verify the configuration:

3. Repeat the first two steps on the remaining interface(s).

host1$ ifconfig ib0 10.4.3.175 netmask 255.255.0.0

host1$ ifconfig ib0
b0 Link encap:UNSPEC HWaddr 80-00-04-04-FE-80-00-00-00-00-00-00-
00-00-00-00
inet addr:10.4.3.175 Bcast:10.4.255.255 Mask:255.255.0.0

UP BROADCAST MULTICAST MTU:65520 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

MLX Drivers 90

Sub-interfaces

You can create sub-interfaces for a primary IPoIB interface to provide traffic isolation.
Each such sub-interface (also called a child interface) has a different IP and network
addresses from the primary (parent) interface. The default Partition Key (PKey), ff:ff,
applies to the primary (parent) interface.

This section describes how to:

Create a subinterface

Remove a subinterface

Creating a Subinterface

In the following procedure, ib0 is used as an example of an IB sub-interface.

 To create a child interface (sub-interface), follow this procedure:

1. Decide on the PKey to be used in the subnet (valid values can be 0 or any 16-bit
unsigned value). The actual PKey used is a 16-bit number with the most significant
bit set. For example, a value of 1 will give a PKey with the value 0x8001.

2. Create a child interface by running:

Example:

This will create the interface ib0.8001.

3. Verify the configuration of this interface by running:

host1$ echo <PKey> > /sys/class/net/<IB
subinterface>/create_child

host1$ echo 1 > /sys/class/net/ib0/create_child

MLX Drivers 91

Using the example of the previous step:

4. As can be seen, the interface does not have IP or network addresses. To configure
those, you should follow the manual configuration procedure described in "Manually
Configuring IPoIB" section above.

5. To be able to use this interface, a configuration of the Subnet Manager is needed so
that the PKey chosen, which defines a broadcast address, be recognized.

Removing a Subinterface

 To remove a child interface (subinterface), run:

Using the example of the second step from the previous chapter:

host1$ ifconfig <subinterface>.<subinterface PKey>

host1$ ifconfig ib0.8001

ib0.8001 Link encap:UNSPEC HWaddr 80-00-00-4A-FE-80-00-00-00-
00-00-00-00-00-00-00

BROADCAST MULTICAST MTU:2044 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

echo <subinterface PKey> /sys/class/net/<ib_interface>/delete_child

echo 0x8001 > /sys/class/net/ib0/delete_child

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.IP+over+InfiniBand+%28IPoIB%29+v5.1-1.0.7.0-HPE

MLX Drivers 92

Note that when deleting the interface you must use the PKey value with the most
significant bit set (e.g., 0x8000 in the example above).

Verifying IPoIB Functionality

To verify your configuration and IPoIB functionality are successful, perform the
following steps:

1. Verify the IPoIB functionality by using the ifconfig command.

The following example shows how two IB nodes are used to verify IPoIB functionality.
In the following example, IB node 1 is at 10.4.3.175, and IB node 2 is at 10.4.3.176:

2. Enter the ping command from 10.4.3.175 to 10.4.3.176.

3. The following example shows how to enter the ping command:

Bonding IPoIB

host1# ifconfig ib0 10.4.3.175 netmask 255.255.0.0

host2# ifconfig ib0 10.4.3.176 netmask 255.255.0.0

host1# ping -c 5 10.4.3.176

PING 10.4.3.176 (10.4.3.176) 56(84) bytes of data.
64 bytes from 10.4.3.176: icmp_seq=0 ttl=64 time=0.079 ms
64 bytes from 10.4.3.176: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 10.4.3.176: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 10.4.3.176: icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from 10.4.3.176: icmp_seq=4 ttl=64 time=0.065 ms
--- 10.4.3.176 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time
3999ms rtt min/avg/max/mdev = 0.044/0.058/0.079/0.014 ms, pipe 2

MLX Drivers 93

To create an interface configuration script for the ibX and bondX interfaces, you should
use the standard syntax (depending on your OS).

Bonding of IPoIB interfaces is accomplished in the same manner as would bonding of
Ethernet interfaces: via the Linux Bonding Driver.

Network Script files for IPoIB slaves are named after the IPoIB interfaces (e.g: ifcfg-
ib0)

The only meaningful bonding policy in IPoIB is HA (bonding mode number 1, or
active-backup)

Bonding parameter "fail_over_mac" is meaningless in IPoIB interfaces, hence, the
only supported value is the default: 0

For a persistent bonding IPoIB Network configuration, use the same Linux Network
Scripts semantics, with the following exceptions/ additions:

In the bonding master configuration file (e.g: ifcfg-bond0), in addition to Linux
bonding semantics, use the following parameter: MTU=65520

In the bonding slave configuration file (e.g: ifcfg-ib0), use the same Linux Network
Scripts semantics. In particular: DEVICE=ib0

In the bonding slave configuration file (e.g: ifcfg-ib0.8003), the line TYPE=InfiniBand
is necessary when using bonding over devices configured with partitions (p_key)

For RHEL, add the following lines in /etc/modprobe.b/bond.conf :

Note

For IPoIB slaves, use MTU=2044. If you do not set the correct
MTU or do not set MTU at all, performance of the interface
might decrease.

alias bond0 bonding

MLX Drivers 94

For SLES users:

It is necessary to update the MANDATORY_DEVICES environment variable in

/etc/sysconfig/network/config with the names of the IPoIB slave devices
(e.g. ib0, ib1, etc.). Otherwise, bonding master may be created before IPoIB slave
interfaces at boot time.

It is possible to have multiple IPoIB bonding masters and a mix of IPoIB bonding
master and Ethernet bonding master. However, It is NOT possible to mix Ethernet
and IPoIB slaves under the same bonding master.

Dynamic PKey Change

Dynamic PKey change means the PKey can be changed (add/removed) in the SM
database and the interface that is attached to that PKey is updated immediately without
the need to restart the driver.

If the PKey is already configured in the port by the SM, the child-interface can be used
immediately. If not, the interface will be ready to use only when SM adds the relevant PKey
value to the port after the creation of the child interface. No additional configuration is
required once the child-interface is created.

Precision Time Protocol (PTP) over IPoIB

This feature allows for accurate synchronization between the distributed entities over the
network. The synchronization is based on symmetric Round Trip Time (RTT) between the
master and slave devices.

This feature is enabled by default, and is also supported over PKey interfaces.

For more on the PTP feature, refer to Running Linux PTP with ConnectX-4/ConnectX-
5/ConnectX-6 Community post.

Note

Restarting openibd does no keep the bonding configuration via
Network Scripts. You have to restart the network service in order to
bring up the bonding master. After the configuration is saved, restart
the network service by running: /etc/init.d/network restart.

https://enterprise-support.nvidia.com/s/article/Running-Linux-PTP-with-ConnectX-4-ConnectX-5-ConnectX-6
https://enterprise-support.nvidia.com/s/article/Running-Linux-PTP-with-ConnectX-4-ConnectX-5-ConnectX-6

MLX Drivers 95

One Pulse Per Second (1PPS) over IPoIB

1PPS is a time synchronization feature that allows the adapter to be able to send or
receive 1 pulse per second on a dedicated pin on the adapter card using an SMA
connector (SubMiniature version A). Only one pin is supported and could be configured as
1PPS in or 1PPS out.

Advanced Transport

Atomic Operations

Atomic Operations in mlx5 Driver

To enable atomic operation with this endianness contradiction, use the ibv_create_qp
to create the QP and set the IBV_QP_CREATE_ATOMIC_BE_REPLY flag on

create_flags .

XRC - eXtended Reliable Connected Transport Service for
InfiniBand

XRC allows significant savings in the number of QPs and the associated memory
resources required to establish all to all process connectivity in large clusters.

It significantly improves the scalability of the solution for large clusters of multicore end-
nodes by reducing the required resources.

For further details, please refer to the "Annex A14 Supplement to InfiniBand Architecture
Specification Volume 1.2.1"

A new API can be used by user space applications to work with the XRC transport. The
legacy API is currently supported in both binary and source modes, however it is
deprecated. Thus we recommend using the new API.

The new verbs to be used are:

ibv_open_xrcd/ibv_close_xrcd

MLX Drivers 96

ibv_create_srq_ex

ibv_get_srq_num

ibv_create_qp_ex

ibv_open_qp

Please use ibv_xsrq_pingpong for basic tests and code reference. For detailed
information regarding the various options for these verbs, please refer to their
appropriate man pages.

Dynamically Connected Transport (DCT)

Dynamically Connected transport (DCT) service is an extension to transport services to
enable a higher degree of scalability while maintaining high performance for sparse
traffic. Utilization of DCT reduces the total number of QPs required system wide by having
Reliable type QPs dynamically connect and disconnect from any remote node. DCT
connections only stay connected while they are active. This results in smaller memory
footprint, less overhead to set connections and higher on-chip cache utilization and hence
increased performance. DCT is supported only in mlx5 driver.

MPI Tag Matching and Rendezvous Offloads

Note

Please note that ConnectX-4 supports DCT v0 and ConnectX-5 and
above support DCT v1. DCTv0 and DCT v1 are not interoperable.

Note

Supported in ConnectX®-5 and above adapter cards.

MLX Drivers 97

Tag Matching and Rendezvous Offloads is a technology employed by NVIDIA to offload
the processing of MPI messages from the host machine onto the network card.
Employing this technology enables a zero copy of MPI messages, i.e. messages are
scattered directly to the user's buffer without intermediate buffering and copies. It also
provides a complete rendezvous progress by NVIDIA devices. Such overlap capability
enables the CPU to perform the application's computational tasks while the remote data
is gathered by the adapter.

For more information Tag Matching Offload, please refer to the Understanding MPI Tag
Matching and Rendezvous Offloads (ConnectX-5) Community post .

Optimized Memory Access

Memory Region Re-registration

Memory Region Re-registration allows the user to change attributes of the memory
region. The user may change the PD, access flags or the address and length of the
memory region. Memory

region supports contagious pages allocation. Consequently, it de-registers memory region
followed by register memory region. Where possible, resources are reused instead of de-
allocated and reallocated.

Example:

@mr: The memory region to modify.

@flags: A bit-mask used to indicate
which of the following
properties of the memory
region are being modified.
Flags should be one of:
IBV_REREG_MR_CHANGE_TRA
NSLATION /* Change
translation (location and

int ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd,
void *addr, size_t length, uint64_t access, struct
ibv_rereg_mr_attr *attr);

https://enterprise-support.nvidia.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://enterprise-support.nvidia.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x

MLX Drivers 98

length) */
IBV_REREG_MR_CHANGE_PD/*
Change protection domain*/
IBV_REREG_MR_CHANGE_ACC
ESS/* Change access flags*/

@pd:

If
IBV_REREG_MR_CHANGE_PD
is set in flags, this field
specifies the new protection
domain to associated with the
memory region, otherwise, this
parameter is ignored.

@addr:

If
IBV_REREG_MR_CHANGE_TRA
NSLATION is set in flags, this
field specifies the start of the
virtual address to use in the
new translation, otherwise, this
parameter is ignored.

@length:

If
IBV_REREG_MR_CHANGE_TRA
NSLATION is set in flags, this
field specifies the length of
the virtual address to use in
the new translation, otherwise,
this parameter is ignored.

@access:

If
IBV_REREG_MR_CHANGE_ACC
ESS is set in flags, this field
specifies the new memory
access rights, otherwise, this
parameter is ignored. Could be
one of the following:
IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_ALLOCATE_MR /*
Let the library allocate the
memory for * the user, tries to
get contiguous pages */

@attr: Future extensions

MLX Drivers 99

ibv_rereg_mr returns 0 on success, or the value of an errno on failure (which indicates the
error reason). In case of an error, the MR is in undefined state. The user needs to call
ibv_dereg_mr in order to release it.

Please note that if the MR (Memory Region) is created as a Shared MR and a translation is
requested, after the call, the MR is no longer a shared MR. Moreover, Re-registration of
MRs that uses NVIDIA PeerDirect™ technology are not supported.

Memory Window

Memory Window allows the application to have a more flexible control over remote access
to its memory. It is available only on physical functions/native machines The two types of
Memory Windows supported are: type 1 and type 2B.

Memory Windows are intended for situations where the application wants to:

Grant and revoke remote access rights to a registered region in a dynamic fashion
with less of a performance penalty

Grant different remote access rights to different remote agents and/or grant those
rights over different ranges within registered region

For further information, please refer to the InfiniBand specification document.

Query Capabilities

Memory Windows are available if and only the hardware supports it. To verify whether
Memory Windows are available, run ibv_query_device .

For example:

Note

Memory Windows API cannot co-work with peer memory clients
(PeerDirect).

MLX Drivers 100

Memory Window Allocation

Allocating memory window is done by calling the ibv_alloc_mw verb.

Binding Memory Windows

After being allocated, memory window should be bound to a registered memory region.
Memory Region should have been registered using the IBV_ACCESS_MW_BIND access
flag.

For further information on how to bind memory windows, please see rdma-core man
page.

Invalidating Memory Window

Before rebinding Memory Window type 2, it must be invalidated using ibv_post_send -
see here.

struct ibv_device_attr device_attr = {.comp_mask =
IBV_DEVICE_ATTR_RESERVED - 1};
ibv_query_device(context, & device_attr);
if (device_attr.exp_device_cap_flags & IBV_DEVICE_MEM_WINDOW ||
 device_attr.exp_device_cap_flags &
IBV_DEVICE_MW_TYPE_2B) {
/* Memory window is supported */

type_mw = IBV_MW_TYPE_2/ IBV_MW_TYPE_1
mw = ibv_alloc_mw(pd, type_mw);

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_wr_post.3.md

MLX Drivers 101

Deallocating Memory Window

Deallocating memory window is done using the ibv_dealloc_mw verb.

User-Mode Memory Registration (UMR)

User-mode Memory Registration (UMR) is a fast registration mode which uses send
queue. The UMR support enables the usage of RDMA operations and scatters the data at
the remote side through the definition of appropriate memory keys on the remote side.

UMR enables the user to:

Create indirect memory keys from previously registered memory regions, including
creation of KLM's from previous KLM's. There are not data alignment or length
restrictions associated with the memory regions used to define the new KLM's.

Create memory regions, which support the definition of regular non-contiguous
memory regions.

On-Demand-Paging (ODP)

On-Demand-Paging (ODP) is a technique to alleviate much of the shortcomings of
memory registration. Applications no longer need to pin down the underlying physical
pages of the address space, and track the validity of the mappings. Rather, the HCA
requests the latest translations from the OS when pages are not present, and the OS
invalidates translations which are no longer valid due to either non-present pages or
mapping changes. ODP does not support contiguous pages.

ODP can be further divided into 2 subclasses: Explicit and Implicit ODP.

Explicit ODP

In Explicit ODP, applications still register memory buffers for communication, but
this operation is used to define access control for IO rather than pin-down the
pages. ODP Memory Region (MR) does not need to have valid mappings at
registration time.

ibv_dealloc_mw(mw);

MLX Drivers 102

Implicit ODP

In Implicit ODP, applications are provided with a special memory key that represents
their complete address space. This all IO accesses referencing this key (subject to
the access rights associated with the key) does not need to register any virtual
address range.

Query Capabilities

On-Demand Paging is available if both the hardware and the kernel support it. To verify
whether ODP is supported, run ibv_query_device.

For further information, please refer to the ibv_query_device manual page.

Registering ODP Explicit and Implicit MR

ODP Explicit MR is registered after allocating the necessary resources (e.g. PD, buffer),
while ODP implicit MR registration provides an implicit lkey that represents the complete
address space.

For further information, please refer to the ibv_reg_mr manual page.

De-registering ODP MR

ODP MR is deregistered the same way a regular MR is deregistered:

Advice MR Verb

The driver can pre-fetch a given range of pages and map them for access from the HCA.
The advice MR verb is applicable for ODP MRs only.

For further information, please refer to the ibv_advise_mr manual page.

ibv_dereg_mr(mr);

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md

MLX Drivers 103

ODP Statistics

To aid in debugging and performance measurements and tuning, ODP support includes
an extensive set of statistics.

For further information, please refer to rdma-statistics manual page.

Inline-Receive

The HCA may write received data to the Receive CQE. Inline-Receive saves PCIe Read
transaction since the HCA does not need to read the scatter list. Therefore, it improves
performance in case of short receive-messages.

On poll CQ, the driver copies the received data from CQE to the user's buffers.

Inline-Receive is enabled by default and is transparent to the user application. To disable it
globally, set MLX5_SCATTER_TO_CQE environment variable to the value of 0. Otherwise,
disable it on a specific QP using mlx5dv_create_qp() with
MLX5DV_QP_CREATE_DISABLE_SCATTER_TO_CQE.

For further information, please refer to the manual page of mlx5dv_create_qp().

NVIDIA PeerDirect
NVIDIA PeerDirect™ uses an API between IB CORE and peer memory clients, (e.g. GPU
cards) to provide access to an HCA to read/write peer memory for data buffers. As a
result, it allows RDMA-based (over InfiniBand/RoCE) application to use peer device
computing power, and RDMA interconnect at the same time without copying the data
between the P2P devices.

For example, PeerDirect is being used for GPUDirect RDMA.

Detailed description for that API exists under MLNX OFED installation, please see
docs/readme_and_user_manual/PEER_MEMORY_API.txt .

PeerDirect Async

https://man7.org/linux/man-pages/man8/rdma-statistic.8.html

MLX Drivers 104

Mellanox PeerDirect Async sub-system gives PeerDirect hardware devices, such as GPU
cards, dedicated AS accelerators, and so on, the ability to take control over HCA in critical
path offloading CPU. To achieve this, there is a set of verb calls and structures providing
application with abstract description of operation sequences intended to be executed by
peer device.

Relaxed Ordering (RSYNC)

In GPU systems with relaxed ordering, RSYNC callback will be invoked to ensure memory
consistency. The registration and implementation of the callback will be done using an
external module provided by the system vendor. Loading the module will register the
callback in MLNX_OFED to be used later to guarantee memory operations order.

CPU Overhead Distribution
When creating a CQ using the ibv_create_cq() API, a comp_vector argument is
sent. If the value set for this argument is 0, while the CPU core executing this verb is not
equal to zero, the driver assigns a completion EQ with the least CQs reporting to it. This
method is used to distribute CQs amongst available completions EQ. To assign a CQ to a
specific EQ, the EQ needs to be specified in the comp_vector argument.

Out-of-order Data Placement

Note

This feature is only supported on ConnectX-5 adapter cards and
above.

Note

This feature is only supported on:

NVIDIA® ConnectX®-5 adapters and above

MLX Drivers 105

In certain fabric configurations, InfiniBand packets for a given QP may take up different
paths in a network from source to destination. This results into packets being received in
an out-of-order manner. These packets can now be handled instead of being dropped, in
order to avoid retransmission, by:

Achieving better network utilization

Decreasing latency

Data will be placed into host memory in an out-of-order manner when out-of-order
messages are received.

For information on how to set up out-of-order processing by the QP, please refer to
HowTo Configure Adaptive Routing and SHIELD community post.

IB Router
IB router provides the ability to send traffic between two or more IB subnets thereby
potentially expanding the size of the network to over 40k end-ports, enabling separation
and fault resilience between islands and IB subnets, and enabling connection to different
topologies used by different subnets.

The forwarding between the IB subnets is performed using GRH lookup. The IB router's
basic functionality includes:

Removal of current L2 LRH (local routing header)

Routing

table lookup – using GID from GRH

Building new LRH according to the destination according to the routing table

The DLID in the new LRH is built using simplified GID-to-LID mapping (where LID = 16 LSB
bits of GID) thereby not requiring to send for ARP query/lookup.

Local Unicast GID Format

RC and XRC QPs

DC transport

https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New

MLX Drivers 106

For this to work, the SM allocates an alias GID for each host in the fabric where the alias
GID = {subnet prefix[127:64], reserved[63:16], LID[15:0}. Hosts should use alias GIDs in
order to transmit traffic to peers on remote subnets.

Host-to-Host IB Router Unicast Flow

Info

For information on the architecture and functionality of IB Router,
refer to IB Router Architecture and Functionality Community post.

Info

https://enterprise-support.nvidia.com/s/article/ib-router-architecture-and-functionality

MLX Drivers 107

MAD Congestion Control
The SA Management Datagrams (MAD) are General Management Packets (GMP) used to
communicate with the SA entity within the InfiniBand subnet. SA is normally part of the
subnet manager, and it is contained within a single active instance. Therefore, congestion
on the SA communication level may occur.

Congestion control is done by allowing max_outstanding MADs only, where outstanding
MAD means that is has no response yet. It also holds a FIFO queue that holds the SA
MADs that their sending is delayed due to max_outstanding overflow.

The length of the queue is queue_size and meant to limit the FIFO growth beyond the
machine memory capabilities. When the FIFO is full, SA MADs will be dropped, and the
drops counter will increment accordingly.

When time expires (time_sa_mad) for a MAD in the queue, it will be removed from the
queue and the user will be notified of the item expiration.

This features is implemented per CA port.

The SA MAD congestion control values are configurable using the following sysfs entries:

For information on IB Router configuration, refer to HowTo Configure
IB Routers Community post.

/sys/class/infiniband/mlx5_0/mad_sa_cc/
├── 1

│ ├── drops
│ ├── max_outstanding
│ ├── queue_size
│ └── time_sa_mad
└── 2

├── drops
├── max_outstanding
├── queue_size

https://enterprise-support.nvidia.com/s/article/howto-configure-ib-routers
https://enterprise-support.nvidia.com/s/article/howto-configure-ib-routers

MLX Drivers 108

To print the current value:

To

 change the current value:

To

 reset the drops counter:

Parameters' Valid Ranges

Parameter Range Default Values

MIN MAX

max_oustanding 1 2^20 16

queue_size 16 2^20 16

time_sa_mad
1
millisecon
ds

10000 20 milliseconds

└── time_sa_mad

cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding 16

echo 32 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
32

echo 0 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/drops

MLX Drivers 109

Ethernet Network
The chapter contains the following sections:

Ethernet Interface

Ethernet QoS

Ethtool

Checksum Offload

Ignore FCS Errors

RDMA over Converged Ethernet

Flow Control

Explicit Congestion Notification

RSS Support

Time Stamping

Flow Steering

Wake-on-LAN

Q-in-Q Tunneling

VLAN Stripping in Linux Verbs

Offloaded Traffic Sniffer

Dump Configuration

Local Loopback Disable

kTLS Offloads

IPsec Crypto Offload

MLX Drivers 110

IPsec Packet Offload

MACsec Full Offload

Ethernet Interface

Counters

Counters are used to provide information about how well an operating system, an
application, a service, or a driver is performing. The counter data help determine system
bottlenecks and fine-tune the system and application performance. The operating
system, network, and devices provide counter data that an application can consume to
provide users with a graphical view of how well the system is performing.

The counter index is a Queue Pair (QP) attribute given in the QP context. Multiple QPs may
be associated with the same counter set. If multiple QPs share the same counter, the
counter value will represent the cumulative total.

RoCE Counters

RoCE counters are available only through sysfs located under:

/sys/class/infiniband/<device>/ports/*/hw_counters/

/sys/class/infiniband/<device>/hw_counters/

/sys/class/infiniband/<device>/ports/*/counters/

For mlx5 port and RoCE counters, refer to the Understanding mlx5 Linux Counters
community post.

SR-IOV Counters

PFs can also read VFs' port counters through sysfs located under
/sys/class/net/<interface_name>/device/sriov/<index>/stats/ .

https://enterprise-support.nvidia.com/s/article/understanding-mlx5-linux-counters-and-status-parameters

MLX Drivers 111

ethtool Counters

The ethtool counters are counted in different places, according to which they are divided
into groups. Each counters group may also have different counter types.

For the full list of supported ethtool counters, refer to the Understanding mlx5 ethtool
Counters community post.

Persistent Naming

To avoid network interface renaming after boot or driver restart, set the desired constant
interface name in the /etc/udev/rules.d/70-persistent-net.rules file.

Example for Ethernet interfaces:

PCI device 15b3:1019 (mlx5_core)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="00:02:c9:fa:c3:50", ATTR{dev_id}=="0x0",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth1"

https://enterprise-support.nvidia.com/s/article/understanding-mlx5-ethtool-counters
https://enterprise-support.nvidia.com/s/article/understanding-mlx5-ethtool-counters

MLX Drivers 112

Example for IPoIB interfaces:

Interrupt Request (IRQ) Naming

Once IRQs are allocated by the driver, they are named
mlx5_comp<x>@pci:<pci_addr> . The IRQ name is constant and is not affected by the

interface state.

The mlx5_core driver allocates all IRQs during loading time to support the maximum
possible number of channels. Once the driver is up, no further IRQs are freed or allocated.
Changing the number of working channels does not re-allocate or free the IRQs.

Ethernet QoS
Quality of service (QoS) is a mechanism of assigning a priority to a network flow (socket,
rdma_cm connection) and manage its guarantees, limitations and its priority over other

flows. This is accomplished by mapping the user's priority to a hardware TC (traffic class)
through a 2/3 stage process. The TC is assigned with the QoS attributes and the different
flows behave accordingly.

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="00:02:c9:fa:c3:51", ATTR{dev_id}=="0x0",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth2"

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="00:02:c9:e9:56:a1", ATTR{dev_id}=="0x0",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth3"

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="00:02:c9:e9:56:a2", ATTR{dev_id}=="0x0",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth4"

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x0",
ATTR{type}=="32", NAME="ib0"

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x1",
ATTR{type}=="32", NAME="ib1"

MLX Drivers 113

Mapping Traffic to Traffic Classes

Mapping traffic to TCs consists of several actions which are user controllable, some
controlled by the application itself and others by the system/network administrators.

The following is the general mapping traffic to Traffic Classes flow:

1. The application sets the required type of service (ToS).

2. The ToS is translated into a Socket Priority (sk_prio).

3. The sk_prio is mapped to a user priority (UP) by the system administrator (some

applications set sk_prio directly).

4. The UP is mapped to TC by the network/system administrator.

5. TCs hold the actual QoS parameters

QoS can be applied on the following types of traffic. However, the general QoS flow may
vary among them:

Plain Ethernet – Applications use regular inet sockets and the traffic passes via the
kernel Ethernet driver

RoCE – Applications use the RDMA API to transmit using Queue Pairs (QPs)

Raw Ethernet QP – Application use VERBs API to transmit using a Raw Ethernet QP

Plain Ethernet Quality of Service Mapping

Applications use regular inet sockets and the traffic passes via the kernel Ethernet driver.
The following is the Plain Ethernet QoS mapping flow:

1. The application sets the ToS of the socket using setsockopt (IP_TOS, value).

2. ToS is translated into the sk_prio using a fixed translation:

TOS 0 <=> sk_prio 0

TOS 8 <=> sk_prio 2

TOS 24 <=> sk_prio 4

MLX Drivers 114

3. The Socket Priority is mapped to the UP in the following conditions:

1. If the underlying device is a VLAN device, egress_map is used controlled by the
vconfig command. This is per VLAN mapping.

2. If the underlying device is not a VLAN device, the mapping is done in the driver.

4. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad
daemon if DCBX is used.

RoCE Quality of Service Mapping

Applications use RDMA-CM API to create and use QPs. The following is the RoCE QoS
mapping flow:

1. The application sets the ToS of the QP using the rdma_set_option
option(RDMA_OPTION_ID_TOS, value).

2. ToS is translated into the Socket Priority (sk_prio) using a fixed translation:

TOS 16 <=> sk_prio 6

Note

Socket applications can use setsockopt (SK_PRIO, value) to directly
set the sk_prio of the socket. In this case, the ToS to sk_prio
fixed mapping is not needed. This allows the application and the
administrator to utilize more than the 4 values possible via ToS.

Note

In the case of a VLAN interface, the UP obtained according to the
above mapping is also used in the VLAN tag of the traffic.

MLX Drivers 115

3. The Socket Priority is mapped to the User Priority (UP) using the tc command.

In the case of a VLAN device where the parent real device is used for the purpose of
this mapping

If the underlying device is a VLAN device, and the parent real device was not used for
the mapping, the VLAN device's egress_map is used

4. UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad
daemon if DCBX is used.

Map Priorities with set_egress_map

For RoCE old kernels that do not support set_egress_map, use the tc_wrap script to map
between sk_prio and UP. Use tc_wrap with option -u. For example:

Quality of Service Properties

The different QoS properties that can be assigned to a TC are:

Strict Priority

TOS 0 <=> sk_prio 0

TOS 8 <=> sk_prio 2

TOS 24 <=> sk_prio 4

TOS 16 <=> sk_prio 6

Note

With RoCE, there can only be 4 predefined ToS values for the purpose
of QoS mapping.

tc_wrap -i <ethX> -u <skprio2up mapping>

MLX Drivers 116

Enhanced Transmission Selection (ETS)

Rate Limit

Trust State

Receive Buffer

DCBX Control Mode

Strict Priority

When setting a TC's transmission algorithm to be 'strict', then this TC has absolute (strict)
priority over other TC strict priorities coming before it (as determined by the TC number:
TC 7 is the highest priority, TC 0 is lowest). It also has an absolute priority over nonstrict
TCs (ETS).

This property needs to be used with care, as it may easily cause starvation of other TCs.

A higher strict priority TC is always given the first chance to transmit. Only if the highest
strict priority TC has nothing more to transmit, will the next highest TC be considered.

Nonstrict priority TCs will be considered last to transmit.

This property is extremely useful for low latency low bandwidth traffic that needs to get
immediate service when it exists, but is not of high volume to starve other transmitters in
the system.

Enhanced Transmission Selection (ETS)

Enhanced Transmission Selection standard (ETS) exploits the time periods in which the
offered load of a particular Traffic Class (TC) is less than its minimum allocated bandwidth
by allowing the difference to be available to other traffic classes.

After servicing the strict priority TCs, the amount of bandwidth (BW) left on the wire may
be split among other TCs according to a minimal guarantee policy.

If, for instance, TC0 is set to 80% guarantee and TC1 to 20% (the TCs sum must be 100),
then the BW left after servicing all strict priority TCs will be split according to this ratio.

Since this is a minimum guarantee, there is no maximum enforcement. This means, in the
same example, that if TC1 did not use its share of 20%, the reminder will be used by TC0.

MLX Drivers 117

ETS is configured using the mlnx_qos tool (mlnx_qos) which allows you to:

Assign a transmission algorithm to each TC (strict or ETS)

Set minimal BW guarantee to ETS TCs

Usage:

Rate Limit

Rate limit defines a maximum bandwidth allowed for a TC. Please note that 10% deviation
from the requested values is considered acceptable.

Trust State

Trust state enables prioritizing sent/received packets based on packet fields.

The default trust state is PCP. Ethernet packets are prioritized based on the value of the
field (PCP/DSCP).

For further information on how to configure Trust mode, please refer to HowTo Configure
Trust State on NVIDIA Adapters community post.

mlnx_qos -i \[options\]

Note

Setting the Trust State mode shall be done before enabling SR-IOV in
order to propagate the Trust State to the VFs.

https://enterprise-support.nvidia.com/s/article/howto-configure-trust-state-on-mellanox-adapters
https://enterprise-support.nvidia.com/s/article/howto-configure-trust-state-on-mellanox-adapters

MLX Drivers 118

Receive Buffer

By default, the receive buffer configuration is controlled automatically. Users can override
the receive buffer size and receive buffer's xon and xoff thresholds using mlnx_qos tool.

For further information, please refer to HowTo Tune the Receive buffers on NVIDIA
Adapters community post.

DCBX Control Mode

DCBX settings, such as "ETS" and "strict priority" can be controlled by firmware or
software. When DCBX is controlled by firmware, changes of QoS settings cannot be done
by the software. The DCBX control mode is configured using the mlnx_qos -d os/fw
command.

For further information on how to configure the DCBX control mode, please refer to
mlnx_qos community post.

Quality of Service Tools

mlnx_qos

mlnx_qos is a centralized tool used to configure QoS features of the local host. It
communicates directly with the driver thus does not require setting up a DCBX daemon
on the system.

The mlnx_qos tool enables the administrator of the system to:

Inspect the current QoS mappings and configuration

The tool will also display maps configured by TC and vconfig set_egress_map tools,
in order to give a centralized view of all QoS mappings.

Set UP to TC mapping

Assign a transmission algorithm to each TC (strict or ETS)

Set minimal BW guarantee to ETS TCs

https://enterprise-support.nvidia.com/s/article/howto-tune-receive-buffers-on-mellanox-adapter-cards
https://enterprise-support.nvidia.com/s/article/howto-tune-receive-buffers-on-mellanox-adapter-cards
https://enterprise-support.nvidia.com/s/article/mlnx-qos

MLX Drivers 119

Set rate limit to TCs

Set DCBX control mode

Set cable length

Set trust state

Usage:

Options:

--version
Show the program's version
number and exit

-h, --help
Show this help message and
exit

-f LIST, --pfc=LIST

Set priority flow control for
each priority. LIST is
a comma separated value for
each priority starting from
0 to 7. Example: 0,0,0,0,1,1,1,1
enable PFC on TC4-7

-p LIST, --prio_tc=LIST

Maps UPs to TCs. LIST is 8
comma-separated TC
numbers. Example:
0,0,0,0,1,1,1,1 maps UPs 0-3 to
TC0, and UPs 4-7 to TC1

-s LIST, --tsa=LIST Transmission algorithm for
each TC. LIST is comma

Note

For an unlimited ratelimit, set the ratelimit to 0.

mlnx_qos -i <interface> \[options\]

MLX Drivers 120

separated algorithm names for
each TC. Possible algorithms:
strict, ets and vendor. Example:
vendor,strict,ets,ets,ets,ets,ets
,ets sets TC0 to vendor, TC1 to
strict, TC2-7 to ets

-t LIST, --tcbw=LIST

Set the minimally guaranteed
%BW for ETS TCs. LIST is
comma-separated percents
for each TC. Values set to TCs
that are not configured to ETS
algorithm are ignored but
must be present. Example: if
TC0,TC2 are set to ETS, then
10,0,90,0,0,0,0,0will set TC0 to
10% and TC2 to 90%. Percents
must sum to 100

-r LIST, --ratelimit=LIST

Rate limit for TCs (in Gbps).
LIST is a comma-separated
Gbps limit for each TC.
Example: 1,8,8 will limit TC0 to
1Gbps, and TC1,TC2 to 8 Gbps
each

-d DCBX, --dcbx=DCBX

Set dcbx mode to firmware
controlled(fw) or OS
controlled(os). Note, when in
OS mode, mlnx_qos should not
be used in parallel with other
dcbx tools, such as lldptool

--trust=TRUST
set priority trust state to pcp
or dscp

--dscp2prio=DSCP2PRIO

Set/del a (dscp,prio) mapping.
Example 'set,30,2' maps dscp
30 to priority 2. 'del,30,2'
resets the dscp 30 mapping
back to the default setting
priority 0

--cable_len=CABLE_LEN
Set cable_len for buffer's xoff
and xon thresholds

-i INTF, --interface=INTF Interface name

MLX Drivers 121

-a Show all interface's TCs

Get current configuration:

ofed_scripts/utils/mlnx_qos -i ens1f0
DCBX mode: OS controlled
Priority trust state: dscp
dscp2prio mapping:
 prio:0 dscp:07,06,05,04,03,02,01,00,
 prio:1 dscp:15,14,13,12,11,10,09,08,
 prio:2 dscp:23,22,21,20,19,18,17,16,
 prio:3 dscp:31,30,29,28,27,26,25,24,
 prio:4 dscp:39,38,37,36,35,34,33,32,
 prio:5 dscp:47,46,45,44,43,42,41,40,
 prio:6 dscp:55,54,53,52,51,50,49,48,
 prio:7 dscp:63,62,61,60,59,58,57,56,
Cable len: 7

PFC configuration:
 priority 0 1 2 3 4 5 6 7

 enabled 0 0 0 0 0 0 0 0

tc: 0 ratelimit: unlimited, tsa: vendor
 priority: 1

tc: 1 ratelimit: unlimited, tsa: vendor
 priority: 0

tc: 2 ratelimit: unlimited, tsa: vendor
 priority: 2

tc: 3 ratelimit: unlimited, tsa: vendor
 priority: 3

tc: 4 ratelimit: unlimited, tsa: vendor
 priority: 4

tc: 5 ratelimit: unlimited, tsa: vendor
 priority: 5

tc: 6 ratelimit: unlimited, tsa: vendor
 priority: 6

tc: 7 ratelimit: unlimited, tsa: vendor

MLX Drivers 122

Set rate limit (3Gb/s for tc0 4Gb/s for tc1 and 2Gb/s for tc2):

 priority: 7

mlnx_qos -i <interface> -p 0,1,2 -r 3,4,2

tc: 0 ratelimit: 3 Gbps, tsa: strict
 up: 0

 skprio: 0

 skprio: 1

 skprio: 2 (tos: 8)
 skprio: 3

 skprio: 4 (tos: 24)
 skprio: 5

 skprio: 6 (tos: 16)
 skprio: 7

 skprio: 8

 skprio: 9

 skprio: 10

 skprio: 11

 skprio: 12

 skprio: 13

 skprio: 14

 skprio: 15

 up: 3

 up: 4

 up: 5

 up: 6

 up: 7

tc: 1 ratelimit: 4 Gbps, tsa: strict
 up: 1

tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 2

MLX Drivers 123

Configure QoS (map UP 0,7 to tc0,1,2,3 to tc1 and 4,5,6 to tc2. Set tc0,tc1 as ets and tc2
as strict. Divide ets 30% for tc0 and 70% for tc1):

tc and tc_wrap.py

The tc tool is used to create 8 Traffic Classes (TCs).

mlnx_qos -i <interface> -s ets,ets,strict -p 0,1,1,1,2,2,2 -t 30,70

tc: 0 ratelimit: 3 Gbps, tsa: ets, bw: 30%
 up: 0

 skprio: 0

 skprio: 1

 skprio: 2 (tos: 8)
 skprio: 3

 skprio: 4 (tos: 24)
 skprio: 5

 skprio: 6 (tos: 16)
 skprio: 7

 skprio: 8

 skprio: 9

 skprio: 10

 skprio: 11

 skprio: 12

 skprio: 13

 skprio: 14

 skprio: 15

 up: 7

tc: 1 ratelimit: 4 Gbps, tsa: ets, bw: 70%
 up: 1

 up: 2

 up: 3

tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 4

 up: 5

 up: 6

MLX Drivers 124

The tool will either use the sysfs (/sys/class/net//qos/tc_num) or the tc tool to create the
TCs.

Usage

Options

--version show program's version number and exit

-h, --help show this help message and exit

-u
SKPRIO_U
P, --
skprio_up
=SKPRIO_
UP

maps sk_prio to priority for RoCE. LIST is <=16 comma separated priority.
index of element is sk_prio

-i INTF, --
interface=
INTF

Interface name

Example

Run:

Output:

tc_wrap.py -i <interface> \[options\]

tc_wrap.py -i enp139s0

Tarrfic classes are set to 8

UP 0

skprio: 0 (vlan 5)
UP 1

MLX Drivers 125

Additional Tools

tc tool compiled with the sch_mqprio module is required to support kernel v2.6.32 or
higher. This is a part of iproute2 package v2.6.32-19 or higher. Otherwise, an alternative
custom sysfs interface is available.

mlnx_qos tool (package: ofed-scripts) requires python version 2.5 < = X

tc_wrap.py (package: ofed-scripts) requires python version 2.5 < = X

Packet Pacing

ConnectX-4 and above devices allow packet pacing (traffic shaping) per flow. This
capability is achieved by mapping a flow to a dedicated send queue and setting a rate limit
on that Send queue.

Note the following:

Up to 512 send queues are supported

16 different rates are supported

skprio: 1 (vlan 5)
UP 2

skprio: 2 (vlan 5 tos: 8)
UP 3

skprio: 3 (vlan 5)
UP 4

skprio: 4 (vlan 5 tos: 24)
UP 5

skprio: 5 (vlan 5)
UP 6

skprio: 6 (vlan 5 tos: 16)
UP 7

skprio: 7 (vlan 5)

MLX Drivers 126

The rates can vary from 1 Mbps to line rate in 1 Mbps resolution

Multiple queues can be mapped to the same rate (each queue is paced
independently)

It is possible to configure rate limit per CPU and per flow in parallel

System Requirements

Driver v3.3 or higher

Linux kernel v4.1 or higher

ConnectX-4 or ConnectX-4 Lx adapter cards with an official firmware version

Packet Pacing Configuration

1. Firmware Activation:

First, make sure MFT service (mst) is started:

Then run:

Note

This configuration is non-persistent and does not survive driver
restart.

mst start

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt

MLX Drivers 127

2. Driver Activation:

There are two operation modes for Packet Pacing:

1. Rate limit per CPU core:

When XPS is enabled, traffic from a CPU core will be sent using the corresponding
send queue. By limiting the rate on that queue, the transmit rate on that CPU core
will be limited. For example:

In this case, the rate on Core 0 (tx-0) is limited to 300Mbit/sec.

2. Rate limit per flow:

1. The driver allows opening up to 512 additional send queues using the following
command:

#echo “0x00000004 0x0000010c 0x00000000 0x00000001" >>
/tmp/mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev> -f /tmp/mlxconfig_raw.txt
set_raw > /dev/null

#reboot /mlxfwreset

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt
#echo “0x00000004 0x0000010c 0x00000000 0x00000000" >>
/tmp/mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev >-f /tmp/mlxconfig_raw.txt
set_raw > /dev/null

#reboot /mlxfwreset

echo 300 > /sys/class/net/ens2f1/queues/tx-0/tx_maxrate

MLX Drivers 128

In this case, 1200 additional queues are opened

2. Create flow mapping.

Users can map a certain destination IP and/or destination layer 4 Port to a
specific send queue. The match precedence is as follows:

IP + L4 Port

IP only

L4 Port only

No match (the flow would be mapped to default queues)

To create flow mapping:

Configure the destination IP. Write the IP address in hexadecimal representation to
the relevant sysfs entry. For example, to map IP address 192.168.1.1 (0xc0a80101)
to send queue 310, run the following command:

To map Destination L4 3333 port (either TCP or UDP) to the same queue, run:

From this point on, all traffic destined to the given IP address and L4 port will be
sent using send queue 310. All other traffic will be sent using the original send
queue.

ethtool -L ens2f1 other 1200

echo 0xc0a80101 > /sys/class/net/ens2f1/queues/tx-
310/flow_map/dst_ip

echo 3333 > /sys/class/net/ens2f1/queues/tx-
310/flow_map/dst_port

MLX Drivers 129

iii. Limit the rate of this flow using the following command:

Ethtool
Ethtool is a standard Linux utility for controlling network drivers and hardware, particularly
for wired Ethernet devices. It can be used to:

Get identification and diagnostic information

Get extended device statistics

Control speed, duplex, auto-negotiation and flow control for Ethernet devices

Control checksum offload and other hardware offload features

Control DMA ring sizes and interrupt moderation

Flash device firmware using a .mfa2 image

Ethtool Supported Options

Options Description

ethtool --
set-priv-
flags
eth<x>

Enables/disables driver feature matching the given private flag.

echo 100 > /sys/class/net/ens2f1/queues/tx-310/tx_maxrate

Note

Each queue supports only a single IP+Port combination.

MLX Drivers 130

Options Description

<priv flag>
<on/off>

ethtool --
show-priv-
flags
eth<x>

Shows driver private flags and their states (ON/OFF).

ethtool -a
eth<x>

Queries the pause frame settings.

ethtool -A
eth<x> [rx
on|off] [tx
on|off]

Sets the pause frame settings.

ethtool -c
eth<x>

Queries interrupt coalescing settings.

ethtool -C
eth<x>
[pkt-rate-
low N]
[pkt-rate-
high N]
[rx-usecs-
low N] [rx-
usecs-
high N]

Sets the values for packet rate limits and for moderation time high and low
values.

ethtool -C
eth<x>
[rx-usecs
N] [rx-
frames N]

Sets the interrupt coalescing setting.
rx-frames will be enforced immediately, rx-usecs will be enforced only when
adaptive moderation is disabled.
Note: usec settings correspond to the time to wait after the *last* packet is
sent/received before triggering an interrupt.

ethtool -C
eth<x>
adaptive-
rx on|off

Enables/disables adaptive interrupt moderation.
By default, the driver uses adaptive interrupt moderation for the receive
path, which adjusts the moderation time to the traffic pattern.

ethtool -C
eth<x>
adaptive-
tx on|off

Note: Supported by mlx5e for ConnectX-4 and above adapter cards.
Enables/disables adaptive interrupt moderation.
By default, the driver uses adaptive interrupt moderation for the transmit
path, which adjusts the moderation parameters (time/frames) to the traffic
pattern.

MLX Drivers 131

Options Description

ethtool -g
eth<x>

Queries the ring size values.

ethtool -G
eth<x> [rx
<N>] [tx
<N>]

Modifies the ring size.

ethtool -i
eth<x>

Checks driver and device information.
For example:

 driver: mlx5_core

 version: 5.1-0.4.0

 firmware-version: 4.6.4046 (MT_QEMU000000)

 expansion-rom-version:

 bus-info: 0000:07:00.0

 supports-statistics: yes

 supports-test: yes

 supports-eeprom-access: no

 supports-register-dump: no

 supports-priv-flags: yes

ethtool -k
eth<x>

Queries the stateless offload status.

ethtool -K
eth<x> [rx
on|off] [tx
on|off] [sg
on|off]
[tso
on|off] [lro
on|off]
[gro
on|off]
[gso
on|off]
[rxvlan
on|off]
[txvlan

Sets the stateless offload status.
TCP Segmentation Offload (TSO), Generic Segmentation Offload (GSO):
increase outbound throughput by reducing CPU overhead. It works by
queuing up large buffers and letting the network interface card split them
into separate packets.
Large Receive Offload (LRO): increases inbound throughput of high-
bandwidth network connections by reducing CPU overhead. It works by
aggregating multiple incoming packets from a single stream into a larger
buffer before they are passed higher up the networking stack, thus
reducing the number of packets that have to be processed. LRO is available
in kernel versions < 3.1 for untagged traffic.
Hardware VLAN insertion Offload (txvlan): When enabled, the sent VLAN tag
will be inserted into the packet by the hardware.
Note: LRO will be done whenever possible. Otherwise GRO will be done.
Generic Receive Offload (GRO) is available throughout all kernels.

MLX Drivers 132

Options Description

on|off]
[ntuple
on/off]
[rxhash
on/off]
[rx-all
on/off]
[rx-fcs
on/off]

Hardware VLAN Striping Offload (rxvlan): When enabled received VLAN
traffic will be stripped from the VLAN tag by the hardware.
RX FCS (rx-fcs): Keeps FCS field in the received packets.Sets the stateless
offload status.
RX FCS validation (rx-all): Ignores FCS validation on the received packets.

ethtool -l
eth<x>

Shows the number of channels.

ethtool -L
eth<x> [rx
<N>] [tx
<N>]

Sets the number of channels.
Notes:

This also resets the RSS table to its default distribution, which is
uniform across the cores on the NUMA (non-uniform memory access)
node that is closer to the NIC.
For ConnectX®-4 cards, use ethtool -L eth<x> combined <N> to set
both RX and TX channels.

ethtool -
m|--
dump-
module-
eeprom
eth<x> [
raw on|off
] [hex
on|off] [
offset N]
[length N
]

Queries/decodes the cable module eeprom information.

ethtool -
p|--
identify
DEVNAME

Enables visual identification of the port by LED blinking [TIME-IN-
SECONDS].

ethtool -
p|--
identify
eth<x>

Allows users to identify interface's physical port by turning the ports LED on
for a number of seconds.
Note: The limit for the LED duration is 65535 seconds.

MLX Drivers 133

Options Description

<LED
duration>

ethtool -S
eth<x>

Obtains additional device statistics.

ethtool -s
eth<x>
advertise
<N>
autoneg
on

Changes the advertised link modes to requested link modes <N>
To check the link modes’ hex values, run <man ethtool> and to check the

supported link modes, run ethtool eth<x>
For advertising new link modes, make sure to configure the entire bitmap as
follows:

200GAUI
-4 /
200GBA
SE-
CR4/KR
4

0x7c000000000000000

100GAUI
-2 /
100GBA
SE-CR2 /
KR2

0x3E00000000000000

CAUI-4 /
100GBA
SE-CR4 /
KR4

0xF000000000

50GAUI-
1 / LAUI-
1/
50GBAS
E-CR /
KR

0x1F0000000000000

50GAUI-
2 / LAUI-
2/
50GBAS
E-
CR2/KR
2

0x10C00000000

MLX Drivers 134

Options Description

XLAUI-
4/XLPPI-
4 // 40G

0x7800000

25GAUI-
1/
25GBAS
E-CR /
KR

0x380000000

XFI /
XAUI-1 //
10G

0x7C0000181000

5GBASE
-R

0x1000000000000

2.5GBAS
E-X /
2.5GMII

0x820000000000

1000BA
SE-X /
SGMII

0x20000020020

Notes:

Both previous and new link modes configurations are supported,
however, they must be run separately.
Any link mode configuration on Kernels below v5.1 and ConnectX-6
HCAs will result in the advertisement of the full capabilities.
<autoneg on> only sends a hint to the driver that the user wants to

modify advertised link modes and not speed.

ethtool -s
eth<x>
msglvl [N]

Changes the current driver message level.

ethtool -s
eth<x>
speed
<SPEED>
autoneg
off

Changes the link speed to requested <SPEED>. To check the supported
speeds, run ethtool eth<x> .
Note: does not set autoneg OFF, it only hints the driver to set a specific
speed.

MLX Drivers 135

Options Description

ethtool -t
eth<x>

Performs a self-diagnostics test.

ethtool -T
eth<x>

Shows time stamping capabilities

ethtool -x
eth<x>

Retrieves the receive flow hash indirection table.

ethtool -X
eth<x>
equal a b
c...

Sets the receive flow hash indirection table.
Note: The RSS table configuration is reset whenever the number of
channels is modified (using ethtool -L command).

ethtool --
show-fec
eth<x>

Queries current Forward Error Correction (FEC) encoding in case FEC is
supported.
Note: An output of "baser" implies Firecode encoding.

ethtool --
set-fec
eth<x>
encoding
auto|off|rs
|baser

Configures Forward Error Correction (FEC).
Note: ‘baser’ encoding applies to the Firecode encoding, and ‘auto’ regards
the HCA’s default.

ethtool -f|-
-flash
<devname
> FILE [N]

Flash firmware image on the device using the specified .mfa2 file (FILE). By
default, the command flashes all the regions on the device unless a region
number (N) is specified.

Checksum Offload
The following "receive IP/L4 checksum offload" modes are supported.

CHECKSUM_UNNECESSARY – When this mode is used, the driver indicates to the
Linux networking stack that the hardware successfully validated the IP and L4
checksum so the Linux networking stack does not need to deal with IP/L4 checksum
validation.

CHECKSUM_COMPLETE – When this mode is used, the driver still reports to the OS
the calculated by hardware checksum value. This allows accelerating checksum
validation in Linux networking stack, since it does not have to calculate the whole
checksum including payload by itself.

MLX Drivers 136

CHECKSUM_NONE – When this mode is used, the driver indicates to the Linux
networking stack that it must calculate and validate the IP/L4 checksum.

Ignore FCS Errors
Packets undergo checksum validation for the FCS field upon receipt. If this validation fails,
the packets are discarded. When the Frame Check Sequence (FCS) option is enabled
(disabled by default), the device bypasses validation of the FCS field, regardless of its
validity. Enabling FCS is not recommended. For details on enabling or disabling FCS, refer
to the ethtool option rx-fcs on/off.

RDMA over Converged Ethernet
Remote direct memory access (RDMA) enables server-to-server data movement directly
between application memory without CPU involvement. RDMA over converged Ethernet
(RoCE) extends this capability to lossless Ethernet networks, delivering efficient data
transfer with very low latency.

With advances in reliable Ethernet technology, the NVIDIA® ConnectX® Ethernet adapter
card family leverages RDMA transport to support mainstream data center applications at
10GigE and 40GigE link speeds. By offloading RDMA transport services to hardware, these
adapters deliver ultra-low latency for performance-critical applications, including financial
systems, databases, storage, and content delivery networks.

When working with RDMA applications over Ethernet link layer the following points should
be noted:

The presence of a Subnet Manager (SM) is not required in the fabric. Thus,
operations that require communication with the SM are managed in a different way
in RoCE. This does not affect the API but only the actions such as joining the
multicast group, that need to be taken when using the API

Since LID is a layer 2 attribute of the InfiniBand protocol stack, it is not set for a port
and is displayed as zero when querying the port

With RoCE, the alternate path is not set for RC QP. Therefore, APM (another type of
High Availability and part of the InfiniBand protocol) is not supported

Since the SM is not present, querying a path is impossible. Therefore, the path
record structure must be filled with relevant values before establishing a connection.

MLX Drivers 137

Hence, it is recommended working with RDMA-CM to establish a connection as it
takes care of filling the path record structure

VLAN tagged Ethernet frames carry a 3-bit priority field. The value of this field is
derived from the IB SL field by taking the 3 least significant bits of the SL field

RoCE traffic is not shown in the associated Ethernet device's counters since it is
offloaded by the hardware and does not go through Ethernet network driver. RoCE
traffic is counted in the same place where InfiniBand traffic is counted;
/sys/class/infiniband/<device>/ports/<port number>/counters/

RoCE Modes

RoCE encapsulates IB transport in one of the following Ethernet packets:

RoCEv1 - dedicated ether type (0x8915)

RoCEv2 - UDP and dedicated UDP port (4791)

RoCEv1 and RoCEv2 Protocol Stack

RoCEv1

RoCE v1 protocol is defined as RDMA over Ethernet header (as shown in the figure above).
It uses ethertype 0x8915 and can be used with or without the VLAN tag. The regular

MLX Drivers 138

Ethernet MTU applies on the RoCE frame.

RoCEv2

A straightforward extension of the RoCE protocol enables traffic to operate in IP layer 3
environments. This capability is obtained via a simple modification of the RoCE packet
format. Instead of the GRH used in RoCE, IP routable RoCE packets carry an IP header
which allows traversal of IP L3 Routers and a UDP header (RoCEv2 only) that serves as a
stateless encapsulation layer for the RDMA Transport Protocol Packets over IP.

The proposed RoCEv2 packets use a well-known UDP destination port value that
unequivocally distinguishes the datagram. Similar to other protocols that use UDP
encapsulation, the UDP source port field is used to carry an opaque flow-identifier that
allows network devices to implement packet forwarding optimizations (e.g. ECMP) while
staying agnostic to the specifics of the protocol header format.

Furthermore, since this change exclusively affects the packet format on the wire, and due
to the fact that with RDMA semantics packets are generated and consumed below the
AP, applications can seamlessly operate over any form of RDMA service, in a completely
transparent way.

GID Table Population

GID table entries are created whenever an IP address is configured on one of the Ethernet
devices of the NIC's ports. Each entry in the GID table for RoCE ports has the following
fields:

Note

Both RoCEv1 and RoCEv2 are supported by default; the driver
associates all GID indexes to RoCEv1 and RoCEv2, thus, a single entry
for each RoCE version.

For further information, please refer to Recommended Network
Configuration Examples For RoCE Deployment Community post.

https://enterprise-support.nvidia.com/s/article/recommended-network-configuration-examples-for-roce-deployment
https://enterprise-support.nvidia.com/s/article/recommended-network-configuration-examples-for-roce-deployment

MLX Drivers 139

GID value

GID type

Network device

The GID table is occupied with two GIDs, both with the same GID value but with different
types. The network device in an entry is the Ethernet device with the IP address that GID
is associated with. The GID format can be of 2 types; IPv4 and IPv6. IPv4 GID is an IPv4-
mapped IPv6 address, while IPv6 GID is the IPv6 address itself. Layer 3 header for packets
associated with IPv4 GIDs will be IPv4 (for RoCEv2) and IPv6/GRH for packets associated
with IPv6 GIDs and IPv4 GIDs for RoCEv1.

GID table is exposed to userspace via sysfs

GID values can be read from:

GID type can be read from:

GID net_device can be read from:

Setting the RoCE Mode for a Queue Pair (QP)

Setting RoCE mode for devices that support two RoCE modes is different for RC/UC QPs
(connected QP types) and UD QP.

To modify an RC/UC QP (connected QP) from INIT to RTR, an Address Vector (AV) must be
given. The AV, among other attributes, should specify the index of the port's GID table for

/sys/class/infiniband/{device}/ports/{port}/gids/{index}

/sys/class/infiniband/{device}/ports/{port}/gid_attrs/types/{inde

/sys/class/infiniband/{device}/ports/{port}/gid_attrs/ndevs/{inde

MLX Drivers 140

the source GID of the QP. The GID type in that index will be used to set the RoCE type of
the QP.

Setting RoCE Mode of RDMA_CM Applications

RDMA_CM interface requires only the active side of the peer to pass the IP address of the
passive side. The RDMA_CM decides upon the source GID to be used and obtains it from
the GID table. Since more than one instance of the GID value is possible, the lookup
should be also according to the GID type. The type to use for the lookup is defined as a
global value of the RDMA_CM module. Changing the value of the GID type for the GID
table lookups is done using the cma_roce_mode script.

To print the current RoCE mode for a device port:

To set the RoCE mode for a device port:

GID Table Example

The following is an example of the GID table.

DEV PORT INDEX GID IPv4

T
y
p
e

N
e
t
d
e
v

mlx5_0 1 0 fe80:0000:
0000:0000:

v
1

p
4

cma_roce_mode -d <dev> -p <port>

cma_roce_mode -d <dev> -p <port> -m <1|2>

MLX Drivers 141

DEV PORT INDEX GID IPv4

T
y
p
e

N
e
t
d
e
v

ba59:9fff:fe
1a:e3ea

p
1

mlx5_0 1 1

fe80:0000:
0000:0000:
ba59:9fff:fe
1a:e3ea

v
2

p
4
p
1

mlx5_0 1 2

0000:0000:
0000:0000:
0000:ffff:0a
0a:0a01

10.10.10.
1

v
1

p
4
p
1

mlx5_0 1 3

0000:0000:
0000:0000:
0000:ffff:0a
0a:0a01

10.10.10.
1

v
2

p
4
p
1

mlx5_1 1 0

fe80:0000:
0000:0000:
ba59:9fff:fe
1a:e3eb

v
1

p
4
p
2

mlx5_1 1 1

fe80:0000:
0000:0000:
ba59:9fff:fe
1a:e3eb

v
2

p
4
p
2

where:

Entries on port 1 index 0/1 are the default GIDs, one for each supported RoCE type

Entries on port 1 index 2/3 belong to IP address 192.168.1.70 on eth1

Entries on port 1 index 4/5 belong to IP address 193.168.1.70 on eth1.100

Packets from a QP that is associated with these GID indexes will have a VLAN header
(VID=100)

MLX Drivers 142

Entries on port 1 index 6/7 are IPv6 GID. Packets from a QP that is associated with
these GID indexes will have an IPv6 header

RoCE Lossless Ethernet Configuration

In order to function reliably, RoCE requires a form of flow control. While it is possible to
use global flow control, this is normally undesirable, for performance reasons.

The normal and optimal way to use RoCE is to use Priority Flow Control (PFC). To use PFC,
it must be enabled on all endpoints and switches in the flow path.

Configuring SwitchX® Based Switch System

To enable RoCE, the SwitchX should be configured as follows:

Ports facing the host should be configured as access ports, and either use global
pause or Port Control Protocol (PCP) for priority flow control

Ports facing the network should be configured as trunk ports, and use Port Control
Protocol (PCP) for priority flow control

For further information on how to configure SwitchX, please refer to SwitchX User
Manual

Installing and Loading the Driver

To install and load the driver:

1. Install MLNX_OFED (See Installation section for further details).

RoCE is installed as part of mlx5 and other modules upon driver's installation.

Note

https://docs.nvidia.compages/createpage.action?spaceKey=copyofedethernettodoca&title=.Installation+v4.5-1.0.1.0

MLX Drivers 143

2. Query for the device's information. Example:

3. Display the existing MLNX_OFED version.

Output Notes:

The list of the modules that will be loaded automatically upon
boot can be found in the configuration file
/etc/infiniband/openib.conf.

ibv_devinfo MLNX_OFED_LINUX-5.0-2.1.8.0:

ofed_info -s
hca_id: mlx5_0
 transport: InfiniBand (0)
 fw_ver: 16.28.0578

 node_guid: ec0d:9a03:0044:3764

 sys_image_guid: ec0d:9a03:0044:3764

 vendor_id: 0x02c9

 vendor_part_id: 4121

 hw_ver: 0x0

 board_id: MT_0000000009
 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE
(4)
 max_mtu: 4096 (5)
 active_mtu: 1024 (3)
 sm_lid: 0

 port_lid: 0

 port_lmc: 0x00

 link_layer: Ethernet

MLX Drivers 144

The port's state is: Ethernet is in PORT_ACTIVE state

The port state can also be
obtained by running the
following command:
cat
/sys/class/infiniband/
mlx5_0/ports/1/state:
ACTIVE

link_layer parameter shows that port 1 is Ethernet

The link_layer can also be
obtained by running the
following command:
cat
/sys/class/infiniband/
mlx5_0/ports/1/link_la
yer Ethernet

The fw_ver parameter shows that the firmware version
is 16.28.0578.

The firmware version can also
be obtained by running the
following command:
cat
/sys/class/infiniband/
mlx5_0/fw_ver
16.28.0578

Associating InfiniBand Ports to Ethernet Ports

The mlx5_ib driver holds a reference to the net device for getting notifications about the
state of the port, as well as using the mlx5_core driver to resolve IP addresses to MAC
that are required for address vector creation. However, RoCE traffic does not go through
the mlx5_core driver; it is completely offloaded by the hardware.

Configuring an IP Address to the netdev Interface

To configure an IP address to the netdev interface:

ibdev2netdev
mlx5_0 port 1 <===> eth2

MLX Drivers 145

1. Configure an IP address to the netdev interface on both sides of the link.

2. Make sure that ping is working.

Adding VLANs

To add VLANs:

1. Make sure that the 8021.q module is loaded.

ifconfig eth2 20.4.3.220

ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:02:C9:08:E8:11

inet addr:20.4.3.220 Bcast:20.255.255.255 Mask:255.0.0.0

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ping 20.4.3.219

PING 20.4.3.219 (20.4.3.219) 56(84) bytes of data.
64 bytes from 20.4.3.219: icmp_seq=1 ttl=64 time=0.873 ms
64 bytes from 20.4.3.219: icmp_seq=2 ttl=64 time=0.198 ms
64 bytes from 20.4.3.219: icmp_seq=3 ttl=64 time=0.167 ms
20.4.3.219 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time
2000ms rtt min/avg/max/mdev = 0.167/0.412/0.873/0.326 ms

modprobe 8021q

MLX Drivers 146

2. Add VLAN.

3. Configure an IP address.

Defining Ethernet Priority (PCP in 802.1q Headers)

1. Define Ethernet priority on the server.

2. Define Ethernet priority on the client.

vconfig add eth2 7

Added VLAN with VID == 7 to IF -:eth2:-
#

ifconfig eth2.7 7.4.3.220

ibv_rc_pingpong -g 1 -i 2 -l 4

local address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID
fe80::202:c900:708:e799
remote address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID
fe80::202:c900:708:e811
8192000 bytes in 0.01 seconds = 4840.89 Mbit/sec
1000 iters in 0.01 seconds = 13.54 usec/iter

ibv_rc_pingpong -g 1 -i 2 -l 4 sw419
local address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID
fe80::202:c900:708:e811
remote address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID
fe80::202:c900:708:e799

MLX Drivers 147

Using rdma_cm Tests

1. Use rdma_cm test on the server.

2. Use rdma_cm test on the client.

8192000 bytes in 0.01 seconds = 4855.96 Mbit/sec
1000 iters in 0.01 seconds = 13.50 usec/iter

ucmatose
cmatose: starting server
initiating data transfers
completing sends
receiving data transfers
data transfers complete
cmatose: disconnecting
disconnected
test complete
return status 0

#

ucmatose -s 20.4.3.219

cmatose: starting client
cmatose: connecting
receiving data transfers
sending replies
data transfers complete
test complete
return status 0

#

MLX Drivers 148

This server-client run is without PCP or VLAN because the IP address used does not
belong to a VLAN interface. If you specify a VLAN IP address, then the traffic should go
over VLAN.

Type Of Service (ToS)

The TOS field for rdma_cm sockets can be set using the rdma_set_option() API, just as it
is set for regular sockets. If a TOS is not set, the default value (0) is used. Within the
rdma_cm kernel driver, the TOS field is converted into an SL field. The conversion formula
is as follows:

SL = TOS >> 5 (e.g., take the 3 most significant bits of the TOS field)

In the hardware driver, the SL field is converted into PCP by the following formula:

PCP = SL & 7 (take the 3 least significant bits of the TOS field)

DSCP

A new entry has been added to the RDMA-CM configfs that allows users to select default
TOS for RDMA-CM QPs. This is useful for users that want to control the TOS field without
changing their code. Other applications that set the TOS explicitly using the
rdma_set_option API will continue to work as expected to override the configfs value.

For further information about DSCP marking, refer to HowTo Set Egress ToS/DSCP on
RDMA CM QPs Community post.

RoCE LAG

Note

SL affects the PCP only when the traffic goes over tagged VLAN
frames.

https://enterprise-support.nvidia.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://enterprise-support.nvidia.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps

MLX Drivers 149

RoCE LAG is a feature meant for mimicking Ethernet bonding for IB devices and is
available for dual port cards only.

This feature is supported on kernel versions 4.9 and above.

RoCE LAG mode is entered when both Ethernet interfaces are configured as a bond in one
of the following modes:

active-backup (mode 1)

balance-xor (mode 2)

802.3ad (LACP) (mode 4)

Any change of bonding configuration that negates one of the above rules (i.e, bonding
mode is not 1, 2 or 4, or both Ethernet interfaces that belong to the same card are not the
only slaves

of the bond interface), will result in exiting RoCE LAG mode and the return to normal IB
device per port configuration.

Once RoCE LAG is enabled, instead of having two IB devices; mlx5_0 and mlx5_1, there will
be one device named mlx5_bond_0.

For information on how to configure RoCE LAG, refer to HowTo Configure RoCE over LAG
(ConnectX-4/ConnectX-5/ConnectX-6) Community post.

Disabling RoCE

By default, RoCE is enabled on all mlx5 devices. When RoCE is enabled, all traffic to UDP
port 4791 is treated as RoCE traffic by the device.

In case you are only interested in Ethernet (no RDMA) and wish to enable forwarding of
traffic to this port, you can disable RoCE through sysfs:

echo <0|1> > /sys/devices/{pci-bus-address}/roce_enable

Note

https://enterprise-support.nvidia.com/s/article/How-to-Configure-RoCE-over-LAG-ConnectX-4-ConnectX-5-ConnectX-6
https://enterprise-support.nvidia.com/s/article/How-to-Configure-RoCE-over-LAG-ConnectX-4-ConnectX-5-ConnectX-6

MLX Drivers 150

The current RoCE state can be queried by sysfs:

Enabling/Disabling RoCE on VMs via VFs

By default, when configuring VFs on the hypervisor, all VFs will be enabled with RoCE. This
means they require more OS memory (from the VM). In case you are only interested in
Ethernet (no RDMA) on the VM, and you wish to save the VM memory, you can disable
RoCE on the VF from the hypervisor. In addition, by disabling RoCE, a VM can have the
capability of utilizing the RoCE UDP port (4791) for standard UDP traffic.

For details on how to enable/disable RoCE on a VF, refer to HowTo Enable/Disable RoCE on
VMs via VFs Community post.

Force DSCP

This feature enables setting a global traffic_class value for all RC QPs, or setting a specific
traffic class based on several matching criteria.

Usage

To set a single global traffic class to be applied to all QPs, write the desired global
traffic_class value to /sys/class/infiniband/<dev>/tc/<port>/traffic_class.

Note the following:

Negative values indicate that the feature is disabled. traffic_class value can be
set using ibv_modify_qp()

Valid values range between 0 - 255

Once RoCE is disabled, only Ethernet traffic will be supported.
Therefore, there will be no GID tables and only Raw Ethernet QPs will
be supported.

cat /sys/devices/{pci-bus-address}/roce_enable

https://enterprise-support.nvidia.com/s/article/HowTo-Enable-Disable-RoCE-on-VMs-via-VFs-ConnectX-4-onwards
https://enterprise-support.nvidia.com/s/article/HowTo-Enable-Disable-RoCE-on-VMs-via-VFs-ConnectX-4-onwards

MLX Drivers 151

To set multiple traffic class values based on source and/or destination IPs, write the
desired rule to /sys/class/infiniband/<dev>/tc/<port>/traffic_class. For example:

Note: Adding "tclass" prefix to tclass value is optional.

In the example above, traffic class 16 will be set to any QP with source IP 1.1.1.2 and
destination IP 1.1.1.0/24.

Note that when setting a specific traffic class, the following rule precedence will apply:

If a global traffic class value is set, it will be applied to all QPs

If no global traffic class value is set, and there is a rule with matching source and
destination IPs applicable to at least one QP, it will be applied

Rules only with matching source and/or destination IPs have no defined precedence
over other rules with matching source and/or destination IPs

Notes:

A mask can be provided when using destination IPv4 addresses

The rule precedence is not affected by the order in which rules are inserted

Overlapping rules are entirely up to the administrator.

"tclass=-1" will remove the rule from the database

Note

The ToS field is 8 bits, while the DSCP field is 6 bits. To set a DSCP
value of X, you need to multiply this value by 4 (SHIFT 2). For example,
to set DSCP value of 24, set the ToS bit to 96 (24x4=96).

echo "tclass=16,src_ip=1.1.1.2,dst_ip=1.1.1.0/24" >
/sys/class/infiniband/mlx5_0/tc/1/traffic_class

MLX Drivers 152

Force Time to Live (TTL)

This feature enables setting a global TTL value for all RC QPs.

Write the desired TTL value to /sys/class/infiniband/<dev>/tc/<port>/ttl. Valid values range
between 0 - 255

Flow Control

Priority Flow Control (PFC)

Priority Flow Control (PFC) IEEE 802.1Qbb applies pause functionality to specific classes
of traffic on the Ethernet link. For example, PFC can provide lossless service for the RoCE
traffic and best-effort service for the standard Ethernet traffic. PFC can provide different
levels of service to specific classes of Ethernet traffic (using IEEE 802.1p traffic classes).

Configuring PFC on ConnectX-4 and above

1. Enable PFC on the desired priority:

Example (Priority=4):

2. Create a VLAN interface:

Example (VLAN_ID=5):

mlnx_qos -i <ethX> --pfc <0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,
<0/1>,<0/1>

mlnx_qos -i eth1 --pfc 0,0,0,0,1,0,0,0

vconfig add <ethX> <VLAN_ID>

MLX Drivers 153

3. Set egress mapping:

1. For Ethernet traffic:

Example (skprio=3, up=5):

4. Create 8 Traffic Classes (TCs):

5. Enable PFC on the switch.

For information on how to enable PFC on your respective switch, please refer to
Switch FC/PFC Configuration sections in the RDMA/RoCE Solutions Community
page .

PFC Configuration Using LLDP DCBX

PFC Configuration on Hosts

PFC Auto-Configuration Using LLDP Tool in the OS

1. Start lldpad daemon on host.

vconfig add eth1 5

vconfig set_egress_map <vlan_einterface> <skprio> <up>

vconfig set_egress_map eth1.5 3 5

tc_wrap.py -i <interface>

https://enterprise-support.nvidia.com/s/article/rdma-roce-solutions

MLX Drivers 154

OR

2. Send lldpad packets to the switch.

3. Set the PFC parameters.

For the CEE protocol, use dcbtool:

Example:

where:

lldpad -d

service lldpad start

lldptool set-lldp -i <ethX> adminStatus=rxtx
lldptool -T -i <ethX> -V sysName enableTx=yess
lldptool -T -i <ethX> -V portDesc enableTx=yess
lldptool -T -i <ethX> -V sysDesc enableTx=yess
lldptool -T -i <ethX> -V sysCap enableTx=yess
lldptool -T -i <ethX> -V mngAddr enableTx=yess
lldptool -T -i <ethX> -V PFC enableTx=yes;
lldptool -T -I <ethX> -V CEE-DCBX enableTx=yess

dcbtool sc <ethX> pfc pfcup:<xxxxxxxx>

dcbtool sc eth6 pfc pfcup:01110001

MLX Drivers 155

[pfcup:xxxxxxxx]

Enables/disables priority flow
control. From left to right
(priorities 0-7) - x can be
equal to either 0 or 1. 1
indicates that the priority is
configured to transmit
priority pause.

For IEEE protocol, use lldptool:

Example:

where:

enabled
Displays or sets the priorities with PFC enabled. The set attribute takes
a comma-separated list of priorities to enable, or the string none to
disable all priorities.

PFC Auto-Configuration Using LLDP in the Firmware (for mlx5 driver)

There are two ways to configure PFC and ETS on the server:

1. Local Configuration - Configuring each server manually.

2. Remote Configuration - Configuring PFC and ETS on the switch, after which the
switch will pass the configuration to the server using LLDP DCBX TLVs.

There are two ways to implement the remote configuration using mlx5 driver:

1. Configuring the adapter firmware to enable DCBX.

2. Configuring the host to enable DCBX.

lldptool -T -i <ethX> -V PFC enabled=x,x,x,x,x,x,x,x

lldptool -T -i eth2 -V PFC enabled=1,2,4

MLX Drivers 156

For further information on how to auto-configure PFC using LLDP in the firmware, refer to
the HowTo Auto-Config PFC and ETS on ConnectX-4 via LLDP DCBX Community post.

PFC Configuration on Switches

1. In order to enable DCBX, LLDP should first be enabled:

2. Add DCBX to the list of supported TLVs per required interface.

For IEEE DCBX:

For CEE DCBX:

3. [Optional] Application Priority can be configured on the switch, with the required
ethertype and priority. For example, IP packet, priority 1:

4. Make sure PFC is enabled on the host (for enabling PFC on the host, refer to PFC
Configuration on Hosts section above). Once it is enabled, it will be passed in the

switch (config) # lldp
show lldp interfaces ethernet remote

switch (config) # interface 1/1

switch (config interface ethernet 1/1) # lldp tlv-select dcbx

switch (config) # interface 1/1

switch (config interface ethernet 1/1) # lldp tlv-select dcbx-cee

switch (config) # dcb application-priority 0x8100 1

https://enterprise-support.nvidia.com/s/article/howto-auto-config-pfc-and-ets-on-connectx-4-via-lldp-dcbx

MLX Drivers 157

LLDP TLVs.

5. Enable PFC with the desired priority on the Ethernet port.

Example - Enabling PFC with priority 3 on port 1/1:

Priority Counters

Several ingress and egress counters per priority are supported. Run ethtool -S to get the
full list of port counters.

ConnectX-4 Counters

Rx and Tx Counters:

Packets

Bytes

Octets

Frames

Pause

dcb priority-flow-control enable force
dcb priority-flow-control priority <priority> enable
interface ethernet <port> dcb priority-flow-control mode on
force

dcb priority-flow-control enable force
dcb priority-flow-control priority 3 enable
interface ethernet 1/1 dcb priority-flow-control mode on force

MLX Drivers 158

Pause frames

Pause Duration

Pause Transition

Example

PFC Storm Prevention

PFC storm prevention enables toggling between default and auto modes.

The stall prevention timeout is configured to 8 seconds by default. Auto mode sets the
stall prevention timeout to be 100 msec.

ethtool -S eth35 | grep prio4
 prio4_rx_octets: 62147780800

 prio4_rx_frames: 14885696

 prio4_tx_octets: 0

 prio4_tx_frames: 0

 prio4_rx_pause: 0

 prio4_rx_pause_duration: 0

 prio4_tx_pause: 26832

 prio4_tx_pause_duration: 14508

 prio4_rx_pause_transition: 0

Note

The Pause counters in ConnectX-4 are visible via ethtool only for
priorities on which PFC is enabled.

MLX Drivers 159

The feature can be controlled using sysfs in the following directory:
/sys/class/net/eth*/settings/ pfc_stall_prevention

To query the PFC stall prevention mode:

Example

To configure the PFC stall prevention mode:

The following two counters were added to the ethtool -S:

tx_pause_storm_warning_events - when the device is stalled for a period longer
than a pre-configured watermark, the counter increases, allowing the debug utility
an insight into current device status.

tx_pause_storm_error_events - when the device is stalled for a period longer than a
pre-configured timeout, the pause transmission is disabled, and the counter
increase.

Dropless Receive Queue (RQ)

Dropless RQ feature enables the driver to notify the FW when SW receive queues are
overloaded. This scenario takes place when the handling of SW receive queue is slower
than the handling of the HW receive queues.

cat /sys/class/net/eth*/settings/pfc_stall_prevention

$ cat /sys/class/net/ens6/settings/pfc_stall_prevention
default

echo <option>
/sys/class/net/<interface>/settings/pfc_stall_prevention

MLX Drivers 160

When this feature is enabled, a packet that is received while the receive queue is full will
not be immediately dropped. The FW will accumulate these packets assuming posting of
new WQEs will resume shortly. If received WQEs are not posted after a certain period of
time, out_of_buffer counter will increase, indicating that the packet has been dropped.

This feature is disabled by default. In order to activate it, ensure that Flow Control feature
is also enabled.

To get the feature state, run:

Output example:

To disable the feature, run:

Explicit Congestion Notification

ethtool --set-priv-flags ens6 dropless_rq on

ethtool --show-priv-flags DEVNAME

Private flags for DEVNAME:
rx_cqe_moder : on
rx_cqe_compress: off
sniffer : off
dropless_rq : off
hw_lro : off

ethtool --set-priv-flags ens6 dropless_rq off

MLX Drivers 161

Explicit congestion notification (ECN), an extension to the IP protocol, enables reliable
communication by signaling congestion without dropping packets. To ensure reliable
operation, all nodes along the communication path (including routers) must support ECN.

ECN is represented by two bits in the traffic control IP header and is implemented in this
context for RoCE v2.

Enabling ECN

To enable ECN on the hosts:

1. Enable ECN in sysfs.

2. Query the attribute.

3. Modify the attribute.

ECN supports the following algorithms:

r_roce_ecn_rp - Reaction point

r_roce_ecn_np - Notification point

Each algorithm has a set of relevant parameters and statistics, which are defined per
device, per port, per priority.

/sys/class/net/<interface>/ecn/<protocol>/enable/<X>

cat /sys/class/net/<interface>/ecn/<protocol>/params/<requested
attribute>

echo <value>
/sys/class/net/<interface>/ecn/<protocol>/params/<requested
attribute>

MLX Drivers 162

To query whether ECN is enabled per Priority X:

To read ECN configurable parameters:

To enable ECN for each priority per protocol:

To modify ECN configurable parameters:

Where:

X – priority {0..7}

protocol – roce_rp ; roce_np

Requested attributes – Next Slide for each protocol.

RSS Support
The device supports using XOR as the RSS distribution function, in addition to the default
Toeplitz function.

cat /sys/class/net/<interface>/ecn/<protocol>/enable/X

cat /sys/class/net/<interface>/ecn/<protocol>/requested attributes

echo 1 > /sys/class/net/<interface>/ecn/<protocol>/enable/X

echo <value> > /sys/class/net/<interface>/ecn/<protocol>/requested
attributes

MLX Drivers 163

The XOR function provides better distribution across the driver's receive queues for a
small number of streams, ensuring each TCP/UDP stream is assigned to a different queue.

To switch between the Toeplitz and XOR RSS hash functions, use the sysfs interface at:

/sys/class/net/eth*/settings/hfunc .

To query the operational and supported hash functions:

Example:

To change the operational hash function:

RSS Verbs Support

Receive Side Scaling (RSS) technology allows spreading incoming traffic between different
receive descriptor queues. Assigning each queue to different CPU cores allows better load
balancing of the incoming traffic and improves performance.

This technology was extended to user space by the verbs layer and can be used for RAW
ETH QP.

RSS Flow Steering

Steering rules classify incoming packets and deliver a specific traffic type (e.g. TCP/UDP,
IP only) or a specific flow to "RX Hash" QP. "RX Hash" QP is responsible for spreading the
traffic it handles between the Receive Work Queues using RX hash and Indirection Table.

cat /sys/class/net/eth*/settings/hfunc

cat /sys/class/net/eth2/settings/hfunc
Operational hfunc: toeplitz
Supported hfuncs: xor toeplitz

echo xor > /sys/class/net/eth*/settings/hfunc

MLX Drivers 164

The Receive Work Queue can point to different CQs that can be associated with different
CPU cores.

Verbs

The following verbs should be used to achieve this task in both control and data path.
Details per verb should be referenced from its man page.

ibv_create_wq , ibv_modify_wq , ibv_destory_wq

ibv_create_rwq_ind_table , ibv_destroy_rwq_ind_table

ibv_create_qp_ex with specific RX configuration to create the "RX hash" QP

Time Stamping
Time stamping is the process of keeping track of the creation of a packet. A time-
stamping service supports assertions of proof that a datum existed before a particular
time. Incoming packets are time-stamped before they are distributed on the PCI
depending on the congestion in the PCI buffers. Outgoing packets are time-stamped very
close to placing them on the wire.

Configuring Time Stamping

Time stamping is off by default and should be enabled before use.

Enabling Time Stamping for Socket

To enable time stamping for a socket, call setsockopt() with SO_TIMESTAMPING and
with the following flags:

SOF_TIMESTAMPING_TX_HARDWARE
Try to obtain send time-stamp
in hardware

SOF_TIMESTAMPING_TX_SOFTWARE

If
SOF_TIMESTAMPING_TX_HA
RDWARE

is off or fails, then do it in
software

MLX Drivers 165

SOF_TIMESTAMPING_RX_HARDWARE
Return the original, unmodified
time-stamp as generated by
the hardware

SOF_TIMESTAMPING_RX_SOFTWARE

If
SOF_TIMESTAMPING_RX_HA
RDWARE

is off or fails, then do it in
software

SOF_TIMESTAMPING_RAW_HARDWARE Return original raw hardware
time-stamp

SOF_TIMESTAMPING_SYS_HARDWARE
Return hardware time-stamp
transformed into the system
time base

SOF_TIMESTAMPING_SOFTWARE Return system time-stamp
generated in software

SOF_TIMESTAMPING_TX/RX Determine how time-stamps
are generated

SOF_TIMESTAMPING_RAW/SYS Determine how they are
reported

Enabling Time Stamping for Network Device

To enable time stamping for a network device, admin privileged users may enable/disable
time stamping through calling ioctl (sock, SIOCSH-WTSTAMP, &ifreq) with the following
values:

Send side time sampling, enabled by ifreq.hwtstamp_config.tx_type when:

/* possible values for hwtstamp_config->tx_type */

enum hwtstamp_tx_types {
 /*
 * No outgoing packet will need hardware time stamping;
 * should a packet arrive which asks for it, no hardware
 * time stamping will be done.
 */

 HWTSTAMP_TX_OFF,

MLX Drivers 166

Receive side time sampling, enabled by ifreq.hwtstamp_config.rx_filter
when:

 /*
 * Enables hardware time stamping for outgoing packets;
 * the sender of the packet decides which are to be
 * time stamped by setting %SOF_TIMESTAMPING_TX_SOFTWARE
 * before sending the packet.
 */

 HWTSTAMP_TX_ON,
/*
 * Enables time stamping for outgoing packets just as
 * HWTSTAMP_TX_ON does, but also enables time stamp insertion
 * directly into Sync packets. In this case, transmitted Sync
 * packets will not received a time stamp via the socket error
 * queue.
 */

 HWTSTAMP_TX_ONESTEP_SYNC,
};
Note: for send side time stamping currently only
HWTSTAMP_TX_OFF and
HWTSTAMP_TX_ON are supported.

/* possible values for hwtstamp_config->rx_filter */

enum hwtstamp_rx_filters {
 /* time stamp no incoming packet at all */

 HWTSTAMP_FILTER_NONE,

 /* time stamp any incoming packet */

 HWTSTAMP_FILTER_ALL,
 /* return value: time stamp all packets requested plus some others */

 HWTSTAMP_FILTER_SOME,

 /* PTP v1, UDP, any kind of event packet */

 HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
 /* PTP v1, UDP, Sync packet */

MLX Drivers 167

Getting Time Stamping

Once time stamping is enabled time stamp is placed in the socket Ancillary data.
recvmsg() can be used to get this control message for regular incoming packets. For send
time stamps the outgoing packet is looped back to the socket's error queue with the send
time-stamp(s) attached. It can be received with recvmsg (flags=MSG_ERRQUEUE). The
call returns the original outgoing packet data including all headers prepended down to

 HWTSTAMP_FILTER_PTP_V1_L4_SYNC,
 /* PTP v1, UDP, Delay_req packet */

 HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ,
 /* PTP v2, UDP, any kind of event packet */

 HWTSTAMP_FILTER_PTP_V2_L4_EVENT,
 /* PTP v2, UDP, Sync packet */

 HWTSTAMP_FILTER_PTP_V2_L4_SYNC,
 /* PTP v2, UDP, Delay_req packet */

 HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ,
 /* 802.AS1, Ethernet, any kind of event packet */

 HWTSTAMP_FILTER_PTP_V2_L2_EVENT,
 /* 802.AS1, Ethernet, Sync packet */

 HWTSTAMP_FILTER_PTP_V2_L2_SYNC,
 /* 802.AS1, Ethernet, Delay_req packet */

 HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ,

 /* PTP v2/802.AS1, any layer, any kind of event packet */

 HWTSTAMP_FILTER_PTP_V2_EVENT,
 /* PTP v2/802.AS1, any layer, Sync packet */

 HWTSTAMP_FILTER_PTP_V2_SYNC,
 /* PTP v2/802.AS1, any layer, Delay_req packet */

 HWTSTAMP_FILTER_PTP_V2_DELAY_REQ,
};
Note: for receive side time stamping currently only
HWTSTAMP_FILTER_NONE and
HWTSTAMP_FILTER_ALL are supported.

MLX Drivers 168

and including the link layer, the scm_time-stamping control message and a

sock_extended_err control message with ee_errno==ENOMSG and

ee_origin==SO_EE_ORIGIN_TIMESTAMPING . A socket with such a pending bounced
packet is ready for reading as far as select() is concerned. If the outgoing packet has to be
fragmented, then only the first fragment is time stamped and returned to the sending
socket.

Time Stamping Capabilities via ethtool

To display time-stamping capabilities via ethtool:

Example output:

Note

When time stamping is enabled, VLAN stripping is disabled. For more
info please refer to
Documentation/networking/timestamping.txt in kernel.org.

Note

On ConnectX-4 adapters and above, when time stamping is enabled,
RX CQE compression is disabled (features are mutually exclusive).

ethtool -T eth<x>

ethtool -T eth0
Time stamping parameters for p2p1:

http://kernel.org/

MLX Drivers 169

For more details on PTP Hardware Clock, please refer to:
https://www.kernel.org/doc/Documentation/ptp/ptp.txt

Capabilities:

hardware-transmit
(SOF_TIMESTAMPING_TX_HARDWARE)

software-transmit
(SOF_TIMESTAMPING_TX_SOFTWARE)

hardware-receive
(SOF_TIMESTAMPING_RX_HARDWARE)

software-receive
(SOF_TIMESTAMPING_RX_SOFTWARE)

software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

hardware-raw-clock
(SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
off
(HWTSTAMP_TX_OFF)
on
(HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none
(HWTSTAMP_FILTER_NONE)
all
(HWTSTAMP_FILTER_ALL)

https://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt

MLX Drivers 170

Steering PTP Traffic to Single RX Ring

As a result of Receive Side Steering (RSS) PTP traffic coming to UDP ports 319 and 320, it
may reach the user space application in an out of order manner. In order to prevent this,
PTP traffic needs to be steered to single RX ring using ethtool.

Example:

Tx Port Time Stamping

ethtool -u ens7
8 RX rings available
Total 0 rules
ethtool -U ens7 flow-type udp4 dst-port 319 action 0 loc 1

ethtool -U ens7 flow-type udp4 dst-port 320 action 0 loc 0

ethtool -u ens7
8 RX rings available
Total 2 rules
Filter: 0

Rule Type: UDP over IPv4
Src IP addr: 0.0.0.0 mask: 255.255.255.255

Dest IP addr: 0.0.0.0 mask: 255.255.255.255

TOS: 0x0 mask: 0xff

Src port: 0 mask: 0xffff

Dest port: 320 mask: 0x0

Action: Direct to queue 0

Filter: 1

Rule Type: UDP over IPv4
Src IP addr: 0.0.0.0 mask: 255.255.255.255

Dest IP addr: 0.0.0.0 mask: 255.255.255.255

TOS: 0x0 mask: 0xff

Src port: 0 mask: 0xffff

Dest port: 319 mask: 0x0

Action: Direct to queue 0

MLX Drivers 171

Transmitted packet time-stamping accuracy can be improved when using a timestamp
generated at the port level instead of a timestamp generated upon CQE creation. Tx port
time stamping better reflects the actual time of a packet's transmission.

Normal Send queues (SQs) are open with CQE time-stamp support. When this feature is
enabled, the driver is expected to open extra Tx port time-stamped SQ per traffic class
(TC).

The stream must meet the following conditions in order to be transmitted through a Tx
port time-stamped SQ.

1. SKBTX_HW_TSTAMP flag was set at tx_flag (SO_TIMESTAMPING was set via

setsockopt() or similarly)

2. Packet type is:

Non-IP, with EtherType of PTP over IEEE 802.3 (0x88f7); or

UDP over IPv4/IPv6

This feature is disabled by default in order to avoid extra SQ memory allocations. The
feature can be enabled or disabled using the following command:

PTP Cyc2time Hardware Translation Offload

Note

This feature is supported on ConnectX-6 Dx and above adapter cards
only.

ethtool --set-priv-flags <ifs-name> tx_port_ts <on/off>

Note

MLX Drivers 172

The device timestamp operates in one of two modes: real-time or free-running internal
time.

Free-Running Internal Time Mode – In this mode, the device clock cannot be edited.
Driver or user space must adjust the timestamps to real-time nanoseconds.

Real-Time Mode – In this mode, the hardware clock can be adjusted, providing
timestamps already translated into real-time nanoseconds.

Both modes are global per device. Once a mode is configured, all clock-related features
(e.g., PPS, CQE TS, PCIe BAR) operate exclusively with the selected clock mode.

By default, the hardware is set to free-running internal time mode. The driver adjusts the
hardware real-time clock based on PTP daemon clock updates.

Only Physical Functions (PFs) can modify the hardware real-time clock. Adjustments from
Virtual Functions (VFs) are ignored (treated as no-operations). If multiple PFs attempt to
modify the clock, the device selects one as the designated clock provider. If the
designated provider fails to send updates within a specific period, the device may replace
it with another PF. Other inputs during this period are also treated as no-operations.

Timestamp Format

CQE hardware timestamp format for ConnectX-6 Dx and ConnectX-6 Lx NICs is 64 bit, as
follows:

Configuration

To enable the feature:

1. Set REAL_TIME_CLOCK_ENABLE in NV_CONFIG via mlxconfig

2. Restart the driver.

This feature is supported on ConnectX-6 Dx and above adapter cards
only.

{32bit sec, 32 bit nsec}

MLX Drivers 173

Limitations

Administrator must restart the driver and perform a FW reset for the configuration
to take effect. Otherwise, mismatch between HW and driver timestamp mode might
occur.

Once real time mode is activated on a given device (see configuration section),
version 5.3 or newer must run on all device functions. Any older driver running on a
device function at this configuration will fail to open any traffic queues (RDMA or
ETH), hence becoming dysfunctional.

In real time mode, all device functions must be PTP-synchronized by a single clock
domain—do not use multiple GMs for different functions on the same device.

Regarding hardware clock ownership, the hardware is configured only from a single
elected function; other function settings are ignored by the device. There is no
indication as to which function is the hardware-clock’s owner. After an internal
timeout without modifying the hardware clock, a function losses the hardware-
clock’s ownership and is open to be grasped by any of the functions.

All PFs/VFs within the same device must sync to the same 1588 master clock. If
multiple masters are used, the device will use a single elected function. This might
lead to wrong clock representation by device, wrong 1588 TLVs and hiccups on
replacement of elected function.

This feature is supported on ConnectX-6 Dx and above adapter cards only.

RoCE Time Stamping

RoCE time stamping allows you to stamp packets when they are sent to the wire/received
from the wire. The time-stamp is given in raw hardware cycles but could be easily
converted into hardware referenced nanoseconds based time. Additionally, it enables you
to query the hardware for the hardware time, thus stamp other application's event and
compare time.

Query Capabilities

MLX Drivers 174

Time stamping is available if and only the hardware reports it is capable of reporting it. To
verify whether RoCE time stamping is available, run ibv_query_device_ex .

For further information, please see ibv_query_device_ex manual page.

Creating a Time Stamping Completion Queue

To get time stamps, a suitable extended completion queue (CQ) must be created via a
special call to ibv_create_cq_ex verb.

For further information, please see ibv_create_cq_ex manual page.

Querying the Hardware Time

Querying the hardware for time is done via the ibv_query_rt_values_ex verb. For
example:

For further information, please see ibv_query_rt_values_ex manual page.

One Pulse Per Second (1PPS)

1PPS is a time synchronization feature that allows the adapter to be able to send or
receive 1 pulse per second on a dedicated pin on the adapter card using an SMA
connector (SubMiniature version A). Only one pin is supported and could be configured as
1PPS in or 1PPS out.

For further information, refer to HowTo Test 1PPS on NVIDIA Adapters Community post.

Note

Time Stamping in not available when CQE zipping is used.

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_create_cq_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_rt_values_ex.3
https://enterprise-support.nvidia.com/s/article/How-To-Test-1PPS-on-Mellanox-Adapters

MLX Drivers 175

Flow Steering
Flow steering is a new model which steers network flows based on flow specifications to
specific QPs. Those flows can be either unicast or multicast network flows. In order to
maintain flexibility, domains and priorities are used. Flow steering uses a methodology of
flow attribute, which is a combination of L2-L4 flow specifications, a destination QP and a
priority. Flow steering rules may be inserted either by using ethtool or by using InfiniBand
verbs. The verbs abstraction uses different terminology from the flow attribute
(ibv_flow_attr), defined by a combination of specifications (struct ibv_flow_spec_*).

Flow Steering Support

All flow steering features are enabled in the supported adapter cards.

Flow Domains and Priorities

Flow steering defines the concept of domain and priority. Each domain represents a user
agent that can attach a flow. The domains are prioritized. A higher priority domain will
always supersede a lower priority domain when their flow specifications overlap. Setting a
lower priority value will result in a higher priority.

In addition to the domain, there is a priority within each of the domains. Each domain can
have at most 2^12 priorities in accordance with its needs.

The following are the domains at a descending order of priority:

User Verbs allows a user application QP to be attached to a specified flow when
using ibv_create_flow and ibv_destroy_flow verbs

ibv_create_flow

Input parameters:

struct ibv_qp - the attached QP.

struct ibv_flow *ibv_create_flow(struct ibv_qp *qp, struct
ibv_flow_attr
*flow)

MLX Drivers 176

struct ibv_flow_attr - attaches the QP to the flow specified. The flow
contains mandatory control parameters and optional L2, L3 and L4 headers.
The optional headers are detected by setting the size and num_of_specs
fields:

struct ibv_flow_attr can be followed by the optional flow headers
structs:

For further information, please refer to the ibv_create_flow man page.

ibv_destroy_flow

Input parameters:

ibv_destroy_flow requires struct ibv_low which is the return value of

ibv_create_flow in case of success.

Output parameters:

Returns 0 on success, or the value of errno on failure.

For further information, please refer to the ibv_destroy_flow man page.

Ethtool

Ethtool domain is used to attach an RX ring, specifically its QP to a specified flow. Please
refer to the most recent ethtool man page for all the ways to specify a flow.

Examples:

struct ibv_flow_spec_eth
struct ibv_flow_spec_ipv4
struct ibv_flow_spec_tcp_udp
struct ibv_flow_spec_ipv6

int ibv_destroy_flow(struct ibv_flow *flow_id)

MLX Drivers 177

ethtool –U eth5 flow-type ether dst 00:11:22:33:44:55 loc 5 action 2

All packets that contain the above destination MAC address are to be steered into
rx-ring 2 (its underlying QP), with priority 5 (within the ethtool domain)

ethtool –U eth5 flow-type tcp4 src-ip 1.2.3.4 dst-port 8888 loc 5 action 2

All packets that contain the above destination IP address and source port are to be
steered into rx- ring 2. When destination MAC is not given, the user's destination
MAC is filled automatically.

ethtool -U eth5 flow-type ether dst 00:11:22:33:44:55 vlan 45 m 0xf000 loc 5 action
2

All packets that contain the above destination MAC address and specific VLAN are
steered into ring 2. Please pay attention to the VLAN's mask 0xf000. It is required in
order to add such a rule.

ethtool –u eth5

Shows all of ethtool's steering rule

When configuring two rules with the same priority, the second rule will overwrite the first
one, so this ethtool interface is effectively a table. Inserting Flow Steering rules in the
kernel requires support from both the ethtool in the user space and in kernel (v2.6.28).

Accelerated Receive Flow Steering (aRFS)

Receive Flow Steering (RFS) and Accelerated Receive Flow Steering (aRFS) are kernel
features currently available in most distributions. For RFS, packets are forwarded based
on the location of the application consuming the packet. aRFS boosts the speed of RFS
by adding support for the hardware. By usingaRFS(unlike RFS), the packets are directed to
a CPU that is local to the thread running the application.

aRFSis an in-kernel-logic responsible for load balancing between CPUs by attaching flows
to CPUs that are used by flow's owner applications. This domain allows the aRFS
mechanism to use the flow steering infrastructure to support the aRFS logic by
implementing the ndo_rx_flow_steer, which, in turn, calls the underlying flow steering
mechanism with the aRFS domain.

To configure RFS:

MLX Drivers 178

Configure the RFS flow table entries (globally and per core).

Note: The functionality remains disabled until explicitly configured (by default it is 0).

The number of entries in the global flow table is set as follows:

The number of entries in the per-queue flow table are set as follows:

Example:

To Configure aRFS:

The aRFS feature requires explicit configuration in order to enable it. Enabling the aRFS
requires enabling the 'ntuple' flag via the ethtool.

For example, to enable ntuple for eth0, run:

Note

/proc/sys/net/core/rps_sock_flow_entries

Note

/sys/class/net/<dev>/queues/rx-<n>/rps_flow_cnt

echo 32768 > /proc/sys/net/core/rps_sock_flow_entries
NUM_CHANNELS=`ethtool -l ens6 | grep "Combined:" | tail -1 | awk
'{print $2}'`
for f in `seq 0 $((NUM_CHANNELS-1))`; do echo 32768 >
/sys/class/net/ens6/queues/rx-$f/rps_flow_cnt; done

MLX Drivers 179

aRFS requires the kernel to be compiled with the CONFIG_RFS_ACCEL option. This
option is available in kernels 2.6.39 and above. Furthermore, aRFS requires Device
Managed Flow Steering support.

Flow Steering Dump Tool

The mlx_fs_dump is a python tool that prints the steering rules in a readable manner.
Python v2.7 or above, as well as pip, anytree and termcolor libraries are required to be
installed on the host.

Running example:

For further information on the mlx_fs_dump tool, please refer to mlx_fs_dump
Community post.

ethtool -K eth0 ntuple on

Note

RFS cannot function if LRO is enabled. LRO can be disabled via
ethtool.

./ofed_scripts/utils/mlx_fs_dump -d /dev/mst/mt4115_pciconf0
FT: 9 (level: 0x18, type: NIC_RX)
+-- FG: 0x15 (MISC)
 |-- FTE: 0x0 (FWD) to (TIR:0x7e) out.ethtype:IPv4
out.ip_prot:UDP out.udp_dport:0x140

 +-- FTE: 0x1 (FWD) to (TIR:0x7e) out.ethtype:IPv4
out.ip_prot:UDP out.udp_dport:0x13f

...

https://enterprise-support.nvidia.com/s/article/mlx-fs-dump

MLX Drivers 180

Wake-on-LAN
Wake-on-LAN (WoL) is a technology that allows a network professional to remotely power
on a computer or to wake it up from sleep mode.

To enable WoL:

To get WoL:

Where g is the magic packet activity.

Q-in-Q Tunneling
Q-in-Q tunneling (hardware-accelerated 802.1ad VLAN) enables the creation of a Layer 2
Ethernet connection between two servers. It allows segregation of different VLAN traffic
on a link or bundling multiple VLANs into a single VLAN. This is achieved by adding a
service VLAN tag before the user’s existing 802.1Q VLAN tags.

To enable device support for accelerated 802.1ad VLAN:

1. Turn on the new ethtool private flag phv-bit (disabled by default).

ethtool -s <interface> wol g

ethtool <interface> | grep Wake-on Wake-on: g

Info

For details on Q-in-Q support in virtualized environments (SR-IOV),
refer to "Q-in-Q Encapsulation per VF in Linux".

MLX Drivers 181

Enabling this flag sets the phv_en port capability.

2. Change the interface device features by turning on the ethtool device feature
tx-vlan-stag-hw-insert (disabled by default).

Once the private flag and the ethtool device feature are set, the device will be ready
for 802.1ad VLAN acceleration.

VLAN Stripping in Linux Verbs

$ ethtool --set-priv-flags eth1 phv-bit on

$ ethtool -K eth1 tx-vlan-stag-hw-insert on

Note

The phv-bit private flag setting is available for the PF only.
The VF can use the VLAN acceleration by setting the
tx-vlan-stag-hw-insert parameter only if the private flag

phv-bit is enabled by the PF. If the PF enables/disables the

phv-bit flag after the VF driver is up, the configuration will
take place only after the VF driver is restarted.

Note

This capability is now accessible from userspace using the verbs.

MLX Drivers 182

VLAN stripping adds access to the device's ability to offload the Customer VLAN (cVLAN)
header stripping from an incoming packet, thus achieving acceleration of VLAN handing
in receive flow.

It is configured per WQ option. You can either enable it upon creation or modify it later
using the appropriate verbs (ibv_create_wq / ibv_modify_wq).

Offloaded Traffic Sniffer

Offloaded Traffic Sniffer allows bypass kernel traffic (such as RoCE, VMA, and DPDK) to be
captured by existing packet analyzer, such as tcpdump.

To capture the interface's bypass kernel traffic, run tcpdump on the RDMA device.

For examples on how to dump RDMA traffic using the Inbox tcpdump tool for ConnectX-4
adapter cards and above, click here .

Note

To be able to activate this feature, make sure libpcap library v1.9 or
above is installed on your setup.

To download libpcap, please visit https://www.tcpdump.org/.

Note

Note that enabling Offloaded Traffic Sniffer can cause bypass kernel
traffic speed degradation.

Note

In case you do not wish to install libpcap on your setup, you can use
docker to run the tcpdump. For further information, please see

https://enterprise-support.nvidia.com/s/article/how-to-dump-rdma-traffic-using-the-inbox-tcpdump-tool--connectx-4-x
https://www.tcpdump.org/

MLX Drivers 183

Dump Configuration
This feature helps dumping driver and firmware configuration using ethtool. It creates a
backup of the configuration files into a specified dump file.

Dump Parameters (Bitmap Flag)

The following bitmap parameters are used to set the type of dump. If a value is not set,
the default value used is "0".

Bitmap Parameters

Value Description

1 MST dump

2
Ring dump (Software context
information for SQs, EQs, RQs,
CQs)

3 MST dump + Ring dump (1+2)

4 Clear this parameter

Configuration

In order to configure this feature, follow the steps below:

1. Set the dump bitmap parameter by running -W (uppercase) with the desired bitmap
parameter value (see Bitmap Parameters table above). In the following example, the
bitmap parameter value is 3.

2. Dump the file by running -w (lowercase) with the desired configuration file name.

https://hub.docker.com/r/mellanox/tcpdump-rdma.

ethtool -W ens1f0 3

https://hub.docker.com/r/mellanox/tcpdump-rdma

MLX Drivers 184

3. [Optional] To get the bitmap parameter value, version and size of the dump, run the
command above without the file name.

4. To open the dump file, run:

where:

-f
For the file to be parsed (the
file that was just created)

-m For the mst dump file

-r For the ring dump file

For further information, refer to HowTo Dump Driver Configuration (via ethtool)
Community post.

Output:

ethtool -w ens1f0 data /tmp/dump.bin

ethtool -w ens1f0
flag: 3, version: 1, length: 4312

mlnx_dump_parser -f /tmp/dump.bin -m mst_dump_demo.txt -r
ring_dump_demo.txt
Version: 1 Flag: 3 Number of blocks: 123 Length 327584

MCION module number: 0 status: | present |
DRIVER VERSION: 1-23 (03 Mar 2015)
DEVICE NAME 0000:81:00.0:ens1f0
Parsing Complete!

https://enterprise-support.nvidia.com/s/article/howto-dump-driver-configuration--via-ethtool-x

MLX Drivers 185

5. Open the files.

1. The MST dump file will look as follows. In order to analyze it, contact NVIDIA
Support.

2. The Ring dump file can help developers debug ring-related issues, and it looks
as follows:

mlnx_dump_parser -f /tmp/dump.bin -m mst_dump_demo.txt -r
ring_dump_demo.txt
Version: 1 Flag: 3 Number of blocks: 123 Length 327584

MCION module number: 0 status: | present |
DRIVER VERSION: 1-23 (03 Mar 2015)
DEVICE NAME 0000:81:00.0:ens1f0
Parsing Complete!

cat mst_dump_demo.txt
0x00000000 0x01002000

0x00000004 0x00000000

0x00000008 0x00000000

0x0000000c 0x00000000

0x00000010 0x00000000

0x00000014 0x00000000

0x00000018 0x00000000

...

cat ring_dump_demo.txt
SQ TYPE: 3, WQN: 102, PI: 0, CI: 0, STRIDE: 6, SIZE:
1024...
SQ TYPE: 3, WQN: 102, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 65536, GROUP_IP: 0

https://enterprise-support.nvidia.com/s/
https://enterprise-support.nvidia.com/s/

MLX Drivers 186

Local Loopback Disable
Local Loopback Disable allows users to force the disablement of local loopback on the
virtual port (vport). This disables both unicast and multicast loopback in the hardware.

To enable Local Loopback Disable, run:

CQ TYPE: 5, WQN: 20, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 1024, GROUP_IP: 0

RQ TYPE: 4, WQN: 103, PI: 15, CI: 0, STRIDE: 5, SIZE: 16,
WQE_NUM: 512, GROUP_IP: 0

CQ TYPE: 5, WQN: 21, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384,
WQE_NUM: 16384, GROUP_IP: 0

EQ TYPE: 6, CI: 1, SIZE: 0, IRQN: 109, EQN: 19, NENT: 2048,
MASK: 0, INDEX: 0, GROUP_ID: 0

SQ TYPE: 3, WQN: 106, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 65536, GROUP_IP: 1

CQ TYPE: 5, WQN: 23, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 1024, GROUP_IP: 1

RQ TYPE: 4, WQN: 107, PI: 15, CI: 0, STRIDE: 5, SIZE: 16,
WQE_NUM: 512, GROUP_IP: 1

CQ TYPE: 5, WQN: 24, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384,
WQE_NUM: 16384, GROUP_IP: 1

EQ TYPE: 6, CI: 1, SIZE: 0, IRQN: 110, EQN: 20, NENT: 2048,
MASK: 0, INDEX: 1, GROUP_ID: 1

SQ TYPE: 3, WQN: 110, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 65536, GROUP_IP: 2

CQ TYPE: 5, WQN: 26, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024,
WQE_NUM: 1024, GROUP_IP: 2

RQ TYPE: 4, WQN: 111, PI: 15, CI: 0, STRIDE: 5, SIZE: 16,
WQE_NUM: 512, GROUP_IP: 2

CQ TYPE: 5, WQN: 27, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384,
WQE_NUM: 16384, GROUP_IP: 2

...

MLX Drivers 187

To disable Local Loopback Disable, run:

kTLS Offloads

Transport Layer Security (TLS) is a widely-deployed protocol used for securing TCP
connections on the Internet. TLS is also a required feature for HTTP/2, the latest web
standard. Kernel implementation of TLS (kTLS) provides new opportunities for offloading
the protocol into the hardware.

TLS data-path offload allows the NIC to accelerate encryption, decryption and
authentication of AES-GCM. TLS offload handles data as it goes through the device

echo 1 >
/sys/class/net/<ifname>/settings/force_local_lb_disable"

echo 0 >
/sys/class/net/<ifname>/settings/force_local_lb_disable"

Note

When turned off, the driver configures the loopback mode
according to its own logic.

Note

This feature is supported on NVIDIA® ConnectX®-6 Dx and NVIDIA®
BlueField®-2 crypto devices onwards.

MLX Drivers 188

without storing any data, but only updating context. If the packet cannot be
encrypted/decrypted by the device, then a software fallback handles the packet.

Establishing a kTLS Connection

To avoid unnecessary complexity in the kernel, the TLS handshake is kept in the user
space. A full TLS connection using the socket is done using the following scheme:

1. Call connect() or accept() on a standard TCP file descriptor.

2. Use a user space TLS library to complete a handshake.

3. Create a new KTLS socket file descriptor.

4. Extract the TLS Initialization Vectors (IVs), session keys, and sequence IDs from the
TLS library. Use the setsockopt function on the kTLS file descriptor (FD) to pass
them to the kernel.

5. Use standard read() , write() , sendfile() and splice() system calls on
the KTLS FD.

Drivers can offer Tx and Rx packet encryption/decryption offload from the kernel into the
NIC hardware. Upon receipt of a non-data TLS message (a control message), the kTLS
socket returns an error, and the message is left on the original TCP socket instead. The
kTLS socket is automatically unattached. Transfer of control back to the original
encrypted FD is done by calling getsockopt to receive the current sequence numbers,
and inserting them into the TLS library.

Kernel Support

For support in the kernel, make sure the following flags are set as follows.

CONFIG_TLS=y

CONFIG_TLS_DEVICE=y | m

Note

For kTLS Tx device offloads with OFED drivers, kernel TLS module
(kernel/net/tls) must be aligned to kernel v5.3 and above.

MLX Drivers 189

Configuring kTLS Offloads

To enable kTLS Tx offload, run:

To enable kTLS Rx offload, run:

For further information on TLS offloads, please visit the following kernel documentation:

Kernel TLS Offload

Kernel TLS

OpenSSL with kTLS Offload

OpenSSL version 3.0.0 or above is required to support kTLS TX/RX offloads.

Supported OpenSSL version is available to download from distro packages, or can be
downloaded and compiled from the OpenSSL github.

For kTLS Rx device offloads with OFED drivers, kernel TLS module
(kernel/net/tls) must be aligned to kernel v5.9 and above.

ethtool -K <ifs> tls-hw-tx-offload on

ethtool -K <ifs> tls-hw-rx-offload on

Info

For a configuration example, please refer to the DOCA TLS Offload
Guide.

https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls
https://docs.nvidia.com/doca/sdk/DOCA+TLS+Offload+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+TLS+Offload+Guide/index.html

MLX Drivers 190

IPsec Crypto Offload

IPsec crypto offload feature, also known as IPsec inline offload or IPsec aware offload
feature enables the user to offload IPsec crypto encryption and decryption operations to
the hardware.

Note

This feature is supported on crypto-enabled products of NVIDIA®
BlueField®-2 DPUs, and NVIDIA® ConnectX®-6 Dx and ConnectX-7
adapters (but not of ConnectX-6).

Newer/future crypto-enabled DPU and adapter product generations
should also support the feature, unless explicitly stated in their
documentation.

Note

For BlueField-2 and ConnectX-6 Dx devices only: If your target
application will utilize bandwidth of 100Gb/s or higher, where a
substantial part of the bandwidth will be allocated for IPsec traffic,
please refer to the NVIDIA BlueField-2 DPUs Product Release Notes or
NVIDIA ConnectX-6 Dx Adapters Product Release Notes to learn about
a potential bandwidth limitation. To access the relevant product
release notes, please contact your NVIDIA sales representative.

Note

The hardware implementation only supports AES-GCM encryption
scheme.

MLX Drivers 191

Enabling IPsec Crypto Offload

To enable the feature, support in both kernel and adapter firmware is required.

To add IPsec crypto offload support in the kernel, set the following flags accordingly:

To check whether IPsec crypto offload is supported in firmware, look for the
following string in the dmesg:

Configuring Security Associations for IPsec Offloads

To program the inline offload security associations (SA), add the option
offload dev <netdev interface> dir out/in in the ip xfrm state

command for transmitting and receiving SA.

Transmit inline offload SA xfrm command example:

CONFIG_XFRM_OFFLOAD=y
CONFIG_INET_ESP_OFFLOAD=m
CONFIG_INET6_ESP_OFFLOAD=m

Note

These flags are enabled by default in RedHat 8 and Ubuntu
18.04.0.

mlx5e: IPSec ESP acceleration enabled

sudo ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24 proto
esp spi 0x46dc6204 reqid 0x46dc6204 mode transport aead

MLX Drivers 192

Receive inline offload SA xfrm command example:

Example of setting xfrm policies:

First server:

'rfc4106(gcm(aes))' 0x60bd6c3eafba371a46411830fd56c53af93883261ed1fb26767820ff493f43ba35b

offload dev p4p1 dir out sel src 192.168.1.64 dst 192.168.1.65

sudo ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24 proto
esp spi 0xaea0846c reqid 0xaea0846c mode transport aead
'rfc4106(gcm(aes))' 0x81d5c3167c912c1dd50dab0cb4b6d815b6ace8844304db362215a258cd19deda

offload dev p4p1 dir in sel src 192.168.1.65 dst 192.168.1.64

+ sudo ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24
proto esp spi 0x28f39549 reqid 0x28f39549 mode transport aead
'rfc4106(gcm(aes))' 0x492e8ffe718a95a00c1893ea61afc64997f4732848ccfe6ea07db483175cb18de9a

offload dev enp4s0 dir out sel src 192.168.1.64 dst 192.168.1.65

+ sudo ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24
proto esp spi 0x622a73b4 reqid 0x622a73b4 mode transport aead
'rfc4106(gcm(aes))' 0x093bfee2212802d626716815f862da31bcc7d9c44cfe3ab8049e7604b2feb12548

offload dev enp4s0 dir in sel src 192.168.1.65 dst 192.168.1.64

+ sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 dir out
tmpl src 192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x28f39549
mode transport
+ sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 dir in
tmpl src 192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x622a73b4
mode transport
+ sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 dir fwd
tmpl src 192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x622a73b4
mode transport

MLX Drivers 193

Second server:

IPsec Packet Offload

+ ssh -A -t root@l-csi-0921d /bin/bash
+ set -e
+ '[' 0 == 1 ']'

+ sudo ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24
proto esp spi 0x28f39549 reqid 0x28f39549 mode transport aead
'rfc4106(gcm(aes))' 0x492e8ffe718a95a00c1893ea61afc64997f4732848ccfe6ea07db483175cb18de9a

offload dev enp4s0 dir in sel src 192.168.1.64 dst 192.168.1.65

+ sudo ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24
proto esp spi 0x622a73b4 reqid 0x622a73b4 mode transport aead
'rfc4106(gcm(aes))' 0x093bfee2212802d626716815f862da31bcc7d9c44cfe3ab8049e7604b2feb12548

offload dev enp4s0 dir out sel src 192.168.1.65 dst 192.168.1.64

+ sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 dir out
tmpl src 192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x622a73b4
mode transport
+ sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 dir in
tmpl src 192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x28f39549
mode transport
+ sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 dir fwd
tmpl src 192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x28f39549
mode transport
+ echo 'IPSec tunnel configured successfully'

Note

This feature is supported on crypto-enabled products of BlueField-2
DPUs, as well as on ConnectX-6 Dx, ConnectX-6 Lx and ConnectX-7
adapter cards. Note that it is not supported on ConnectX-6 cards.

Newer/future crypto-enabled DPU and adapter product generations
should also support this feature, unless explicitly stated otherwise in

MLX Drivers 194

their documentation.

Note

When using NVIDIA® BlueField®-2 DPUs and NVIDIA® ConnectX®-6 Dx
adapters only: If your target application utilizes 100Gb/s or a higher
bandwidth, where a substantial part of the bandwidth is allocated for
IPsec traffic, please refer to the relevant DPU or adapter card Product
Release Notes to learn about a potential bandwidth limitation. To
access the Release Notes, visit NVIDIA Networking's documentation
website, or contact your NVIDIA sales representative.

Note

ConnectX-6 Dx adapters only support Full Offload: Encrypted Overlay
(where a Hypervisor controls IPsec offload - See for example OVS
IPsec - https://docs.openvswitch.org/en/latest/tutorials/ipsec/) in a
Linux OS with NVIDIA drivers.

Note

This feature requires Linux kernel v6.6, or higher.

Note

IPsec tunnel mode is supported in alpha-level when controlled by VM ​
(VF capability) only.

https://docs.nvidia.com/networking/
https://docs.nvidia.com/networking/
https://docs.openvswitch.org/en/latest/tutorials/ipsec/

MLX Drivers 195

This feature is designed to enable IPsec full offload in switchdev mode. The ip-xfrm
command is used to configure IPsec states and policies, and it is similar to legacy mode
configuration. However, there are several limitations to the use of full offload in this mode:

1. Only IPsec Transport Mode and Tunnel Mode are supported.

2. The first IPsec TX state/policy is not allowed to be offloaded if any offloaded TC rule
exists, and the same applies for the first RX state/policy. More specifically, IPsec
RX/TX tables must be created before offloading any TC rule. For this reason, it is a
common practice to configure IPsec rules before adding any TC rule.

Following is an example for IPsec configuration with a VXLan tunnel:

Enable switchdev mode:

Configure PF/VF/REP netdevices, and place a VF in a namespace:

Configure IPsec states and policies:

echo 1 > /sys/class/net/$PF0 /device/sriov_numvfs
echo 0000:08:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
devlink dev param set pci/0000:08:00.0 name flow_steering_mode
value dmfs cmode runtime
devlink dev eswitch set pci/0000:08:00.0 mode switchdev
echo 0000:08:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

ifconfig $PF $LOCAL_TUN/16 up
ip l set dev $PF mtu 2000

ifconfig $REP up
ip netns add ns0
ip link set dev $VF netns ns0
ip netns exec ns0 ifconfig $VF $IP/16 up

MLX Drivers 196

Configure Openvswitch:

IPsec Full Offload for RDMA Traffic

This IPsec Full Offload for RDMA Traffic option provides a significant performance
improvement compared to the software IPsec counterpart, and enables the use of IPsec

ip xfrm state add src $LOCAL_TUN/16 dst $REMOTE_IP/16 proto
esp spi 0xb29ed314 reqid 0xb29ed314 mode transport aead
'rfc4106(gcm(aes))' 0x20f01f80a26f633d85617465686c32552c92c42f 128 offload
packet dev $PF dir out sel src $LOCAL_TUN/16 dst
$REMOTE_IP/16 flag esn replay-window 64

ip xfrm state add src $REMOTE_IP/16 dst $LOCAL_TUN/16 proto
esp spi 0xc35aa26e reqid 0xc35aa26e mode transport aead
'rfc4106(gcm(aes))' 0x6cb228189b4c6e82e66e46920a2cde39187de4ba 128 offload
packet dev $PF dir in sel src $REMOTE_IP/16 dst $LOCAL_TUN/16
flag esn replay-window 64

ip xfrm policy add src $LOCAL_TUN dst $REMOTE_IP offload
packet dev $PF dir out tmpl src $LOCAL_TUN/16 dst
$REMOTE_IP/16 proto esp reqid 0xb29ed314 mode transport
priority 12

ip xfrm policy add src $REMOTE_IP dst $LOCAL_TUN offload
packet dev $PF dir in tmpl src $REMOTE_IP/16 dst
$LOCAL_TUN/16 proto esp reqid 0xc35aa26e mode transport priority
12

ovs-vsctl add-br br-ovs
ovs-vsctl add-port br-ovs $REP
ovs-vsctl add-port br-ovs vxlan1 -- set interface vxlan1
type=vxlan options:local_ip=$LOCAL_TUN
options:remote_ip=$REMOTE_IP options:key=$VXLAN_ID
options:dst_port=4789

MLX Drivers 197

over RoCE packets, which are outside the network stack and cannot be used without full
hardware offload. As a result, users can leverage the benefits of the IPsec protocol with
RoCE V2, even when using SR-IOV VFs.

The configuration steps for this feature should be identical to the steps mentioned above,
but if this feature is supported, the traffic that will be sent can also be RoCEV2 IPsec
traffic.

To configure this feature:

1. Enable IPsec over VF. For more information, please see IPsec Functionality.

2. Configure IPsec policies and states on the relevant VF net device. This should be
identical to the software configuration of IPsec rules, which can be done using one
of the following implementation options:

Command Offload Request Parameter

iproute2 ip xfrm offload packet

libreswan
nic-offload=packet

strongswan 1

1. For an example of using strongSwan configuration, refer to the DOCA East-
West Overlay Encryption Application.

3. Configure an SR-IOV VF normally, and add its OVS/TC rules.

The following is a full minimalistic configuration example using iproute, whereas PF0
is the netdevice PF, F0_REP is the VF representor, and NIC is the VF netdevice to
configure IPsec over:

Note

For this feature to work, DMFS steering mode must be enabled.

1. echo 1 > /sys/class/net/$PF0 /device/sriov_numvfs

https://docs.nvidia.com/networking/display/BlueFieldDPUBSPv403/IPsec+Functionality
https://docs.nvidia.com/doca/sdk/doca+east-west+overlay+encryption+application/index.html
https://docs.nvidia.com/doca/sdk/doca+east-west+overlay+encryption+application/index.html

MLX Drivers 198

Configure IPsec states and policies:

2. echo 0000:08:00.2 >
/sys/bus/pci/drivers/mlx5_core/unbind
3. devlink dev eswitch set pci/0000:08:00.0 mode switchdev
4. devlink dev param set pci/0000:08:00.0 name
flow_steering_mode value dmfs cmode runtime
5. devlink port function set pci/0000:08:00.0/1
ipsec_packet enable
6. echo 0000:08:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
7. tc qdisc add dev $PF0 ingress
tc qdisc add dev $VF0_REP ingress
tc filter add dev $PF0 parent ffff: protocol 802.1q chain 0
flower vlan_id 10 vlan_ethtype 802.1q cvlan_id 5 action vlan
pop action vlan pop action mirred egress redirect dev
$VF0_REP

tc filter add dev $VF0_REP parent ffff: protocol all chain 0
flower action vlan push protocol 802.1q id 5 action vlan push
protocol 802.1q id 10 action mirred egress redirect dev $PF0

8. ifconfig $PF0 $PF_IP/24 up
ifconfig $NIC $LOC_IP/$SUB_NET up
ip link set dev $VF_REP up
9. ip xfrm state flush
ip xfrm policy flush

#states
ip -4 xfrm state add src $LOC_IP/$SUB_NET dst
$REMOTE_IP/$SUB_NET proto esp spi 1000 reqid 10000 aead
'rfc4106(gcm(aes))' 0x010203047aeaca3f87d060a12f4a4487d5a5c335 128 mode
transport sel src $LOC_IP dst $REMOTE_IP offload packet dev
$NIC dir out

MLX Drivers 199

Note that the configuration above is for one side only, yet IPsec must be configured for
both sides in order for them to communicate properly. The configuration for the other
side should be almost identical, but Step 9 would be configured in an asymmetrical way,
meaning the first policy would look the following, and all other states/policies would be
adjusted accordingly:

Once this step is completed, you can send any RoCE traffic of your choice between the
two machines with configured IPsec. For example,
ibv_rc_pingpong -g 3 -d VF_device : on one side, and

ibv_rc_pingpong -g 3 -d VF_device $IP_OF_OTHER_SIDE : on the other side.

Finally, you can verify that the traffic was encrypted using IPsec by using the ipsec
counters:

ip -4 xfrm state add src $REMOTE_IP/$SUB_NET dst
$LOC_IP/$SUB_NET proto esp spi 1001 reqid 10001 aead
'rfc4106(gcm(aes))' 0x010203047aeaca3f87d060a12f4a4487d5a5c335 128 mode
transport sel src $REMOTE_IP dst $LOC_IP offload packet dev
$NIC dir in
#policies
ip -4 xfrm policy add src $LOC_IP dst $REMOTE_IP offload
packet dev $NIC dir out tmpl src $LOC_IP/$SUB_NET dst
$REMOTE_IP/$SUB_NET proto esp reqid 10000 mode transport
ip -4 xfrm policy add src $REMOTE_IP dst $LOC_IP offload
packet dev $NIC dir in tmpl src $REMOTE_IP/$SUB_NET dst
$LOC_IP/$SUB_NET proto esp reqid 10001 mode transport
ip -4 xfrm policy add src $REMOTE_IP dst $LOC_IP dir fwd
tmpl src $REMOTE_IP/$SUB_NET dst $LOC_IP/$SUB_NET proto esp
reqid 10001 mode transport

ip -4 xfrm state add src $LOC_IP/$SUB_NET dst $REMOTE_IP/$SUB_NET
proto esp spi 1001 reqid 10001 aead
'rfc4106(gcm(aes))' 0x010203047aeaca3f87d060a12f4a4487d5a5c335 128 mode transport
sel src $LOC_IP dst $REMOTE_IP offload packet dev $NIC dir out

MLX Drivers 200

MACsec Full Offload

MACsec Full offload feature, also known as MACsec inline Full offload, enables the user to
offload MACsec crypto encryption and decryption, MACsec headers encapsulation and
decapsulation, and Anti replay operations to the hardware.

To enable the feature, support in both kernel and adapter firmware is required.

For support in the kernel, make sure the following flags are set as follows:

CONFIG_MACSEC=y

ethtool -S VF_NETDEV | grep ipsec

Note

MACsec full offload is supported at alpha level only.

Note

Hardware implementation supports GCM-AES & GCM-AES-XPN
encryption schemes and is supported with ConnectX-7 onwards.

Note

MACsec introduced in MOFED v5.9 requires a minimal Kernel version
of 6.1.

MLX Drivers 201

CONFIG_MLX5_EN_MACSEC=y

For support in firmware, use version xx.34.0364 and up.

Configurations

IProute2 Configuration

Configuring Physical Interface

Client side:

Server side:

Add MACsec Device

Client side:

ip address flush <physical_device>
ip address add <client_physical_device_ip> dev <physical
interface>
ip link set dev <physical_device> up

ip address flush <physical_device>
ip address add <server_physical_device_ip> dev <physical
interface>
ip link set dev <physical_device> up

ip link add link <physical_device> <macsec_device> type
macsec sci <client_sci> client on

MLX Drivers 202

Server side:

Offload MACsec Device

Client side:

Server side:

Add MACsec rules:

Client side:

Server side:

ip link add link <physical_device> <macsec_device> type
macsec sci <server_sci> client on

ip macsec offload <macsec_device> mac

ip macsec offload <macsec_device> mac

ip macsec add <macsec_device> tx sa <sa_num>pn
<inital_packet_number>on key <client_key_id> <client_key>
ip macsec add <macsec_device> rx sci <server_sci> on
ip macsec add <macsec_device> rx sci <server_sci>sa <sa_num>
pn <inital_packet_number> on key <server_key_id> <server_key>

MLX Drivers 203

Configure MACsec device IPs:

Client side:

Server side:

Configuration Example

Client side:

ip macsec add <macsec_device> tx sa <sa_num>pn
<inital_packet_number>on key <server_key_id> <server_key>
ip macsec add <macsec_device> rx sci <client_sci> on
ip macsec add <macsec_device> rx sci <client_sci>sa <sa_num>
pn <inital_packet_number> on key <client_key_id> <client_key>

ip address flush <macsec_device>
ip address add <client_macsec_device_ip> dev <macsec_device>
ip link set dev <macsec_device> up

ip address flush <macsec_device>
ip address add <server_macsec_device_ip> dev <macsec_device>
ip link set dev <macsec_device> up

ip address flush enp8s0f0
ip address add 1.1.1.1/24 dev enp8s0f0
ip link set dev enp8s0f0 up
ip link add link enp8s0f0 macsec0 type macsec sci 1 encrypt on

MLX Drivers 204

Server side:

ip macsec offload macsec0 mac
ip macsec add macsec0 tx sa 0 pn 1 on key 00
dffafc8d7b9a43d5b9a3dfbbf6a30c16
ip macsec add macsec0 rx sci 2 on
ip macsec add macsec0 rx sci 2 sa 0 pn 1 on key 00
ead3664f508eb06c40ac7104cdae4ce5
ip address flush macsec0
ip address add 2.2.2.1/24 dev macsec0
ip link set dev macsec0 up

ip link del macsec0
ip address flush enp8s0f0
ip address add 1.1.1.2/24 dev enp8s0f0
ip link set dev enp8s0f0 up
ip link add link enp8s0f0 macsec0 type macsec sci 2 encrypt on
ip macsec offload macsec0 mac
ip macsec add macsec0 tx sa 0 pn 1 on key 00
ead3664f508eb06c40ac7104cdae4ce5
ip macsec add macsec0 rx sci 1 on
ip macsec add macsec0 rx sci 1 sa 0 pn 1 on key 00
dffafc8d7b9a43d5b9a3dfbbf6a30c16
ip address flush macsec0
ip address add 2.2.2.2/24 dev macsec0
ip link set dev macsec0 up

Note

Use ip macsec show command to check configuration.

MLX Drivers 205

To verify traffic is offloaded, check MACsec counters by running
ethtool -S <physical_device> | grep macsec .

Info

Refer to the Linux Manual page for more information.

https://man7.org/linux/man-pages/man8/ip-macsec.8.html

MLX Drivers 206

DPU
This section contains the following pages:

QoS Configuration

Shared RQ Mode

QoS Configuration

Note

To learn more about port QoS configuration, refer to this community
post.

Warning

When working in Embedded Host mode, using mlnx_qos on both
the host and Arm will result with undefined behavior. Users must only
use mlnx_qos from the Arm. After changing the QoS settings from
Arm, users must restart the mlx5 driver on host.

Note

When configuring QoS using DCBX, the lldpad service from the
NVIDIA® BlueField® networking platform's (DPU or SuperNIC) side

https://confluence.nvidia.com/at%20https:/enterprise-support.nvidia.com/s/article/mlnx-qos

MLX Drivers 207

This section explains how to configure QoS group and settings using devlink located
under /opt/mellanox/iproute2/sbin/ . It is applicable to host PF/VF and Arm side
SFs. The following uses VF as example.

The settings of a QoS group include creating/deleting a QoS group and modifying its
tx_max and tx_share values. The settings of VF QoS include modifying its tx_max

and tx_share values, assigning a VF to a QoS group, and unassigning a VF from a QoS
group. This section focuses on the configuration syntax.

Please refer to section "Limit and Bandwidth Share Per VF" in the MLNX_OFED User
Manual for detailed explanation on vPort QoS behaviors.

devlink port function rate add

devlink port function rate add
<DEV>/<GROUP_NAME>

Adds a QoS group.

Syntax Description
DEV/GROUP_N
AME

Specifies group name in string format

Example

This command adds a new QoS group named 12_group
under device pci/0000:03:00.0 :

Notes

devlink port function rate del

devlink port function rate del
<DEV>/<GROUP_NAME>

Deletes a QoS group.

must be disabled if the configurations are not done using tools other
than lldpad .

devlink port function rate add
pci/0000:03:00.0/12_group

MLX Drivers 208

Syntax Description
DEV/GROUP_N
AME

Specifies group name in string format

Example

This command deletes QoS group 12_group from device

pci/0000:03:00.0 :

Notes

devlink port function rate set tx_max tx_share

devlink port function rate set
{<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>}
tx_max <TX_MAX> [tx_share <TX_SHARE>]

Sets tx_max and tx_share for QoS group or devlink port.

Syntax Description

DEV/GROUP_NAME
Specifies the group name to operate
on

DEV/PORT_INDEX
Specifies the devlink port to operate
on

TX_MAX tx_max bandwidth in MB/s

TX_SHARE tx_share bandwidth in MB/s

Example This command sets tx_max to 2000MB/s and tx_share to

500MB/s for the 12_group QoS group:

This command sets tx_max to 2000MB/s and tx_share to
500MB/s for the VF represented by port index 196609:

devlink port function rate del
pci/0000:03:00.0/12_group

devlink port function rate set
pci/0000:03:00.0/12_group tx_max 2000MBps
tx_share 500MBps

devlink port function rate set
pci/0000:03:00.0/196609 tx_max 200MBps

MLX Drivers 209

This command displays a mapping between VF devlink ports
and netdev names:

In the output of this command, VFs are indicated by
flavour pcivf .

Notes

devlink port function rate set parent

devlink port function rate set
<DEV>/<PORT_INDEX> {parent <PARENT_GROUP_NAME>}

Assigns devlink port to a QoS group.

Syntax Description
DEV/PORT_INDEX

Specifies the devlink port to operate
on

PARENT_GROUP_NAME parent group name in string format

Example

This command assigns this function to the QoS group
12_group :

Notes

devlink port function rate set noparent

devlink port function rate set
<DEV>/<PORT_INDEX> noparent

Ungroups a devlink port.

Syntax Description
DEV/PORT_IND
EX

Specifies the devlink port to operate on

Example This command ungroups this function:

tx_share 50MBps

$ devlink port

devlink port function rate set
pci/0000:03:00.0/196609 parent 12_group

MLX Drivers 210

Notes

devlink port function rate show

devlink port function rate show
[<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>]

Displays QoS information QoS group or devlink port.

Syntax Description
DEV/GROUP_NAME Specifies the group name to display

DEV/PORT_INDEX Specifies the devlink port to display

Example

This command displays the QoS info of all QoS groups and
devlink ports on the system:

This command displays QoS info of 12_group :

Notes
If a QoS group name or devlink port are not specified, all QoS
groups and devlink ports are displayed.

Shared RQ Mode

devlink port function rate set
pci/0000:03:00.0/196609 noparent

devlink port function rate show
pci/0000:03:00.0/12_group type node tx_max
2000MBps tx_share 500MBps
pci/0000:03:00.0/196609 type leaf tx_max
200MBps tx_share 50MBps parent 12_group

devlink port function rate show
pci/0000:03:00.0/12_group
pci/0000:03:00.0/12_group type node tx_max
2000MBps tx_share 500MBps

MLX Drivers 211

When creating 1 send queue (SQ) and 1 receive queue (RQ), each representor consumes
~3MB memory per single channel. Scaling this to the desired 1024 representors (SFs
and/or VFs) would require ~3GB worth of memory for single channel. A major chunk of the
3MB is contributed by RQ allocation (receive buffers and SKBs). Therefore, to make
efficient use of memory, shared RQ mode is implemented so PF/VF/SF representors share
receive queues owned by the uplink representor.

The feature is enabled by default. To disable it:

1. Edit the field ALLOW_SHARED_RQ in /etc/mellanox/mlnx-bf.conf as follows:

2. Restart the driver. Run:

To connect from the host to NVIDIA® BlueField® networking platform (DPU or SuperNIC) in
shared RQ mode, please refer to section Verifying Connection from Host to BlueField.

The following behavior is observed in shared RQ mode:

It is expected to see a 0 in the rx_bytes and rx_packets and valid

vport_rx_packets and vport_rx_bytes after running traffic. Example output:

ALLOW_SHARED_RQ="no"

/etc/init.d/openibd restart

Note

PF/VF representor to PF/VF communication on the host is not
possible.

ethtool -S pf0hpf
NIC statistics:

https://docs.nvidia.com/doca/sdk/Virtual+Switch+on+BlueField/index.html

MLX Drivers 212

Ethtool usage – in this mode, it is not possible to change/set the ring or coalesce
parameters for the RX side using ethtool. Changing channels also only affects the
TX side.

 rx_packets: 0
 rx_bytes: 0
 tx_packets: 66946
 tx_bytes: 8786869
 vport_rx_packets: 546093
 vport_rx_bytes: 321100036
 vport_tx_packets: 549449
 vport_tx_bytes: 321679548

MLX Drivers 213

Storage Protocols
There are several storage protocols that use the advantage of InfiniBand and RDMA for
performance reasons (high throughput, low latency and low CPU utilization). In this
chapter we will discuss the following protocols:

SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol off-
load and RDMA features provided by the InfiniBand architecture.

iSCSI Extensions for RDMA (iSER) is an extension of the data transfer model of
iSCSI, a storage networking standard for TCP/IP. It uses the iSCSI components while
taking the advantage of the RDMA protocol suite. ISER is implemented on various
stor- age targets such as TGT, LIO, SCST and out of scope of this manual.

For various ISER targets configuration steps, troubleshooting and debugging, as well
as other implementation of storage protocols over RDMA (such as Ceph over RDMA,
nbdX and more) refer to Storage Solutions on the Community website.

Lustre is an open-source, parallel distributed file system, generally used for large-
scale cluster computing that supports many requirements of leadership class HPC
simulation environments.

NVM Express™ over Fabrics (NVME-oF)

NVME-oF is a technology specification for networking storage designed to
enable NVMe message-based commands to transfer data between a host
computer and a target solid-state storage device or system over a network
such as Ethernet, Fibre Channel, and InfiniBand. Tunneling NVMe commands
through an RDMA fabric provides a high throughput and a low latency. This is
an alternative to the SCSi based storage networking protocols.

NVME-oF Target Offload is an implementation of the new NVME-oF standard
Target (server) side in hardware. Starting from ConnectX-5 family cards, all
regular IO requests can be processed by the HCA, with the HCA sending IO
requests directly to a real NVMe PCI device, using peer-to-peer PCI
communications. This means that excluding connection management and error
flows, no CPU utilization will be observed during NVME-oF traffic.

For further information, please refer to Storage Solutions on the Community
website (enterprise-support.nvidia.com/s/).

https://enterprise-support.nvidia.com/s/

MLX Drivers 214

SRP - SCSI RDMA Protocol
The SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol offload
and RDMA features provided by the InfiniBand architecture. SRP allows a large body of
SCSI software to be readily used on InfiniBand architecture. The SRP Initiator controls the
connection to an SRP Target in order to provide access to remote storage devices across
an InfiniBand fabric. The kSRP Target resides in an IO unit and provides storage services.

SRP Initiator

This SRP Initiator is based on open source from OpenFabrics (www.openfabrics.org) that
implements the SCSI RDMA Protocol-2 (SRP-2). SRP-2 is described in Document #
T10/1524-D available from http://www.t10.org.

The SRP Initiator supports

Basic SCSI Primary Commands -3 (SPC-3)

(www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf)

Basic SCSI Block Commands -2 (SBC-2)

(www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf)

Basic functionality, task management and limited error handling

Loading SRP Initiator

To load the SRP module either:

Execute the modprobe ib_srp command after the OFED driver is up.

or

Note

This package, however, does not include an SRP Target.

http://www.openfabrics.org/
http://www.t10.org/
http://www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf
http://www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf

MLX Drivers 215

1. Change the value of SRP_LOAD in /etc/infiniband/openib.conf to “ yes ”.

2. Run /etc/init.d/openibd restart for the changes to take effect.

SRP Module Parameters

When loading the SRP module, the following parameters can be set (viewable by the
"modinfo ib_srp" command):

cmd_sg_entries

Default number of
gather/scatter entries in the
SRP command (default is 12,
max 255)

allow_ext_sg

Default behavior when there
are more than cmd_sg_entries
S/G entries after mapping; fails
the request when false
(default false)

topspin_workarounds Enable workarounds for
Topspin/Cisco SRP target bugs

reconnect_delay

Time between successive
reconnect attempts. Time
between successive reconnect
attempts of SRP initiator to a
disconnected target until
dev_loss_tmo timer expires (if
enabled), after that the SCSI
target will be removed

Note

When loading the ib_srp module, it is possible to set the module

parameter srp_sg_tablesize. This is the maximum number of
gather/scatter entries per I/O (default: 12).

MLX Drivers 216

fast_io_fail_tmo

Number of seconds between
the observation of a transport
layer error and failing all I/O.
Increasing this timeout allows
more tolerance to transport
errors, however, doing so
increases the total failover
time in case of serious
transport failure.
Note: fast_io_fail_tmo value
must be smaller than the value
of recon- nect_delay

dev_loss_tmo

Maximum number of seconds
that the SRP transport should
insulate transport layer errors.
After this time has been
exceeded the SCSI target is
removed. Normally it is advised
to set this to -1 (disabled)
which will never remove the
scsi_host. In deployments
where different SRP targets
are connected and
disconnected frequently, it
may be required to enable this
timeout in order to clean old
scsi_hosts representing
targets that no longer exists

Constraints between parameters:

dev_loss_tmo, fast_io_fail_tmo, reconnect_delay cannot be all disabled or negative
values.

reconnect_delay must be positive number.

fast_io_fail_tmo must be smaller than SCSI block device timeout.

fast_io_fail_tmo must be smaller than dev_loss_tmo.

SRP Remote Ports Parameters

MLX Drivers 217

Several SRP remote ports parameters are modifiable online on existing connection.

To modify dev_loss_tmo to 600 seconds:

To modify fast_io_fail_tmo to 15 seconds:

To modify reconnect_delay to 10 seconds:

Manually Establishing an SRP Connection

The following steps describe how to manually load an SRP connection between the
Initiator and an SRP Target. “Automatic Discovery and Connection to Targets” section
explains how to do this automatically.

Make sure that the ib_srp module is loaded, the SRP Initiator is reachable by the SRP
Target, and that an SM is running.

To establish a connection with an SRP Target and create an SRP (SCSI) device for
that target under /dev, use the following command:

echo 600 > /sys/class/srp_remote_ports/port-xxx/dev_loss_tmo

echo 15 > /sys/class/srp_remote_ports/port-xxx/fast_io_fail_tmo

echo 20 > /sys/class/srp_remote_ports/port-xxx/reconnect_delay

echo -n id_ext=[GUID value],ioc_guid=[GUID value],dgid=[port
GID value],\
pkey=ffff,service_id=[service[0] value] > \

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0

MLX Drivers 218

See “SRP Tools - ibsrpdm, srp_daemon and srpd Service Script” section for instructions
on how the parameters in this echo command may be obtained.

Notes:

Execution of the above “echo” command may take some time

The SM must be running while the command executes

It is possible to include additional parameters in the echo command:

max_cmd_per_lun - Default: 62

max_sect (short for max_sectors) - sets the request size of a command

io_class - Default: 0x100 as in rev 16A of the specification (In rev 10 the default
was 0xff00)

tl_retry_count - a number in the range 2..7 specifying the IB RC retry count.
Default: 2

comp_vector, a number in the range 0..n-1 specifying the MSI-X completion
vector. Some HCA's allocate multiple (n) MSI-X vectors per HCA port. If the IRQ
affinity masks of these interrupts have been configured such that each MSI-X
interrupt is handled by a different CPU then the comp_vector parameter can
be used to spread the SRP completion workload over multiple CPU's.

cmd_sg_entries, a number in the range 1..255 that specifies the maximum
number of data buffer descriptors stored in the SRP_CMD information unit
itself. With allow_ext_sg=0 the parameter cmd_sg_entries defines the
maximum S/G list length for a single SRP_CMD, and commands whose S/G list
length exceeds this limit after S/G list collapsing will fail.

initiator_ext - see "Multiple Connections from Initiator InfiniBand Port to the
Target" section.

To list the new SCSI devices that have been added by the echo command, you may
use either of the following two methods:

/sys/class/infiniband_srp/srp-mlx[hca number]-[port
number]/add_target

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0
https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0
https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0

MLX Drivers 219

Execute “fdisk -l”. This command lists all devices; the new devices are included
in this listing.

Execute “dmesg” or look at /var/log/messages to find messages with the
names of the new devices.

SRP sysfs Parameters

Interface for making ib_srp connect to a new target. One can request ib_srp to connect to
a new target by writing a comma-separated list of login parameters to this sysfs attribute.
The supported parameters are:

id_ext
A 16-digit hexadecimal number specifying the eight byte identifier
extension in the 16-byte SRP target port identifier. The target port identifier
is sent by ib_srp to the target in the SRP_LOGIN_REQ request.

ioc_guid
A 16-digit hexadecimal number specifying the eight byte I/O controller GUID
portion of the 16-byte target port identifier.

dgid A 32-digit hexadecimal number specifying the destination GID.

pkey A four-digit hexadecimal number specifying the InfiniBand partition key.

service_id
A 16-digit hexadecimal number specifying the InfiniBand service ID used to
establish communication with the SRP target. How to find out the value of
the service ID is specified in the documentation of the SRP target.

max_sect
A decimal number specifying the maximum number of 512-byte sectors to
be transferred via a single SCSI command.

max_cmd
_per_lun

A decimal number specifying the maximum number of outstanding
commands for a single LUN.

io_class
A hexadecimal number specifying the SRP I/O class. Must be either 0xff00
(rev 10) or 0x0100 (rev 16a). The I/O class defines the format of the SRP
initiator and target port identifiers.

initiator_e
xt

A 16-digit hexadecimal number specifying the identifier extension portion
of the SRP initiator port identifier. This data is sent by the initiator to the
target in the SRP_LOGIN_REQ request.

cmd_sg_e
ntries

A number in the range 1..255 that specifies the maximum number of data
buffer descriptors stored in the SRP_CMD information unit itself. With
allow_ext_sg=0 the parameter cmd_sg_entries defines the maxi- mum S/G
list length for a single SRP_CMD, and commands whose S/G list length
exceeds this limit after S/G list collapsing will fail.

MLX Drivers 220

allow_ext_
sg

Whether ib_srp is allowed to include a partial memory descriptor list in an
SRP_CMD instead of the entire list. If a partial memory descriptor list has
been included in an SRP_CMD the remaining memory descriptors are
communicated from initiator to target via an additional RDMA transfer.
Setting allow_ext_sg to 1 increases the maximum amount of data that can
be transferred between initiator and target via a single SCSI command.
Since not all SRP target implementations support partial memory descriptor
lists the default value for this option is 0.

sg_tablesi
ze

A number in the range 1..2048 specifying the maximum S/G list length the
SCSI layer is allowed to pass to ib_srp. Specifying a value that exceeds
cmd_sg_entries is only safe with partial memory descriptor list support
enabled (allow_ext_sg=1).

comp_vec
tor

A number in the range 0..n-1 specifying the MSI-X completion vector. Some
HCA's allocate multiple (n) MSI-X vectors per HCA port. If the IRQ affinity
masks of these interrupts have been configured such that each MSI-X
interrupt is handled by a different CPU then the comp_vector parameter
can be used to spread the SRP completion workload over multiple CPU's.

tl_retry_co
unt

A number in the range 2..7 specifying the IB RC retry count.

SRP Tools - ibsrpdm, srp_daemon and srpd Service Script

The OFED distribution provides two utilities: ibsrpdm and srp_daemon:

They detect targets on the fabric reachable by the Initiator (Step 1)

Output target attributes in a format suitable for use in the above “echo” command
(Step 2)

A service script srpd which may be started at stack startup

The utilities can be found under /usr/sbin/, and are part of the srptools RPM that may be
installed using the OFED installation. Detailed information regarding the various options
for these utilities are provided by their man pages.

Below, several usage scenarios for these utilities are presented.

ibsrpdm

ibsrpdm has the following tasks:

MLX Drivers 221

1. Detecting reachable targets.

1. To detect all targets reachable by the SRP initiator via the default umad device
(/sys/class/infiniband_mad/umad0), execute the following command:

This command will result into readable output information on each SRP Target
detected. Sample:

2. To detect all the SRP Targets reachable by the SRP Initiator via another umad
device, use the following command:

ibsrpdm

 IO Unit Info:
 port LID: 0103

 port GID:
fe800000000000000002c90200402bd5
 change ID: 0002

 max controllers: 0x10

 controller[1]
 GUID: 0002c90200402bd4
 vendor ID: 0002c9
 device ID: 005a44
 IO class : 0100

 ID: LSI Storage Systems SRP Driver
200400a0b81146a1
 service entries: 1

 service[0]: 200400a0b81146a1 /
SRP.T10:200400A0B81146A1

ibsrpdm -d <umad device>

MLX Drivers 222

2. Assisting in SRP connection creation.

1. To generate an output suitable for utilization in the “echo” command in
“Manually Establishing an SRP Connection” section, add the ‘-c’ option to
ibsrpdm:

Sample output:

2. To establish a connection with an SRP Target using the output from the
‘ibsrpdm -c’ example above, execute the following command:

The SRP connection should now be up; the newly created SCSI devices should
appear in the listing obtained from the ‘ fdisk -l ’ command.

3. Discover reachable SRP Targets given an InfiniBand HCA name and port, rather than
by just running /sys/class/infiniband_mad/umad<N> where <N> is a digit.

srpd

The srpd service script allows automatic activation and termination of the srp_daemon
utility on all system live InfiniBand ports.

ibsrpdm -c

id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id

echo -n
id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id
> /sys/
class/infiniband_srp/srp-mlx5_0-1/add_target

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0

MLX Drivers 223

srp_daemon

srp_daemon utility is based on ibsrpdm and extends its functionality. In addition to the
ibsrpdm functionality described above, srp_daemon can:

Establish an SRP connection by itself (without the need to issue the “echo”
command described in “Manually Establishing an SRP Connection” section)

Continue running in background, detecting new targets and establishing SRP
connections with them (daemon mode)

Discover reachable SRP Targets given an infiniband HCA name and port, rather than
just by /dev/umad<N> where <N> is a digit

Enable High Availability operation (together with Device-Mapper Multipath)

Have a configuration file that determines the targets to connect to:

1. srp_daemon commands equivalent to ibsrpdm:

Note: These srp_daemon commands can behave differently than the equivalent
ibsrpdm command when /etc/srp_daemon.conf is not empty.

2. srp_daemon extensions to ibsrpdm.

To discover SRP Targets reachable from the HCA device <InfiniBand HCA name> and
the port <port num>, (and to generate output suitable for 'echo'), execute:

Note: To obtain the list of InfiniBand HCA device names, you can either use the
ibstat tool or run ‘ls /sys/class/infiniband’.

"srp_daemon -a -o" is equivalent to "ibsrpdm"

"srp_daemon -c -a -o" is equivalent to "ibsrpdm -c"

host1# srp_daemon -c -a -o -i <InfiniBand HCA name> -p <port
number>

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0

MLX Drivers 224

To both discover the SRP Targets and establish connections with them, just add the
-e option to the above command.

Executing srp_daemon over a port without the -a option will only display the
reachable targets via the port and to which the initiator is not connected. If
executing with the -e option it is better to omit -a.

It is recommended to use the -n option. This option adds the initiator_ext to the
connecting string (see "Multiple Connections from Initiator InfiniBand Port to the
Target" section).

srp_daemon has a configuration file that can be set, where the default is
/etc/srp_daemon.conf. Use the -f to supply a different configuration file that
configures the targets srp_daemon is allowed to connect to. The configuration file
can also be used to set values for additional parameters (e.g., max_cmd_per_lun,
max_sect).

A continuous background (daemon) operation, providing an automatic ongoing
detection and connection capability. See "Automatic Discovery and Connection to
Targets" section.

Automatic Discovery and Connection to Targets

Make sure the ib_srp module is loaded, the SRP Initiator can reach an SRP Target,
and that an SM is running.

To connect to all the existing Targets in the fabric, run “ srp_daemon -e -o ”. This
utility will scan the fabric once, connect to every Target it detects, and then exit.

To connect to all the existing Targets in the fabric and to connect to new targets
that will join the fabric, execute srp_daemon -e. This utility continues to execute until

Note

srp_daemon will follow the configuration it finds in
/etc/srp_daemon.conf. Thus, it will ignore a target that is
disallowed in the configuration file.

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0
https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0
https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0
https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.SRP+-+SCSI+RDMA+Protocol+v5.1-0.6.6.0

MLX Drivers 225

it is either killed by the user or encounters connection errors (such as no SM in the
fabric).

To execute SRP daemon as a daemon on all the ports:

srp_daemon.sh (found under /usr/sbin/). srp_daemon.sh sends its log to
/var/log/srp_daemon.log.

Start the srpd service script, run service srpd start

For the changes in openib.conf to take effect, run:

Multiple Connections from Initiator InfiniBand Port to the
Target

Some system configurations may need multiple SRP connections from the SRP Initiator
to the same SRP Target: to the same Target IB port, or to different IB ports on the same
Target HCA.

In case of a single Target IB port, i.e., SRP connections use the same path, the
configuration is enabled using a different initiator_ext value for each SRP connection. The
initiator_ext value is a 16-hexadecimal-digit value specified in the connection command.

Also in case of two physical connections (i.e., network paths) from a single initiator IB port
to two different IB ports on the same Target HCA, there is need for a different
initiator_ext value on each path. The conventions is to use the Target port GUID as the
initiator_ext value for the relevant path.

If you use srp_daemon with -n flag, it automatically assigns initiator_ext values according
to this convention. For example:

/etc/init.d/openibd restart

id_ext=200500A0B81146A1,ioc_guid=0002c90200402bec,\
dgid=fe800000000000000002c90200402bed,pkey=ffff,\
service_id=200500a0b81146a1,initiator_ext=ed2b400002c90200

MLX Drivers 226

Notes:

It is recommended to use the -n flag for all srp_daemon invocations.

ibsrpdm does not have a corresponding option.

srp_daemon.sh always uses the -n option (whether invoked manually by the user, or
automatically at startup by setting SRP_DAEMON_ENABLE to yes).

High Availability (HA)

High Availability works using the Device-Mapper (DM) multipath and the SRP daemon.
Each initiator is connected to the same target from several ports/HCAs. The DM multipath
is responsible for joining together different paths to the same target and for failover
between paths when one of them goes offline. Multipath will be executed on newly joined
SCSI devices.

Each initiator should execute several instances of the SRP daemon, one for each port. At
startup, each SRP daemon detects the SRP Targets in the fabric and sends requests to
the ib_srp module to connect to each of them. These SRP daemons also detect targets
that subsequently join the fabric, and send the ib_srp module requests to connect to
them as well.

Operation

When a path (from port1) to a target fails, the ib_srp module starts an error recovery
process. If this process gets to the reset_host stage and there is no path to the target
from this port, ib_srp will remove this scsi_host. After the scsi_host is removed, multipath
switches to another path to this target (from another port/HCA).

When the failed path recovers, it will be detected by the SRP daemon. The SRP daemon
will then request ib_srp to connect to this target. Once the connection is up, there will be
a new scsi_host for this target. Multipath will be executed on the devices of this host,
returning to the original state (prior to the failed path).

Manual Activation of High Availability

Initialization - execute after each boot of the driver:

1. Execute modprobe dm-multipath

MLX Drivers 227

2. Execute modprobe ib-srp

3. Make sure you have created file /etc/udev/rules.d/91-srp.rules as described above

4. Execute for each port and each HCA:

This step can be performed by executing srp_daemon.sh, which sends its log to
/var/log/srp_daemon.log.

Now it is possible to access the SRP LUNs on /dev/mapper/.

Automatic Activation of High Availability

Start srpd service, run:

srp_daemon -c -e -R 300 -i <InfiniBand HCA name> -p <port
number>

Note

It is possible for regular (non-SRP) LUNs to also be present; the SRP
LUNs may be identified by their names. You can configure the
/etc/multipath.conf file to change multipath behavior.

Note

It is also possible that the SRP LUNs will not appear under
/dev/mapper/. This can occur if the SRP LUNs are in the black-list of
multipath. Edit the ‘blacklist’ section in /etc/multipath.conf and make
sure the SRP LUNs are not blacklisted.

MLX Drivers 228

From the next loading of the driver it will be possible to access the SRP LUNs on
/dev/mapper/

It is possible to see the output of the SRP daemon in /var/log/srp_daemon.log

Shutting Down SRP

SRP can be shutdown by using “rmmod ib_srp”, or by stopping the OFED driver
(“/etc/init.d/openibd stop”), or as a by-product of a complete system shutdown.

Prior to shutting down SRP, remove all references to it. The actions you need to take
depend on the way SRP was loaded. There are three cases:

1. Without High Availability

When working without High Availability, you should unmount the SRP partitions that
were mounted prior to shutting down SRP.

2. After Manual Activation of High Availability

If you manually activated SRP High Availability, perform the following steps:

1. Unmount all SRP partitions that were mounted.

2. Stop service srpd (Kill the SRP daemon instances).

service srpd start

Note

It is possible that regular (not SRP) LUNs are also present. SRP
LUNs may be identified by their name.

MLX Drivers 229

3. Make sure there are no multipath instances running. If there are multiple
instances, wait for them to end or kill them.

4. Run: multipath -F

3. After Automatic Activation of High Availability

If SRP High Availability was automatically activated, SRP shutdown must be part of
the driver shutdown ("/etc/init.d/openibd stop") which performs Steps 2-4 of case b
above. However, you still have to unmount all SRP partitions that were mounted
before driver shutdown.

iSER - iSCSI Extensions for RDMA
iSCSI Extensions for RDMA (iSER) enhances the iSCSI protocol by integrating it with
RDMA, enabling direct data transfers to and from SCSI buffers without intermediate
copying.

By leveraging the RDMA protocol suite, iSER provides higher bandwidth for block storage
transfers with zero-copy efficiency. This approach eliminates the overhead of TCP/IP
processing while maintaining full compatibility with the iSCSI protocol.

MLX Drivers 230

There are three target implementation of ISER:

Linux SCSI target framework (tgt)

Linux-IO target (LIO)

Generic SCSI target subsystem for Linux (SCST)

Each target can operate in either TCP or iSER transport mode.

iSER also supports RoCE without requiring additional configuration. To bond RoCE
interfaces, set the fail_over_mac option in the bonding driver (see "Bonding IPoIB").

In the network stack, RDMA/RoCE is positioned below the iSER layer. To run iSER, ensure
that the RDMA layer is properly configured and validated, whether over Ethernet or
InfiniBand. For guidance on troubleshooting RDMA, refer to "HowTo Enable, Verify and
Troubleshoot RDMA" community article.

https://enterprise-support.nvidia.com/s/article/How-To-Enable-Verify-and-Troubleshoot-RDMA
https://enterprise-support.nvidia.com/s/article/How-To-Enable-Verify-and-Troubleshoot-RDMA

MLX Drivers 231

iSER Initiator

The iSER initiator is controlled through the iSCSI interface available from the iscsi-
initiator-utils package.

To discover and log into iSCSI targets, as well as access and manage the open-iscsi
database use the iscasiadm utility, a command-line tool.

To enable iSER as a transport protocol use " I iser " as a parameter of the iscasiadm
command.

Example for discovering and connecting targets over iSER:

Note that the target implementation (e.g. LIO, SCST, TGT) does not affect he initiator
process and configuration.

iSER Targets

Targets settings such as timeouts and retries are set the same as any other iSCSI targets.

iscsiadm -m discovery -o new -o old -t st -I iser -p <ip:port> -l

Note

Setting the iSER target is out of scope of this manual. For guidelines
of how to do so, please refer to the relevant target documentation
(e.g. stgt, targetcli).

Note

MLX Drivers 232

For various configuration, troubleshooting and debugging examples, refer to Storage
Solutions on the Community website.

Lustre
Lustre is an open-source, parallel distributed file system, generally used for large-scale
cluster computing that supports many requirements of leadership class HPC simulation
environments.

Lustre Compilation for MLNX_OFED:

To compile Lustre version 2.4.0 and higher:

If targets are set to auto connect on boot, and targets are
unreachable, it may take a long time to continue the boot process if
timeouts and max retries are set too high.

Note

This procedure applies to RHEL/SLES OSs supported by Lustre. For
further information, please refer to Lustre Release Notes.

$./configure --with-o2ib=/usr/src/ofa_kernel/default/
$ make rpms

$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include

/usr/src/ofa_kernel/default/include/linux/compat-2.6.h" ./configure --with-
o2ib=/usr/src/ofa_kernel/default/

https://enterprise-support.nvidia.com/s/article/storage-solutions
https://enterprise-support.nvidia.com/s/article/storage-solutions

MLX Drivers 233

For full installation example, refer to HowTo Install NVIDIA OFED driver for Lustre
Community post.

NVME-oF - NVM Express over Fabrics

NVME-oF

NVME-oF enables NVMe message-based commands to transfer data between a host
computer and a target solid-state storage device or system over a network such as
Ethernet, Fibre Channel, and InfiniBand. Tunneling NVMe commands through an RDMA
fabric provides a high throughput and a low latency.

For information on how to configure NVME-oF, please refer to the HowTo Configure NVMe
over Fabrics Community post.

NVME-oF Target Offload

$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include

/usr/src/ofa_kernel/default/include/linux/compat-2.6.h" make rpms

Note

The --with-nvmf installation option should not be specified, if nvme-
tcp kernel module is used. In this case, the native Inbox nvme-tcp
kernel module will be loaded.

Note

This feature is only supported for ConnectX-5 adapter cards family
and above.

https://enterprise-support.nvidia.com/s/article/howto-install-mellanox-ofed-driver-for-lustre
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics

MLX Drivers 234

NVME-oF Target Offload is an implementation of the new NVME-oF standard Target
(server) side in hardware. Starting from ConnectX-5 family cards, all regular IO requests
can be processed by the HCA, with the HCA sending IO requests directly to a real NVMe
PCI device, using peer-to-peer PCI communications. This means that excluding
connection management and error flows, no CPU utilization will be observed during
NVME-oF traffic.

For instructions on how to configure NVME-oF target offload, refer to HowTo
Configure NVME-oF Target Offload Community post.

For instructions on how to verify that NVME-oF target offload is working properly,
refer to Simple NVMe-oF Target Offload Benchmark Community post.

https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://enterprise-support.nvidia.com/s/article/simple-nvme-of-target-offload-benchmark

MLX Drivers 235

Virtualization
The chapter contains the following sections:

SR-IOV

Enabling Paravirtualization

VXLAN Hardware Stateless Offloads

Q-in-Q Encapsulation per VF in Linux

802.1Q Double-Tagging

Scalable Functions

SR-IOV
Single root I/O virtualization (SR-IOV) enables a physical PCIe device to present multiple
virtual instances on the PCIe bus. This technology allows the device to allocate separate
resources for each virtual instance. NVIDIA® ConnectX® adapters support up to 127 VFs
per port, allowing each VF to be provisioned independently.

A VF acts as an additional device connected to the PF, sharing the PF's resources and
having the same number of ports. SR-IOV is commonly used with an SR-IOV-enabled
hypervisor to provide virtual machines with direct hardware access to network resources,
significantly improving performance.

This chapter demonstrates how to set up and configure SR-IOV in a Red Hat Linux
environment using ConnectX VPI adapters.

System Requirements

To set up an SR-IOV environment, the following is required:

MLNX_OFED driver

A server/blade with an SR-IOV-capable motherboard BIOS

MLX Drivers 236

Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6

NVIDIA ConnectX® VPI Adapter Card family with SR-IOV capability

Setting Up SR-IOV

Depending on your system, perform the steps below to set up your BIOS. The figures
used in this section are for illustration purposes only. For further information, please refer
to the appropriate BIOS User Manual:

1. Enable "SR-IOV" in the system BIOS.

2. Enable "Intel Virtualization Technology".

MLX Drivers 237

3. Install a hypervisor that supports SR-IOV.

4. Depending on your system, update the /boot/grub/grub.conf file to include a
similar command line load parameter for the Linux kernel.

For example, to Intel systems, add:

Configuring SR-IOV (Ethernet)

To set SR-IOV in Ethernet mode, refer to HowTo Configure SR-IOV for ConnectX-
4/ConnectX- 5/ConnectX-6 with KVM (Ethernet) community post.

Configuring SR-IOV (InfiniBand)

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (4.x.x)
 root (hd0,0)
 kernel /vmlinuz-4.x.x ro
root=/dev/VolGroup00/LogVol00 rhgb quiet
 intel_iommu=on initrd /initrd-4.x.x.img

Note

Make sure the parameter intel_iommu=on exists when

updating the /boot/grub/grub.conf file, otherwise SR-IOV

cannot be loaded. Some OSs use /boot/grub2/grub.cfg file.
If your server uses such file, please edit this file instead (add
intel_iommu=on for the relevant menu entry at the end of

the line that starts with linux16).

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet

MLX Drivers 238

1. Install the MLNX_OFED driver for Linux that supports SR-IOV.

2. Check if SR-IOV is enabled in the firmware.

3. Reboot the server.

4. Write to the sysfs file the number of Virtual Functions you need to create for the PF.
You can use one of the following equivalent files:

You can use one of the following equivalent files:

- A standard Linux kernel generated file that is available in the new kernels.

mlxconfig -d /dev/mst/mt4115_pciconf0 q

 Device #1:

 Device type: Connect4
 PCI device: /dev/mst/mt4115_pciconf0
 Configurations: Current
 SRIOV_EN 1

 NUM_OF_VFS 8

Note

If needed, use mlxconfig to set the relevant fields:

mlxconfig -d /dev/mst/mt4115_pciconf0 set
SRIOV_EN=1 NUM_OF_VFS=16

echo [num_vfs] >

MLX Drivers 239

Note: This file will be generated only if IOMMU is set in the grub.conf file (by adding
intel_iommu=on, as seen in the fourth step under “Setting Up SR-IOV”).

- A file generated by the mlx5_core driver with the same functionality as the kernel
generated one.

Note: This file is used by old kernels that do not support the standard file. In such
kernels, using sriov_numvfs results in the following error: “bash: echo: write error:
Function not implemented”.

The following rules apply when writing to these files:

- If there are no VFs assigned, the number of VFs can be changed to any valid value
(0 - max #VFs as set during FW burning)

- If there are VFs assigned to a VM, it is not possible to change the number of VFs

- If the administrator unloads the driver on the PF while there are no VFs assigned,
the driver will unload and SRI-OV will be disabled

- If there are VFs assigned while the driver of the PF is unloaded, SR-IOV will not be
disabled. This means that VFs will be visible on the VM. However, they will not be
operational. This is applicable to OSs with kernels that use pci_stub and not vfio.

- The VF driver will discover this situation and will close its resources

- When the driver on the PF is reloaded, the VF becomes operational. The
administrator of the VF will need to restart the driver in order to resume working
with the VF.

5. Load the driver. To verify that the VFs were created. Run:

/sys/class/infiniband/mlx5_0/device/sriov_numvfs

echo [num_vfs] >
/sys/class/infiniband/mlx5_0/device/mlx5_num_vfs

lspci | grep Mellanox

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.Single+Root+IO+Virtualization+%28SR-IOV%29+v5.1-2.3.7.1

MLX Drivers 240

6. Configure the VFs.

After VFs are created, 3 sysfs entries per VF are available under
/sys/class/infiniband/mlx5_<PF INDEX>/device/sriov (shown below for VFs 0 to 2):

For each Virtual Function, the following files are available:

- Node - Node’s GUID:

08:00.0 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4]
08:00.1 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4]
08:00.2 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.3 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.4 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.5 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]

+-- 0

| +-- node
| +-- policy
| +-- port
+-- 1

| +-- node
| +-- policy
| +-- port
+-- 2

 +-- node
 +-- policy
 +-- port

MLX Drivers 241

The user can set the node GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/node file. The example below, shows
how to set the node GUID for VF 0 of mlx5_0.

- Port - Port’s GUID:

The user can set the port GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/port file. The example below, shows
how to set the port GUID for VF 0 of mlx5_0.

- Policy - The vport's policy. The user can set the port GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/port file. The policy can be one of:

- Down - the VPort PortState remains 'Down'

- Up - if the current VPort PortState is 'Down', it is modified to 'Initialize'. In all other
states, it is unmodified. The result is that the SM may bring the VPort up.

- Follow - follows the PortState of the physical port. If the PortState of the physical
port is 'Active', then the VPort implements the 'Up' policy. Otherwise, the VPort
PortState is 'Down'.

Notes:

- The policy of all the vports is initialized to “Down” after the PF driver is restarted
except for VPort0 for which the policy is modified to 'Follow' by the PF driver.

- To see the VFs configuration, you must unbind and bind them or reboot the VMs if
the VFs were assigned.

7. Make sure that OpenSM supports Virtualization (Virtualization must be enabled).

echo 00:11:22:33:44:55:1:0 >
/sys/class/infiniband/mlx5_0/device/sriov/0/node

echo 00:11:22:33:44:55:2:0 >
/sys/class/infiniband/mlx5_0/device/sriov/0/port

MLX Drivers 242

The /etc/opensm/opensm.conf file should contain the following line:

VFs Initialization Note

Since the same mlx5_core driver supports both Physical and Virtual Functions, once the
VFs are created, the driver of the PF will attempt to initialize them so they will be available
to the OS owning the PF. If you want to assign a VF to a VM, you need to make sure the VF
is not used by the PF driver. If a VF is used, you should first unbind it before assigning to a
VM.

To unbind a device use the following command:

1. Get the full PCIe address of the device.

Example:

2. Unbind the device.

virt_enabled 2

Note

OpenSM and any other utility that uses SMP MADs (
ibnetdiscover , sminfo , iblink-info , smpdump ,

ibqueryerr , ibdiagnet , and smpquery) should run on the
PF and not on the VFs. In case of multi PFs (multi-host), OpenSM
should run on host0.

lspci -D

0000:09:00.2

MLX Drivers 243

3. Bind the unbound VF.

PCI BDF Mapping of PFs and VFs

PCI addresses are sequential for both of the PF and their VFs. Assuming the card's PCIe
slot is 05:00 and it has 2 ports, the PFs PCI address will be 05:00.0 and 05:00.1.

Given 3 VFs per PF, the VFs PCI addresses will be:

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

This section describes a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat KVM
VM Server

1. Run the virt-manager.

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

05:00.2-4 for VFs 0-2 of PF 0 (mlx5_0)
05:00.5-7 for VFs 0-2 of PF 1 (mlx5_1)

MLX Drivers 244

2. Double click on the virtual machine and open its Properties.

3. Go to Details → Add hardware → PCI host device.

4. Choose a NVIDIA virtual function according to its PCI device (e.g., 00:03.1)

5. If the Virtual Machine is up reboot it, otherwise start it.

6. Log into the virtual machine and verify that it recognizes the NVIDIA card. Run:

Example:

lspci | grep Mellanox

lspci | grep Mellanox

MLX Drivers 245

7. Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX
configuration file. The MAC address for every virtual function is configured randomly,
therefore it is not necessary to add it.

Ethernet Virtual Function Configuration when Running SR-
IOV

SR-IOV Virtual function configuration can be done through Hypervisor iprout2/netlink tool,
if present. Otherwise, it can be done via sysfs.

01:00.0 Infiniband controller: Mellanox Technologies MT28800
Family [ConnectX-5 Ex]

ip link set { dev DEVICE | group DEVGROUP } [{ up | down }]
...
[vf NUM [mac LLADDR] [vlan VLANID [qos VLAN-QOS]]
...
[spoofchk { on | off}]]
...

sysfs configuration (ConnectX-4):

/sys/class/net/enp8s0f0/device/sriov/[VF]

+-- [VF]
| +-- config
| +-- link_state
| +-- mac
| +-- mac_list
| +-- max_tx_rate
| +-- min_tx_rate
| +-- spoofcheck
| +-- stats

MLX Drivers 246

VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)

When running ETH ports on VGT, the ports may be configured to simply pass through
packets as is from VFs (VLAN Guest Tagging), or the administrator may configure the
Hypervisor to silently force packets to be associated with a VLAN/Qos (VLAN Switch
Tagging).

In the latter case, untagged or priority-tagged outgoing packets from the guest will have
the VLAN tag inserted, and incoming packets will have the VLAN tag removed.

The default behavior is VGT.

To configure VF VST mode, run:

where:

NUM = 0..max-vf-num

vlan_id = 0..4095

qos = 0..7

For example:

ip link set dev eth2 vf 2 vlan 10 qos 3 - sets VST mode for VF #2
belonging to PF eth2, with vlan_id = 10 and qos = 3

ip link set dev eth2 vf 2 vlan 0 - sets mode for VF 2 back to VGT

Additional Ethernet VF Configuration Options

| +-- trunk
| +-- trust
| +-- vlan

ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

MLX Drivers 247

Guest MAC configuration – by default, guest MAC addresses are configured to be all
zeroes. If the administrator wishes the guest to always start up with the same MAC,
he/she should configure guest MACs before the guest driver comes up. The guest
MAC may be configured by using:

For legacy and ConnectX-4 guests, which do not generate random MACs, the
administrator should always configure their MAC addresses via IP link, as above.

Spoof checking – Spoof checking is currently available only on upstream kernels
newer than 3.1.

Guest Link State

Virtual Function Statistics

Virtual function statistics can be queried via sysfs:

ip link set dev <PF device> vf <NUM> mac <LLADDR>

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

ip link set dev <PF device> vf <UM> state [enable| disable|
auto]

cat /sys/class/infiniband/mlx5_2/device/sriov/2/stats tx_packets :
5011

tx_bytes : 4450870

tx_dropped : 0

rx_packets : 5003

rx_bytes : 4450222

rx_broadcast : 0

MLX Drivers 248

Mapping VFs to Ports

To view the VFs mapping to ports:

Use the ip link tool v2.6.34~3 and above.

Output:

When a MAC is ff:ff:ff:ff:ff:ff , the VF is not assigned to the port of the net

device it is listed under. In the example above, vf38 is not assigned to the same port as

p1p1 , in contrast to vf0 .

rx_multicast : 0

tx_broadcast : 0

tx_multicast : 8

rx_dropped : 0

ip link

61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
mode DEFAULT group default qlen 1000

 link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-
state auto
 vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-
state auto
 vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off,
link-state disable
 vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off,
link-state disable

MLX Drivers 249

However, even VFs that are not assigned to the net device, could be used to set and
change its settings. For example, the following is a valid command to change the spoof
check:

This command will affect only the vf38 . The changes can be seen in ip link on the net
device that this device is assigned to.

RoCE Support

RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the
hypervisor GID table size is of 16 entries while the VFs share the remaining 112 entries.
When the number of VFs is larger than 56 entries, some of them will have GID table with
only a single entry which is inadequate if VF's Ethernet device is assigned with an IP
address.

Virtual Guest Tagging (VGT+)

VGT+ is an enhanced mode of Virtual Guest Tagging (VGT) that allows a Virtual Function
(VF) to tag its own packets while adhering to an administrative VLAN trunk policy. This
policy specifies the VLAN IDs permitted for transmission and reception but does not
affect the user priority, which remains unchanged.

Packets can be sent in one of two modes: with or without the ability to handle untagged
and priority-tagged traffic. VGT+ does not define a default VLAN for its ports. Outgoing
packets are passed to the eSwitch only if they comply with the policy, and incoming
packets are forwarded to the VF only if they meet the defined criteria.

Configuration

ip link set dev p1p1 vf 38 spoofchk on

Note

MLX Drivers 250

To enable VGT+ mode, set the corresponding port/VF (in the example below port eth5,
VF0) range of allowed VLANs:

Examples:

To add VLAN ID range (4-15) to trunk:

To add a single VLAN ID to trunk:

To disable VGT+ mode, make sure to remove all VLANs:

When working in SR-IOV, the default operating mode is VGT.

echo "<add> <start_vid> <end_vid>" > /sys/class/net/eth5/device/sriov/0/trunk

echo add 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

echo add 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Note

When VLAN ID = 0, that indicates that untagged and priority-tagged
traffics are allowed.

echo rem 0 4095 > /sys/class/net/eth5/device/sriov/0/trunk

MLX Drivers 251

To remove selected VLANs:

Remove VLAN ID range (4-15) from trunk:

Remove a single VLAN ID from trunk:

SR-IOV Advanced Security Features

SR-IOV MAC Anti-Spoofing

Normally, MAC addresses are unique identifiers assigned to network interfaces, and they
are fixed addresses that cannot be changed. MAC address spoofing is a technique for
altering the MAC address to serve different purposes. Some of the cases in which a MAC
address is altered can be legal, while others can be illegal and abuse security mechanisms
or disguises a possible attacker.

The SR-IOV MAC address anti-spoofing feature, also known as MAC Spoof Check provides
protection against malicious VM MAC address forging. If the network administrator
assigns a MAC address to a VF (through the hypervisor) and enables spoof check on it,
this will limit the end user to send traffic only from the assigned MAC address of that VF.

MAC Anti-Spoofing Configuration

echo rem 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

echo rem 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Note

MAC anti-spoofing is disabled by default.

MLX Drivers 252

In the configuration example below, the VM is located on VF-0 and has the MAC address
11:22:33:44:55:66.

There are two ways to enable or disable MAC anti-spoofing:

1. Use the standard IP link commands - available from Kernel 3.10 and above.

1. To enable MAC anti-spoofing, run:

2. To disable MAC anti-spoofing, run:

2. Specify echo "ON" or "OFF" to the file located under
/sys/class/net/<if-name>/device/sriov/<VF-index>/spoofcheck .

1. To enable MAC anti-spoofing, run:

2. To disable MAC anti-spoofing, run:

ip link set ens785f1 vf 0 spoofchk on

ip link set ens785f1 vf 0 spoofchk off

echo "ON" > /sys/class/net/ens785f1/vf/0/spoofchk

echo "OFF" > /sys/class/net/ens785f1/vf/0/spoofchk

Note

MLX Drivers 253

Limit and Bandwidth Share Per VF

This feature enables rate limiting traffic per VF in SR-IOV mode. For details on how to
configure rate limit per VF for ConnectX-4 and above adapter cards, please refer to HowTo
Configure Rate Limit per VF for ConnectX-4/ConnectX-5/ConnectX-6 Community post.

Limit Bandwidth per Group of VFs

VFs Rate Limit for vSwitch (OVS) feature allows users to join available VFs into groups and
set a rate limitation on each group. Rate limitation on a VF group ensures that the total Tx
bandwidth that the VFs in this group get (altogether combined) will not exceed the given
value.

With this feature, a VF can still be configured with an individual rate limit as in the past
(under /sys/class/net//device/sriov//max_tx_rate). However, the actual bandwidth limit on
the VF will eventually be determined considering the VF group limitation and how many
VFs are in the same group.

For example: 2 VFs (0 and 1) are attached to group 3.

Case 1: The rate limitation on the group is set to 20G. Rate limit of each VF is 15G

Result: Each VF will have a rate limit of 10G

Case 2: Group’s max rate limitation is still set to 20G. VF 0 is configured to 30G limit, while
VF 1 is configured to 5G rate limit

Result: VF 0 will have 15G de-facto. VF 1 will have 5G

The rule of thumb is that the group’s bandwidth is distributed evenly between the number
of VFs in the group. If there are leftovers, they will be assigned to VFs whose individual
rate limit has not been met yet.

VFs Rate Limit Feature Configuration

This configuration is non-persistent and does not survive driver
restart.

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6
https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6

MLX Drivers 254

1. When VF rate group is supported by FW, the driver will create a new hierarchy in the
SRI-OV sysfs named “groups” (/sys/class/net/<ifname>/device/sriov/groups/). It will
contain all the info and the configurations allowed for VF groups.

2. All VFs are placed in group 0 by default since it is the only existing group following
the initial driver start. It would be the only group available under
/sys/class/net/<ifname>/device/sriov/groups/

3. The VF can be moved to a different group by writing to the group file -> echo
$GROUP_ID > /sys/class/net/<ifname>/device/sriov/<vf_id>/group

4. The group IDs allowed are 0-255

5. Only when there is at least 1 VF in a group, there will be a group configuration
available under /sys/class/net/<ifname>/device/sriov/groups/ (Except for group 0,
which is always available even when it’s empty).

6. Once the group is created (by moving at least 1 VF to that group), users can
configure the group’s rate limit. For example:

1.
echo 10000 >
/sys/class/net/<ifname>/device/sriov/5/max_tx_rate

– setting individual rate limitation of VF 5 to 10G (Optional)

2. echo 7 > /sys/class/net/<ifname>/device/sriov/5/group –
moving VF 5 to group 7

3.
echo 5000 >
/sys/class/net/<ifname>/device/sriov/groups/7/max_tx_rate

– setting group 7 with rate limitation of 5G

4. When running traffic via VF 5 now, it will be limited to 5G because of the group
rate limit even though the VF itself is limited to 10G

5. echo 3 > /sys/class/net/<ifname>/device/sriov/5/group –
moving VF 5 to group 3

6. Group 7 will now disappear from
/sys/class/net/<ifname>/device/sriov/groups since there are 0 VFs

in it. Group 3 will now appear. Since there’s no rate limit on group 3, VF 5 can
transmit at 10G (due to its individual configuration).

MLX Drivers 255

Notes

You can see to which group the VF belongs to in the stats sysfs (i.e.,

cat /sys/class/net/<ifname>/device/sriov/<vf_num>/stats)

You can see the current rate limit and number of attached VFs to a group in the
group’s config sysfs (i.e.,

cat
/sys/class/net/<ifname>/device/sriov/groups/<group_id>/config

)

Bandwidth Guarantee per Group of VFs

Bandwidth guarantee (minimum BW) can be set on a group of VFs to ensure this group is
able to transmit at least the amount of bandwidth specified on the wire.

Note the following:

The minimum BW settings on VF groups determine how the groups share the total
BW between themselves. It does not impact an individual VF’s rate settings.

The total minimum BW that is set on the VF groups should not exceed the total line
rate. Otherwise, results are unexpected.

It is still possible to set minimum BW on the individual VFs inside the group. This will
determine how the VFs share the group’s minimum BW between themselves. The
total minimum BW of the VF member should not exceed the minimum BW of the
group.

For instruction on how to create groups of VFs, see Limit Bandwidth per Group of VFs
above.

Example

With a 40Gb link speed, assuming 4 groups and default group 0 have been created:

echo 20000 >
/sys/class/net/<ifname>/device/sriov/group/1/min_tx_rate
echo 5000 > /sys/class/net/<ifname>/device/sriov/group/2/min_tx_rate

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.Single+Root+IO+Virtualization+%28SR-IOV%29+v5.1-2.3.7.1

MLX Drivers 256

Assuming there are VFs attempting to transmit in full line rate in all groups, the results
would look like: In which case, the minimum BW allocation would be:

Privileged VFs

In case a malicious driver is running over one of the VFs, and in case that VF's permissions
are not restricted, this may open security holes. However, VFs can be marked as trusted
and can thus receive an exclusive subset of physical function privileges or permissions.
For example, in case of allowing all VFs, rather than specific VFs, to enter a promiscuous
mode as a privilege, this will enable malicious users to sniff and monitor the entire physical
port for incoming traffic, including traffic targeting other VFs, which is considered a
severe security hole.

Privileged VFs Configuration

echo 15000 >
/sys/class/net/<ifname>/device/sriov/group/3/min_tx_rate

Group 0(default) : 0 - No BW guarantee is configured.
Group 1 : 20000 - This is the maximum min rate among groups
Group 2 : 5000 which is 25% of the maximum min rate
Group 3 : 15000 which is 75% of the maximum min rate
Group 4 : 0 - No BW guarantee is configured.

Group0 – Will have no BW to use since no BW guarantee was set on
it while other groups do have such settings.
Group1 – Will transmit at 20Gb/s
Group2 – Will transmit at 5Gb/s
Group3 – Will transmit at 15Gb/s
Group4 - Will have no BW to use since no BW guarantee was set on
it while other groups do have such settings.

MLX Drivers 257

In the configuration example below, the VM is located on VF-0 and has the following MAC
address: 11:22:33:44:55:66.

There are two ways to enable or disable trust:

1. Use the standard IP link commands - available from Kernel 4.5 and above.

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

2. Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> /
device/sriov/<VF index>/trust.

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

Probed VFs

Probing Virtual Functions (VFs) after SR-IOV is enabled might consume the adapter cards'
resources. Therefore, it is recommended not to enable probing of VFs when no monitoring

ip link set ens785f1 vf 0 trust on

ip link set ens785f1 vf 0 trust off

echo "ON" > /sys/class/net/ens785f1/device/sriov/0/trust

echo "OFF" > /sys/class/net/ens785f1/device/sriov/0/trust

MLX Drivers 258

of the VM is needed.

VF probing can be disabled in two ways, depending on the kernel version installed on your
server:

1. If the kernel version installed is v4.12 or above, it is recommended to use the PCI
sysfs interface sriov_drivers_autoprobe . For more information, see linux-next
branch .

2. If the kernel version installed is older than v4.12, it is recommended to use the
mlx5_core module parameter probe_vf with driver version 4.1 or above.

Example:

For more information on how to probe VFs, see HowTo Configure and Probe VFs on mlx5
DriversCommunity post.

VF Promiscuous Rx Modes

VF Promiscuous Mode

VFs can enter a promiscuous mode that enables receiving the unmatched traffic and all
the multicast traffic that reaches the physical port in addition to the traffic originally
targeted to the VF. The unmatched traffic is any traffic's DMAC that does not match any
of the VFs' or PFs' MAC addresses.

Note: Only privileged/trusted VFs can enter the VF promiscuous mode.

To set the promiscuous mode on for a VF, run:

To exit the promiscuous mode, run:

echo 0 > /sys/module/mlx5_core/parameters/probe_vf

ifconfig eth2 promisc

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers

MLX Drivers 259

VF All-Multi Mode

VFs can enter an all-multi mode that enables receiving all the multicast traffic sent
from/to the other functions on the same physical port in addition to the traffic originally
targeted to the VF.

Note: Only privileged/trusted VFs can enter the all-multi RX mode.

To set the all-multi mode on for a VF, run:

To exit the all-multi mode, run:

Uninstalling the SR-IOV Driver

To uninstall SR-IOV driver, perform the following:

1. For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines
(VM) or stop the Virtual Machines that use the Virtual Functions.

ifconfig eth2 –promisc

ifconfig eth2 allmulti

#ifconfig eth2 –allmulti

MLX Drivers 260

Please be aware that stopping the driver when there are VMs that use the VFs, will
cause machine to hang.

2. Run the script below. Please be aware, uninstalling the driver deletes the entire
driver's file, but does not unload the driver.

3. Restart the server.

SR-IOV Live Migration

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your
machine.
Do you want to continue?[y/N]:y
Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel
libibverbs libibverbs-devel libibverbs-devel-static libibverbs-
utils libmlx4 libmlx4-devel libibcm libibcm-devel libibumad
libibumad-devel libibumad-static libibmad libibmad-devel
libibmad-static librdmacm librdmacm-utils librdmacm-devel ibacm
opensm-libs opensm-devel perftest compat-dapl compat-dapl-
devel dapl dapl-devel dapl-devel-static dapl-utils srptools
infiniband-diags-guest ofed-scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as
/etc/infiniband/openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

Note

This feature is supported in Ethernet mode only.

MLX Drivers 261

Live migration refers to the process of moving a guest virtual machine (VM) running on
one physical host to another host without disrupting normal operations or causing other
adverse effects for the end user.

Using the Migration process is useful for:

load balancing

hardware independence

energy saving

geographic migration

fault tolerance

Migration works by sending the state of the guest virtual machine's memory and any
virtualized devices to a destination host physical machine. Migrations can be performed
live or not, in the live case, the migration will not disrupt the user operations and it will be
transparent to it as explained in the sections below.

Non-Live Migration

When using the non-live migration process, the Hypervisor suspends the guest virtual
machine, then moves an image of the guest virtual machine's memory to the destination
host physical machine. The guest virtual machine is then resumed on the destination host
physical machine, and the memory the guest virtual machine used on the source host
physical machine is freed. The time it takes to complete such a migration depends on the
network bandwidth and latency. If the network is experiencing heavy use or low
bandwidth, the migration will take longer then desired.

Live Migration

When using the Live Migration process, the guest virtual machine continues to run on the
source host physical machine while its memory pages are transferred to the destination
host physical machine. During migration, the Hypervisor monitors the source for any
changes in the pages it has already transferred and begins to transfer these changes
when all of the initial pages have been transferred.

It also estimates transfer speed during migration, so when the remaining amount of data
to transfer will take a certain configurable period of time, it will suspend the original guest
virtual machine, transfer the remaining data, and resume the same guest virtual machine
on the destination host physical machine.

MLX Drivers 262

MLX5 VF Live Migration

The purpose of this section is to demonstrate how to perform basic live migration of a
QEMU VM with an MLX5 VF assigned to it. This section does not explains how to create
VMs either using libvirt or directly via QEMU.

Requirements

The below are the requirements for working with MLX5 VF Live Migration.

Components Description

Adapter Cards

ConnectX-7 ETH
BlueField-3 ETH

Firmware
28.41.1000
32.41.1000

Kernel Linux v6.7 or newer

User Space Tools iproute2 version 6.2 or newer

QEMU QEMU 8.1 or newer

Libvirt Libvirt 8.6 or newer

Setup

Note
The same PSID
must be used on
both the source
and the target
hosts (identical
cards, same CAPs
and features are
needed), and have
the same
firmware version.

MLX Drivers 263

NVCONFIG

SR-IOV should be enabled and be configured to support the required number of VFs as of
enabling live migration. This can be achieved by the below command:

where:

SRIOV_EN Enable Single-Root I/O Virtualization (SR-IOV)

NUM_OF_
VFS

The total number of Virtual Functions (VFs) that can be supported, for each
PF.

VF_MIGRA
TION_MO
DE

Defines support for VF migration.

0x0: DEVICE_DEFAULT
0x1: MIGRATION_DISABLED
0x2: MIGRATION_ENABLED

Kernel Configuration

Needs to be compiled with driver MLX5_VFIO_PCI enabled. (i.e. CONFIG_MLX5_VFIO_PCI).

To load the driver, run:

QEMU

mlxconfig -d *<PF_BDF>* s SRIOV_EN=1 NUM_OF_VFS=4
VF_MIGRATION_MODE=2

modprobe mlx5_vfio_pci

MLX Drivers 264

Needs to be compiled with VFIO_PCI enabled (this is enabled by default).

Host Preparation

As stated earlier, creating the VMs is beyond the scope of this guide and we assume that
they are already created. However, the VM configuration should be a migratable
configuration, similarly to how it is done without SRIOV VFs.

Over libvirt

1. Set the PF in the "switchdev" mode.

2. Create the VFs that will be assigned to the VMs.

3. Set the VFs as migration capable.

1. See the name of the VFs, run:

Note

The below steps should be done before running the VMs.

devlink dev eswitch set pci/<PF_BDF> mode switchdev

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

devlink port show

MLX Drivers 265

2. Unbind the VFs from mlx5_core, run:

3. Use devlink to set each VF as migration capable, run:

4. Assign the VFs to the VMs.

1. Edit the VMs XML file, run:

2. Assign the VFs to the VM by adding the following under the "devices" tag:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

devlink port function set pci/<PF_BDF>/1 migratable
enable

virsh edit <VM_NAME>

<hostdev mode='subsystem' type='pci' managed='no'>
 <driver name='vfio'/>
 <source>
 <address domain='0x0000' bus='0x08' slot='0x00' function='0x2'/>
 </source>
 <address type='pci' domain='0x0000' bus='0x09' slot='0x00' function='0x0'/>
</hostdev>

Note

MLX Drivers 266

5. Set the destination VM in incoming mode.

1. Edit the destination VM XML file, run:

2. Set the destination VM in migration incoming mode by adding the following
under "domain" tag:

6. Bind the VFs to mlx5_vfio_pci driver.

1.

1. Detach the VFs from libvirt management, run:

The domain, bus, slot and function values above are
dummy values, replace them with your VFs values.

virsh edit <VM_NAME>

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 [...]
 <qemu:commandline>
 <qemu:arg value='--incoming'/>
 <qemu:arg value='tcp:<DEST_IP>:<DEST_PORT>'/>
 </qemu:commandline>
</domain>

Note

To be able to save the file, the above "xmlns:qemu"
attribute of the "domain" tag must be added as well.

MLX Drivers 267

2. Unbind the VFs from vfio-pci driver (the VFs are automatically bound to it after
running "virsh nodedev-detach"), run:

3. Set driver override, run:

4. Bind the VFs to mlx5_vfio_pci driver, run:

Directly over QEMU

1. Set the PF in "switchdev" mode.

2. Create the VFs that will be assigned to the VMs.

virsh nodedev-detach pci_<VF_BDF>

echo '<VF_BDF>' > /sys/bus/pci/drivers/vfio-pci/unbind

echo 'mlx5_vfio_pci' >
/sys/bus/pci/devices/<VF_BDF>/driver_override

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

devlink dev eswitch set pci/<PF_BDF> mode switchdev

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

MLX Drivers 268

3. Set the VFs as migration capable.

1. See the name of the VFs, run:

2. Unbind the VFs from mlx5_core, run:

3. Use devlink to set each VF as migration capable, run:

4. Bind the VFs to mlx5_vfio_pci driver:

1. Set driver override, run:

2. Bind the VFs to mlx5_vfio_pci driver, run:

Running the Migration

devlink port show

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

devlink port function set pci/<PF_BDF>/1 migratable
enable

echo 'mlx5_vfio_pci' >
/sys/bus/pci/devices/<VF_BDF>/driver_override

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

MLX Drivers 269

Over libvirt

1. Start the VMs in source and in destination, run:

2. Enable switchover-ack QEMU migration capability. Run the following commands
both in source and destination:

3. [Optional] Configure the migration bandwidth and downtime limit in source side:

4. Start migration by running the migration command in source side:

5. Check the migration status by running the info command in source side:

virsh start <VM_NAME>

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability
return-path on"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability
switchover-ack on"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter max-
bandwidth <VALUE>"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter
downtime-limit <VALUE>"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate -d tcp:<DEST_IP>:
<DEST_PORT>"

MLX Drivers 270

Directly over QEMU

1. Start the VM in source with the VF assigned to it:

2. Start the VM in destination with the VF assigned to it and with the "incoming"
parameter:

3. Enable switchover-ack QEMU migration capability. Run the following commands in
QEMU monitor, both in source and destination:

virsh qemu-monitor-command <VM_NAME> --hmp "info migrate"

Note

When the migration status is "completed" it means the
migration has finished successfully.

qemu-system-x86_64 [...] -device vfio-pci,host=
<VF_BDF>,id=mlx5_1

qemu-system-x86_64 [...] -device vfio-pci,host=
<VF_BDF>,id=mlx5_1 -incoming tcp:<DEST_IP>:<DEST_PORT>

migrate_set_capability return-path on

MLX Drivers 271

4. [Optional] Configure the migration bandwidth and downtime limit in source side:

5. Start migration by running the migration command in QEMU monitor in source side:

6. Check the migration status by running the info command in QEMU monitor in source
side:

Migration with MultiPort vHCA

Enables the usage of a dual port Virtual HCA (vHCA) to share RDMA resources (e.g., MR,
CQ, SRQ, PDs) across the two Ethernet (RoCE) NIC network ports and display the NIC as a
dual port device.

migrate_set_capability switchover-ack on

migrate_set_parameter max-bandwidth <VALUE>
migrate_set_parameter downtime-limit <VALUE>

migrate -d tcp:<DEST_IP>:<DEST_PORT>

info migrate

Note

When the migration status is "completed" it means the
migration has finished successfully.

MLX Drivers 272

MultiPort vHCA (MPV) VF is made of 2 "regular" VFs, one VF of each port. Creating a
migratable MPV VF requires the same steps as regular VF (see steps in section Over
libvirt). The steps should be performed on each of the NIC ports. MPV VFs traffic cannot
be configured with OVS. TC rules must be defined to configure the MPV VFs traffic.

Notes

Enabling Paravirtualization

To enable Paravirtualization:

1. Create a bridge.

Note

In ConnectX-7 adapter cards, migration cannot run in parallel on more
than 4 VFs. It is the administrator's responsibility to control that.

Note

Live migration requires same firmware version on both the source and
the target hosts.

Note

The example below works on RHEL7.* without a Network Manager.

vim /etc/sysconfig/network-scripts/ifcfg-bridge0

MLX Drivers 273

2. Change the related interface (in the example below bridge0 is created over eth5).

3. Restart the service network.

4. Attach a bridge to VM.

DEVICE=bridge0
TYPE=Bridge
IPADDR=12.195.15.1

NETMASK=255.255.0.0

BOOTPROTO=static

ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

DEVICE=eth5
BOOTPROTO=none
STARTMODE=on
HWADDR=00:02:c9:2e:66:52

TYPE=Ethernet
NM_CONTROLLED=no
ONBOOT=yes
BRIDGE=bridge0

ifconfig -a
…
eth6 Link encap:Ethernet HWaddr 52:54:00:E7:77:99

 inet addr:13.195.15.5 Bcast:13.195.255.255 Mask:255.255.0.0

 inet6 addr: fe80::5054:ff:fee7:7799/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:481 errors:0 dropped:0 overruns:0 frame:0

 TX packets:450 errors:0 dropped:0 overruns:0
carrier:0

MLX Drivers 274

VXLAN Hardware Stateless Offloads
VXLAN technology provides scalability and security challenges solutions. It requires
extension of the traditional stateless offloads to avoid performance drop. ConnectX
family cards offer the following stateless offloads for a VXLAN packet, similar to the ones
offered to non-encapsulated packets. VXLAN protocol encapsulates its packets using
outer UDP header.

Available hardware stateless offloads:

Checksum generation (Inner IP and Inner TCP/UDP)

Checksum validation (Inner IP and Inner TCP/UDP)

TSO support for inner TCP packets

RSS distribution according to inner packets attributes

Receive queue selection - inner frames may be steered to specific QPs

Enabling VXLAN Hardware Stateless Offloads

VXLAN offload is enabled by default for ConnectX-4 family devices running the minimum
required firmware version and a kernel version that includes VXLAN support.

To confirm if the current setup supports VXLAN, run:

Example:

 collisions:0 txqueuelen:1000

 RX bytes:22440 (21.9 KiB) TX bytes:19232 (18.7 KiB)
 Interrupt:10 Base address:0xa000

…

ethtool -k $DEV | grep udp_tnl

MLX Drivers 275

ConnectX-4 family devices support configuring multiple UDP ports for VXLAN offload.
Ports can be added to the device by configuring a VXLAN device from the OS command
line using the "ip" command.

Note: If you configure multiple UDP ports for offload and exceed the total number of
ports supported by hardware, then those additional ports will still function properly, but
will not benefit from any of the stateless offloads.

Example:

Note: dstport' parameters are not supported in Ubuntu 14.4.

The VXLAN ports can be removed by deleting the VXLAN interfaces.

Example:

Important Note

VXLAN tunneling adds 50 bytes (14-eth + 20-ip + 8-udp + 8-vxlan) to the VM Ethernet
frame. Please verify that either the MTU of the NIC who sends the packets, e.g. the VM
virtio-net NIC or the host side veth device or the uplink takes into account the tunneling
overhead. Meaning, the MTU of the sending NIC has to be decremented by 50 bytes (e.g
1450 instead of 1500), or the uplink NIC MTU has to be incremented by 50 bytes (e.g
1550 instead of 1500)

ethtool -k ens1f0 | grep udp_tnl
tx-udp_tnl-segmentation: on

ip link add vxlan0 type vxlan id 10 group 239.0.0.10 ttl 10 dev
ens1f0 dstport 4789

ip addr add 192.168.4.7/24 dev vxlan0
ip link set up vxlan0

ip link delete vxlan0

MLX Drivers 276

Q-in-Q Encapsulation per VF in Linux

This section explains how to configure IEEE 802.1ad Q-in-Q VLAN tagging (S-VLAN) for a
hypervisor on a per-VF basis. A VM connected to the VF via SR-IOV can transmit traffic
with or without a C-VLAN tag.

When a VF is configured for VST Q-in-Q encapsulation, the adapter hardware
automatically inserts an S-VLAN tag into outgoing packets from the VF to the physical
port. For incoming packets, the hardware removes the S-VLAN tag before delivering the
traffic to the VF.

Setup

The setup assumes there are two servers equipped with ConnectX-5/ConnectX-6 adapter
cards.

Prerequisites

Kernel must be of v3.10 or higher, or custom/inbox kernel must support vlan-stag

Note

This feature is supported on ConnectX-5 and ConnectX-6 adapter
cards only.

MLX Drivers 277

Firmware version 16/20.21.0458 or higher must be installed for ConnectX-
5/ConnectX-6 HCAs

The server should be enabled in SR-IOV and the VF should be attached to a VM on
the hypervisor.

Network Considerations - the network switches may require increasing the MTU (to
support 1522 MTU size) on the relevant switch ports.

Configuring Q-in-Q Encapsulation per Virtual Function for
ConnectX-5/ConnectX-6

1. Add the required S-VLAN (QinQ) tag (on the hypervisor) per port per VF. There are
two ways to add the S-VLAN:

1. By using sysfs:

2. By using the ip link command (available only when using the latest Kernel
version):

Check the configuration using the ip link show command:

echo '100:0:802.1ad' > /sys/class/net/ens1f0/device/sriov/0/vlan

ip link set dev ens1f0 vf 0 vlan 100 proto 802.1ad

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, vlan protocol
802.1ad, spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off

MLX Drivers 278

2. Optional: Add S-VLAN priority. Use the qos parameter in the ip link command (or
sysfs):

Check the configuration using the ip link show command:

3. Create a VLAN interface on the VM and add an IP address.

 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off

ip link set dev ens1f0 vf 0 vlan 100 qos 3 proto 802.1ad

ip link show ens1f0
ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq
state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, qos 3, vlan protocol
802.1ad, spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off

MLX Drivers 279

4. To verify the setup, run ping between the two VMs and open Wireshark or tcpdump
to capture the packet.

802.1Q Double-Tagging
This section describes the configuration of 802.1Q double-tagging support to the
hypervisor per Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR-
IOV) can send traffic with or without C-VLAN. Once a VF is configured to VST
encapsulation, the adapter's hardware will insert C-VLAN to any packet from the VF to the
physical port. On the receive side, the adapter hardware will strip the C-VLAN from any
packet coming from the wire to that VF.

Configuring 802.1Q Double-Tagging per Virtual Function

1. Add the required C-VLAN tag (on the hypervisor) per port per VF. There are two ways
to add the C-VLAN:

1. By using sysfs:

2. By using the ip link command (available only when using the latest Kernel
version):

Check the configuration using the ip link show command:

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40

ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40

ip link set dev ens5.40 up

echo '100:0:802.1q' > /sys/class/net/ens1f0/device/sriov/0/vlan

ip link set dev ens1f0 vf 0 vlan 100

MLX Drivers 280

2. Create a VLAN interface on the VM and add an IP address.

3. To verify the setup, run ping between the two VMs and open Wireshark or tcpdump
to capture the packet.

Scalable Functions
Scalable function is a lightweight function that has a parent PCI function on which it is
deployed. Scalable functions are useful for containers where netdevice and RDMA devices
of a scalable function can be assigned to a container. This way, the container can get
complete offload capabilities of an eswitch, isolation and dedicated accelerated network
device. For Step-by-Step Configuration instructions, follow the User Guide here.

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, spoof checking
off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off

ip link add link ens5 ens5.40 type vlan protocol 802.1q id
40

ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40

ip link set dev ens5.40 up

https://github.com/Mellanox/scalablefunctions/wiki/MLNX_OFED-step-by-step-guide

MLX Drivers 281

Resiliency
The chapter contains the following sections:

Reset Flow

Reset Flow
Reset Flow is activated by default. Once a "fatal device" error is recognized, both the HCA
and the software are reset, the ULPs and user application are notified about it, and a
recovery process is performed once the event is raised.

Currently, a reset flow can be triggered by a firmware assert with Recover Flow Request
(RFR) only. Firmware RFR support should be enabled explicitly using mlxconfig commands.

 To query the current value, run:

 To enable RFR bit support, run:

Kernel ULPs

Once a "fatal device" error is recognized, an IB_EVENT_DEVICE_FATAL event is created,
ULPs are notified about the incident, and outstanding WQEs are simulated to be returned
with "flush in error" message to enable each ULP to close its resources and not get stuck
via calling its remove_one callback as part of "Reset Flow".

mlxconfig -d /dev/mst/mt4115_pciconf0 query | grep
SW_RECOVERY_ON_ERRORS

mlxconfig -d /dev/mst/mt4115_pciconf0 set
SW_RECOVERY_ON_ERRORS=true

MLX Drivers 282

Once the unload part is terminated, each ULP is called with its add_one callback, its
resources are re-initialized and it is re-activated.

User Space Applications (IB/RoCE)

Once a "fatal device" error is recognized an IB_EVENT_DEVICE_FATAL event is created,
applications are notified about the incident and relevant recovery actions are taken.

Applications that ignore this event enter a zombie state, where each command sent to
the kernel is returned with an error, and no completion on outstanding WQEs is expected.

The expected behavior from the applications is to register to receive such events and
recover once the above event is raised. Same behavior is expected in case the NIC is
unbounded from the PCI and later is rebounded. Applications running over RDMA CM
should behave in the same manner once the RDMA_CM_EVENT_DEVICE_REMOVAL event
is raised.

The following is an example of using the unbind/bind for NIC defined by 0000:04:00.0 :

SR-IOV

If the Physical Function recognizes the error, it notifies all the VFs about it by marking
their communication channel with that information, consequently, all the VFs and the PF
are reset.

If the VF encounters an error, only that VF is reset, whereas the PF and other VFs continue
to work unaffected.

Forcing the VF to Reset

If an outside reset is forced by using the PCIe sysfs entry for a VF, a reset is executed on
that VF once it runs any command over its communication channel.

For example, the following command can be used on a hypervisor to reset a VF defined by
0000:04:00.1 :

echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/bind

MLX Drivers 283

Extended Error Handling (EEH)

Extended Error Handling (EEH) is a PowerPC mechanism that encapsulates AER, thus
exposing AER events to the operating system as EEH events.

The behavior of ULPs and user space applications is identical to the behavior of AER.

CRDUMP

CRDUMP feature allows for taking an automatic snapshot of the device CR-Space in case
the device's FW/HW fails to function properly.

Snapshots Triggers:

The snapshot is triggered after firmware detects a critical issue, requiring a recovery flow.

This snapshot can later be investigated and analyzed to track the root cause of the failure.

Currently, only the first snapshot is stored, and is exposed using a temporary virtual file.
The virtual file is cleared upon driver reset.

When a critical event is detected, a message indicating CRDUMP collection will be printed
to the Linux log. User should then back up the file pointed to in the printed message. The
file location format is: /proc/driver/mlx5_core/crdump/<pci address>

Snapshot should be copied by Linux standard tool for future investigation.

Firmware Tracer

This mechanism allows for the device's firmware/hardware to log important events into
the event tracing system (/sys/kernel/debug/tracing) without requiring any NVIDIA tool.

echo 1 >/sys/bus/pci/devices/0000:04:00.1/reset

Note

MLX Drivers 284

This feature is enabled by default, and can be controlled using sysfs commands.

 To disable the feature:

 To enable the feature:

 To view FW traces using vim text editor:

To be able to use this feature, trace points must be enabled in the
kernel.

echo 0 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

echo 1 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

vim /sys/kernel/debug/tracing/trace

MLX Drivers 285

Docker Containers
On Linux, Docker uses resource isolation of the Linux kernel, to allow independent
"containers" to run within a single Linux kernel instance.

Docker containers are supported on MLNX_OFEDusing Docker runtime. Virtual RoCE and
InfiniBand devices are supported using SR-IOV mode.

Currently, RDMA/RoCE devices are supported in the modes listed in the following table.

Linux Containers Networking Modes

Orchestration and
Clustering Tool

Version Networking Mode Link Layer
Virtualizat
ion Mode

Docker

Docker
Engine
17.03 or
higher

SR-IOV using sriov-plugin
along with docker run
wrapper tool

InfiniBand
and
Ethernet

SR-IOV

Kubernetes

Kubernet
es
1.10.3 or
higher

SR-IOV using device plugin,
and using SR- IOV CNI plugin

InfiniBand
and
Ethernet

SR-IOV

VXLAN using IPoIB bridge InfiniBand
Shared
HCA

Docker Using SR-IOV
In this mode, Docker engine is used to run containers along with SR-IOV networking
plugin. To isolate the virtual devices, docker_rdma_sriov tool should be used. This mode is
applicable to both InfiniBand and Ethernet link layers.

To obtain the plugin, visit: hub.docker.com/r/rdma/sriov-plugin

To install the docker_rdma_sriov tool, use the container tools installer available via
hub.docker.com/r/rdma/container_tools_installer

For instructions on how to use Docker with SR-IOV, refer to Docker RDMA SRIOV
Networking with ConnectX4/ConnectX5/ConnectX6 Community post.

https://hub.docker.com/r/rdma/sriov-plugin
https://hub.docker.com/r/rdma/container_tools_installer
https://enterprise-support.nvidia.com/s/article/Docker-RDMA-SRIOV-Networking-with-ConnectX4-ConnectX5-ConnectX6
https://enterprise-support.nvidia.com/s/article/Docker-RDMA-SRIOV-Networking-with-ConnectX4-ConnectX5-ConnectX6

MLX Drivers 286

Kubernetes Using SR-IOV
In order to use RDMA in Kubernetes environment with SR-IOV networking mode, two main
components are required:

1. RDMA device plugin - this plugin allows for exposing RDMA devices in a Pod

2. SR-IOV CNI plugin - this plugin provisions VF net device in a Pod

When used in SR-IOV mode, this plugin enables SR-IOV and performs necessary
configuration including setting GUID, MAC, privilege mode, and Trust mode.

The plugin also allocates the VF devices when Pods are scheduled and requested by
Kubernetes framework.

Kubernetes with Shared HCA
One RDMA device (HCA) can be shared among multiple Pods running in a Kubernetes
worker nodes. User defined networks are created using VXLAN or VETH networking
devices. RDMA device (HCA) can be shared among multiple Pods running in a Kubernetes
worker nodes.

MLX Drivers 287

HPC-X
For information on HPC-X®, please refer to HPC-X User Manual at
developer.nvidia.com/networking/hpc-x.

https://developer.nvidia.com/networking/hpc-x

MLX Drivers 288

Fast Driver Unload
This feature enables optimizing mlx5 driver teardown time in shutdown and kexec flows.

The fast driver unload is disabled by default. To enable it, the prof_sel module
parameter of mlx5_core module should be set to 3.

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are

MLX Drivers 289

trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright 2025. PDF Generated on 02/11/2025

	InfiniBand Network
	InfiniBand Interface
	NVIDIA SM
	InfiniBand QoS
	IP Over InfiniBand
	Advanced Transport
	Optimized Memory Access
	NVIDIA PeerDirect
	CPU Overhead Distribution
	Out-of-order Data Placement
	IB Router
	MAD Congestion Control

	Ethernet Network
	Ethernet Interface
	Ethernet QoS
	Ethtool
	Checksum Offload
	Ignore FCS Errors
	RDMA over Converged Ethernet
	Flow Control
	Explicit Congestion Notification
	RSS Support
	Time Stamping
	Flow Steering
	Wake-on-LAN
	Q-in-Q Tunneling
	VLAN Stripping in Linux Verbs
	Offloaded Traffic Sniffer
	Dump Configuration
	Local Loopback Disable
	kTLS Offloads
	IPsec Crypto Offload
	IPsec Packet Offload
	MACsec Full Offload

	DPU
	QoS Configuration
	Shared RQ Mode

	Storage Protocols
	SRP - SCSI RDMA Protocol
	iSER - iSCSI Extensions for RDMA
	Lustre
	NVME-oF - NVM Express over Fabrics

	Virtualization
	SR-IOV
	SR-IOV Live Migration

	Enabling Paravirtualization
	VXLAN Hardware Stateless Offloads
	Q-in-Q Encapsulation per VF in Linux
	802.1Q Double-Tagging
	Scalable Functions

	Resiliency
	Reset Flow

	Docker Containers
	Docker Using SR-IOV
	Kubernetes Using SR-IOV
	Kubernetes with Shared HCA

	HPC-X
	Fast Driver Unload

