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This document describes the DPA GDB Server tool.

Introduction

The DPA GDB Server tool ( dpa-gdbserver ) enables debugging FlexIO DEV programs.

DEV programs for debugging are selected using a token (8-byte value) provided by the
FlexIO process owner.

Glossary

Term Description

PUD Process under debug. DEV-side processes intended for debug.

EU Execution unit (similar to hardware CPU core)

DPA Data path accelerator

RPC
Remote process communication. Mechanism used in FlexIO to run DEV-side
code instantly. Runtime is limited to 6 seconds.

HOST x86 or aarch64 Linux OS which manages dev-side code (i.e., DEV)

DEV
RISC-V code, loaded by HOST into the DPA's device. Triggered to run by
different types of interrupts. DEV side is directly connected to ConnectX
adapter card.

Info

The DPA GDB Server Tool is currently supported at beta level.

Info

Any GDB, familiar with RISC-V architecture, can be used for the debug.
Refer to this page for information how to work with GDB.

https://sourceware.org/gdb/current/onlinedocs/gdb.html/
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Term Description

GDB
GNU Project debugger. Allows users to monitor another program while it
executes.

GDBSE
RVER

Tool for remote debug programs

RTOS
Real-time operation system running on RISC-V core. Manages handling of
interrupts and calls to DEV user processes routines.

RSP Remote serial protocol. Used for interaction between GDB and GDBSERVER.

Known Limitations

DPA GDB technology does not catch fatal errors. Therefore, if a fatal error occurs,
core dump (created by flexio_coredump_create() ) should be used.

DPA GDB technology does not support Outbox access. GDB users cannot write to
Doorbell or to Window configuration areas.

DPA GDB technology does not support Window access. Read/write to Window
memory does not work properly.

DPA-specific Notes

Token

The process under debug (PUD) can expose a debugging token. Every external process,
using this token, get full access to the process with given token. To not show it constantly
(e.g., for security reasons), users can modify their host application temporary. See
flexio_process_udbg_token_get() .

Connection on Application Launch

If the code which needs debugging begins to run immediately after launch, the user
should modify the host application to stop upon start to give the user time to run
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dpa-gdbserver . One possible way of doing this is to place function getchar()
immediately after process creation.

Dummy Thread Concept

Something to consider with DPA debugging is that a PUD does not have a running thread
all time (e.g., the process's thread may exist but be waiting for incoming packets). In a
regular Linux application, this scenario is not possible and GDB does not support such
cases.

Therefore, when no thread is running, dpa-gdbserver  reports a dummy thread:

In this case user can inspect memory, create breakpoints, and give the continue
command.

Commands like step , next , and stepi  can not be executed for the Dummy thread.

Watchdog Issues

The RTOS has a watchdog timer that limits DEV code interrupt processes to 120 seconds.
This timer is stopped when the user connects to DEV with GDB. Therefore users will have
no time limitation for debugging.

Tool TCP Port and Execution Unit (EU)

(gdb) info thread
  Id   Target Id                                Frame
* 1    Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? 
()
(gdb)
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By default, dpa-gdbserver  uses TCP port 1981 and runs on EU 29. If this conflicts with

another application (or if other instances of dpa-gdbserver  are running), users should
change the defaults as follows:

Debugging

Preparation for Debug

Modify your FlexIO application if needed. Make sure the HOST code prints udbg_token
and waits for GDB connection if needed:

Extract the DPA application from the FlexIO application. For example:

$> dpa-gdbserver mlx5_0 -T <token> -s <port> -E <eu_id>

+ uint64_t udbg_token;
 

flexio_process_create(..., &flexio_process);
 
+ udbg_token = 
flexio_process_udbg_token_get(flexio_process);
+ if (udbg_token)
+ printf("Process created. Use token >>> %#lx <<< for debug\n", 
udbg_token);
 
+ printf("Stop point for waiting of GDB connection. Press Enter to continue..."); /* Usually 
you don't need this stop point */

+ fflush(stdout);
+ getchar(); 

$> dpacc-extract cc-host/app/host/flexio_app_name -o 
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Start Debugging

1. Run your FlexIO application. It should expose the debug token:

2. Run dpa-gdbserver  with the debug token received:

3. Run any GDB with RISC-V support. For example, gdb-multiarch :

4. Connect to the gdbserver using proper TCP port and hostname, if needed:

flexio_app_name.rv5

$> flexio_app_name mlx5_0
Process created. Use token >>> 0xd6278388ce4e682c <<< for 
debug

$> dpa-gdbserver mlx5_0 -T 0xd6278388ce4e682c
Registered on device mlx5_0
Listening for GDB connection on port 1981

$> gdb-multiarch -q flexio_app_name.rv5
Reading symbols from flexio_app_name.rv5...
(gdb)

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()
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DPA-specific Debugging Techniques

Easy Example of Transitioning from Dummy to Real Thread

Transitioning between the dummy thread and a real thread is not standard practice for
debugging under GDB. In an ideal situation, the user would know exactly the entry points
for all their routines and can set breakpoints for all of them. Then the user may run the
continue  command:

Initiate interrupts for your DEV program (depends your task), and GDB should catch a
breakpoint and now the real thread of the PUD appear instead of the dummy:

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()
(gdb) info threads
  Id   Target Id                                Frame
* 1    Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? 
()
(gdb) b foo
Breakpoint 1 at 0x400000b2: file ../tests/path/hello.c, line 58.
(gdb) b bar
Breakpoint 2 at 0x40000518: file ../tests/path/hallo.c, line 113.
(gdb) continue

Continuing.

(gdb) continue

Continuing.
(gdb) [New Thread 1.2]
[New Thread 1.130]
[New Thread 1.258]
[New Thread 1.386]
[Switching to Thread 1.2]
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From this point, you may examine memory and trace your code as usual.

Complicated Example of Transitioning from Dummy to Real Thread

In a more complicated situation, the interrupt happens after GDB connection. In this case,
the real thread should start running but cannot because the PUD is in HALT state. The
user can type the command info threads , see new thread instead of the old dummy,
and then switch to the new thread manually:

 
Thread 2 hit Breakpoint 1, foo(thread_arg=9008)
    at ../tests/path/hello.c:58

58              struct host_data *hdata = NULL;
(gdb) info threads
  Id   Target Id                                    Frame
* 2    Thread 1.2 (Process 0 thread 0x1 GVMI 0)     foo (arg=9008) 
at ../tests/path/hello.c:58

  3    Thread 1.130 (Process 0 thread 0x81 GVMI 0)  foo (arg=9264) at 
../tests/path/hello.c:58

  4    Thread 1.258 (Process 0 thread 0x101 GVMI 0) foo (arg=9648) at 
../tests/path/hello.c:58

  5    Thread 1.386 (Process 0 thread 0x181 GVMI 0) foo (arg=9904) at 
../tests/path/hello.c:58

(gdb)

(gdb) target remote :1981

Remote debugging using :1981

0x0800000000000000 in ?? ()
(gdb) info threads
  Id   Target Id                                Frame
* 1    Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? 
()
(gdb) info threads
[New Thread 1.32769]
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The user must switch to the new thread manually (see line 14). After this, they can
trace/debug the flow as usual (i.e., using the commands step , next , stepi ).

Finishing Real Thread without Finishing PUD

  Id   Target Id                                       Frame
  2    Thread 1.32769 (Process 0 thread 0x8000 GVMI 0) bar (arg=0xc0, 
len=0)
    at /path/lib/src/stub.c:167

 
The current thread <Thread ID 1> has terminated.  See `help 
thread'.
(gdb) thread 2

[Switching to thread 2 (Thread 1.32769)]
#0  bar (arg=0xc0, len=0)
    at /path/lib/src/stub.c:167

167     {
(gdb) bt
#0  bar (arg=0xc0, len=0)
    at /path/lib/src/stub.c:167

#1  0x000000004000017a in foo (thread_arg=3221)
    at ../path/dev/hello.c:182

#2  0x0000000000000000 in ?? ()
Backtrace stopped: frame did not save the PC
(gdb)

Note

The same command info threads  in lines 4 and 7 gives different
results. This happens because the interrupt occurs between the
instances and the real code begins to run.
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Every interrupt handler at some point finishes its way and returns the CPU resources to
RTOS. The most common way to do this is to call function
flexio_dev_thread_reschedule() . The command next  on this function will have

the same effect as the command continue :

Error Reporting

205             __dpa_thread_fence(__DPA_MEMORY, __DPA_W, 
__DPA_W);
(gdb) next
206             flexio_dev_cq_arm(dtctx, 
app_ctx.rq_cq_ctx.cq_idx, app_ctx.rq_cq_ctx.cq_number);
(gdb) next
208             if ((dev_errno = 
flexio_dev_get_and_rst_errno(dtctx))) {
(gdb) next
213             print_sim_str("Nothing to do. Wait for next duar\n", 0);
(gdb) next
214             flexio_dev_thread_reschedule();
(gdb) next

Info

GDB waits until the user types ^C  or a breakpoint is reached after
the next interrupt occurred.

Info
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Should a dpa-gdbserver bug occur, please provide the following data:

Used GDB (name and version)

Commands sequence to reproduce the issue

DPA GDB server tool console output

DPA GDB server tool log directory content (see next part for details)

Optional – output data printed when dpa-gdbserver  is run in verbose mode

Tool Log Directory

For every run, a temporary directory is created with the template
/tmp/flexio_gdbs.XXXXXX .

To locate the latest one, run the following command:

Verbosity Level of gdbserver

The DPA GDB server tool has been validated with gdb-multiarch
(version 9.2) and with GDB version 12.1 from RISC-V tool chain.

Note

The GDB server should support all commands described in GDB RSP
(remote serial protocol) for GDB stubs. But only the most common
GDB commands are supported.

$> ls -ldtr /tmp/flexio_gdbs.* | tail
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By default, dpa-gdbserver  does not print any log information to screen. Adding - v
option to command line increases verbosity level, printing additional info to
dpa-gdbserver  terminal display. Verbosity level is incremented according to number of

'v' in command line switch (i.e. -vv , -vvv  etc.).

One -v  shows the RSP exchange. This is a textual protocol, so users can read and
understand requests from GDB and answers from the GDB server:

When running with a higher verbosity level (e.g., run dpa-gdbserver  with option -vv
or higher), the exchange with the RTOS module is shown:

<<<<< "qTStatus"

>>>>> ""

<<<<< "?"

>>>>> "S05"

<<<<< "qfThreadInfo"

>>>>> "mp01.30011981"

<<<<< "qsThreadInfo"

>>>>> "l"

<<<<< "qAttached:1"

>>>>> "1"

<<<<< "Hc-1"

>>>>> "OK"

<<<<< "qC"

>>>>> "QCp01.30011981"

Info

In the examples, <<<<<  and >>>>>  are used to indicate data
received from GDB and transmitted to GDB, respectively.
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Useful Info Regarding Work with GDB

This section provides useful information about commands and methods which can help
users when performing DPA debug. This is not related to the dpa-gdbserver  itself. But
this is about remote debugging and FlexIO sources.

<<<<< "qfThreadInfo"

/  2/dgdbs_handler - cmd 0x5

/  2/dgdbs_handler - retval 0x4

>>>>> "mp01.30011981"

<<<<< "qsThreadInfo"

/  2/dgdbs_handler - cmd 0x5

/  2/dgdbs_handler - retval 0x5

>>>>> "l"

<<<<< "m800000000000000,4"

/  2/dgdbs_handler - cmd 0xc

/  2/dgdbs_handler - retval 0x9

>>>>> "E0a"

<<<<< "m7fffffffffffffc,4"

/  2/dgdbs_handler - cmd 0xc

/  2/dgdbs_handler - retval 0x9

>>>>> "E0a"

<<<<< "qSymbol::"

>>>>> "OK"

Info

Lines beginning with / #/  provide the number of internal RTOS
threads printed from the DEV side.
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Command "directory"

GDB can run on a different host from the one where compilation was done. For example,
users may have compiled and run their application on host1  and run their instance of

GDB on host2 . In this case, users will see the error message

../xxx/yyy/zzz/your_file.c: No such file or directory . To solve this

problem, copy sources to the host running GDB ( host2  in the example). Make sure to

save the original code hierarchy. Use GDB command directory  to inform where the
sources are to GDB:

host2~$> gdb-multiarch -q /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...
(gdb) b foo
Breakpoint 1 at 0x4000016c: file ../xxx/yyy/zzz/my_file.c, line 182.
(gdb) target remote host1:1981

Remote debugging using host1:1981

0x0800000000000000 in ?? ()
(gdb) c
Continuing.
[New Thread 1.32769]
[Switching to Thread 1.32769]
 
Thread 2 hit Breakpoint 1, foo (thread_arg=5728) at 
../xxx/yyy/zzz/my_file.c:182

182     ../xxx/yyy/zzz/my_file.c: No such file or directory.
(gdb) directory /tmp/apps/
Source directories searched: /tmp/apps:$cdir:$cwd
(gdb) list
179             struct flexio_dev_thread_ctx *dtctx;
180             uint64_t dev_errno;
181

182             print_sim_str("=====> NET event handler started\n", 0);
183

184             flexio_dev_print("Hello GDB user\n");
185
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See this page of GDB documentation for more examples of specifying source directories.

Core Dump Usage

If the code runs into a fatal error even though the host side of your project is
implemented correctly, a core dump is saved which allows analyzing the core. It should
point exactly to where the fatal error occurred. The command backtrace  can be used
to examine the memory and its registers. Change the frame to see local variables of every
function on the backtrace list:

Note

Pay attention to the exact path reported by GDB. The argument for
the command directory  should point to the start point for this

path. For example, if GDB looks for ../xxx/yyy/zzz  and you placed

the sources in local directory /tmp/copy_of_worktree , then the
command should be
(gdb) directory /tmp/copy_of_worktree/xxx/  and not

(gdb) directory /tmp/copy_of_worktree/ .

Sometimes, the *.elf  file provides a global path from the root. In

this case, use the command set substitute-path <from> <to>
. For example, if the file /foo/bar/baz.c  was moved to

/mnt/cross/baz.c , then the command

(gdb) set substitute-path /foo/bar /mnt/cross  instructs

GDB to replace /foo/bar  with /mnt/cross , which allows GDB to

find the file baz.c  even though it was moved.

$> gdb-multiarch -q -c crash_demo.558184.core /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...
 
[New LWP 1]

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Source-Path.html
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Debug of Optimized Code

#0  0x000000004000126e in read_test (line=153, ptr=0x30) at 
/xxx/yyy/zzz/my_file.c:109

109             val = *(volatile uint64_t *)ptr;
(gdb) bt
#0  0x000000004000126e in read_test (line=153, ptr=0x30) at 
/xxx/yyy/zzz/my_file.c:109

#1  0x000000004000031a in tlb_miss_test (op_code=1) at 
/xxx/yyy/zzz/my_file.c:153

#2  0x0000000040000144 in test_thread_err_events_entry_point 
(h2d_daddr=3221258560) at /xxx/yyy/zzz/my_file.c:588

#3  0x00000000400013fc in 
_dpacc_flexio_dev_arg_unpack_test_err_events_dev_test_thread_err_ev
(argbuf=0xc0008228, func=0x400000b0 
<test_thread_err_events_entry_point>)
    at /tmp/dpacc_xExkvE/test_err_events_dev.dpa.device.c:67

#4  0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at 
/local_home/www/flexio-sdk/libflexio-
dev/src/flexio_dev_entry_point.c:75

#5  0x0000000000000000 in ?? ()
Backtrace stopped: frame did not save the PC
(gdb) frame 4

#4  0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at 
/local_home/igorle/flexio-sdk/libflexio-
dev/src/flexio_dev_entry_point.c:75

75                      retval = unpack_cb(&data_from_host-
>func_params.arg_buf,
(gdb) p /x *data_from_host
$2 = {poll_lkey = 0x1ff2b1, window_id = 0x3, poll_haddr = 
0x55dc0f40b900, entry_point = 0x400013d8, func_params = {func_wo_pack = 
0x0, dev_func_entry = 0x400000b0, arg_buf = 0xc0008140}}
(gdb)



DOCA DPA GDB Server Tool 18

Usually highly optimized code is compiled and run.

Two types of mistakes in code can be considered:

Logical errors

Optimization-related errors

Logical errors (e.g., using &  instead of && ) are reproduced on the non-optimized version
of the code. Optimization related errors (e.g., forgetting volatile classification, non-usage
of memory barriers) only impact optimization. Non-optimized code is much easier for
tracing with GDB, because every C instruction is translated directly to assembly code.

It is good practice to check if an issue can be reproduced on non-optimized code. That
helps observing the application flow:

For tracing this code, using GDB commands next  and step  should be sufficient.

But if an issue can only be reproduced on on optimized code, you should start debugging
it. This would require reading disassembly code and using the GDB command stepi
because it becomes a challenge to understand exactly which C-code line executed.

Disassembly of Advanced RISC-V Commands

DPA core runs on a RISC-V CPU with an extended instruction set. The GDB may not be
familiar with some of those instructions. Therefore, asm  view mode shows numbers
instead of disassembly. In this case it is recommended to disassemble your RISC-V binary
code manually. Use the dpa-objdump  utility with the additional option

--mcpu=nv-dpa-bf3 .

$> build.sh -O 0

$> dpa-objdump -sSdxl --mcpu=nv-dpa-bf3 my_riscv.elf > 
my_riscv.asm
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The following screenshot shows the difference:
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