
DOCA DPA GDB Server Tool

Table of contents

Introduction

Glossary

Known Limitations

DPA-specific Notes

Token

Connection on Application Launch

Dummy Thread Concept

Watchdog Issues

Tool TCP Port and Execution Unit (EU)

Debugging

Preparation for Debug

Start Debugging

DPA-specific Debugging Techniques

Easy Example of Transitioning from Dummy to Real Thread

Complicated Example of Transitioning from Dummy to Real Thread

Finishing Real Thread without Finishing PUD

Error Reporting

Tool Log Directory

Verbosity Level of gdbserver

Useful Info Regarding Work with GDB

Command "directory"

Core Dump Usage

DOCA DPA GDB Server Tool 1

Table of contents

Introduction

Glossary

Known Limitations

DPA-specific Notes

Token

Connection on Application Launch

Dummy Thread Concept

Watchdog Issues

Tool TCP Port and Execution Unit (EU)

Debugging

Preparation for Debug

Start Debugging

DPA-specific Debugging Techniques

Easy Example of Transitioning from Dummy to Real Thread

Complicated Example of Transitioning from Dummy to Real Thread

Finishing Real Thread without Finishing PUD

Error Reporting

Tool Log Directory

Verbosity Level of gdbserver

Useful Info Regarding Work with GDB

Command "directory"

Core Dump Usage

Debug of Optimized Code

Disassembly of Advanced RISC-V Commands

DOCA DPA GDB Server Tool 2

Debug of Optimized Code

Disassembly of Advanced RISC-V Commands

DOCA DPA GDB Server Tool 3

This document describes the DPA GDB Server tool.

Introduction

The DPA GDB Server tool (dpa-gdbserver) enables debugging FlexIO DEV programs.

DEV programs for debugging are selected using a token (8-byte value) provided by the
FlexIO process owner.

Glossary

Term Description

PUD Process under debug. DEV-side processes intended for debug.

EU Execution unit (similar to hardware CPU core)

DPA Data path accelerator

RPC
Remote process communication. Mechanism used in FlexIO to run DEV-side
code instantly. Runtime is limited to 6 seconds.

HOST x86 or aarch64 Linux OS which manages dev-side code (i.e., DEV)

DEV
RISC-V code, loaded by HOST into the DPA's device. Triggered to run by
different types of interrupts. DEV side is directly connected to ConnectX
adapter card.

Info

The DPA GDB Server Tool is currently supported at beta level.

Info

Any GDB, familiar with RISC-V architecture, can be used for the debug.
Refer to this page for information how to work with GDB.

https://sourceware.org/gdb/current/onlinedocs/gdb.html/

DOCA DPA GDB Server Tool 4

Term Description

GDB
GNU Project debugger. Allows users to monitor another program while it
executes.

GDBSE
RVER

Tool for remote debug programs

RTOS
Real-time operation system running on RISC-V core. Manages handling of
interrupts and calls to DEV user processes routines.

RSP Remote serial protocol. Used for interaction between GDB and GDBSERVER.

Known Limitations

DPA GDB technology does not catch fatal errors. Therefore, if a fatal error occurs,
core dump (created by flexio_coredump_create()) should be used.

DPA GDB technology does not support Outbox access. GDB users cannot write to
Doorbell or to Window configuration areas.

DPA GDB technology does not support Window access. Read/write to Window
memory does not work properly.

DPA-specific Notes

Token

The process under debug (PUD) can expose a debugging token. Every external process,
using this token, get full access to the process with given token. To not show it constantly
(e.g., for security reasons), users can modify their host application temporary. See
flexio_process_udbg_token_get() .

Connection on Application Launch

If the code which needs debugging begins to run immediately after launch, the user
should modify the host application to stop upon start to give the user time to run

DOCA DPA GDB Server Tool 5

dpa-gdbserver . One possible way of doing this is to place function getchar()
immediately after process creation.

Dummy Thread Concept

Something to consider with DPA debugging is that a PUD does not have a running thread
all time (e.g., the process's thread may exist but be waiting for incoming packets). In a
regular Linux application, this scenario is not possible and GDB does not support such
cases.

Therefore, when no thread is running, dpa-gdbserver reports a dummy thread:

In this case user can inspect memory, create breakpoints, and give the continue
command.

Commands like step , next , and stepi can not be executed for the Dummy thread.

Watchdog Issues

The RTOS has a watchdog timer that limits DEV code interrupt processes to 120 seconds.
This timer is stopped when the user connects to DEV with GDB. Therefore users will have
no time limitation for debugging.

Tool TCP Port and Execution Unit (EU)

(gdb) info thread
 Id Target Id Frame
* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ??
()
(gdb)

DOCA DPA GDB Server Tool 6

By default, dpa-gdbserver uses TCP port 1981 and runs on EU 29. If this conflicts with

another application (or if other instances of dpa-gdbserver are running), users should
change the defaults as follows:

Debugging

Preparation for Debug

Modify your FlexIO application if needed. Make sure the HOST code prints udbg_token
and waits for GDB connection if needed:

Extract the DPA application from the FlexIO application. For example:

$> dpa-gdbserver mlx5_0 -T <token> -s <port> -E <eu_id>

+ uint64_t udbg_token;

flexio_process_create(..., &flexio_process);

+ udbg_token =
flexio_process_udbg_token_get(flexio_process);
+ if (udbg_token)
+ printf("Process created. Use token >>> %#lx <<< for debug\n",
udbg_token);

+ printf("Stop point for waiting of GDB connection. Press Enter to continue..."); /* Usually
you don't need this stop point */

+ fflush(stdout);
+ getchar();

$> dpacc-extract cc-host/app/host/flexio_app_name -o

DOCA DPA GDB Server Tool 7

Start Debugging

1. Run your FlexIO application. It should expose the debug token:

2. Run dpa-gdbserver with the debug token received:

3. Run any GDB with RISC-V support. For example, gdb-multiarch :

4. Connect to the gdbserver using proper TCP port and hostname, if needed:

flexio_app_name.rv5

$> flexio_app_name mlx5_0
Process created. Use token >>> 0xd6278388ce4e682c <<< for
debug

$> dpa-gdbserver mlx5_0 -T 0xd6278388ce4e682c
Registered on device mlx5_0
Listening for GDB connection on port 1981

$> gdb-multiarch -q flexio_app_name.rv5
Reading symbols from flexio_app_name.rv5...
(gdb)

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()

DOCA DPA GDB Server Tool 8

DPA-specific Debugging Techniques

Easy Example of Transitioning from Dummy to Real Thread

Transitioning between the dummy thread and a real thread is not standard practice for
debugging under GDB. In an ideal situation, the user would know exactly the entry points
for all their routines and can set breakpoints for all of them. Then the user may run the
continue command:

Initiate interrupts for your DEV program (depends your task), and GDB should catch a
breakpoint and now the real thread of the PUD appear instead of the dummy:

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()
(gdb) info threads
 Id Target Id Frame
* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ??
()
(gdb) b foo
Breakpoint 1 at 0x400000b2: file ../tests/path/hello.c, line 58.
(gdb) b bar
Breakpoint 2 at 0x40000518: file ../tests/path/hallo.c, line 113.
(gdb) continue

Continuing.

(gdb) continue

Continuing.
(gdb) [New Thread 1.2]
[New Thread 1.130]
[New Thread 1.258]
[New Thread 1.386]
[Switching to Thread 1.2]

DOCA DPA GDB Server Tool 9

From this point, you may examine memory and trace your code as usual.

Complicated Example of Transitioning from Dummy to Real Thread

In a more complicated situation, the interrupt happens after GDB connection. In this case,
the real thread should start running but cannot because the PUD is in HALT state. The
user can type the command info threads , see new thread instead of the old dummy,
and then switch to the new thread manually:

Thread 2 hit Breakpoint 1, foo(thread_arg=9008)
 at ../tests/path/hello.c:58

58 struct host_data *hdata = NULL;
(gdb) info threads
 Id Target Id Frame
* 2 Thread 1.2 (Process 0 thread 0x1 GVMI 0) foo (arg=9008)
at ../tests/path/hello.c:58

 3 Thread 1.130 (Process 0 thread 0x81 GVMI 0) foo (arg=9264) at
../tests/path/hello.c:58

 4 Thread 1.258 (Process 0 thread 0x101 GVMI 0) foo (arg=9648) at
../tests/path/hello.c:58

 5 Thread 1.386 (Process 0 thread 0x181 GVMI 0) foo (arg=9904) at
../tests/path/hello.c:58

(gdb)

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()
(gdb) info threads
 Id Target Id Frame
* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ??
()
(gdb) info threads
[New Thread 1.32769]

DOCA DPA GDB Server Tool 10

The user must switch to the new thread manually (see line 14). After this, they can
trace/debug the flow as usual (i.e., using the commands step , next , stepi).

Finishing Real Thread without Finishing PUD

 Id Target Id Frame
 2 Thread 1.32769 (Process 0 thread 0x8000 GVMI 0) bar (arg=0xc0,
len=0)
 at /path/lib/src/stub.c:167

The current thread <Thread ID 1> has terminated. See `help
thread'.
(gdb) thread 2

[Switching to thread 2 (Thread 1.32769)]
#0 bar (arg=0xc0, len=0)
 at /path/lib/src/stub.c:167

167 {
(gdb) bt
#0 bar (arg=0xc0, len=0)
 at /path/lib/src/stub.c:167

#1 0x000000004000017a in foo (thread_arg=3221)
 at ../path/dev/hello.c:182

#2 0x0000000000000000 in ?? ()
Backtrace stopped: frame did not save the PC
(gdb)

Note

The same command info threads in lines 4 and 7 gives different
results. This happens because the interrupt occurs between the
instances and the real code begins to run.

DOCA DPA GDB Server Tool 11

Every interrupt handler at some point finishes its way and returns the CPU resources to
RTOS. The most common way to do this is to call function
flexio_dev_thread_reschedule() . The command next on this function will have

the same effect as the command continue :

Error Reporting

205 __dpa_thread_fence(__DPA_MEMORY, __DPA_W,
__DPA_W);
(gdb) next
206 flexio_dev_cq_arm(dtctx,
app_ctx.rq_cq_ctx.cq_idx, app_ctx.rq_cq_ctx.cq_number);
(gdb) next
208 if ((dev_errno =
flexio_dev_get_and_rst_errno(dtctx))) {
(gdb) next
213 print_sim_str("Nothing to do. Wait for next duar\n", 0);
(gdb) next
214 flexio_dev_thread_reschedule();
(gdb) next

Info

GDB waits until the user types ^C or a breakpoint is reached after
the next interrupt occurred.

Info

DOCA DPA GDB Server Tool 12

Should a dpa-gdbserver bug occur, please provide the following data:

Used GDB (name and version)

Commands sequence to reproduce the issue

DPA GDB server tool console output

DPA GDB server tool log directory content (see next part for details)

Optional – output data printed when dpa-gdbserver is run in verbose mode

Tool Log Directory

For every run, a temporary directory is created with the template
/tmp/flexio_gdbs.XXXXXX .

To locate the latest one, run the following command:

Verbosity Level of gdbserver

The DPA GDB server tool has been validated with gdb-multiarch
(version 9.2) and with GDB version 12.1 from RISC-V tool chain.

Note

The GDB server should support all commands described in GDB RSP
(remote serial protocol) for GDB stubs. But only the most common
GDB commands are supported.

$> ls -ldtr /tmp/flexio_gdbs.* | tail

DOCA DPA GDB Server Tool 13

By default, dpa-gdbserver does not print any log information to screen. Adding - v
option to command line increases verbosity level, printing additional info to
dpa-gdbserver terminal display. Verbosity level is incremented according to number of

'v' in command line switch (i.e. -vv , -vvv etc.).

One -v shows the RSP exchange. This is a textual protocol, so users can read and
understand requests from GDB and answers from the GDB server:

When running with a higher verbosity level (e.g., run dpa-gdbserver with option -vv
or higher), the exchange with the RTOS module is shown:

<<<<< "qTStatus"

>>>>> ""

<<<<< "?"

>>>>> "S05"

<<<<< "qfThreadInfo"

>>>>> "mp01.30011981"

<<<<< "qsThreadInfo"

>>>>> "l"

<<<<< "qAttached:1"

>>>>> "1"

<<<<< "Hc-1"

>>>>> "OK"

<<<<< "qC"

>>>>> "QCp01.30011981"

Info

In the examples, <<<<< and >>>>> are used to indicate data
received from GDB and transmitted to GDB, respectively.

DOCA DPA GDB Server Tool 14

Useful Info Regarding Work with GDB

This section provides useful information about commands and methods which can help
users when performing DPA debug. This is not related to the dpa-gdbserver itself. But
this is about remote debugging and FlexIO sources.

<<<<< "qfThreadInfo"

/ 2/dgdbs_handler - cmd 0x5

/ 2/dgdbs_handler - retval 0x4

>>>>> "mp01.30011981"

<<<<< "qsThreadInfo"

/ 2/dgdbs_handler - cmd 0x5

/ 2/dgdbs_handler - retval 0x5

>>>>> "l"

<<<<< "m800000000000000,4"

/ 2/dgdbs_handler - cmd 0xc

/ 2/dgdbs_handler - retval 0x9

>>>>> "E0a"

<<<<< "m7fffffffffffffc,4"

/ 2/dgdbs_handler - cmd 0xc

/ 2/dgdbs_handler - retval 0x9

>>>>> "E0a"

<<<<< "qSymbol::"

>>>>> "OK"

Info

Lines beginning with / #/ provide the number of internal RTOS
threads printed from the DEV side.

DOCA DPA GDB Server Tool 15

Command "directory"

GDB can run on a different host from the one where compilation was done. For example,
users may have compiled and run their application on host1 and run their instance of

GDB on host2 . In this case, users will see the error message

../xxx/yyy/zzz/your_file.c: No such file or directory . To solve this

problem, copy sources to the host running GDB (host2 in the example). Make sure to

save the original code hierarchy. Use GDB command directory to inform where the
sources are to GDB:

host2~$> gdb-multiarch -q /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...
(gdb) b foo
Breakpoint 1 at 0x4000016c: file ../xxx/yyy/zzz/my_file.c, line 182.
(gdb) target remote host1:1981

Remote debugging using host1:1981

0x0800000000000000 in ?? ()
(gdb) c
Continuing.
[New Thread 1.32769]
[Switching to Thread 1.32769]

Thread 2 hit Breakpoint 1, foo (thread_arg=5728) at
../xxx/yyy/zzz/my_file.c:182

182 ../xxx/yyy/zzz/my_file.c: No such file or directory.
(gdb) directory /tmp/apps/
Source directories searched: /tmp/apps:$cdir:$cwd
(gdb) list
179 struct flexio_dev_thread_ctx *dtctx;
180 uint64_t dev_errno;
181

182 print_sim_str("=====> NET event handler started\n", 0);
183

184 flexio_dev_print("Hello GDB user\n");
185

DOCA DPA GDB Server Tool 16

See this page of GDB documentation for more examples of specifying source directories.

Core Dump Usage

If the code runs into a fatal error even though the host side of your project is
implemented correctly, a core dump is saved which allows analyzing the core. It should
point exactly to where the fatal error occurred. The command backtrace can be used
to examine the memory and its registers. Change the frame to see local variables of every
function on the backtrace list:

Note

Pay attention to the exact path reported by GDB. The argument for
the command directory should point to the start point for this

path. For example, if GDB looks for ../xxx/yyy/zzz and you placed

the sources in local directory /tmp/copy_of_worktree , then the
command should be
(gdb) directory /tmp/copy_of_worktree/xxx/ and not

(gdb) directory /tmp/copy_of_worktree/ .

Sometimes, the *.elf file provides a global path from the root. In

this case, use the command set substitute-path <from> <to>
. For example, if the file /foo/bar/baz.c was moved to

/mnt/cross/baz.c , then the command

(gdb) set substitute-path /foo/bar /mnt/cross instructs

GDB to replace /foo/bar with /mnt/cross , which allows GDB to

find the file baz.c even though it was moved.

$> gdb-multiarch -q -c crash_demo.558184.core /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...

[New LWP 1]

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Source-Path.html

DOCA DPA GDB Server Tool 17

Debug of Optimized Code

#0 0x000000004000126e in read_test (line=153, ptr=0x30) at
/xxx/yyy/zzz/my_file.c:109

109 val = *(volatile uint64_t *)ptr;
(gdb) bt
#0 0x000000004000126e in read_test (line=153, ptr=0x30) at
/xxx/yyy/zzz/my_file.c:109

#1 0x000000004000031a in tlb_miss_test (op_code=1) at
/xxx/yyy/zzz/my_file.c:153

#2 0x0000000040000144 in test_thread_err_events_entry_point
(h2d_daddr=3221258560) at /xxx/yyy/zzz/my_file.c:588

#3 0x00000000400013fc in
_dpacc_flexio_dev_arg_unpack_test_err_events_dev_test_thread_err_ev
(argbuf=0xc0008228, func=0x400000b0
<test_thread_err_events_entry_point>)
 at /tmp/dpacc_xExkvE/test_err_events_dev.dpa.device.c:67

#4 0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at
/local_home/www/flexio-sdk/libflexio-
dev/src/flexio_dev_entry_point.c:75

#5 0x0000000000000000 in ?? ()
Backtrace stopped: frame did not save the PC
(gdb) frame 4

#4 0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at
/local_home/igorle/flexio-sdk/libflexio-
dev/src/flexio_dev_entry_point.c:75

75 retval = unpack_cb(&data_from_host-
>func_params.arg_buf,
(gdb) p /x *data_from_host
$2 = {poll_lkey = 0x1ff2b1, window_id = 0x3, poll_haddr =
0x55dc0f40b900, entry_point = 0x400013d8, func_params = {func_wo_pack =
0x0, dev_func_entry = 0x400000b0, arg_buf = 0xc0008140}}
(gdb)

DOCA DPA GDB Server Tool 18

Usually highly optimized code is compiled and run.

Two types of mistakes in code can be considered:

Logical errors

Optimization-related errors

Logical errors (e.g., using & instead of &&) are reproduced on the non-optimized version
of the code. Optimization related errors (e.g., forgetting volatile classification, non-usage
of memory barriers) only impact optimization. Non-optimized code is much easier for
tracing with GDB, because every C instruction is translated directly to assembly code.

It is good practice to check if an issue can be reproduced on non-optimized code. That
helps observing the application flow:

For tracing this code, using GDB commands next and step should be sufficient.

But if an issue can only be reproduced on on optimized code, you should start debugging
it. This would require reading disassembly code and using the GDB command stepi
because it becomes a challenge to understand exactly which C-code line executed.

Disassembly of Advanced RISC-V Commands

DPA core runs on a RISC-V CPU with an extended instruction set. The GDB may not be
familiar with some of those instructions. Therefore, asm view mode shows numbers
instead of disassembly. In this case it is recommended to disassemble your RISC-V binary
code manually. Use the dpa-objdump utility with the additional option

--mcpu=nv-dpa-bf3 .

$> build.sh -O 0

$> dpa-objdump -sSdxl --mcpu=nv-dpa-bf3 my_riscv.elf >
my_riscv.asm

DOCA DPA GDB Server Tool 19

The following screenshot shows the difference:

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are

DOCA DPA GDB Server Tool 20

trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 02/11/2025

	Introduction
	Glossary
	Known Limitations

	DPA-specific Notes
	Token
	Connection on Application Launch
	Dummy Thread Concept
	Watchdog Issues

	Tool TCP Port and Execution Unit (EU)
	Debugging
	Preparation for Debug
	Start Debugging
	DPA-specific Debugging Techniques
	Easy Example of Transitioning from Dummy to Real Thread
	Complicated Example of Transitioning from Dummy to Real Thread
	Finishing Real Thread without Finishing PUD

	Error Reporting
	Tool Log Directory
	Verbosity Level of gdbserver

	Useful Info Regarding Work with GDB
	Command "directory"
	Core Dump Usage
	Debug of Optimized Code
	Disassembly of Advanced RISC-V Commands

