
Quick introduction
to Matlab

PASCAL Bootcamp in
Machine Learning -
2007

Outline

Matlab introduction
Matlab elements

Types
Variables
Matrices

Loading, saving and ploting
Matlab Programming language
Scripts and functions

Matlab introduction

Matlab is a program for doing numerical
computation. It was originally designed for
solving linear algebra type problems using
matrices. It’s name is derived from MATrix
LABoratory.
Matlab is also a programming language that
currently is widely used as a platform for
developing tools for Machine Learning

Matlab introduction

Why it is useful for prototyping AI projects:
large toolbox of numeric/image library functions
very useful for displaying, visualizing data
high-level: focus on algorithm structure, not on low-
level details
allows quick prototype development of algorithms

Matlab introduction

Some other aspects of Matlab
Matlab is an interpreter -> not as fast as compiled
code

Typically quite fast for an interpreted language
Often used early in development -> can then convert
to C (e.g.,) for speed

Can be linked to C/C++, JAVA, SQL, etc
Commercial product, but widely used in industry
and academia

Many algorithms and toolboxes freely available

Opening Matlab

Command
Window

Working
Memory

Command
History

Working
Path

Data Types

Variables

Have not to be previously declared
Variable names can contain up to 63
characters
Variable names must start with a letter
followed by letters, digits, and underscores.
Variable names are case sensitive

Matlab Special Variables
ans Default variable name for results
pi Value of π
eps Smallest incremental number
inf Infinity
NaN Not a number e.g. 0/0
realmin The smallest usable positive real number
realmax The largest usable positive real number

Matlab Assignment &
Operators

Assignment = a = b (assign b to a)
Addition + a + b
Subtraction - a - b
Multiplication * or.* a*b or a.*b
Division / or ./ a/b or a./b
Power ^ or .^ a^b or a.^b

Matlab Matrices
Matlab treats all variables as matrices. For
our purposes a matrix can be thought of as
an array, in fact, that is how it is stored.
Vectors are special forms of matrices and
contain only one row OR one column.
Scalars are matrices with only one row AND
one column

Matlab Matrices
A matrix with only one row is called a row
vector. A row vector can be created in
Matlab as follows (note the commas):

» rowvec = [12 , 14 , 63]

rowvec =

12 14 63

Matlab Matrices
A matrix with only one column is called a
column vector. A column vector can be
created in MATLAB as follows (note the
semicolons):

» colvec = [13 ; 45 ; -2]

colvec =

13
45
-2

Matlab Matrices
A matrix can be created in Matlab as follows
(note the commas AND semicolons):

» matrix = [1 , 2 , 3 ; 4 , 5 ,6 ; 7 , 8 , 9]

matrix =

1 2 3
4 5 6
7 8 9

Extracting a Sub-Matrix
A portion of a matrix can be extracted and stored in
a smaller matrix by specifying the names of both
matrices and the rows and columns to extract. The
syntax is:

sub_matrix = matrix (r1 : r2 , c1 : c2) ;

where r1 and r2 specify the beginning and ending
rows and c1 and c2 specify the beginning and
ending columns to be extracted to make the new
matrix.

Matlab Matrices
A column vector can be
extracted from a matrix.
As an example we
create a matrix below:

» matrix=[1,2,3;4,5,6;7,8,9]

matrix =
1 2 3
4 5 6
7 8 9

Here we extract column
2 of the matrix and
make a column vector:

» col_two=matrix(: , 2)

col_two =
2
5
8

Matlab Matrices

A row vector can be
extracted from a matrix.
As an example we
create a matrix below:

» matrix=[1,2,3;4,5,6;7,8,9]

matrix =
1 2 3
4 5 6
7 8 9

Here we extract row 2 of the
matrix and make a row
vector. Note that the 2:2
specifies the second row
and the 1:3 specifies which
columns of the row.

» rowvec=matrix(2 : 2 , 1 : 3)

rowvec =
4 5 6

Colon Operator

is all the elements of A, regarded as a single column. On the left side of an
assignment statement, A(:) fills A, preserving its shape from before. In this
case, the right side must contain the same number of elements as A.

A(:)

is a vector in four-dimensional array A. The vector includes A(i,j,k,1),
A(i,j,k,2), A(i,j,k,3), and so on.

A(i,j,k,:)
is the k-th page of three-dimensional array A.A(:,:,k)
is A(:,j), A(:,j+1),...,A(:,k)A(:,j:k)
is A(j), A(j+1),...,A(k)A(j:k)

is the equivalent two-dimensional array. For matrices this is the same as A.A(:,:)
is the i-th row of AA(i,:)
is the j-th column of AA(:,j)

is the same as [j,j+i,j+2i, ..,k] is empty if i > 0 and j > k or if i < 0 and j < kj:i:k
is the same as [j,j+1,...,k] is empty if j > kj:k

Matlab Matrices
Accessing Single Elements of a Matrix
A(i,j)
Accessing Multiple Elements of a Matrix
A(1,4) + A(2,4) + A(3,4) + A(4,4) sum(A(1:4,4)) or

sum(A(:,end))
The keyword end refers to the last row or column.
Deleting Rows and Columns
to delete the second column of X, use
X(:,2) = []
Concatenating Matrices A and B
C=[A;B]

Some matrix
functions in Matlab

X = ones(r,c) % Creates matrix full with ones
X = zeros(r,c) % Creates matrix full with zeros
A = diag(x) % Creates squared matrix with

vector x in diagonal
[r,c] = size(A) % Return dimensions of matrix A
+ - * / % Standard operations
.+ .- .* ./ % Wise addition, substraction,…
v = sum(A) % Vector with sum of columns

Some powerful matrix
functions in Matlab

X = A’ % Transposed matrix
X = inv(A) % Inverse matrix squared matrix
X = pinv(A) % Pseudo inverse
X = chol(A) % Cholesky decomp.
d = det(A) % Determinant
[X,D] = eig(A) % Eigenvalues and eigenvectors
[Q,R] = qr(X) % QR decomposition
[U,D,V] = svd(A) % singular value decomp.

Sava data in files

save myfile VAR1 VAR2 …
or
save(‘myfile’,’VAR1’,’var2’)

Load data from files

Load
load filename
load ('filename')
load filename.ext
load filename -ascii
load filename -mat

File Formats
mat -> Binary MAT-file form
ascii -> 8-digit ASCII form
ascii–tabs Delimit array elements with tabs

Plotting with Matlab
Matlab has a lot of function for plotting data. The basic
one will plot one vector vs. another. The first one will be
treated as the abscissa (or x) vector and the second as
the ordinate (or y) vector. The vectors have to be the
same length.

>> plot (time, dist) % plotting versus time

Matlab will also plot a vector vs. its own index. The
index will be treated as the abscissa vector. Given a
vector “time” and a vector “dist” we could say:

>> plot (dist) % plotting versus index

Plotting with Matlab

» a = 1:100;
» b = 100:0.01:101;
» c = 101:-1:1;
» d = [a b c];
» e = [d d d d d];
» plot(e)

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

Plotting with Matlab

» x = rand(1,100);
» y = rand(1,100);
» plot(x,y,'*')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plotting with Matlab

There are commands in Matlab to "annotate" a
plot to put on axis labels, titles, and legends.
For example:

>> % To put a label on the axes we would use:
>> xlabel ('X-axis label')
>> ylabel ('Y-axis label')

>> % To put a title on the plot, we would use:
>> title ('Title of my plot')

Plotting with Matlab

Vectors may be extracted from matrices. Normally,
we wish to plot one column vs. another. If we have
a matrix “mydata” with two columns, we can obtain
the columns as a vectors with the assignments as
follows:

>> first_vector = mydata (: , 1) ; % First column
>> second_vector = mydata (: , 2) ; % Second one
>>% and we can plot the data
>> plot (first_vector , second_vector)

Matlab
programming language

Elements of Matlab as a programming
language:

Expressions
Flow Control blocks

Conditional
Iterations

Scripts
Functions

Expressions: Matlab Relational
Operators

MATLAB supports six relational operators.
Less Than <
Less Than or Equal <=
Greater Than >
Greater Than or Equal >=
Equal To ==
Not Equal To ~=

Expressions: Matlab Logical
Operators

MATLAB supports three logical operators.
not ~ % highest precedence
and & % equal precedence with or
or | % equal precedence with and

Expressions: Matlab Logical
Functions

MATLAB also supports some logical functions.

any (x) returns 1 if any element of x is nonzero
all (x) returns 1 if all elements of x are nonzero
isnan (x) returns 1 at each NaN in x
isinf (x) returns 1 at each infinity in x
finite (x) returns 1 at each finite value in x

Matlab Conditional Structures

a = input(‘valor1? ‘);
b = input(‘valor2? ‘);
if a == b,

fprintf(‘a is equal to b\n’);
elseif a > 0 && b > 0

fprintf(‘both positive\n’);
else

fprintf(‘other case\n’);
end

if expression cond.

sentences

elseif expr. cond.

sentences

else

sentences

end

Matlab Iteration Structures (I)

M = rand(10,10); suma = 0;
for i = {2,5:8} % files 2, 5, 6, 7 i 8
for j = {1:5,8:9} % rows 1, 2, 3, 4, 5, 8, 9
suma = suma + M(i,j);

end
end
fprintf(‘sum = %d\n’,suma);

M = rand(4,4); suma = 0;
for i = 1:4
for j = 1:4
suma = suma + M(i,j);

end
end
fprintf(‘sum = %d\n’,suma);

for variable = expr
sentence;
...
sentence;

end

Matlab Iteration Structures (II)

while expr
sentence;
...
sentence;

end

M = rand(4,4);
i = 1; j = 1; suma = 0;

while i <= 4
while j <= 4
suma = suma + M(i,j);
j = j+1;

end
i = i+1;

end

fprintf(‘suma = %f\n’,suma);

Loops should be avoided when possible:

for ind = 1:10000
b(ind)=sin(ind/10)

end

Alternatives:

x=0.1:0.1:1000;
b=sin(x);

Most of the loops can be avoided!!!

(Optimizing code:
vectorization)

x=1:10000;
b=sin(x/10);

Text files containing Matlab programs. Can
be called form the command line or from
other M-files
Present “.m” extension
Two kind of M-files:

Scripts
Functions

M-files

M-files: Scripts

Without input arguments, they do not return
any value.

M-files: Script Example

x = [4 3 2 10 -1];
n = length(x);
suma1 = 0; suma2 = 0;
for i=1:n

suma1 = suma1 + x(i);
suma2 = suma2 + x(i)*x(i);

end
promig = suma1/n;
desvia = sqrt(suma2/n – promig*promig);

1) >> edit estadistica.m
2) Write into the editor:

3) Save the file
4) >> run estadistica
5) >> promig, desvia
promig = 3.6000
desvia = 3.6111

M-files: Functions
With parameters and returning values
Only visible variables defined inside the function or
parameters
Usually one file for each function defined
Structure:

function [out1, out2, ..., outN] = name-function (par1, par2, ..., parM)
sentence;
….
sentence;

end

M-files: Functions Example
1) >> edit festadistica.m
2) Write into the editor:

3) Save the file
4) >> edit sumes.m
5) Write into the editor:

6) Save the file
7) >> [p,d] = festadistica([4 3 2 10 -1])
p = 3.6000
d = 3.6111

function [promig,desvia] = festadistica(x)
n = length(x);
[suma1,suma2] = sumes(x,n);
promig = suma1/n;
desvia = sqrt(suma2/n – promig*promig);
end

function [sy1,sy2] = sumes(y,m)
sy1 = 0; sy2 = 0;
for i=1:m

sy1 = sy1 + y(i); % suma yi
sy2 = sy2 + y(i)*y(i); % suma yi^2

end
end

Within Matlab
Type help at the Matlab prompt or help followed
by a function name for help on a specific
function

Online
Online documentation for Matlab at the
MathWorks website

http://www.mathworks.com/access/helpdesk
/help/techdoc/matlab.html

There are also numerous tutorials online that
are easily found with a web search.

Help

