
DOCA Flow

Table of contents

DOCA Flow Connection Tracking 140

DOCA Flow Tune Server 164

DOCA Flow 1

Table of contents

DOCA Flow Connection Tracking

DOCA Flow Tune Server

DOCA Flow 2

This guide describes how to deploy the DOCA Flow library, the philosophy of the DOCA
Flow API, and how to use it. The guide is intended for developers writing network function
applications that focus on packet processing (such as gateways). It assumes familiarity
with the network stack and DPDK.

Introduction

DOCA Flow is the most fundamental API for building generic packet processing pipes in
hardware. The DOCA Flow library provides an API for building a set of pipes, where each
pipe consists of match criteria, monitoring, and a set of actions. Pipes can be chained so
that after a pipe-defined action is executed, the packet may proceed to another pipe.

Using DOCA Flow API, it is easy to develop hardware-accelerated applications that have a
match on up to two layers of packets (tunneled).

MAC/VLAN/ETHERTYPE

IPv4/IPv6

TCP/UDP/ICMP

GRE/VXLAN/GTP-U/ESP/PSP

Metadata

The execution pipe can include packet modification actions such as the following:

Modify MAC address

Modify IP address

Modify L4 (ports)

Strip tunnel

Add tunnel

Set metadata

Encrypt/Decrypt

The execution pipe can also have monitoring actions such as the following:

DOCA Flow 3

Count

Policers

The pipe also has a forwarding target which can be any of the following:

Software (RSS to subset of queues)

Port

Another pipe

Drop packets

Prerequisites

A DOCA Flow-based application can run either on the host machine or on an NVIDIA®
BlueField® DPU target. Flow-based programs require an allocation of huge pages, hence
the following commands are required:

Architecture

The following diagram shows how the DOCA Flow library defines a pipe template, receives
a packet for processing, creates the pipe entry, and offloads the flow rule in NIC hardware.

$ echo '1024' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs -o pagesize=2M nodev /mnt/huge

DOCA Flow 4

Features of DOCA Flow:

User-defined set of matches parser and actions

DOCA Flow pipes can be created or destroyed dynamically

Packet processing is fully accelerated by hardware with a specific entry in a flow pipe

Packets that do not match any of the pipe entries in hardware can be sent to Arm
cores for exception handling and then reinjected back to hardware

The DOCA Flow pipe consists of the following components:

Monitor (MON in the diagram) - counts, meters, or mirrors

Modify (MDF in the diagram) - modifies a field

Forward (FWD in the diagram) - forwards to the next stage in packet processing

Steering Domains

DOCA Flow organizes pipes into high-level containers named domains to address the
specific needs of the underlying architecture.

DOCA Flow 5

A key element in defining a domain is the packet direction and a set of allowed actions.

A domain is a pipe attribute (also relates to shared objects)

A domain restricts the set of allowed actions

Transition between domains is well-defined (packets cannot cross domains
arbitrarily)

A domain may restrict the sharing of objects between packet directions

Packet direction can restrict the move between domains

List of Steering Domains

DOCA Flow provides the following set of predefined steering domains:

Domain Description

DOCA_FLOW_PIPE_DOM
AIN_DEFAULT

Default domain for actions on ingress traffic
Encapsulated and secure actions are not allowed here
The next milestone is queue or pipe in the EGRESS
domain
Miss action is: Drop

DOCA_FLOW_PIPE_DOM
AIN_SECURE_INGRESS

For secure actions on ingress traffic
Encapsulation and encrypting actions not allowed here
The only allowed domain for decrypting secure actions
The next milestone is queue or pipe in the DEFAULT or
EGRESS domain
Only meta register is preserved
Miss action is: Drop
Memory may be optimized if set with
DOCA_FLOW_DIRECTION_NETWORK_TO_HOST

direction information

DOCA_FLOW_PIPE_DOM
AIN_EGRESS

Domain for actions on egress traffic
Decapsulation and secure actions are not allowed here
The next milestone is wire/representor or pipe in
SECURE_EGRESS domain
Miss action is: Send to wire/representor

DOCA Flow 6

Domain Description

DOCA_FLOW_PIPE_DOM
AIN_SECURE_EGRESS

Domain for secure actions on egress traffic
Decapsulation actions are not allowed here
The only allowed domain for encrypting secure action
The next milestone is wire/representor
Miss action is: Send to wire/representor
Memory may be optimized if set with
DOCA_FLOW_DIRECTION_HOST_TO_NETWORK

direction information

Domains in VNF Mode

DOCA Flow 7

Domains in Switch Mode

Note

In switch mode, forwarding from a pipe with the default domain to
the egress domain root pipe is allowed, while forwarding from the
egress domain to the default domain is not allowed.

Note

DOCA Flow 8

API

DOCA API is available through the NVIDIA DOCA Library APIs page.

Flow Life Cycle

Initialization Flow

Before using any DOCA Flow function, it is mandatory to call DOCA Flow initialization,
doca_flow_init() , which initializes all resources required by DOCA Flow.

Traffic from software Tx forwards to the egress root pipe.

Note

A pipe with RSS forward follows the above rules.

Note

Encap is suggested to be done from egress.

Info

The pkg-config (*.pc file) for the DOCA Flow library is doca-flow .

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 9

Pipe Mode

This mode (mode_args) defines the basic traffic in DOCA. It creates some miss rules
when a DOCA port initializes. Currently, DOCA supports 3 modes:

vnf

A packet arriving from one of the device's ports is processed, and can be sent to
another port. By default, missed packets go to RSS.

The following diagram shows the basic traffic flow in vnf mode. Packet1 firstly
misses and is forwarded to host RSS. The app captures this packet and decides how
to process it and then creates a pipe entry. Packet2 will hit this pipe entry and do the
action, for example, for VXLAN, will do decap, modify, and encap, then is sent out

from P1.

switch

Used for internal switching, only representor ports are allowed, for example, uplink
representors and SF/VF representors. Packet is forwarded from one port to another.
If a packet arrives from an uplink and does not hit the rules defined by the user's
pipe, then the packet is received on all RSS queues of the representor of the uplink.

The following diagram shows the basic flow of traffic in switch mode. Packet1
firstly misses to host RSS queues. The app captures this packet and decides to

DOCA Flow 10

which representor the packet goes, and then sets the rule. Packets hit this rule and

go to representor0.

doca_dev field is mandatory in doca_flow_port_cfg (using

doca_flow_port_cfg_set_dev()) and isolated mode should be specified.

DOCA Flow switch mode unifies all the ports to the switch manager port for traffic
management. This means that all the traffic is handled by switch manager port.
Users only must create an RSS pipe on the switch manager port to get the missed
traffic, and they should only manage the pipes on the switch manager port. Switch
mode can work with two different mode_args configurations: With or without

expert . The way to retrieve the miss traffic source's port_id depends on this
configuration:

Note

The application must avoid initialization of the VF/SF representor
ports in DPDK API (i.e., the following functions
rte_eth_dev_configure() , rte_eth_rx_queue_setup()

, rte_eth_dev_start() must not be called for VF/SF
representor ports).

Note

DOCA Flow 11

If expert is not set, the traffic misses to software would be tagged with

port_id information in the mbuf CQE field to allow users to deduce the

source port_id . Meanwhile, users can set the destination port_id to mbuf
meta and the packet is sent out directly to the destination port based on the
meta information.

In switch mode, the default fwd_miss of the pipe (once

fwd_miss is not configured by the user) is as follows:

Forward to kernel in isolated mode

Forward to the port RSS in non-isolated mode

Info

Please refer to the "Flow Switch to Wire" sample to get
more information regarding the port_id management
with missed traffic mbuf.

DOCA Flow 12

If expert is set, the port_id is not added to the packet. Users can
configure the pipes freely to implement their own solution.

remote-vnf

Remote mode is a BlueField mode only, with two physical ports (uplinks). Users must
use doca_flow_port_pair to pair one physical port and one of its representors.
A packet from this uplink, if it does not hit any rules from the users, is firstly received
on this representor. Users must also use doca_flow_port_pair to pair two
physical uplinks. If a packet is received from one uplink and hits the rule whose FWD
action is to another uplink, then the packets are sent out from it.

The following diagram shows the basic traffic flow in remote-vnf mode. Packet1,
from BlueField uplink P0, firstly misses to host VF0. The app captures this packet
and decides whether to drop it or forward it to another uplink (P1). Then, using gRPC

Note

Traffic cloned from the VF to the RSS pipe misses its
port_id information due to firmware limitation.

DOCA Flow 13

to set rules on P0, packet2 hits the rule, then is either dropped or is sent out from

P1.

Start Point

DOCA Flow API serves as an abstraction layer API for network acceleration. The packet
processing in-network function is described from ingress to egress and, therefore, a pipe
must be attached to the origin port. Once a packet arrives to the ingress port, it starts
the hardware execution as defined by the DOCA API.

doca_flow_port is an opaque object since the DOCA Flow API is not bound to a
specific packet delivery API, such as DPDK. The first step is to start the DOCA Flow port
by calling doca_flow_port_start() . The purpose of this step is to attach user
application ports to the DOCA Flow ports.

When DPDK is used, the following configuration must be provided:

enum doca_flow_port_type type = DOCA_FLOW_PORT_DPDK_BY_ID;

const char *devargs = "1";

DOCA Flow 14

The devargs parameter points to a string that has the numeric value of the DPDK

port_id in decimal format. The port must be configured and started before calling this
API. Mapping the DPDK port to the DOCA port is required to synchronize application ports
with hardware ports.

Port Operation State

DOCA Flow ports can be initialized multiple times from different instances. Each instance
prepares its pipeline, but only one actively receives port traffic at a time. The instance
actively handling the port traffic depends on the operation state set by the
doca_flow_port_cfg_set_operation_state() function:

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE – The instance actively handles
incoming and outgoing traffic

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP – The instance
handles traffic actively when no other active instance is available

DOCA_FLOW_PORT_OPERATION_STATE_STANDBY – The instance handles traffic

only when no active or active_ready_to_swap instance is available

DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED – The instance does not
handle traffic, regardless of the state of other instances

If the doca_flow_port_cfg_set_operation_state() function is not called, the

default state DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE is applied.

When the active port is closed, either gracefully or due to a crash, the standby instance
automatically becomes active without any action required.

Note

When a port is configured with a state that expects to handle traffic,
it takes effect only after root pipes are created for this port.

DOCA Flow 15

The port operation state can be modified after the port is started using the
doca_flow_port_operation_state_modify() function.

Use Case Examples

Hot Upgrade

This operation state mechanism allows upgrading the DOCA Flow program without losing
any traffic.

To upgrade an existing DOCA Flow program with ports started in
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE state (Instance A):

1. Open a new Instance B and start its ports in
DOCA_FLOW_PORT_OPERATION_STATE_STANDBY state.

2. Modify Instance A's ports from DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE to

DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED state. At this point, Instance
B starts receiving traffic.

3. Close Instance A.

4. Open a new Instance C with DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED
state. Instance C is the upgraded version of Instance A.

5. Create the entire pipeline for Instance C.

6. Change Instance C's state from
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED to

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE . At this point, Instance B stops
receiving traffic and Instance C starts.

7. Instance B can either be closed or kept as a backup should Instance C crash.

Swap Existing Instances

This mechanism also facilitates swapping two different DOCA Flow programs without
losing any traffic.

DOCA Flow 16

To swap between two existing DOCA Flow programs with ports started in
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE and

DOCA_FLOW_PORT_OPERATION_STATE_STANDBY states (Instance A and Instance B,
respectively):

1. Modify Instance A's ports from DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE to

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP .

2. Modify Instance B's ports from DOCA_FLOW_PORT_OPERATION_STATE_STANDBY
to DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE . At this point, Instance B starts
receiving traffic.

3. Modify Instance A's ports from
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP to

DOCA_FLOW_PORT_OPERATION_STATE_STANDBY .

Limitations

Supported only in switch mode – the mode_args string must include "switch" .

Only the switch port supports states; its representors are affected by its state.
Starting a representor port or calling the modify function with a non-active
operation state should fail.

Two instances cannot be in the same operation state simultaneously, except for
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED . If a new instance initializes

a port while another instance with the same operation state exists, a
DOCA_ERROR_ALREADY_EXIST error is returned either during port startup or root

pipe creation.

Create Pipe and Pipe Entry

Pipe is a template that defines packet processing without adding any specific hardware
rule. A pipe consists of a template that includes the following elements:

DOCA Flow 17

Match

Monitor

Actions

Forward

The following diagram illustrates a pipe structure.

The creation phase allows the hardware to efficiently build the execution pipe. After the
pipe is created, specific entries can be added. A subset of the pipe may be used (e.g.,
skipping the monitor completely, just using the counter, etc).

Pipe Matching or Action Applying

DOCA Flow allows defining criteria for matching on a packet or for taking actions on a
matched packet by modifying it. The information defining these criteria is provided
through the following pointers:

Match or action pointer – given at pipe or entry creation

Mask pointer – optionally given at pipe creation

Defining criteria for matching or actions on a packet can be done at the pipe level, where
it applies to all packets of a pipe, or specified on a per entry basis, where each entry
defines the operation on either the match, actions, or both.

In DOCA Flow terminology, when a field is identified as CHANGEABLE at pipe creation, this
means that the actual criterion of the field is deferred to entry creation. Different entries
can provide different criteria for a CHANGEABLE field.

DOCA Flow 18

A match or action field can be categorized, during pipe creation, as one of the following:

IGNORED – Ignored in either the match or action taking process

CHANGEABLE – When the actual behavior is deferred to the entry creation stage

SPECIFIC – Value is used as is in either match or action process

A mask field can either be provided, in which case it is called explicit matching, or action
applying. If the mask pointer is NULL, we call it implicit matching or action applying. The
following subsections provide the logic governing matching and action applying.

When a field value is specified as 0xffff it means that all the field's bits are set (e.g., for

TTL it means 0xff and for IPv4 address it means 0xffffffff).

Matching

Matching is the process of selecting packets based on their fields' values and steering
them for further processing. Processing can either be further matching or actions
applying.

The packet enters the green filter which modifies it by masking it with the value A. The
output value, P&A, is then compared to the value B, and if they are equal, then that is a
match.

The values of A and B are evaluated according to the values of the pipe configuration and
entry configuration fields, according to the tables in sections "Implicit matching" and
"Explicit matching".

Implicit Matching

Match Type
Pipe Match
Value (V)

Pipe Match
Mask (M)

Entry Match
Value (E)

Filter
(A)

Rule
(B)

Ignore 0 NULL N/A 0 0

DOCA Flow 19

Match Type
Pipe Match
Value (V)

Pipe Match
Mask (M)

Entry Match
Value (E)

Filter
(A)

Rule
(B)

Constant 0<V<0xffff NULL N/A 0xffff V

Changeable (per
entry)

0xffff NULL 0≤E≤0xffff 0xffff E

Explicit Matching

Match
Type

Pipe Match Value
(V)

Pipe Match Mask
(M)

Entry Match Value
(E)

Filter
(A)

Rule
(B)

Constant V!=0xffff 0<M≤0xffff 0≤E≤0xffff M M&V

Changeab
le

V==0xffff 0<M≤0xffff 0≤E≤0xffff M M&E

Ignored 0≤V<0xffff M==0 0≤E≤0xffff 0 0

Action Applying

Implicit Action Applying

Action
Type

Pipe Action value
(V)

Pipe Action Mask
(M)

Entry Action value
(E)

Action on the
field

Ignore 0 NULL N/A none

Constant 0 < V < 0xffff NULL N/A set to V

Changeab
le

0xffff NULL E set to E

Implicit action applying example:

Destination IPv4 address is 255.255.255.255

No mask provided

Entry value is 192.168.0.1

DOCA Flow 20

Result – The action field is changeable. Therefore, the value is provided by the entry.
If a match on the packet occurs, the packet destination IPv4 address is changed to
192.168.0.1.

Explicit Action Applying

Action
Type

Pipe Action
value (V)

Pipe Action
Mask (M)

Entry Action
value (E)

Action on the field

consta
nt

V!=0xffff 0≤M≤0xff
ff

0≤E≤0xfff
f

set to (~M & P) | (M & V)
In words: modify only bits that are set
on the mask to the values in V

Chang
eable

V==0xffff 0<M≤0xffff
0≤E≤0xfff
f

set to (~M & P) | (M & E)

Ignore
d 0≤V<0xffff M==0 0≤E≤0xfff

f
none

Explicit action applying example:

Destination IPv4 address is 192.168.10.1

Mask is provided and equals 255.255.0.0

Entry value is ignored

Result – If a match on the packet occurs, the packet destination IPv4 value changes
to 192.168.0.0.

Setting Pipe Match or Action

Info

Assume P is packet's field value.

DOCA Flow 21

Match is a mandatory parameter when creating a pipe. Using the doca_flow_match
struct, users must define the packet fields to be matched by the pipe.

For each doca_flow_match field, users select whether the field type is:

Ignore (match any) – the value of the field is ignored in a packet. In other words,
match on any value of the field.

Constant (specific) – all entries in the pipe have the same value for this field. Users
should not put a value for each entry.

Changeable – the value of the field is defined per entry. Users must provide it upon
adding an entry.

The match field type can be defined either implicitly or explicitly using the
doca_flow_pipe_cfg_set_match(struct doca_flow_pipe_cfg *cfg, const
doca_flow_match *match, const doca_flow_match *match_mask)

function. If match_mask == NULL , then it is done implicitly. Otherwise, it is explicit.

In the tables in the following subsections, an example is used of a 16-bit field (such as
layer-4 destination port) where:

Note

L4 type, L3 type, and tunnel type cannot be changeable.

Note

gtp_next_ext_hdr_type supports only psc type (0x85).

Note

DOCA Flow 22

P stands for the packet field value

V stands for the pipe match field value

M stands for the pipe mask field value

E stands for the match entry field value

Implicit Match

Match Type
Pipe Match
Value (V)

Pipe Match
Mask (M)

Entry Match
Value (E)

Filter
(A)

Rule
(B)

Ignore 0 NULL N/A 0 0

Constant 0<V<0xffff NULL N/A 0xffff V

Changeable (per
entry)

0xffff NULL 0≤E≤0xffff 0xffff E

To match implicitly, the following considerations should be taken into account.

Ignored fields:

Field is zeroed

Pipeline has no comparison on the field

Constant fields – These are fields that have a constant value among all entries. For
example, as shown in the following, the tunnel type is VXLAN:

These fields must only be configured once at pipe build stage, not once per new
pipeline entry.

The same concept would apply to any other field (such as an IP
address occupying 32 bits).

match.tun.type = DOCA_FLOW_TUN_VXLAN;

DOCA Flow 23

Changeable fields – These are fields whose value may change per entry. For example,
the following shows match on a destination IPv4 address of variable per-entry value
(outer 5-tuple):

The following is an example of a match, where:

Outer 5-tuple

L3 type is IPv4 – constant among entries by design

L4 type is UDP – constant among entries by design

Tunnel type is DOCA_FLOW_TUN_VXLAN – constant among entries by
design

IPv4 destination address varies per entry

UDP destination port is always DOCA_VXLAN_DEFAULT_PORT

VXLAN tunnel ID varies per entry

The rest of the packet fields are ignored

Inner 5-tuple

L3 type is IPv4 – constant among entries by design

L4 type is TCP – constant among entries by design

IPv4 source and destination addresses vary per entry

TCP source and destination ports vary per entry

The rest of the packet fields are ignored

match.outer.ip4.dst_ip = 0xffffffff;

// filter creation

DOCA Flow 24

static void build_underlay_overlay_match(struct doca_flow_match
*match)
{
 //outer
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 match->tun.type = DOCA_FLOW_TUN_VXLAN;
 match->outer.ip4.dst_ip = 0xffffffff;
 match->outer.udp.l4_port.dst_port = DOCA_VXLAN_DEFAULT_PORT;
 match->tun.vxlan_tun_id = 0xffffffff;

 //inner
 match->inner.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->inner.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP;
 match->inner.ip4.dst_ip = 0xffffffff;
 match->inner.ip4.src_ip = 0xffffffff;
 match->inner.tcp.l4_port.src_port = 0xffff;
 match->inner.tcp.l4_port.dst_port = 0xffff;
}

// create entry specifying specific values to match upon
doca_error_t add_entry(struct doca_flow_pipe *pipe, struct
doca_flow_port *port,
 struct doca_flow_pipe_entry **entry)
{
 struct doca_flow_match match = {};
 struct entries_status status = {};
 doca_error_t result;

 match.outer.ip4.dst_ip = BE_IPV4_ADDR(7, 7, 7, 1);
 match.tun.vxlan_tun_id = RTE_BE32(9876);
 match.inner.ip4.src_ip = BE_IPV4_ADDR(8, 8, 8, 1);
 match.inner.ip4.dst_ip = BE_IPV4_ADDR(9, 9, 9, 1);
 match.inner.tcp.l4_port.src_port = rte_cpu_to_be_16(5678);
 match.inner.tcp.l4_port.dst_port = rte_cpu_to_be_16(1234);

DOCA Flow 25

Explicit Match

Match
Type

Pipe Match Value
(V)

Pipe Match Mask
(M)

Entry Match Value
(E)

Filter
(A)

Rule
(B)

Constant V!=0xffff 0<M≤0xffff 0≤E≤0xffff M M&V

Changeab
le

V==0xffff 0<M≤0xffff 0≤E≤0xffff M M&E

Ignored 0≤V<0xffff M==0 0≤E≤0xffff 0 0

In this case, there are two doca_flow_match items, the following considerations should
be considered:

Ignored fields

M equals zero. This can be seen from the table where the rule equals 0. Since
mask is also 0, the resulting packet after the filter is0. Thus, the comparison
always succeeds.

 result = doca_flow_pipe_add_entry(0, pipe, &match, &actions,
NULL, NULL, 0, &status, entry);
}

Note

The fields of the doca_flow_meta struct inside the match are not
subject to implicit match rules and must be paired with explicit mask
values.

match_mask.inner.ip4.dst_ip = 0;

DOCA Flow 26

Constant fields

These are fields that have a constant value. For example, as shown in the following,
the inner 5-tuple match on IPv4 destination addresses belonging to the
0.0.0.0/24 subnet, and this match is constant among all entries:

For example, as shown in the following, the inner 5-tuple match on IPv4 destination
addresses belonging to the 1.2.0.0/16 subnet, and this match is constant

among all entries. The last two octets of the match.inner.ip4.dst_ip are

ignored because the match_mask of 255.255.0.0 is applied:

Once a field is defined as constant, the field's value cannot be changed per entry.

A more complex example of constant matches may be achieved as follows:

// BE_IPV4_ADDR converts 4 numbers A,B,C,D to a big endian
representation of IP address A.B.C.D
match.inner.ip4.dst_ip = 0;
match_mask.inner.ip4.dst_ip = BE_IPV4_ADDR(255, 255, 255, 0);

// BE_IPV4_ADDR converts 4 numbers A,B,C,D to a big endian
representation of IP address A.B.C.D
match.inner.ip4.dst_ip = BE_IPV4_ADDR(1, 2, 3, 4);
match_mask.inner.ip4.dst_ip = BE_IPV4_ADDR(255, 255, 0, 0);

Tip

Users should set constant fields to zero when adding entries for
better code readability.

DOCA Flow 27

The following ports would be matched:

0x5020 - 0x502f

0x5120 - 0x512f

...

0x5f20 - 0x5f2f

Changeable fields

The following example matches on either FTP or TELNET well known port numbers and
forwards packets to a server after modifying the destination IP address and destination
port numbers. In the example, either FTP or TELNET are forwarded to the same server.
FTP is forwarded to port 8000 and TELNET is forwarded to port 9000.

match_mask.outer.tcp.l4_port.dst_port =
rte_cpu_to_be_16(0xf0f0);
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0x5020)

// at Pipe creation
doca_flow_pipe_cfg_set_name(pipe_cfg, "PORT_MAPPER");
doca_flow_pipe_cfg_set_type(pipe_cfg, DOCA_FLOW_PIPE_BASIC);
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0xffff); // v
match_mask.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0xffff);
// M
doca_flow_pipe_cfg_set_match(pipe_cfg, &match, &match_mask);
actions_arr[0] = &actions;
doca_flow_pipe_cfg_set_actions(pipe_cfg, action_arr, NULL, NULL,
1);
doca_flow_pipe_cfg_set_is_root(pipe_cfg, true);

// Adding entries
// FTP
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(20); // E

DOCA Flow 28

Relaxed Match

Relaxed matching is the default working mode in DOCA Flow. Relaxed mode grants users
full control on matching fields and guarantees that no fields are implicitly added by DOCA
Flow.

Relaxed Matching and Pipeline Design Considerations

Relaxed matching mode provides full control to the DOCA application developer over the
match design, without adding implicit match logic by the DOCA Flow library. This approach
increases user responsibility to prevent unintended side effects caused by packet layout
similarities (e.g., between UDP and TCP source/destination ports) or by skipping header
type validation before matching on header fields. For instance, matching solely on a UDP
destination port does not verify the presence of an L4 header or confirm that the L4
header is of UDP type.

actions.outer.ip4.src_ip = server_addr;
actions.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(8000);
result = doca_flow_pipe_add_entry(0, pipe, &match, &actions,
NULL, NULL, 0, &status, entry);

// TELNET
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(23); // E
actions.outer.ip4.src_ip = server_addr;
actions.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(9000);
result = doca_flow_pipe_add_entry(0, pipe, &match, &actions,
NULL, NULL, 0, &status, entry);

Note

Although relaxed matching can be disabled per pipe using the
enable_strict_matching pipe attribute, be aware that this

attribute will be deprecated at some point in the future.

DOCA Flow 29

To ensure effective design, early-stage pipes should classify packet types to filter out
undesired packets. As the pipeline progresses, later stages can focus on more specific
packet types based on prior matches. Examples include:

Match on VXLAN VNI:

For Early-stage pipes, ensure the packet contains a VXLAN header (this can be
achieved in a single pipe):

The first pipe verifies the packet has a UDP header by matching the L4
packet type to UDP or the L3 next_proto field to UDP

The second pipe matches the UDP destination port to the commonly
used VXLAN value (4789)

For later-stage pipes, match on the VXLAN VNI field

Match on UDP destination port:

For early-stage pipes, verify the packet contains a UDP header by matching the
L4 packet type to UDP or the L3 next_proto field to UDP

For later-stage pipes, match on the UDP destination port field

Relaxed Matching Memory Footprint and Performance Impact

Consider the following strict matching mode example. There are three pipes:

Basic pipe A with

match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP and

match.outer.tcp.flags = 1

Basic pipe B with

match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP and

match.outer.udp.l4_port.src_port = 8080

Control pipe C with two entries to direct TCP traffic to pipe A and UDP traffic to

pipe B . The first entry has

match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP while the

second has match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP .

DOCA Flow 30

As a result, the hardware matches on the L4 header type twice:

When the packet enters the filter in control pipe C to decide the next pipe

When the packet enters the filter of pipe A or B to match on the L4 header fields

With particularly large pipelines, such double matches decrease performance and
increase the memory footprint in hardware. Relaxed matching mode gives the user
greater control of the match logic to eliminate the implicitly added matches, consequently
reducing hardware memory footprint and improving performance as well.

Parser Meta Usage with Relaxed Match

Parser meta matching is particularly useful when it comes to matching on a specific
packet type. In relaxed mode, type selectors in the outer , inner , and tun parts of

the doca_flow_match structs are used only for the type cast of the underlying unions.

Header-type (packet type) matches are available using the parser_meta API.

For example, the scenario from the previous section may be overwritten by changing the
match of control pipe C (with the same A and B pipes):

Basic pipe A with

match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP and

match.outer.tcp.flags = 1

Basic pipe B with

match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP and

match.outer.udp.l4_port.src_port = 8080

Control pipe C with two entries to direct TCP traffic to pipe A and UDP traffic to

pipe B . The first entry has

match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_TCP while the

second has match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_UDP
.

As a result, the hardware performs the L4 header-type match only once, when the packet
enters the filter of control pipe. Basic pipes' match.outer.l4_type_ext are used only

DOCA Flow 31

for the selection of the match.outer.tcp or match.outer.udp structures during
the inspection of match struct.

Examples

The following code snippets are used to demonstrate the redesign of a pipeline with
relaxed matching for non-tunnel match cases.

The following is the code before the redesign:

With relaxed matching disabled (i.e., enable_strict_matching attribute explicitly set to
true), the following hardware matches are performed for the code snippet above:

L3 header type is IPv4 – constant among entries by design

L4 header type is UDP – constant among entries by design

IPv4 destination address varies per entry

UDP source port is constant among entries

The rest of the packet fields are ignored

With relaxed matching enabled (i.e., default mode), the following pipeline stages, where
pipe1 forwards packets to pipe2 , should be considered to achieve a similar match as

above:

static void pipe_match_build(struct doca_flow_match *match)
{

match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
match->outer.ip4.dst_ip = 0xffffffff;
match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
match->outer.udp.l4_port.src_port = 22;

}

static void pipe1_match_build(struct doca_flow_match *match)

DOCA Flow 32

The following code snippet demonstrates the redesign of a pipeline with relaxed matching
for tunnel match cases:

With relaxed matching disabled (i.e., enable_strict_matching attribute set to true), the
following hardware matches are performed for the code snippet above:

L3 type is IPv4 – constant among entries by design

L4 type is UDP – constant among entries by design

{
 // Classifier logic. Only IPv4, UDP packets are to be forwarded to pipe2

match.parser_meta.outer_l3_type = DOCA_FLOW_L3_META_IPV4;
match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_UDP;

}

static void pipe2_match_build(struct doca_flow_match *match)
{
 // Main logic. Match on the specific packet fields

match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
match->outer.ip4.dst_ip = 0xffffffff;
match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
match->outer.udp.l4_port.src_port = 22;

}

static void pipe1_match_build(struct doca_flow_match *match)
{
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;

match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
match->tun.type = DOCA_FLOW_TUN_VXLAN;
match->outer.ip4.dst_ip = 0xffffffff;
match->outer.udp.l4_port.src_port = 0x22;
match->tun.vxlan_tun_id = 0xffffffff;

}

DOCA Flow 33

Tunnel type is DOCA_FLOW_TUN_VXLAN – constant among entries by design

IPv4 destination address varies per entry

UDP source port is always 22

VXLAN tunnel ID varies per entry

The rest of the packet fields are ignored

With relaxed matching enabled (i.e., default mode), the following pipeline stages, where
pipe1 forwards packets to pipe2 , should be considered to achieve a similar match as

above:

Relaxed Matching Considerations

static void pipe1_match_build(struct doca_flow_match *match)
{

// Classifier logic. Only IPv4, UDP packets are to be forwarded to pipe2

match.parser_meta.outer_l3_type = DOCA_FLOW_L3_META_IPV4;
match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_UDP;

}

static void pipe2_match_build(struct doca_flow_match *match)
{

// Main logic. Match on the specific packet fields

match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
match->outer.udp.l4_port.src_port = 22;

 match->outer.udp.l4_port.dst_port = DOCA_VXLAN_DEFAULT_PORT;
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;

match->outer.ip4.dst_ip = 0xffffffff;
match->tun.type = DOCA_FLOW_TUN_VXLAN;
match->tun.vxlan_tun_id = 0xffffffff;

}

DOCA Flow 34

With relaxed matching, header type fields within outer , inner , or tun structs no
longer indicate a match on the specific protocol. They are use d solely as a selector for the
relevant header fields. For example, to match on outer.ip4.dst_ip , users must set

outer.l3_type = DOCA_FLOW_L3_TYPE_IP4 . With this match, the L3 header is
checked for the IPv4 destination address, however there is no check that the L3 header is
of IPv4 type. It is user responsibility to make sure that packets arriving to such a filter
indeed have an L3 header of type IPv4.

To match on a specific protocol/tunnel type, consider the following:

To match on an inner/outer L3/L4 protocol type, users can use relevant
doca_flow_parser_meta fields as explained above. For example, for outer

protocols, parser_meta.outer_l[3,4]_type fields can be used.

To match on a specific tunnel type, users should match on a tunnel according to its
specification. For example, for a VXLAN tunnel, a match on UDP destination port
4789 can be used. Another option is to use the L3 next protocol field. For example,
for IPv4 with next header GRE, one can match on the IPv4 headers' next protocol
field value to match GRE IP protocol number 47.

More relaxed matching design best practices can be found in the samples Flow Drop, Flow
VXLAN Encap, and LPM with Exact Match Logic.

Note

With relaxed matching, to achieve a match-all functionality, either one
of the following methods can be used during pipe creation:

Set the match_mask structure to NULL and set the match
structure to all zeroes

Set the match_mask structure to all zeroes while the match
structure have any setting

Note

DOCA Flow 35

Setting Pipe Actions

Pipe Execution Order

When setting actions, they are executed in the following order:

1. Crypto (decryption)

2. Decapsulation

3. Pop

4. Meta

5. Outer

6. Tun

7. Push

8. Encapsulation

9. Crypto (encryption)

With relaxed matching, if any of the selectors is used without setting
a relevant field, the pipe/entry creation would fail with the following
error message:

failed building active opcode - active opcode
<opcode number> is protocol only

Note

Modifying a field while simultaneously using it as a source for other
modifications should be avoided, as the sequence of modification

DOCA Flow 36

Auto-modification

Similarly to setting pipe match, actions also have a template definition.

Similarly to doca_flow_match in the creation phase, only the subset of actions that
should be executed per packet are defined. This is done in a similar way to match, namely
by classifying a field of doca_flow_match to one of the following:

Ignored field – field is zeroed, modify is not used.

Constant fields – when a field must be modified per packet, but the value is the
same for all packets, a one-time value on action definitions can be used

Changeable fields – fields that may have more than one possible value, and the exact
values are set by the user per entry

Explicit Modification Type

It is possible to force constant modification or per-entry modification with action mask.
For example:

actions cannot be guaranteed.

actions.outer.ip4.dst_ip = 0xffffffff

Note

The action_mask should be set as 0xffffffff and action
as 0 if the user wants to configure 0 to this field.

DOCA Flow 37

Copy Field

The action descriptor can be used to copy between the packet field and metadata. For
example:

static void

create_constant_modify_actions(struct doca_flow_actions *actions，
 struct doca_flow_actions
*actions_mask,
 struct doca_flow_action_descs
*descs)
{
 actions->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 actions->outer.udp.src_port = 0x1234;
 actions_mask->outer.udp.src_port = 0xffff;
}

#define META_U32_BIT_OFFSET(idx) (offsetof(struct doca_flow_meta,
u32[(idx)]) << 3)

static void
create_copy_packet_to_meta_actions(struct doca_flow_match *match，
 struct doca_flow_action_desc
*desc)
{
 desc->type = DOCA_FLOW_ACTION_COPY;
 desc->field_op.src.field_string = "outer.ipv4.src_ip";
 desc->field_op.src.bit_offset = 0;
 desc->field_op.dst.field_string = "meta.data";
 desc->field_op.dst.bit_offset = META_U32_BIT_OFFSET(1); /*

Bit offset of meta.u32[1] */;
}

DOCA Flow 38

Multiple Actions List

Creating a pipe is possible using a list of multiple actions. For example:

Summary of Action Types

Pipe Creation
Entry
Creation

Behavior

action_desc

Pipe Actions
Pipe
Actions
Mask

Entry
Actions

doca_flow_
action_typ
e

Configuration

DOCA_FL
OW_ACTI
ON_AUTO
/
action_
desc =
NULL

No specific
config 0 0 N/A

Field ignored, no
modification

0 mask
!= 0

N/A
Apply 0 and

mask to all
entries

val != 0 &&

val != 0xFF

mask
!= 0

N/A Apply val and

mask to all

static void
create_multi_actions_for_pipe_cfg()
{
 struct doca_flow_actions *actions_arr[2];
 struct doca_flow_actions actions_0 = {0}, actions_1 = {0};
 struct doca_flow_pipe_cfg *pipe_cfg;
 /* input configurations for actions_0 and actions_1 */
 actions_arr[0] = &actions_0;
 actions_arr[1] = &actions_1;

doca_flow_pipe_cfg_set_actions(pipe_cfg, actions_arr,
NULL, NULL, 2);
}

DOCA Flow 39

Pipe Creation
Entry
Creation

Behavior

entries

val = 0xFF
mask

= 0
N/A Apply 0xFF to

all entries

val = 0xFF
mask

!= 0

Define
val

per
entry

Apply entry's
val and mask

DOCA_FL
OW_ACTI
ON_ADD

Add field
value or
from src

Define only the
dst field and

width

val != 0 N/A N/A Apply this val
to all entries

val == 0 N/A

Define
val

per
entry

Apply entry's
val

Define the
src and dst

fields and width

Define the source
and destination
fields.

Meta field →
header field
Header field
→ meta field

Meta field →
meta field

N/A N/A

Add data from
src fields to

dst for all
entries

DOCA_FL
OW_ACTI
ON_COPY

Copy field
to another
field

N/A

Define the source
and destination
fields.

Meta field →
header field
Header field
→ meta field

Meta field →
meta field

N/A N/A
Copy data
between fields
for all entries

DOCA Flow 40

Setting Pipe Monitoring

If a meter policer should be used, then it is possible to have the same configuration for all
policers on the pipe or to have a specific configuration per entry. The meter policer is
determined by the FWD action. If an entry has NULL FWD action, the policer FWD action
is taken from the pipe.

If a mirror should be used, mirror can be shared on the pipe or configured to have a
specific value per entry.

The monitor also includes the aging configuration, if the aging time is set, this entry ages
out if timeout passes without any matching on the entry.

For example:

Refer to Pipe Entry Aged Query for more information.

Setting Pipe Forwarding

The FWD (forwarding) action is the last action in a pipe, and it directs where the packet
goes next. Users may configure one of the following destinations:

Send to software (representor)

Send to wire

Jump to next pipe

Drop packets

The FORWARDING action may be set for pipe create, but it can also be unique per entry.

Pipe forwarding can be s et either at creation time or be deferred to entry addition:

static void build_entry_monitor(struct doca_flow_monitor
*monitor, void *user_ctx)
{

monitor->aging_sec = 10;
}

DOCA Flow 41

If the fwd.type type is not DOCA_FLOW_FWD_CHANGEABLE , any match on the
pipe, on any entry, is forwarded to the specified target

If the fwd.type type is DOCA_FLOW_FWD_CHANGEABLE , the target would match

on whatever is defined in the fwd.type field of the specific entry

Putting this logic in a table look like this:

Pipe Fwd.type
Entry
Fwd.type

Actual
Forward

Comment

Equals
DOCA_FLOW_FWD_CHANGE
ABLE

X X
X must not equal
DOCA_FLOW_FWD_CHANGEABLE

X !=
DOCA_FLOW_FWD_CHANGE
ABLE

Does not
care

X

When a pipe includes meter monitor <cir, cbs> , it must h ave fwd defined as well as
the policer.

If a pipe is created with a dedicate constant mirror with FWD, the pipe FWD can be from a
mirror FWD or a pipe FWD and the two FWDs are exclusive. It is not allowed to specify a
mirror with a FWD to a pipe with FWD also.

If a mirror FWD is not configured, the FWD is from the pipe configuration. The FWD of the
pipe with a mirror cannot be direct RSS, only shared RSS from NULL FWD is allowed.

The following is an RSS forwarding example:

Queues point to the uint16_t array that contains the queue numbers. When a port is
started, the number of queues is defined, starting from zero up to the number of queues

fwd.type = DOCA_FLOW_FWD_RSS;
fwd.rss_type = DOCA_FLOW_RESOURCE_TYPE_NON_SHARED;
fwd.rss.queues_array = queues;
fwd.rss.outer_flags = DOCA_FLOW_RSS_IPV4 | DOCA_FLOW_RSS_UDP;
fwd.rss.nr_queues = 4;

DOCA Flow 42

minus 1. RSS queue numbers may contain any subset of those predefined queue
numbers. For a specific match, a packet may be directed to a single queue by having RSS
forwarding with a single queue.

Changeable RSS forwarding is supported. When creating the pipe, the num_of_queues
must be set to 0xffffffff , then different forwarding RSS information can be set when
adding each entry.

The packet is directed to the port. In many instances the complete pipe is executed in the
hardware, including the forwarding of the packet back to the wire. The packet never
arrives to the software.

Example code for forwarding to port:

The type of forwarding is DOCA_FLOW_FWD_PORT and the only data required is the

port_id as defined in DOCA_FLOW_PORT .

Changeable port forwarding is also supported. When creating the pipe, the port_id
must be set to 0xffff , then different forwarding port_id values can be set when
adding each entry.

Shared Resources

fwd->num_of_queues = 0xffffffff;

struct doca_flow_fwd *fwd = malloc(sizeof(struct doca_flow_fwd));
memset(fwd, 0, sizeof(struct doca_flow_fwd));
fwd->type = DOCA_FLOW_FWD_PORT;
fwd->port_id = port_id; // this should the same port_id that was
set in doca_flow_port_cfg_set_devargs()

fwd->port_id = 0xffff;

DOCA Flow 43

DOCA Flow supports several types of resources that can be shared. The supported types
of resources can be:

Meters

Counters

RSS queues

Mirrors

PSPs

Encap

Decap

IPsec SA

Shared resources can be used by several pipes and can save device and memory
resources while promoting better performance.

To create and configure shared resource, the user should go through the steps detailed in
the following subsections.

Creating Shared Resource Configuration Object

Call doca_flow_cfg_create(&flow_cfg) , passing a pointer to

struct doca_flow_cfg to be used to fill the required parameters for the shared
resource.

Note

The struct doca_flow_cfg object is used for configuring other
resources besides the aforementioned shared resources, but this
section only refers to the configuration of shared resources.

DOCA Flow 44

Setting Number of Shared Resources per Shared Resource Type

This can be done by calling doca_flow_cfg_set_nr_shared_resource() . Refer to
the API documentation for details on the configuration process.

Conclude the configuration by calling doca_flow_init() .

Configuring Shared Resource

When shared resources are allocated, they are assigned identifiers ranging from 0 and
increasing incrementally. For example, if the user configures two shared counters, they
would bear the identifiers 0 and 1.

Configuring the shared resources requires the user to call
doca_flow_shared_resource_set_cfg() .

Binding Shared Resource

A shared resource must be bound by calling doca_flow_shared_resources_bind()
which binds the resource to a pointer. The object to which the resource is bound is usually
a struct doca_flow_port pointer.

Using Shared Resources

After a resource has been configured, it can be used by referring to its ID.

Note

Note that each resource has its own identifier space. So, if users have
two shared counters and three meters, they would bear identifiers
0..1 and 0..2 respectively.

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 45

In the case of meters, counters, and mirrors, they are referenced through
struct doca_flow_monitor during pipe creation or entry addition.

Querying Shared Resource

Querying shared resources can be done by calling
doca_flow_shared_resources_query() . The function accepts the resource type

and an array of resource numbers, and returns an array of
struct doca_flow_shared_resource_result with the results.

Shared Meter Resource

A shared meter can be used in multiple pipe entries (hardware steering mode support
only).

The shared meter action marks a packet with one of three colors: Green, Yellow, and Red.
The packet color can then be matched in the next pipe, and an appropriate action may be
taken. For example, packets marked in red color are usually dropped. So, the next pipe to
meter action may have an entry which matches on red and has fwd type
DOCA_FLOW_FWD_DROP .

DOCA Flow supports three marking algorithms based on RFCs: 2697, 2698, and 4115.

RFC 2697 – Single-rate Three Color Marker (srTCM)

DOCA Flow 46

CBS (committed burst size) is the bucket size which is granted credentials at a CIR
(committed information rate). If CBS overflow occurs, credentials are passed to the EBS
(excess burst size) bucket. Packets passing through the meter consume credentials. A
packet is marked green if it does not exceed the CBS, yellow if it exceeds the CBS but not
the EBS, and red otherwise. A packet can have an initial color upon entering the meter. A
pre-colored yellow packet will start consuming credentials from the EBS.

RFC 2698 – Two-rate Three Color Marker (trTCM)

DOCA Flow 47

CBS and CIR are defined as in RFC 2697. PBS (peak burst size) is a second bucket which is
granted credentials at a PIR (peak information rate). There is no overflow of credentials
from the CBS bucket to the PBS bucket. The PIR must be equal to or greater than the CIR.
Packets consuming CBS credentials consume PBS credentials as well. A packet is marked
red if it exceeds the PIR. Otherwise, it is marked either yellow or green depending on
whether it exceeds the CIR or not. A packet can have an initial color upon entering the
meter. A pre-colored yellow packet starts consuming credentials from the PBS.

RFC 4115 – trTCM without Peak-rate Dependency

EBS is a second bucket which is granted credentials at a EIR (excess information rate) and
gets overflowed credentials from the CBS. For the packet marking algorithm, refer to RFC
4115.

The following sections present the steps for configuring and using shared meters to mark
packets.

Shared IPsec SA Resource

The IPsec Security Association (SA) shared resource is used for IPsec ESP encryption
protocol. The resource should be pointed from the doca_flow_crypto_actions struct

that inside doca_flow_actions .

DOCA Flow 48

By default, the resource manages the state of the sequence number (SN), incrementing
each packet on the encryption side, and performing anti-replay protection on the
decryption side. The anti-replay syndrome is stored in meta.u32[0] .

To control the SN in software, sn_offload should be disabled per port in the

configuration for doca_flow_port_start (see DOCA API documentation for details).

Once sn_offload is disabled, the following fields are ignored: sn_offload_type ,

win_size , sn_initial , and lifetime_threshold .

When shared resource query is called for an IPsec SA resource, the current SN is retrieved
for the encryption resource and the lower bound of anti-replay window is retrieved for the
decryption resource. Querying IPsec SA can only be called when sn_offload is enabled.

To maintain a valid state of the resource during its usage,
doca_flow_crypto_ipsec_resource_handle should be called periodically.

Shared Mirror Resource

The mirror shared resource is used to clone packets to other pipes, vports (switch mode
only), RSS queues (VNF mode only), or drop.

Mirror clone destination as next_pipe cannot be intermixed with port or rss types.

Only clone destination and origin destination both as next_pipe is supported.

Info

The maximum supported mirror number is 4K.

Info

The maximum supported mirror clone destination is 254.

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 49

The register copy for packet after mirroring is not saved.

If mirror creation fails, users should check the resulting syndrome for failure details.

Mirroring and Packet Order

To maintain the order of the mirrored packets in relation to the non-mirrored ones, set a
first mirror target forward destination equivalent to the non-mirrored packets as
illustrated in the following diagram:

In NVIDIA® BlueField®-3, NVIDIA® ConnectX®-7, and lower, when using the mirror action in
the egress domain, mirrored packets cannot preserve the order with the non-mirrored
packets due to the high latency of the mirror operation. To maintain the order, use
DOCA_FLOW_FWD_DROP as the target forward as illustrated in the following diagram:

Note

For switch mode, there are several mirror limitations which should be
noted:

Mirror should be cloned to
DOCA_FLOW_DIRECTION_BIDIRECTIONAL pipe

The register copy for pkt after mirroring is not saved

Mirror should not be cloned to RSS pipe directly

Encap is supported while cloning a packet to a wire port only

Mirror must not be configured on a resizable pipe

DOCA Flow 50

Shared Encap Resource

The encap shared resource is used for encapsulation. A shared encap ID represents one
kind of encap configuration and can be used in multiple pipes and entries (hardware
steering mode support only).

The shared encap action encapsulates the packet with the configured tunnel information.

Shared Decap Resource

The decap shared resource is used for decapsulation. A shared decap ID represents one
kind of decap configuration and can be used in multiple pipes and entries (hardware
steering mode support only).

The shared decap action decapsulates the packet. Ethernet information should be
provided when is_l2 is false.

Shared PSP Resource

DOCA Flow 51

The PSP shared resource is used for PSP encryption. The resource should be pointed to
from the doca_flow_crypto_actions struct in doca_flow_actions .

The resource should be configured with a key to encrypt the packets. See NVIDIA DOCA
Library API documentation for PSP key generation for a reference about key handling on
decrypt side.

Basic Pipe Create

Once all parameters are defined, the user should call doca_flow_pipe_create to
create a pipe.

The return value of the function is a handle to the pipe. This handle should be given when
adding entries to pipe. If a failure occurs, the function returns NULL , and the error reason
and message are put in the error argument if provided by the user.

Refer to the DOCA Library APIs to see which fields are optional and may be skipped. It is
typically recommended to set optional fields to 0 when not in use. See Miss Pipe and
Control Pipe for more information.

Once a pipe is created, a new entry can be added to it. These entries are bound to a pipe,
so when a pipe is destroyed, all the entries in the pipe are removed. Please refer to section
Pipe Entry for more information.

There is no priority between pipes or entries. The way that priority can be implemented is
to match the highest priority first, and if a miss occurs, to jump to the next PIPE. There
can be more than one PIPE on a root as long the pipes are not overlapping. If entries
overlap, the priority is set according to the order of entries added. So, if two pipes have
overlapping matching and PIPE1 has higher priority than PIPE2, users should add an entry
to PIPE1 after all entries are added to PIPE2.

Pipe Entry (doca_flow_pipe_add_entry)

An entry is a specific instance inside of a pipe. When defining a pipe, users define match
criteria (subset of fields to be matched), the type of actions to be done on matched
packets, monitor, and, optionally, the FWD action.

When a user calls doca_flow_pipe_add_entry() to add an entry, they should define
the values that are not constant among all entries in the pipe. And if FWD is not defined

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 52

then that is also mandatory.

DOCA Flow is designed to support concurrency in an efficient way. Since the expected
rate is going to be in millions of new entries per second, it is mandatory to use a similar
architecture as the data path. Having a unique queue ID per core saves the DOCA engine
from having to lock the data structure and enables the usage of multiple queues when
interacting with hardware.

Each core is expected to use its own dedicated pipe_queue number when calling

doca_flow_pipe_entry . Using the same pipe_queue from different cores causes a
race condition and has unexpected results.

Failure Path

Entry insertion can fail in two places, add_entry and add_entry_cb .

Note

Applications are expected to avoid adding, removing, or updating pipe
entries from within a doca_flow_entry_process_cb .

DOCA Flow 53

When add_entry fails, no cleanup is required.

When add_entry succeeds, a handle is returned to the user. If the subsequent

add_entry_cb fails, the user is responsible for releasing the handle through a

rm_entry call. This rm_entry call is expected to return DOCA_SUCCESS and is

expected to invoke doca_rm_entry_cb with a successful return code.

Pipe Entry Counting

By default, no counter is added. If defined in monitor, a unique counter is added per entry.

The retrieved statistics are stored in struct doca_flow_query .

Pipe Entry Aged Query

When a user calls doca_flow_aging_handle() , this query is used to get the aged-out
entries by the time quota in microseconds. The user callback is invoked by this API with
the aged entries.

Since the number of flows can be very large, the query of aged flows is limited by a quota
in microseconds. This means that it may return without all flows and requires the user to

Note

Having a counter per entry affects performance and should be
avoided if it is not required by the application.

Note

Counters have a granularity of 1 second.

DOCA Flow 54

call it again. When the query has gone over all flows, a full cycle is done.

Pipes with Multiple Actions

Users can define multiple actions per pipe. This gives the user the option to specify a
different action per entry in the pipe by providing the action_idx in

struct doca_flow_actions . Note that even with multiple actions defined for a pipe,
any packet processed will still result in at most one action being executed.

For example, to create multiple flows with identical match fields but different actions,
users can define two actions during pipe creation, Action_0 and Action_1 . These
actions are respectively assigned indices 0 and 1 in the pipe configuration's actions array.
Action_0 includes modify_mac , while Action_1 includes modify_ip . Users can

then add two types of entries to the pipe: the first entry uses Action_0 by setting the

action_idx field in struct doca_flow_actions to 0, and the second entry uses

Action_1 by setting action_idx to 1.

Miss Pipe and Control Pipe

To set priority between pipes, users must use miss-pipes. Miss pipes allow to look up
entries associated with pipe X, and if there are no matches, to jump to pipe X+1 and
perform a lookup on entries associated with pipe X+1.

The following figure illustrates the hardware table structure:

Note

Only one root pipe is allowed. If more than one is needed, create a
control pipe as root and forward the packets to relevant non-root
pipes.

DOCA Flow 55

The first lookup is performed on the table with priority 0. If no hits are found, then it
jumps to the next table and performs another lookup.

The way to implement a miss pipe in DOCA Flow is to use a miss pipe in FWD. In struct
doca_flow_fwd , the field next_pipe signifies that when creating a pipe, if a

fwd_miss is configured then if a packet does not match the specific pipe, steering

should jump to next_pipe in fwd_miss .

next_pipe is defined as doca_flow_pipe and created by

doca_flow_pipe_create . To separate miss_pipe and a general one, is_root is

introduced in struct doca_flow_pipe_cfg . If is_root is true, it means the pipe is a

root pipe executed on packet arrival. Otherwise, the pipe is next_pipe .

Note

fwd_miss is of type struct doca_flow_fwd but it only
implements two forward types of this struct:

DOCA_FLOW_FWD_PIPE – forwards the packet to another pipe

DOCA_FLOW_FWD_DROP – drops the packet

Other forwarding types (e.g., forwarding to port or sending to RSS
queue) are not supported.

DOCA Flow 56

When fwd_miss is not null, the packet that does not match the criteria is handled by

next_pipe which is defined in fwd_miss .

In internal implementations of doca_flow_pipe_create , if fwd_miss is not null and

the forwarding action type of miss_pipe is DOCA_FLOW_FWD_PIPE , a flow with the

lowest priority is created that always jumps to the group for the next_pipe of the

fwd_miss . Then the flow of next_pipe can handle the packets, or drop the packets if

the forwarding action type of miss_pipe is DOCA_FLOW_FWD_DROP .

For example, VXLAN packets are forwarded as RSS and hairpin for other packets. The
miss_pipe is for the other packets (non-VXLAN packets) and the match is for general

Ethernet packets. The fwd_miss is defined by miss_pipe and the type is

DOCA_FLOW_FWD_PIPE . For the VXLAN pipe, it is created by doca_flow_create()
and fwd_miss is introduced.

Since, in the example, the jump flow is for general Ethernet packets, it is possible that
some VXLAN packets match it and cause conflicts. For example, VXLAN flow entry for
ipA is created. A VXLAN packet with ipB comes in, no flow entry is added for ipB , so

it hits miss_pipe and is hairpinned.

A control pipe is introduced to handle the conflict. After creating a control pipe, the user
can add control entries with different matches, forwarding, and priorities when there are
conflicts.

The user can add a control entry by calling doca_flow_control_pipe_add_entry() .

priority must be defined as higher than the lowest priority (3) and lower than the
highest one (0).

The other parameters represent the same meaning of the parameters in
doca_flow_pipe_create . In the example above, a control entry for VXLAN is created.

The VLXAN packets with ipB hit the control entry.

doca_flow_pipe_lpm

Note

DOCA Flow 57

doca_flow_pipe_lpm uses longest prefix match (LPM) matching. LPM matching is

limited to a single field of the match provided by the user at pipe creation (e.g., the outer
destination IP). Each entry is consisted of a value and a mask (e.g., 10.0.0.0/8, 10.10.0.0/16,
etc). The LPM match is defined as the entry that has the maximum matching bits. For
example, using the two entries 10.7.0.0/16 and 10.0.0.0/8, the IP 10.1.9.2 matches on
10.0.0.0/8 and IP 10.7.9.2 matches on 10.7.0.0/16 because 16 bits are the longest prefix
matched.

In addition to the longest prefix match logic, LPM supports exact match (EM) logic on the
meta.u32 , inner destination MAC and VNI. Only index 1 is supported for meta.u32 .

Any combination of these three fields can be chosen for EM. However, if inner destination
MAC is chosen for LPM, then it should not be chosen for EM as well. If more than one field
is chosen for EM, a logical AND is applied. Support for EM on meta allows working with
any single field by copying its value to the meta.u32[1] on pipes before LPM. EM is
performed at the same time as LPM matching (i.e., a logical AND is applied for both
logics). For example, if there is a match on LPM logic, but the value in the fields chosen for
EM is not exactly matched, this constitutes an LPM pipe miss.

To enable EM logic in an LPM pipe, two steps are required:

1. Provide match_mask to the LPM pipe creation with meta.u32[1] being fully

masked and/or inner.eth.dst_mac and/or tun.vxlan_tun_id , while setting

match_mask.tun.type to DOCA_FLOW_TUN_VXLAN . Thus, the match
parameter is responsible for the choice of field for LPM logic, while the
match_mask parameter is responsible for the enablement of EM logic. Separation

into two parameters is done to distinguish which field is for LPM logic and which is
for EM logic, when both fields can be used for LPM (e.g., destination IP address and
source MAC address).

2. Per entry, provide values to do exact match using the match structure.

match_mask is used only for LPM-related masks and is not involved into EM logic.

EM logic allows inserting many entries with different meta values for the same pair of
LPM-related data. Regarding IPv4-based LPM logic with exact match enabled: LPM pipe
can have 1.1.1.1/32 with meta 42, 555, and 1020. If a packet with 1.1.1.1/32 goes

through such an LPM pipe, its meta value is compared against 42, 555, and 1020.

This feature is not supported in this DOCA release. It will be re-
enabled in DOCA version 3.0.

DOCA Flow 58

The actions and FWD of the DOCA Flow LPM pipe work the same as the basic DOCA Flow
pipe.

doca_flow_pipe_lpm insertion max latency can be measured in milliseconds in some
cases and, therefore, it is better to insert it from the control path. To get the best
insertion performance, entries should be added in large batches.

Note

The monitor only supports non-shared counters in the LPM pipe.

Note

An LPM pipe cannot be a root pipe. You must create a pipe as root and
forward the packets to the LPM pipe.

Note

An LPM pipe can only do LPM matching on inner and outer IP and
MAC addresses.

Note

For monitoring, an LPM pipe only supports non-shared counters and
does not support other capabilities of doca_flow_monitor .

DOCA Flow 59

doca_flow_pipe_acl

doca_flow_pipe_acl uses a ccess-control list (ACL) matching. ACL matching is five

tuple of the doca_flow_match . Each entry consists of a value and a mask (e.g.,
10.0.0.0/8, 10.10.0.0/16, etc.) for IP address fields, port range, or specific port in the port
fields, protocol, and priority of the entry.

ACL entry port configuration:

Mask port is 0 ==> Any port

Mask port is equal to match port ==> Exact port. Port with mask 0xffff.

Mask port > match port ==> Match port is used as port from and mask port is used
as port to

Monitor actions are not supported in ACL. FWD of the DOCA Flow ACL pipe works the
same as the basic DOCA Flow pipe.

ACL supports the following types of FWD:

DOCA_FLOW_FWD_PORT

DOCA_FLOW_FWD_PIPE

DOCA_FLOW_FWD_DROP

doca_flow_pipe_lpm insertion max latency can be measured in milliseconds in some
cases and, therefore, it is better to insert it from the control path. To get the best
insertion performance, entries should be added in large batches.

Note

This feature is not supported in this DOCA release. It will be re-
enabled in DOCA version 3.0.

Note

DOCA Flow 60

doca_flow_pipe_ordered_list

An ACL pipe can be a root pipe.

Note

An ACL pipe can be in ingress and egress domain.

Note

An ACL pipe must be accessed on a single queue. Different ACL pipes
may be accessed on different queues.

Note

Adding an entry to the ACL pipe after sending an entry with flag
DOCA_FLOW_NO_WAIT is not supported.

Note

Removing an entry from an ACL pipe is not supported.

DOCA Flow 61

doca_flow_pipe_ordered_list allows the user to define a specific order of actions
and multiply the same type of actions (i.e., specific ordering between counter/meter and
encap/decap).

An ordered list pipe is defined by an array of actions (i.e., sequences of actions). Each entry
can be an instance one of these sequences. An ordered list pipe may consist of up to an
array of 8 different actions. The maximum size of each action array is 4 elements.
Resource allocation may be optimized when combining multiple action arrays in one
ordered list pipe.

doca_flow_pipe_hash

doca_flow_pipe_hash allows the user to insert entries by index. The index represents
the packet hash calculation.

An hash pipe gets doca_flow_match only on pipe creation and only mask. The mask
provides all fields to be used for hash calculation.

The monitor , actions , actions_descs , and FWD of the DOCA Flow hash pipe
works the same as the basic DOCA Flow pipe.

Hardware Steering Mode

Note

This feature is not supported in this DOCA release. It will be re-
enabled in DOCA version 3.0.”

Note

The nb_flows in doca_flow_pipe_attr should be a power of 2.

DOCA Flow 62

Users can enable hardware steering mode by setting devarg dv_flow_en to 2 .

The following is an example of running DOCA with hardware steering mode:

The following is an example of running DOCA with software steering mode:

The dv_flow_en=2 means that hardware steering mode is enabled.

In the struct doca_flow_cfg , setting mode_args using (

doca_flow_cfg_set_mode_args()) represents DOCA applications. If it is set with

hws (e.g., "vnf,hws" , "switch,hws" , "remmote_vnf,hws") then hardware
steering mode is enabled.

In switch mode,
fdb_def_rule_en=0,vport_match=1,repr_matching_en=0,dv_xmeta_en=4

should be added to DPDK PMD devargs, which makes DOCA Flow switch module take over
all the traffic.

To create an entry by calling doca_flow_pipe_add_entry , the parameter flags can be

set as DOCA_FLOW_WAIT_FOR_BATCH or DOCA_FLOW_NO_WAIT :

DOCA_FLOW_WAIT_FOR_BATCH means that this flow entry waits to be pushed to
hardware. Batch flows then can be pushed only at once. This reduces the push times
and enhances the insertion rate.

DOCA_FLOW_NO_WAIT means that the flow entry is pushed to hardware
immediately.

The parameter usr_ctx is handled in the callback set in struct doca_flow_cfg .

doca_flow_entries_process processes all the flows in this queue. After the flow is
handled and the status is returned, the callback is executed with the status and

.... –a 03:00.0, dv_flow_en=2 –a 03:00.1, dv_flow_en=2....

.... –a 03:00.0 –a 03:00.1

DOCA Flow 63

usr_ctx .

If the user does not set the callback in doca_flow_cfg , the user can get the status

using doca_flow_entry_get_status to check if the flow has completed offloading or
not.

Isolated Mode

In non-isolated mode (default) any received packets (following an RSS forward, for
example) can be processed by the DOCA application, bypassing the kernel. In the same
way, the DOCA application can send packets to the NIC without kernel knowledge. This is
why, by default, no replies are received when pinging a host with a running DOCA
application. If only specific packet types (e.g., DNS packets) should be processed by the
DOCA application, while other packets (e.g., ICMP ping) should be handled directly the
kernel, then isolated mode becomes relevant.

In isolated mode, packets that match root pipe entries are steered to the DOCA
application (as usual) while other packets are received/sent directly by the kernel.

If you plan to create a pipe with matches followed by action/monitor/forward operations,
due to functional/performance considerations, it is advised that root pipes entries include
the matches followed by a next pipe forward operation. In the next pipe, all the planned
matches actions/monitor/forward operations could be specified. Unmatched packets are
received and sent by the kernel.

To activate isolated mode, two configurations are required:

1. DOCA configuration: Update the string member mode_args (

struct doca_flow_cfg) using doca_flow_cfg_set_mode_args() which
represents the DOCA application mode and add "isolated" (separated by comma) to
the other mode arguments. For example:

Info

In switch mode, DPDK must be in isolated mode. DOCA Flow may

be in isolated or non-isolated .

DOCA Flow 64

doca_flow_cfg_set_mode_args(cfg, "vnf,hws,isolated")
doca_flow_cfg_set_mode_args(cfg, "switch,isolated")

2. DPDK configuration: Set isolated_mode to 1 (

struct application_port_config). For example, if DPDK is initialized by the
API:
dpdk_queues_and_ports_init(struct application_dpdk_config
*app_dpdk_config)

.

Pipe Resize

The move to HWS improves performance because rule insertion is implemented in
hardware rather than software. However, this move imposes additional limitations, such as
the need to commit in advance on the size of the pipes (the number of rule entries). For
applications that require pipe sizes to grow over time, a static size can be challenging:
Committing to a pipe size too small can cause the the application to fail once the number
of rule entries exceeds the committed number, and pre-committing to an excessively high
number of rules can result in memory over-allocation.

struct application_dpdk_config app_dpdk_config = {
 .port_config = {
 .isolated_mode = 1,
 .nb_ports = ...
 ...
 },
 ...
};

Note

This feature is not supported in this DOCA release. It will be re-
enabled in DOCA version 3.0.

DOCA Flow 65

This is where pipe resizing comes in handy. This feature allows the pipe size to increase
during runtime with support for all entries in a new resized pipe.

Increasing Pipe Size

It is possible to set a congestion level by percentage (CONGESTION_PERCENTAGE). Once
the number of entries in the pipe exceeds this value, a callback is invoked. For example, for
a pipe with 1000 entries and a CONGESTION_PERCENTAGE of 80%, the

CONGESTION_REACHED callback is invoked after the 800th entry is added.

Following the CONGESTION_REACHED callback, the application should call the pipe resize

API (resize()). The following are optional callbacks during the resize callback:

A callback on the new number of entries allocated to the pipe

A callback on each entry that existed in the smaller pipe and is now allocated to the
resized pipe

Upon completion of the internal transfer of all entries from the small pipe to the resized
pipe, a RESIZED callback is invoked.

A CONGESTION_REACHED callback is received exactly once before the RESIZED
callback. Receiving another CONGESTION_REACHED only happens after calling

resize() and receiving its completion with a RESIZED callback.

Info

Pipe resizing is supported in a basic pipe and a control pipe.

Info

The pipe pointer remains the same for the application to use even
after being resized.

DOCA Flow 66

List of Callbacks

CONGESTION_REACHED – on the updated number of entries in the pipe (if pipe is
resizable)

RESIZED – upon completion of the resize operation

NR_ENTRIES_CHANGED (optional) – on the new max number of entries in the pipe

ENTRY_RELOCATE (optional) – on each entry moved from the small pipe to the
resized pipe

Order of Operations for Pipe Resizing

1. Set a process callback on flow configuration:

Info

Receiving a CONGESTION_REACHED callback can occur after
adding a small number of entries and for moving entries from a
small to resized pipe. The application must always call pipe resize
after receiving the CONGESTION_REACHED callback to handle
such cases.

Note

Calling pipe resize returns immediately. It starts an internal
process that ends later with the RESIZED callback.

DOCA Flow 67

2. Set the following pipe attribute configurations:

3. Start adding entries:

struct doca_flow_cfg *flow_cfg;
doca_flow_cfg_create(&flow_cfg);
doca_flow_cfg_set_cb_pipe_process(flow_cfg, <pipe-process-
callback>);

Info

This informs on OP_CONGESTION_REACHED and OP_RESIZED
operations when applicable.

struct doca_flow_pipe_cfg *pipe_cfg;
doca_flow_pipe_cfg_create(&pipe_cfg, port);
doca_flow_pipe_cfg_set_nr_entries(pipe_cfg, <initial-number-
of-entries>);
doca_flow_pipe_cfg_set_is_resizable(pipe_cfg, true);
doca_flow_pipe_cfg_set_congestion_level_threshold(pipe_cfg,
<CONGESTION_PERCENTAGE>);
doca_flow_pipe_cfg_set_user_ctx(pipe_cfg, <pipe-user-
context>);

/* Basic pipe */

doca_flow_pipe_add_entry()
/* Contorl pipe */

doca_flow_pipe_control_add_entry()

DOCA Flow 68

4. Once the number of entries in the pipe crosses the congestion threshold, an
OP_CONGESTION_REACHED operation callback is received.

5. Mark the pipe's congestion threshold event and, upon return, call
doca_flow_pipe_resize() . For this call, add the following parameters:

The new threshold percentage for calculating the new size.

A callback on the new pipe size (optional):

A callback on the entries to be transferred to the resized pipe:

6. Call doca_flow_entries_process() to trigger the transfer of entries. It is
relevant for both a basic pipe and a control pipe.

7. At this phase, adding new entries to the pipe is permitted. The entries are added
directly to the resized pipe and therefore do not need to be transferred.

8. Once all entries are transferred, an OP_RESIZED operation callback is received.

Also, at this point a new OP_CONGESTION_REACHED operation callback can be
received again.

9. At this point calling doca_flow_entries_process() can be stopped for a
control pipe. For a basic pipe an additional call is required to complete the call to
doca_flow_pipe_add_entry() .

doca_flow_pipe_resize_nr_entries_changed_cb
nr_entries_changed_cb

doca_flow_pipe_resize_entry_relocate_cb
entry_relocation_cb

Info

doca_flow_entries_process() has the following roles:

DOCA Flow 69

Hairpin Configuration

In switch mode, if dev is set in struct doca_flow_port_cfg (using

doca_flow_port_cfg_set_dev()), then an internal hairpin is created for direct wire-

to-wire fwd. Users may specify the hairpin configuration using mode_args . The
supported options as follows:

hairpinq_num=[n] – the hairpin queue number

use_huge_mem – determines whether the Tx buffer uses hugepage memory

lock_rx_mem – locks Rx queue memory

Teardown

Pipe Entry Teardown

When an entry is terminated by the user application or ages-out, the user should call the
entry destroy function, doca_flow_pipe_rm_entry() . This frees the pipe entry and
cancels hardware offload.

Pipe Teardown

When a pipe is terminated by the user application, the user should call the pipe destroy
function, doca_flow_pipe_destroy() . This destroys the pipe and the pipe entries
that match it.

Triggering entry transfer from the smaller to the bigger
pipe (until an OP_RESIZED callback is received)

Follow up API on previous add_entries API (basic pipe
relevance only)

DOCA Flow 70

When all pipes of a port are terminated by the user application, the user should call the
pipe flush function, doca_flow_port_pipes_flush() . This destroys all pipes and all
pipe entries belonging to this port.

Port Teardown

When the port is not used anymore, the user should call the port stop function,
doca_flow_port_stop() . This stops the DOCA port, disables the traffic, destroys the

port and frees all resources of the port.

Flow Teardown

When the DOCA Flow is not used anymore, the user should call the flow destroy function,
doca_flow_destroy() . This releases all the resources used by DOCA Flow.

Metadata

Warning

During doca_flow_pipe_destroy() execution, the application
must avoid adding/removing entries or checking for aged entries of
any other pipes.

Info

A scratch area exists throughout the pipeline whose maximum size is
DOCA_FLOW_META_MAX bytes.

DOCA Flow 71

The user can set a value to metadata, copy from a packet field, then match in later pipes.
Mask is supported in both match and modification actions.

The user can modify the metadata in different ways based on its actions' masks or
descriptors:

ADD – set metadata scratch value from a pipe action or an action of a specific entry.
Width is specified by the descriptor.

COPY – copy metadata scratch value from a packet field (including the metadata
scratch itself). Width is specified by the descriptor.

Some DOCA pipe types (or actions) use several bytes in the scratch area for internal
usage. So, if the user has set these bytes in PIPE-1 and read them in PIPE-2, and between
PIPE-1 and PIPE-2 there is PIPE-A which also uses these bytes for internal purpose, then
these bytes are overwritten by the PIPE-A. This must be considered when designing the
pipe tree.

The bytes used in the scratch area are presented by pipe type in the following table:

Pipe Type/Action Bytes Used in Scratch

ordered_list [0, 1, 2, 3]

LPM [0, 1, 2, 3]

LPM EM [0, 1, 2, 3, 4, 5, 6, 7]

Mirror [0, 1, 2, 3]

ACL [0, 1, 2, 3, 4, 5, 6, 7, 8 ,9, 10, 11, 12, 13, 14, 15]

Fwd from ingress to egress [0, 1, 2, 3]

IPsec [0, 1, 2, 3, 4, 5, 6, 7]

METER COLOR [24]

Info

Refer to DOCA API documentation for details on
struct doca_flow_meta .

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 72

Packet Processing

In situations where there is a port without a pipe defined, or with a pipe defined but
without any entry, the default behavior is that all packets arrive to a port in the software.

Once entries are added to the pipe, if a packet has no match then it continues to the port
in the software. If it is matched, then the rules defined in the pipe are executed.

If the packet is forwarded in RSS, the packet is forwarded to software according to the
RSS definition. If the packet is forwarded to a port, the packet is redirected back to the
wire. If the packet is forwarded to the next pipe, then the software attempts to match it
with the next pipe.

Note that the number of pipes impacts performance. The longer the number of matches
and actions that the packet goes through, the longer it takes the hardware to process it.
When there is a very large number of entries, the hardware must access the main memory
to retrieve the entry context which increases latency.

Debug and Trace Features

DOCA Flow 73

DOCA Flow supports trace and debugging of DOCA Flow applications which enable
collecting predefined internal key performance indicators (KPIs) and pipeline visualization.

Installation

The set of DOCA's SDK development packages include also a developer-oriented package
that includes additional trace and debug features which are not included in the production
libraries:

.deb based systems – libdoca-sdk-flow-trace

.rpm based systems – doca-sdk-flow-trace

These packages install the trace-version of the libraries under the following directories:

.deb based systems – /opt/mellanox/doca/lib/<arch>/trace

.rpm based systems – /opt/mellanox/doca/lib64/trace

Using Trace Libraries

Runtime Linking

The trace libraries are designed to allow a user to link their existing (production) program
to the trace library without needing to recompile the program. To do so, one should simply
update the matching environment variable so that the OS will prioritize loading libraries
from the above trace directory.

The following is an example for such an update for the Ubuntu 22.04 BlueField image:

Compilation

LD_LIBRARY_PATH=/opt/mellanox/doca/lib/aarch64-linux-
gnu/trace:${LD_LIBRARY_PATH} doca_ipsec_security_gw <program
parameters>

DOCA Flow 74

The trace-level development packages in the previous section provide additional
compilation definitions (doca-flow-trace.pc) to be used in addition to the regular

compilation definitions for the DOCA Flow SDK library (doca-flow.pc). It is
recommended to use these compilation definitions for the following scenarios:

Static linking of the trace-level DOCA Flow library into your program

Regular (dynamic) linking of the trace-level DOCA Flow library into your program
during development and testing

Although the latter could also be determined at runtime as explained in the previous
section, many developers find it handy to compile directly against the trace version during
initial development phases.

Trace Features

DOCA Log – Trace Level

DOCA's trace logging level (DOCA_LOG_LEVEL_TRACE) is compiled as part of this trace
version of the library. That is, any program compiled against the library can activate this
additional logging level through DOCA's API or even through DOCA's built-in argument
parsing (ARGP) library:

DOCA Flow – Additional Sanity Checks

When using the trace version of the library, additional input sanitation checks are added,
at the cost of introducing minor performance implications. These checks are meant to
assist developers in their early steps of using the library, as they provide early detection
and improved logging for common coding mistakes.

LD_LIBRARY_PATH=/opt/mellanox/doca/lib/aarch64-linux-
gnu/trace:${LD_LIBRARY_PATH} doca_ipsec_security_gw <program
parameters> --sdk-log-level 70

DOCA Flow 75

DOCA Flow Samples

This section provides DOCA Flow sample implementation on top of the BlueField.

Sample Prerequisites

A DOCA Flow-based program can either run on the host machine or on the BlueField.

Flow-based programs require an allocation of huge pages, hence the following commands
are required:

Running the Sample

1. Refer to the following documents:

DOCA Installation Guide for Linux for details on how to install BlueField-related
software.

DOCA Troubleshooting for any issue you may encounter with the installation,
compilation, or execution of DOCA samples.

2. To build a given sample:

Info

All the DOCA samples described in this section are governed under
the BSD-3 software license agreement.

$ echo '1024' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs -o pagesize=2M nodev /mnt/huge

https://docs.nvidia.com/doca/sdk/DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html

DOCA Flow 76

3. Sample (e.g., flow_aging) usage:

4. For additional information per sample, use the -h option after the -- separator:

cd /opt/mellanox/doca/samples/doca_flow/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Note

The binary doca_<sample_name> will be created under

/tmp/build/ .

Usage: doca_flow_aging [DPDK Flags] –- [DOCA Flags]

DOCA Flags:
 -h, --help Print a help
synopsis
 -v, --version Print program
version information
 -l, --log-level Set the (numeric)
log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK
(numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command
flags from an input json file

DOCA Flow 77

5. DOCA Flow samples are based on DPDK libraries. Therefore, the user is required to
provide DPDK flags. The following is an example from an execution on the DPU:

CLI example for running the samples with "vnf" mode:

CLI example for running the VNF samples with vnf,hws mode:

CLI example for running the switch samples with switch,hws mode:

/tmp/build/doca_<sample_name> -- -h

/tmp/build/doca_<sample_name> -a
auxiliary:mlx5_core.sf.2 -a auxiliary:mlx5_core.sf.3 --
-l 60

/tmp/build/doca_<sample_name> -a
auxiliary:mlx5_core.sf.2,dv_flow_en=2 -a
auxiliary:mlx5_core.sf.3,dv_flow_en=2 -- -l 60

/tmp/build/doca_<sample_name> -- -p 03:00.0 -r sf[2-3] -
l 60

Note

When running on the BlueField with switch,hws mode ,
it is not necessary to configure the OVS.

DOCA switch sample hides the extra
fdb_def_rule_en=0,vport_match=1,repr_matching_en=0,dv_x

DOCA Flow 78

Samples

Flow Aging

This sample illustrates the use of DOCA Flow's aging functionality. It demonstrates how to
build a pipe and add different entries with different aging times and user data.

The sample logic includes:

1. Initializing DOCA Flow with mode_args="vnf,hws" in the doca_flow_cfg .

2. Starting two DOCA Flow port.

3. On each port:

1. Building a pipe with changeable 5-tuple match and forward port action.

DPDK devargs with a simple -p and -r to specify the
PCIe ID and representor information.

Note

When running on the DPU using the command above, sub-
functions must be enabled according to the BlueField
Scalable Function User Guide.

Note

When running on the host, virtual functions must be used
according to the instructions in the DOCA Virtual
Functions User Guide.

https://docs.nvidia.com/doca/sdk/BlueField+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/sdk/BlueField+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Virtual+Functions+User+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Virtual+Functions+User+Guide/index.html

DOCA Flow 79

2. Adding 10 entries with different 5-tuple match, a monitor with different aging
time (5-60 seconds), and setting user data in the monitor. The user data will
contain the port ID, entry number, and entry pointer.

4. Handling aging every 5 seconds and removing each entry after age-out.

5. Running these commands until all entries age out.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_agingc

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_aging_main.c

/opt/mellanox/doca/samples/doca_flow/flow_aging/meson.build

Flow ACL

This sample illustrates how to use the access-control list (ACL) pipe.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building an ACL pipe that matches changeable:

1. Source IPv4 address

2. Destination IPv4 address

3. Source port

4. Destination port

2. Adding four example 5-tuple entries:

1. The first entry with:

DOCA Flow 80

Full mask on source IPv4 address

Full mask on destination IPv4 address

Null mask on source port (any source port)

Null mask on destination port (any destination port)

TCP protocol

Priority 10

Action "deny" (drop action)

2. The second entry with:

Full mask on source IPv4 address

Full mask on destination IPv4 address

Null mask on source port (any source port)

Value set in mask on destination port is used as part of port range:

Destination port in match is used as port from

Destination port in mask is used as port to

UDP protocol

Priority 50

Action "allow" (forward port action)

3. The third entry with:

Full mask on source IPv4 address

Full mask on destination IPv4 address

Value set in mask on source port is equal to the source port in
match. It is the exact port. ACL uses the port with full mask.

Null mask on destination port (any destination port)

DOCA Flow 81

TCP protocol

Priority 40

Action "allow" (forward port action)

4. The fourth entry with:

24-bit mask on source IPv4 address

24-bit mask on destination IPv4 address

Value set in mask on source port is used as part of port range :
source port in match is used as port from, source port in mask is
used as port to.

Value set in mask on destination port is equal to the destination
port in match. It is the exact port. ACL uses the port with full mask.

TCP protocol

Priority 20

Action "allow" (forward port action)

3. The sample shows how to run the ACL pipe on ingress and egress domains. To
change the domain, use the global parameter flow_acl_sample.c .

1. Ingress domain: ACL is created as root pipe

2. Egress domain:

Building a control pipe with one entry that forwards the IPv4 traffic
hairpin port.

ACL is created as a root pipe on the hairpin port.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_acl/flow_acl_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_acl/flow_acl_main.c

/opt/mellanox/doca/samples/doca_flow/flow_acl/meson.build

DOCA Flow 82

Flow Aging

This sample illustrates the use of DOCA Flow's aging functionality. It demonstrates how to
build a pipe and add different entries with different aging times and user data.

The sample logic includes:

1. Initializing DOCA Flow with mode_args="vnf,hws" in the doca_flow_cfg
struct.

2. Starting two DOCA Flow port.

3. On each port:

1. Building a pipe with changeable 5-tuple match and forward port action.

2. Adding 10 entries with different 5-tuple match, a monitor with different aging
time (5-60 seconds), and setting user data in the monitor. The user data will
contain the port ID, entry number, and entry pointer.

4. Handling aging every 5 seconds and removing each entry after age-out.

5. Running these commands until all entries age out.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_aging_sample

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_aging_main.c

/opt/mellanox/doca/samples/doca_flow/flow_aging/meson.build

Flow Control Pipe

This sample shows how to use the DOCA Flow control pipe and decap action.

The sample logic includes:

DOCA Flow 83

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building VXLAN pipe with match on VNI field, decap action, action descriptor
for decap, and forwarding the matched packets to the second port.

2. Building VXLAN-GPE pipe with match on VNI, flags and next protocol fields, and
forwarding the matched packets to the second port.

3. Building GRE pipe with match on GRE key field, decap and build eth header
actions, action descriptor for decap, and forwarding the matched packets to
the second port.

4. Building NVGRE pipe with match on protocol is 0x6558, vs_id , flow_id ,
and inner UDP source port fields, and forwarding the matched packets to the
second port. This pipe has a higher priority than the GRE pipe. The NVGRE
packets are matched first.

5. Building MPLS pipe with match on third MPLS label field, decap and build eth
header actions, action descriptor for decap, and forwarding the matched
packets to the second port.

6. Building a control pipe with the following entries:

If L4 type is UDP and destination port is 4789, forward to VXLAN pipe

If L4 type is UDP and destination port is 4790, forward to VXLAN-GPE
pipe

If L4 type is UDP and destination port is 6635, forward to MPLS pipe

If tunnel type and L4 type is GRE, forward to GRE pipe

Note

When any tunnel is decapped, it is user responsibility to identify if it is
an L2 or L3 tunnel within the action. If the tunnel is L3, the complete
outer layer, tunnel, and inner L2 are removed and the inner L3 layer is

DOCA Flow 84

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/flow_contr

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/flow_contr

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/meson.buil

Flow Copy to Meta

exposed. To keep the packet valid, the user should provide the ETH
header to encap the inner packet. For example:

For a VXLAN tunnel, since VXLAN is a L2 tunnel, the user must
indicate it within the action:

actions.decap_type =
DOCA_FLOW_RESOURCE_TYPE_NON_SHARED;
actions.decap_cfg.is_l2 = false;
/* append eth header after decap GRE tunnel */
SET_MAC_ADDR(actions.decap_cfg.eth.src_mac,
src_mac[0], src_mac[1], src_mac[2], src_mac[3],
src_mac[4], src_mac[5]);
SET_MAC_ADDR(actions.decap_cfg.eth.dst_mac,
dst_mac[0], dst_mac[1], dst_mac[2], dst_mac[3],
dst_mac[4], dst_mac[5]);
actions.decap_cfg.eth.type = DOCA_FLOW_L3_TYPE_IP4;

actions.decap_type =
DOCA_FLOW_RESOURCE_TYPE_NON_SHARED;
actions.decap_cfg.is_l2 = true;

DOCA Flow 85

This sample shows how to use the DOCA Flow copy-to-metadata action to copy the
source MAC address and then match on it.

The sample logic includes:

1. Initializing DOCA Flow by indicating ode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with changeable match on meta_data and forwarding the matched
packets to the second port.

2. Adding an entry that matches an example source MAC that has been copied to
metadata.

3. Building a pipe with changeable 5-tuple match, copying source MAC action, and fwd
to the first pipe.

4. Adding example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/flow_copy_

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/flow_copy_

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/meson.buil

Flow Add to Metadata

This sample shows how to use the DOCA Flow add-to-metadata action to accumulate the
source IPv4 address for double to meta and then match on the meta.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

DOCA Flow 86

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with changeable match on meta_data and forwarding the matched
packets to the second port.

2. Adding an entry that matches an example double of source IPv4 address that has
been added to metadata.

3. Building a pipe with changeable 5-tuple match, copying the source IPv4, and adding
the value again to the meta action, and forwarding to the first pipe.

4. Adding an example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/flow_add_to

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/flow_add_to

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/meson.build

Flow Drop

This sample illustrates how to build a pipe with 5-tuple match, forward action drop, and
forward miss action to the hairpin pipe. The sample also demonstrates how to dump pipe
information to a file and query entry.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a hairpin pipe with an entry that matches all traffic and forwarding
traffic to the second port.

DOCA Flow 87

2. Building a pipe with a changeable 5-tuple match, forwarding action drop, and
miss forward to the hairpin pipe. This pipe serves as a root pipe.

3. Adding an example 5-tuple entry to the drop pipe with a counter as monitor to
query the entry later.

4. Waiting 5 seconds and querying the drop entry (total bytes and total packets).

5. Dumping the pipe information to a file.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_drop/flow_drop_sample_s

/opt/mellanox/doca/samples/doca_flow/flow_drop/flow_drop_sample_m

/opt/mellanox/doca/samples/doca_flow/flow_drop/meson.build

Flow ECMP

This sample illustrates ECMP feature using a hash pipe.

The sample enables users to determine how many port are included in ECMP distribution:

The number of ports, n , is determined by DPDK device argument

representor=sf[0-m] where m=n-1 .

CLI example for running this samples with n=4 ports:

n should be power of 2. Max supported value is n=8 .

The sample logic includes:

1. Calculate the number of SF representors (n) created by DPDK according to user
input.

/tmp/build/doca_flow_ecmp -- -p 03:00.0 -r sf[0-3] -l 60 --
sdk-log-level 60

DOCA Flow 88

2. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg structure.

3. Starting DOCA Flow ports: Physical port and n SF representors.

4. On switch port:

1. Constructing a hash pipe that signifies the match_mask structure to
compute the hash based on the outer IPv6 flow label field.

2. Adding n entries to the created pipe, each of which forwards packets to a
different port representor.

5. Waiting 15 seconds and querying the entries.

6. Print the ECMP results per port (number packets in each port related to total
packets).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/flow_ecmp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/flow_ecmp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/meson.build

Flow ESP

This sample illustrates how to match match ESP fields in two ways:

Exact match for both esp_spi and esp_en fields using the doca_flow_match
structure.

Comparison match for esp_en field using the doca_flow_match_condition
structure.

Note

DOCA Flow 89

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a control pipe with entry that match esp_en > 3 (GT pipe).

2. Building a control pipe with entry that match esp_en < 3 (LT pipe).

3. Building a root pipe with changeable next_pipe FWD and esp_spi match

along with specific esp_sn match + IPv4 and ESP exitance (matching

parser_meta).

4. Adding example esp_spi = 8 entry to the root pipe which forwards to GT
pipe (and miss condition).

5. Adding example esp_spi = 5 entry to the root pipe which forwards to LT
pipe (and hit condition).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_esp/flow_esp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_esp/flow_esp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_esp/meson.build

Flow Forward Miss

The sample illustrates how to use FWD miss query and update with or without miss
counter.

This sample is supported for ConnectX-7, BlueField-3, and above.

DOCA Flow 90

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a copy pipe with a changeable outer L3 type match and forwarding
traffic to the second port.

2. Add entries doing different copy action depending on the outer L3 type:

1. IPv4 – copy IHL field into Type Of Service field.

2. IPv6 – copy Payload Length field into Traffic Class field.

3. Building a pipe with a IPv4 addresses match, forwarding traffic to the second
port, and miss forward to the copy pipe.

4. Building an IP selector pipe with outer L3 type match, forwarding IPv4 traffic to
IPv4 pipe, and miss forward to the copy pipe with miss counter.

5. Building a root pipe with outer L3 type match, forwarding IPv4 and IPv6 traffic
to IP selector pipe, and dropping all other traffic by miss forward with miss
counter.

4. Waiting 5 seconds for first batch of traffic.

5. On each port:

1. Querying the miss counters using doca_flow_query_pipe_miss API.

2. Printing the miss results.

6. On each port:

1. Building a push pipe that pushes VLAN header and forwarding traffic to the
second port.

2. Updating both IP selector and IPv4 pipes miss FWD pipe target to push pipe
using doca_flow_pipe_update_miss API.

DOCA Flow 91

7. Waiting 5 seconds for second batch of traffic, same flow as before.

8. On each port:

1. Querying again the miss counters using doca_flow_query_pipe_miss API.

2. Printing the miss results again, the results should include miss packets coming
either before or after miss action updating.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/flow_fwd_miss_

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/flow_fwd_miss_

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/meson.build

Flow Forward Target (DOCA_FLOW_TARGET_KERNEL)

The sample illustrates how to use DOCA_FLOW_FWD_TARGET type of forward, as well as

the doca_flow_get_target API to obtain an instance of

struct doca_flow_target .

The sample logic includes:

1. Initializing DOCA Flow with "vnf,isolated,hws" .

2. Initializing two ports.

3. Obtaining an instance of doca_flow_target by calling

doca_flow_get_target(DOCA_FLOW_TARGET_KERNEL, &kernel_target); .

4. On each port, creating:

1. Non-root basic pipe with 5 tuple match.

1. If hit – forward the packet to another port.

2. If miss – forward the packet to the kernel for processing by using the
instance of doca_flow_target obtained in previous steps.

DOCA Flow 92

3. Then add a single entry with a specific 5-tuple which is hit, and the rest is
forwarded to the kernel.

2. Root control pipe with a match on outer L3 type being IPv4.

1. If hit – forward the packet to the non-root pipe.

2. If miss – drop the packet.

3. Add a single entry that implements the logic described.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/flow_fwd_tar

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/flow_fwd_tar

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/meson.build

Flow GENEVE Encap

This sample illustrates how to use DOCA Flow actions to create a GENEVE tunnel.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building ingress pipe with changeable 5-tuple match, copying to pkt_meta
action, and forwarding port action.

2. Building egress pipe with pkt_meta match and 4 different encapsulation
actions:

L2 encap without options

L2 encap with options

DOCA Flow 93

L3 encap without options

L3 encap with options

3. Adding example 5-tuple and encapsulation values entries to the pipes.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/flow_genev

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/flow_genev

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/meson.buil

Flow GENEVE Options

This sample illustrates how to prepare a GENEVE options parser, match on configured
options, and decap GENEVE tunnel.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building GENEVE options parser, same input for all ports.

2. Building match pipe with GENEVE VNI and options match and forwards decap
pipe.

Note

This sample works only with PF. VFs and SFs are not supported.

DOCA Flow 94

3. Building decap pipe with more GENEVE options match, and 2 different
decapsulation actions:

L2 decap

L3 decap with changeable mac addresses

4. Adding example GENEVE options and MAC address values entries to the pipes.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/flow_geneve_

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/flow_geneve_

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/meson.build

Flow GTP

This sample demonstrates how to use DOCA Flow to process and modify GTP PSC
packets with specific QFI values.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf" in the doca_flow_cfg
struct.

2. Starting two DOCA Flow ports.

3. Creating two pipes on each port:

1. The first pipe:

1. Matches GTP PSC packets.

2. Forwards only GTP PSC packets to the second pipe.

3. Drops all other packets.

2. The second pipe:

1. Matches packets with QFI equal to 0x1 .

DOCA Flow 95

2. Modifies these packets, changing the QFI value from 0x1 to 0x3a .

3. Hairpins the modified packets to the other port.

4. Drops all other packets.

Sample result: Only GTP PSC packets with an initial QFI value of 0x1 are transmitted to

the other port, where their QFI value has been updated to 0x3a . All other packets are
dropped.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_gtp/flow_gtp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_gtp/flow_gtp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_gtp/meson.build

Flow GTP Encap

This sample illustrates how to use DOCA Flow actions to create a GTP tunnel.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf" in the doca_flow_cfg
struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building ingress pipe with IPv4 match, and forwarding port action.

2. Building egress pipe with GTP encapsulation action. gtp_teid ,

gtp_ext_psc_qfi , eth and IPv4 fields are changeable.

3. Adding example encapsulation values entries to the pipes.

Reference:

DOCA Flow 96

/opt/mellanox/doca/samples/doca_flow/flow_gtp_encap/flow_gtp_enca

/opt/mellanox/doca/samples/doca_flow/flow_gtp_encap/flow_gtp_enca

/opt/mellanox/doca/samples/doca_flow/flow_gtp_encap/meson.build

Flow Hairpin VNF

This sample illustrates how to build a pipe with 5-tuple match and to forward packets to
the other port.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with changeable 5-tuple match and forwarding port action.

2. Adding example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/flow_hairpi

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/flow_hairpi

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/meson.build

Flow Switch to Wire

This sample illustrates how to build a pipe with 5-tuple match and forward packets from
the wire back to the wire.

The sample shows how to build a basic pipe in a switch and hardware steering (HWS)
mode. Each pipe contains two entries, each of which forwards matched packets to two

DOCA Flow 97

different representors.

The sample also demonstrates how to obtain the switch port of a given port using
doca_flow_port_switch_get() .

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting DOCA Flow ports with doca_dev in struct doca_flow_port_cfg .

3. On the switch's PF port:

1. Building ingress, egress, vport, and RSS pipes with changeable 5-tuple match
and forwarding port action.

2. Adding example 5-tuple entry to the pipe.

3. The matched traffic goes to its destination port, the missed traffic is handled
by the rx_tx function and is sent to a dedicate port based on the protocol.

Ingress pipe:

Egress pipe (test ingress to egress cross domain):

Note

The test requires one PF with three representors (either VFs or SFs).

Entry 0: IP src 1.2.3.4 / TCP src 1234 dst 80 -> egress
pipe
Entry 1: IP src 1.2.3.5 / TCP src 1234 dst 80 -> vport
pipe

DOCA Flow 98

Vport pipe (test ingress direct to vport):

RSS pipe (test miss traffic port_id get and destination port_id set):

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/flow_swi

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/flow_swi

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/meson.bu

Flow Hash Pipe

This sample illustrates how to build a hash pipe in hardware steering (HWS) mode.

Entry 0: IP dst 8.8.8.8 / TCP src 1234 dst 80 -> port 0

Entry 1: IP dst 8.8.8.9 / TCP src 1234 dst 80 -> port 1

Entry 2: IP dst 8.8.8.10 / TCP src 1234 dst 80 -> port 2

Entry 3: IP dst 8.8.8.11 / TCP src 1234 dst 80 -> port 3

Entry 0: IP dst 8.8.8.8 / TCP src 1234 -> port 0

Entry 1: IP dst 8.8.8.9 / TCP src 1234 -> port 1

Entry 2: IP dst 8.8.8.10 / TCP src 1234-> port 2

Entry 3: IP dst 8.8.8.11 / TCP src 1234-> port 3

Entry 0: IPv4 / TCP -> port 0

Entry 0: IPv4 / UDP -> port 1

Entry 0: IPv4 / ICMP -> port 2

DOCA Flow 99

The hash pipe contains two entries, each of which forwards "matched" packets to two
different SF representors. For each received packet, the hash pipe calculates the entry
index to use based on the IPv4 destination address.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting DOCA Flow ports: Physical port and two SF representors.

3. On switch port:

1. Building a hash pipe while indicating which fields to use to calculate the hash in
the struct match_mask .

2. Adding two entries to the created pipe, each of which forwards packets to a
different port representor.

4. Printing the hash result calculated by the software with the following message:
"hash value for" for dest ip = 192.168.1.1 .

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/flow_hash_pip

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/flow_hash_pip

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/meson.build

Flow IPv6 Flow Label

This sample shows how to use DOCA Flow actions to update IPv6 flow label field after
encapsulation.

As a side effect, it shows also example for IPv6 + MPLS encapsulation.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

DOCA Flow 100

2. Starting two DOCA Flow ports.

3. On each port:

1. Building an ingress pipe with changeable L4 type and ports matching, which
updates metadata and goes to the peer port.

2. Adding example UDP/TCP type and ports and metadata values entries to the
pipe. This pipe is L3 type agnostic.

3. Building an egress pipe on the peer port with changeable metadata matching,
which encapsulates packets with IPv6 + MPLS headers, and goes to the next
pipe.

4. Adding entries to the pipe, with different encapsulation values for different
metadata values.

5. Building another egress pipe on the peer port with changeable L3 inner type
matching, which copies value into outer IPv6 flow label field.

6. Adding two entries to the pipe:

1. L3 inner type is IPv6 - copy IPv6 flow label from inner to outer.

2. L3 inner type is IPv6 - copy outer IPv6 flow label from metadata.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/flow_ip

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/flow_ip

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/meson.b

Flow Loopback

This sample illustrates how to implement packet re-injection, or loopback, in VNF mode.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

DOCA Flow 101

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a UDP pipe that matches a changeable source and destination IPv4
address, while the forwarding component is RSS to queues. Upon match,
setting the packet meta on this UDP pipe which is referred to as an
RSS_UDP_IP pipe.

2. Adding one entry to the RSS_UDP_IP pipe that matches a packet with a
specific source and destination IPv4 address and setting the meta to 10.

3. Building a TCP pipe that matches changeable 4-tuple source and destination
IPv4 and port addresses, while the forwarding component is RSS to queues
(this pipe is called RSS_TCP_IP and it is the root pipe on ingress domain).

4. Adding one entry to the RSS_TCP_IP pipe, that matches a packet with a
specific source and destination port and IPv4 addresses.

5. On the egress domain, creating the loopback pipe, which is root, and matching
TCP over IPv4 with changeable 4-tuple source and destination port and IPv4
addresses, while encapsulating the matched packets with VXLAN tunneling
and setting the destination and source MAC addresses to be changeable per
entry.

6. Adding one entry to the loopback pipe with specific values for the match and
actions part while setting the destination MAC address to the port to which to
inject the packet (in this case, it is the ingress port where the packet arrived).

7. Starting to receive packets loop and printing the metadata

For packets that were re-injected, metadata equaling 10 is printed

Otherwise, 0 is be printed as metadata (indicating that it is the first time
the packet has been encountered)

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_loopback/flow_loopback_

/opt/mellanox/doca/samples/doca_flow/flow_loopback/flow_loopback_

/opt/mellanox/doca/samples/doca_flow/flow_loopback/meson.build

DOCA Flow 102

Flow Modify Header

This sample illustrates how to use DOCA Flow actions to modify the specific packet fields.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port, creating serial pipes and jumping to the next pipe if traffic is
unmatched:

1. Building a pipe with action dec_ttl=true and changeable mod_dst_mac .
The pipe matches IPv4 traffic with a changeable destination IP and forwards
the matched packets to the second port.

Adding an entry with an example destination IP (8.8.8.8) and
mod_dst_mac value.

2. Building a pipe with action-changeable mod_vxlan_tun_rsvd1 . The pipe
matches IPv4 traffic with a changeable UDP destination port and VXLAN-GPE
tunnel ID then forwards the matched packets to the second port.

Adding an entry with an example VXLAN-GPE tunnel ID (100) and UDP
destination port (4790), then mod_vxlan_tun_rsvd1 value.

3. Building a pipe with action-changeable mod_vxlan_tun_rsvd1 . The pipe
matches IPv4 traffic with a changeable UDP destination port and VXLAN
tunnel ID then forwards the matched packets to the second port.

Adding an entry with an example VXLAN tunnel ID (100) and UDP
destination port (4789), then mod_vxlan_tun_rsvd1 value.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/flow_modi

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/flow_modi

DOCA Flow 103

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/meson.bui

Flow Monitor Meter

This sample illustrates how to use DOCA Flow monitor meter.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with monitor meter flag and changeable 5-tuple match. The
pipe forwards the matched packets to the second port.

2. Adding an entry with an example CIR and CBS values.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/flow_moni

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/flow_moni

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/meson.bui

Flow Multi-actions

This sample shows how to use a DOCA Flow array of actions in a pipe.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

DOCA Flow 104

3. On each port:

1. Building a pipe with changeable source IP match which forwards the matched
packets to the second port and sets different actions in the actions array:

Changeable modify source MAC address

Changeable modify source IP address

2. Adding two entries to the pipe with different source IP match:

1. The first entry with an example modify source MAC address.

2. The second with a modify source IP address.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/flow_mult

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/flow_mult

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/meson.bui

Flow Multi-fwd

This sample shows how to use a different forward in pipe entries.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with changeable source IP match and sending NULL in the
forward.

2. Adding two entries to the pipe with different source IP match, and different
forward:

DOCA Flow 105

The first entry with forward to the second port

The second with drop

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/flow_multi_fw

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/flow_multi_fw

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/meson.build

Flow Parser Meta

This sample shows how to use some of match.parser_meta fields from 3 families:

IP fragmentation – matching on whether a packet is IP fragmented

Integrity bits – matching on whether a specific protocol is OK (length, checksum etc.)

Packet types – matching on a specific layer packet type

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a root pipe with outer IP fragmentation match:

If a packet is IP fragmented – forward it to the second port regardless of
next pipes in the pipeline

If a packet is not IP fragmented – proceed with the the pipeline by
forwarding it to integrity pipe

2. Building an "integrity" pipe with a single entry which continues to the next pipe
when:

DOCA Flow 106

The outer IPv4 checksum is OK

The inner L3 is OK (incorrect length should be dropped)

3. Building a "packet type" pipe which forwards packets to the second port when:

The outer L3 type is IPv4

The inner L4 type is either TCP or UDP

4. Waiting 5 seconds for traffic to arrive.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/flow_parser

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/flow_parser

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/meson.build

Flow Random

This sample shows how to use match.parser_meta.random field for 2 different use-
cases:

Sampling – sampling certain percentage of traffic regardless of flow content

Distribution – distributing traffic in 8 different queues

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a root pipe with changeable 5-tuple match and forwarding to specific
use-case pipe according to changeable source IP address.

DOCA Flow 107

2. Adding two entries to the pipe with different source IP match, and different
forward:

The first entry with forward to the sampling pipe.

The second entry with forward to the distribution pipe.

3. Building a "sampling" pipe with a single entry and preparing the entry to
sample 12.5% of traffic.

4. Building a "distribution" hash pipe with 8 entries and preparing the entries to
get 12.5% of traffic for each queue.

4. Waiting 15 seconds and querying the entries (total packets after
sampling/distribution related to total packets before).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_random/flow_random_samp

/opt/mellanox/doca/samples/doca_flow/flow_random/flow_random_main

/opt/mellanox/doca/samples/doca_flow/flow_random/meson.build

Flow RSS ESP

This sample shows how to use DOCA Flow forward RSS according to ESP SPI field, and
distribute the traffic between queues.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with both L3 and L4 types match, copy the SPI field into
packet meta data, and forwarding to RSS with 7 queues.

DOCA Flow 108

2. Adding an entry with both IPv4 and ESP existence matching.

4. Waiting 15 seconds for traffic to arrived.

5. On each port:

1. Calculates the traffic percentage distributed into each port and prints the
result.

2. Printing for each packet its SPI value. (only in debug mode, -l ≥ 60)

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/flow_rss_esp_sa

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/flow_rss_esp_ma

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/meson.build

Flow RSS Meta

This sample shows how to use DOCA Flow forward RSS, set meta action, and then retrieve
the matched packets in the sample.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with a changeable 5-tuple match, forwarding to RSS queue with
index 0, and setting changeable packet meta data.

2. Adding an entry with an example 5-tuple and metadata value to the pipe.

4. Retrieving the packets on both ports from a receive queue , and printing the packet
metadata value.

DOCA Flow 109

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/flow_rss_meta_

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/flow_rss_meta_

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/meson.build

Flow Sampling

This sample shows how to sample certain percentage of traffic regardless of flow content
using doca_flow_match_condition structure with parser_meta.random.value
field string.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting DOCA Flow ports: Physical port and two SF representors.

3. On switch port:

1. Building a root pipe with changeable 5-tuple match and forwarding to sampling
pipe.

2. Adding entry with an example 5-tuple to the pipe.

3. Building a "sampling" control pipe with a single entry.

4. calculating the requested random value for getting 35% of traffic.

5. Adding entry with an example condition random value to the pipe.

Note

This sample is supported for ConnectX-7/BlueField-3 and above.

DOCA Flow 110

4. Waiting 15 seconds and querying the entries (total packets after sampling related to
total packets before).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_sampling/flow_sampling_

/opt/mellanox/doca/samples/doca_flow/flow_sampling/flow_sampling_

/opt/mellanox/doca/samples/doca_flow/flow_sampling/meson.build

Flow Set Meta

This sample shows how to use the DOCA Flow set metadata action and then match on it.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with a changeable match on metadata and forwarding the matched
packets to the second port.

2. Adding an entry that matches an example metadata value.

3. Building a pipe with changeable 5-tuple match, changeable metadata action, and
fwd to the first pipe.

4. Adding entry with an example 5-tuple and metadata value to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/flow_set_meta_

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/flow_set_meta_

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/meson.build

DOCA Flow 111

Flow Shared Counter

This sample shows how to use the DOCA Flow shared counter and query it to get the
counter statistics.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Binding the shared counter to the port.

2. Building a pipe with changeable 5-tuple match with UDP protocol, changeable
shared counter ID and forwarding the matched packets to the second port.

3. Adding an entry with an example 5-tuple match and shared counter with ID=
port_id .

4. Building a pipe with changeable 5-tuple match with TCP protocol, changeable
shared counter ID and forwarding the matched packets to the second port.

5. Adding an entry with an example 5-tuple match and shared counter with ID=
port_id .

6. Building a control pipe with the following entries:

If L4 type is UDP, forwards the packets to the UDP pipe

If L4 type is TCP, forwards the packets to the TCP pipe

4. Waiting 5 seconds and querying the shared counters (total bytes and total packets).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/flow_sha

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/flow_sha

DOCA Flow 112

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/meson.bu

Flow Shared Meter

This sample shows how to use the DOCA Flow shared meter.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Config a shared meter with specific cir and cbs values.

2. Binding the shared meter to the port.

3. Building a pipe with a changeable 5-tuple match with UDP protocol, changeable
shared meter ID and forwarding the matched packets to the second port.

4. Adding an entry with an example 5-tuple match and shared meter with ID=
port_id .

5. Building a pipe with a changeable 5-tuple match with TCP protocol, changeable
shared meter ID and forwarding the matched packets to the second port.

6. Adding an entry with an example 5-tuple match and shared meter with ID=
port_id .

7. Building a control pipe with the following entries:

If L4 type is UDP, forwards the packets to the UDP pipe

If L4 type is TCP, forwards the packets to the TCP pipe

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/flow_share

DOCA Flow 113

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/flow_share

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/meson.buil

Flow Switch Control Pipe

This sample shows how to use the DOCA Flow control pipe in switch mode.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building control pipe with match on VNI field.

2. Adding two entries to the control pipe, both matching TRANSPORT (UDP or
TCP proto) over IPv4 with source port 80 and forwarding to the other port,
where the first entry matches destination port 1234 and the second 12345.

3. Both entries have counters, so that after the successful insertions of both
entries, the sample queries those counters to check the number of matched
packets per entry.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/flo

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/flo

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/mes

Flow Switch – Multiple Switches

This sample illustrates how to use two switches working concurrently on two different
physical functions.

DOCA Flow 114

It shows how to build a basic pipe in a switch and hardware steering (HWS) mode. Each
pipe contains two entries, each of which forwards matched packets to two different
representors.

The sample also demonstrates how to obtain the switch port of a given port using
doca_flow_port_switch_get() .

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting DOCA Flow ports: Two physical ports and two representors each (totaling
six ports).

3. On the switch port:

1. Building a basic pipe while indicating which fields to match on using
struct doca_flow_match match .

2. Adding two entries to the created pipe, each of which forwards packets to a
different port representor.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch/flow_switch_samp

/opt/mellanox/doca/samples/doca_flow/flow_switch/flow_switch_main

/opt/mellanox/doca/samples/doca_flow/flow_switch/meson.build

Note

The test requires two PFs with two (either VF or SF) representors on
each.

DOCA Flow 115

Flow Switch – Single Switch

This sample is identical to the previous sample, before the flow switch sample was
extended to take advantage of the capabilities of DOCA to support multiple switches
concurrently, each based on a different physical device.

The reason we add this original version is that it removes the constraints imposed by the
modified flow switch version, allowing to use arbitrary number of representors in the
switch configuration.

The logic of this sample is identical to that of the previous sample with 2 new pipes.

A user RSS pipe which receives the packets which missed TC rules (in the kernel
domain in this case)

A simple pipe forwarding packets to kernel domain by using
DOCA_FLOW_FWD_TARGET

In the to_kernel_pipe , all the IPv4 packets are forwarded to the kernel (i.e., entry 0 in

to_kernel_pipe). In the kernel domain, all the IPv4 packets are missed to the NIC
domain if there is no TC rule. In the NIC domain, the IPv4 packets missed from the NIC
domain are forwarded to slow path (i.e., the representor of the PF/VF).

Root pipe:

To kernel pipe:

RSS pipe:

Entry 0: IP src 1.2.3.4 / dst 8.8.8.8 / TCP src 1234 dst 80 -> port
0

Entry 1: IP src 1.2.3.5 / dst 8.8.8.9 / TCP src 1234 dst 80 -> port
1

Miss: -> To kernel pipe

Entry 0: IPv4 -> send to kernel
IPv6 traffic would be dropped

DOCA Flow 116

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/flow_swit

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/flow_swit

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/meson.bui

Flow Switch (Direction Info)

This sample illustrates how to give a hint to the driver for potential optimizations based on
the direction information.

The sample also demonstrates usage of the match.parser_meta.port_meta to
detect by the switch pipe the source from where the packet has arrived.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting 3 DOCA Flow ports, 1 physical port and 2 representors.

3. On the switch port:

1. Network-to-host pipe:

Entry 0: IPv4 -> port 0 rss queue 0

Info

This sample requires a single PF with two representors (either VF or
SF).

DOCA Flow 117

1. Building basic pipe with a changeable ipv4.next_proto field and
configuring the pipe with the hint of direction by setting
attr.dir_info = DOCA_FLOW_DIRECTION_NETWORK_TO_HOST .

2. Adding two entries:

If ipv4.next_proto is TCP, the packet is forwarded to the first
representor, to the host.

If ipv4.next_proto is UDP, the packet is forwarder to the second
representor, to the host.

2. Host-to-network pipe:

1. Building a basic pipe with a match on aa:aa:aa:aa:aa:aa as a source
MAC address and configuring a pipe with the hint of direction by setting
attr.dir_info = DOCA_FLOW_DIRECTION_HOST_TO_NETWORK .

2. Adding an entry. If the source MAC is matched, forward the packet to the
physical port (i.e., to the network).

3. Switch pipe:

1. Building a basic pipe with a changeable parser_meta.port_meta to
detect where the packet has arrived from.

2. Adding 3 entries:

If the packet arrived from port 0 (i.e., the network), forward it to the
network-to-host pipe to decide for further logic

If the packet arrived from port 1 (i.e., the host's first representor),
forward it to the host-to-network pipe to decide for further logic

If the packet arrived from port 2, (i.e., the host's second
representor), forward it to the host-to-network pipe to decide for
further logic

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/f

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/f

DOCA Flow 118

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/m

Flow Switch Hot Upgrade

This sample demonstrates how to use the port operation state mechanism for a hot
upgrade use case. It shows how to configure the state of a port during initialization and
how to modify the state after the port has already been started.

Prerequisites

The test requires two physical functions (PFs) with two (either VFs or SFs) representors on
each.

Command-line Arguments

The sample allows users to specify the operation state of the instance using the
--state <value> argument. The relevant values are:

0 for DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE

1 for DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP

2 for DOCA_FLOW_PORT_OPERATION_STATE_STANDBY

Sample Logic

1. Initialize DOCA Flow:

Indicate mode_args="switch" in the doca_flow_cfg structure.

2. Start DOCA Flow ports:

Two physical ports and two representors each (totaling six ports) are started.

Both switch ports are configured with
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED state.

DOCA Flow 119

3. Configure each switch port:

1. Build a basic pipe with a miss counter matching on outer L3 type (specific IPv4)
and outer L4 type (changeable).

2. Add two entries to the created pipe with counters, each forwarding packets to
a different port representor.

3. Modify the port operation state from
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED to the required state.

4. Traffic handling:

Wait for traffic until a SIGQUIT signal (Ctrl+) is received.

While traffic is being received, traffic statistics are printed to stdout.

Hot Upgrade Use Case

To illustrate the hot upgrade use case, follow these steps:

1. Create two different instances in separate windows with different states.

Note

DPDK prevents users from creating two primary instances. To
avoid this limitation, use the --file-prefix EAL argument.

Example for the "active" instance:

Example for the "stand-by" instance:

/tmp/build/samples/doca_flow_switch_hot_upgrade
-- -p 08:00.0 -p 08:00.1 -r vf[0-1] -r
vf[0-1] -l 70

DOCA Flow 120

2. Close the active process by typing Ctrl+\ while traffic is being received. The traffic
statistics will start printing in the standby instance.

3. Restart the first instance. The traffic statistics will stop printing in the standby
instance and start printing in the active instance again.

Swap Use Case

When both instances are running, the swap use case can be demonstrated by typing
Ctrl+C:

Typing Ctrl+C in the active instance changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP

Typing Ctrl+C in the standby instance changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE

Typing Ctrl+C in the active instance again changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_STANDBY

References

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/flow

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/flow

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/meso

/tmp/build/samples/doca_flow_switch_hot_upgrade
--file-prefix standby -- -p 08:00.0 -p
08:00.1 -r vf[0-1] -r vf[0-1] -l 70 --
state 2

DOCA Flow 121

Flow VXLAN Encap

This sample shows how to use DOCA Flow actions to create a
VXLAN/VXLANGPE/VXLANGBP tunnel as well as illustrating the usage of matching TCP
and UDP packets in the same pipe.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with changeable 5-tuple match, encap action, and forward port
action.

2. Adding example 5-tuple and encapsulation values entry to the pipe. Every TCP
or UDP over IPv4 packet with the same 5-tuple is matched and encapsulated.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/flow_vxlan_

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/flow_vxlan_

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/meson.build

Flow Shared Mirror

This sample shows how to use the DOCA Flow shared mirror.

Note

DOCA Flow 122

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Configuring a shared mirror with a clone destination hairpin to the second port.

2. Binding the shared mirror to the port.

3. Building a pipe with a changeable 5-tuple match with UDP protocol, changeable
shared mirror ID, and forwarding the matched packets to the second port.

4. Adding an entry with an example 5-tuple match and shared mirror with ID=
port_id+1 .

5. Building a pipe with a changeable 5-tuple match with TCP protocol, changeable
shared mirror ID, and forwarding the matched packets to the second port.

6. Adding an entry with an example 5-tuple match and shared mirror with ID=
port_id+1 .

7. Building a control pipe with the following entries:

If L4 type is UDP, forwards the packets to the UDP pipe

If L4 type is TCP, forwards the packets to the TCP pipe

8. Waiting 15 seconds to clone any incoming traffic. Should see the same two
packets received on the second port (one from the clone and another from the
original).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/flow_shar

A current limitation does not allow using shared mirror IDs bearing the
value zero.

DOCA Flow 123

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/flow_shar

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/meson.bui

Flow Match Comparison

This sample shows how to use the DOCA Flow match with a comparison result.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Building a pipe with a changeable match on meta_data[0] and forwarding
the matched packets to the second port.

2. Adding an entry that matches on meta_data[0] equal with TCP header
length.

3. Building a control pipe for comparison purpose.

4. Adding an entry to the control pipe match with comparison result the
meta_data[0] value greater than meta_data[1] and forwarding the

matched packets to match with the meta pipe.

5. Building a pipe with a changeable 5-tuple match, copying ipv4.total_len
to meta_data[1] , and accumulating ipv4.version_ihl << 2
tcp.data_offset << 2 to meta_data[1] , then forwarding to the second

pipe.

6. Adding an example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/flow_m

DOCA Flow 124

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/flow_m

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/meson.

Flow Entropy

This sample shows how to use the DOCA Flow entropy calculation.

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting one DOCA Flow port.

3. Configuring the doca_flow_entropy_format structure with 5-tuple values.

4. Calling to doca_flow_port_calc_entropy to get the calculated entropy.

5. Logging the calculated entropy.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_entropy/flow_entropy_sa

/opt/mellanox/doca/samples/doca_flow/flow_entropy/flow_entropy_ma

/opt/mellanox/doca/samples/doca_flow/flow_entropy/meson.build

Flow VXLAN Shared Encap

This sample shows how to use DOCA Flow actions to create a VXLAN tunnel as well as
illustrating the usage of matching TCP and UDP packets in the same pipe.

The VXLAN tunnel is created by shared_resource_encap .

The sample logic includes:

DOCA Flow 125

1. Initializing DOCA Flow by indicating mode_args="vnf,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. On each port:

1. Configure and bind shared encap resources. The encap resources are for
VXLAN encap.

2. Building a pipe with changeable 5-tuple match, shared_encap_id , and
forward port action.

3. Adding example 5-tuple and encapsulation values entry to the pipe. Every TCP
or UDP over IPv4 packet with the same 5-tuple is matched and encapsulated.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/flow

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/flow

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/meso

Flow Switch RSS

This sample shows DOCA Flow switch RSS creation, and verifies switch RSS feature with
shared/immediate/internal hairpin RSS and packet handling.

Note

Only 512 different immediate RSS actions are supported in DOCA
Flow.

Info

DOCA Flow 126

The sample logic includes:

1. Initializing DOCA Flow by indicating mode_args="switch,hws" in the

doca_flow_cfg struct.

2. Starting two DOCA Flow ports.

3. Configuring and binding shared resources.

4. Creating shared/immediate RSS pipes both in default and egress domains and
adding entries to check both domain switch RSS creation.

5. Creating a forward-to-port pipe and adding the entries to check internal wire-to-
wire hairpin.

6. Sending the traffic to make sure all the queues can receive the traffic.

The matched traffic goes to its destination queue or port, the missed traffic is handled by
the rx_tx function and is sent to a dedicated queue/port based on the IP address:

Default pipe network to host:

The shared RSS is created by shared_resource_rss .

Info

To cover MPESW mode P0/P1/VF, 3 ports are designed to be used.

Entry: IP src 1.2.3.4 dst 8.8.8.8 -> basic pipe constant RSS
Entry: IP src 1.2.3.5 dst 8.8.8.8 -> basic pipe changeable
immediate RSS
Entry: IP src 1.2.3.6 dst 8.8.8.8 -> basic pipe changeable shared
RSS
Entry: IP src 1.2.3.7 dst 8.8.8.8 -> control pipe immediate RSS

DOCA Flow 127

Egress pipe:

Vport pipe:

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_rss/flow_switch_

/opt/mellanox/doca/samples/doca_flow/flow_switch_rss/flow_switch_

/opt/mellanox/doca/samples/doca_flow/flow_switch_rss/meson.build

Field String Mapping

Field String Supported Actions

Entry: IP src 1.2.3.8 dst 8.8.8.9 -> control pipe shared RSS

Entry: IP src 1.2.3.9 dst 8.8.8.8 -> basic pipe constant RSS
Entry: IP src 1.2.3.10 dst 8.8.8.8 -> basic pipe changeable
immediate RSS
Entry: IP src 1.2.3.11 dst 8.8.8.8 -> basic pipe changeable
shared RSS
Entry: IP src 1.2.3.12 dst 8.8.8.8 -> control pipe immediate RSS
Entry: IP src 1.2.3.13 dst 8.8.8.9 -> control pipe shared RSS

Entry: IP src 1.2.3.14 dst 8.8.8.8 -> port 0

Entry: IP src 1.2.3.14 dst 8.8.8.9 -> port 1

Entry: IP src 1.2.3.14 dst 8.8.8.10 -> port 2

DOCA Flow 128

The following is a list of all the API fields available for matching criteria and action
execution.

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

meta.data
(bit_offset < 32)

meta.pkt_met
a

meta.pkt_me
ta

meta.data
(bit_offset ≥ 32)

meta.u32[i] meta.u32[i]

meta.mark meta.mark meta.mark ✘ ✘ ✘ ✘ ✘ ✘ ✘

parser_meta.hash
.result

None. See section "Copy Hash
Result" for details.

N/
A

N/
A

N/
A

✘ ✘

parser_meta.port
.id

parser_meta.
port_meta

N/
A

N/
A

✘
N/
A

✘ ✘ ✘

parser_meta.ipse
c.syndrome

parser_meta.
ipsec_syndro
me

N/
A

N/
A

✘
N/
A

✘ ✘ ✘

parser_meta.psp.
syndrome

parser_meta.
psp_syndrome

N/
A

N/
A

✘
N/
A

✘ ✘ ✘

parser_meta.rand
om.value

parser_meta.
random

N/
A

N/
A

✘
N/
A

✘ ✘

parser_meta.mete
r.color

parser_meta.
meter_color

N/
A

N/
A

✘
N/
A

✘ ✘ ✘

parser_meta.pack
et_type.l2_outer

parser_meta.
outer_l2_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.pack
et_type.l3_outer

parser_meta.
outer_l3_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

http://confluence.nvidia.com/#Copy%20Hash%20Result
http://confluence.nvidia.com/#Copy%20Hash%20Result

DOCA Flow 129

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

parser_meta.pack
et_type.l4_outer

parser_meta.
outer_l4_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.pack
et_type.l2_inner

parser_meta.
inner_l2_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.pack
et_type.l3_inner

parser_meta.
inner_l3_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.pack
et_type.l4_inner

parser_meta.
inner_l4_typ
e

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.oute
r_ip_fragmented.
flag

parser_meta.
outer_ip_fra
gmented

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inne
r_ip_fragmented.
flag

parser_meta.
inner_ip_fra
gmented

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.oute
r_integrity.l3_o
k

parser_meta.
outer_l3_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.oute
r_integrity.ipv4
_checksum_ok

parser_meta.
outer_ip4_ch
ecksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.oute
r_integrity.l4_o
k

parser_meta.
outer_l4_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.oute
r_integrity.l4_c
hecksum_ok

parser_meta.
outer_l4_che
cksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

DOCA Flow 130

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

parser_meta.inne
r_integrity.l3_o
k

parser_meta.
inner_l3_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inne
r_integrity.ipv4
_checksum_ok

parser_meta.
inner_ip4_ch
ecksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inne
r_integrity.l4_o
k

parser_meta.
inner_l4_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inne
r_integrity.l4_c
hecksum_ok

parser_meta.
inner_l4_che
cksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

outer.eth.dst_ma
c

outer.eth.ds
t_mac

outer.eth.d
st_mac

✘ ✘ ✘

outer.eth.src_ma
c

outer.eth.sr
c_mac

outer.eth.s
rc_mac

✘ ✘ ✘

outer.eth.type
outer.eth.ty
pe

outer.eth.t
ype

✘ ✘ ✘

outer.eth_vlan0.
tci

outer.eth_vl
an[0].tci

outer.eth_v
lan[0].tci

✘ ✘ ✘

outer.eth_vlan1.
tci

outer.eth_vl
an[1].tci

outer.eth_v
lan[1].tci

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.ipv4.src_i
p

outer.ip4.sr
c_ip

outer.ip4.s
rc_ip

✘ ✘ ✘

outer.ipv4.dst_i
p

outer.ip4.ds
t_ip

outer.ip4.d
st_ip

✘ ✘ ✘

outer.ipv4.dscp_
ecn

outer.ip4.ds
cp_ecn

outer.ip4.d
scp_ecn

✘ ✘ ✘

DOCA Flow 131

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

outer.ipv4.next_
proto

outer.ip4.ne
xt_proto

outer.ip4.n
ext_proto

✘ ✘ ✘

outer.ipv4.ttl
outer.ip4.tt
l

outer.ip4.t
tl

✘ ✘

outer.ipv4.versi
on_ihl

outer.ip4.ve
rsion_ihl

outer.ip4.v
ersion_ihl

✘ ✘

outer.ipv4.total
_len

outer.ip4.to
tal_len

outer.ip4.t
otal_len

✘ ✘

outer.ipv4.ident
ification

outer.ip4.id
entification

outer.ip4.i
dentificati
on

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.ipv4.flags
_fragment_offset

outer.ip4.fl
ags_fragment
_offset

outer.ip4.f
lags_fragme
nt_offset

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.ipv6.src_i
p

outer.ip6.sr
c_ip

outer.ip6.s
rc_ip

✘ ✘ ✘

outer.ipv6.dst_i
p

outer.ip6.ds
t_ip

outer.ip6.d
st_ip

✘ ✘ ✘

outer.ipv6.traff
ic_class

outer.ip6.tr
affic_class

outer.ip6.t
raffic_clas
s

✘ ✘ ✘

outer.ipv6.flow_
label

outer.ip6.fl
ow_label

outer.ip6.f
low_label

✘ ✘ ✘

outer.ipv6.next_
proto

outer.ip6.ne
xt_proto

outer.ip6.n
ext_proto

✘ ✘ ✘

outer.ipv6.hop_l
imit

outer.ip6.ho
p_limit

outer.ip6.h
op_limit

✘ ✘

outer.ipv6.paylo
ad_len

outer.ip6.pa
yload_len

outer.ip6.p
ayload_len

✘ ✘

DOCA Flow 132

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

outer.udp.src_po
rt

outer.udp.l4
_port.src_po
rt

outer.udp.l
4_port.src_
port

✘ ✘ ✘

outer.udp.dst_po
rt

outer.udp.l4
_port.dst_po
rt

outer.udp.l
4_port.dst_
port

✘ ✘ ✘

outer.transport.
src_port

outer.transp
ort.src_port

outer.trans
port.src_po
rt

✘ ✘ ✘

outer.transport.
dst_port

outer.transp
ort.dst_port

outer.trans
port.dst_po
rt

✘ ✘ ✘

outer.tcp.src_po
rt

outer.tcp.l4
_port.src_po
rt

outer.tcp.l
4_port.src_
port

✘ ✘ ✘

outer.tcp.dst_po
rt

outer.tcp.l4
_port.dst_po
rt

outer.tcp.l
4_port.dst_
port

✘ ✘ ✘

outer.tcp.flags
outer.tcp.fl
ags

outer.tcp.f
lags

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.tcp.data_o
ffset

outer.tcp.da
ta_offset

outer.tcp.d
ata_offset

✘ ✘ ✘

outer.icmp4.type
outer.icmp.t
ype

outer.icmp.
type

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp4.code
outer.icmp.c
ode

outer.icmp.
code

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp4.iden
t

outer.icmp.i
dent

outer.icmp.
ident

✘ ✘ ✘ ✘ ✘ ✘ ✘

DOCA Flow 133

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

outer.icmp6.type
outer.icmp.t
ype

outer.icmp.
type

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp6.code
outer.icmp.c
ode

outer.icmp.
code

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.gre.proto
col tun.protocol

tun.protoco
l

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.gre_key.v
alue tun.gre_key tun.gre_key ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.pro
tocol tun.protocol

tun.protoco
l

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.nvg
re_vs_id

tun.nvgre_vs
_id

tun.nvgre_v
s_id

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.nvg
re_flow_id

tun.nvgre_fl
ow_id

tun.nvgre_f
low_id

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan.vni
tun.vxlan_tu
n_id

tun.vxlan_t
un_id

✘ ✘ ✘

tunnel.vxlan_gpe
.vni

tun.vxlan_tu
n_id

tun.vxlan_t
un_id

✘ ✘ ✘

tunnel.vxlan_gbp
.vni

tun.vxlan_tu
n_id

tun.vxlan_t
un_id

✘ ✘ ✘

tunnel.vxlan_gpe
.next_proto

tun.vxlan_gp
e_next_proto
col

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan_gpe
.flags

tun.vxlan_gp
e_flags

1

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan_gbp
.policy_id

tun.vxlan_gb
p_group_poli
cy_id

✘ ✘ ✘ ✘ ✘ ✘ ✘

DOCA Flow 134

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

tunnel.vxlan.rsv
d1

tun.vxlan_t
un_rsvd1

2

✘ ✘ ✘ ✘

tunnel.vxlan_gpe
.rsvd1

tun.vxlan_t
un_rsvd1

2

✘ ✘ ✘ ✘

tunnel.vxlan_gbp
.rsvd1

tun.vxlan_t
un_rsvd1

2

✘ ✘ ✘ ✘

tunnel.gtp.teid tun.gtp_teid
tun.gtp_tei
d

✘ ✘ ✘

tunnel.gtp_ext_h
dr.next_ext

tun.gtp_next
_ext_hdr_typ
e

tun.gtp_nex
t_ext_hdr_t
ype

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

tunnel.gtp_psc.q
fi

tun.gtp_ext_
psc_qfi

tun.gtp_ext
_psc_qfi

✘ ✘ ✘

tunnel.esp.spi tun.esp_spi tun.esp_spi ✘ ✘ ✘

tunnel.esp.sn tun.esp_sn tun.esp_sn ✘

tunnel.psp.nexth
dr

tun.psp.next
hdr

tun.psp.nex
thdr

✘ ✘ ✘

tunnel.psp.hdrex
tlen

tun.psp.hdre
xtlen

tun.psp.hdr
extlen

✘ ✘ ✘

tunnel.psp.res_c
ryptofst

tun.psp.res_
cryptofst

tun.psp.res
_cryptofst

✘ ✘ ✘

tunnel.psp.s_d_v
er_v

tun.psp.s_d_
ver_v

tun.psp.s_d
_ver_v

✘ ✘ ✘

tunnel.psp.spi tun.psp.spi tun.psp.spi ✘ ✘ ✘

tunnel.psp.iv tun.psp.iv tun.psp.iv ✘ ✘ ✘

DOCA Flow 135

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

tunnel.psp.vc tun.psp.vc tun.psp.vc ✘ ✘ ✘

tunnel.mpls[0].l
abel

tun.mpls[0].
label

tun.mpls[0]
.label

✘ ✘ ✘ ✘ ✘

tunnel.mpls[1].l
abel

tun.mpls[1].
label

tun.mpls[1]
.label

✘ ✘ ✘ ✘ ✘

tunnel.mpls[2].l
abel

tun.mpls[2].
label

tun.mpls[2]
.label

✘ ✘ ✘ ✘ ✘

tunnel.mpls[3].l
abel

tun.mpls[3].
label

tun.mpls[3]
.label

✘ ✘ ✘ ✘ ✘

tunnel.mpls[4].l
abel

tun.mpls[4].
label

tun.mpls[4]
.label

✘ ✘ ✘ ✘ ✘

tunnel.geneve.ve
r_opt_len

tun.geneve.v
er_opt_len

tun.geneve.
ver_opt_len

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.o_
c

tun.geneve.o
_c

tun.geneve.
o_c

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.ne
xt_proto

tun.geneve.n
ext_proto

tun.geneve.
next_proto

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.vn
i

tun.geneve.v
ni

tun.geneve.
vni

✘ ✘ ✘

tunnel.geneve_op
t[i].type

None. See section "Copy Geneve
Options" for details.

✘ ✘ ✘

tunnel.geneve_op
t[i].class

✘ ✘ ✘

tunnel.geneve_op
t[i].data

✘ ✘ ✘

inner.eth.dst_ma
c

inner.eth.ds
t_mac

✘ ✘ ✘ ✘ ✘

http://confluence.nvidia.com/#Copy%20GENEVE%20Options
http://confluence.nvidia.com/#Copy%20GENEVE%20Options

DOCA Flow 136

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

inner.eth.src_ma
c

inner.eth.sr
c_mac

✘ ✘ ✘ ✘ ✘

inner.eth.type
inner.eth.ty
pe

✘ ✘ ✘ ✘ ✘

inner.eth_vlan0.
tci

inner.eth_vl
an[0].tci

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.eth_vlan1.
tci

inner.eth_vl
an[1].tci

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv4.src_i
p

inner.ip4.sr
c_ip

✘ ✘ ✘ ✘ ✘

inner.ipv4.dst_i
p

inner.ip4.ds
t_ip

✘ ✘ ✘ ✘ ✘

inner.ipv4.dscp_
ecn

inner.ip4.ds
cp_ecn

✘ ✘ ✘ ✘ ✘

inner.ipv4.next_
proto

inner.ip4.ne
xt_proto

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv4.ttl
inner.ip4.tt
l

✘ ✘ ✘ ✘ ✘

inner.ipv4.versi
on_ihl

inner.ip4.ve
rsion_ihl

✘ ✘ ✘ ✘ ✘

inner.ipv4.total
_len

inner.ip4.to
tal_len

✘ ✘ ✘ ✘ ✘

inner.ipv4.ident
ification

inner.ip4.id
entification

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv4.flags
_fragment_offset

inner.ip4.fl
ags_fragment
_offset

✘ ✘ ✘ ✘ ✘ ✘ ✘

DOCA Flow 137

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

inner.ipv6.src_i
p

inner.ip6.sr
c_ip

✘ ✘ ✘ ✘ ✘

inner.ipv6.dst_i
p

inner.ip6.ds
t_ip

✘ ✘ ✘ ✘ ✘

inner.ipv6.traff
ic_class

inner.ip6.tr
affic_class

✘ ✘ ✘ ✘ ✘

inner.ipv6.flow_
label

inner.ip6.fl
ow_label

✘ ✘ ✘ ✘ ✘

inner.ipv6.next_
proto

inner.ip6.ne
xt_proto

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv6.hop_l
imit

inner.ip6.ho
p_limit

✘ ✘ ✘ ✘ ✘

inner.ipv6.paylo
ad_len

inner.ip6.pa
yload_len

✘ ✘ ✘ ✘ ✘

inner.udp.src_po
rt

inner.udp.l4
_port.src_po
rt

✘ ✘ ✘ ✘ ✘

inner.udp.dst_po
rt

inner.udp.l4
_port.dst_po
rt

✘ ✘ ✘ ✘ ✘

inner.transport.
src_port

inner.transp
ort.src_port

✘ ✘ ✘ ✘ ✘

inner.transport.
dst_port

inner.transp
ort.dst_port

✘ ✘ ✘ ✘ ✘

inner.tcp.src_po
rt

inner.tcp.l4
_port.src_po
rt

✘ ✘ ✘ ✘ ✘

DOCA Flow 138

String Field Path in The Structure
S
et

Add Copy
Condit
ion

Match Actions
D
st

Sr
c

D
st

Sr
c

A B

inner.tcp.dst_po
rt

inner.tcp.l4
_port.dst_po
rt

✘ ✘ ✘ ✘ ✘

inner.tcp.flags
inner.tcp.fl
ags

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.tcp.data_o
ffset

inner.tcp.da
ta_offset

✘ ✘ ✘ ✘ ✘

inner.icmp4.type
inner.icmp.t
ype

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp4.code
inner.icmp.c
ode

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp4.iden
t

inner.icmp.i
dent

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp6.type
inner.icmp.t
ype

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp6.code
inner.icmp.c
ode

✘ ✘ ✘ ✘ ✘ ✘ ✘

1. tun.vxlan_gpe_flags is mandatory in VXLAN-GPE matching since DOCA 2.9

2. tun.vxlan_tun_rsvd1 modifications only work for traffic with the default UDP
destination port (i.e., 4789 for VXLAN and VXLAN-GBP and 4790 for VXLAN-GPE)

Non-Matchable Field Strings

Users can modify fields which are not included in doca_flow_match structure.

Copy Hash Result

DOCA Flow 139

Users can copy the the matcher hash calculation into other fields using the
"parser_meta.hash" string.

Copy GENEVE Options

User can copy GENEVE option type/class/data using the following strings:

"tunnel.geneve_opt[i].type" – Copy from/to option type (only for option

configured with DOCA_FLOW_PARSER_GENEVE_OPT_MODE_MATCHABLE).

"tunnel.geneve_opt[i].class" – Copy from/to option class (only for option

configured with DOCA_FLOW_PARSER_GENEVE_OPT_MODE_MATCHABLE).

"tunnel.geneve_opt[i].data" – Copy from/to option data, the bit offset is
from the start of the data.

i is the index of the option in tlv_list array provided in

doca_flow_parser_geneve_opt_create .

DOCA Flow 140

DOCA Flow Connection
Tracking

This guide provides an overview and configuration instructions for DOCA Flow CT API.

Introduction

DOCA Flow Connection Tracking (CT) is a 5-tuple table which supports the following:

Track 5-tuple sessions (or 6-tuple when a zone is available)

Zone based – virtual tables

Aging (i.e., removes idle connections)

Sets metadata for a connection

Bidirectional packet handling

High rate of connections per second (CPS)

The CT module makes it simple and efficient to track connections by leveraging hardware
resources. The module supports both autonomous and managed mode.

Architecture

DOCA Flow CT pipe handles non-encapsulated TCP and UDP packets. The CT pipe only
supports forward to next pipe or miss to next pipe actions:

Note

This feature is not supported in this DOCA release. It will be re-
enabled in DOCA version 3.0.

DOCA Flow 141

All packets matching known connection 6-tuples are forwarded to the CT's forward
pipe

Non-matching packets are forwarded to the miss pipe

The user application must handle packets accordingly.

The DOCA Flow CT API is built around four major parts:

CT module manipulation – configuring CT module resources

CT connection entry manipulation – adding, removing, or updating connection
entries

Callbacks – handling asynchronous entry processing result

Pipe and entry statistics

Aging

Aging time is a time in seconds that sets the maximum allowed time for a session to be
maintained without a packet seen. If that time elapses with no packet being detected, the
session is terminated.

To support aging, a dedicated aging thread is started to poll and check counters for all
connections.

DOCA Flow 142

Autonomous Mode

In this mode, DOCA runs multiple CT workers internally, to handle connections in parallel.

A connection's lifecycle is controlled by the connection state encapsulated in the packet
and time-based aging.

CT workers establish and close connections automatically based on the connection's state
stored in packet meta.

Packet meta is defined as follows:

data – CT table matches on packet meta (zone) and 5-tuples

type – can have the following values:

NONE – (known) if packet hit any connection rule

NEW – if new TCP or UDP connection

END – if TCP connection closed

src and hairpin – used for forwarding pipe and worker to deliver packet

uint32_t src : 1; /**< Source port in multi-port E-Switch mode */

uint32_t hairpin : 1; /**< Subject to forward using hairpin. */

uint32_t type : 2; /**< CT packet type: New, End or Update */

uint32_t data : 28; /**< Zone set by user or reserved after CT pipe. */

DOCA Flow 143

Managed Mode

The application is responsible for managing the worker threads in this mode, parsing and
handling the connection's lifecycle.

Managed mode uses DOCA Flow CT management APIs to create or destroy the
connections.

The CT aging module notifies on aged out connections by calling callbacks.

Users can create connection rules with a different pattern, meta, or counter, for each
packet direction.

Users can create one rule of a connection first, then create another rule using API
doca_flow_ct_entry_add_dir() .

Info

Users are responsible for defining meta and mask to match and

modify .

DOCA Flow 144

DOCA Flow API can be used to process CT entries with a CT-dedicated queue.

doca_flow_entries_process – process pipe entries in queue

doca_flow_aging_handle – handle pipe entries aging

Prerequisites

DPU

To enable DOCA Flow CT on the DPU, perform the following on the Arm:

1. Enable iommu.passthrough in Linux boot commands (or disable SMMU from the
DPU BIOS):

1. Run:

Info

Other DOCA Flow APIs like CT entry status query and pipe miss query
are not supported.

DOCA Flow 145

2. Set GRUB_CMDLINE_LINUX="iommu.passthrough=1" .

3. Run:

2. Configure DPU firmware with LAG_RESOURCE_ALLOCATION=1 :

3. Update /etc/mellanox/mlnx-bf.conf as follows:

4. Perform power cycle on the host and Arm sides.

5. If working with a single port, set the DPU into e-switch mode:

sudo vim /etc/default/grub

sudo update-grub
sudo reboot

sudo mlxconfig -d <device-id> s LAG_RESOURCE_ALLOCATION=1

Info

Retrieve device-id from the output of the mst status -v
command. If, under the MST tab, the value is N/A, run the
mst start command.

ALLOW_SHARED_RQ="no"

DOCA Flow 146

6. If working with two PF ports, set the DPU into multi-port e-switch mode (for the 2
PCIe devices):

7. Define huge pages (see DOCA Flow prerequisites).

ConnectX

To enable DOCA Flow CT on the NVIDIA® ConnectX®, perform the following:

sudo devlink dev eswitch set pci/<pcie-address> mode
switchdev
sudo devlink dev param set pci/<pcie-address> name
esw_multiport value false cmode runtime

Info

Retrieve pcie-address from the output of the

mst status -v command.

sudo devlink dev param set pci/<pcie-address> name
esw_multiport value true cmode runtime

Info

Retrieve pcie-address from the output of the

mst status -v command.

DOCA Flow 147

1. Configure firmware with LAG_RESOURCE_ALLOCATION=1 :

2. Perform power cycle.

3. If working with a single port:

4. If working with two PF ports:

sudo mlxconfig -d <device-id> s LAG_RESOURCE_ALLOCATION=1

Info

Retrieve device-id from the output of the mst status -v
command. If, under the MST tab, the value is N/A, run the
mst start command.

sudo devlink dev eswitch set pci/<pcie-address> mode
switchdev
sudo devlink dev param set pci/<pcie-address> name
esw_multiport value false cmode runtime

Info

Retrieve pcie-address from the output of the

mst status -v command.

DOCA Flow 148

5. Define huge pages (see DOCA Flow prerequisites).

Actions

DOCA Flow CT supports actions based on meta and NAT operations. Each action can be
defined as either shared or non-shared.

Shared Actions

sudo devlink dev eswitch set pci/<pcie-address0> mode
switchdev
sudo devlink dev eswitch set pci/<pcie-address1> mode
switchdev
sudo devlink dev param set pci/<pcie-address0> name
esw_multiport value true cmode runtime
sudo devlink dev param set pci/<pcie-address1> name
esw_multiport value true cmode runtime

Info

Retrieve pcie-address from the output of the

mst status -v command.

Note

Action descriptors are not supported.

DOCA Flow 149

Actions that can be shared between entries. Shared actions are predefined and reused in
multiple entries.

The user gets a handle per shared action created and uses this handle as a reference to
the action where required.

Shared actions are defined using a control queue (see struct doca_flow_ct_cfg).

Non-shared Actions

Actions provided with their data during entry create/update.

These actions are completely managed by DOCA Flow CT and cannot be reused in multiple
flows (i.e., NAT operations).

Action Sets in Pipe Creation

When creating a DOCA Flow CT pipe, users must define action sets, just as they would for
any other pipe.

Fields in the CT pipe must be marked as CHANGEABLE during pipe creation. This allows
the actual criteria for these fields to be specified later during entry creation.

Info

It is user responsibility to track shared actions and to remove them
when they become irrelevant.

Info

DOCA Flow 150

During entry creation or update, different actions can be specified for each direction,
allowing variations in action content and/or action type.

Feature Enable

To enable user actions, configure the following parameters:

User action templates during DOCA Flow CT pipe creation

Maximum number of user actions (nb_user_actions on DOCA Flow CT init)

Using Actions in Autonomous Mode

Init

Configure the following parameters on doca_flow_ct_init() :

nb_ctrl_queues – number of control queues for defining shared actions

nb_user_actions – maximum number of actions (shared and non-shared)

worker_cb – callbacks required to communicate with the user

Create DOCA Flow CT Pipe

Configure actions sets on doca_flow_pipe_create() .

Create Shared Actions

Only actions related to meta and NAT, as defined in struct
doca_flow_ct_actions , are supported.

DOCA Flow 151

Use doca_flow_ct_actions_add_shared() with one of the control queues.

Shared actions can be added at any time before use.

Implement Worker Callbacks

Callbacks are called from each worker thread to acquire synchronization with the user
code and on the first packet of a flow.

On doca_flow_ct_rule_pkt_cb :

Determine how the packet should be treated

If rules are required, return the actions handles to use

Using Actions in Managed Mode

Init

Configure the following parameters on doca_flow_ct_init() :

nb_ctrl_queues – number of control queues for defining shared actions

nb_user_actions – maximum number of user actions. Must align to 64. Both
shared control queues and non-shared control queues cache action IDs to speed up
ID allocation. Each queue may cache a maximum of 1024 IDs. Users must configure
the expected number of actions + total queues * 1024. This number cannot exceed
the number of actions hardware supports.

Create DOCA Flow CT Pipe

Configure actions sets on doca_flow_pipe_create() .

DOCA Flow 152

Create Shared Actions

Use doca_flow_ct_actions_add_shared() with one of the control queues.

Shared actions can be added at any time before use.

Add Entry

Entry can be created in one of the following ways:

Using an action handle of a predefined shared action

Using action data, which is specific to the flow, not sharable (e.g., for NAT operations)

The entry can have different actions and/or different action types per direction.

Remove Entry

Non-shared actions associated with an entry are implicitly destroyed by DOCA Flow CT.

Shared actions are not destroyed. They can be used by the user until they decide to
remove them.

Update Entry

Entry actions can be updated per direction. All combinations of shared/non-shared
actions are applicable (e.g., update from shared to non-shared).

Changeable Forward

DOCA Flow CT allows using a different forward pipe per flow direction.

DOCA Flow CT supports the forward pipe in two levels:

DOCA Flow 153

Pipe level – a single forward pipe defined during DOCA Flow CT pipe creation and
used for all entries

Entry level – forward pipe defined during entry create

DOCA Flow CT operates in one of the two levels

DOCA CT forward in entry level has the following characteristics:

Supports only DOCA_FLOW_FWD_PIPE (up to 4 different forward pipes)

Supports forward pipe per flow direction (both directions can have same/different
forward pipe)

Must set forward pipes on each entry create (no default forward pipe)

Turn on the feature:

1. Create DOCA Flow CT pipe with forward type = DOCA_FLOW_FWD_PIPE and

next_pipe = NULL .

2. Call to doca_flow_ct_fwd_register to register forward pipes and get

fwd_handles in return.

Using Changeable Forward in Managed Mode

1. Initialize DOCA Flow CT (doca_flow_ct_init ​).

2. Register forward pipes (doca_flow_ct_fwd_register ​).

Define pipes that can be used for forward​

3. Create DOCA Flow CT pipe​ (doca_flow_pipe_create) w ith definition of possible
forward pipes.

4. Add entry (doca_flow_ct_add_entry).

Set origin and/or reply fwd_handles returned from

doca_flow_ct_fwd_register .

5. Update forward for entry direction (doca_flow_ct_update_entry ​).

DOCA Flow 154

Using Changeable Forward in Autonomous Mode

1. Initialize DOCA Flow CT (doca_flow_ct_init ​).

2. Register forward pipes (doca_flow_ct_fwd_register ​).

Define pipes that can be used for forward.

3. Create DOCA Flow CT pipe​ (doca_flow_pipe_create) w ith definition of possible
forward pipes.

4. CT workers start to handle traffic.​

5. On the first flow packet, doca_flow_ct_rule_pkt callback​ is called.

In this callback, determine if the entry should be created, and which actions
and/or forward handles should be used for this entry.

API

For the library API reference, refer to DOCA Flow and CT API documentation in the DOCA
Library APIs.

Note

Updating forward handle requires setting all other parameters
with their previous values.​

Info

Update forward for entry direction is not supported.

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 155

The following sections provide additional details about the library API.

enum doca_flow_ct_flags

DOCA Flow CT configuration optional flags.

Flag Description

DOCA_FLOW_CT_F
LAG_STATS = 1u
<< 0

Enable internal pipe counters for packet tracking purposes. Call
doca_flow_pipe_dump(<ct_pipe>) to dump counter values.

Each call dumps values changed.

DOCA_FLOW_CT_F
LAG_WORKER_STA
TS = 1u << 1,

Enable worker thread internal debug counter periodical dump.
Autonomous mode only.

DOCA_FLOW_CT_F
LAG_NO_AGING =
1u << 2,

Disable aging

DOCA_FLOW_CT_F
LAG_SW_PKT_PAR
SING = 1u <<
3,

Enable CT worker software packet parsing to support VLAN, IPv6
options, or special tunnel types

DOCA_FLOW_CT_F
LAG_MANAGED =
1u << 4,

Enable managed mode in which user application is responsible for
managing packet handling, and calling the CT API to manipulate CT
connection entries

DOCA_FLOW_CT_F
LAG_ASYMMETRIC
= 1u << 5,

Allows different 6-tuple table definitions for the origin and reply
directions. Default to symmetric mode, uses same meta and
reverse 5-tuples for reply direction. Managed mode only.

Note

The pkg-config (*.pc file) for the Flow CT library is included in

DOCA's regular definitions : doca .

DOCA Flow 156

Flag Description

DOCA_FLOW_CT_F
LAG_ASYMMETRIC
_COUNTER = 1u
<< 6,

Enable different counters for the origin and reply directions.
Managed mode only.

DOCA_FLOW_CT_F
LAG_NO_COUNTER
= 1u << 7,

Disable counter and aging to save aging thread CPU cycles

DOCA_FLOW_CT_F
LAG_DEFAULT_MI
SS = 1u << 8,

Check TCP SYN flags and UDP in CT miss flow to identify ADD type
packets.

DOCA_FLOW_CT_F
LAG_WIRE_TO_WI
RE = 1u << 9,

Hint traffic comes from uplink wire and forwards to uplink wire.

DOCA_FLOW_CT_F
LAG_CALC_TUN_I
P_CHKSUM = 1u
<< 10,

Enable hardware to calculate and set the checksum on L3 header
(IPv4)

DOCA_FLOW_CT_F
LAG_DUP_FILTER
_UDP_ONLY= 1u
<< 11,

Apply the connection duplication filter for UDP connections only

enum doca_flow_ct doca_flow_ct_entry_flags

DOCA Flow CT Entry optional flags.

Note
If this flag is set, the direction info must be
DOCA_FLOW_DIRECTION_NETWORK_TO_HOST

.

DOCA Flow 157

Flag Description

DOCA_FLOW_CT_ENTRY_FLAGS_NO_W
AIT = (1 << 0)

Entry is not buffered; send to hardware
immediately

DOCA_FLOW_CT_ENTRY_FLAGS_DIR_
ORIGIN = (1 << 1)

Apply flags to origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_DIR_
REPLY = (1 << 2)

Apply flags to reply direction

DOCA_FLOW_CT_ENTRY_FLAGS_IPV6
_ORIGIN = (1 << 3)

Origin direction is IPv6; origin match union in
struct doca_flow_ct_match is IPv6

DOCA_FLOW_CT_ENTRY_FLAGS_IPV6
_REPLY = (1 << 4)

Reply direction is IPv6; reply match union in
struct doca_flow_ct_match is IPv6

DOCA_FLOW_CT_ENTRY_FLAGS_COUN
TER_ORIGIN = (1 << 5)

Apply counter to origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_COUN
TER_REPLY = (1 << 6)

Apply counter to reply direction

DOCA_FLOW_CT_ENTRY_FLAGS_COUN
TER_SHARED = (1 << 7)

Counter is shared for both direction (origin
and reply)

DOCA_FLOW_CT_ENTRY_FLAGS_FLOW
_LOG = (1 << 8)

Enable flow log on entry removed

DOCA_FLOW_CT_ENTRY_FLAGS_ALLO
C_ON_MISS = (1 << 9)

Allocate on entry not found when calling
doca_flow_ct_entry_prepare() API

DOCA_FLOW_CT_ENTRY_FLAGS_DUP_
FILTER_ORIGIN = (1 << 10)

Enable duplication filter on origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_DUP_
FILTER_REPLY = (1 << 11)

Enable duplication filter on reply direction

enum doca_flow_ct_rule_opr

Options for handling flows in autonomous mode with shared actions. The decision is taken
on the first flow packet.

DOCA Flow 158

Operation Description

DOCA_FLOW_CT_RULE_O
K

Flow should be defined in the CT pipe using the required
shared actions handles

DOCA_FLOW_CT_RULE_D
ROP

Flow should not be defined in the CT pipe. The packet should
be dropped.

DOCA_FLOW_CT_RULE_T
X_ONLY

Flow should not be defined in the CT pipe. The packet should
be transmitted.

struct direction_cfg

Managed mode configuration for origin or reply direction.

Field Description

bool match_inner 5-tuple match pattern applies to packet inner layer

struct doca_flow_meta
*zone_match_mask

Mask to indicate meta field and bits to match

struct doca_flow_meta
*meta_modify_mask

Mask to indicate meta field and bits to modify on
connection packet match

struct doca_flow_ct_worker_callbacks

Set of callbacks for using shared actions in autonomous mode.

Field Description

doca_flow_ct_sync_acquire_cb
worker_init

Called at the start of a worker thread to sync
with the user context

doca_flow_ct_sync_release_cb
worker_release

Called at the end of a worker thread

doca_flow_ct_rule_pkt_cb
rule_pkt

Called on the first packet of a flow

DOCA Flow 159

struct doca_flow_ct_cfg

DOCA Flow CT configuration.

uint32_t nb_arm_queues;
uint32_t nb_ctrl_queues;
uint32_t nb_user_actions;
uint32_t nb_arm_sessions[DOCA_FLOW_CT_SESSION_MAX];
uint32_t flags;
uint16_t aging_core;
uint16_t aging_query_delay_s;
doca_flow_ct_flow_log_cb flow_log_cb;
struct doca_flow_ct_aging_ops *aging_ops;
uint32_t base_core_id;
uint32_t dup_filter_sz;
union {
 /* Managed mode configuration for origin and reply direction. */

 struct direction_cfg direction[2];

 /* Below fields are dedicate for autonomous mode */

 struct {
 uint16_t
tcp_timeout_s;
 uint16_t
tcp_session_del_s;
 uint16_t
udp_timeout_s;
 enum doca_flow_tun_type tunnel_type;
 uint16_t vxlan_dst_port;
 enum doca_flow_ct_hash_type hash_type;
 uint32_t meta_user_bits;
 uint32_t meta_action_bits;
 struct doca_flow_meta *meta_zone_mask;

DOCA Flow 160

Where:

Field Description

uint32_t nb_arm_queues Number of CT queues. In autonomous mode,
also the number of worker threads.

uint32_t nb_ctrl_queues Number of CT control queues used for defining
shared actions

uint32_t nb_user_actions

Maximum number of user actions supported
(shared and non-shared)
Minimum value is 1K * (
nb_ctrl_queues + nb_arm_queues)

uint32_t
nb_arm_sessions[DOCA_FLOW_CT_
SESSION_MAX]

Maximum number of IPv4 and IPv6 CT
connections

uint32_t flags CT configuration flags

uint16_t aging_core CPU core ID for CT aging thread to bind.

uint16_t aging_core_delay CT aging code delay.

doca_flow_ct_flow_log_cb
flow_log_cb

Flow log callback function, when set

struct doca_flow_ct_aging_ops
*aging_ops

User-defined aging logic callback functions.
Fallback to default aging logic

uint32_t base_core_id Base core ID for the workers

uint32_t dup_filter_sz Number of connections to cache in the
duplication filter

 struct doca_flow_meta
*connection_id_mask;
 struct doca_flow_ct_worker_callbacks
worker_cb;
 };
 };

DOCA Flow 161

Field Description

struct direction_cfg
direction

Managed mode configuration for origin or reply
direction

uint16_t tcp_timeout_s TCP timeout in seconds

uint16_t tcp_session_del_s Time to delay or kill TCP session after RST/FIN

enum doca_flow_tun_type
tunnel_type

Encapsulation tunnel type

uint16_t vxlan_dst_port
VXLAN outer UDP destination port in big
endian

enum doca_flow_ct_hash_type
hash_type

Type of connection hash table type: NONE or

SYMMETRIC_HASH

uint32_t meta_user_bits User packet meta bits to be owned by the user

uint32_t meta_action_bits
User packet meta bits to be carried by
identified connection packet

struct doca_flow_meta
*meta_zone_mask

Mask to indicate meta field and bits saving
zone information

struct doca_flow_meta
*connection_id_mask

Mask to indicate meta field and bits for CT
internal connection ID

struct
doca_flowct_worker_callbacks
worker_cb

Worker callbacks to use shared actions

struct doca_flow_ct_actions

This structure is used in the following cases:

For defining shared actions. In this case, action data is provided by the user. The
action handle is returned by DOCA Flow CT.

For defining an entry with actions. The structure can be filled with two options:

With action handle of a previously created shared action

With non-shared action data

DOCA Flow 162

DOCA Flow CT action structure.

Where:

Field Description

enum doca_flow_resource_type
resource_type

Shared/non-shared action

uint32_t action_handle Shared action handle

uint32_t action_idx Actions template index

struct doca_flow_meta meta Modify meta values

struct doca_flow_header_l4_port
l4_port

UDP or TCP source and destination
port

struct doca_flow_ct_ip4 ip4
Source and destination IPv4
addresses

enum doca_flow_resource_type resource_type;
union {

 /* Used when creating an entry with a shared action. */

 uint32_t action_handle;

 /* Used when creating an entry with non-shared action or when creating a shared
action. */

 struct {
 uint32_t action_idx;
 struct doca_flow_meta meta;
 struct doca_flow_header_l4_port
l4_port;
 union {
 struct doca_flow_ct_ip4 ip4;
 struct doca_flow_ct_ip6 ip6;
 };
 } data;
 };

DOCA Flow 163

Field Description

struct doca_flow_ct_ip6 ip6
Source and destination IPv6
addresses

Info

The value in meta , l4_port , ip4 , and ip6 should start from

bit0 , the least significant bit, regardless of which bits are set in
mask. For example,
action_val.meta.u32[0] = DOCA_HTOBE32(0x12) ,

action_mask.meta.u32[0] = DOCA_HTOBE32(0x0000FF00)
sets bits 15-8 to 0x12 .

DOCA Flow 164

DOCA Flow Tune Server
This guide provides an overview and configuration instructions for DOCA Flow Tune Server
API.

Introduction

DOCA Flow Tune Server (TS) is a DOCA Flow subcomponent that collects predefined
internal key performance indicators (KPIs) and pipeline information of a running DOCA
Flow application. All information is transferred by an inter-process communication channel
(Unix domain socket) to DOCA Flow Tune Tool for further analysis and monitoring.

Prerequisites

DOCA Flow Tune Server API is only available when using the DOCA Flow and DOCA Flow
Tune Server trace libraries.

Configuration

DOCA Flow Tune Server has a configuration file that allows customizing various settings.
The configuration file is divided into different sections so to ease its use.

Config File Default Values

If a configuration file was not provided, DOCA Flow Tune Server uses default values for its
mandatory fields. List of all default values can be seen in section "Configuration File
Example".

Info

For more detailed information, refer to section "Debug and Trace
Features" under DOCA Flow.

https://docs.nvidia.com/doca/sdk/DOCA+Flow+Tune+Tool/index.html

DOCA Flow 165

Custom Config File

Instead of using the default configuration values, users may create a file of their own and
provide a file path using the doca_flow_tune_server_cfg_set_cfg_file_path()
API call.

Once used, DOCA Flow Tune Server loads all provided values directly from the file, while
the rest of the fields (if any) use their respective default values.

Configuration File Example

network

uds_path – Unix Domain Socket (AF_UNIX) path for the tune server to bind
to. This socket is used for the inter-process-communication (IPC) channel
between DOCA Flow Tune Server and DOCA Flow Tune Tool. Default value is
/tmp/tune_server.sock .

API

 {
"network": {

"uds_path": "/tmp/tune_server.sock"

}
}

Info

For more detailed information on DOCA Flow API, refer to DOCA
Library APIs.

https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Library+APIs/index.html

DOCA Flow 166

The following subsections provide additional details about the library API.

struct doca_flow_tune_server_cfg

Opaque configuration struct to use on configuration API calls.

doca_flow_tune_server_cfg_create

Allocates and creates DOCA Flow Tune Server configuration structure.

doca_flow_tune_server_cfg_set_cfg_file_path

Sets the local configuration file path in the opaque configuration struct, for DOCA Flow
Tune Server to use when searching for the JSON configuration file.

Providing a JSON configuration file is optional. If a file is not provided, DOCA Flow Tune
Server uses internal defaults.

doca_flow_tune_server_cfg_destroy

Destroys and deallocates DOCA Flow Tune Server opaque configuration structure.

Should be called after calling doca_flow_tune_server_init() .

doca_error_t doca_flow_tune_server_cfg_create(struct
doca_flow_tune_server_cfg **cfg);

doca_error_t doca_flow_tune_server_cfg_set_bind_path(struct
doca_flow_tune_server_cfg *cfg, const char *path);

DOCA Flow 167

doca_flow_tune_server_init

Starts DOCA Flow Tune Server main thread.

doca_flow_tune_server_destroy

Stops DOCA Flow Tune Server main thread.

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the

doca_error_t doca_flow_tune_server_cfg_destroy(struct
doca_flow_tune_server_cfg *cfg);

doca_error_t doca_flow_tune_server_init(struct
doca_flow_tune_server_cfg *cfg);

void doca_flow_tune_server_destroy(void);

DOCA Flow 168

application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 02/11/2025

	DOCA Flow Connection Tracking
	DOCA Flow Tune Server

