
Installation Guide for Linux
Release 12.8

NVIDIA Corporation

Feb 06, 2025

Contents

1 System Requirements 3

2 OS Support Policy 5

3 Host Compiler Support Policy 7
3.1 Host Compiler Compatibility Packages . 7
3.2 Supported C++ Dialects . 8

4 About This Document 9

5 Pre-installation Actions 11
5.1 Verify You Have a CUDA-Capable GPU . 11
5.2 Verify You Have a Supported Version of Linux . 12
5.3 Verify the System Has gcc Installed . 12
5.4 Choose an Installation Method . 12
5.5 Download the NVIDIA CUDA Toolkit . 13
5.6 Handle Conflicting Installation Methods . 13

6 Package Manager Installation 15
6.1 Overview . 15
6.2 RHEL / Rocky . 16
6.2.1 Prepare RHEL / Rocky . 16
6.2.2 Local Repo Installation for RHEL / Rocky . 16
6.2.3 Network Repo Installation for RHEL / Rocky . 17
6.2.4 Common Instructions for RHEL / Rocky . 17

6.3 KylinOS . 18
6.3.1 Prepare KylinOS . 18
6.3.2 Local Repo Installation for KylinOS . 18
6.3.3 Network Repo Installation for KylinOS . 18
6.3.4 Common Instructions for KylinOS . 19

6.4 Fedora . 19
6.4.1 Prepare Fedora . 19
6.4.2 Local Repo Installation for Fedora . 19
6.4.3 Network Repo Installation for Fedora . 20
6.4.4 Common Installation Instructions for Fedora . 20
6.4.5 GCC Compatibility Package for Fedora . 21

6.5 SLES . 21
6.5.1 Prepare SLES . 21
6.5.2 Local Repo Installation for SLES . 22
6.5.3 Network Repo Installation for SLES . 22
6.5.4 Common Installation Instructions for SLES . 23

6.6 OpenSUSE . 23
6.6.1 Prepare OpenSUSE . 23
6.6.2 Local Repo Installation for OpenSUSE . 23

i

6.6.3 Network Repo Installation for OpenSUSE . 24
6.6.4 Common Installation Instructions for OpenSUSE . 24

6.7 WSL . 24
6.7.1 Prepare WSL . 25
6.7.2 Local Repo Installation for WSL . 25
6.7.3 Network Repo Installation for WSL . 25
6.7.4 Common Installation Instructions for WSL . 26

6.8 Ubuntu . 26
6.8.1 Prepare Ubuntu . 26
6.8.2 Local Repo Installation for Ubuntu . 26
6.8.3 Network Repo Installation for Ubuntu . 27
6.8.4 Common Installation Instructions for Ubuntu . 27

6.9 Debian . 28
6.9.1 Prepare Debian . 28
6.9.2 Local Repo Installation for Debian . 28
6.9.3 Network Repo Installation for Debian . 29
6.9.4 Common Installation Instructions for Debian . 29

6.10 Amazon Linux . 29
6.10.1 Prepare Amazon Linux . 29
6.10.2 Local Repo Installation for Amazon Linux . 30
6.10.3 Network Repo Installation for Amazon Linux . 30
6.10.4 Common Installation Instructions for Amazon Linux . 30

6.11 Azure Linux CM2 . 31
6.11.1 Prepare Azure Linux CM2 . 31
6.11.2 Local Repo Installation for Azure Linux . 31
6.11.3 Network Repo Installation for Azure Linux . 31
6.11.4 Common Installation Instructions for Azure Linux . 31

6.12 Additional Package Manager Capabilities . 32
6.12.1 Available Packages . 32
6.12.2 Meta Packages . 32
6.12.3 Package Upgrades . 33
6.12.3.1 Amazon Linux . 33
6.12.3.2 Fedora . 33
6.12.3.3 KylinOS / RHEL / Rocky Linux . 34
6.12.3.4 Azure Linux . 34
6.12.3.5 OpenSUSE / SLES . 34
6.12.3.6 Debian / Ubuntu . 34
6.12.3.7 Other Package Notes . 34

7 Driver Installation 35

8 Runfile Installation 37
8.1 Runfile Overview . 37
8.2 Installation . 37
8.3 Advanced Options . 39
8.4 Uninstallation . 40

9 Conda Installation 41
9.1 Conda Overview . 41
9.2 Installing CUDA Using Conda . 41
9.3 Uninstalling CUDA Using Conda . 41
9.4 Installing Previous CUDA Releases . 41
9.5 Upgrading from cudatoolkit Package . 42

10 Pip Wheels 43

ii

11 CUDA Cross-Platform Environment 45
11.1 CUDA Cross-Platform Installation . 45
11.1.1 Ubuntu . 45
11.1.1.1 Local Cross Repo Installation for Ubuntu . 45
11.1.1.2 Network Cross Repo Installation for Ubuntu . 46
11.1.1.3 Common Installation Instructions for Ubuntu . 46

11.1.2 KylinOS / RHEL / Rocky Linux . 46
11.1.2.1 Local Cross Repo Installation for KylinOS / RHEL / Rocky Linux 47
11.1.2.2 Network Cross Repo Installation for KylinOS / RHEL / Rocky Linux 47
11.1.2.3 Common Installation Instructions for KylinOS / RHEL / Rocky Linux 47

11.1.3 SLES . 47
11.1.3.1 Local Cross Repo Installation for SLES . 48
11.1.3.2 Network Cross Repo Installation for SLES . 48
11.1.3.3 Common Installation Instructions for SLES . 48

12 Tarball and Zip Archive Deliverables 49
12.1 Parsing Redistrib JSON . 50
12.2 Importing Tarballs into CMake . 51
12.3 Importing Tarballs into Bazel . 51

13 Post-installation Actions 53
13.1 Mandatory Actions . 53
13.1.1 Environment Setup . 53

13.2 Recommended Actions . 54
13.2.1 Install Writable Samples . 54
13.2.2 Verify the Installation . 54
13.2.2.1 Running the Binaries . 54

13.2.3 Install Nsight Eclipse Plugins . 56
13.2.4 Local Repo Removal . 56

13.3 Optional Actions . 56
13.3.1 Install Third-party Libraries . 56
13.3.2 Install the Source Code for cuda-gdb . 57
13.3.3 Select the Active Version of CUDA . 57

14 Removing CUDA Toolkit 59

15 Advanced Setup 61

16 Additional Considerations 63

17 Frequently Asked Questions 65
17.1 How do I install the Toolkit in a different location? . 65
17.2 Why do I see “nvcc: No such file or directory” when I try to build a CUDA application? . 65
17.3 Why do I see “error while loading shared libraries: <lib name>: cannot open shared

object file: No such file or directory” when I try to run a CUDA application that uses a
CUDA library? . 66

17.4 Why do I see multiple “404 Not Found” errors when updating my repository meta-data
on Ubuntu? . 66

17.5 How can I tell X to ignore a GPU for compute-only use? . 66
17.6 Why doesn’t the cuda-repo package install the CUDA Toolkit? 67
17.7 How do I install an older CUDA version using a network repo? 67
17.8 How do I handle “Errors were encountered while processing: glx-diversions”? 67

18 Notices 69
18.1 Notice . 69

iii

18.2 OpenCL . 70
18.3 Trademarks . 70

19 Copyright 71

iv

Installation Guide for Linux, Release 12.8

NVIDIA CUDA Installation Guide for Linux

The installation instructions for the CUDA Toolkit on Linux.

CUDA® is a parallel computing platform and programming model invented by NVIDIA®. It enables dra-
matic increases in computing performance by harnessing the power of the graphics processing unit
(GPU).

CUDA was developed with several design goals in mind:

▶ Provide a small set of extensions to standard programming languages, like C, that enable a
straightforward implementation of parallel algorithms. With CUDA C/C++, programmers can fo-
cus on the task of parallelization of the algorithms rather than spending time on their implemen-
tation.

▶ Support heterogeneous computation where applications use both the CPU and GPU. Serial por-
tions of applications are run on the CPU, and parallel portions are offloaded to the GPU. As such,
CUDA can be incrementally applied to existing applications. The CPU and GPU are treated as sep-
arate devices that have their own memory spaces. This configuration also allows simultaneous
computation on the CPU and GPU without contention for memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing threads.
These cores have shared resources including a register file and a shared memory. The on-chip shared
memory allows parallel tasks running on these cores to share data without sending it over the system
memory bus.

This guidewill show you how to install and check the correct operation of the CUDAdevelopment tools.

Note: Instructions for installing NVIDIA Drivers are now in https://docs.nvidia.com/datacenter/tesla/
driver-installation-guide/index.html.

Contents 1

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html
https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html

Installation Guide for Linux, Release 12.8

2 Contents

Chapter 1. System Requirements

To use NVIDIA CUDA on your system, you will need the following installed:

▶ CUDA-capable GPU

▶ A supported version of Linux with a gcc compiler and toolchain

▶ CUDA Toolkit (available at https://developer.nvidia.com/cuda-downloads)

The CUDA development environment relies on tight integration with the host development environ-
ment, including the host compiler and C runtime libraries, and is therefore only supported on distribu-
tion versions that have been qualified for this CUDA Toolkit release.

The following table lists the supported Linux distributions. Please review the footnotes associated
with the table.

Table 1: Native Linux Distribution Support in CUDA 12.8

Distribution Kernel1 Default GCC GLIBC

x86_64

RHEL 9.y (y <= 5) 5.14.0-503 11.5.0 2.34

RHEL 8.y (y <= 10) 4.18.0-553 8.5.0 2.28

OpenSUSE Leap 15.y (y <= 6) 6.4.0-150600.21 7.5.0 2.38

Rocky Linux 8.y (y<=10) 4.18.0-553 8.5.0 2.28

Rocky Linux 9.y (y<=5) 5.14.0-503 11.5.0 2.34

SUSE SLES 15.y (y <= 6) 6.4.0-150600.21 7.5.0 2.31

Ubuntu 24.04.z (z <= 1) LTS 6.8.0-41 13.2.0 2.39

Ubuntu 22.04.z (z <= 5) LTS 6.5.0-45 12.3.0 2.35

Ubuntu 20.04.z (z <= 6) LTS 5.15.0-67 9.4.0 2.31

Debian 12.8 6.1.0-27 12.2.0 2.36

Fedora 41 6.11.4-301 14.2.1 2.40

KylinOS V10 SP3 2403 4.19.90-89.11.v2401 10.x 2.28

MSFT Azure Linux 2.0 5.15.158.2-1 11.2.0 2.35

Amazon Linux 2023 6.1.82-99.168 11.4.1 2.34

continues on next page

3

https://developer.nvidia.com/cuda-downloads

Installation Guide for Linux, Release 12.8

Table 1 – continued from previous page

Distribution Kernel1 Default GCC GLIBC

Oracle Linux 8 4.18.0-553 8.5.0 2.28

Oracle Linux 9 5.14.0-427 11.4.1 2.34

Arm64 sbsa

RHEL 9.y (y <= 5) 5.14.0-503 11.5.0 2.34

RHEL 8.y (y <= 10) 4.18.0-553 8.5.0 2.28

SUSE SLES 15.y (y == 6) 6.4.0-150600.21 7.5.0 2.38

Kylin V10 SP3 2403 4.19.90-89 10.x 2.28

Ubuntu 24.04.z (z <= 1) LTS 6.8.0-31 13.2.0 2.39

Ubuntu 22.04 LTS (z <= 5) LTS 6.5.0-1019 11.4.0 2.35

Ubuntu 20.04.z (z <= 5) LTS 5.4.0-174 11.4.0 2.31

Arm64 sbsa Jetson (dGPU)

20.04.06 LTS Rel35 JP 5.x 5.10.65-tegra 9.4.0 2.31

22.04.4 LTS Rel36 - JP6.x 5.15.136-tegra 11.4.0 2.35

AArch64 Jetson (iGPU)

L4T Ubuntu 22.04 Rel36 - JP6.x 6.1.80-tegra 11.4.0 2.35

(1) The following notes apply to the kernel versions supported by CUDA:

▶ For specific kernel versions supported on Red Hat Enterprise Linux (RHEL), visit https://access.
redhat.com/articles/3078.

▶ A list of kernel versions including the release dates for SUSE Linux Enterprise Server (SLES) is
available at https://www.suse.com/support/kb/doc/?id=000019587.

(2) Support for Debian 11.x is deprecated.

4 Chapter 1. System Requirements

https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://www.suse.com/support/kb/doc/?id=000019587

Chapter 2. OS Support Policy

▶ CUDA support for Ubuntu 20.04.x, Ubuntu 22.04.x, Ubuntu 24.04.x, RHEL 8.x, RHEL 9.x, Rocky
Linux 8.x, Rocky Linux 9.x, SUSE SLES 15.x, OpenSUSE Leap 15.x, Amazon linux 2023, and Azure
Linux 2.0 will be until the standard EOSS as defined for each OS. Please refer to the support
lifecycle for these OSes to know their support timelines.

▶ CUDA supports the latest Fedora release version. The version supported might require a specific
GCC compatibility package. For Fedora release timelines, visit https://docs.fedoraproject.org/
en-US/releases/.

▶ CUDA supports a single KylinOS release version. For details, visit https://www.kylinos.cn/.

Refer to the support lifecycle for these supported OSes to know their support timelines and plan to
move to newer releases accordingly.

5

https://docs.fedoraproject.org/en-US/releases/
https://docs.fedoraproject.org/en-US/releases/
https://www.kylinos.cn/

Installation Guide for Linux, Release 12.8

6 Chapter 2. OS Support Policy

Chapter 3. Host Compiler Support
Policy

In order to compile the CPU “Host” code in the CUDA source, the CUDA compiler NVCC requires a
compatible host compiler to be installed on the system. The version of the host compiler supported
on Linux platforms is tabulated as below. NVCC performs a version check on the host compiler’s major
version and so newerminor versions of the compilers listed belowwill be supported, butmajor versions
falling outside the range will not be supported.

Table 2: Supported Compilers

Distribution GCC Clang NVHPC XLC ArmC/C++ ICC

x86_64 6.x - 14.x 7.x - 19.x 24.9 No No 2021.7

Arm64 sbsa 6.x - 14.x 7.x - 19.x 24.9 No 24.04 No

For GCC and Clang, the preceding table indicates the minimum version and the latest version sup-
ported. If you are on a Linux distribution that may use an older version of GCC toolchain as default
thanwhat is listed above, it is recommended to upgrade to a newer toolchain CUDA11.0 or later toolkit.
Newer GCC toolchains are available with the Red Hat Developer Toolset for example. For platforms
that ship a compiler version older than GCC 6 by default, linking to static or dynamic libraries that are
shipped with the CUDA Toolkit is not supported. We only support libstdc++ (GCC’s implementation)
for all the supported host compilers for the platforms listed above.

3.1. Host Compiler Compatibility Packages

Really up to date distributionsmight ship with a newer compiler thanwhat is covered by the Supported
Compilers table above. Usually, those distribution also provide a GCC compatibility package that can
be used instead of the default one.

Depending on the distribution, the package that needs to be installed is different, but the logic for
configuring it is the same. If required, configuration steps are described in the relevant section for
the specific Linux distribution, but they always end up with configuring the NVCC_BIN environment
variable as described in the NVCC documentation.

7

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables

Installation Guide for Linux, Release 12.8

3.2. Supported C++ Dialects

NVCC and NVRTC (CUDA Runtime Compiler) support the following C++ dialect: C++11, C++14, C++17,
C++20 on supported host compilers. The default C++ dialect of NVCC is determined by the default
dialect of the host compiler used for compilation. Refer to host compiler documentation and the
CUDA Programming Guide for more details on language support.

C++20 is supported with the following flavors of host compiler in both host and device code.

GCC Clang NVHPC Arm C/C++

>=10.x >=11.x >=22.x >=22.x

8 Chapter 3. Host Compiler Support Policy

Chapter 4. About This Document

This document is intended for readers familiar with the Linux environment and the compilation of C
programs from the command line. You do not need previous experience with CUDA or experience with
parallel computation. Note: This guide covers installation only on systems with X Windows installed.

Note: Many commands in this document might require superuser privileges. On most distributions
of Linux, this will require you to log in as root. For systems that have enabled the sudo package, use
the sudo prefix for all necessary commands.

9

Installation Guide for Linux, Release 12.8

10 Chapter 4. About This Document

Chapter 5. Pre-installation Actions

Some actions must be taken before the CUDA Toolkit can be installed on Linux:

▶ Verify the system has a CUDA-capable GPU.

▶ Verify the system is running a supported version of Linux.

▶ Verify the system has gcc installed.

▶ Download the NVIDIA CUDA Toolkit.

▶ Handle conflicting installation methods.

Note: You can override the install-time prerequisite checks by running the installer with the
-overrideflag. Remember that the prerequisiteswill still be required to use theNVIDIA CUDA Toolkit.

5.1. Verify You Have a CUDA-Capable GPU

To verify that your GPU is CUDA-capable, go to your distribution’s equivalent of System Properties, or,
from the command line, enter:

lspci | grep -i nvidia

If you do not see any settings, update the PCI hardware database that Linux maintains by entering
update-pciids (generally found in ∕sbin) at the command line and rerun the previous lspci com-
mand.

If your graphics card is from NVIDIA and it is listed in https://developer.nvidia.com/cuda-gpus, your
GPU is CUDA-capable.

The Release Notes for the CUDA Toolkit also contain a list of supported products.

11

https://developer.nvidia.com/cuda-gpus

Installation Guide for Linux, Release 12.8

5.2. Verify You Have a Supported Version of
Linux

The CUDA Development Tools are only supported on some specific distributions of Linux. These are
listed in the CUDA Toolkit release notes.

To determinewhich distribution and release number you’re running, type the following at the command
line:

uname -m && cat ∕etc∕*release

You should see output similar to the following, modified for your particular system:

x86_64
Red Hat Enterprise Linux Workstation release 6.0 (Santiago)

The x86_64 line indicates you are running on a 64-bit system. The remainder gives information about
your distribution.

5.3. Verify the System Has gcc Installed

The gcc compiler is required for development using the CUDA Toolkit. It is not required for running
CUDA applications. It is generally installed as part of the Linux installation, and in most cases the
version of gcc installed with a supported version of Linux will work correctly.

To verify the version of gcc installed on your system, type the following on the command line:

gcc --version

If an error message displays, you need to install the development tools from your Linux distribution or
obtain a version of gcc and its accompanying toolchain from the Web.

5.4. Choose an Installation Method

The CUDA Toolkit can be installed using either of two different installation mechanisms: distribution-
specific packages (RPM and Deb packages), or a distribution-independent package (runfile packages).

The distribution-independent package has the advantage of working across a wider set of Linux distri-
butions, but does not update the distribution’s native packagemanagement system. The distribution-
specific packages interface with the distribution’s native package management system. It is recom-
mended to use the distribution-specific packages, where possible.

Note: For both native as well as cross development, the toolkit must be installed using the
distribution-specific installer. See the CUDA Cross-Platform Installation section for more details.

12 Chapter 5. Pre-installation Actions

Installation Guide for Linux, Release 12.8

5.5. Download the NVIDIA CUDA Toolkit

The NVIDIA CUDA Toolkit is available at https://developer.nvidia.com/cuda-downloads.

Choose the platform you are using and download the NVIDIA CUDA Toolkit.

The CUDA Toolkit contains the tools needed to create, build and run a CUDA application as well as
libraries, header files, and other resources.

Download Verification

The download can be verified by comparing theMD5 checksum posted at https://developer.download.
nvidia.com/compute/cuda/12.6.2/docs/sidebar/md5sum.txt with that of the downloaded file. If either
of the checksums differ, the downloaded file is corrupt and needs to be downloaded again.

To calculate the MD5 checksum of the downloaded file, run the following:

md5sum <file>

5.6. Handle Conflicting Installation Methods

Before installing CUDA, any previous installations that could conflict should be uninstalled. This will
not affect systems which have not had CUDA installed previously, or systems where the installation
method has been preserved (RPM/Deb vs. Runfile). See the following charts for specifics.

Table 3: CUDA Toolkit Installation Compatibility Matrix

Installed Toolkit Version == X.Y Installed Toolkit Version !=
X.Y

RPM/Deb run RPM/Deb run

Installing Toolkit Version
X.Y

RPM/Deb No Action Uninstall Run No Action No Action

run Uninstall
RPM/Deb

Uninstall Run No Action No Action

Use the following command to uninstall a Toolkit runfile installation:

sudo ∕usr∕local∕cuda-X.Y∕bin∕cuda-uninstaller

Use the following commands to uninstall an RPM/Deb installation:

sudo dnf remove <package_name> # RHEL 8 ∕ Rocky Linux 8 ∕ RHEL 9�
↪→∕ Rocky Linux 9 ∕ Fedora ∕ KylinOS 10 ∕ Amazon Linux 2023

sudo tdnf remove <package_name> # Azure Linux

sudo zypper remove <package_name> # OpenSUSE ∕ SLES

sudo apt-get --purge remove <package_name> # Debian ∕ Ubuntu

5.5. Download the NVIDIA CUDA Toolkit 13

https://developer.nvidia.com/cuda-downloads
https://developer.download.nvidia.com/compute/cuda/12.6.2/docs/sidebar/md5sum.txt
https://developer.download.nvidia.com/compute/cuda/12.6.2/docs/sidebar/md5sum.txt

Installation Guide for Linux, Release 12.8

14 Chapter 5. Pre-installation Actions

Chapter 6. Package Manager
Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.

6.1. Overview

Installation using RPM or Debian packages interfaces with your system’s package management sys-
tem. When using RPM or Debian local repo installers, the downloaded package contains a repository
snapshot stored on the local filesystem in /var/. Such a package only informs the package manager
where to find the actual installation packages, but will not install them.

If the online network repository is enabled, RPM or Debian packages will be automatically downloaded
at installation time using the package manager: apt-get, dnf, tdnf, or zypper.

Distribution-specific instructions detail how to install CUDA:

▶ RHEL / Rocky

▶ KylinOS

▶ Fedora

▶ SLES

▶ OpenSUSE

▶ WSL

▶ Ubuntu

▶ Debian

▶ Amazon Linux

▶ Azure Linux CM2

Finally, some helpful package manager capabilities are detailed.

These instructions are for native development only. For cross-platform development, see the CUDA
Cross-Platform Environment section.

Note: Optional components such as nvidia-fs, libnvidia_nscq, and fabricmanager are not
installed by default and will have to be installed separately as needed.

15

https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Installation Guide for Linux, Release 12.8

6.2. RHEL / Rocky

6.2.1. Prepare RHEL / Rocky

1. Perform the Pre-installation Actions.

2. Satisfy third-party package dependency:

▶ Enable optional repos:

On RHEL 9 Linux only, execute the following steps to enable optional repositories.

▶ On x86_64 systems:

subscription-manager repos --enable=rhel-9-for-x86_64-appstream-rpms
subscription-manager repos --enable=rhel-9-for-x86_64-baseos-rpms
subscription-manager repos --enable=codeready-builder-for-rhel-9-x86_64-
↪→rpms

On RHEL 8 Linux only, execute the following steps to enable optional repositories.

▶ On x86_64 systems:

subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms
subscription-manager repos --enable=rhel-8-for-x86_64-baseos-rpms
subscription-manager repos --enable=codeready-builder-for-rhel-8-x86_64-
↪→rpms

3. Remove Outdated Signing Key:

sudo rpm --erase gpg-pubkey-7fa2af80*

4. Choose an installation method: Local Repo Installation for RHEL / Rocky or Network Repo Installa-
tion for RHEL / Rocky.

6.2.2. Local Repo Installation for RHEL / Rocky

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

where <distro> should be replaced by one of the following:

▶ rhel8

▶ rhel9

and <arch> should be replaced by one of the following:

▶ x86_64

▶ aarch64

16 Chapter 6. Package Manager Installation

Installation Guide for Linux, Release 12.8

6.2.3. Network Repo Installation for RHEL / Rocky

1. Enable the network repo:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕<arch>∕cuda-<distro>.repo

where <distro>∕<arch> should be replaced by one of the following:

▶ rhel8∕sbsa

▶ rhel8∕x86_64

▶ rhel9∕sbsa

▶ rhel9∕x86_64

2. Install the new CUDA public GPG key:

The new GPG public key for the CUDA repository (RPM-based distros) is d42d0685.

On a fresh installation of RHEL, the dnf package manager will prompt the user to accept new
keys when installing packages the first time. Indicate you accept the change when prompted.

For upgrades, you must also also fetch an updated .repo entry:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕<arch>∕cuda-<distro>.repo

3. Clean DNF repository:

sudo dnf clean all

6.2.4. Common Instructions for RHEL / Rocky

These instructions apply to both local and network installation.

1. Install CUDA SDK:

sudo dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

sudo dnf install nvidia-gds

3. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the ∕usr∕lib{,64}∕nvidia directory. For pre-existing
projects which use libcuda.so, it may be useful to add a symbolic link from libcuda.so in the
∕usr∕lib{,64} directory.

4. Reboot the system:

sudo reboot

5. Perform the post-installation actions.

6.2. RHEL / Rocky 17

https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/D42D0685.pub

Installation Guide for Linux, Release 12.8

6.3. KylinOS

6.3.1. Prepare KylinOS

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

6.3.2. Local Repo Installation for KylinOS

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

where <distro> should be replaced by one of the following:

▶ kylin10

and <arch> should be replaced by one of the following:

▶ x86_64

▶ aarch64

6.3.3. Network Repo Installation for KylinOS

1. Enable the network repo:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕<arch>∕cuda-<distro>.repo

where <distro>∕<arch> should be replaced by one of the following:

▶ kylin10∕sbsa

▶ kylin10∕x86_64

2. Install the new CUDA public GPG key:

The new GPG public key for the CUDA repository (RPM-based distros) is d42d0685.

On a fresh installation of KylinOS, the dnf package manager will prompt the user to accept new
keys when installing packages the first time. Indicate you accept the change when prompted.

3. Clean DNF repository:

sudo dnf clean all

18 Chapter 6. Package Manager Installation

https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/D42D0685.pub

Installation Guide for Linux, Release 12.8

6.3.4. Common Instructions for KylinOS

These instructions apply to both local and network installation.

1. Install CUDA SDK:

sudo dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

sudo dnf install nvidia-gds

3. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the ∕usr∕lib{,64}∕nvidia directory. For pre-existing
projects which use libcuda.so, it may be useful to add a symbolic link from libcuda.so in the
∕usr∕lib{,64} directory.

4. Reboot the system:

sudo reboot

5. Perform the post-installation actions.

6.4. Fedora

6.4.1. Prepare Fedora

1. Perform the pre-installation actions.

2. Remove Outdated Signing Key:

sudo rpm --erase gpg-pubkey-7fa2af80*

3. Choose an installation method: local repo or network repo.

6.4.2. Local Repo Installation for Fedora

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

where <distro> should be replaced by one of the following:

▶ fedora39

6.4. Fedora 19

Installation Guide for Linux, Release 12.8

6.4.3. Network Repo Installation for Fedora

1. Enable the network repo:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕x86_64∕cuda-<distro>.repo

where <distro> should be replaced by one of the following:

▶ fedora39

2. Install the new CUDA public GPG key:

The new GPG public key for the CUDA repository (RPM-based distros) is d42d0685.

On a fresh installation of Fedora, the dnf package manager will prompt the user to accept new
keys when installing packages the first time. Indicate you accept the change when prompted.

For upgrades, you must also fetch an updated .repo entry:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕x86_64∕cuda-<distro>.repo

3. Clean DNF repository:

sudo dnf clean all

6.4.4. Common Installation Instructions for Fedora

These instructions apply to both local and network installation for Fedora.

1. Install CUDA SDK:

sudo dnf install cuda-toolkit

2. Reboot the system:

sudo reboot

3. Add libcuda.so symbolic link, if necessary:

The libcuda.so library is installed in the ∕usr∕lib{,64}∕nvidia directory. For pre-existing
projects which use libcuda.so, it may be useful to add a symbolic link from libcuda.so in the
∕usr∕lib{,64} directory.

4. Perform the post-installation actions.

20 Chapter 6. Package Manager Installation

https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/D42D0685.pub

Installation Guide for Linux, Release 12.8

6.4.5. GCC Compatibility Package for Fedora

The Fedora version supported might ship with a newer compiler than what is actually supported by
NVCC. This can be overcome by installing the GCC compatibility package and setting a few environ-
ment variables.

As an example, Fedora 41 ships with GCC 14 and also with a compatible GCC 13 version, which can be
used for NVCC. To install and configure the local NVCC binary to use that version, proceed as follows.

1. Install the packages required:

sudo dnf install gcc13-c++

The binaries then appear on the system in the following way:

∕usr∕bin∕gcc-13
∕usr∕bin∕g++-13

2. Override the default g++ compiler. Refer to the documentation for NVCC regarding the environ-
ment variables. For example:

export NVCC_CCBIN='g++-13'

6.5. SLES

6.5.1. Prepare SLES

1. Perform the pre-installation actions.

2. On SLES12 SP4, install the Mesa-libgl-devel Linux packages before proceeding.

See Mesa-libGL-devel.

3. Add the user to the video group:

sudo usermod -a -G video <username>

4. Remove Outdated Signing Key:

sudo rpm --erase gpg-pubkey-7fa2af80*

5. Choose an installation method: local repo or network repo.

6.5. SLES 21

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables
https://pkgs.org/download/Mesa-libGL-devel

Installation Guide for Linux, Release 12.8

6.5.2. Local Repo Installation for SLES

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

where <distro> should be replaced by one of the following:

▶ sles15

and <arch> should be replaced by one of the following:

▶ x86_64

▶ aarch64

6.5.3. Network Repo Installation for SLES

1. Enable the network repo:

sudo zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕
↪→<distro>∕<arch>∕cuda-<distro>.repo

where <distro>∕<arch> should be replaced by one of the following:

▶ sles15∕sbsa

▶ sles15∕x86_64

2. Install the new CUDA public GPG key:

The new GPG public key for the CUDA repository (RPM-based distros) is d42d0685.

On a fresh installation of SLES, the zypper package manager will prompt the user to accept new
keys when installing packages the first time. Indicate you accept the change when prompted.

For upgrades, you must also also fetch an updated .repo entry:

sudo zypper removerepo cuda-<distro>-<arch>
sudo zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕
↪→<distro>∕<arch>∕cuda-<distro>.repo

3. Refresh Zypper repository cache:

sudo SUSEConnect --product PackageHub∕<SLES version number>∕<arch>
sudo zypper refresh

22 Chapter 6. Package Manager Installation

https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/D42D0685.pub

Installation Guide for Linux, Release 12.8

6.5.4. Common Installation Instructions for SLES

These instructions apply to both local and network installation for SLES.

1. Install CUDA SDK:

sudo zypper install cuda-toolkit

2. Reboot the system:

sudo reboot

3. Perform the post-installation actions.

6.6. OpenSUSE

6.6.1. Prepare OpenSUSE

1. Perform the pre-installation actions.

2. Add the user to the video group:

sudo usermod -a -G video <username>

3. Remove Outdated Signing Key:

sudo rpm --erase gpg-pubkey-7fa2af80*

4. Choose an installation method: local repo or network repo.

6.6.2. Local Repo Installation for OpenSUSE

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

where <distro> should be replaced by one of the following:

▶ opensuse15

6.6. OpenSUSE 23

Installation Guide for Linux, Release 12.8

6.6.3. Network Repo Installation for OpenSUSE

1. Enable the network repo:

sudo zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕
↪→<distro>∕x86_64∕cuda-<distro>.repo

where <distro> should be replaced by one of the following:

▶ opensuse15

2. Install the new CUDA public GPG key:

The new GPG public key for the CUDA repository (RPM-based distros) is d42d0685. On fresh
installation of openSUSE, the zypper package manager will prompt the user to accept new keys
when installing packages the first time. Indicate you accept the change when prompted.

For upgrades, you must also also fetch an updated .repo entry:

sudo zypper removerepo cuda-<distro>-x86_64
sudo zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕
↪→<distro>∕x86_64∕cuda-<distro>.repo

3. Refresh Zypper repository cache:

sudo zypper refresh

6.6.4. Common Installation Instructions for OpenSUSE

These instructions apply to both local and network installation for OpenSUSE.

1. Install CUDA SDK:

sudo zypper install cuda-toolkit

2. Reboot the system:

sudo reboot

3. Perform the post-installation actions.

6.7. WSL

These instructions must be used if you are installing in a WSL environment.

24 Chapter 6. Package Manager Installation

https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/D42D0685.pub

Installation Guide for Linux, Release 12.8

6.7.1. Prepare WSL

1. Perform the pre-installation actions.

2. Remove Outdated Signing Key:

sudo apt-key del 7fa2af80

3. Choose an installation method: local repo or network repo.

6.7.2. Local Repo Installation for WSL

1. Install local repository on file system:

sudo dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_amd64.deb

where <distro> should be replaced by one of the following:

▶ wsl-ubuntu

2. Enroll ephemeral public GPG key:

sudo cp ∕var∕cuda-repo-<distro>-X-Y-local∕cuda-*-keyring.gpg ∕usr∕share∕keyrings∕

3. Add pin file to prioritize CUDA repository:

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕x86_64∕
↪→cuda-<distro>.pin
sudo mv cuda-<distro>.pin ∕etc∕apt∕preferences.d∕cuda-repository-pin-600

6.7.3. Network Repo Installation for WSL

The new GPG public key for the CUDA repository (Debian-based distros) is 3bf863cc. This must be
enrolled on the system, either using the cuda-keyring package or manually; the apt-key command
is deprecated and not recommended.

1. Install the new cuda-keyring package:

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕x86_64∕
↪→cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb

where <distro> should be replaced by one of the following:

▶ wsl-ubuntu

6.7. WSL 25

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub

Installation Guide for Linux, Release 12.8

6.7.4. Common Installation Instructions for WSL

These instructions apply to both local and network installation for WSL.

1. Update the Apt repository cache:

sudo apt-get update

2. Install CUDA SDK:

sudo apt-get install cuda-toolkit

3. Perform the post-installation actions.

6.8. Ubuntu

6.8.1. Prepare Ubuntu

1. Perform the pre-installation actions.

2. Remove Outdated Signing Key:

sudo apt-key del 7fa2af80

3. Choose an installation method: local repo or network repo.

6.8.2. Local Repo Installation for Ubuntu

1. Install local repository on file system:

sudo dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_<arch>.deb

where <distro> should be replaced by one of the following:

▶ ubuntu2004

▶ ubuntu2204

▶ ubuntu2404

and <arch> should be replaced by one of the following:

▶ amd64

▶ arm64

2. Enroll ephemeral public GPG key:

sudo cp ∕var∕cuda-repo-<distro>-X-Y-local∕cuda-*-keyring.gpg ∕usr∕share∕keyrings∕

3. Add pin file to prioritize CUDA repository:

26 Chapter 6. Package Manager Installation

Installation Guide for Linux, Release 12.8

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕<arch>∕
↪→cuda-<distro>.pin
sudo mv cuda-<distro>.pin ∕etc∕apt∕preferences.d∕cuda-repository-pin-600

6.8.3. Network Repo Installation for Ubuntu

The new GPG public key for the CUDA repository is 3bf863cc. This must be enrolled on the system,
either using the cuda-keyring package or manually; the apt-key command is deprecated and not
recommended.

1. Install the new cuda-keyring package:

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕<arch>∕
↪→cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb

where <distro>∕<arch> should be replaced by one of the following:

▶ ubuntu2004∕arm64

▶ ubuntu2004∕sbsa

▶ ubuntu2004∕x86_64

▶ ubuntu2204∕sbsa

▶ ubuntu2204∕x86_64

▶ ubuntu2404∕sbsa

▶ ubuntu2404∕x86_64

Note: arm64-Jetson repo:

▶ native: <distro>∕arm64

sudo dpkg -i cuda-keyring_1.1-1_all.deb

6.8.4. Common Installation Instructions for Ubuntu

These instructions apply to both local and network installation for Ubuntu.

1. Update the Apt repository cache:

sudo apt-get update

2. Install CUDA SDK:

Note: These two commands must be executed separately.

sudo apt-get install cuda-toolkit

6.8. Ubuntu 27

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub

Installation Guide for Linux, Release 12.8

To include all GDS packages:

sudo apt-get install nvidia-gds

a. For native arm64-Jetson repos, install the additional packages:

sudo apt-get install cuda-compat

3. Reboot the system

sudo reboot

4. Perform the Post-installation Actions.

6.9. Debian

6.9.1. Prepare Debian

1. Perform the pre-installation actions.

2. Enable the contrib repository:

sudo add-apt-repository contrib

3. Remove Outdated Signing Key:

sudo apt-key del 7fa2af80

4. Choose an installation method: local repo or network repo.

6.9.2. Local Repo Installation for Debian

1. Install local repository on file system:

sudo dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_amd64.deb

where <distro> should be replaced by one of the following:

▶ debian11

▶ debian12

2. Enroll ephemeral public GPG key:

sudo cp ∕var∕cuda-repo-<distro>-X-Y-local∕cuda-*-keyring.gpg ∕usr∕share∕keyrings∕

28 Chapter 6. Package Manager Installation

Installation Guide for Linux, Release 12.8

6.9.3. Network Repo Installation for Debian

The new GPG public key for the CUDA repository (Debian-based distros) is 3bf863cc. This must be
enrolled on the system, either using the cuda-keyring package or manually; the apt-key command is
deprecated and not recommended.

1. Install the new cuda-keyring package:

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕<arch>∕
↪→cuda-keyring_1.1-1_all.deb

where <distro>∕<arch> should be replaced by one of the following:

▶ debian11∕x86_64

▶ debian12∕x86_64

sudo dpkg -i cuda-keyring_1.1-1_all.deb

6.9.4. Common Installation Instructions for Debian

These instructions apply to both local and network installation for Debian.

1. Update the Apt repository cache:

sudo apt-get update

Note: If you are using Debian 11, you may instead need to run:

sudo apt-get --allow-releaseinfo-change update

2. Install CUDA SDK:

sudo apt-get install cuda-toolkit

3. Reboot the system:

sudo reboot

4. Perform the post-installation actions.

6.10. Amazon Linux

6.10.1. Prepare Amazon Linux

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

6.10. Amazon Linux 29

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub

Installation Guide for Linux, Release 12.8

6.10.2. Local Repo Installation for Amazon Linux

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

where <distro> should be replaced by one of the following:

▶ amzn2023

6.10.3. Network Repo Installation for Amazon Linux

1. Enable the network repository:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕x86_64∕cuda-<distro>.repo

2. Clean DNF repository:

sudo dnf clean all

6.10.4. Common Installation Instructions for Amazon
Linux

These instructions apply to both local and network installation for Amazon Linux.

1. Install CUDA SDK:

sudo dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

sudo dnf install nvidia-gds

3. Add libcuda.so symbolic link, if necessary:

The libcuda.so library is installed in the ∕usr∕lib{,64}∕nvidia directory. For pre-existing
projects which use libcuda.so, it may be useful to add a symbolic link from libcuda.so in the
∕usr∕lib{,64} directory.

4. Reboot the system:

sudo reboot

5. Perform the post-installation actions.

30 Chapter 6. Package Manager Installation

Installation Guide for Linux, Release 12.8

6.11. Azure Linux CM2

6.11.1. Prepare Azure Linux CM2

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

6.11.2. Local Repo Installation for Azure Linux

1. Install local repository on file system:

sudo rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

where <distro> should be replaced by one of the following:

▶ cm2

6.11.3. Network Repo Installation for Azure Linux

1. Enable the network repository:

curl https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕x86_64∕
↪→cuda-<distro>.repo | sudo tee ∕etc∕yum.repos.d∕cuda-<distro>.repo

2. Clean TDNF repository cache:

sudo tdnf clean expire-cache

6.11.4. Common Installation Instructions for Azure Linux

These instructions apply to both local and network installation for Azure Linux.

1. Enable Mariner extended repo:

sudo tdnf install mariner-repos-extended

2. Install Cuda SDK:

sudo tdnf install cuda-toolkit

3. Install GPUDirect Filesystem:

sudo tdnf install nvidia-gds

4. Reboot the system:

6.11. Azure Linux CM2 31

Installation Guide for Linux, Release 12.8

sudo reboot

5. Perform the post-installation actions <post-installation-actions>.

6.12. Additional Package Manager Capabilities

Below are some additional capabilities of the package manager that users can take advantage of.

6.12.1. Available Packages

The recommended installation package is the cuda package. This package will install the full set of
other CUDA packages required for native development and should cover most scenarios.

The cuda package installs all the available packages for native developments. That includes the com-
piler, the debugger, the profiler, the math libraries, and so on. For x86_64 platforms, this also includes
Nsight Eclipse Edition and the visual profilers.

On supported platforms, the cuda-cross-aarch64 and cuda-cross-sbsa packages install all the
packages required for cross-platform development to arm64-Jetson and arm64-Server, respectively.

Note: 32-bit compilation native and cross-compilation is removed from CUDA 12.0 and later Toolkit.
Use the CUDA Toolkit from earlier releases for 32-bit compilation. Hopper does not support 32-bit
applications.

The packages installed by the packages above can also be installed individually by specifying their
names explicitly. The list of available packages be can obtained with:

dnf --disablerepo="*" --enablerepo="cuda*" list available # Amazon Linux ∕ Fedora ∕
↪→ KylinOS ∕ RHEL ∕ Rocky Linux

tdnf --disablerepo="*" --enablerepo="cuda-cm2-<cuda X-Y version>-local" list�
↪→available # Azure Linux

zypper packages -r cuda # OpenSUSE ∕ SLES

cat ∕var∕lib∕apt∕lists∕*cuda*Packages | grep "Package:" # Debian ∕ Ubuntu

6.12.2. Meta Packages

Meta packages are RPM/Deb/Conda packages which contain no (or few) files but have multiple de-
pendencies. They are used to install many CUDA packages when you may not know the details of the
packages you want. The following table lists the meta packages.

32 Chapter 6. Package Manager Installation

Installation Guide for Linux, Release 12.8

Table 4: Meta Packages Available for CUDA 12.8

Meta Package Purpose

cuda Installs all CUDA Toolkit and Driver packages. Handles upgrading to the next
version of the cuda package when it’s released.

cuda-12-8 Installs all CUDA Toolkit and Driver packages. Remains at version 12.5 until an
additional version of CUDA is installed.

cuda-toolkit-12-8 Installs all CUDA Toolkit packages required to develop CUDA applications. Does
not include the driver.

cuda-toolkit-16 Installs all CUDA Toolkit packages required to develop applications. Will not
upgrade beyond the 12.x series toolkits. Does not include the driver.

cuda-toolkit Installs all CUDA Toolkit packages required to develop applications. Handles
upgrading to the next 12.x version ofCUDAwhen it’s released. Does not include
the driver.

cuda-tools-12-8 Installs all CUDA command line and visual tools.

cuda-runtime-12-
8

Installs all CUDA Toolkit packages required to run CUDA applications, as well as
the Driver packages.

cuda-compiler-12-
8

Installs all CUDA compiler packages.

cuda-libraries-12-
8

Installs all runtime CUDA Library packages.

cuda-libraries-
dev-12-8

Installs all development CUDA Library packages.

6.12.3. Package Upgrades

The cuda package points to the latest stable release of the CUDA Toolkit. When a new version is
available, use the following commands to upgrade the toolkit:

6.12.3.1 Amazon Linux

sudo dnf upgrade cuda-toolkit

6.12.3.2 Fedora

When upgrading the toolkit to a newmajor branch:

sudo dnf install cuda-toolkit

When upgrading the toolkit to a newminor branch:

sudo dnf upgrade cuda-toolkit

6.12. Additional Package Manager Capabilities 33

Installation Guide for Linux, Release 12.8

6.12.3.3 KylinOS / RHEL / Rocky Linux

sudo dnf install cuda-toolkit

6.12.3.4 Azure Linux

sudo tdnf install cuda-toolkit

6.12.3.5 OpenSUSE / SLES

sudo zypper install cuda-toolkit

6.12.3.6 Debian / Ubuntu

sudo apt-get install cuda-toolkit

6.12.3.7 Other Package Notes

The cuda-cross-<arch> packages can also be upgraded in the same manner.

Some desktop environments, such as GNOME or KDE, will display a notification alert when new pack-
ages are available.

To avoid any automatic upgrade, and lock down the toolkit installation to the X.Y release, install the
cuda-toolkit-X-Y or cuda-cross-<arch>-X-Y package.

Side-by-side installations are supported. For instance, to install both the X.Y CUDA Toolkit and the
X.Y+1 CUDA Toolkit, install the cuda-toolkit-X.Y and cuda-toolkit-X.Y+1 packages.

34 Chapter 6. Package Manager Installation

Chapter 7. Driver Installation

More information about driver installation can be found in the Driver Installation Guide for Linux

35

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html

Installation Guide for Linux, Release 12.8

36 Chapter 7. Driver Installation

Chapter 8. Runfile Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.

This section describes the installation and configuration of CUDA when using the standalone installer.
The standalone installer is a .run file and is completely self-contained.

8.1. Runfile Overview

The Runfile installation installs the CUDA Toolkit via an interactive ncurses-based interface.

The installation steps are listed below.

Finally, advanced options for the installer and uninstallation steps are detailed below.

The Runfile installation does not include support for cross-platform development. For cross-platform
development, see the CUDA Cross-Platform Environment section.

8.2. Installation

1. Perform the pre-installation actions.

2. Reboot into text mode (runlevel 3).

This can usually be accomplished by adding the number “3” to the end of the system’s kernel
boot parameters.

Since the NVIDIA drivers are not yet installed, the text terminals may not display correctly. Tem-
porarily adding “nomodeset” to the system’s kernel boot parameters may fix this issue.

Consult your system’s bootloader documentation for information on how tomake the above boot
parameter changes.

3. Run the installer and follow the on-screen prompts:

sudo sh cuda_<version>_linux.run

The installer will prompt for the following:

▶ EULA Acceptance

▶ CUDA Toolkit installation, location, and ∕usr∕local∕cuda symbolic link

37

https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Installation Guide for Linux, Release 12.8

The default installation location for the toolkit is ∕usr∕local∕cuda-12.6:

The ∕usr∕local∕cuda symbolic link points to the locationwhere the CUDA Toolkit was installed.
This link allows projects to use the latest CUDA Toolkit without any configuration file update.

The installer must be executed with sufficient privileges to perform some actions. When the cur-
rent privileges are insufficient to perform an action, the installer will ask for the user’s password
to attempt to install with root privileges. Actions that cause the installer to attempt to install
with root privileges are:

▶ installing the CUDA Toolkit to a location the user does not have permission to write to

▶ creating the ∕usr∕local∕cuda symbolic link

Running the installer with sudo, as shown above, will give permission to install to directories that
require root permissions. Directories and files created while running the installer with sudo will
have root ownership.

4. Reboot the system to reload the graphical interface:

sudo reboot

5. Perform the post-installation actions.

38 Chapter 8. Runfile Installation

Installation Guide for Linux, Release 12.8

8.3. Advanced Options

Action Options Used Explanation

Silent Installation --silent Required for any silent installation. Performs
an installation with no further user-input
and minimal command-line output based
on the options provided below. Silent in-
stallations are useful for scripting the in-
stallation of CUDA. Using this option im-
plies acceptance of the EULA. The follow-
ing flags can be used to customize the ac-
tions taken during installation. At least one
of --driver, --uninstall, and --toolkit
must be passed if running with non-root per-
missions.

--driver Install the CUDA Driver.

--toolkit Install the CUDA Toolkit.

--toolkitpath=<path> Install the CUDA Toolkit to the <path> direc-
tory. If not provided, the default path of ∕
usr∕local∕cuda-12.6 is used.

--defaultroot=<path> Install libraries to the <path> directory. If the
<path> is not provided, then the default path
of your distribution is used. This only applies
to the libraries installed outside of the CUDA
Toolkit path.

Extraction --extract=<path> Extracts to the <path> the following: the
driver runfile, the raw files of the toolkit to
<path>.
This is especially useful when one wants to
install the driver using one or more of the
command-line options provided by the driver
installer which are not exposed in this in-
staller.

Overriding Instal-
lation Checks

--override Ignores compiler, third-party library, and
toolkit detection checks which would prevent
the CUDA Toolkit from installing.

No OpenGL Li-
braries

--no-opengl-libs Prevents the driver installation from installing
NVIDIA’s GL libraries. Useful for systems
where the display is driven by a non-NVIDIA
GPU. In such systems, NVIDIA’s GL libraries
could prevent X from loading properly.

No man pages --no-man-page Do not install the man pages under ∕usr∕
share∕man.

Overriding Kernel
Source

--kernel-source-path=<path>Tells the driver installation to use <path> as
the kernel source directory when building the
NVIDIA kernel module. Required for systems
where the kernel source is installed to a non-
standard location.

Running nvidia-
xconfig

--run-nvidia-xconfig Tells the driver installation to run nvidia-
xconfig to update the system X configuration
file so that the NVIDIA X driver is used. The
pre-existing X configuration filewill be backed
up.

No nvidia-drm
kernel module

--no-drm Do not install the nvidia-drm kernel mod-
ule. This option should only be used to work
around failures to build or install the nvidia-
drm kernel module on systems that do not
need the provided features.

Custom Tempo-
rary Directory
Selection

--tmpdir=<path> Performs any temporary actions within
<path> instead of ∕tmp. Useful in cases
where ∕tmp cannot be used (doesn’t exist, is
full, is mounted with ‘noexec’, etc.).

Kernel Module
Build Directory

--kernel-module-build-directory=<kernel|kernel-open>Tells the driver installation to use legacy or
open flavor of kernel sourcewhen building the
NVIDIA kernel module. The kernel-open flavor
is only supported on Turing GPUs and newer.

-m=kernel Tells the driver installation to use legacy
flavor of kernel source when building the
NVIDIA kernel module. Shorthand for
--kernel-module-build-directory=kernel

m=kernel-open Tells the driver installation to use open
flavor of kernel source when building
the NVIDIA kernel module. The kernel-
open flavor is only supported on Tur-
ing GPUs and newer. Shorthand for
--kernel-module-build-directory=kernel-open

Show Installer
Options

--help Prints the list of command-line options to std-
out.

8.3. Advanced Options 39

Installation Guide for Linux, Release 12.8

8.4. Uninstallation

To uninstall the CUDA Toolkit, run the uninstallation script provided in the bin directory of the toolkit.
By default, it is located in ∕usr∕local∕cuda-12.6∕bin:

sudo ∕usr∕local∕cuda-12.6∕bin∕cuda-uninstaller

40 Chapter 8. Runfile Installation

Chapter 9. Conda Installation

This section describes the installation and configuration of CUDA when using the Conda installer. The
Conda packages are available at https://anaconda.org/nvidia.

9.1. Conda Overview

The Conda installation installs the CUDA Toolkit. The installation steps are listed below.

9.2. Installing CUDA Using Conda

To perform a basic install of all CUDA Toolkit components using Conda, run the following command:

conda install cuda -c nvidia

9.3. Uninstalling CUDA Using Conda

To uninstall the CUDA Toolkit using Conda, run the following command:

conda remove cuda

9.4. Installing Previous CUDA Releases

All Conda packages released under a specific CUDA version are labeled with that release version. To
install a previous version, include that label in the install command such as:

conda install cuda -c nvidia∕label∕cuda-12.4.0

41

https://anaconda.org/nvidia

Installation Guide for Linux, Release 12.8

9.5. Upgrading from cudatoolkit Package

If you had previously installed CUDA using the cudatoolkit package and want to maintain a similar
install footprint, you can limit your installation to the following packages:

▶ cuda-libraries-dev

▶ cuda-nvcc

▶ cuda-nvtx

▶ cuda-cupti

Note: Some extra files, such as headers, will be included in this installation which were not
included in the cudatoolkit package. If you need to reduce your installation further, replace
cuda-libraries-dev with the specific libraries you need.

42 Chapter 9. Conda Installation

Chapter 10. Pip Wheels

NVIDIA provides PythonWheels for installing CUDA through pip, primarily for using CUDAwith Python.
These packages are intended for runtime use and do not currently include developer tools (these can
be installed separately).

Please note that with this installation method, CUDA installation environment is managed via pip and
additional care must be taken to set up your host environment to use CUDA outside the pip environ-
ment.

Prerequisites

To install Wheels, you must first install the nvidia-pyindex package, which is required in order to
set up your pip installation to fetch additional Pythonmodules from the NVIDIA NGC PyPI repo. If your
pip and setuptools Python modules are not up-to-date, then use the following command to upgrade
these Python modules. If these Python modules are out-of-date then the commands which follow
later in this section may fail.

python3 -m pip install --upgrade setuptools pip wheel

You should now be able to install the nvidia-pyindexmodule.

python3 -m pip install nvidia-pyindex

If your project is using a requirements.txt file, then you can add the following line to your
requirements.txt file as an alternative to installing the nvidia-pyindex package:

--extra-index-url https:∕∕pypi.org∕simple

Procedure

Install the CUDA runtime package:

python3 -m pip install nvidia-cuda-runtime-cu12

Optionally, install additional packages as listed below using the following command:

python3 -m pip install nvidia-<library>

Metapackages

The following metapackages will install the latest version of the named component on Linux for the
indicated CUDA version. “cu12” should be read as “cuda12”.

▶ nvidia-cuda-runtime-cu12

▶ nvidia-cuda-cccl-cu12

▶ nvidia-cuda-cupti-cu12

43

Installation Guide for Linux, Release 12.8

▶ nvidia-cuda-nvcc-cu12

▶ nvidia-cuda-opencl-cu12

▶ nvidia-cuda-nvrtc-cu12

▶ nvidia-cublas-cu12

▶ nvidia-cuda-sanitizer-api-cu12

▶ nvidia-cufft-cu12

▶ nvidia-curand-cu12

▶ nvidia-cusolver-cu12

▶ nvidia-cusparse-cu12

▶ nvidia-npp-cu12

▶ nvidia-nvfatbin-cu12

▶ nvidia-nvjitlink-cu12

▶ nvidia-nvjpeg-cu12

▶ nvidia-nvml-dev-cu12

▶ nvidia-nvtx-cu12

These metapackages install the following packages:

▶ nvidia-cuda-runtime-cu128

▶ nvidia-cuda-cccl-cu128

▶ nvidia-cuda-cupti-cu128

▶ nvidia-cuda-nvcc-cu128

▶ nvidia-cuda-opencl-cu128

▶ nvidia-cublas-cu126

▶ nvidia-cuda-sanitizer-api-cu128

▶ nvidia-cuda-nvrtc-cu128

▶ nvidia-cufft-cu128

▶ nvidia-curand-cu128

▶ nvidia-cusolver-cu128

▶ nvidia-cusparse-cu128

▶ nvidia-npp-cu128

▶ nvidia-nvfatbin-cu128

▶ nvidia-nvjitlink-cu128

▶ nvidia-nvjpeg-cu128

▶ nvidia-nvml-dev-cu128

▶ nvidia-nvtx-cu128

44 Chapter 10. Pip Wheels

Chapter 11. CUDA Cross-Platform
Environment

Cross development for arm64-sbsa is supported on Ubuntu 20.04, Ubuntu 22.04, Ubuntu 24.04, Kyli-
nOS 10, RHEL 8, RHEL 9, and SLES 15.

Cross development for arm64-Jetson is only supported on Ubuntu 22.04

We recommend selecting a host development environment that matches the supported cross-target
environment. This selection helps prevent possible host/target incompatibilities, such asGCCor GLIBC
version mismatches.

11.1. CUDA Cross-Platform Installation

Someof the following stepsmayhave already beenperformed as part of the native installation sections.
Such steps can safely be skipped.

These steps should be performed on the x86_64 host system, rather than the target system. To
install the native CUDA Toolkit on the target system, refer to the native installation sections in Package
Manager Installation.

11.1.1. Ubuntu

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

11.1.1.1 Local Cross Repo Installation for Ubuntu

1. Install repository meta-data package with:

sudo dpkg -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*_all.deb

where <arch>-<distro> should be replaced by one of the following:

▶ aarch64-ubuntu2204

▶ sbsa-ubuntu2004

▶ sbsa-ubuntu2204

45

Installation Guide for Linux, Release 12.8

▶ sbsa-ubuntu2404

11.1.1.2 Network Cross Repo Installation for Ubuntu

The new GPG public key for the CUDA repository is 3bf863cc. This must be enrolled on the system,
either using the cuda-keyring package or manually; the apt-key command is deprecated and not
recommended.

1. Install the new cuda-keyring package:

wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕<distro>∕<arch>∕
↪→cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb

where <distro>∕<arch> should be replaced by one of the following:

▶ ubuntu2004∕cross-linux-sbsa

▶ ubuntu2204∕cross-linux-aarch64

▶ ubuntu2204∕cross-linux-sbsa

▶ ubuntu2404∕cross-linux-sbsa

11.1.1.3 Common Installation Instructions for Ubuntu

1. Update the Apt repository cache:

sudo apt-get update

2. Install the appropriate cross-platform CUDA Toolkit:

a. For arm64-sbsa:

sudo apt-get install cuda-cross-sbsa

b. For arm64-Jetson

sudo apt-get install cuda-cross-aarch64

c. For QNX:

sudo apt-get install cuda-cross-qnx

3. Perform the post-installation actions.

11.1.2. KylinOS / RHEL / Rocky Linux

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

46 Chapter 11. CUDA Cross-Platform Environment

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub

Installation Guide for Linux, Release 12.8

11.1.2.1 Local Cross Repo Installation for KylinOS / RHEL / Rocky Linux

1. Install repository meta-data package with:

sudo rpm -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*.noarch.rpm

where <arch>-<distro> should be replaced by one of the following:

▶ sbsa-kylin10

▶ sbsa-rhel8

▶ sbsa-rhel9

11.1.2.2 Network Cross Repo Installation for KylinOS / RHEL / Rocky Linux

1. Enable the network repo:

sudo dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕<distro>∕<arch>∕cuda-<distro>-cross-linux-sbsa.repo

where <distro>∕<arch> should be replaced by one of the following:

▶ kylin10∕cross-linux-sbsa

▶ rhel8∕cross-linux-sbsa

▶ rhel9∕cross-linux-sbsa

11.1.2.3 Common Installation Instructions for KylinOS / RHEL / Rocky Linux

1. Clean DNF repository:

sudo dnf clean all

2. Install CUDA tool:

sudo dnf install cuda-cross-sbsa

11.1.3. SLES

1. Perform the pre-installation actions.

2. Choose an installation method: local repo or network repo.

11.1. CUDA Cross-Platform Installation 47

Installation Guide for Linux, Release 12.8

11.1.3.1 Local Cross Repo Installation for SLES

1. Install repository meta-data package with:

sudo rpm -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*.noarch.rpm

where <arch>-<distro> should be replaced by one of the following:

▶ sbsa-sles15

11.1.3.2 Network Cross Repo Installation for SLES

1. Enable the network repo:

sudo zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕
↪→<distro>∕<arch>∕cuda-<distro>-cross-linux-sbsa.repo

where <distro>∕<arch> should be replaced by one of the following:

▶ sles15∕cross-linux-sbsa

11.1.3.3 Common Installation Instructions for SLES

1. Refresh Zypper repository cache:

sudo zypper refresh

2. Install CUDA tool:

sudo zypper install cuda-cross-sbsa

48 Chapter 11. CUDA Cross-Platform Environment

Chapter 12. Tarball and Zip Archive
Deliverables

In an effort to meet the needs of a growing customer base requiring alternative installer packaging
formats, as well as a means of input into community CI/CD systems, tarball and zip archives are avail-
able for each component.

These tarball and zip archives, known as binary archives, are provided at https://developer.download.
nvidia.com/compute/cuda/redist/.

These component .tar.xz and .zip binary archives do not replace existing packages such as .deb, .rpm,
runfile, conda, etc. and are not meant for general consumption, as they are not installers. However
this standardized approach will replace existing .txz archives.

For each release, a JSONmanifest is provided such as redistrib_11.4.2.json, which corresponds to the
CUDA 11.4.2 release label (CUDA 11.4 update 2) which includes the release date, the name of each
component, license name, relative URL for each platform and checksums.

Package maintainers are advised to check the provided LICENSE for each component prior to redis-
tribution. Instructions for developers using CMake and Bazel build systems are provided in the next
sections.

49

https://developer.download.nvidia.com/compute/cuda/redist/
https://developer.download.nvidia.com/compute/cuda/redist/

Installation Guide for Linux, Release 12.8

12.1. Parsing Redistrib JSON

The following example of a JSON manifest contains keys for each component: name, license, version,
and a platform array which includes relative_path, sha256, md5, and size (bytes) for each archive.

{
"release_date": "2021-09-07",
"cuda_cudart": {

"name": "CUDA Runtime (cudart)",
"license": "CUDA Toolkit",
"version": "11.4.108",
"linux-x86_64": {

"relative_path": "cuda_cudart∕linux-x86_64∕cuda_cudart-linux-x86_64-11.4.
↪→108-archive.tar.xz",

"sha256":
↪→"d08a1b731e5175aa3ae06a6d1c6b3059dd9ea13836d947018ea5e3ec2ca3d62b",

"md5": "da198656b27a3559004c3b7f20e5d074",
"size": "828300"

},
"linux-ppc64le": {

"relative_path": "cuda_cudart∕linux-ppc64le∕cuda_cudart-linux-ppc64le-11.
↪→4.108-archive.tar.xz",

"sha256":
↪→"831dffe062ae3ebda3d3c4010d0ee4e40a01fd5e6358098a87bb318ea7c79e0c",

"md5": "ca73328e3f8e2bb5b1f2184c98c3a510",
"size": "776840"

},
"linux-sbsa": {

"relative_path": "cuda_cudart∕linux-sbsa∕cuda_cudart-linux-sbsa-11.4.108-
↪→archive.tar.xz",

"sha256":
↪→"2ab9599bbaebdcf59add73d1f1a352ae619f8cb5ccec254093c98efd4c14553c",

"md5": "aeb5c19661f06b6398741015ba368102",
"size": "782372"

},
"windows-x86_64": {

"relative_path": "cuda_cudart∕windows-x86_64∕cuda_cudart-windows-x86_64-
↪→11.4.108-archive.zip",

"sha256":
↪→"b59756c27658d1ea87a17c06d064d1336576431cd64da5d1790d909e455d06d3",

"md5": "7f6837a46b78198402429a3760ab28fc",
"size": "2897751"

}
}

}

A JSON schema is provided at https://developer.download.nvidia.com/compute/redist/redistrib-v2.
schema.json.

A sample script that parses these JSON manifests is available on GitHub:

▶ Downloads each archive

▶ Validates SHA256 checksums

▶ Extracts archives

▶ Flattens into a collapsed directory structure

50 Chapter 12. Tarball and Zip Archive Deliverables

https://developer.download.nvidia.com/compute/redist/redistrib-v2.schema.json
https://developer.download.nvidia.com/compute/redist/redistrib-v2.schema.json
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/parse_redist.py

Installation Guide for Linux, Release 12.8

Table 5: Available Tarball and Zip Archives

Product Example

CUDA Toolkit .∕parse_redist.py --product cuda --label 12.6.0

cuBLASMp .∕parse_redist.py --product cublasmp --label 0.2.1

cuDNN .∕parse_redist.py --product cudnn --label 9.2.1

cuDSS .∕parse_redist.py --product cudss --label 0.3.0

cuQuantum .∕parse_redist.py --product cuquantum --label 24.03.0

cuSPARSELt .∕parse_redist.py --product cusparselt --label 0.6.2

cuTENSOR .∕parse_redist.py --product cutensor --label 2.0.2.1

NVIDIA driver .∕parse_redist.py --product nvidia-driver --label 550.
90.07

nvJPEG2000 .∕parse_redist.py --product nvjpeg2000 --label 0.7.5

NVPL .∕parse_redist.py --product nvpl --label 24.7

nvTIFF .∕parse_redist.py --product nvtiff --label 0.3.0

12.2. Importing Tarballs into CMake

The recommended module for importing these tarballs into the CMake build system is via FindCUDA-
Toolkit (3.17 and newer).

Note: The FindCUDA module is deprecated.

The path to the extraction location can be specified with the CUDAToolkit_ROOT environmental vari-
able. For example CMakeLists.txt and commands, see cmake/1_FindCUDAToolkit/.

For older versions of CMake, the ExternalProject_Add module is an alternative method. For example
CMakeLists.txt file and commands, see cmake/2_ExternalProject/.

12.3. Importing Tarballs into Bazel

The recommended method of importing these tarballs into the Bazel build system is using
http_archive and pkg_tar.

For an example, see bazel/1_pkg_tar/.

12.2. Importing Tarballs into CMake 51

https://developer.download.nvidia.com/compute/cuda/redist
https://developer.download.nvidia.com/compute/cublasmp/redist/
https://developer.download.nvidia.com/compute/cudnn/redist
https://developer.download.nvidia.com/compute/cudss/redist
https://developer.download.nvidia.com/compute/cuquantum/redist
https://developer.download.nvidia.com/compute/cusparselt/redist
https://developer.download.nvidia.com/compute/cutensor/redist
https://developer.download.nvidia.com/compute/nvidia-driver/redist
https://developer.download.nvidia.com/compute/nvjpeg2000/redist
https://developer.download.nvidia.com/compute/nvpl/redist
https://developer.download.nvidia.com/compute/nvtiff/redist
https://cmake.org/cmake/help/latest/module/FindCUDAToolkit.html
https://cmake.org/cmake/help/latest/module/FindCUDAToolkit.html
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/cmake/1_FindCUDAToolkit
https://cmake.org/cmake/help/latest/module/ExternalProject.html
https://github.com/NVIDIA/build-system-archive-import-examples/tree/main/cmake/2_ExternalProject
https://docs.bazel.build/versions/main/repo/http.html
https://docs.bazel.build/versions/main/be/pkg.html#pkg_tar
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/bazel/1_pkg_tar

Installation Guide for Linux, Release 12.8

52 Chapter 12. Tarball and Zip Archive Deliverables

Chapter 13. Post-installation Actions

The post-installation actions must be manually performed. These actions are split into mandatory,
recommended, and optional sections.

13.1. Mandatory Actions

Some actions must be taken after the installation before the CUDA Toolkit can be used.

13.1.1. Environment Setup

The PATH variable needs to include export PATH=∕usr∕local∕cuda-12.8∕
bin${PATH:+:${PATH}}. Nsight Compute has moved to ∕opt∕nvidia∕nsight-compute∕ only
in rpm/deb installation method. When using .run installer it is still located under ∕usr∕local∕
cuda-12.6∕.

To add this path to the PATH variable:

export PATH=∕usr∕local∕cuda-12.6∕bin${PATH:+:${PATH}}

In addition, when using the runfile installation method, the LD_LIBRARY_PATH variable needs to con-
tain ∕usr∕local∕cuda-12.8∕lib64 on a 64-bit system, or ∕usr∕local∕cuda-12.8∕lib on a 32-
bit system

▶ To change the environment variables for 64-bit operating systems:

export LD_LIBRARY_PATH=∕usr∕local∕cuda-12.6∕lib64\
${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

▶ To change the environment variables for 32-bit operating systems:

export LD_LIBRARY_PATH=∕usr∕local∕cuda-12.6∕lib\
${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Note that the above paths change when using a custom install path with the runfile installation
method.

53

Installation Guide for Linux, Release 12.8

13.2. Recommended Actions

Other actions are recommended to verify the integrity of the installation.

13.2.1. Install Writable Samples

CUDA Samples are now located in https://github.com/nvidia/cuda-samples, which includes instruc-
tions for obtaining, building, and running the samples.

13.2.2. Verify the Installation

Before continuing, it is important to verify that the CUDA toolkit can find and communicate correctly
with the CUDA-capable hardware. To do this, you need to compile and run some of the sample pro-
grams, located in https://github.com/nvidia/cuda-samples.

Note: Ensure the PATH and, if using the runfile installation method, LD_LIBRARY_PATH variables are
set correctly.

13.2.2.1 Running the Binaries

After compilation, find and run deviceQueryfrom https://github.com/nvidia/cuda-samples. If the
CUDA software is installed and configured correctly, the output for deviceQuery should look sim-
ilar to that shown in Figure 1.

The exact appearance and the output lines might be different on your system. The important out-
comes are that a device was found (the first highlighted line), that the device matches the one on your
system (the second highlighted line), and that the test passed (the final highlighted line).

If a CUDA-capable device is installed but deviceQuery reports that no CUDA-capable devices are
present, this likely means that the ∕dev∕nvidia* files are missing or have the wrong permissions.

On systems where SELinux is enabled, you might need to temporarily disable this security feature to
run deviceQuery. To do this, type:

setenforce 0

from the command line as the superuser.

Running the bandwidthTest program ensures that the system and the CUDA-capable device are able
to communicate correctly. Its output is shown in Figure 2.

Note that the measurements for your CUDA-capable device description will vary from system to sys-
tem. The important point is that you obtain measurements, and that the second-to-last line (in Figure
2) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on your system and make
sure it is properly installed.

If you run into difficultieswith the link step (such as libraries not being found), consult the LinuxRelease
Notes found in https://github.com/nvidia/cuda-samples.

54 Chapter 13. Post-installation Actions

https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
index.html#environment-setup
https://github.com/nvidia/cuda-samples
index.html#running-binaries-valid-results-from-sample-cuda-devicequery-program
https://github.com/nvidia/cuda-samples

Installation Guide for Linux, Release 12.8

Figure 1: Valid Results from deviceQuery CUDA Sample

Figure 2: Valid Results from bandwidthTest CUDA Sample

13.2. Recommended Actions 55

Installation Guide for Linux, Release 12.8

13.2.3. Install Nsight Eclipse Plugins

To install Nsight Eclipse plugins, an installation script is provided:

∕usr∕local∕cuda-12.6∕bin∕nsight_ee_plugins_manage.sh install <eclipse-dir>

Refer to Nsight Eclipse Plugins Installation Guide for more details.

13.2.4. Local Repo Removal

Removal of the local repo installer is recommended after installation of CUDA SDK.

Debian / Ubuntu

sudo apt-get remove --purge "cuda-repo-<distro>-X-Y-local*"

Amazon Linux / Fedora / KylinOS / RHEL / Rocky Linux

sudo dnf remove "cuda-repo-<distro>-X-Y-local*"

Azure Linux

sudo tdnf remove "cuda-repo-<distro>-X-Y-local*"

OpenSUSE / SLES

sudo zypper remove "cuda-repo-<distro>-X-Y-local*"

13.3. Optional Actions

Other options are not necessary to use the CUDA Toolkit, but are available to provide additional fea-
tures.

13.3.1. Install Third-party Libraries

Some CUDA samples use third-party libraries which may not be installed by default on your system.
These samples attempt to detect any required libraries when building.

If a library is not detected, it waives itself and warns you which library is missing. To build and run these
samples, you must install the missing libraries. In cases where these dependencies are not installed,
follow the instructions below.

Amazon Linux / Fedora / KylinOS / RHEL / Rocky Linux

sudo dnf install freeglut-devel libX11-devel libXi-devel libXmu-devel \
make mesa-libGLU-devel freeimage-devel libglfw3-devel

SLES

56 Chapter 13. Post-installation Actions

https://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html

Installation Guide for Linux, Release 12.8

sudo zypper install libglut3 libX11-devel libXi6 libXmu6 libGLU1 make

OpenSUSE

sudo zypper install freeglut-devel libX11-devel libXi-devel libXmu-devel \
make Mesa-libGL-devel freeimage-devel

Debian / Ubuntu

sudo apt-get install g++ freeglut3-dev build-essential libx11-dev \
libxmu-dev libxi-dev libglu1-mesa-dev libfreeimage-dev libglfw3-dev

13.3.2. Install the Source Code for cuda-gdb

The cuda-gdb source must be explicitly selected for installation with the runfile installation method.
During the installation, in the component selection page, expand the component “CUDA Tools 12.8”
and select cuda-gdb-src for installation. It is unchecked by default.

To obtain a copy of the source code for cuda-gdb using the RPM and Debian installation methods,
the cuda-gdb-src package must be installed.

The source code is installed as a tarball in the ∕usr∕local∕cuda-12.8∕extras directory.

13.3.3. Select the Active Version of CUDA

For applications that rely on the symlinks ∕usr∕local∕cuda and ∕usr∕local∕cuda-MAJOR, youmay
wish to change to a different installed version of CUDA using the provided alternatives.

To show the active version of CUDA and all available versions:

update-alternatives --display cuda

To show the active minor version of a given major CUDA release:

update-alternatives --display cuda-12

To update the active version of CUDA:

sudo update-alternatives --config cuda

13.3. Optional Actions 57

Installation Guide for Linux, Release 12.8

58 Chapter 13. Post-installation Actions

Chapter 14. Removing CUDA Toolkit

Follow the below steps to properly uninstall the CUDA Toolkit from your system. These steps will
ensure that the uninstallation will be clean.

Amazon Linux / Fedora / Kylin OS / RHEL / Rocky Linux

To remove CUDA Toolkit:

sudo dnf remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" \
"*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*"

↪→"nsight*" "*nvvm*"

Azure Linux

To remove CUDA Toolkit:

sudo tdnf remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*"
↪→"*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

To clean up the uninstall:

sudo tdnf autoremove

OpenSUSE / SLES

To remove CUDA Toolkit:

sudo zypper remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" \
"*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

Debian / Ubuntu

To remove CUDA Toolkit:

sudo apt-get --purge remove "*cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" \
"*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

To clean up the uninstall:

sudo apt-get autoremove --purge -V

59

Installation Guide for Linux, Release 12.8

60 Chapter 14. Removing CUDA Toolkit

Chapter 15. Advanced Setup

Below is information on some advanced setup scenarioswhich are not covered in the basic instructions
above.

61

Installation Guide for Linux, Release 12.8

Table 6: Advanced Setup Scenarios when Installing CUDA

Scenario Instructions

Install GPUDirect Storage Refer to Installing GPUDirect Storage.
GDS is supported in two different modes:

▶ GDS (default/full perf mode)
▶ Compatibility mode.

Installation instructions for them differ slightly.
Compatibility mode is the only mode that is sup-
ported on certain distributions due to software
dependency limitations.
Full GDS support is restricted to the following
Linux distros:

▶ Ubuntu 20.04, Ubuntu 22.04, Ubuntu 24.04
▶ RHEL 8.y (y <= 10), RHEL 9.y (y <= 5)

Install CUDA to a specific directory using the
Package Manager installation method.

RPM
The RPM packages don’t support custom in-
stall locations through the package managers
(Yum and Zypper), but it is possible to install the
RPM packages to a custom location using rpm’s
--relocate parameter:

sudo rpm --install --relocate ∕usr∕local∕
↪→cuda-12.6=∕new∕toolkit package.rpm
You will need to install the packages in the cor-
rect dependency order; this task is normally
taken care of by the package managers. For
example, if package “foo” has a dependency on
package “bar”, you should install package “bar”
first, and package “foo” second. You can check
the dependencies of a RPM package as follows:

rpm -qRp package.rpm
Note that the driver packages cannot be relo-
cated.
Deb
The Deb packages do not support custom install
locations. It is however possible to extract the
contents of the Deb packages andmove the files
to the desired install location. See the next sce-
nario for more details one xtracting Deb pack-
ages.

Extract the contents of the installers. Runfile
The Runfile can be extracted into the standalone
Toolkit Runfiles by using the --extract param-
eter. The Toolkit standalone Runfiles can be fur-
ther extracted by running:

.∕runfile.run --tar mxvf

.∕runfile.run -x
RPM
The RPM packages can be extracted by running:

rpm2cpio package.rpm | cpio -idmv
Deb
The Deb packages can be extracted by running:

dpkg-deb -x package.deb output_dir

Modify Ubuntu’s apt package manager to query
specific architectures for specific repositories.
This is useful when a foreign architecture has
been added, causing “404 Not Found” errors to
appear when the repository meta-data is up-
dated.

Each repository you wish to restrict to spe-
cific architectures must have its sources.
list entry modified. This is done by modify-
ing the ∕etc∕apt∕sources.list file and any
files containing repositories you wish to restrict
under the ∕etc∕apt∕sources.list.d∕ direc-
tory. Normally, it is sufficient to modify only the
entries in ∕etc∕apt∕sources.list
An architecture-restricted repository entry looks
like:
deb [arch=<arch1>,<arch2>] <url>
For example, if you wanted to restrict a reposi-
tory to only the amd64 and i386 architectures, it
would look like:
deb [arch=amd64,i386] <url>
It is not necessary to restrict the deb-src
repositories, as these repositories don’t provide
architecture-specific packages.
For more details, see the sources.list man-
page.

The runfile installer fails to extract due to limited
space in the TMP directory.

This can occur on systems with limited storage
in the TMP directory (usually ∕tmp), or on sys-
tems which use a tmpfs in memory to handle
temporary storage. In this case, the --tmpdir
command-line option should be used to instruct
the runfile to use a directory with sufficient
space to extract into. More information on this
option can be found in Advanced Options.

In case of the error: E: Failed to fetch
file:∕var∕cuda-repo File not found

Debian and Ubuntu
This can occur when installing CUDA after unin-
stalling a different version. Use the following
command before installation:
sudo rm -v ∕var∕lib∕apt∕lists∕*cuda* ∕
↪→var∕lib∕apt∕lists∕*nvidia*

Verbose installation on Debian and Ubuntu Use the --verbose-versions flag, for exam-
ple:

sudo apt-get install --verbose-versions�
↪→cuda

62 Chapter 15. Advanced Setup

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html

Chapter 16. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed, you can examine
and enjoy the numerous included programs. To begin using CUDA to accelerate the performance of
your own applications, consult the CUDA C++ Programming Guide, located in ∕usr∕local∕cuda-12.
8∕doc.

A number of helpful development tools are included in the CUDA Toolkit to assist you as you develop
your CUDA programs, such as NVIDIA® Nsight™ Eclipse Edition, NVIDIA Visual Profiler, CUDA-GDB, and
CUDA-MEMCHECK.

For technical support on programming questions, consult and participate in the developer forums at
https://forums.developer.nvidia.com/c/accelerated-computing/cuda/206.

63

https://forums.developer.nvidia.com/c/accelerated-computing/cuda/206

Installation Guide for Linux, Release 12.8

64 Chapter 16. Additional Considerations

Chapter 17. Frequently Asked
Questions

17.1. How do I install the Toolkit in a different
location?

The Runfile installation asks where you wish to install the Toolkit during an interactive install. If in-
stalling using a non-interactive install, you can use the --toolkitpath parameter to change the in-
stall location:

.∕runfile.run --silent \
--toolkit --toolkitpath=∕my∕new∕toolkit

The RPM and Deb packages cannot be installed to a custom install location directly using the pack-
age managers. See the “Install CUDA to a specific directory using the Package Manager installation
method” scenario in the Advanced Setup section for more information.

17.2. Why do I see “nvcc: No such file or
directory” when I try to build a CUDA
application?

Your PATH environment variable is not set up correctly. Ensure that your PATH includes the bin direc-
tory where you installed the Toolkit, usually ∕usr∕local∕cuda-12.8∕bin.

export PATH=∕usr∕local∕cuda-12.6∕bin${PATH:+:${PATH}}

65

Installation Guide for Linux, Release 12.8

17.3. Why do I see “error while loading shared
libraries: <lib name>: cannot open shared
object file: No such file or directory” when
I try to run a CUDA application that uses a
CUDA library?

Your LD_LIBRARY_PATH environment variable is not set up correctly. Ensure that your
LD_LIBRARY_PATH includes the lib and/or lib64 directory where you installed the Toolkit, usually ∕usr∕
local∕cuda-12.8∕lib{,64}:

export LD_LIBRARY_PATH=∕usr∕local∕cuda-12.8∕lib\
${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

17.4. Why do I see multiple “404 Not Found”
errors when updating my repository
meta-data on Ubuntu?

These errors occur after adding a foreign architecture because apt is attempting to query for each
architecture within each repository listed in the system’s sources.list file. Repositories that do not
host packages for the newly added architecture will present this error. While noisy, the error itself
does no harm. Please see the Advanced Setup section for details on how to modify your sources.
list file to prevent these errors.

17.5. How can I tell X to ignore a GPU for
compute-only use?

To make sure X doesn’t use a certain GPU for display, you need to specify which other GPU to use
for display. For more information, please refer to the “Use a specific GPU for rendering the display”
scenario in the Advanced Setup section.

66 Chapter 17. Frequently Asked Questions

index.html#advanced-setup

Installation Guide for Linux, Release 12.8

17.6. Why doesn’t the cuda-repo package install
the CUDA Toolkit?

When using RPM or Deb, the downloaded package is a repository package. Such a package only in-
forms the package manager where to find the actual installation packages, but will not install them.

See the Package Manager Installation section for more details.

17.7. How do I install an older CUDA version
using a network repo?

Depending on your system configuration, you may not be able to install old versions of CUDA using
the cuda metapackage. In order to install a specific version of CUDA, you may need to specify all of
the packages that would normally be installed by the cuda metapackage at the version you want to
install.

If you are using yum to install certain packages at an older version, the dependencies may not resolve
as expected. In this case you may need to pass “--setopt=obsoletes=0” to yum to allow an install
of packages which are obsoleted at a later version than you are trying to install.

17.8. How do I handle “Errors were encountered
while processing: glx-diversions”?

This sometimes occurs when trying to uninstall CUDA after a clean .deb installation. Run the following
commands:

sudo apt-get install glx-diversions --reinstall
sudo apt-get remove nvidia-alternative

Then re-run the commands from Removing CUDA Toolkit.

17.6. Why doesn’t the cuda-repo package install the CUDA Toolkit? 67

Installation Guide for Linux, Release 12.8

68 Chapter 17. Frequently Asked Questions

Chapter 18. Notices

18.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

69

Installation Guide for Linux, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

18.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

18.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

70 Chapter 18. Notices

Chapter 19. Copyright

© 2009-2024 NVIDIA Corporation & affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://www.sync.ro/).

Copyright

©2009-2025, NVIDIA Corporation & affiliates. All rights reserved

71

http://www.sync.ro/

	System Requirements
	OS Support Policy
	Host Compiler Support Policy
	Host Compiler Compatibility Packages
	Supported C++ Dialects

	About This Document
	Pre-installation Actions
	Verify You Have a CUDA-Capable GPU
	Verify You Have a Supported Version of Linux
	Verify the System Has gcc Installed
	Choose an Installation Method
	Download the NVIDIA CUDA Toolkit
	Handle Conflicting Installation Methods

	Package Manager Installation
	Overview
	RHEL / Rocky
	Prepare RHEL / Rocky
	Local Repo Installation for RHEL / Rocky
	Network Repo Installation for RHEL / Rocky
	Common Instructions for RHEL / Rocky

	KylinOS
	Prepare KylinOS
	Local Repo Installation for KylinOS
	Network Repo Installation for KylinOS
	Common Instructions for KylinOS

	Fedora
	Prepare Fedora
	Local Repo Installation for Fedora
	Network Repo Installation for Fedora
	Common Installation Instructions for Fedora
	GCC Compatibility Package for Fedora

	SLES
	Prepare SLES
	Local Repo Installation for SLES
	Network Repo Installation for SLES
	Common Installation Instructions for SLES

	OpenSUSE
	Prepare OpenSUSE
	Local Repo Installation for OpenSUSE
	Network Repo Installation for OpenSUSE
	Common Installation Instructions for OpenSUSE

	WSL
	Prepare WSL
	Local Repo Installation for WSL
	Network Repo Installation for WSL
	Common Installation Instructions for WSL

	Ubuntu
	Prepare Ubuntu
	Local Repo Installation for Ubuntu
	Network Repo Installation for Ubuntu
	Common Installation Instructions for Ubuntu

	Debian
	Prepare Debian
	Local Repo Installation for Debian
	Network Repo Installation for Debian
	Common Installation Instructions for Debian

	Amazon Linux
	Prepare Amazon Linux
	Local Repo Installation for Amazon Linux
	Network Repo Installation for Amazon Linux
	Common Installation Instructions for Amazon Linux

	Azure Linux CM2
	Prepare Azure Linux CM2
	Local Repo Installation for Azure Linux
	Network Repo Installation for Azure Linux
	Common Installation Instructions for Azure Linux

	Additional Package Manager Capabilities
	Available Packages
	Meta Packages
	Package Upgrades
	Amazon Linux
	Fedora
	KylinOS / RHEL / Rocky Linux
	Azure Linux
	OpenSUSE / SLES
	Debian / Ubuntu
	Other Package Notes

	Driver Installation
	Runfile Installation
	Runfile Overview
	Installation
	Advanced Options
	Uninstallation

	Conda Installation
	Conda Overview
	Installing CUDA Using Conda
	Uninstalling CUDA Using Conda
	Installing Previous CUDA Releases
	Upgrading from cudatoolkit Package

	Pip Wheels
	CUDA Cross-Platform Environment
	CUDA Cross-Platform Installation
	Ubuntu
	Local Cross Repo Installation for Ubuntu
	Network Cross Repo Installation for Ubuntu
	Common Installation Instructions for Ubuntu

	KylinOS / RHEL / Rocky Linux
	Local Cross Repo Installation for KylinOS / RHEL / Rocky Linux
	Network Cross Repo Installation for KylinOS / RHEL / Rocky Linux
	Common Installation Instructions for KylinOS / RHEL / Rocky Linux

	SLES
	Local Cross Repo Installation for SLES
	Network Cross Repo Installation for SLES
	Common Installation Instructions for SLES

	Tarball and Zip Archive Deliverables
	Parsing Redistrib JSON
	Importing Tarballs into CMake
	Importing Tarballs into Bazel

	Post-installation Actions
	Mandatory Actions
	Environment Setup

	Recommended Actions
	Install Writable Samples
	Verify the Installation
	Running the Binaries

	Install Nsight Eclipse Plugins
	Local Repo Removal

	Optional Actions
	Install Third-party Libraries
	Install the Source Code for cuda-gdb
	Select the Active Version of CUDA

	Removing CUDA Toolkit
	Advanced Setup
	Additional Considerations
	Frequently Asked Questions
	How do I install the Toolkit in a different location?
	Why do I see “nvcc: No such file or directory” when I try to build a CUDA application?
	Why do I see “error while loading shared libraries: <lib name>: cannot open shared object file: No such file or directory” when I try to run a CUDA application that uses a CUDA library?
	Why do I see multiple “404 Not Found” errors when updating my repository meta-data on Ubuntu?
	How can I tell X to ignore a GPU for compute-only use?
	Why doesn’t the cuda-repo package install the CUDA Toolkit?
	How do I install an older CUDA version using a network repo?
	How do I handle “Errors were encountered while processing: glx-diversions”?

	Notices
	Notice
	OpenCL
	Trademarks

	Copyright

