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Preface

These are the course notes associated with my graduate-level course called Sci-
entific Computing (Psychology 9040a), given in the Department of Psychol-
ogy10 at theUniversity ofWesternOntario11. The goal of the course is to provide
you with skills in scientific computing: tools and techniques that you can use
in your own scientific research. We will focus on learning to think about experi-
ments and data in a computational framework, and we will learn to implement
specific algorithms using a high-level programming language (MATLAB). Learn-
ing how to program will significantly enhance your ability to conduct scientific
research today and in the future. Programming skills will provide you with the
ability to go beyond what is available in pre-packaged analysis tools, and code
your own custom data processing, analysis and visualization pipelines.

The course (and these notes) are organized around using MATLAB12 (Math-
Works13), a high-level language and interactive environment for scientific com-
puting. MATLAB version R2015b is used throughout.

Chapters 13 and 14 on integrating ordinary differential equations and simulat-
ing dynamical systems are based on notes from a previous course that were de-
veloped in collaboration with Dr. Dinant Kistemaker (VU Amsterdam).

For a much more detailed, comprehensive book on MATLAB and all of its func-
tionality, I can recommend:

Mastering MATLAB by Duane Hanselman & Bruce Littlefield. Pearson Eduction,
Inc., publishing as Prentice Hall, Upper Saddle River, NJ, 2012. ISBN: 978-0-13-
601330-3.

v
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They have a website associated with their book here:

http://www.masteringmatlab.com

http://www.masteringmatlab.com
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Conventions in the notes

Web links aregiven inblue font andare clickablewhenviewing thisdocument as
a .pdf on your computer, for example: Gribble Lab14. Code snippets are shown
in monospaced font within a box with a gray backround such as this:

>> disp('Hello, world!')
Hello, world!

Also note that Chapter headings, sections and subsections in the Table of Con-
tents are hyperlinks in this .pdf, so that if you click on them you are taken di-
rectly to the appropriate page.

Comments

Do you have ideas about how to improve these notes? Please get in touch, send
me an email at paul@gribblelab.org

Links

10http://psychology.uwo.ca

11http://www.uwo.ca

12http://www.mathworks.com/products/matlab/

13http://www.mathworks.com

14http://www.gribblelab.org
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1 What is computer code?

What is a computer program? What is code? What is a computer language? A
computer program is simply a series of instructions that the computer executes,
one after the other. An instruction is a single command. A program is a series of
instructions. Code is another way of referring to a single instruction or a series
of instructions (a program).

1.1 High-level vs low-level languages

TheCPU15 (central processingunit) chip(s) that sit on themotherboard16 of your
computer is the piece of hardware that actually executes instructions. A CPU
only understands a relatively low-level language called machine code17. Often
machine code is generated automatically by translating code written in assem-
bly language18, which is a low-level programming language19 that has a rela-
tively direcy relationship to machine code (but is more readable by a human).
A utility program called an assembler20 is what translates assembly language
code into machine code.

In this course we will be learning how to program in MATLAB, which is a high-
level programming language21. The “high-level” refers to the fact that the lan-
guage has a strong abstraction from the details of the computer (the details of
the machine code). A “strong abstraction” means that one can operate using
high-level instructions without having to worry about the low-level details of
carrying out those instructions.

An analogy is motor skill learning. A high-level language for human action

1
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https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language


CHAPTER 1. WHAT IS COMPUTER CODE? 2

might be drive your car to the grocery store and buy apples. A low-level version
of this might be something like: (1) walk to your car; (2) open the door; (3) start
the ignition; (4) put the transmission intoDrive; (5) stepon thegaspedal, and so
on. An even lower-level descriptionmight involve instructions like: (1) activate
your gastrocnemius muscle22 until you feel 2 kg of pressure on the underside of
your right foot, maintain this pressure for 2.7 seconds, then release (stepping
on the gas pedal); (2) move your left and right eyeballs 27 degrees to the left
(check for oncoming cars); (3) activate your pectoralis muscle on the right side
of your chest and simultaneously squeeze the steering wheel with the fingers
on your right hand (steer the car to the left); and so on.

For scientific programming, we would like to deal at the highest level we can,
so that we can avoid worrying about the low-level details. We might for exam-
ple want to plot a line in a Figure and colour it blue. We don’t want to have to
program the low-level details of how each pixel on the screen is set, and how to
generate each letter of the font that is used to specify the x-axis label.

As an example, here is a hello, world program written in a variety of languages,
just to give you a sense of things. You can see the high-level languages like MAT-
LAB, Python and R are extremely readable and understandable, even though
you may not know anything about these languages (yet). The C code is less
readable, there are lots of details one may not know about... and the assembly
language example is a bit of a nightmare, obviously too low-level for our needs
here.

MATLAB

disp('hello, world')

Python

print "hello, world"

R

https://en.wikipedia.org/wiki/Gastrocnemius_muscle


3 1.1. HIGH-LEVEL VS LOW-LEVEL LANGUAGES

cat("hello, world\n")

Javascript

document.write("hello, world");

Fortran

print *,"hello, world"

C

#include <stdio.h>
int main (int argc, char *argv[]) {

printf("hello, world\n");
return 0;

}

8086 Assembly language

; this example prints out "hello world!"
; by writing directly to video memory.
; in vga memory: first byte is ascii character, byte that follows is

character attribute.
; if you change the second byte, you can change the color of
; the character even after it is printed.
; character attribute is 8 bit value,
; high 4 bits set background color and low 4 bits set foreground color.

; hex bin color
;
; 0 0000 black
; 1 0001 blue
; 2 0010 green
; 3 0011 cyan
; 4 0100 red
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; 5 0101 magenta
; 6 0110 brown
; 7 0111 light gray
; 8 1000 dark gray
; 9 1001 light blue
; a 1010 light green
; b 1011 light cyan
; c 1100 light red
; d 1101 light magenta
; e 1110 yellow
; f 1111 white

org 100h

; set video mode
mov ax, 3 ; text mode 80x25, 16 colors, 8 pages (ah=0, al=3)
int 10h ; do it!

; cancel blinking and enable all 16 colors:
mov ax, 1003h
mov bx, 0
int 10h

; set segment register:
mov ax, 0b800h
mov ds, ax

; print "hello world"
; first byte is ascii code, second byte is color code.

mov [02h], 'H'
mov [04h], 'e'
mov [06h], 'l'
mov [08h], 'l'
mov [0ah], 'o'
mov [0ch], ','
mov [0eh], 'W'
mov [10h], 'o'
mov [12h], 'r'
mov [14h], 'l'
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mov [16h], 'd'
mov [18h], '!'

; color all characters:
mov cx, 12 ; number of characters.
mov di, 03h ; start from byte after 'h'

c: mov [di], 11101100b ; light red(1100) on yellow(1110)
add di, 2 ; skip over next ascii code in vga memory.
loop c

; wait for any key press:
mov ah, 0
int 16h

ret

1.2 Interpreted vs compiled languages

Some languages like C and Fortran are compiled languages23, meaning that we
write code in C or Fortran, and then to run the code (to have the computer ex-
ecute those instructions) we first have to translate the code into machine code,
and then run the machine code. The utility function that performs this trans-
lation (compilation) is called a compiler24. In addition to simply translating a
high-level language into machine code, modern compilers will also perform a
number of optimizations to ensure that the resulting machine code runs fast,
and uses little memory. Typically we write a program in C, then compile it, and
if there are no errors, we then run it. Wedealwith the entire programas awhole.
Compiled program tend to be fast since the entire program is compiled and op-
timized as a whole, into machine code, and then run on the CPU as a whole.

Other languages, like MATLAB, Python and R, are interpreted languages25,
meaning that we write code which is then translated, command by command,
into machine language instructions which are run one after another. This is

https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreted_language
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done using a utility called an interpreter26. We don’t have to compile the whole
program all together in order to run it. Instead we can run it one instruction at
a time. Typically we do this in an interactive programming environment where
we can type in a command, and observe the result, and then type a next com-
mand, etc. This is known as the read-eval-print (REPL) loop27. This is advan-
tageous for scientific programming, where we typically spend a lot of time ex-
ploring our data in an interactive way. One can of course run a program such
as this in a batch mode, all at once, without the interactive REPL environment...
but this doesn’t change the fact that the translation to machine code still hap-
pens one line at a time, each in isolation. Interpreted languages tend to be slow,
because every single command is taken in isolation, one after the other, and in
real time translated into machine code which is then executed in a piecemeal
fashion.

For interactive programming, when we are exploring our data, interpreted lan-
guages like MATLAB, Python and R shine. They may be slow but it (typically)
doesn’t matter, because what’s many orders of magnitude slower, is the firing
of the neurons in our brain as we consider the output of each command and
decide what to do next, how to analyse our data differently, what to plot next,
etc. For batch programming (for example fMRI processing pipelines, or electro-
physiological recording signal processing, or numerical optimizations, or statis-
tical bootstrapping operations), where we want to run a large set of instructions
all at once, without looking at the result of each step along the way, compiled
languages really shine. They are much faster than interpreted languages, often
several orders of magnitude faster. It’s not unusual for even a simple program
written in C to run 100x or even 1000x faster than the same program written in
MATLAB, Python or R.

A 1000x speedup may not be very important when the program runs in 5 sec-
onds (versus 5 milliseconds) but when a program takes 60 seconds to run in
MATLAB, for example, things can start to get problematic.

Imagine you write some MATLAB code to read in data fromone subject, process
that data, and write the result to a file, and that operation takes 60 seconds. Is

https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Read–eval–print_loop
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that so bad? Not if you only have to run it once. Now let’s imagine you have 15
subjects in your group. Now 60 seconds is 15 minutes. Now let’s say you have
4 groups. Now 15 minutes is one hour. You run your program, go have lunch,
and come back an hour later and you find there was an error. You fix the error
and re-run. Another hour. Even if you get it right, now imagine your supervisor
asks you to re-run the analysis 5 different ways, varying some parameter of the
analysis (maybe filtering the data at a different frequency, for example). Now
you need 5 hours to see the result. It doesn’t take a huge amount of data to run
into this sort of situation.

Now imagine if you could program this data processing pipeline in C instead,
and you could achieve a 500x speedup (not unusual), now those 5 hours turn
into 36 seconds (you could run your analysis twice and it would still take less
time than listening to Stairway to Heaven a dozen times). All of a sudden it’s
the difference between an overnight operation and a 30 second operation. That
makes a bigdifference to the kindofworkyou cando, and thekinds of questions
you can pursue.

MATLAB is pretty good about using optimized, compiled subroutines for oper-
ations that it knows it can farm out (e.g. many matrix algebra operations), so in
many cases the difference between MATLAB and C performance isn’t as great
as it is for others. MATLAB also has a toolbox (called the MATLAB Coder28) that
will allow you to generate C code from your MATLAB code, so in principle you
can take slow MATLAB code and generate faster, compiled C code. In practice
this can be tricky though.

My own approach is to use interpreted languages like Python, R, MATLAB, etc,
for prototyping: exploring small amounts of data, for developing an approach,
and algorithms, for analysing data, and for generating graphics. When I have a
computation, or a simulation, or a series of operations that are time-consuming,
I think about implementing them in C. Interpreted languages for prototyping
and exploration, and C for performance.

http://www.mathworks.com/products/matlab-coder/
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2 Digital representation of data

Here we review how data are stored in a digital format on computers.

2.1 Binary

At its core, all information on a digital computer is stored in a binary29 format.
Binary format represents information using a series of 0s and 1s. If there are n
digits of a binary code, one can represent 2n bits30 of information.

So for example the binary number denoted by:

0001

represents the number 1. The convention here is called little-endian31 because
the least significant value is on the right, and as one reads right to left, the value
of eachbinary digit doubles. So for example thenumber 2would be represented
as:

0010

This is a 4-bit code since there are 4 binary digits. The full list of all values that
can be represented using a 4-bit code are shown in Table 2.1.

So with a 4-bit binary code one can represent 24 = 16 different values (0-15).
Each additional bit doubles the number of values one can represent. So a 5-bit
code enables us to represent 32 distinct values, a 6-bit code 64, a 7-bit code 128

9

http://en.wikipedia.org/wiki/Binary_code
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Endianness
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Binary Decimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Table 2.1: Binary and decimal values for a 4-bit code.

and an 8-bit code 256 values (0-255).

Another piece of terminology: a given sequence of binary digits that forms the
natural unit of data for a given processor (CPU) is called a word32.

Have a look at the ASCII table33. The standard ASCII table represents 128 differ-
ent characters and the extended ASCII codes enable another 128 for a total of
256 characters. How many binary bits are used for each?

2.2 Hexadecimal

You will also see in the ASCII table that it gives the decimal representation of
each character but also the Hexadecimal and Octal representations. The hex-
adecimal34 system is a base-16 code and theoctal35 system is a base-8 code. Hex
values for a single hexadecimal digit can range over:

0 1 2 3 4 5 6 7 8 9 A B C D E F

http://en.wikipedia.org/wiki/Word_(computer_architecture)
http://www.asciitable.com
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Octal
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If we use a 2-digit hex code we can represent 16 ∗ 16 = 256 distinct values. In
computer science, engineering and programming, a common practice is to rep-
resent successive 4-bit binary sequences using single-digit hex codes.

Table 2.2 shows 4-bit values of Binary, Decimal and Hexadecimal.

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Table 2.2: Binary, Decimal and Hexadecimal values for a 4-bit code.

If we have 8-bit binary codes we would use successive hex digits to represent
each 4-bit word of the 8-bit byte36 (another piece of lingo). Table 2.3 shows
how this would look for some 8-bit values in binary, decimal and hexadecimal.

The left chunk of 4-bit binary digits (the left word) is represented in hex as a
single hex digit (0-F) and the next chunk of 4-bit binary digits (the right word)
is represented as another single hex digit (0-F).

Hex is typically used to represent bytes (8-bits long) because it is a more com-
pact notation than using 8 binary digits (hex uses just 2 hex digits).

http://en.wikipedia.org/wiki/Byte
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Binary Decimal Hexadecimal

0000 0000 0 00
0000 0001 1 01
0000 0010 2 02

… … …
1111 1101 253 FD
1111 1110 254 FE
1111 1111 255 FF

Table 2.3: Binary, Decimal and Hexadecimal values for an 8-bit (1-byte) code.

2.3 Floating point values

The material above talks about the decimal representation of bytes in terms of
integer values (e.g. 0-255). Frequently however in science we want the ability
to represent real numbers37 on a continuous scale, for example 3.14159, or 5.5,
or 0.123, etc. For this, the convention is to use floating point38 representations
of numbers.

The idea behind the floating point representation is that it allows us to represent
an approximation of a real number in a way that allows for a large number of
possible values. Floating point numbers are represented to a fixed number of
significant digits (called a significand) and then this is scaled using a base raised
to an exponent:

s x be (2.1)

This is related to something you may have come across in high-school science,
namely scientific notation39. In scientific notation, the base is 10 and so a real
number like 123.4 is represented as 1.234 x 102.

In computers there are different conventions for different CPUs but there are
standards, like the IEEE 75440 floating-point standard. As an example, a so-
called single-precision floating point format41 is represented in binary (using a
base of 2) using 32 bits (4 bytes) and a /double precision/ floating point number

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Scientific_notation
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/Binary32
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is represented using 64 bits (8 bytes). In C you can find out how many bytes are
used for various types using the sizeof() function:

#include <stdio.h>
int main(int argc, char *argv[]) {

printf("a single precision float uses %ld bytes\n", sizeof(float));
printf("a double precision float uses %ld bytes\n", sizeof(double));
return 0;

}

On my macbook pro laptop this results in this output:

a single precision float uses 4 bytes
a double precision float uses 8 bytes

According to the IEEE 754 standard, a single precision 32-bit binary floating
point representation is composedof a1-bit sign bit (signifyingwhether the num-
ber is positive or negative), an 8-bit exponent and a 23-bit significand. See the
various wikipedia pages for full details.

There is a key phrase in the description of floating point values above, which is
that floating point representation allows us to store an approximation of a real
number. If we attempt to represent a number that has more significant digits
than can be store in a 32-bit floating point value, then we have to approximate
that real number, typically by rounding off the digits that cannot fit in the 32
bits. This introduces rounding error42.

Now with 32 bits, or even 64-bits in the case of double precision floating point
values, rounding error is likely to be relatively small. However it’s not zero, and
depending on what your program is doing with these values, the rounding er-
rors can accumulate (for example if you’re simulating a dynamical system over
thousands of time steps, and at each time step there is a small rounding error).

We don’t need a fancy simulation however to see the results of floating point
rounding error. Open up your favourite programming language (MATLAB,

http://en.wikipedia.org/wiki/Round-off_error
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Python, R, C, etc) and type the following (adjust the syntax as needed for your
language of choice):

(0.1 + 0.2) == 0.3

What do you get? In MATLAB I get:

>> (0.1 + 0.2) == 0.3

ans =

0

InMATLAB, 0 is synonymouswith the logical value FALSE.What’s going on here?
What’s happening is that these decimal numbers, 0.1, 0.2 and 0.3 are being rep-
resented by the computer in a binary floating-point format, that is, using a base
2 representation. The issue is that in base 2, the decimal number 0.1 cannot
be represented precisely, no matter how many bits you use. Plug in the deci-
mal number 0.1 into an online binary/decimal/hexadecimal converter (such as
here43) and you will see that the binary representation of 0.1 is an infinitely re-
peating sequence:

0.000110011001100110011001100... (base 2)

This shouldn’t be an unfamiliar situation, if we remember that there are also
real numbers that cannot be represented precisely in decimal format, either, be-
cause they involve an infintely repeating sequence. For example the real num-
ber 1

3 when represented in decimal44 is:

0.3333333333... (base 10)

If we try to represent 1
3 using n decimal digits then we have to chop off the digits

to the right thatwe cannot include, thereby rounding thenumber. We lose some

http://www.wolframalpha.com/input/?i=0.1+to+binary
http://www.wolframalpha.com/input/?i=1%2F3+in+decimal
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amount of precision that depends on how many significant digits we retain in
our representation.

So the same is true in binary. There are some real numbers that cannot be rep-
resented precisely in binary floating-point format.

See here45 for some examples of significant adverse events (i.e. disasters) cause
by numerical errors.

Rounding can be used to your advantage, if you’re in the business of stealing
from people (see salami slicing46). In the awesomely kitchy 1980s movie Super-
man III47, Richard Pryor’s character plays a “bumbling computer genius” who
embezzles a tonofmoneyby stealing a largenumber of fractions of cents (which
in the movie are said to be lost anyway due to rounding) from his company’s
payroll (YouTube clip here48).

There is a comprehensive theoretical summary of these issues here: What Every
Computer Scientist Should Know About Floating-Point Arithmetic49.

Also see these webpages from the MathWorks online documentation about how
MATLAB represents floating-point numbers:

Floating-Point Numbers50

and this section on avoiding common problems with Floating-Point Arithmetic:

Avoiding Common Problems with Floating-Point Arithmetic51

2.4 ASCII

ASCII stands for American Standard Code for Information Interchange. ASCII
codes delineate how text is represented in digital format for computers (as well
as other communications equipment).

ASCII uses a 7-bit binary code to represent 128 specific characters of text. The
first 32 codes (decimal 0 through 31) are non-printable codes like TAB, BEL (play
a bell sound), CR (carriage return), etc. Decimal codes 32 through 47 are more

http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html
http://en.wikipedia.org/wiki/Salami_slicing
http://en.wikipedia.org/wiki/Superman_III
http://en.wikipedia.org/wiki/Superman_III
http://www.youtube.com/watch?v=iLw9OBV7HYA
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html#bqxyrhp


CHAPTER 2. DIGITAL REPRESENTATION OF DATA 16

typical text symbols like # and &. Decimal codes 48 through 57 are the numbers
0 through 9. Decimal codes 65 through 90 are capital letters A through Z, and
codes 97 through122 are lowercase letters a through z. Table 2.4 shows codes in
decimal, hexadecimal and octal (base-8) for the numbers 0 through 9. Table 2.5
shows codes for uppercase and lowercase letters.

Dec Hex Oct Chr

48 30 060 0
49 31 061 1
50 32 062 2
51 33 063 3
52 34 064 4
53 35 065 5
54 36 066 6
55 37 067 7
56 38 070 8
57 39 071 9

Table 2.4: 7-bit ASCII codes for the numbers 0 through 9.

For a full description of the 7-bit ascii codes in their entirety, including the ex-
tended ASCII codes (where you will find things like ö and é), see this webpage:

http://www.asciitable.com52 (ASCII Table and Extended ASCII Codes).

In MATLAB, all individual text characters (variable type char) are represented,
under the hood, as decimal ASCII values. Have a look at this code, in which we
ask for the numeric value of individual characters. You can see that the result
corresponds to their decimal ASCII values in Table 2.5.

>> double('a')

ans =

97

>> double('b')

ans =

http://www.asciitable.com
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98

>> double('z')

ans =

122

You can get the character value of an ASCII code in MATLAB using the char()

function:

>> char(65)

ans =

A

You can use your knowledge of ASCII codes to do tricky things in MATLAB, like
convert to and from uppercase and lowercase, given your knowledge that the
difference (in decimal) between ASCII A and ASCII a is 32 (see Table 2.5).

>> char('A' + 32)

ans =

a

>> char('a' - 32)

ans =

A
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Exercises

E 2.1 Convert the following decimal integer values into hexadecimal (resist the
urge to use an online decimal–to–hex tool, try to do it using your brain):

1. 64206
2. 47806
3. 4013
4. 64222
5. 47802

E 2.2 Convert the following decimal integer values into binary (little-endian for-
mat):

1. 2
2. 20
3. 200
4. 17
5. 170

E 2.3 Convert the following (little-endian) binary values into hexadecimal:

1. 0001
2. 1000
3. 1001
4. 1000 0001
5. 1011 1010 1011 1010
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Dec Hex Oct Chr Dec Hex Oct Chr

65 41 101 A 97 61 141 a
66 42 102 B 98 62 142 b
67 43 103 C 99 63 143 c
68 44 104 D 100 64 144 d
69 45 105 E 101 65 145 e
70 46 106 F 102 66 146 f
71 47 107 G 103 67 147 g
72 48 110 H 104 68 150 h
73 49 111 I 105 69 151 i
74 4A 112 J 106 6A 152 j
75 4B 113 K 107 6B 153 k
76 4C 114 L 108 6C 154 l
77 4D 115 M 109 6D 155 m
78 4E 116 N 110 6E 156 n
79 4F 117 O 111 6F 157 o
80 50 120 P 112 70 160 p
81 51 121 Q 113 71 161 q
82 52 122 R 114 72 162 r
83 53 123 S 115 73 163 s
84 54 124 T 116 74 164 t
85 55 125 U 117 75 165 u
86 56 126 V 118 76 166 v
87 57 127 W 119 77 167 w
88 58 130 X 120 78 170 x
89 59 131 Y 121 79 171 y
90 5A 132 Z 122 7A 172 z

Table 2.5: 7-bit ASCII codes for uppercase and lowercase letters.



3 Basic data types, operators & expressions

3.1 Expressions

When you start MATLAB you are greeted with a command prompt:

>>

You are now in the read-eval-print loop53 and MATLAB is waiting for you to en-
ter an expression, so thatMATLAB can evaluate that expression and provide you
with the result. For example, you might enter something that looks like arith-
metic:

>> 1+2

ans =

3

MATLAB evaluates that expression 1+2 and prints out the value of that expres-
sion, which is 3, and assigns that output value to a new variable called ans. We
will talk about variables soon.

Try typing in another arithmetic expression, for example:

>> 1/3

ans =

21

https://en.wikipedia.org/wiki/Read–eval–print_loop
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0.3333

So you can see that MATLAB can do division too.

Expressionsdon’thave tobearithmetic. Theycouldbe logical expressions, such
as:

>> 1+2 == 3

ans =

1

In this case the double-equal sign is an operator which means “is equal to?”. Es-
sentially our expression is asking MATLAB a logical question (a question with a
TRUE or FALSE answer): Is 1+2 equal to 3? MATLAB evaluates that expression
and returns the answer: 1. In MATLAB a logical TRUE is the same as the number
1, and a logical FALSE is the same as the number 0. Try another logical expres-
sion:

>> 1+1 == 0

ans =

0

In this case we are asking MATLAB “Does 1+1 equal 0?” and MATLAB returns 0,
which is MATLAB’s way of saying FALSE.

Here’s another one in which we combine multiple operators into one expres-
sion:

>> 5+6-1+20>25

ans =
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1

With the numbers and operators all squished next to each other this is a bit hard
to read. I might prefer to write this expression with spaces in between, and
round brackets surrounding the left hand side, to make it more readable:

>> (5 + 6 - 1 + 20) > 25

ans =

1

It’s up to you how to write your code, but I would suggest to you that writing
your code in such a way that it is easy to read is a good idea in the long run. It
will make it easier for other people to read your code (including yourself in the
future).

Here’s an example to illustrate this point. Can you figure out what the result of
this expression is?

>> 2*6*3*4/3/4/2/5>1

It’s difficult and annoying to try to do this. How about this re-written version:

>> (2*6 * 3*4) / (3*4 * 2*5) > 1

ans =

1

They are both valid code, they both evaluate to the same result, but one version
(the second version) is much more readable (in my opinion).

Here’s a puzzling result:
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>> 0.1 + 0.2 == 0.3

ans =

0

This is a rather surprising result, isn’t it. I’ll leave it as an exercise for you to
research why this happens, and what a potential solution to this kind of unex-
pected result might be. Hint: look at the course notes on digital representation
of data54.

Let’s move on and talk about operators.

3.2 Operators

In the example code snippets above we saw a number of operators already. We
saw the + and / mathematical operators, and we saw the logical operator ==.
There are in fact a wide variety of operators in MATLAB. The MathWorks (the
company that makes MATLAB) has a web page that lists them all:

Operators and Elementary Operations55

There are avarietyof arithmetics operators, relational and logical operators, and
others that you can read about as well.

One concept that is important to talk about is operator precedence. This refers
to the order in which MATLAB evaluates expressions and operators when there
are multiple operations in a single expression. Take the following expression
for example:

>> 2 + 3 * 5

What does this evaluate to? There are two possibilities. If you proceed left-
to-right and evaluate each operator in the order in which it appears, then this

file:digital_representation_of_data.html
file:digital_representation_of_data.html
http://www.mathworks.com/help/matlab/operators-and-elementary-operations.html
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would evaulate to 2+3, which is 5, multiplied by 5, which equals 25. This is not
what happens in MATLAB (nor in most programming languages). Instead the
multiply operator * takes precedence over the addition operator +, and the 3*5

sub-expression is evaluated first, and then the result (which is 15) is substituted,
and then the resulting expression 2+15 is evaulated, which returns 17.

>> 2 + 3 * 5

ans =

17

Here is a page from the MathWorks documentation on MATLAB that describes
operator precedence in MATLAB:

Operator Precedence56

For arithmetic the easy rule to remember is that multiply and divide take prece-
dence over add and subtract.

You can force particular parts of an expression to be evaluated first by using
round brackets, which take the highest precedence in MATLAB. For example
we could rewrite the expression above to force the 2+3 to occur first, like this:

>> (2 + 3) * 5

ans =

25

3.3 Variables

In the above examples we have been typing in numbers, along with arithmetic
and logical or relational operators, and MATLAB evaluates those expressions
and returns the result. In fact when you don’t provide any output variable to

http://www.mathworks.com/help/matlab/matlab_prog/operator-precedence.html
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store the results of your expression, MATLAB automatically stores the result in
a variable called ans (short for answer). So for example:

>> 1 + 2

ans =

3

MATLAB has stored the answer in a variable called ans. You can think of a vari-
able as a human-readable name of some data that is stored in MATLAB’s mem-
ory. You can refer to data by it’s variable name. Under the hood, MATLAB keeps
track of how these variable names correspond to the location (and type) of the
data stored in memory.

This memory we are referring to is RAM or Random-access memory57. This is
a form of data storage in your computer which is to be considered temporary.
Once MATLAB quits, or your computer is turned off, the data that was stored in
RAM is gone. To permanently store data on your computer you need to store it
on a more permanent form of memory, such as the hard drive in your computer,
or an external drive such as a memory stick.

By naming your data using a variable name, you can easily view andmanipulate
those data. Here’s an example where we store the result of a calculation in a
variable that we will name fred:

>> fred = 1 + 2

fred =

3

We type our expression 1+2 and on the left hand side we type our variable name
fred, and set it to be equal to (using the equal sign =) the expression. MATLAB
evaluates this whole expression and in its return statement we can see that now

https://en.wikipedia.org/wiki/Random-access_memory
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fred is equal to 3.

Here’s another one:

>> bob = 4 * 5

bob =

20

Now we have defined a second variable called bobwhich we have set to be equal
to the result of the expression 4*5. We can see in MATLAB’s return statement
that now bob is equal to 20.

We can use variable names within expressions and MATLAB will substitute the
value of those variables within the expression:

>> joe = bob + fred

joe =

23

Wehavedefinedanewvariable called joe andassigned it to be equal to the value
of bob (which is 20) added to the value of fred (which is 3). MATLAB returns that
now joe is equal to 23.

What happens if we do this?

>> mike = joe + bob + fred + danny
Undefined function or variable 'danny'.

MATLABreturns anerror: Undefined function or variable 'danny'. Theproblem
here is that we have never defined a variable called danny and so when MATLAB
attempts to evaluate danny, it can’t find anything. When it evaluates joe and bob

and fred MATLAB knows the data that those variable names refers to, but we
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have not named any data using a variable called danny and so MATLAB has no
idea what we are referring to.

In fact this is exactly the right way to think about this error: when we type danny,
MATLAB does not know what we are referring to.

At any time we can get a list of which variables are defined in MATLAB by using
a command called who:

Your variables are:

bob fred joe

We can see we have three variables defined. You can use a command called whos

to get a more detailed list:

>> whos
Name Size Bytes Class Attributes

bob 1x1 8 double
fred 1x1 8 double
joe 1x1 8 double

We see our variables in a table now with their name, their size, the number of
Bytes that they occupy in MATLAB’s memory, their class (what type of variable
they are, which relates to what kind of digital representation holds those data)
and a column called Attributes.

Note that if you assign a new value to an existing variable, the old data is wiped
out. Here is an example. We first assign the number 3 to the new variable jane:

>> jane = 3

jane =

3
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Now we verify that indeed jane is 3:

>> jane

jane =

3

Now we reassign the number 4 to jane, and check the value:

>> jane = 4

jane =

4

>> jane

jane =

4

Indeed, jane is now 4 and there is no trace of 3.

There are some rules governing how you can name your variables. Variable
names cannot start with a number or a symbol, only with a letter. There can
be no spaces or symbols in variable names. Capitalization matters, so joe is dif-
ferent than Joe.

The other thing to talk about in this context is that MATLAB has some com-
mands and functions that are already defined by MATLAB, and so you should
avoid using those as your own variable names. So for example MATLAB has a
built-in function called sort() that will sort a vector of values:

>> sort([4 3 2 6 5 7 9 8 1])

ans =
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1 2 3 4 5 6 7 8 9

When you type sort MATLAB executes its built-in sorting algorithm. Nothing
stops you however from defining your own variable with the same name:

>> sort = 23

sort =

23

Now when you try typing the sorting expression in again you get this:

>> sort([4 3 2 6 5 7 9 8 1])
Index exceeds matrix dimensions.

MATLAB throws an error. Now when MATLAB sees sort it thinks you are refer-
ring to your variable called sort which equals 23. Actually it equals a 1x1 matrix
(a single value) containing 23.

Why dowe get this particular errormessage? The round bracketswhen put next
to a variable cause MATLAB to try to index into a vector or matrix, and since our
variable sorthasonlya singlevalue,whenMATLABtries to retrieve the4th, then
3rd, then 2nd, values, etc, it throws an error. We haven’t talked about vectors
or matrices or indexing yet, so don’t worry about that. The point here is that
we have essentially wiped out the reference to the sorting algorithm originally
referred to by sort by defining our own variable called sort. Oops!

We can remedy this situationby clearing the variable sortusing the built-in com-
mand clear:

>> clear sort
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Now we have erased our variable called sort and when we type sort again, MAT-
LAB will no longer refer to our variable containing 23 (since we just cleared it
from memory) and MATLAB will go back to referring to its own built-in func-
tion called sort():

>> sort([4 3 2 6 5 7 9 8 1])

ans =

1 2 3 4 5 6 7 8 9

Now it’s time to talk about variable types.

3.4 Basic Data Types

So far we have been dealing with data in the form of single numbers. The num-
ber 1 for example, or the number 0.5. There are in fact a number of different
numeric types of data that MATLAB can store in variables. Here is a webpage
from the MathWorks that describes the full constellation of data types used in
MATLAB:

Data Types58

Numeric data can be stored in a number of different Numeric Types59. The
default type of numeric data in MATLAB is double, which stands for double-
precision floating-point format60. The floating-point part of this means essen-
tially that this data type can store a real number61, i.e. numbers along a contin-
uous line such as 1.0 or 1.33 or 3.14159. The double-precision part of this refers
to how many bytes are used by MATLAB to represent that number. More bytes
means more precision. You can read about this in more detail in Chapter 2, Dig-
ital representation of data.

When you just type in numbers, or haveMATLAB compute the result of an arith-
metic expression, you will typically be using, by default, the double data type:

http://www.mathworks.com/help/matlab/data-types_data-types.html
http://www.mathworks.com/help/matlab/numeric-types.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Real_number
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>> a = 1

a =

1

>> b = 2

b =

2

>> c = a/b

c =

0.5000

>> d = b/a

d =

2

>> whos
Name Size Bytes Class Attributes

a 1x1 8 double
b 1x1 8 double
c 1x1 8 double
d 1x1 8 double

If you want to convert a variable to another numeric data type, you can do it
using one ofMATLAB’s built-in conversion functions. So for example to convert
a double variable to a 32-bit integer, use int32():

>> x = 1.3
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x =

1.3000

>> y = int32(x)

y =

1

>> whos
Name Size Bytes Class Attributes

x 1x1 8 double
y 1x1 4 int32

You can see that when the double x (which equals 1.3) is converted into an int32

it is rounded down to 1.

MATLAB also has data types to deal with individual characters (letters like 'a'

and 'b') and strings of characters (like 'joe'), and a selection of built-in func-
tions to manipulate strings:

Characters and Strings62

For example:

>> x = 'a'

x =

a

>> y = 'b'

y =

b

http://www.mathworks.com/help/matlab/characters-and-strings.html
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>> z = 'fred'

z =

fred

>> whos
Name Size Bytes Class Attributes

x 1x1 2 char
y 1x1 2 char
z 1x4 8 char

Above we have defined three variables all of type char (which stands for charac-
ter string). The first two, named x and y both contain a single character ('a' and
'b', respectively) and the third, z, contains a string of four characters ('fred').
You can see that x and y occupy 2 bytes ofmemory and zuses 8 bytes. Twobytes
are required to store a single character in MATLAB.

You can dive deeper here in the documentation for the char function63, which
describes how characters are represented. The first 7 bits (values 0 to 127) code
7-bit ASCII characters. The next 9 bits code values 128 to 65535 and represent
characters that dependonyour locale (i.e. other languages besides plain english
ASCII).

You can quickly see the integer codes for different characters in MATLAB by do-
ing the following:

>> int8('a')

ans =

97

>> int8('b')

ans =

http://www.mathworks.com/help/matlab/ref/char.html
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98

>> int8('z')

ans =

122

In fact you can get the integer codes for all 26 lower case letters in one go, like
this:

>> int8('a':'z')

ans =

Columns 1 through 15

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

Columns 16 through 26

112 113 114 115 116 117 118 119 120 121 122

You can display a string to the screen using the disp command:

>> disp('hello, world, my name is fred')
hello, world, my name is fred

You can concatenate multiple strings using the square brackets [ and ] to con-
struct a new string:

>> a = 'fred';
>> b = 'joe';
>> c = 'jane';
>> s = ' ';
>> z = [a,s,b,s,c];
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>> disp(z)
fred joe jane

I’ve introduced some new syntax here, the use of the semicolon ; after an ex-
pression. This prevents MATLAB from echoing the value of the expression to
the screen. The expression is still evaluated but MATLAB doesn’t echo the re-
sult back to us on the screen. Use this when you want to suppress the output of
expressions. If you don’t need to see the result of an expression on the screen
then this makes for a cleaner MATLAB session.

You can get attributes of a string such as its length:

>> disp(['z is ', num2str(l), ' characters long'])
z is 13 characters long

I’ve also introducted the built-in function num2str() which will convert a nu-
meric type into a character string.

Another way to generate a character string out of many parts is to use the
sprintf() function. Thismimics the printf() function64 that is famililar to C pro-
grammers:

>> m = sprintf('z is %d characters long, & pi is approx. %.5f', l, pi);
>> disp(m)
z is 13 characters long, and pi is approximately 3.14159

The %dnotation tells the sprintf function that an integernumeric typewill bepro-
vided here. The %.5f notation says that a floating-point value will be provided,
and please show it using 5 decimal places. At the end of the string is where you
supply the needed values, in the order in which they appear in the string. Note
that pi is a built-in value in MATLAB.

In MATLAB you can use the class() function to get the type of a variable. For
example:

https://en.wikipedia.org/wiki/Printf_format_string
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>> a = 3.14159

a =

3.1416

>> class(a)

ans =

double

You can use the isa() function to ask whether a variable is a certain type. For
example:

>> isa(a,'char')

ans =

0

>> isa(a,'double')

ans =

1

Remember in MATLAB 0 is “FALSE” or “NO” and 1 is “TRUE” or “YES”.

So far we have seen numeric types and character string types. These are basic
data types. MATLAB also allows for complex data types such as vectors, ma-
trices, structures and cell arrays. These you can think of as container types, in
other words data types that can store not just one value but many values.

Actually, the character string is already a sort of container type, in that it stores
many single characters all strung together. You can think of a character string
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as a vector of single characters.

In the next section in the notes we will talk about some of these complex data
types and how to use them.

3.5 Special values

The MathWorks online documentation has a page on various special values
built-in to MATLAB:

Special Values65

There is a special numeric value inMATLAB called NaN (not a number). It is often
used to denote missing data.

There is also a special value called Inf which stands for infinity. Try typing the
expression 1/0 and you will get Inf.

There are other mathematical special values such as pi:

>> pi

ans =

3.1416

>> help pi
PI 3.1415926535897....

PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897....

Reference page in Help browser
doc pi

and imaginary numbers i and j:

>> help i
I Imaginary unit.

As the basic imaginary unit SQRT(-1), i and j are used to enter
complex numbers. For example, the expressions 3+2i, 3+2*i, 3+2j,

http://www.mathworks.com/help/matlab/matlab_prog/special-values.html
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3+2*j and 3+2*sqrt(-1) all have the same value.

Since both i and j are functions, they can be overridden and used
as a variable. This permits you to use i or j as an index in FOR
loops, etc.

See also J.

Reference page in Help browser
doc i

>> help j
J Imaginary unit.

As the basic imaginary unit SQRT(-1), i and j are used to enter
complex numbers. For example, the expressions 3+2i, 3+2*i, 3+2j,
3+2*j and 3+2*sqrt(-1) all have the same value.

Since both i and j are functions, they can be overridden and used
as a variable. This permits you to use i or j as an index in FOR
loops, subscripts, etc.

See also I.

Reference page in Help browser
doc j

Also of note is the special function eps():

>> help eps
EPS Spacing of floating point numbers.

D = EPS(X), is the positive distance from ABS(X) to the next larger in
magnitude floating point number of the same precision as X.
X may be either double precision or single precision.
For all X, EPS(X) is equal to EPS(ABS(X)).

EPS, with no arguments, is the distance from 1.0 to the next larger
double
precision number, that is EPS with no arguments returns 2^(-52).
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...

If we type eps(1.0) we get:

>> eps(1.0)

ans =

2.2204e-16

which is a pretty small number: 0.00000000000000022204. This is the distance be-
tween the floating-point representation of 1.0 and the next largest number that
the double floating-point representation can represent. You can think of it as the
precision of the double floating-point representation of numbers, near the num-
ber 1.0.

Try eps(2^54) (which equals 18,014,000,000,000,000):

>> eps(2^54)

ans =

4

Huh? So near the number 2^54, the precision of our double floating-point rep-
resentation of continuous numbers is 4.0! This is terrible! This is however just
a limitation of representing continuous (infinite) numbers using a finite digital
representation. See Chapter 2 for more information about this kind of thing.

3.6 Getting help

Wecan get help about MATLAB built-in commands and functions using the help

command:

>> help who
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WHO List current variables.
WHO lists the variables in the current workspace.

In a nested function, variables are grouped into those in the nested
function and those in each of the containing functions. WHO displays
only the variables names, not the function to which each variable
belongs. For this information, use WHOS. In nested functions and
in functions containing nested functions, even unassigned variables
are listed.

WHOS lists more information about each variable.
WHO GLOBAL and WHOS GLOBAL list the variables in the global workspace.
WHO -FILE FILENAME lists the variables in the specified .MAT file.

WHO ... VAR1 VAR2 restricts the display to the variables specified. The
wildcard character '*' can be used to display variables that match a
pattern. For instance, WHO A* finds all variables in the current
workspace that start with A.

WHO -REGEXP PAT1 PAT2 can be used to display all variables matching the
specified patterns using regular expressions. For more information on
using regular expressions, type "doc regexp" at the command prompt.

Use the functional form of WHO, such as WHO('-file',FILE,V1,V2),
when the filename or variable names are stored in strings.

S = WHO(...) returns a cell array containing the names of the variables
in the workspace or file. You must use the functional form of WHO when
there is an output argument.

Examples for pattern matching:
who a* % Show variable names starting with "a"
who -regexp ^b\d{3}$ % Show variable names starting with "b"

% and followed by 3 digits
who -file fname -regexp \d % Show variable names containing any

% digits that exist in MAT-file fname

See also WHOS, CLEAR, CLEARVARS, SAVE, LOAD.

Other functions named who:
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Simulink.who

Reference page in Help browser
doc who

We can also get a GUI interface to help using the doc command.

There is also a way of searching the help documentation files for keywords, us-
ing the lookfor command. The lookfor command will return the names of all
functions or commands for which the associated help documentation contains
the given keyword. So for example let’s say we need to find the invkine() func-
tion but we’ve forgotten what it’s called, we just remember it’s something to do
with a robot. We can search using: lookfor robot

>> lookfor robot
invkine - Inverse kinematics of a robot arm.
invkine_codepad - Modeling Inverse Kinematics in a Robotic Arm
idnlgreydemo13 - Modeling an Industrial Robot Arm
idnlgreydemo8 - Industrial Three-Degrees-of-Freedom Robot: C

MEX-File Modeling of MIMO System Using Vector/Matrix Parameters
robot_m - A simplified Manutec r3 robot with three

arms.
robotarm_m - A physically parameterized robot arm.
refmodel_dataset - ROBOTARM_DATASET Reference model dataset
robotarm_dataset - Robot arm dataset
mech_robot_data - Data defining the manutec robot.
RobotArmExample - Multi-Loop PID Control of a Robot Arm

3.7 Script M-files

Instead of typing in commands into the MATLAB command-line, you can in-
stead save them in a file, called a MATLAB script, and then type the name of
the script on the command line to execute all code within that script. Scripts
typically have a .m filename suffix.
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So for example youmight have a file called random8.m that contains the following
code:

% script M-file example random8.m
%
rlist = round(rand(1,8)*10);
disp(rlist);
disp(['mean = ',num2str(mean(rlist))]);
disp(['median = ',num2str(median(rlist))]);
disp(['standard deviation = ',num2str(std(rlist))]);

The script generates a list of 8 random numbers chosen from a uniform distri-
bution between 0 and 10, and then displays the mean, median and standard
deviation of those values.

If the script file called random8.m is in your MATLAB path, then typing random8.m

on the MATLAB command line will execute the script:

>> random8
8 9 1 9 6 1 3 5

mean = 5.25
median = 5.5
standard deviation = 3.3274

3.8 MATLAB path

When you first start MATLAB, you will be faced with the command line prompt,
and MATLAB will be started up looking at a particular location in your file sys-
tem. This location is known as the current working directory. If you are using
the MATLAB GUI (graphical user interface) you will see your current working
directory displayed in a toolbar just above the command line. On my computer
it shows as /Users/plg/Desktop. On your computer it will be something different.

The other way to query MATLAB about the current working directory is to type
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pwd into the command line:

>> pwd

ans =

/Users/plg/Desktop

When you type something into the command line, like random8, MATLAB will go
through a number of steps to find out what you mean:

• is random8 defined as a variable in memory?
• is random8definedasa functionor scriptfileordatafile inMATLAB’s current

working directory?
• is random8 defined as a function or script file or data file somewhere else in

MATLAB’s path?

The MATLAB path is a list of directories on your computer’s hard disk where
MATLAB knows to look for scripts and functions. You can see what’s defined in
your MATLAB path by typing path at the MATLAB command line:

>> path

MATLABPATH

/Users/plg/Documents/MATLAB
/Applications/MATLAB_R2015a.app/toolbox/matlab/addons
/Applications/MATLAB_R2015a.app/toolbox/matlab/addons/cef
/Applications/MATLAB_R2015a.app/toolbox/matlab/addons/fallbackmanager
/Applications/MATLAB_R2015a.app/toolbox/matlab/demos
/Applications/MATLAB_R2015a.app/toolbox/matlab/graph2d
/Applications/MATLAB_R2015a.app/toolbox/matlab/graph3d
/Applications/MATLAB_R2015a.app/toolbox/matlab/graphics
...
...

Onmy computer I get a list ofmore than 600 directories—almost all of them sub-
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directories of the MATLAB main application directory. This is where all of MAT-
LAB’s built-in functions and scripts are located, andwhere the variousMATLAB
toolbox code is located.

The otherway to see (and alter) yourMATLABpath is by using theMATLABGUI.
Type pathtool on the MATLAB command line and you get a nice GUI interface
where you can scroll through all of the directories that are in yourMATLABpath,
you can delete some, add some, and change the order.

On the issue of the order: remember that MATLAB goes through its path in the
order in which the directories appear in the path list. So if you have a function
called random8() defined in multiple places in your path, when you type random8

on the MATLAB command line, MATLAB will use the first one it finds in the
path.

My personal approach to the MATLAB path is to basically never mess with it.
Instead of adding data directories and script directories associated with my var-
ious projects to the MATLAB path, instead I just start MATLAB from the appro-
priate location when I am working on different projects.

To change the current working directory you can either click on the toolbar in
the MATLAB GUI, or use the cd command on the MATLAB command line, for
example:

>> cd /Users/plg/Documents/Research/projects/Heather_fMRI/
>> pwd

ans =

/Users/plg/Documents/Research/projects/Heather_fMRI



CHAPTER 3. BASIC DATA TYPES, OPERATORS & EXPRESSIONS 46

Exercises

E 3.1 Write a program to convert temperature values from Celsius to Fahrenheit
according to the equation:

F =
9
5C+ 32 (3.1)

The program should as the user to input the temperature in Celsius, and
then print out a sentence giving the temperature in Fahrenheit, like this:

enter the temperature in Celsius: 22
22.0 degrees Celsius is 71.6 degrees Fahrenheit

E 3.2 Given parabolic flight, the height of a ball y is given by the equation:

y = x tan(θ)−
[ 1
2v20

] [ gx2
cos(θ)2

]
+ y0 (3.2)

where x is a horizontal coordinate (metres), g is the acceleration of gravity
(metres per second per second), v0 is the size of the initial velocity vector
(metres per second) at an angle θ (radians) with the x-axis, and (0, y0) is
the initial position of the ball (metres).

Write a program to compute the vertical height of a ball. The program
should ask the user to input values for g, v0, θ, x, and y0, and print out a
sentence giving the vertical height of the ball.

Test your program with this example:

enter a value for g: 9.8
enter a value for v0: 6.789
enter a value for theta: 0.123
enter a value for x: 4.5
enter a value for y0: 5.4
The vertical height of the ball is: 3.77057803072
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E 3.3 As an egg cooks, the proteins first denature and then coagulate. When the
temperature exceeds a critical point, reactions begin and proceed faster as
the temperature increases. In the egg white the proteins start to coagulate
for temperatures above 63 C, while in the yolk the proteins start to coagu-
late for temperatures above 70 C. For a soft-boiled egg, the white needs to
have been heated long enough to coagulate at a temperature above 63 C,
but the yolk should not be heated above 70 C. For a hard-boiled egg, the
centre of the yolk should be allowed to reach 70 C.

The following equation gives the time t it takes (in seconds) for the centre
of the yolk to reach the temperature Ty (Celsius):

t = M2/3cρ1/3
Kπ2(4π/3)2/3 ln

[
0.76To − Tw

Ty − Tw

]
(3.3)

where M, ρ, c and K are properties of the egg: M is mass, ρ is the den-
sity, c is the specific heat capacity, and K is the thermal conductivity. Rel-
evant values are M = 47 g for a small egg and M = 67 g for a large egg,
ρ = 1.038 g cm−3, c = 3.7 J g−1 K−1, and K = 0.0054W cm−1 K−1. The param-
eter Tw is the temperature (in Celsius) of the boiling water, and To is the
original temperature of the egg before being put in the water.

Implement the equation in a program, set Tw = 100 C and Ty = 70 C, and
compute t for a large egg taken from the fridge (To = 4 C) and from room
temperature (To = 20 C).

Test your program with this example:

Is the egg large (1) or small (0)? 1
enter the initial temperature of the egg
reminder 4.0 for fridge, 20.0 for room: 15.0
time taken to cook the egg is: 342.271 seconds (5 minutes, 42 seconds)
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4 Complex data types

In Chapter 3 we saw data types such as double and char which are used to rep-
resent individual values such as the number 1.234 or the character 'G'. Here we
will learn about a number of complex data types thatMATLABuses to storemul-
tiple values in one data structure. We will start with the array and matrix—and
in fact a matrix is just a two-dimensional array. What’s more, a scalar value (like
3.14) is just an arraywith one row and one column. Wewill also cover cell arrays
and structures, which are data types designed to hold different kinds of informa-
tion together in a single type.

4.1 Arrays

Arrays are simply ordered lists of values, such as the list of five numbers:
1,2,3,4,5. In MATLAB we can define this array using square brackets:

>> a = [1,2,3,4,5]

a =

1 2 3 4 5

>> whos
Name Size Bytes Class Attributes

a 1x5 40 double

We can see that a is a 1x5 (1 row, 5 columns) array of double values.

49



CHAPTER 4. COMPLEX DATA TYPES 50

We can also get the length of an array using the length function:

>> length(a)

ans =

5

We can in fact leave out the commas if we want, when we construct the array—
we can use spaced instead. It’s up to you to decide which is more readable.

>> a = [1 2 3 4 5]

a =

1 2 3 4 5

MATLAB has a number of built-in functions and operators for creating arrays
and matrices. We can create the above array using a colon (:) operator like so:

>> a = 1:5

a =

1 2 3 4 5

We can create a list of only odd numbers from 1 to 10 like so, again using the
colon operator:

>> b = 1:2:10

b =

1 3 5 7 9



51 4.1. ARRAYS

4.1.1 Array indexing

We can get the value of a specific item within an array by indexing into the array
using round brackets (). For example to get the third value of the array b:

>> third_value_of_b = b(3)

third_value_of_b =

5

To get the first three values of b:

>> b(1:3)

ans =

1 3 5

We can get the 4th value onwards to the end by using the end keyword:

>> b(4:end)

ans =

7 9

Remember, array indexing in MATLAB starts at 1. In other languages like C and
Python, array indexing starts at 0. This can be the source of significant confu-
sion when translating code from one language into another.

Another useful array construction built-in function in MATLAB is the linspace

function:

>> c = linspace(0,1,11)

c =
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Columns 1 through 8

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.
7000

Columns 9 through 11

0.8000 0.9000 1.0000

By default arrays in MATLAB are defined as row arrays, like the array a above
which is size 1x5—one row and 5 columns. We can however define arrays as
columns instead, if we need to. One way is to simply transpose our row array
using the transpose operator ':

>> a2 = a'

a2 =

1
2
3
4
5

>> size(a2)

ans =

5 1

Now we can see a2 is a 5x1 column array.

We can directly define column arrays using the semicolon ; notation instead of
commas or spaces, like so:

>> a2 = [1;2;3;4;5]
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a2 =

1
2
3
4
5

So in general, commas or spaces denote moving from one column to another,
and semicolons denote moving from one row to another. This will become use-
ful when we talk about matrices (otherwise know as two-dimensional arrays).

4.1.2 Array sorting

MATLAB has a built-in function called sort() to sort arrays (and other struc-
tures). The algorithm used by MATLAB under the hood is the quicksort66 al-
gorithm. To sort an array of numbers is simple:

>> a = [5 3 2 0 8 1 4 8 5 6]

a =

5 3 2 0 8 1 4 8 5 6

>> a_sorted = sort(a)

a_sorted =

0 1 2 3 4 5 5 6 8 8

If you give the sort function two output variables then it also returns the indices
corresponding to the sorted values of the input:

>> [aSorted, iSorted] = sort(a)

aSorted =

https://en.wikipedia.org/wiki/Quicksort
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0 1 2 3 4 5 5 6 8 8

iSorted =

4 6 3 2 7 1 9 10 5 8

The iSortedarraycontains the indices into theoriginal array a, in sortedorder. So
this tells us that the first value in the sorted array is the 4th value of the original
array; the second value of the sorted array is the 6th value of the original array,
and so on.

The default sort happens in ascending order. If we want to reverse this we can
specify this as an option to the sort() function:

>> sort(a, 'descend')

ans =

8 8 6 5 5 4 3 2 1 0

4.1.3 Searching arrays

We can use MATLAB’s built-in function called find() to search arrays (or other
structures) for particular values. So for example if we wanted to find all values
of the above array a which are greater than 5, we could use:

>> ix = find(a > 5)

ix =

5 8 10

This tells us that the 5th, 8th and 10th values of a are greater than 5. If we want



55 4.1. ARRAYS

to see what those values are, we index into a using those found indices idx:

>> a(ix)

ans =

8 8 6

We could combine these two steps into one line of code like this:

>> a(find(a>5))

ans =

8 8 6

4.1.4 Array arithmetic

One great feature of MATLAB is that arithmetic (and many other) operations
can be carried out on an entire array at once—and what’s more, under the hood
MATLAB uses optimized, compiled code to carry out these so-called vectorized
operations. Vectorized code is typically many times faster than the equivalent
code organized in a naive way (for example using for-loops). We will talk about
vectorized code and other ways to speed up computation in Chapter 8.

We can multiply each element of the array a2 by a scalar value:

>> a2 * 5

ans =

5
10
15
20
25
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We can perform a series of operations all at once:

>> a3 = (a2 * 5) + 2.5

a3 =

7.5000
12.5000
17.5000
22.5000
27.5000

These mathematical operations are performed elementwise, meaning element-
by-element.

We can also perform arithmetic operations between arrays. For example let’s
say we wanted to multiply two 1x5 arrays together to get a third:

>> a = [1,2,3,4,5];
>> b = [2,4,6,8,10];
>> c = a*b
Error using *
Inner matrix dimensions must agree.

Oops! We get an error message. When you perform arithmetic operations be-
tween arrays in MATLAB, the default assumption is that you are doing matrix
(or matrix-vector) algebra, not elementwise operations. To force elementwise
operations in MATLAB we use dot-notation:

>> c = a.*b

c =

2 8 18 32 50

Now the multiplication happens elementwise. Needless to say we still need the
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dimensions to agree. If we triedmultiplying, elementwise, a 1x5 arraywith a 1x6

array we would get an error message:

>> d = [1,2,3,4,5,6];
>> e = c.*d
Error using .*
Matrix dimensions must agree.

>> size(c)

ans =

1 5

>> size(d)

ans =

1 6

4.2 Matrices

In mathematics a matrix is generally considered to have two dimensions: a row
dimension and a column dimension. We can define a matrix in MATLAB in the
following way. Here we define a matrix A that has two rows and 5 columns:

>> A = [1,2,3,4,5; 1,4,6,8,10]

A =

1 2 3 4 5
1 4 6 8 10

>> size(A)

ans =
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2 5

We use commas (or we could have used spaces) to denote moving from column
to column, and we use a semicolon to denote moving from the first row to the
second row.

If we want a 5x2 matrix instead we can either just transpose our 2x5 matrix:

>> A2 = A'

A2 =

1 1
2 4
3 6
4 8
5 10

Or we can define it directly:

>> A2 = [1,2; 2,4; 3,6; 4,8; 5,10]

A2 =

1 2
2 4
3 6
4 8
5 10

There are other functions in MATLAB that we can use to generate a matrix. The
repmat function in particular is usefulwhenwewant to repeat certain values and
stick them into a matrix:

>> G = repmat([1,2,3],3,1)
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G =

1 2 3
1 2 3
1 2 3

This means repeat the row vector [1,2,3] three times down columns, and one
time across rows. Here’s another example:

>> H = repmat(G,1,3)

H =

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3

Now we’ve repeated the matrix G once down rows and three times across
columns.

There are also special functions zeros() and ones() to create arrays or matrices
filled with zeros or ones:

>> I = ones(4,5)

I =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

>> J = zeros(7,3)

J =

0 0 0
0 0 0
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Of course we can fill a matrix with any value we want by multiplying a matrix of
ones by a scalar:

>> P = ones(3,4) * pi

P =

3.1416 3.1416 3.1416 3.1416
3.1416 3.1416 3.1416 3.1416
3.1416 3.1416 3.1416 3.1416

If we use zeros or oneswith just a single input argument we end up with a square
matrix (same number of rows and columns):

>> Q = ones(5)

Q =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

There is also a special MATLAB function called eyewhich will generate the iden-
tity matrix (a special matrix in linear algebra sort of equivalent to the number 1
in scalar arithmetic):

>> eye(3)
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ans =

1 0 0
0 1 0
0 0 1

4.2.1 Matrix indexing

We can index into a matrix using round brackets, just like with an array. Now
however we need to specify both a row and a column index. So for example the
entry in the matrix A2 corresponding to the 3rd row and the second column is:

>> A2(3,2)

ans =

6

To get the value in the last row, and the first column:

>> A2(end,1)

ans =

5

We can also specify a range in our index values. So to get rows 1 through 3 and
columns 1 through 2:

>> A2(1:3,1:2)

ans =

1 2
2 4
3 6
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We can use a shorthand for “all columns” (also works for all rows) using the
colon operator:

>> A2(1:3,:)

ans =

1 2
2 4
3 6

Wecan use indexing to replace parts of amatrix. For example to replace the first
row of A2 (which is presently [1 2] with [99 99] we could use this code:

>> A2(1,:) = [99 99]

A2 =

99 99
2 4
3 6
4 8
5 10

To replace the second columnof A2with 5 randomnumbers chosen froma gaus-
sian normal distribution with mean zero and standard deviation one, we could
use this code:

>> A2(:,2) = randn(5,1)

A2 =

99.0000 0.5377
2.0000 1.8339
3.0000 -2.2588
4.0000 0.8622
5.0000 0.3188
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Note the use of the randn() function to generate (pseudo)random deviates from
a gaussian normal distribution.

4.2.2 Matrix reshaping

MATLAB has a built-in function called reshape() which is handy for reshaping
matrices into new dimensions. For example let’s say we have a 4x3 matrix M:

>> M = [1,2,3; 4,5,6; 7,8,9; 10,11,12]

M =

1 2 3
4 5 6
7 8 9

10 11 12

We can use reshape() to reshape M into a 6x2 matrix Mr:

>> Mr = reshape(M,6,2)

Mr =

1 8
4 11
7 3

10 6
2 9
5 12

Note that reshape() does its work by taking values columnwise from the original
inputmatrix M. If wewant to perform the reshaping in the otherway—row-wise—
we can do this by transposing the original matrix:

>> Mr2 = reshape(M',6,2)

Mr2 =
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1 7
2 8
3 9
4 10
5 11
6 12

To reshape a matrix (or indeed any multi-dimensional array) into a column vec-
tor, there is a convenient shorthand in MATLAB, namely the colon operator (:):

>> M_col = M(:)

M_col =

1
4
7

10
2
5
8

11
3
6
9

12

If we want a row vector instead we can just transpose the result:

>> M_row = M(:)'

M_row =

1 4 7 10 2 5 8 11 3 6 9 12
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4.2.3 Matrix arithmetic

In MATLAB as with arrays, matrix–scalar operations happen elementwise,
whereas matrix–matrix operations are assumed to be based on the rules of ma-
trix algebra. We won’t go through matrix algebra in all its glory here, but you
can see a reminder of the basic operations on this wikipedia page:

Matrix Basic Operations67

I can recommend a great book on Linear Algebra by Gilbert Strang:

Introduction to Linear Algebra, 4th Edition68 by Gilbert Strang. Wellesley-
Cambridge Press, 2009

He also has his course on MIT’s open-courseware, complete with videos for all
lectures here:

video lectures of Professor Gilbert Strang teaching 18.06 (Fall 1999)69

The Mathworks has a web page with a matrix algebra “refresher” that might
serve as a useful reminder for those who have had linear algebra in the past:

Matrix Algebra Refresher70

Here is an example of a scalar–matrix operation on our matrix A2 from above:

>> A2 * 10

ans =

10 20
20 40
30 60
40 80
50 100

Let’s say we wanted to multiply, elementwise, a 5x2 matrix A3 by A2:

>> A3 = rand(5,2)

https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations
http://math.mit.edu/~gs/linearalgebra/
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
http://www.mathworks.com/help/finance/matrix-algebra-refresher.html
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A3 =

0.2785 0.9706
0.5469 0.9572
0.9575 0.4854
0.9649 0.8003
0.1576 0.1419

As with arrays, we can use dot notation to force elementwise multiplication:

>> A4 = A2 .* A3

A4 =

0.2785 1.9412
1.0938 3.8287
2.8725 2.9123
3.8596 6.4022
0.7881 1.4189

Without the dot notation we would get an error message:

>> A4 = A2 * A3
Error using *
Inner matrix dimensions must agree.

>> size(A2)

ans =

5 2

>> size(A3)

ans =

5 2
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To perform matrix multiplication we need a right-hand-side that has legal di-
mensions, in other words the same number of rows as A2 has columns. For ex-
ample, if we have another matrix A5 sized 2x3:

>> A5 = rand(2,3)

A5 =

0.8147 0.1270 0.6324
0.9058 0.9134 0.0975

then we can perform matrix multiplication:

>> A6 = A2 * A5

A6 =

2.6263 1.9537 0.8274
5.2526 3.9075 1.6549
7.8789 5.8612 2.4823

10.5052 7.8150 3.3098
13.1315 9.7687 4.1372

Again, review your linear algebra if you have forgotten about the rules of matrix
multiplication. Just remember that to force elementwise operations, use dot-
notation.

Addition and subtraction are always elementwise.

4.2.4 Matrix Algebra

As we saw above, MATLAB assumes that matrix–matrix operations are not ele-
mentwise, but conform to the rules of linear algebra and matrix arithmetic. The
exception is matrix addition and subtraction, which happen elementwise even
in matrix algebra. Multiplication is special however, as we saw above.

What about division (/)? In MATLAB the so-called slash operator is the gateway
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to much complexity.

>> help slash
Matrix division.
\ Backslash or left division.

A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B , except it is computed in a different way.
If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then
X = A\B is the solution to the equation A*X = B. A warning
message is printed if A is badly scaled or nearly
singular. A\EYE(SIZE(A)) produces the inverse of A.

If A is an M-by-N matrix with M < or > N and B is a column
vector with M components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations A*X = B. The
effective rank, K, of A is determined from the QR decomposition
with pivoting. A solution X is computed which has at most K
nonzero components per column. If K < N this will usually not
be the same solution as PINV(A)*B. A\EYE(SIZE(A)) produces a
generalized inverse of A.

/ Slash or right division.
B/A is the matrix division of A into B, which is roughly the
same as B*INV(A) , except it is computed in a different way.
More precisely, B/A = (A'\B')'. See \.

./ Array right division.
B./A denotes element-by-element division. A and B
must have the same dimensions unless one is a scalar.
A scalar can be divided with anything.

.\ Array left division.
A.\B. denotes element-by-element division. A and B
must have the same dimensions unless one is a scalar.
A scalar can be divided with anything.

The backslash (left division) when used like this: A\B performs matrix division
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of B into A. As the documentation says, this is roughly like INV(A)*B but it’s not
computed this way under the hood. The typical way you will use the backslash
matrix operator in MATLAB is to solve systems of linear equations. So for ex-
ample X = A\B is the solution to the matrix equation A*X=B. For example, if B is a
column representing measurements of a dependent variable, and A is a matrix
representing measurements of several independent variables, then X is the vec-
tor of regression weights that minimize the sum of squared deviations between
B and A*X. More on this later in the course.

MATLAB has many, many built-in (and compiled and optimized) functions for
matrix algebra and matrix algorithms of all sorts. After all, the origins of MAT-
LAB71 are “Matrix Laboratory”, and so from the start the emphasis has been on
matrix computation.

In their web documentation, the MathWorks has a listing of some linear algebra
algorithms implemented in MATLAB:

Linear Algebra72

These include algorithms for solving linear equations, for matrix decomposi-
tion, for finding eigenvalues and singular values, for matrix analysis and so on.

4.3 Multidimensional arrays

We have seen one-dimensional (row or column) arrays and we have seen (two
dimensional) matrices. In MATLAB you can create arrays with more than two
dimensions. Here is an example of a three dimensional array:

>> A = ones([2,3,4])

A(:,:,1) =

1 1 1
1 1 1

A(:,:,2) =

http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/help/matlab/linear-algebra.html
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1 1 1
1 1 1

A(:,:,3) =

1 1 1
1 1 1

A(:,:,4) =

1 1 1
1 1 1

We have created a three-dimensional array A that is size 2x3x4:

>> size(A)

ans =

2 3 4

You can think of it like this: A is a 2x3 matrix that is repeated 4 times (in a third
dimension). Perhaps the third dimension is time. Perhaps it is something else
(e.g. spatial third dimension).

We can even create 4-dimensional arrays:

>> B = rand(256,256,10,50);
>> whos

Name Size Bytes Class Attributes

B 4-D 262144000 double

>> size(B)
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ans =

256 256 10 50

Here is a 4-dimensional array B. You can think of it as a 256x256x128 dimensional
3D array repeated 50 times in a fourth dimension. Note how large the array is
(262,144,000 bytes, about 250 megabytes). Depending on how much RAM you
have in your computer, you can potentially have MATLAB work with very large
data structures indeed.

A quick example, we could take the mean across the 4th dimension like so:

>> Bm = mean(B,4);
>> whos

Name Size Bytes Class Attributes

B 4-D 262144000 double
Bm 256x256x10 5242880 double

Another useful function to know about is the squeeze() function in MATLAB.
This will remove any singleton dimensions—that is, dimensions that have size
1. So for example consider the following three-dimensional array:

>> A = reshape(1:12,[3,1,4])

A(:,:,1) =

1
2
3

A(:,:,2) =

4
5
6
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A(:,:,3) =

7
8
9

A(:,:,4) =

10
11
12

>> size(A)

ans =

3 1 4

The second (middle) dimension is size 1, so we can use squeeze to reshape this
three-dimensional array into a two-dimensional array of size [3x4]:

>> As = squeeze(A)

As =

1 4 7 10
2 5 8 11
3 6 9 12

>> size(As)

ans =

3 4
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4.4 Cell arrays

Arrays (single-dimensional vectors as well as two-dimensional matrices and
multi-dimensional arrays) must contain values of the same type. MATLAB has
another data structure called a cell array that allows one to store data of differ-
ent types in a structed similar to an array—namely it’s an indexed data container
containing cells, and each cell can contain different data types. Cell arrays use
curly brackets instead of square brackets.

The MathWorks online documentation has a page devoted to cell arrays here:

Cell Arrays73

So for example we can create a cell array called myCell that contains 5 cells:

>> myCell = {1, 2, 3, 'hello', rand(1,10)}

myCell =

[1] [2] [3] 'hello' [1x10 double]

Cells 1 through 3 are numeric, cell 4 is a character string, and cell 5 is a [1x10]

array of double values. We can index into a cell array just like a regular array:

>> myCell{4}

ans =

hello

>> myCell{5}

ans =

Columns 1 through 8

0.7577 0.7431 0.3922 0.6555 0.1712 0.7060 0.0318 0.
2769

http://www.mathworks.com/help/matlab/cell-arrays.html
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Columns 9 through 10

0.0462 0.0971

You can create an empty cell array like this:

>> emptyCell = {}

emptyCell =

{}

Or a cell array with a certain structure that is empty, like this:

>> emptyCell = cell(3,5)

emptyCell =

[] [] [] [] []
[] [] [] [] []
[] [] [] [] []

>> emptyCell{2,3} = 'hello'

emptyCell =

[] [] [] [] []
[] [] 'hello' [] []
[] [] [] [] []

4.5 Structures

MATLAB has another data type called a structure that is similar to what you
might have seen in other languages like Python, and is called a Dictionary. In
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MATLAB a structure is an array with named fields that can contain any data type.

The MathWorks online documentation has a page devoted to structures here:

Structures74

Let’s create a structure called subject1 that contains a character string corre-
sponding to their name, a numeric value corresponding to their age, a numeric
value correponding to their height, a value corresponding to the date the ex-
periment was run, and an array corresponding to some recorded empirical data
during an experiment:

>> subject1.name = 'Mr. T';
>> subject1.age = 63;
>> subject1.height = 1.78;
>> subject1.date = datetime(2015,08,12);
>> subject1.data = rand(100,2);
>> subject1.catchphrase = 'I pity the fool!';
>> subject1

subject1 =

name: 'Mr. T'
age: 63

height: 1.7800
date: [1x1 datetime]
data: [100x2 double]

catchphrase: 'I pity the fool!'

As you can see we use dot-notation to denote a field of a structure. As soon as
you introduce dot notation into a variable, it becomes a structure type. If a field
with the given name does not exist, it is created. Note the use of the datetime()

function which is a built-in function in MATLAB that handles dates and times.

We can access a field of a structure using dot-notation:

>> subject1.name

http://www.mathworks.com/help/matlab/structures.html
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ans =

Mr. T

>> subject1.date

ans =

12-Aug-2015

4.5.1 Arrays of structures

We can of course form arrays of structures. An array can hold any data type as
long as each element is the same.

subject1.name = 'Mr. T';
subject1.age = 63;
subject1.height = 1.78;
subject1.date = datetime(2015,08,12);
subject1.data = rand(100,2);
subject1.catchphrase = 'I pity the fool!';

subject2.name = 'Polly Holliday';
subject2.age = 78;
subject2.height = [];
subject2.date = datetime(2015,08,12);
subject2.data = rand(100,2);
subject2.catchphrase = 'Kiss my grits!';

subject3.name = 'Leonard Nimoy';
subject3.age = 83;
subject3.height = [];
subject3.date = datetime(2015,02,26);
subject3.data = rand(100,2);
subject3.catchphrase = 'Live long and prosper';

allSubjects = [subject1, subject2, subject3];
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>> allSubjects

allSubjects =

1x3 struct array with fields:

name
age
height
date
data
catchphrase

Now we can do convenient things like look at all of the age fields across the
whole array:

>> allSubjects.age

ans =

63

ans =

78

ans =

83

We can collect these into an array:

>> allAges = [allSubjects.age]

all_ages =
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63 78 83

Or we could collect all the data fields together into a three-dimensional array,
and then average across subjects:

>> allData = [allSubjects.data];
>> size(allData);
>> allData = [allSubjects.data];
>> size(allData)

ans =

100 6

>> allData = reshape(allData,100,2,3);
>> size(allData)

ans =

100 2 3

>> allDataMean = mean(allData,3);
>> size(allDataMean)

ans =

100 2

Note that if all elements of an array are not the same identical structure (i.e. do
not have the same fields defined) then we get an error:

>> subject4.name = 'me'

subject4 =

name: 'me'

>> allSubjects = [subject1, subject2, subject3, subject4];
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Error using horzcat
Number of fields in structure arrays being concatenated do not match.
Concatenation of structure arrays requires that these arrays have the
same set of fields.

The solutionherewouldbe touse a cell array insteadof a plain array—remember,
in a cell array the cells do not have to be the same type:

>> allSubjects = {subject1, subject2, subject3, subject4}

allSubjects =

[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]
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Exercises

E 4.1 If we have a vector X containing n values, then the mean X̄ is:

X̄ =
1
n

N∑
i=1

(Xi) (4.1)

In MATLAB there is a built-in function for computing the mean of a vector,
called mean().

x = [2,1,5,4,8,3,4,3];
mean(x)

ans =

3.7500

Write a MATLAB script that computes the mean of a vector. Do it from
scratch, in other words don’t use the built-in function mean(). Ask the user
to enter a vector using square brackets, and then compute the mean, and
tell the user what it is. For example:

enter a vector, e.g. [3,1,4,1,5,9]: [1,2,3,4,5]
the mean of the vector is: 3.00

E 4.2 If we have a vector X containing n values, then the unbiased sample vari-
ance75 s2 is:

s2 = 1
n− 1

n∑
i=1

(Xi − X̄)2 (4.2)

where X̄ is the mean of the vector.

In MATLAB there is a built-in function for computing the variance of a vec-
tor, called var().

http://en.wikipedia.org/wiki/Variance#Sample_variance
http://en.wikipedia.org/wiki/Variance#Sample_variance
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x = [2,1,5,4,8,3,4,3];
var(x)

ans =

4.5000

Write a MATLAB script that computes the unbiased variance of a list of
numbers. Do it from scratch, in other words don’t use the built-in func-
tions var() or mean().

enter a vector, e.g. [3,1,4,1,5,9]: [1,2,3,4,5]
the variance of the vector is: 2.50
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Links
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5 Control flow

Here we will learn above several ways to specify the flow of information as your
code gets executed. We will learn about loops, which are constructs that allow
you to repeat blocks of code multiple times, typically while changing the values
of variables inside the repeating block. We will learn about conditionals, which
allow you to execute different branches of code depending on the values of vari-
ables. We will see how to pause your code, and to break out of a code block.

5.1 Loops

Loops are used when you have a chunk of code that you need to repeat over and
over again, each time changing one (or more) parameters. Here is a simple ex-
ample for the purposes of demonstration. Let’s say you want to load data from
5 files, named data1.txt, data2.txt, …, data5.txt. Let’s say each file contains a
one-dimensional array of 10 values. Let’s say you want to take the average of
each data file and then report the overall mean and overall variance of those 5
values. Here’s one way to do it:

d1 = load('data1.txt');
d1m = mean(d1);
d2 = load('data2.txt');
d2m = mean(d2);
d3 = load('data3.txt');
d3m = mean(d3);
d4 = load('data4.txt');
d4m = mean(d4);
d5 = load('data5.txt');

83
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d5m = mean(d5);
%
% report overall mean and overall variance of 5 data file means
alldata = [d1m d2m d3m d4m d5m];
datamean = mean(alldata);
datavar = var(alldata);
disp(sprintf('mean=%.3f and variance=%.3f', datamean, datavar))

You can see that there is a lot of repetition in this code. What if we had to load
data from 1000 data files? There would be a lot of copying and pasting of code
chunks. This is error prone and inefficient. Instead let’s use a for loop. A for
loop allows you to repeat a block of code some predetermined number of times,
and includes a counter so that you know which iteration of the loop is currently
running. Here is what the code above would look like if we used a for loop:

nfiles = 5;
alldata = ones(1,nfiles)*NaN; % pre-allocate array and fill with NaN
for i=1:nfiles

d = load(['data',num2str(i),'.txt']);
alldata(i) = mean(d);

end
datamean = mean(alldata);
datavar = var(alldata);
disp(sprintf('mean=%.3f and variance=%.3f', datamean, datavar))

Nowallwewouldneed to change ifwehave1000datafiles (or onemillion) is the
value of our variable nfiles=1000; or nfiles=1e6;—nothing else in the codewould
have to change. This makes our code much more resilient against programming
errors.

You can see a for loop begins with the keyword for followed by a name of a vari-
able (your choice) that will keep track of which iteration of the loop is currently
running. Then the equal sign = followed by a list of values to be iterated through.
This list can be a constructed list using the colon operator (as in the example
above) or it can be a variable such as an array containing several values as in the
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example below. Next is the block of code to be repeated. The end of this code
block is denoted by the end keyword.

x = 1:3:15;
for i=x

disp(sprintf('i=%d', i))
end

which prints out:

i=1
i=4
i=7
i=10
i=13

For loops are executed in a serial fashion, one repetition after another. When
we talk later about parallel programming we will see that one can pretty easily
parallelize a for loop in MATLAB so that different iterations are distributed over
multiple cores of aCPU (or indeedovermultipleCPUs indifferentmachinesover
a network).

There is a second sort of loop called a while loop. This kind of loop is typically
usedwhen thenumberof iterations isnot known inadvance. Awhile loopkeeps
repeating until the value of a logical expression changes from TRUE to FALSE
(changes from 1 to 0). As a little demo, here is an example of a while loop that
prints out successive integers starting from 1, until they exceed a critical value,
in this case 10:

i=1;
while (i<9)

disp(sprintf('i=%d', i))
i=i+1;

end
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which displays:

i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8

The expression that determines whether a while loop will continue repeating
can be any valid MATLAB expression that evaluates to 0 (FALSE) or 1 (TRUE).
In fact, in MATLAB 0 is FALSE and any other value is considered to be TRUE.

For both for loops and while loops, there are two keywords to know about that
can break you out of a loop (break) and can move you to the next iteration of the
loop (continue). I tend not to use these, but you can see the MathWorks online
help to read more about them:

break76

continue77

5.2 Conditionals

So far we have seen how to use loops to repeat sections of code over and over
again as needed. The other major control flow mechanism in high-level lan-
guages suchasMATLAB is the conditional,whichallowsyou to specifyhowcode
branches in one direction or another depending on some logical condition.

So for example let’s say you ask the user to enter a number, and if the number
is even you output “The number is even.” and if the number is odd you output
“The number is odd.”:

x = input('Enter a number: ');
if (mod(x,2)==0)

http://www.mathworks.com/help/matlab/ref/break.html
http://www.mathworks.com/help/matlab/ref/continue.html
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disp('The number is even.');
elseif (mod(x,2)~=0)

disp('The number is odd.');
end

which produces:

Enter a number: 15
The number is odd.

and

Enter a number: 12
The number is even.

In general one can string together any number of elseif branches (including
none of them). For example:

x = input('Enter a number: ');
if (x<10)

disp('The number is less than 10');
elseif (x<20)

disp('The number is less than 20');
elseif (x<30)

disp('The number is less than 30');
else

disp('I don''t have anything to say');
end

You don’t need any else statements at all if is suits your needs:

x = input('Enter a number: ');
if (x<0)

disp('That is a negative number');
end
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The MathWorks online documentation has a page on conditional statements
here:

Conditional Statements78

5.3 Switch statements

The other type of conditional you might come across (though I rarely use them)
is called a switch statement. Typically these are used when there is some rela-
tively large list of potential cases and for each you have a defined (and different)
course of action. Here is an example adapted from the MathWorks help page on
conditionals:

d = input('Enter a day of the week: ','s');
switch d

case 'Monday'
disp('First day of the week')

case 'Tuesday'
disp('Day 2')

case 'Wednesday'
disp('Day 3')

case 'Thursday'
disp('Day 4')

case 'Friday'
disp('Last day of the work week')

otherwise
disp('Weekend!')

end

Side note: can you spot any potential problem(s) with the above code?

5.4 Pause, break, continue, return

There are some keywords in MATLAB that give you finer control over the flow
of a program.

http://www.mathworks.com/help/matlab/matlab_prog/conditional-statements.html
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The pause keyword by itself will simply cause MATLAB to stop at that point in
the code, and wait until the user strikes any key—then MATLAB will continue.
Try this:

for i=1:10
if (i==5)

disp('i is 5! hit any key to continue');
pause

else
disp(sprintf('i is not 5, continuing... (i is %d)', i));

end
end

which produces:

i is not 5, continuing... (i is 1)
i is not 5, continuing... (i is 2)
i is not 5, continuing... (i is 3)
i is not 5, continuing... (i is 4)
i is 5! hit any key to continue
i is not 5, continuing... (i is 6)
i is not 5, continuing... (i is 7)
i is not 5, continuing... (i is 8)
i is not 5, continuing... (i is 9)
i is not 5, continuing... (i is 10)

The break keyword in MATLAB will terminate the execution of a loop. Any code
appearingafter the breakkeywordwill not beexecuted. Innested loops the break

keyword only exits from the loop inwhich it appears. Here is an example of how
break works:

for i=1:10
if (i==5)

disp('i is 5! stopping...');
break

else
disp(sprintf('i is not 5, continuing... (i is %d)', i));
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end
end

which produces:

i is not 5, continuing... (i is 1)
i is not 5, continuing... (i is 2)
i is not 5, continuing... (i is 3)
i is not 5, continuing... (i is 4)
i is 5! stopping...

I tend not to use break to exit out of loops but rather write code that more grace-
fully determines what to do. It’s a personal preference.

The continuekeywordpasses control to thenext iterationof a loop, and skips any
code appearing below where it appears. Like the break keyword, when continue

appears in nested loops it only applies to the loop in which it appears. Here is
an example of how continue works:

for i=1:10
if mod(i,2)==0

continue
end
disp(sprintf('the number %d is odd', i));

end

which produces:

the number 1 is odd
the number 3 is odd
the number 5 is odd
the number 7 is odd
the number 9 is odd

Again, I tend not to use continue but this is perhaps a personal preference.
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The return keyword forcesMATLAB to return control to the “invoking function”,
which means that when used within a function, return will exit the function
without executing any of the remaining code. See Chapter 6 on Functions for
more about how functions work in MATLAB.
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Exercises

E 5.1 Write a program that computes the sum of the first 10 positive integers.
Print the resulting sum to the screen like this:

the sum of the first 10 positive integers is: 55

E 5.2 Some people use an approximate formula for quickly converting Fahren-
heit (F) to Celsius (C):

C ≈ Ĉ = (F− 30)/2 (5.1)

Write a program that prints three columns: F,C and the approximate value
of Ĉ. The table should print for values of F from 0 to 100, in steps of 10
degrees, each to two decimal places.

Your program output should look like this:

Fahrenheit Celsius C
0.00 -17.78 -15.00

10.00 -12.22 -10.00
20.00 -6.67 -5.00
30.00 -1.11 0.00
40.00 4.44 5.00
50.00 10.00 10.00
60.00 15.56 15.00
70.00 21.11 20.00
80.00 26.67 25.00
90.00 32.22 30.00

E 5.3 Write a program that computes the sum of the first n positive integers,
where n is specified by the user. Let’s assume for now that n > 0 and
n < 500. Test it on n = 5, n = 50 and n = 500, the output should be:

the sum of the first 5 positive integers is: 15
the sum of the first 50 positive integers is: 1275
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the sum of the first 500 positive integers is: 125250

E 5.4 Write a program to estimate the square root of 612 using Newton’s
method79. Write it so that the number whose square root is to be taken,
and the number of iterations are both parameters (variables) that can be
set by theuser or theprogrammer. You can choose the initial guess onyour
own, use whatever you like. I suggest the number 10.0 as in the wikipedia
example.

Find the square root of 612 using 5 iterations. Try it again using 10 itera-
tions.

http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number
http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number
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Links

76http://www.mathworks.com/help/matlab/ref/break.html

77http://www.mathworks.com/help/matlab/ref/continue.html

78http://www.mathworks.com/help/matlab/matlab_prog/conditional-statements.html

79http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number

http://www.mathworks.com/help/matlab/ref/break.html
http://www.mathworks.com/help/matlab/ref/continue.html
http://www.mathworks.com/help/matlab/matlab_prog/conditional-statements.html
http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number


6 Functions

Functions are one of the most useful programming facilities that you will run
into because they allow you to make your code more modular.

6.1 Encapsulation

We have seen functions already, for example functions to print stuff to the
screen like disp() in MATLAB, functions for mathematics like sqrt(), and so on.
The advantage of putting things like these into functions is that we avoid the
need to write everything from scratch each time we want to repeat a common
operation. Imagine if every time we wanted to take the square root of a number,
we had towrite an entire algorithm (likeNewton’smethod) to do so. Itwould be
ridiculous. By encapsulating this operation into a function, all we need to do is
write sqrt() and the program goes and looks up the definition of that function,
and executes that code, without us having to type it in again, and again.

Here we will be going through how to write our own functions to encapsulate
our own operations, whatever they may be.

You can even imagine a series of functions that you write to perform the vari-
ous steps of your data analysis, so that each time you collect more data in your
experiment, you simply have to type:

>> go_my_analysis();

and all of your data analysis will be repeated, including the incorporation of any

95
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new data that may be residing in your data directory. Of course you have to de-
fine what happens inside of go_my_analysis() for this to be useful. Maybe inside
your function you have defined other functions like:

>> load_all_data();
>> filter_data();
>> average_across_subjects();
>> perform_statistics();
>> generate_plots();
>> save_processed_data();

You get the idea.

The other situation where modularity in your code is useful, is for when you
want to share code with other people (or use someone else’s code). If you (or
someone else) has a specific input/output functionality in mind, then you can
swap in and out one of many potential functions that claim to achieve the de-
sired functionality, as long as it preserves the input/output relationship(s) that
you specify.

For example, let’s say you discover that as part of your data analysis you will
need to compute the square root of a number, and let’s pretend that you don’t
have a function to do so built in to your language. (In fact you do of course—
but for the purpose of this thought experiment let’s imagine you don’t.) The
input/output requirements for your square root function are that it takes as in-
put a single floating-point number and returns a single floating point number.
Now you can go shopping, among your friends, colleagues, or on the internet,
for an implementation of the square root function, and you can simply plug it in
to your program and use it, as long as it takes a single floating-point number as
input, and returns a singlefloating-pointnumber as output. This specification is
sometimes called the function prototype. You might find that several functions
that you have found work equally well in terms of returning the correct answer,
but that one in particular is way faster than the rest (perhaps it was written by a
mathematician who knows some clever numerical tricks).
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6.2 Function specification

In MATLAB usually sits in its own .m file, and starts with the word function, such
as in this file called mydeg2rad.m:

function radsOut = mydeg2rad(degIn)

% radsOut = mydeg2rad(degIn)
%
% accepts an angle in degrees and returns
% the equivalent in radians
%

conversion = pi / 180;
radsOut = degIn * conversion;

The first line of the file begins with the word function, followed by (1) output
variable(s), (2) the function name, and (3) input variables. In the above case
there is a singleoutputvariablewhichwehavenamed radsOut, anda single input
variablenamed degIn. A function inMATLABcanhave zero, one, ormoreoutput
variables, and zero, one or more intput variables.

Following the function protype on line 1, is a series of commented lines—lines
beginning with the % symbol. This tells MATLAB not to execute those lines as
MATLABcodebut that rather, these arehuman-readable comments. In addition
nowwhenyou type help mydeg2radon theMATLABcommand line,MATLABwill
display those comments as help for your function:

>> help mydeg2rad
radsOut = mydeg2rad(degIn)

accepts an angle in degrees and returns
the equivalent in radians

The last two lines of the file is where the work happens in the function. In this
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case our function has just two lines of code that do the work—but in general
your function can have many lines of code. The thing that your function has to
have, is a definition of the value of the output variable(s)—the names of which
are defined on line 1, in the function prototoype—so in our case this is a variable
called radsOut. This is how a function in MATLAB sends it output back to the
code that called the function.

We can use our function like this:

>> mydeg2rad(180)

ans =

3.1416

6.3 Variable scope

InMATLAB,wenamed theoutputvariable(s) of our functionandwealsonamed
the input variable(s) of our function. In the mydeg2rad function above, the out-
put variable is named radsOut and the input variable is named degIn. The scope
of these variable definitions is only within the function itself. Outside of the
function, MATLAB does not know about these variables.

Similarly, the conversion variable defined on the second-to-last line of the my-

deg2rad function also has a scope within the function itself, and outside of the
function, MATLAB doesn’t know about it.

You can think of a function like a black box, and to the outside user, the innards
are unknown and inaccessible.

We can show this by trying to access the within-function variables:

>> mydeg2rad(180)

ans =
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3.1416

>> degIn
Undefined function or variable 'degIn'.

>> radsOut
Undefined function or variable 'radsOut'.

>> conversion
Undefined function or variable 'conversion'.

If we want to collect the output of the function we have to define a new variable
to hold it:

>> myValue = mydeg2rad(180)

myValue =

3.1416

Similarly, within a function, MATLAB does not know about variables outside of
the function. So if we try to access, from within a function, variables defined
outside of the function, we get an error message:

function out = newFun(in)

out = (myValue * 2) + 10;

>> newFun(10)
Undefined function or variable 'myValue'.

Error in newFun (line 3)
out = (myValue * 2) + in;

MATLAB functionsdoknowabout scripts and functionsdefinedelsewherehow-
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ever. It’s only variables that have limited scope in MATLAB.

6.4 Anonymous functions

I have said that usually functions in MATLAB are located in their own .m file.
However there is a way to define a function that is not stored in a file, but is
associated with a variable defined in the MATLAB workspace. The hitch is that
functions defined in this way can only contain a single executable statement.
Here is an example of an anonymous function that returns the square of an input
value:

>> sqr = @(x) x.^2;
>> a = sqr(5)

a =

25

Line 1 says define an anonymous function, named sqr() that is a function of one
input variable which we shall call x (within the function—remember variable
scope), and the output of that function ought to be x.ˆ2.

See the MATLAB documentation on anonyous functions for more details and
examples:

Anonymous Functions80

http://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html


101 6.4. ANONYMOUS FUNCTIONS

Exercises

E 6.1 Write a function that determines whether a given number is a prime num-
ber. Remember, a prime number81 is a (natural) number greater than 1
that is only divisible (with zero remainder) by the number 1, and itself.
The first few prime numbers are 2,3,5,7,11,13,17,19,23,29, …

For now you don’t have to implement a fancy algorithm for testing prime-
ness (e.g. Sieve of Eratosthenes82). For now, it’s ok to implement a brute
force method.

Hint: you will probably want to use the modulo83 operator to test whether
the remainder is zero after dividing a number n by another number m. In
MATLAB, modulo is achieved using a function mod(n,m).

So for example we can test whether the number 5 is prime by testing
whether (5 modulo m) equals 0 for m=2,3,4.

E 6.2 Write a function that computes the nth Fibonacci number84. Your func-
tion should be called fib() and should take as input a single integer value
n, and should return a single integer value representing the nth Fibonacci
number.

Use a loop to accomplish this. Count howmany arithmetic operations take
place for computing the 10th Fibonacci number, and count also for the
20th.

bonus: write a second version of your function that uses recursion85 in-
stead of a loop. Note how much more succint the code is. Count how
many arithmetic operations take place for computing the 10th Fibonacci
number, and for the 20th as well. Now you see the potential downside of
recursive algorithms.

bonus 2: incorporate memoization86 to make your recursive version more
efficient. Count again the number of arithmetic operations for the 10th
and 20th Fibonacci numbers.

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Recursion_(computer_science)
http://en.wikipedia.org/wiki/Memoization
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E 6.3 The following equation can be used to estimate an approximate derivative
of a mathematical function f(x) if h is sufficiently small:

f′(x) ≈ f(x+ h)− f(x− h)
2h (6.1)

Write a function numdiff(f,x,h) that returns an approximate estimate of
the derivative of a mathematical function in a single variable x. Apply it
to the four mathematical functions given below to estimate derivatives at
the given values:

1. f(x) = (ex) at x = 0
2. f(x) =

(
e−2x2

)
at x = 1

3. f(x) = (cos x) at x = π/2
4. f(x) = (ln x) at x = 1

Use h = 0.01

In each case write out the error, i.e., the difference between the exact
derivative and the result of the approximation. Use 10 decimal places of
precision.

If you need help finding out what the exact solutions to these derivatives
are, (1) try to remember your calculus!, (2) ask a classmate, (3) google it,
or (4) ask me (at which point I will direct you to WolframAlpha87).

hint: the ln() function (logarithm, base e) is typically called log() in pro-
gramming languages like MATLAB whereas the logarithm, base 10 (typi-
cally referred to in math class as log(), is typically called log10().

Here is some code scaffolding to get you started:

In a file called numdiff.m:

function out = numdiff(f,x,h)

out = (feval(f,x+h) - feval(f,x-h)) / (2*h);

end

http://www.wolframalpha.com
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In a file called myfun1.m:

function out = myfun1(x)

out = exp(x);

end

In a file called numerical_differentiation.m (this is your main script):

% exercise on numerical differentiation
%

% estimate derivative of e^x at x=0, h=0.01:
%
est1 = numdiff('myfun1',0,0.01);
% est1 = 1.000016666749992
true1 = 1.00; % from calculus, d(e^x)/dx = e^x
err1 = est1-true1;
disp(sprintf('error for e^x is %.10f', err1))

error for e^x is 0.0000166667

E 6.4 The wikipedia article about pi (here88) describes a monte carlo method of
estimating pi that involves repeated sampling from a random distribution.

The basic idea is to imagine a circle of radius r inscribed inside a square
with side length 2r. Now imagine placing a dot at some random location
within the square. Sometimes the dot will be inside the circle and some-
times it will not. If you count the number of dots that land inside the circle
and divide that by the total number of dots, that ratio ought to equal π

4 .

As an exercise, implement thismethodof estimatingpi. Write theprogram
so that you canuse anynumber of randomdots n. Startwith 1000dots and
then try larger numbers. See how close you can get to the actual value of
π. Here are the first 100,000 digits89 of π.

http://en.wikipedia.org/wiki/Pi#Geometry_and_trigonometry
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
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Note that this algorithm is not a very efficient or fast way of getting the
digits of π, but it’s a fun programming exercise nevertheless and a way to
get you coding.

hint: you will need a function that generates random numbers. In MAT-
LAB the rand() function samples fromauniform (pseudo)randomdistribu-
tion over the interval (0, 1). Typing rand will return a single random value.

hint: to determine whether each point is inside or outside of the circle you
can compute the distance between the point and the centre of the circle.
If this distance is greater than the radius of the circle, it must be outside of
the circle. Using the Pythagorean theorem90 you can easily show that the
equation for the distance d between two points (x1, y1) and (x2, y2) is:

d =
√

(x2 − x1)2 + (y2 − y1)2 (6.2)

http://en.wikipedia.org/wiki/Pythagorean_theorem
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80http://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html

81http://en.wikipedia.org/wiki/Prime_number

82http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

83http://en.wikipedia.org/wiki/Modulo_operation

84http://en.wikipedia.org/wiki/Fibonacci_number

85http://en.wikipedia.org/wiki/Recursion_(computer_science)

86http://en.wikipedia.org/wiki/Memoization
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89http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
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http://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Recursion_(computer_science)
http://en.wikipedia.org/wiki/Memoization
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Pi#Geometry_and_trigonometry
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
http://en.wikipedia.org/wiki/Pythagorean_theorem
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7 Input & Output

Most of the time you will be writing programs that analyse data—whether those
data are collected from experiments, or generated by models and simulations.
We will need to be able to read in data from a file. It will also be useful to be able
to write data out to a file.

The MathWorks online documentation has a page devoted to importing and ex-
porting data, here:

Data Import and Export91

Herewewill gooverhow to readandwrite to somecommon typesoffiles includ-
ing ASCII files (plain text), MATLAB .mat files, as well as other binary formats.
The MathWorks has a page listing all of the various file formats that MATLAB
knows how to import, it is quite lengthy:

Supported File Formats for Import and Export92

In general, there are two types of file formats, ASCII files (otherwise known as
plain text files) and binary files. In fact, this is a lie and there really is only one
file type, namely binary files, since all data are ultimately stored as 0s and 1s
(binary)—but we have conventions, like the ASCII code, which allow us to make
assumptions, tomake life easier. Soweknow that if a (binary) file is codedusing
a series of bytes, each of which corresponds to an ASCII code, then this file is in
fact a “plain text” or ASCII file (and you can read it using any plain text editor
like vim, emacs, sublime text, notepad, even MS Turd will open plain text files).
Binary files include things like image formats such as .png, .jpeg, sound files
such as .mp3 and video files such as .mp4 and .mov. Like I said before though,
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http://www.mathworks.com/help/matlab/data-import-and-export.html
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html
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really, all files are binary. It’s just that we can open files containing ASCII code
usingmany programswhich knowhow to interpret the 0s and 1s as ASCII codes.

7.1 Plain text files

If your data are stored in a plan text file (ascii) then you can use the MATLAB
function load to load in the file. For example let’s say we have a plain text file
called mydata.txt that contains the following:

2 3
4 5
6 7
8 9

Then we can use the load command to load the data:

>> d = load('mydata.txt');
>> whos

Name Size Bytes Class Attributes

d 4x2 64 double

>> d

d =

2 3
4 5
6 7
8 9

You can also load the data without giving the load function an output variable
to store the data—in this case the data will be stored in a new variable with the
same name as the filename (but any file suffix, such as .txt stripped):

>> load mydata.txt
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>> whos
Name Size Bytes Class Attributes

mydata 4x2 64 double

>> mydata

mydata =

2 3
4 5
6 7
8 9

For loadingASCIIfiles, thefilemust containa rectangular tableofnumbers,with
an equal number of elements in each row. Delimiters such as spaces, commas,
semicolons or tabs can be used—but they have to the same througout the file. If
these conditions are not met, MATLAB will complain. For example if our data
file mydata2.txt looks like this:

2 3
4 5
6 7 8
8 9

MATLAB will complain about number of columns not being the same:

>> load mydata2.txt
Error using load
Number of columns on line 3 of ASCII file mydata2.txt must be the same as

previous lines.

To save data to an ASCII file, you can use the save command. For example let’s
say we have data store in a variable called data that looks like this:

data =
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0.6557 0.7577
0.0357 0.7431
0.8491 0.3922
0.9340 0.6555
0.6787 0.1712

Then we can use save with the -ascii flag to save this into an ASCII file:

>> save mynewdata.txt data -ascii

The first argument (mynewdata.txt) is the filename of the new file to be created.
The second argument (data) is the name of the variable to be saved to the file,
and the third argument (-ascii) is a flag to the save command that tells MAT-
LAB to save the data in plain text (ASCII) format. Now if we look at the new file
(for example by opening it in the MATLAB text editor) that was created, mynew-
data.txt it looks like this:

6.5574070e-01 7.5774013e-01
3.5711679e-02 7.4313247e-01
8.4912931e-01 3.9222702e-01
9.3399325e-01 6.5547789e-01
6.7873515e-01 1.7118669e-01

Note how it has been saved in scientific notation.

If youwant finer control over how things are stored in anASCII file, you can read
(as well as write) using lower-level control using MATLAB’s built-in functions
fprintf and fscanf. These mirror the functions with the same name that may
be familiar to you if you have programmed in C before. Here is an example of
writing to an ASCII file where we want a very specific format:

data = [
0.6557 0.7577
0.0357 0.7431
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0.8491 0.3922
0.9340 0.6555
0.6787 0.1712

];

fid = fopen('myfile.txt','w');
fprintf(fid, 'myfile.txt contains some data\n');
for i=1:size(data,1)

fprintf(fid,'item 1.1: %.4f, item 1.2: %.4f\n', data(i,1), data(i,2));
end
fprintf(fid, 'end of data\n');
fclose(fid);

This creates a file called myfile.txt that looks like this:

myfile.txt contains some data
item 1.1: 0.6557, item 1.2: 0.7577
item 1.1: 0.0357, item 1.2: 0.7431
item 1.1: 0.8491, item 1.2: 0.3922
item 1.1: 0.9340, item 1.2: 0.6555
item 1.1: 0.6787, item 1.2: 0.1712
end of data

7.2 Binary files

MATLAB has its own binary format for files, denoted using a .mat file suffix. The
save and load functions inMATLABwith no other options use this default binary
format. The advantage of MATLAB’s binary format over an ASCII format is (1)
your data files will be smaller in size, and (2) with MATLAB’s .mat format you
can store more than one variable (and variables of different kinds) in a single
file. For example here we store a scalar variable called mynumber, a vector called
myvector, a matrix called mymatrix and a structure called mystructure in a single
binary .mat file called myfile.mat:

>> whos
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Name Size Bytes Class Attributes

mymatrix 4x2 64 double
mynumber 1x1 8 double
mystructure 1x1 840 struct
myvector 1x7 56 double

>> save myfile mynumber myvector mymatrix mystructure

Now there is a file in my working directory called myfile.mat. I can now load the
file (and all the variables contained within it) into MATLAB’s memory using the
load function. First I clear the memory to demonstrate that I’m not cheating:

>> clear
>> whos

Now I load the file:

>> load myfile
>> whos

Name Size Bytes Class Attributes

mymatrix 4x2 64 double
mynumber 1x1 8 double
mystructure 1x1 840 struct
myvector 1x7 56 double

7.3 ASCII or binary?

The question of which file format to use as you go forward and write programs
for analysing your data is an interesting one to consider. For long-term archival
purposes, Iwould suggest storingyourdata in anASCII format, so that it remains
readable by human eyes. There will always be programs to read ASCII files. The
risk of storing data in a binary format is that (a) whatever program you used to
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save the datawill no longer be easily accessible in the future, and/or (b) youmay
not even remember what the binary format is. The disadvantage of storing data
in ASCII format is that the files will be larger than if they were stored in a binary
format. The availability and affordability of large amounts of storage is growing
so quickly however, so perhaps one does not have to worry too much about this.
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Links

91http://www.mathworks.com/help/matlab/data-import-and-export.html

92http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html

http://www.mathworks.com/help/matlab/data-import-and-export.html
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html


8 Debugging, profiling and speedy code

In this chapter we will look at ways of solving problems with your code using
the various debugging tools in MATLAB. We will also look at profiling your code
using the built-in profiler in MATLAB, which can be used to identify parts of
your code that are taking the most time to execute. We will go over a number
of ways to make sure your code runs fast. In some cases this amounts to telling
you about what not to do to make your code run slow. Finally we will look at
the MATLAB Coder, which is a toolbox included in MATLAB that can generate
standalone C and C++ code from MATLAB code. It can also generate so-called
binary MEX functions that allow you to call compiled versions of your MATLAB
code, potentially speeding up computations.

8.1 Debugging

There are at least two kinds of errors you will encounter in programming. The
first is when you run your code and it aborts because of some kind of error, and
you recieve an error message. Sometimes those error messages are useful and
you can determine immediately what is wrong. Other times the error message
is cryptic and it takes some detective work on your part to figure out what part
of the code is failing, and why it is failing.

The second type of error is when your code runs without aborting, and without
reporting any problem to you, but you do not get the expected result. This is
much more difficult to debug.

In general the approach you should use for debugging is to step through your
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code, line by line, and ensure that each step is (a) performing the operation you
think it is, and (b) is performing the appropriate operation.

The built-in MATLAB editor that you can use to edit your MATLAB code files
has a handy feature called breakpoints that allows you to set a breakpoint (or
multiple breakpoints) on a specific line (or lines) of your code, such that as you
run your code, MATLAB stops at a breakpoint and enters a special mode called
the debugger. Once in the debugger you can examine values of variables, step
to the next line of code, step in or out of functions, and continue executing the
rest of the code. It’s a very useful way to halt execution at specific places in your
code, so that you can examine what is going on. Often this is how will find bugs
and errors in your code—when you assumed a variable had a specific value, or
an operation resulted in a specific value, and in fact it didn’t.

Here is an example of aMATLAB script called go.mwhich computes somevalues,
and executes a for–loop in which is fills a vector v with some numbers. By click-
ing with the mouse on the little dash (-) next to the line number 7 (on the left
hand side of the editor window) I have inserted a breakpoint, which appears as
a filled red circle. Figure 8.1 shows what this looks like.

Now when we run the program, MATLAB stops the first time it encounters the
breakpoint on line 7. You will see this at the MATLAB command prompt:

>> go
7 d = c / 12;
K>>

It reports the line number (7) and the code appearing on that line, and it puts
you in to debugger mode, as indicated by the prompt K>>. Now you can enter
the names of variables to query their value, for example we can see what the
value of i, and c are:

K>> i

i =
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Figure 8.1: Setting a breakpoint at line 7.

1

K>> c

c =

30

We can step to the next line of code by clicking on the “Step” button appearing
at the top of the editor window, as shown in Figure 8.2.

You will see that there is now a little green arror pointing to the right, at line
8 in the code. This indicates the line of code where the debugger has stopped,
and is waiting for you to tell it what to do next. We can click on the “Continue”
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Figure 8.2: Stepping to the next line of code.

button at the top of the editorwindow to continue. Whenwedo thiswe see that
MATLAB has stopped again, at line 7 again, as shown in Figure 8.3.

At the command prompt we can enter i to query the value of i and we see that
indeed we are now at iteration 2 of the for–loop:

K>> i

i =

2

If we click “Continue” again we will stop again at line 7, at the third iteration of
the for–loop, and so on. To continue without stopping at the breakpoint each
time, we need to remove or disable the breakpoint. Right-click on the little red
circle and a pop-up menu gives you these options. Note that there is also an
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Figure 8.3: After continuing code execution.

option called “Set/Modify Condition...”—this allows you to specify a logical con-
ditionwhich if true,will causeMATLAB to stop at the breakpoint, otherwise not.
This is a nice way to set up breakpoints that only stop the code if certain condi-
tions are met—for example if the value of a variable you know should never be
negative, is less than zero.

The MathWorks online documentation has a page devoted to debugging here:

Debugging93

8.2 Timing and Profiling

One obvious way of speeding up your MATLAB programs is to first identify the
pieces of your program that are slowest—and then do what you can to speed up
those parts.

http://www.mathworks.com/help/matlab/debugging-code.html
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Figure 8.4: Setting a conditional breakpoint.

8.2.1 Timing your code using tic and toc

One way to time your code is to use the tic and toc commands in MATLAB.

>> help tic
tic Start a stopwatch timer.

tic and TOC functions work together to measure elapsed time.
tic, by itself, saves the current time that TOC uses later to
measure the time elapsed between the two.

TSTART = tic saves the time to an output argument, TSTART. The
numeric value of TSTART is only useful as an input argument
for a subsequent call to TOC.

Example: Measure the minimum and average time to compute a sum
of Bessel functions.

REPS = 1000; minTime = Inf; nsum = 10;
tic;
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for i=1:REPS
tstart = tic;
sum = 0; for j=1:nsum, sum = sum + besselj(j,REPS); end
telapsed = toc(tstart);
minTime = min(telapsed,minTime);

end
averageTime = toc/REPS;

See also toc, cputime.

Reference page in Help browser
doc tic

>> help toc
toc Read the stopwatch timer.

TIC and toc functions work together to measure elapsed time.
toc, by itself, displays the elapsed time, in seconds, since
the most recent execution of the TIC command.

T = toc; saves the elapsed time in T as a double scalar.

toc(TSTART) measures the time elapsed since the TIC command that
generated TSTART.

Example: Measure the minimum and average time to compute a sum
of Bessel functions.

REPS = 1000; minTime = Inf; nsum = 10;
tic;
for i=1:REPS

tstart = tic;
sum = 0; for j=1:nsum, sum = sum + besselj(j,REPS); end
telapsed = toc(tstart);
minTime = min(telapsed,minTime);

end
averageTime = toc/REPS;

See also tic, cputime.
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Reference page in Help browser
doc toc

The typical pattern using tic and toc is to bracket a chunk of code you want to
time with tic and toc. There are several examples in section 8.3 below in which
tic and toc are used to time MATLAB code execution time.

8.2.2 Using MATLAB Profiler

There is a tool in MATLAB called the Profiler that is very useful for showing
which parts of your program take the most amount of time to execute. Think
of the profiler as a way of automatically timing every part of your program and
generating a handy report (which it does also).

The basic way to use the profiler is to first activate it by typing:

>> profile on

You can then run your MATLAB script, and once it is finished, stop the profiler
by typing:

>> profile off

You can then generate a report by typing:

>> profile report

Here is an example using a script called go.m which calls two other functions,
myfun1 and myfun2:

n = 1e4;
m = zeros(100,100);
for i=1:n

m = m + myfun1(m);
m = m + myfun2(m);
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end
disp(sprintf('grand mean of m is %.6f\n', mean(m(:))/n));

function out = myfun1(in)
[r,c] = size(in);
tmp = randn(r,c);
for i=1:r

for j=1:c
tmp(i,j) = sqrt(tmp(i,j));

end
end
out = tmp;
end

function out = myfun2(in)
[r,c] = size(in);
tmp = randn(r,c);
tmp = sqrt(tmp);
out = tmp;
end

We turn on the profiler, run the code, stop the profiler, and generate a report,
which is shown in Figure 8.5.

We can see that the go script overall took 160.726 seconds to run. We also see
a list of functions that were called within go, and the time they took. We can
see immediately that myfun1 is way slower than myfun2. If we click the mouse on
myfun1 in the report, we get a new report of the myfun2 function itself, which is
shown in Figure 8.6.

We get a quite detailed report of the lines of the code where the most time was
spent. We also see the time spent, and the number of calls made to each line of
code in the function.

In this case we see that line 7 of the myfun1 function is taking a lot of time to
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Figure 8.5: Profiler report of go.m.

execute—this is where we take the square root of each element of a large matrix,
within two nested for–loops. Line 7 represents the innermost part of these two
nested for–loops, and so it’s no surprise that we are spending a lot of time here.
See section 8.3.2 below for more information about how to avoid nested for–
loops by using vectorized code operations.

Theotherwayof running theprofiler is by clickingwith yourmouse on the “Run
andTime”button in the toolbarof theMATLABcodeeditor. Theprofilerwill run
your code, timing each line, and will open up a report window.

The MathWorks online documentation has a page on the profiler here:

Profiling for Improving Performance94

http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
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Figure 8.6: Profiler report of myfun1.m.
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8.3 Speedy Code

8.3.1 Array preallocation

There are many cases in which we want to collect the results of many compu-
tations together into a single data structure, e.g. a vector or array. One way of
doing this is to start with an empty array, and each time through the loop, add a
value to it (and hence lengthening it). It turns out this way is very slow. What’s
much, much faster is to pre-allocate the array (and fill it with whatever values
you want, e.g. 0s, or NaNs), and then set each value as you go through the loop
to the result of your computation.

Here is an example in MATLAB:

% let's compute the following formula
% for values between 0 and n:
%
% f(i) = (i + f(i-1)) / n

n = 1e5;

% the slow way:
%
tic
c = [0];
for i=2:n

c = [c, (i + c(i-1)) / n];
end
toc
%
% on my laptop this takes 3.605413 seconds

% the fast way, with array pre-allocation
%
tic
c = zeros(1,n);
for i=2:n

c(i) = (i + c(i-1)) / n;
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end
toc
%
% on my laptop this takes 0.002819 seconds
% this is over 1,000 times faster than the slow version

In the slow version, we start with an array of length 1 containing the number
zero. Each time through the loop we concatenate the array with the next value,
and in this way we build up the array.

In the fast version, we pre-allocate an array of the required length, fill it with 0s,
and then each time through the loop we simply assign the appropriate value to
the appropriate array position.

The reason the slowversion is so slow, is that each timeweconcatenate thearray,
several steps take place under the hood:

1. a block ofmemory large enough to hold a new array (of length: one greater
than the old array) is found and reserved

2. the new array is created
3. the old array is copied into all elements of the new array (except the last

element which is left empty)
4. the new value is copied to the last value in the new array
5. the memory assigned to the old array is freed up (no longer reserved)

As you can imagine, when the array gets large, the copy operation can take a lot
of time. It’s inefficient to keep copying the array over and over again.

With pre-allocation, there is no copying, only assignment, and only single val-
ues are assigned.

8.3.2 Vectorization

Many functions in MATLAB are vectorized, that is, they can operate on arrays
and matrices as if the function had been applied one by one to each element.
An example is the sqrt() function.
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Here’s an example where we have three long arrays, defining 3D points, and our
task is compute the length of each vector. We first compute the vector lengths
the slow way, using a straightforward for–loop. We then do the same calcula-
tions but in a vectorized fashion—in this case by recognizing that arithmetic op-
erations such as squaring, addition and taking the square root can all be applied
to vectors as a whole, and MATLAB performs these operations in a vectorized
fashion.

n = 1e7; % a big number
x = rand(1,n); % array of random numbers
y = rand(1,n); % array of random numbers
z = rand(1,n); % array of random numbers

% compute the norm of the 3-D vectors (x,y,z)

% the slow way
%
tic
norm_slow = zeros(1,n); % pre-allocate array
for i=1:n

norm_slow(i) = sqrt(x(i)^2 + y(i)^2 + z(i)^2);
end;
toc
%
% on my laptop this takes 0.594378 seconds

% the vectorized way
%
tic
norm_slow = sqrt(x.^2 + y.^2 + z.^2);
toc
%
% on my laptop this takes 0.040536 seconds
% this is about 15 times faster than the slow version

When we implement this in a vectorized way, MATLAB uses pre-compiled, opti-
mized functions to execute that part of the code, instead of running it through
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the interpreter. When we use a for–loop, everything happens at the interpreter
layer.

Two aspects of the code example are vectorized. First, we use the exponent op-
erator in MATLAB on the entire vector x, y, and z (with the dot notation to de-
note element-by-element exponentiation). This exponentiates the entire vec-
tor using precompiled optimized code under the hood. Then we use the sqrt()

function which also takes the whole array as an argument. Again, optimized
precompiled code is used on the entire array rather than stepping through the
array in a for loop, at the interpreter level.

Another salient example of vectorization is matrix algebra. The matrix alge-
bra operators (e.g. matrix multiplication) make use of highly optimized, pre-
compiled routines that are way faster than doing things by hand at the inter-
preter level, using for loops. Here is an example in code:

% matrix multiplication
%
A = rand(400,500);
B = rand(500,600);
C = zeros(400,600);

% the slow way, using for loops at the interpreter level
%
tic
m = size(A,1);
n = size(A,2);
p = size(B,1);
q = size(B,2);
for i=1:m

for j=1:q
the_sum = 0;
for k=1:p

the_sum = the_sum + A(i,k)*B(k,j);
end
C(i,j) = the_sum;

end
end
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toc
%
% on my laptop this takes 2.552810 seconds

% the fast way (vectorized)
%
C = zeros(400,600);
tic
C = A*B;
toc
%
% on my laptop this takes 0.001998 seconds
% this is over 1,000 times faster than the slow version

When we write A*B in MATLAB, where A and B are both matrices, MATLAB uses
precompiled, optimized linear algebra routines (written in C and compiled for
your CPU) to perform the matrix multiplication calculation.

8.3.3 Suppress output to the screen

This one might seem obvious, but if you are doing something thousands or mil-
lions of times, and each time you print something to the screen, that will slow
down your code. Here’s an example:

% suppress output!

% slow version
%
n = 1e5;
x = zeros(1,n);
tic
for i=1:n

tmp = (i*i) + (i/2)
x(i) = tmp;

end
toc
%
% on my laptop this takes 2.571819 seconds
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% fast version
%
x = zeros(1,n);
tic
for i=1:n

tmp = (i*i) + (i/2);
x(i) = tmp;

end
toc
%
% on my laptop this takes 0.001080 seconds
% this is more than 2,000 times faster than the slow version

The only difference between the two version of this for–loop is that in the first,
we fail to suppress output to the screen when we define the tmp variable. In the
second versionwe include a semicolon to suppress output to the screen and our
code runs more than 2,000 times as fast. Semicolons are powerful!

Printing values to the screenwithin a for–loop is not always a bad thinghowever.
Often we want to print values to the screen in a for–loop so that we can keep
track of how far along the computation is, or detect errors. One alternative that
avoids the slow execution of printing to the screen every time through the loop,
is to print more sporadically. Here is an example where we repeat the above
code but we only print to the screen every 10,000 iterations. This still allows
you to monitor the progress of the computation, but it doesn’t eat up precious
time displaying stuff on the screen every single time through the loop:

% partial suppression of output

% slow version
%
n = 1e6;
x = zeros(1,n);
tic
for i=1:n

tmp = (i*i) + (i/2);
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x(i) = tmp;
disp(tmp);

end
time1=toc
%
% on my laptop this takes 7.689031 seconds

% fast version
%
x = zeros(1,n);
tic
for i=1:n

tmp = (i*i) + (i/2);
x(i) = tmp;
if (mod(i,100000)==0)

disp(tmp);
end

end
time2=toc
%
% on my laptop this takes 0.063113 seconds
% this is still more than 100 times faster than the slow version
%
disp(sprintf('time1=%.6f, time2=%.6f\n', time1, time2))

8.3.4 Overhead cost of calling a function

We’ve talked about the benefits of modularizing your code, and sticking com-
monly used operations inside functions. This is absolutely a good idea. It is
worth noting however that the act of calling a function does involve some over-
head cost in time (and in memory), for various things that happen under the
hood.

Functions in general are a very good idea, but if you put everything into func-
tions, you can start to experience unneccessary slowdowns due to the overhead
in calling functions, passing parameters in, and passing results out. Here is a
simple example in which we loop through an array and perform a number of
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calculations on each element. In the slow version we put every single calcula-
tion into its own function (admittedly this is a bit extreme, but it illustrates the
problem). In the fast version we don’t use functions at all:

% slow version: make everything a function!!
%
n = 1e6;
a = 1:n;
tic
for i=1:n

tmp1 = mycomp1(i);
tmp2 = mycomp2(i);
tmp3 = mycomp3(i);
tmp4 = mycomp4(i);
tmp5 = mycomp5(i);
a(i) = tmp1 + tmp2 + tmp3 + tmp4 + tmp5;

end
toc
%
% on my laptop this takes 1.048836 seconds

% fast version: no functions here
%
n = 1e6;
a = 1:n;
tic
for i=1:n

tmp1 = i*1;
tmp2 = i*2;
tmp3 = i*3;
tmp4 = i*4;
tmp5 = i*5;
a(i) = tmp1 + tmp2 + tmp3 + tmp4 + tmp5;

end
toc
%
% on my laptop this takes 0.010898 seconds
% this is about 100 times faster than the slow version
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In this case we have defined five functions in separate .m files (mycomp1.m, my-

comp2.m, mycomp3.m, mycomp4.m, mycomp5.m,):

function out = mycomp1(in)
out = in*1;

function out = mycomp2(in)
out = in*2;

function out = mycomp3(in)
out = in*3;

function out = mycomp4(in)
out = in*4;

function out = mycomp5(in)
out = in*5;

It’s a bit of a silly example but it gets the point across.

8.3.5 Passing by reference vs passing by value

In some languages like Python and in C, the default behaviour for passing data
structures to functions as arguments, is to pass by reference. In MATLAB and R,
the default behaviour is to pass by value.

Passing by value means that when one calls a function with an input argument
(e.g. an array), a copy of that array is made—one that is internal to the function—
for the function to operate on. When the function exits, that internal copy is
deallocated (destroyed). Passing by reference means that instead, a pointer to
the array (in other words, the address of the array in memory) is sent to the
function, and the function operates on the original array, via its address.
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As you can imagine, passing around data structures by value, which involves
making copies, can be very inefficient especially if the data structures are large.
It takes time to make copies and what’s more it eats up memory. On the other
hand, there may be times where one specifically wishes to make a copy of a
function input, and in that case you might just accept that there is a price to
pay.

In fact, MATLAB’s behaviour is slightly more complex. If you pass an input ar-
gument x into a function, and if inside the function that input argument is never
modified, MATLAB avoids making a copy of it, and passes it by reference. On
the other hand, if inside of the function, input parameter x is altered in any way,
MATLAB passes it by value. I suppose this is a good thing, MATLAB is trying
to be efficient when it can be. The downside is that you have to remember as a
programmer when things might change under the hood.

Here is an example, slightly contrived, but it gets the point across that passing
large structures by value is slower than passing them by reference. Here is the
slow version, in which MATLAB will pass by value, because inside our function
we are changing a value of the input parameter x:

function out = myfunc_slow(x,y)
tmp = x(1);
x(1) = tmp*2;
out = tmp;

and here is the fast version, where we don’t change the value of x, and so MAT-
LAB will pass by reference:

function out = myfunc_fast(x,y)
tmp = x(1);
y(1) = tmp*2;
out = tmp;

Here we demonstrate the speed difference:
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x = rand(1e4,1e4);
y = [1,2,3];

% the slow way
% MATLAB passes x by value
% because it is altered inside myfunc_slow()
%
tic
for i=1:20

o1 = myfunc_slow(x,y);
end
toc
%
% on my laptop this takes 8.557641 seconds

% the fast way
% MATLAB passes x by reference
% because it is not altered inside myfunc_fast()
%
tic
for i=1:20

o2 = myfunc_fast(x,y);
end
toc
%
% on my laptop this takes 0.000687 seconds
% this is over 12,000 times faster than the slow version

Note that it’s not only speed that is a concern here. You will also notice if you
pass around large data structures by value, that RAM (random access memory,
the internal, temporary memory that your CPU uses) will be eaten up by all of
the copies that are made. If your available RAM falls below a certain level, then
everything (the entire OS) will slow down. Unix-based operating systems (e.g.
Mac OS X, Linux) make use of hard disk space as a temporary scratch pad for
situations in which available RAM is scarce. This is known as swap space. The
problem is, read/write operations on hard disks (especially spinning platters)
are orders of magnitude slower than read/write operations in RAM, so you still
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suffer the consequences. With new solid-state hard drives (no moving parts)
the read/write access is faster, but it’s still not as fast as RAM, which has a more
direct connection to your CPU.

8.3.6 The algorithm itself

Of course the other thing to consider when writing code that performs some
computational task, is to make sure you’re using the most efficient algorithm
you can (when you have a choice). Sorting is an example. Why use bubblesort
when you knowquicksort can be orders of magnitude faster, especially for large
lists?

Another example is optimization. For certain families of problems, specific op-
timizers are known to be really fast and efficient. For others, one needs a more
generic, more robust optimizer, that may be slower.

Whatver operation you’re coding up, do a bit of research to find out if someone
has developed an algorithm that solves the problem you’re solving, only faster.

8.4 MATLAB Coder

The MATLAB Coder is a toolbox which lets you generate standalone C and C++
code from MATLAB code, and lets you generate binary MEX files which you can
call from your own MATLAB code.

Note that there is anotherMATLAB toolbox called theMATLABCompiler,which
does something different—it lets you share MATLAB programs as standalone ap-
plications. We will be talking about the MATLAB Coder here, not the MATLAB
Compiler.

Without getting into details (and there are a few, see the documentation) the
way to use the MATLAB Coder is to use the codegen function to generate a MEX
file based on some MATLAB function that you’ve written, and then to call that
compiled version of your function instead of the original MATLAB code version.

So for example let’s consider the following function which computes the stan-
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darddeviationofmeans of simulated randomdata vectors. It’s not so important
why we are doing these particular calculations—it’s just an example of a set of
calculations that we can compile to make faster.

function out = myfunction(in)
out = zeros(1,in)*NaN;
for i=1:in

tmp = randn(100,5);
out(i) = std(mean(tmp));

end
end

We can call the function like so:

>> tic; out=myfunction(1e5); toc
Elapsed time is 7.873669 seconds.
>> hist(out,50)

which produces the figure shown in Figure 8.7.

Figure 8.7: Output of myfunction.m.
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To compile our MATLAB code into a binary MEX file we simply call the codegen

function:

>> codegen myfunction -args {double(0)}

The -args argument is a list of input parameters to our function myfunction and
their types, which the MATLAB coder needs to know in advance, in order to
produce the C code and then the binary MEX function. The double(0) just tells
MATLAB thatwehave a single input argument that is the same type as double(0),
in other words a double.

Just to unpack this a bit more—if we had a function that took two input argu-
ments, a scalar double and a 1x10 array of doubles then we could do the following:

>> i1 = 0.0;
>> i2 = zeros(1,10);
>> codegen myfunction -args {i1, i2}

In this case we have predefined example input variables and passed those on in
a cell array (hence the curly brackets).

Now if we look in our current directory we will see a binary MEX file called my-

function_mex.mexmaci64:

>> !ls -l
total 136
drwxr-xr-x 3 plg staff 102 26 Aug 11:41 codegen
-rw-r--r--@ 1 plg staff 126 26 Aug 11:36 myfunction.m
-rwxr-xr-x 1 plg staff 62540 26 Aug 11:41 myfunction_mex.mexmaci64

We also see a directory called codegen that contains a subdirectory called mex and
within that another directory called myfunction, that contains all of the various
C files and other stuff that’s required to build the binary MEX file:

>> !ls codegen/mex/myfunction
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_coder_myfunction_api.o myfunction_initialize.c
_coder_myfunction_info.o myfunction_initialize.h
_coder_myfunction_mex.o myfunction_initialize.o
buildInfo.mat myfunction_mex.mexmaci64
eml_error.c myfunction_mex.mk
eml_error.h myfunction_mex.mki
eml_error.o myfunction_mex.sh
html myfunction_mex_mex.map
interface myfunction_terminate.c
mean.c myfunction_terminate.h
mean.h myfunction_terminate.o
mean.o myfunction_types.h
myfunction.c randn.c
myfunction.h randn.h
myfunction.o randn.o
myfunction_data.c rt_nonfinite.h
myfunction_data.h rtwtypes.h
myfunction_data.o setEnv.sh
myfunction_emxutil.c std.c
myfunction_emxutil.h std.h
myfunction_emxutil.o std.o

So now to call our compiled version of the function we just call myfunction_mex
instead of calling myfunction:

>> tic; out=myfunction_mex(1e5); toc
Elapsed time is 0.981005 seconds.
>> hist(out,50)

We can see we already achieved a significant speedup, almost 10x.

The new MEX function produces the figure shown in Figure 8.8, which looks
the same as the one produced by the plain MATLAB code, so we have some no-
tion that our compiled MEX file is doing the right thing. Of course we should
perform more stringent tests than this just to verify we are getting the expected
behaviour out of the binary MEX file.
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Figure 8.8: Output of myfunction_mex.

The MathWorks has a product page devoted to the Coder here:

MATLAB Coder product page95

The MathWorks also has a page on their online documentation devoted to the
MATLAB Coder here:

MATLAB Coder online documentation96

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/help/coder/index.html
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Links

93http://www.mathworks.com/help/matlab/debugging-code.html

94http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.
html

95http://www.mathworks.com/products/matlab-coder

96http://www.mathworks.com/help/coder/index.html

http://www.mathworks.com/help/matlab/debugging-code.html
http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/help/coder/index.html


9 Parallel programming

9.1 What is parallel computing?

Simply put, parallel computing refers to performing multiple computations in
parallel, i.e. simultaneously. By default most operations that take place on your
computer happen in serial, that is, one at a time. These days CPU chips (even
those on laptops) have multiple cores, which allow for some degree of parallel
operations.

In principle, every time you double the number of CPU cores (or CPUs them-
selves), you can achieve something close to a halving of time to complete the
operations. In practice however, there is always some overhead cost in carry-
out out the parallel computations. If the operations are at all lengthy however,
the overhead cost is always worth it.

There are several types of parallel computing,whichwe’ll talk briefly about (and
which are listed below). What we’ll get hands-on experience with is symmetric
multiprocessing. This is the style of parallel computingwheremultiple CPUs, or
multiple cores on a single CPU, share access to the same memory (RAM) store,
and can carry out operations in parallel.

Today (Fall, 2015), it’s still the case that not many programs take advantage of
multiple cores. Operating systems, however, can take advantage of multiple
cores throughmultithreading (seebelow), byassigningdifferent threads to their
own processing nodes.

Someprograms likeMATLAB (and someApple applications) comewith the abil-

143
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ity to take advantage of multiple cores built-in. Due to the relative complexity
of parallelizing serial code, however, most applications still operate in a serial
fashion.

Parallel computing97 (Wikipedia)

9.2 Multi-threading

Modern operating systems like Mac OSX, Linux, and other Unix variants, pro-
vide the ability for programs to spawn multiple threads that execute indepen-
dently of each other. The advantage of multithreading is that one process can
do its work and other processes don’t have to wait until the working process is
done. This is used extensively for graphical user interfaces.

When you copy a file, you can still move your mouse around, you can still start
other programs, you can still browse the web, while other things are happening
simultaneously. Multithreading can occur on a single CPU with a single core.
This isn’t parallel computing per se, as multiple threads still have to share a sin-
gle CPUprocessing unit to do theirwork—but the operating systemmanages the
multiple threads so that theuserhas the impression thatmultiple things arehap-
pening at once.

See the wikipedia article for more details:

Multithreading98 (wikipedia)

9.3 Symmetric Multiprocessing (SMP)

These days modern computers ship with CPUs that have multiple cores, or even
multiple CPUs each with multiple cores. At the time of writing these notes (Fall
2015) you can for example buy a Mac Pro desktop computer with two 6-core
CPUs, for a total of 12 independent processing cores. With hyperthreading (see
below) you get 24 processing cores, all for around $5,000—which seems like
a lot, but just 10 years ago a computer cluster with 24 nodes would have cost

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
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around $75,000–$100,000.

When multiple CPUs and/or multiple CPU cores live in a single machine, they
typically all share access to the same physical RAM (memory). These days all
Apple desktops and laptops have CPUs with multiple cores. Generic PCs also
ship with multiple CPUs and cores. Even smartphones (e.g. the iPhone, and
Google’s Nexus phone) come with multiple CPUs and multiple cores.

The great advantage of having multiple computing nodes in a single machine, is
that unlike multithreading on a single CPU, where the operating system has to
switchback and forthbetweeneach thread,withmultipleCPUs/cores, each core
can execute a different task in parallel with the others (i.e. at the same time).

A good analogy is the following. Imagine someone gives me 10 decks of playing
cards, and each deck has been shuffled, and my task is to re-order each deck of
cards. A computer with a single CPU/core is like a single person who is tasked
with sorting all 10 decks of cards. I would have to sort them all, one at a time,
one after the other, i.e. in serial. I could implement “multithreading” by sort-
ing one deck for a few seconds, setting it aside, sorting the next deck for a few
seconds, setting it aside, and so on, sorting bits of each one, one by one. It’s still
happening in serial though.

If I had access to other processing nodes, I could parallelize the task. So imagine
insteadofme sorting all 10decks, I found9other people tohelpme. I gave them
one of the 10 decks of cards, and I took one. Now we can all sort them, at the
same time, in parallel. In theory it should take 1

10
th the time compared to me

sorting them all myself, in serial. In fact though, there would be some overhead
cost, for example at the beginning, when I would have to hand out each deck
and give everyone their instructions, and then at the end, when I would have to
collect all the sorted decks from each person. If the actual computational task
being parallelized is time intensive, however, then these overhead costs would
be minimal compared to the gain in speed I would achieve by parallelizing the
task.

Symmetric multiprocessing, i.e. having multiple independent processing units
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share the same memory store, is advantageous compared to cluster or grid com-
puting, where each processing node has its own memory. In the latter cases,
there is a (sometimes relatively major) overhead cost involved in transferring
data to thememory store for eachprocessingunit, andbackagain toaheadnode.
When this transfer happens over a network, as you can imagine, this would be
way slower than if it happens on a common logic board on which all processing
cores sit (as is with the case of symmetric multiprocessing).

Here is a wikipedia article on symmetric multiprocessing:

Symmetric multiprocessing99 (wikipedia)

9.4 Hyperthreading

Hyperthreading is a proprietary implementation by Intel for allowing modern
CPUs to behave as if they have twice as many logical cores as physical cores.
That is, if your CPU has two cores, hyperthreading implements a series of tricks
at the operating system level, that interface with a series of tricks at the hard-
ware layer (i.e. in the CPU itself) that results in the ability to address four “logi-
cal” cores.

Unlike multithreading, which is simply a software implementation at the op-
erating system level, hyperthreading involves special implementations both at
the operating system level and at the hardware level. Current Apple laptops and
desktops all implement hyperthreading. Several generic PCs also implement hy-
perthreading.

For large, time consuming computations, hyperthreading won’t actually dou-
ble the computation speed, since at the end of the day, there are still x phys-
ical cores, even though hyperthreading pretends there are 2x logical cores. If
however each computations is small, and doesn’t last a long time, hyperthread-
ing can end up giving you performance gains above and beyond regular multi-
threading, since it implements a number of efficiencies and tricks at the soft-
ware and hardware layers.

http://en.wikipedia.org/wiki/Symmetric_multiprocessing
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For our purposes, hyperthreading is either there, or it isn’t, and it’s not some-
thing we will be fiddling with. Here is a wikipedia article on hyperthreading:

Hyper-threading100 (wikipedia)

9.5 Clusters

So far we have been talking about a single machine with multiple CPUs and/or
multiple cores. Another way of implementing parallel computing is to connect
together multiple machines, over a specialized local network. In principle one
can connect as many machines as one likes, to achieve just about any level of
parallelism one wants. Today’s fastest supercomputers101 are in fact clusters
of machines hooked together. The world’s fastest supercomputer, as of today,
October 2015, is the Tianhe-2102, located in Guangzhou, China. It has 16,000
computer nodes, each one comprising two Intel Ivy BridgeXeonCPUs and three
Xeon Phi chips for a total of 3,120,000 cores (3.12 million cores).

Sharcnet103 is aCanadian cluster computing facilitywith several individual clus-
ters, the largest of which has 8,320 cores. Western has access to the Sharcnet
clusters, you just have to sign up for an account.

Many individual researchers also operate smaller clusters, for example with 8,
or 12, or 24 machines hooked together.

A relatively recent development is the advent of gigantic server farms oper-
ated by private companies like Amazon and Google. Amazon’s Elastic Compute
Cloud104 allows individuals to spawn multiple “virtual” machines, and hook
them together in networks and clusters, and run jobs on them. Cost is per ma-
chine and per unit time, and so one can essentially (1) define your own clus-
ter and (2) pay for only those minutes that you actually use. It’s a very flexible
system that many researchers are beginning to utilize. Rhodri Cusack’s lab, for
example, uses cloud-based machines for brain imaging data analysis.

The obvious advantage of a cluster over a single SMP machine, is that one can
add as many nodes onto the cluster (growing it as you go) to whatever size you

http://en.wikipedia.org/wiki/Hyper-threading
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Tianhe-2
https://www.sharcnet.ca/my/front/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
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want (provided you can pay for it). The disadvantage is that data transfer over
a network can be slower than a SMP machine where CPU cores share the same
RAM store. There is also added complexity in managing a cluster of machines,
for example in configuring each one, and configuring a head node to manage all
of the slave nodes. There is software out there that can organize this for you,
for example Oracle Grid Engine105, and others, but it’s still not trivial and takes
some investment of time to fully implement.

Computer cluster106 (wikipedia)

9.6 Grids

A grid is like a cluster, but the individual machines are not on a local network,
but they can be anywhere on the internet. Sometimes multiple clusters are
hooked together over the internet to form a grid. Sometimes a grid is composed
ofmultiple individualmachines, spread out overmultiple labs,multipleDepart-
ments, Univerisities, or even countries. Sometimes grids are set up so that in-
dividual machines can be “taken over” as dedicated computational nodes. In
other configurations, individual machines only process grid jobs during their
downtime, when for example the user is not using the machine for something
else. One way of setting this up is via a specialized screensaver. Wheneven
the screensaver activates (which is an indication that the machine is not being
used), the grid process starts up and processes grid jobs.

Two classic examples of grids are the SETI@home107 grid (searching for extra-
terrestrial life in the universe) and the Folding@home108 grid (simulations of
protein folding for disease research). In each case, anyone around theworld can
sign up their machine to join the grid and donate computer time, install some
local software, and then anytime their computer is not busy, it is recruited by
thegrid toprocessdata. As of now(Oct 2015) theFolding@homewebsite shows
that there are 8,067,858 CPUs active right now on the Folding@home grid.

There are also nefarious uses for grids, which are sometimes called Botnet109s.
In this case, a virus infects a user’smachine, installs a nefarious program, which

http://en.wikipedia.org/wiki/Oracle_Grid_Engine
http://en.wikipedia.org/wiki/Cluster_(computing)
http://en.wikipedia.org/wiki/SETI@Home
http://en.wikipedia.org/wiki/Folding@home
http://en.wikipedia.org/wiki/Botnet
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lies dormant until a central machine somewhere on the internet activates it, for
some nasty purpose (like a DDoS attack110, or for sending spam). Your machine
essentially becomes a sleeper cell.

Grid computing111 (wikipedia)

9.7 GPU Computing

In recent years computer engineers and software developers have teamed up,
and have delivered software libraries that allow developers to utilize graphics
cards for more general purpose computing (GPGPU Computing).

Graphics cards, unlike CPUs, have hundreds if not thousands of cores, each of
which are typically used to process graphics for things like 3D games, video an-
imation and scientific visualization. Each processing unit on a graphics card
is a much simpler beast than the cores on CPU chips—but for some computa-
tional tasks, one doesn’t need much complexity, and massive parallelism can
be achieved by farming out general purpose computational tasks to the thou-
sands of cores on a graphics card.

For example, today (Oct 2015) for around $5,000 one can purchase an NVidia
Tesla GPU112, which is a single graphics card, that has 12GB of GPU memory,
2880 cores, and has a processing power of 1.43 Tflops. As you can imagine, if
your computational task is well suited to GPU processing, running it on 2880
cores will be quite a bit faster than running on 4, 8 or 12 cores (e.g. that you get
with a modern dual 6-core CPU Mac Pro).

There are two major C/C++ software libraries that provide relatively high-level
interfaces to performing general purpose computation on graphics cards

• CUDA113 (Nvidia proprietary)
• OpenCL114 (open)

MATLAB’s Parallel Computing Toolbox has the ability to farm out some compu-
tations to NVidia CUDA-enabled GPUs, see this page for more info:

http://en.wikipedia.org/wiki/Distributed_denial-of-service_attack#Distributed_attack
http://en.wikipedia.org/wiki/Grid_computing
http://www.nvidia.com/object/tesla-workstations.html
http://www.nvidia.com/object/tesla-workstations.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/


CHAPTER 9. PARALLEL PROGRAMMING 150

MATLAB GPU Computing Support for NVIDIA CUDA-Enabled GPUs115

See this wikipedia page for more general information on GPGPU Computing:

GPGPU Computing116

9.8 Types of Parallel problems

Multithreading is an example of fine-grained parallelism (many shared opera-
tions per second), in which the operating system manages (e.g. switches be-
tween) threads at a very fast rate, e.g. with each CPU clock cycle. This can thus
happen many times per second. This is what your operating system does in the
background, as you are interacting with your graphical user interface, surfing
the web, playing music, processing video in the background, all the while copy-
ing files from one disk to another.

In another kind of fine-grained parallelism, multiple processes communicate
with each other many, many times per second.

In coarse-grained parallelism, there are many, many independent threads/tasks,
that rarely or never communicate with each other.

Finally, so-called embarassingly parallel problems are 100% independent opera-
tions, and never communicate with each other. Each process doesn’t depend in
any way on the result of another operation. This is the kind of parallelism that
we will be talking about in this class.

9.9 MATLAB

MATLAB provides parallel computing via its Parallel Computing Toolbox (see
below).

• MATLAB Parallel Computing Toolbox117

• MATLAB Execute loop iterations in parallel using parfor118

• MATLAB Getting Started with parfor119

• MATLAB Parallel Computing Toolbox Examples120

http://www.mathworks.com/discovery/matlab-gpu.html
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/help/distcomp/parfor.html
http://www.mathworks.com/help/distcomp/getting-started-with-parfor.html
http://www.mathworks.com/help/distcomp/examples/
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9.10 Shell scripts

Finally, one can parallelize tasks at the level of the shell, even if the programs
you write/run aren’t parallelized, using a tool like GNU Parallel (see below).
Briefly, with GNU Parallel you can split a list of (ambarassingly parallel) tasks
across multiple cores even if the program itself is serial in nature. See the GNU
Parallel page below and the tutorial page for some examples. In our lab we use
GNU Parallel to distribute subject-level brain imaging processing across multi-
ple cores.

• GNU Parallel121

• GNU Parallel tutorial122

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/parallel_tutorial.html
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Exercises

E 9.1 Here is a serial version of a simple MATLAB program that iterates through
a for loop, printing to the screen each time. Your task is to parallelize that
for loop so that iterations are distributed among available compute cores.

Note that this is an “embarrasingly parallell” problem, i.e. each iteration
of the for loop is completely independent of the others.

Also note that you will likely not see the loop iterations appear in sequen-
tial order, once the loop is parallelized. When operations are parallelized
the order is essentially arbitrary from one run to another. This is why this
methodof parallelization is only appropriate for computationswhere each
loop iteration is truly independent of the others.

for i=1:10
disp(sprintf('hello from iteration # %d', i))

end

E 9.2 Parallel bootstrap

As we will find out in my statistics course next semester, we can use ran-
dom resampling with replacement to simulate drawing samples from a pop-
ulation, and we can use this method to quantitatively assess the probabil-
ity of the null hypothesis in the context of an experiment, and/or some
data.

Assume we have the following sample of data x:

x = [3 5 4 3 6 7 -1 2 -3 -4 2 -5 3 2 -1]

and a second sample, y:

y = [2 7 4 7 6 9 -1 3 -2 -1 3 -1 2 4 2]
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The mean of the sample x is 1.533 and the mean of sample y is 2.933. Let’s
compute a statistic we’ll call dsamp which is the difference between means,
ȳ− x̄which in this case is equal to dsamp = 1.400.

The null hypothesis is that the samples were taken from a single popula-
tion with the same mean, and so dpop = 0.00, and any departure from this
in our sample statistic dsamp is due to random sampling error.

Question 1

Use bootstrapping to compute the probability of the null hypothesis, with
onemillion bootstrap (re)samples. Write your code in the usual serial fash-
ion, using for-loop(s).

Question 2

Rewrite your solution to question 1, and parallelize the bootstrap. In other
words execute the one million bootstrap iterations in parallel, with the
work spread over your available compute cores.
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http://en.wikipedia.org/wiki/Grid_computing
http://www.nvidia.com/object/tesla-workstations.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.mathworks.com/discovery/matlab-gpu.html
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/help/distcomp/parfor.html
http://www.mathworks.com/help/distcomp/getting-started-with-parfor.html
http://www.mathworks.com/help/distcomp/examples/
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121http://www.gnu.org/software/parallel/

122http://www.gnu.org/software/parallel/parallel_tutorial.html

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/parallel_tutorial.html
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10 Graphical displays of data

MATLAB comes with lots of built-in functionality for generating both 2-D and
3-D graphics. You will learn a collection of commands (mainly plot()) that will
enable you do generate plots and configure their appearance with just about
any degree of precision you want. The great advantage of generating graph-
ics purely based on scripted commands (as opposed for example to graphical,
pointy-clicky approaches based on graphical user interfaces (GUIs)) is that you
can easily and instantly re-generate graphics simply by re-running the script(s).
In addition making changes to your graphics becomes a simple matter of tweak-
ing commands and scripts.

Rather than writing notes that essentially duplicate the extensive online docu-
mentation included with MATLAB, I will instead point you to some intial start-
ing locations where you can learn about generating graphics in MATLAB.

Graphics in MATLAB123

Common Graphics Functions in MATLAB124 (a graphical menu showing differ-
ent kinds of plots and how to generate them)

2-D and 3-D Plots125

The plot() command126

Creating 2-D Graphs and Customizing Lines127

Add Titles, Axis Labels and Legends to Graphs128

Figures with multiple axes using subplots129
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http://www.mathworks.com/help/matlab/graphics.html
http://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html#btjs9s4-1
http://www.mathworks.com/help/matlab/2-and-3d-plots.html
http://www.mathworks.com/help/matlab/ref/plot.html
http://www.mathworks.com/help/matlab/creating_plots/using-high-level-plotting-functions.html
http://www.mathworks.com/help/matlab/creating_plots/add-title-axis-labels-and-legend-to-graph.html
http://www.mathworks.com/help/matlab/creating_plots/create-graph-with-subplots.html
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3-D Surface and Mesh Plots130

Shaded Polygons131

Customizing graphics by setting properties of the underlying objects132

http://www.mathworks.com/help/matlab/surface-and-mesh-plots-1.html
http://www.mathworks.com/help/matlab/geometry.html
http://www.mathworks.com/help/matlab/graphics-objects.html
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Exercises

E 10.1 Line Plot

Let x be a vector:

[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

and set y to be equal to sin(2*pi*x).

Generate a line plot that looks like this:

Smoother Line

Redefine x and y to make the curve smoother:
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Change Line Colour

Plot it again but make the line blue, and thick:

E 10.2 Bar Plot

Let y be a vector with the following values:

[10, 8, 6, 4, 6, 8, 6, 2]
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Generate the following bar plot:

Again with x labels

Plot it again but this time include labels on the x axis:

E 10.3 Multiline plot

Let x, y1, y2, and y3 be vectors:
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x = [1,2,3,4,5]
y1 = [1,2,3,4,4]
y2 = [1,5,6,8,10]
y3 = [5,4,2,2,1]

Generate a multi-line plot like this:

Add a Legend

Add a legend to your plot that looks like this:
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E 10.4 Scatterplot

Let x be a vector starting at 1 and ending at 100. Let y be a vector equal to
(x * 0.15) + N where N is a vector of random values chosen from a gaussian
distribution with mean 0.0 and standard deviation 1.0.

Generate a scatterplot of x vs y:

A second variable
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Let z be equal to ((x * 0.05) + 2) + N where N is a vector of random values
chosen froma gaussian distributionwithmean0.0 and standard deviation
1.5.

Generate a scatterplot of y and z vs x, including a legend:

E 10.5 Subplots

Let x be a vector starting at 1 and ending at 100. Let y be a vector equal to
(x * 0.15) + N where N is a vector of random values chosen from a gaussian
distribution with mean 0.0 and standard deviation 1.0.

Let z be equal to ((x * 0.05) + 2) + N where N is a vector of random values
chosen froma gaussian distributionwithmean0.0 and standard deviation
1.5.

Generate a figure with scatterplots of (x vs y) and (x vs z) in separate sub-
plots, stacked vertically:
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horizontally

Generate the plot again but stack the subplots horizontally:

more complex arrangements

Generate the plot again with 3 subplots: one on the top, occupying the full
width of the figure, in which you plot (x vs y) and (x vs z) overlayed, and
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two on the bottom, in which you plot (x vs y) in one and (x vs z) in the
other:

E 10.6 Histograms

Define a variable y that contains 1000 values drawn from a gaussian dis-
tribution with mean 0.0 and standard deviation 1.0. Plot a histogram of y.
For now just use the default settings for whatever function you find that
produces a histogram.
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Number of bins

Replot the histogram using 25 bins:

Bin width

Replot the histogram using a bin width of 0.20:
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E 10.7 Line of best fit

Let x be a vector starting at 1 and ending at 100. Let y be a vector equal to
(x * 0.15) + N where N is a vector of random values chosen from a gaussian
distribution with mean 0.0 and standard deviation 1.0.

Generate a scatterplot of (x vs y) and overlay on the plot, the line of best
fit after fitting a linear model to the data: ŷ = β0 + β1x.
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Add a legend

Add the equation of the line

E 10.8 Surface plot

Define x and y each over a grid [-8,8] in steps of 0.5.

Define r =
√
x2 + y2 + 0.00001.
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Define x = sin(r)/r

Generate the following surface plot:
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Links

123http://www.mathworks.com/help/matlab/graphics.html

124http://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html#
btjs9s4-1

125http://www.mathworks.com/help/matlab/2-and-3d-plots.html

126http://www.mathworks.com/help/matlab/ref/plot.html

127http://www.mathworks.com/help/matlab/creating_plots/using-high-level-plotting-functions.
html

128http://www.mathworks.com/help/matlab/creating_plots/add-title-axis-labels-and-legend-to-graph.
html

129http://www.mathworks.com/help/matlab/creating_plots/create-graph-with-subplots.
html

130http://www.mathworks.com/help/matlab/surface-and-mesh-plots-1.html

131http://www.mathworks.com/help/matlab/geometry.html

132http://www.mathworks.com/help/matlab/graphics-objects.html

http://www.mathworks.com/help/matlab/graphics.html
http://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html#btjs9s4-1
http://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html#btjs9s4-1
http://www.mathworks.com/help/matlab/2-and-3d-plots.html
http://www.mathworks.com/help/matlab/ref/plot.html
http://www.mathworks.com/help/matlab/creating_plots/using-high-level-plotting-functions.html
http://www.mathworks.com/help/matlab/creating_plots/using-high-level-plotting-functions.html
http://www.mathworks.com/help/matlab/creating_plots/add-title-axis-labels-and-legend-to-graph.html
http://www.mathworks.com/help/matlab/creating_plots/add-title-axis-labels-and-legend-to-graph.html
http://www.mathworks.com/help/matlab/creating_plots/create-graph-with-subplots.html
http://www.mathworks.com/help/matlab/creating_plots/create-graph-with-subplots.html
http://www.mathworks.com/help/matlab/surface-and-mesh-plots-1.html
http://www.mathworks.com/help/matlab/geometry.html
http://www.mathworks.com/help/matlab/graphics-objects.html
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11 Signals, sampling & filtering

Whereas signals in nature (such as sound waves, magnetic fields, hand posi-
tion, electromyograms (EMG), electroencephalograms (EEG), extra-cellular po-
tentials, etc) vary continuously, often in science we measure these signals by
sampling them repeatedly over time, at some sampling frequency. The resulting
collection ofmeasurements is a discretized representation of the original contin-
uous signal.

Before we get into sampling theory however we should first talk about how sig-
nals can be represented both in the time domain and in the frequency domain.

Jack Schaedler has a nice page explaining and visualizing many concepts dis-
cussed in this chapter:

Seeing circles, sines and signals133

11.1 Time domain representation of signals

This is how you are probably used to thinking about signals, namely how the
magnitude of a signal varies over time. So for example a signal s containing a
sinusoidwith a period T of 0.5 seconds (a frequency of 2Hz) and a peak-to-peak
magnitude b of 2 volts is represented in the time domain t as:

s(t) =
( b
2

)
sin (wt) (11.1)

where

173

https://jackschaedler.github.io/circles-sines-signals/index.html
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w =
2π
T (11.2)

We can visualize the signal by plotting its magnitude as a function of time, as
shown in Figure 11.1.

Figure 11.1: Time domain representation of a signal.

11.2 Frequency domain representation of signals

We can also represent signals in the frequency domain. This requires some un-
derstanding of the Fourier series134. The idea of the Fourier series is that all
periodic signals can be represented by (decomposed into) the sum of a set of
pure sines and cosines that differ in frequency and period. See the wikipedia
link for lots of details and a helpful animation.

s(t) = a0
2 +

∞∑
n=1

[ancos(nwt) + bnsin(nwt)] (11.3)

The coefficients an and bn define the weighting of the different sines and cosines
atdifferent frequencies. Inotherwords these coefficients represent the strength
of the different frequency components in the signal.

We can also represent the Fourier series using only sines:

http://en.wikipedia.org/wiki/Fourier_series
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s(t) = a0
2

∞∑
n=1

[rncos(nwt− φn)
]

(11.4)

Using this formulation we now have magnitude coefficients rn and phase coef-
ficients φn. That is, we are representing the original signal s(t) using a sum of
sinusoids of different frequencies and phases.

Here is a web page that lets you play with how sines and cosines can be used to
represent different signals: Fourier series visualization135.

11.3 Fast Fourier transform (FFT)

Given a signal there is a very efficient computational algorithm called the Fast
Fourier transform136 (FFT) for computing themagnitude andphase coefficients.
We will not go into the details of this algorithm here, most high level program-
ming languages have a library that includes the FFT algorithm.

Here is a video showing a 100-year-old mechanical computer that does both
forward and inverse Fourier transforms:

• Harmonic Analyzer (1/4)137

• Harmonic Analyzer (2/4)138

• Harmonic Analyzer (3/4)139

• Harmonic Analyzer (4/4)140

11.4 Sampling

Before we talk about the FFT and magnitude and phase coefficients, we need to
talk about discrete versus continuous signals, and sampling. In theory we can
derive amathematical description of theFourier decomposition of a continuous
signal, as we have done above, in terms of an infinite number of sinusoids. In
practice however, signals are not continuous, but are sampled at some discrete
sampling rate.

For example, when we use Optotrak to record the position of the fingertip dur-

http://bl.ocks.org/jinroh/7524988
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Fast_Fourier_transform
https://youtu.be/NAsM30MAHLg
https://www.youtube.com/watch?v=8KmVDxkia_w
https://www.youtube.com/watch?v=6dW6VYXp9HM
https://www.youtube.com/watch?v=jfH-NbsmvD4


CHAPTER 11. SIGNALS, SAMPLING & FILTERING 176

ing pointing experiments, we choose a sampling rate of 200 Hz. This means 200
times per second the measurement instrument samples and records the posi-
tion of the fingertip. The interval between any two samples is 5 ms. It turns out
that the sampling rate used has a specific effect on the number of frequencies
used in a discrete Fourier representation of the recorded signals.

The Shannon-Nyquist sampling theorem141 states that a signalmust be sampled
at a rate which is at least twice that of its highest frequency component. If a sig-
nal contains power at frequencies higher than half the sampling rate, these high
frequency componentswill appear in the sampleddata at lower frequencies and
will distort the recording. This is known as the problem of aliasing142.

Let’s look at a concrete example that will illustrate this concept. Let’s assume
we have a signal that we want to sample, and we choose a sampling rate of 4
Hz. This means every 250 ms we sample the signal. According to the Shannon-
Nyquist theorem, themaximum frequencywe canuniquely identify is half that,
which is 2 Hz. This is called the nyquist frequency143. Let’s look at a plot and
see why this is so.

In Figure 11.2 we see a solid blue line showing a 2 Hz signal, a magenta dashed
line showing a 4 Hz signal, and a green dashed line showing a 8 Hz signal. Now
imagine we sample these signals at 2 Hz, indicated by the vertical red lines. No-
tice that at the sample points (vertical red lines), the 2 Hz, 4 Hz and 8 Hz signals
overlap with identical values. This means that on the basis of our 2 Hz sam-
ples, we cannot distinguish between frequencies of 2, 4 and 8 Hz. What’s more,
what this means is that if the signal we are actually sampling at 2 Hz has sig-
nificant signal power at frequencies above the Nyquist (1 Hz) then the power
at these higher frequencies will influence our estimates of the magnitude coef-
ficients corresponding to frequencies below the Nyquist... in other words the
high-frequency power will be aliased into the lower frequency estimates.

Figure 11.3 shows another example taken from the wikipedia article on alias-
ing144. Here we have two sinusoids—one at 0.1 Hz (blue) and another at 0.9 Hz
(red). We sample both at a sampling rate of 1 Hz (vertical green lines). You can

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Aliasing
http://en.wikipedia.org/wiki/Nyquist_frequency
http://en.wikipedia.org/wiki/Aliasing
http://en.wikipedia.org/wiki/Aliasing
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Figure 11.2: Signal aliasing.

see that at the sample points, both the 0.1 Hz and 0.9 Hz sinusoids pass through
the sample points and thus both would influence our estimates of the power at
the 0.1 Hz frequency. Since the sampling rate is 1 Hz, the Nyquist frequency
(the maximum frequency we can distinguish) is 0.5 Hz—and so any power in
the signal above 0.5 Hz (such as 0.9 Hz) will be aliased down into the lower fre-
quencies (in this case into the 0.1 Hz band).

Figure 11.3: Signal aliasing sinusoids.

So the message here is that in advance, before choosing your sampling rate, you
should have some knowledge about the highest frequency that you (a) are in-
terested in identifying; and (b) you think is a real component in the signal (as
opposed to randomnoise). In caseswhereyouhavenoapriori knowledge about
the expected frequency content, one strategy is to remove high frequency com-
ponents before sampling. This can be accomplished using low-pass filtering—
sometimes called anti-aliasing filters. Once the signal has been sampled, it’s
too late to perform anti-aliasing.
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11.5 Power spectra

Having bypassed completely the computational details of how magnitude and
phase coefficients are estimated, we will now talk about how to interpret them.

For a given signal, the collection ofmagnitude coefficients gives a description of
the signal in terms of the strength of the various underlying frequency compo-
nents. For our immediate purposes these magnitude coefficients will be most
important to us and we can for the moment set aside the phase coefficients.

Here is an example of a power spectrum for a pure 10 Hz signal, sampled at 100
Hz.

Figure 11.4: Power spectrum for a pure 10 Hz signal.

The magnitude values are zero for every frequency except 10 Hz. We haven’t
plotted the phase coefficients. The set of magnitude and phase coefficients de-
rived from a Fourier analysis is a complete description of the underlying signal,
with one caveat—only frequencies up to the Nyquist are represented. So the
idea here is that one can go between the original time-domain representation
of the signal and this frequency domain representation of the signal without
losing information. As we shall see below in the section on filtering, we can per-
formoperations in the frequency domain and then transformback into the time
domain.

Here is some MATLAB code to illustrate these concepts. We construct a one



179 11.5. POWER SPECTRA

second signal sampled at 100 Hz that is composed of a 6 Hz, 10 Hz and 13 Hz
component. We then use the fft() function to compute the Fast Fourier trans-
form, we extract the magnitude information, we set our frequency range (up to
the Nyquist) and we plot the spectrum, which is shown in Figure 11.5.

t = linspace(0,1,100);
y = sin(2*pi*t*6) + sin(2*pi*t*10) + sin(2*pi*t*13);
figure;
subplot(2,1,1)
plot(t,y)
xlabel('Time (sec)')
ylabel('Signal Amplitude')
subplot(2,1,2)
out = fft(y);
mag = abs(real(out));
plot(0:49, mag(1:50));
set(gca,'xlim',[0 50]);
xlabel('Frequency Component (Hz)')
ylabel('Amplitude')

Figure 11.5: A signal with 6, 10 and 13 Hz pure sinusoids, and its spectrum.

We can see that the power spectrum has revealed peaks at 6, 10 and 13 Hz—
which we know is correct, since we designed our signal from scratch.
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Typicallyhowever signals in the realworld thatwe recordarenotpure sinusoids,
but contain random noise. Noise can originate from the actual underlying pro-
cess that we are interested in measuring, and it can also originate from the in-
struments we use to measure the signal. For noisy signals, the FFT taken across
the whole signal can be noisy as well, and can make it difficult to see peaks.

11.6 Power Spectral Density

One solution is instead of performing the FFT on the entire signal all at once,
to instead, split the signal into chunks, take the FFT of each chunk, and then
average these spectra to come up with a smoother spectrum. This can be ac-
complished using a power spectral density145 function. In MATLAB there is a
function pwelch() to accomplish this. We won’t go into the mathematical details
or the theoretical considerations (relating to stochastic processes) but for now
suffice it to say that the psd can often give you a better estimate of the power at
different frequencies compared to a “plain” FFT.

Here is an example of plotting the power spectral density of a signal in MATLAB.
We construct a 50 Hz signal at 1000 Hz sampling rate, and we add some random
noise on top:

t = linspace(0,1,1000);
y = sin(2*pi*t*50);
yn = y + randn(size(y))*1;
figure
subplot(3,1,1)
plot(t,yn)
xlabel('Time (sec)')
ylabel('Signal Amplitude')
title('TIME SERIES SIGNAL')
subplot(3,1,2)
out = fft(yn);
mag = abs(real(out));
plot(0:499,mag(1:500));
xlabel('Frequency (Hz)')
set(gca,'xlim',[0 100])

http://www.mathworks.com/help/signal/ref/dspdata.psd.html
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ylabel('Power')
title('RAW FFT')
subplot(3,1,3)
pwelch(yn,[],[],[],1000);
set(gca,'xlim',[0 100])
xlabel('Frequency (Hz)')
ylabel('PSD')
title('PSD')

Figure 11.6: Power spectral density of a 50 Hz signal.

In Figure 11.6 you can see that the peak at 50 Hz stands nicely above all the
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noise in the power spectral density estimate (bottom panel), while int the raw
FFT it’s difficult to see the 50 Hz peak against the noise (middle panel).

We have been ignoring the phase of the signal here, but just like the magnitude
coefficients over frequencies, we can recover the phase coefficients of the signal
as well.

11.7 Decibel scale

The decibel (dB) scale is a ratio scale. It is commonly used to measure sound
level but is also widely used in electronics and signal processing. The dB is a
logarithmic unit used to describe a ratio. You will often see power spectra dis-
played in units of decibels.

The difference between two sound levels (or two power levels, as in the case of
the power spectra above), is defined to be:

20(log10)
P2
P1

dB (11.5)

Thus when P2 is twice as large as P1, then the difference is about 6 dB. When P2
is 10 times as large as P1, the difference is 20 dB. A 100 times difference is 40 dB.

An advantage of using the dB scale is that it is easier to see small signal com-
ponents in the presence of large ones. In other words large components don’t
visually swamp small ones.

Since the dB scale is a ratio scale, to compute absolute levels one needs a
reference—a zero point. In acoustics this reference is usually 20 micropascals—
about the limit of sensitivity of the human ear.

For our purposes in the absence of a meaningful reference we can use 1.0 as the
reference (i.e. as P1 in the above equation).



183 11.8. SPECTROGRAM

11.8 Spectrogram

Often there are times when you may want to examine how the power spec-
trum of a signal (in other words its frequency content) changes over time. In
speech acoustics for example, at certain frequencies, bands of energy called for-
mants146 may be identified, and are associated with certain speech sounds like
vowels and vowel transitions. It is thought that the neural systems for human
speech recognition are tuned for identification of these formants.

Essentially a spectrogram is a way to visualize a series of power spectra com-
puted from slices of a signal over time. Imagine a series of single power spectra
(frequency versus power) repeated over time and stacked next to each other
over a time axis.

MATLAB has a built-in function called spectrogram() that will generate a spec-
trogram. MATLAB has a sample audio file called mtlb.mat which can be loaded
from the command line:

load mtlb
spectrogram(mtlb,256,230,256,Fs,'yaxis')
sound(mtlb)

Figure 11.7 shows the resulting spectrogram. Time is on the horizontal axis and
frequency is on the vertical axis. The colours indicate the power of the different
frequencies at the given time points.

11.9 Filtering

The Fourier series representation and its computational implementation, the
FFT and the PSD, are useful not only for determining what frequency com- po-
nents are present in a signal, but we can also perform operations within fre-
quency space in order to manipulate the strength of different frequency compo-
nents in the signal. This can be especially effective for eliminating noise sources
with known frequency content.

http://en.wikipedia.org/wiki/Formant
http://en.wikipedia.org/wiki/Formant
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Figure 11.7: Spectrogram of the sound “MATLAB”.

Let’s look at a concrete example:

t = linspace(0,1,1000);
y = sin(2*pi*t*6) + sin(2*pi*t*10) + sin(2*pi*t*13);
yn = y + randn(size(y))*0.5;
[x,y,f] = fft_plus(yn,1000);
semilogx(f,20*log10(x));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')

In Figure 11.8 we can see the signal has three signal components: 6, 10 and 13
Hz. Let’s say we believe that the frequencies we are interested in are all below
20 Hz. In other words, frequencies above that are assumed to be noise of one
sort or another. We can filter the signal so that all frequencies above 20 Hz are
essentially zeroed out (or at least reduced in magnitude). One way to do this is
simply to take the vector of power coefficients, change all values for frequencies
above 20 Hz to zero, and perform an inverse Fourier transform (the inverse of
the FFT) to go back to the time domain. We won’t go into the mathematical
details, but there are also other ways to filter a signal as well.

Here is a short summary of different kinds of filters, and some terminology.
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Figure 11.8: A spectrum of a noisy signal with peaks at 6, 10 and 13 Hz.

• low-pass filters pass low frequencies without change, but attenuate (i.e. re-
duce) frequencies above the cutoff frequency

• high-pass filters pass high frequencies and attenuate low frequencies, be-
low the cutoff frequency

•
• band-pass filters pass frequencies within a pass band frequency range and

attenuate all others
• band-stop filters (sometimes called band-reject filters or notch filters) atten-

uate frequencies within the stop band and pass all others

In the code example above we use a function called fft_plus, which conve-
niently performs the FFT and converts the results into a format that is useful.
Here is the function:

function [x, y, f] = fft_plus (xin, rate, winsize)

%
% function [x, y, f] = fft_plus (xin, rate, winsize)
% fft computations - normalized to give 'single-sided' results
%
% inputs: xin = signal, rate = sampling rate (Hz)
% winsize (optional) window size for computing FFT
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% outputs: x = magnitude, y = phase, f = frequency
%

if nargin==2
winsize = length(xin);

end;

fx = fft(xin,winsize);
N=length(fx);
fx(2:N) = fx(2:N)*(2/N);
fx(1)=fx(1)/N;

x=abs(fx);
y=angle(fx); % radians

f=(0:N-1)/N;
f=f*rate;

nq = floor(N/2);
x=x(1:nq);
y=y(1:nq);
f=f(1:nq);

end

Youmight alsobe interested in a function called fft_plot, whichgenerates anice
looking plot of magnitude and phase againt frequency (it calls fft_plus to do its
work). Here is the code:

function fft_plot(xin, rate, logaxis, winsize)

%
% function dum = fft_plot(xin, rate, winsize)
% generates a plot of magnitude and phase against frequency
%
% inputs: xin = signal, rate = sampling rate (Hz)
% winsize (optional) window size for computing FFT
% outputs: none
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%

if nargin==2
logaxis = 1;

end

[X,Y,F] = fft_plus(xin,rate);
subplot(2,1,1)
if logaxis==1

semilogx(F, 20.*log10(X))
else

plot(F, 20.*log10(X))
end
grid on
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
drawnow
subplot(2,1,2)
if logaxis==1

semilogx(F, unwrap(Y))
else

plot(F, unwrap(Y))
end
grid on
xlabel('Frequency (Hz)')
ylabel('Phase (deg)')
drawnow

end

11.9.1 Characterizing filter performance

A useful way of characterizing a filter’s performance is in terms of the ratio of
the amplitude of the output to the input (the amplitude ratio AR or gain), and
the phase shift (φ) between the input and output, as functions of frequency. A
plot of the amplitude ratio and phase shift against frequency is called a Bode
plot147.

http://en.wikipedia.org/wiki/Bode_plot
http://en.wikipedia.org/wiki/Bode_plot
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The pass band of a filter is the range of frequencies over which signals pass with
no change. The stop band refers to the range of frequencies over which a filter
attenuates signals. The cutoff frequency or corner frequency of a filter is used to
describe the transition point from the pass band to the reject band. This this
transition cannot occur instantaneously it is usually defined to be the point at
which the filter output is equal to -6 dB of the input in the pass band. The cutoff
frequency is sometimes called the -6 dB point or the half-power point since -6
dB corresponds to half the signal power. The roll-off refers to the rate at which
the filter attenuates the input after the cutoff point. When the roll-off is linear it
can be specified as a specific slope, e.g. in terms of dB/decade or dB/octave (an
octave is a doubling in frequency).

Let’s look at some examples of filter characteristics.

Figure 11.9: Spectrum of three filtered versions of a noisy signal with peaks at 6, 10 and
13 Hz.

In Figure 11.9 the blue trace shows the power spectrum for the unfiltered sig-
nal. The red trace shows a lowpass-filtered version of the signal with a cutoff
frequency of 30 Hz. The green trace shows a low-pass with a cutoff frequency
of 130 Hz. Also notice that the roll-off of the 30 Hz lowpass is not as great as for
the 130 Hz lowpass, which has a higher roll-off.
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Here is a function in MATLAB to perform low-pass filtering:

function newdata = lowpass(data,samprate,cutoff,order)

% newdata = lowpass(data,samprate,cutoff,order)
%
% performs a lowpass filtering of the input data
% using an nth order zero phase lag butterworth filter

if nargin==3 order=2; end; % default to 2nd order

% get filter paramters A and B
[B,A] = butter(order,cutoff/(samprate/2));
% perform filtering
newdata = filtfilt(B,A,data);

Here is one to perform high-pass filtering:

function newdata = highpass(data,samprate,cutoff,order)

% newdata = highpass(data,samprate,cutoff,order)
%
% performs a highpass filtering of the input data
% using an nth order zero phase lag butterworth filter

if nargin==3 order=2; end;

[B,A] = butter(order,cutoff/(samprate/2),'high');

newdata = filtfilt(B,A,data);

Here is one for band-pass filtering:

function newdata = bandpass(data,samprate,cutoff,order)

% newdata = bandpass(data,samprate,cutoff,order)
%
% performs a bandpass filtering of the input data
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% using an nth order zero phase lag butterworth filter

if nargin==3 order=2; end;

[B,A] = butter(order/2,cutoff./(samprate/2));

newdata = filtfilt(B,A,data);

Here is one for band-stop filtering:

function newdata = bandstop(data,samprate,cutoff,order)

% newdata = bandstop(data,samprate,cutoff,order)
%
% performs a bandstop filtering of the input data
% using an nth order zero phase lag butterworth filter

if nargin==3 order=2; end;

[B,A] = butter(order/2,cutoff./(samprate/2),'stop');

newdata = filtfilt(B,A,data);

Figure 11.10 shows the corresponding signals shown in the time-domain:

In the code we use a two-pass, bi-directional filter function (called filtfilt() in
all three languages) to apply the butterworth filter to the signal. One-way single-
pass filter functions (e.g. filter()) introduce time lags. This is why in real-time
applications inwhich youwant to filter signals in real time (e.g. to reduce noise)
there are time lags introduced.

So we see a very good example of how low-pass filtering can be used very ef-
fectively to filter out random noise. Key is the appropriate choice of cut-off fre-
quency.
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11.9.2 Common Filters

There are many different designs of filters, each with their own characteristics
(gain, phase and delay characteristics). Some common types:

• ButterworthFiltershave frequency responseswhicharemaximallyflat and
have a monotonic roll-off. They are well behaved and this makes them
very popular choices for simple filtering applications. For example in my
work I use them exlusively for filtering physiological signals. MATLAB has
a built-in function called butter() that implements the butterworth filter.

• Tschebyschev Filters provide a steeper monotonic roll-off, but at the ex-
pense of some ripple (oscillatory noise) in the pass-band.

• Cauer Filters provide a sharper roll-off still, but at the expense of ripple
in both the pass-band and the stop-band, and reduced stop-band attenua-
tion.

• Bessel Filters have a phase-shift which is linear with frequency in the pass-
band. This corresponds to a pure delay and so Bessel filters preserve the
shape of the signal quite well. The roll-off is monotonic and approaches
the same slope as the Butterworth and Tschebyschev filters at high fre-
quencies although it has a more gentle roll-off near the corner frequency.

11.9.3 Filter order

In filter design148 the order of a filter is one characteristic that you might come
across. Technically the definition of the filter order is the highest exponent in
the z-domain149 (transfer function150) of a digital filter151. That’s helpful isn’t it!
(not) Another way of describing filter order is the degree of the approximating
polynomial for the filter. Yet another way of describing it is that increasing the
filter order increases roll-off and brings the filter closer to the ideal response (i.e.
a “brick wall” roll-off).

Practically speaking, you will find that a second-order butterworth filter pro-
vides a nice sharp roll-off without too much undesirable side-effects (e.g. large
time lag, ripple in the pass-band, etc).

http://en.wikipedia.org/wiki/Filter_design
http://en.wikipedia.org/wiki/Z-transform
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Digital_filter
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See this section152 of the wikipedia page on low-pass filters for another descrip-
tion.

11.9.4 High-frequency noise and taking derivatives

One of the characteristics of just about any experimental measurement is that
the signal that you measure with your instrument will contain a combination of
true signal and “noise” (random variations in the signal). A common approach
is to take many measurements and average them together. This is what is com-
monlydone inEEG/ERPstudies, inEMGstudies,with spike-triggeredaveraging,
and many others. The idea is that if the “real” part of the signal is constant over
trials, and the “noise” part of the signal is random from trial to trial, then aver-
aging over many trials will average out the noise (which is sometimes positive,
sometimes negative, but on balance, zero) and what remains will be the true
signal.

You can imagine however that there are downsides to this approach. First of
all, it requires that many, many measures be taken so that averages can be com-
puted. Second, there is no guarantee that the underlying “true” signal will in
fact remain constant over those many measurements. Third, one cannot easily
do analyses on single trials, since we have to wait for the average before we can
look at the data.

One solution is to use signal processing techniques such as filtering to separate
the noise from the signal. A limitation of this technique however is that when
we apply a filter (for example a low-pass filter), we filter out all power in the sig-
nal above the cutoff frequency—whether “real” signal or noise. This approach
thus assumes that we are fairly certain that the power above our cutoff is of no
interest to us.

One salient reason to low-pass filter a signal, and remove high-frequency noise,
is for cases in which we are interested in taking the temporal derivative of a sig-
nal. For example, let’s say we have recorded the position of the fingertip as a
subject reaches from a start position on a tabletop, to a target located in front

http://en.wikipedia.org/wiki/Low-pass_filter#Continuous-time_low-pass_filters
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of them on a computer screen. Using a device like Optotrak we can record the
(x,y,z) coordinates of the fingertip at a sampling rate of 200 Hz. Figure 11.11
shows an example of such a recording.

In Figure 11.11 the top panel shows position in one coordinate over time. The
middle panel shows the result of taking the derivative of the position signal to
obtain velocity. I have simply used the diff() function here to obtain a numer-
ical estimate of the derivative, taking the forward difference. Note how much
noisier it looks than the position signal. Finally the bottom panel shows the re-
sult of taking the derivative of the velocity signal, to obtain acceleration. It is
so noisy one cannot even see the peaks in the acceleration signal, they are com-
pletely masked by noise.

What is happening here is that small amounts of noise in the position signal are
amplifiedeach timeaderivative is taken. One solution is to low-pass filter thepo-
sition signal. The choice of the cutoff frequency is key—too low and we will dec-
imate the signal itself, and too high and we will not remove enough of the high
frequency noise. It happens that we are fairly certain in this case that there isn’t
much real signal power above 12 Hz for arm movements. Figure 11.12 shows
what it looks like when we low-pass filter the position signal at a 12Hz cutoff
frequency.

What you can see in Figure 11.12 is that for the position over time, the filtered
version (shown in red) doesn’t differ that much, at least not visibly, from the
unfiltered version (in blue). The velocity and acceleration traces however look
vastlydifferent. Differentiating thefilteredposition signal yields a velocity trace
(shown in red in the middle panel) that is way less noisy than the original ver-
sion. Taking the derivative again of this new velocity signal yields an accelera-
tion signal (shown in red in the bottom panel) that is actually usable. The origi-
nal version (shown in blue) is so noisy it overwhelms the entire panel. Note the
scale change on the ordinate.
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11.10 Quantization

Converting an analog signal to a digital form involves the quantization of the
analog signal. In this procedure the range of the input variable is divided into
a set of class intervals. Quantization involves the replacement of each value of
the input variable by the nearest class interval centre.

Another way of saying this is that when sampling an analog signal and convert-
ing it to digital values, one is limited by the precision with which one can repre-
sent the (analog) signal digitally. Usually a piece of hardware called an analog-
to-digital (A/D) board is the thing that performs this conversion. The range of
A/D boards are usually specified in terms of bits. For example a 12-bit A/D board
is capable of specifying 212 = 4096 unique values. This means that a continuous
signal will be represented using only 4096 possible values. A 16-bit A/D board
would be capable of using 216 = 65, 536 different values. Obviously the higher
the better, in terms of the resolution of the underlying digital representation.
Often however in practice, higher resolutions come at the expense of lower sam-
pling rates.

As an example, let’s look at a continuous signal and its digital representation us-
ing a variety of (low) sample resolutions. Figure 11.13 shows a range of sample
resolutions.

Here we see as the number of possible unique values increases, the digital rep-
resentation of the underlying continuous signal gets more and more accurate.
Also notice that in general, quantization adds noise to the representation of the
signal.

It is also important to consider the amplitude of the sampled signal compared
to the range of the A/D board. In other words, if the signal you are sampling has
a very small amplitude compared to the range of the A/D board then essentially
your sample will only be occupying a small subset of the total possible values
dictated by the resolution of the A/D board, and the effects of quantization will
be greatly increased.
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For example, let’s say you are using an A/D board with 12 bits of resolution and
an input rangeof +/- 5Volts. Thismeans that youhave 212 = 4096possible values
with which to characterize a signal that ranges maximally over 10 Volts. If your
signal is very small compared to this range, e.g. if it only occupies 25 millivolts,
then the A/D board is only capable of using 0.0025/10 ∗ 4096 = 10 (ten) unique
values to characterize your signal! The resulting digitized characterization of
your signal will not be very smooth.

Whenever possible, amplify your signal to occupy the maximum range of the
A/D board you’re using. Of course the trick is always to amplify the signal with-
out also amplifying the noise!

11.11 Sources of noise

It is useful to list a number of common sources of noise in physiological signals:

• Extraneous Signal Noise arises when a recording device records more than
one signal—i.e. signals in addition to the one you as an experimenter are
interested in. It’s up to you to decide which is signal and which is noise.
For example, electrodes placed on the chestwill record both ECG andEMG
activity from respiratory muscles. A cardiologist might consider the ECG
signal and EMG noise, while a respiratory physiologist might consider the
EMG signal and the ECG noise.

• 1/f Noise: Devices with a DC response sometimes show a low frequency
trend appearing on their output even though the inputs don’t change. EEG
systems and EOG systems often show this behaviour. Fourier analyses
show that the amplitude of this noise increases as frequency decreases.

• Power or 60HzNoise is interference from60HzAC electrical power signals.
This is one of the most common noise sources that experimental neuro-
physiologists have to deal with. Often we find, for example, on hot days
when the air conditioning in the building is running, we see much more
60 Hz noise in our EMG signals than on other days. Some neurophysiolo-
gists like to do their recordings late at night or on weekends when there is
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minimal activity on the electrical system in their building.
• Thermal Noise arises from the thermal motion of electrons in conductors,

is always present anddetermines the theoreticalminimumnoise levels for
a device. Thermal noise is white (has a Gaussian probability distribution)
and thus has a flat frequency content — equal power across all frequencies.
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Exercises

E 11.1 Spectrum of a signal

The file e31data.txt153 contains Optotrak measurements of a single-joint
elbow rotation over time. The angle between the upper and lower arm (in
radians) was sampled at 200 Hz. Here is a plot of the data file:

Answer the following questions about the data. Use whatever signal pro-
cessing techniques you wish, to answer each question. Explain the signal
processing steps you took, and why.

• What is the Nyquist frequency?
• Compute andplot the spectrumof the signal, showingwhat the signal

power is at different frequencies. I suggest using the pwelch function
in MATLAB with the following parameters (assume y is an array con-
taining the data):

pwelch(y,hanning(300),[],[],200);

Note that theHanning function simply returns avectorofweights that

http://www.gribblelab.org/scicomp/exercises/e31data.txt
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are applied to each window of data used in the pwelch function. It pro-
vides a smoother spectrum. To visualize the Hanning window you
can do this: plot(hanning(300)).

• What does the spectrum reveal about this signal?

E 11.2 Scoring kinematics

The file e31data.txt154 contains Optotrak measurements of a single-joint
elbow rotation over time. The angle between the upper and lower arm (in
radians) was sampled at 200 Hz. Here is a plot of the data file:

Answer the following questions about the data. Use whatever signal pro-
cessing techniques you wish, to answer each question. Explain the signal
processing steps you took, and why.

• Determine the angle (in degrees) that the elbow rotated over the
course of the arm movement.

• Determine the peak velocity, in radians per second, of the elbow
movement. Hint: use the built-in MATLAB function gradient() to
compute the central difference so you don’t introduce a time lag and
so the derivative has the same number of elements as the position ar-

http://www.gribblelab.org/scicomp/exercises/e31data.txt
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ray.
• Determine the peak positive and peak negative accelerations, in radi-

ans per second per second.

E 11.3 Estimating your heart rate using your webcam or smartphone

In this exercise we will attempt to estimate your heart rate using a video
taken with your webcam or your smartphone.

Here’s what you will do to generate the data. First, make sure you’re in a
brightly lit space (i.e. turn on the lights if you’re in a dark room!). Better
yet, find a light source like a desk lamp and direct it at your webcam or
smartphone camera. Now gently rest the tip of your index finger against
the lens of your webcam or smartphone camera. Now start recording a
video. Record for30 seconds. Trynot tomoveyourfinger, keepeverything
still.

If you used your smartphone, transfer the video file to your computer.
Open it up and look at it on the screen. Here’s a sample frame from mine,
which was approximately 15 seconds in duration:
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Here is a link to the example video: IMG_1383.MOV155

If you can’t make a video of your own, you are free to use my sample video
instead, just download it to your machine.

The idea here is that as your heart pumps blood through your arteries and
veins, the amount of light that the camera detects, as it comes through
your fingertip, will be modulated by the differences in blood flow. The
variation in brightness will be subtle, and so your task is to use signal pro-
cessing techniques to try to detect it.

Your task is to:

1. plot mean brightness over time as below
2. estimate mean heart rate (in beats per minute) during your (or my)

video

Here are some suggestions as to how to proceed. Load in your video file,
frame by frame. Each frame will have three channels: red, green and blue.
Each frame will contain the brightness of each pixel for each of the three
channels red, green and blue. You might as well average over all the pixels
in the frame to get an average brightness measure. The signal that you
ultimately want is probably the brightness over time (i.e. for each frame
of the video).

As an example, here is the mean (over pixels) zero-centered brightness
over time, formy15-sec example video (blue) and a band-pass filtered ver-
sion (in red):

http://www.gribblelab.org/scicomp/exercises/IMG_1383.MOV
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Here are some hints about how to implement this in MATLAB:

The MATLAB function VideoReader will load in a .MOV file. Here is some
sample code:

video = VideoReader('IMG_1383.MOV');
nframes = video.NumberOfFrames;
frameHeight = video.Height;
frameWidth = video.Width;
frameRate = video.FrameRate; % frames per second
duration = video.Duration; % seconds
time = linspace(0,duration,nframes);

To read in a single frame of the video (for example the ith frame, you can
do the following:

frame = read(video, i);

To get the mean brightness of the red channel you could do the following:

redChannel = frame(:, :, 1);
brt = mean(redChannel(:));
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or to get the mean brightness across all channels in the frame:

brt = mean(frame(:));

What you probably want to do is implement a loop, going frame by frame,
and in each frame, compute mean brightness, and store that (single) value
for each frame, in an array.

Then you could band-pass filter this signal between frequencies of interest
(e.g. a frequency range where you expect to see a heartbeat, e.g. 40–200
bpm. Remember to convert beats per minute (bpm) to Hz before using the
bandpass function.

The cutting edge (not needed for your assignment, just FYI)

In 2012, some researchers at MIT published a new method for amplifying
subtle changes inmotion (or other aspects of a video) andvisualizing them
over time:

EulerianVideoMagnification for Revealing Subtle Changes in theWorld156

It’s pretty cool stuff. See example videos:

• Revealing Invisible Changes in the World157 (layperson version)
• Eulerian Video Magnification158 (more technical version)

http://people.csail.mit.edu/mrub/vidmag/
http://youtu.be/e9ASH8IBJ2U
http://youtu.be/ONZcjs1Pjmk
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158http://youtu.be/ONZcjs1Pjmk

http://youtu.be/ONZcjs1Pjmk
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Figure 11.10: Three filtered versions of a noisy signal with peaks at 6, 10 and 13 Hz, in
the time domain.
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Figure 11.11: Sample 3D movement data recorded from Optotrak at 200 Hz.

Figure 11.12: Sample 3D movement data recorded from Optotrak at 200 Hz, low-pass
filtered using a 12 Hz cutoff frequency.
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Figure 11.13: A continuous signal sampled at a variety of (low) sampling rates, showing
quantization.
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12 Optimization & gradient descent

In linear regression,wefit a lineof bestfit toN samplesof (Xi,Yi) data (i = 1 . . .N)
according to a linear equation with two parameters, β0 and β1:

Ŷi = β0 + β1Xi + εi (12.1)

To find the β parameters corresponding to the regression line, we can use a for-
mula that’s based on a procedure called ordinary least squares (OLS). What OLS
does is find the βparameters thatminimize the sumof squareddeviations of the
estimated values of the data Y (using given values of β) and the actual values of
Y. That is, the values of β0 and β1 that minimize Jwhere:

J =
N∑
i=1

(
Ŷi − Yi

)2
(12.2)

We can call this function J a cost function. The goal then, is to determine, some-
how, the values of the parameters β0 and β1 that minimize the cost function J.

This is a classic example of an optimization problem. We want to optimize the
parameters β so that they minimize the cost function J.

Optimization problems abound in science, data analysis, statistical modeling,
and even out there in the real world. Here are a few examples, to help you solid-
ify in your mind what optimization is all about, and how it may be used. For
some problems (e.g. the shower example) it is easy to think about how you
would find the optimal solution. For others, it is not immediately obvious.

209
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• Your morning shower: A simple example of optimization is when you hop
in the shower and turn on the hot and cold water taps. What you desire is
a water temperature that is not too hot, not too cold, but “just right”. The
parameters to be optimized are the relative amounts of cold and hot water
coming out of the shower head. The cost function is how uncomfortable
(whether too cold or too hot) the water temperature is for you.

• Tuning a radio: When you tune a radio (an analog radio) and you’re search-
ing for a particular radio station, you are performing an optimization. The
parameter you are optimizing is the position of the tuner along the radio
spectrum that spans the frequency of the radio station you are trying to
listen to. The cost function is the amount of static that you hear overtop of
the radio station signal.

• Controlling rockets: NASA159 uses optimization techniques to determine
the trajectory of rockets and other spacecraft that will reach their desti-
nation using the least amount of fuel. In this case there are parameters
that define different trajectories, and a cost function that involves the to-
tal amount of fuel burn.

• Travelling salesman: A classic example of an optimization problem is the
Travelling salesman problem160. Given a list of cities and the distances be-
tweeneachpair of cities,what is the shortest possible route that visits each
city exactly once and returns to the origin city? In this case the parameters
to be optimized are the order of visiting each city, and the cost is the total
distance travelled.

• Finance: Bankersperformportfolio optimization todetermine themixture
of investments that strike the best balance between risk and return. In this
case theparameters are theproportions of each typeof investment (stocks,
bonds, real estate, gold, etc) and the cost function is some (generally se-
cret) equation that balances risk and return.

• Statistics: In statistics anddatamodelling, optimization canbeused tofind
the parameters of a model that best fits the observed data. In this case the
parameters to be optimized are the parameters that define the particular
model that is being used to model the data (e.g. for linear regression, the β

http://www.nasa.gov
http://en.wikipedia.org/wiki/Travelling_salesman_problem
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values), and the cost function is somemeasure of goodness-of-fit (actually
“badness”offit). In the caseof linear regression, the cost function J is given
above.

• Machine Learning: Many methods in machine learning, including classifi-
cation, prediction, etc, are based on optimization: finding the values of
model parameters that minimize some cost function. In logistic regres-
sion, support vector machines, etc, we find the parameter values that min-
imize the errors in classifying inputs as belonging to one category vs an-
other (e.g. spamvs non-spamemail, or benign vs cancerous tumours, etc).
In artificial neural network models, we use optimization to find the val-
ues of neuron-to-neuron weights that minimize the network’s errors on
an input-output training set.

• The Brain?: Some people theorize that some brain functions (e.g. motor
control, perception) can be conceptualized as optimization problems. For
example for motor cortex, the parameters to be optimized might be the
time-varying pattern of action potentials that arrive at α motoneurons in
the spinal cord (and hence activate muscles, and move the body) and the
cost function might be the amount of beer that is spilled as you move the
beer stein from the tabletop to your mouth.

The big question then, is how to determine the parameters that minimize the
cost function? There are two general approaches. The analytic approach is to
try to find an analytical expression that allows one to directly compute the op-
timal parameter values. This is wonderful when it can be achieved, because
direct calculation is fast. For linear regression using OLS, there exists a matrix
equation (shown below) that provides an analytical solution.

For many problems however, it is not possible to find an analytical expression
that gives the optimal parameter values. In these cases, one uses a numerical
approach to estimate the optimal parameter values (the parameter values that
minimize the cost function). As long as you can compute the value of the cost
function for a given set of parameter guesses, then you can pursue a numerical
approach to optimization. The downside of the numerical approach however
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is that (1) it can take a long time to converge on the solution, and (2) for some
problems, it can be extremely difficult or practically infeasible to converge on
the optimal solution.

Optimization is a topic that people can (and have) spent their entire careers
studying. It is one of the most important topics in applied mathematics and en-
gineering. We will not attempt to cover the topic in any great breadth. Our goal
here is to introduce you to the central idea, and to get somepractical experience
using numerical approaches to optimization.

12.1 Analytic Approaches

In the caseof linear regression, therehappens tobeananalytical expression that
allows us to directly calculate the β values that minimize J. This is the formula,
in matrix format:

β̂ =
(X⊤X)−1X⊤Y (12.3)

In your undergraduate statistics class(es) you may have seen a simpler looking,
non-matrix version of this:

β̂0 = Ȳ− β̂1X̄ (12.4)

β̂1 =

∑(Yi − Ȳ) (Xi − X̄)∑(Xi − X̄)2 (12.5)

How do we come up with analytic expressions like these? The answer is Calcu-
lus161.

It might help to understand the following material by considering a simpler op-
timization problem, where we have a single paramater β to be optimized, for
example the position of a radio tuner as you hone in on your favourite radio sta-
tion. Call the position of the tuner dial β. What we want is to find the value of β
that minimizes the cost function J, where J is, for example, the amount of static

http://en.wikipedia.org/wiki/Calculus
http://en.wikipedia.org/wiki/Calculus
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that you hear overtop of the radio station signal. Let’s say we’re searching the
airwaves for Virgin Radio but you’ve forgotten the frequency (97.5 MHz). We
can visualize a hypothetical relationship between β and J graphically, as shown
in Figure 12.1.

Figure 12.1: Cost function for tuning a radio.

As we move the dial under or over the actual (forgotten) frequency for Virgin
Radio, we get static and the cost function J increases. The farther we move the
dial away from the 97.5MHz frequency, the greater the cost function J. Whatwe
desire is the frequency (the value of β) corresponding to the bottom (minimum)
of the cost function, i.e. the minimum value of J.

We can remember from our high school calculus days that at the minimum of
a function f, the first derivative162 of f equals zero. With respect to our Virgin
Radio example, this means that the derivative of Jwith respect to β is zero at the
minimum of J. In equation form with calculus notation, what we want to derive
is an expression that gives us the value of β for which the first derivative of β
with respect to J is zero:

http://en.wikipedia.org/wiki/Derivative
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∂J
∂ β̂

= 0 (12.6)

If we can write an algebraic expression to describe how J varies with β, then
there’s a chance that we can do the differentiation and arrive at an analytic ex-
pression for the minimum. A very simple toy example: let’s say we can write
J(β) as:

J = 10+ (β− 97.5)2 (12.7)

Now in this little example one doesn’t need calculus to see that the way to mini-
mize J is to set β = 97.5. Let’s pretend however that we couldn’t see this solution
directly (as is often the case with more complex cost functions—for example for
linear regression and OLS). If we take the derivative of J with respect to β, we
get:

∂J
∂β = 0 (12.8)

∂[10+ (β− 97.5)2]
∂β = 0 (12.9)

2 (β− 97.5) = 0 (12.10)

2β = 2(97.5) (12.11)

β = 97.5 (12.12)

So in this little example the analytical expression for the optimal value of β isn’t
even an expression per se, it’s an actual value.

Note also that technically, that the slope of a function is zero not only at a mini-
mumbut also at apeak. Ifwe trulywant tofindonlyminima thenweshould also
look for places where the second derivative (the slope of the slope) is positive.
Parameter values where the first derivative is zero and the second derivative is
positive, correspond to valleys. Parameter values where the first derivative is
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zero and the second derivative is negative, correspond to peaks. Draw a func-
tion with a peak and a valley, then draw the first and second derivatives, to con-
vince yourself that this is true. See Figure 12.2 for an example of a functionwith
a peak and a valley.

Figure 12.2: Peak and valley.

If you want to see how the solutions for β0 and β1 are derived, for linear regres-
sion OLS, you can see this summary163 by Simon Jackman.

For someoptimizationproblems, doing the calculus tofind an analytical expres-
sion for the optimal parameter values is possible. For many optimization prob-
lems however, the calculus simply cannot be done. In this case our only option
is to pursue a numerical approach. This is what we will focus on in this course—
numerical approaches to optimization.

12.2 Numerical Approaches

In numerical approaches to optimization, the general idea is that you pursue an
iterative approach inwhichyouguess at optimal parameter values, youevaluate
the cost, and then you revise your guess. This loop continues until you decide

http://jackman.stanford.edu/classes/ssmart/2011/derive1.pdf


CHAPTER 12. OPTIMIZATION & GRADIENT DESCENT 216

you can no longer reduce the cost.

Numerical approaches can be distinguished as local versus global methods. Lo-
calmethods use only local information about the relationship between cost and
parameter values in the local “neighborhood”of the current guess. Globalmeth-
ods involve multiple guesses over a broad range of parameter values, and re-
vised parameter guesses take into account information from all guesses across
the entire parameter range.

12.2.1 Local methods

In local numerical approaches to optimization, the basic idea is to:

1. start with an initial guess at the optimal parameter values
2. compute the cost at hose parameter values
3. is the cost low enough? If yes, stop. If no, continue
4. estimate the local gradient at the current parameter values
5. take a step to new parameter values using the local gradient info
6. go to step 2

Sometimes at step 2, the stopping rule looks at not just the current cost but also
other values such as the magnitude of the local gradient. For example if the
local gradient gets too shallow then the stopping rule might get triggered.

You can think of this all in real-world terms in the followingway. Imagine you’re
heli-skiing in the back-country, and at the end of the day instead of taking you
back to Whistler village, your helicopter pilot drops you somewhere on the side
of Whistler Mountain164. Only problem is, it’s extremely foggy and you have no
idea where you are, or which way is down to the village. You can only see 3 feet
in front of you. All you have on you is an altimeter. What do you do? Probably
something akin to the iterative numerical approach of gradient descent.

You have to decide which way is downhill, and then ski in that direction. To es-
timate which way is downhill you could do something like the following: take
a step in three directions around a circle, and for each step, check the altime-

http://www.whistlerblackcomb.com/the-mountain/weather-and-mountain-stats.aspx


217 12.2. NUMERICAL APPROACHES

ter and compare the altitude to the altitude at the center of the circle. The step
corresponding to the greatest altitude decrease represents the steepest “down-
hill”.

Then you have to decide how long to ski in that direction. You could even tailor
this ski time to the local gradient of the mountain. The steeper the slope, the
smaller the ski time. The shallower the slope, the longer the ski time.

When you determine that moving in any direction doesn’t decrease your alti-
tude very much, you conclude that you’re at the bottom.

This is essentially how numerical approaches to optimization work, by doing
iterative gradient descent. Think about the ski hill example, and what kinds of
things can go wrong with this procedure.

12.2.2 Local minima

One common challenge with complex optimization problems, is the issue of
local minima. In the bowl-shaped example of a cost function that we plotted
above, there is a single global minimum to the cost function—one place on the
cost landscape where the slope is zero. It happens often however that there are
local minima in the cost function—parameter values that correspond to a flat re-
gion of the cost function, where local steps will only increase the cost—but for
which the cost is not the global minimum cost. Figure 12.3 shows an example
of such a cost function.

You can see that there is a single global minimum at a parameter value of about
-1—but there is a second, local minimum at a parameter value of about 2.2. You
can see that if our initial parameter guesswasbetween1.5 and3.0, that our local
gradient descent procedure would put us at the local minimum, not the global
minimum.

One strategy to deal with local minima is to run several gradient descent runs,
each starting from a different (often randomly chosen) initial parameter guess,
and then to take the best one as the global minimum. Ultimately however in
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Figure 12.3: Local minimum.

the absence of an analytic solution, or a brute force mapping of the entire cost
landscape (which is often infeasible) one can never be sure that one isn’t at a
local versus a global minimum.

12.2.3 Algorithms

Anumberof effective algorithmshavebeendeveloped forfindingparameterval-
ues that minimize a cost function. Some don’t assume any pre-existing knowl-
edge of the gradient—that is, of the derivative of the cost function with respect
to the parameters, while some assume that we can compute both the cost and
the gradient for a given set of parameter values.

In simple gradient descent165, the simple idea is as described above, namely to
estimate the local gradient and then take a step in the steepest direction. There
are all sorts of ways of defining the step size, and adapting the step size to the
steepnessof the local gradient. There are also termsonecanadd that implement
momentum166, as a scheme to try to avoid local minima. Another strategy is to
include randomness, by implementing stochastic gradient descent167.

http://en.wikipedia.org/wiki/Gradient_descent
http://www.willamette.edu/~gorr/classes/cs449/momrate.html
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
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In conjugate gradient descent168, one requires knowledge of the local gradient,
and the idea here is that the algorithm tries to compute a more intelligent guess
as to the direction of the cost minimum.

In Newton’s method169, one approximates the local gradient using a quadratic
function, and then a step is taken towards the minimum of that quadratic func-
tion. You can think of this as a slightly more sophisticated version of simple
gradient descent, in which one essentially approximates the local gradient as a
straight line.

The Nelder-Mead (simplex) method170 is an iterative approach that is pretty ro-
bust, that has an interesting geometric interpretation (see the animation on the
wikipedia page) that is not unlike the old toy called Wacky Wally171.

There are more complex algorithms such as Levenberg-Marquardt172 and oth-
ers, which we won’t get into here.

The bottom line is that there are a range of local methods that vary in their com-
plexity, in their memory requirements, in their iteration speed, and their sus-
ceptability to getting stuck in local minima. My approach is to start with the
simple ones, and add complexity when needed.

12.2.4 Global methods

In global optimization173, the general idea is instead of making a single guess
and descending the local gradient, one insteadmakes a large number of guesses
that broadly span the range of the parameters, and one evaluates the cost for
all of them. Then the update step uses the costs of the entire set of guesses to
determine a new set of guesses. It’s also an iterative procedure, and when the
stopping rule is triggered, one takes the guess from the current set of guesses
that has the lowest cost, as the best estimate of the global minimum.

Globalmethods arewell suited toproblems that involvemany localminima. Go-
ing back to our ski hill example, imagine instead of dropping one person on the
side of Whistler mountain, rather a platoon of paratroopers is dropped from a

http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://youtu.be/l8Dbne0wRaE?t=18s
http://en.wikipedia.org/wiki/Levenberg–Marquardt_algorithm
http://en.wikipedia.org/wiki/Global_optimization
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plane and scattered all over the entire mountain range. Some will end up in val-
leys and alpine lakes (local minima) but the chances are good that at least one
will end up in whistler village, or close to it. They all radio up to the airplane
with their reported altitudes, and on the basis of an analysis of the entire set,
a new platoon is dropped, and eventually, someone will end up at the bottom
(the global minimum).

Two popular global methods you might come across are simulated annealing174

and genetic algorithms175. Read up on them.

12.3 Optimization in MATLAB

MATLAB has many different functions in the Optimization Toolbox for doing
optimization, dependingonwhether youaredoing linear vsnonlinear optimiza-
tion, whether you have constraints or your problem is unconstrained, and other
considerations as well. See the MATLAB documentation for all the details.

Here we will consider unconstrained nonlinear optimization, and later we will
look at curve fitting.

12.3.1 Unconstrained nonlinear optimization

There are two main functions to consider in MATLAB for doing uncon-
strained, nonlinear optimization: fminsearch (which usese Nelder-Mead sim-
plex search176) and fminunc (which uses gradients to search).

TheMATLABdocumentation contains someguidelines aboutwhen touse these
different functions:

“fminsearch is generally less efficient than fminunc for problems of or-
der greater than two. However, when the problem is highly discon-
tinuous, fminsearch might be more robust.”

There is also a page in the MATLAB documentation that gives a more compre-
hensive set of guidelines for when to use different optimization algorithms:

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Nelder–Mead_method
https://en.wikipedia.org/wiki/Nelder–Mead_method
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Choosing a Solver177

Here is a simple example of a one-dimensional (one parameter) optimization
problem. Consider the following function J of a single parameter x:

J(x) = xe(−x2) +
x2
20 (12.13)

Assume values of x range between -10.0 and +10.0.

Let’s first generate a plot of the cost function J over the range of x. The code is
shown below and the plot is shown in Figure 12.4.

J = @(x) x.*exp(-x.^2) + (x.^2)/20;
x = -10:0.1:10;
y = J(x);
plot(x,y)

Figure 12.4: A function of a single variable.

We can see that there is a global minimum between -2.0 and 0.0, and there also
appears to be a local minimum between 0.0 and 3.0. Let’s try using the fmin-

http://www.mathworks.com/help/optim/ug/choosing-a-solver.html
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search function to find the value of xwhich minimizes J(x):

>> [X,FVAL,EXITFLAG] = fminsearch(J,0.0)

X =

-0.6691

FVAL =

-0.4052

EXITFLAG =

1

We can see that the optimizer found a minimum at x = −0.6691, and that at that
value of x, J(x) = −0.4052. It appears that the optimizer successfully found the
global minimum and did not get fooled by the local minimum.

Let’s try a two-dimensional problem:

J(x, y) = xe(−x.2−y2) +
x2 + y2
20 (12.14)

Now we have a cost function J in terms of two variables x and y. Our problem is
to find the vector (x, y) that minimizes J(x, y).

Let’s write a function file for our cost function:

function J = mycostfun2d(X)
%
% note use of dot notation on .* and ./ operators
% this enables the computation to happen for
% vector values of x
%
x = X(:,1);
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y = X(:,2);
J = (x .* exp(-(x.*x)-(y.*y))) + (((x.*x)+(y.*y))./20);

Let’s plot the cost landscape, which is shown in Figure 12.5:

x = linspace(-3,3,51); % sample from -3 to +3 in 50 steps
y = linspace(-3,3,51);
XY = combvec(x,y);
J = mycostfun2d(XY'); % compute cost function over all values
[Y,X] = meshgrid(x,y); % reshape into matrix form
Z = reshape(J,length(x),length(y));
figure % visualize the cost landscape
meshc(X,Y,Z);
shading flat
xlabel('X');
ylabel('Y');
zlabel('J');

Figure 12.5: Cost function landscape for a 2D problem.

Now let’s use fminsearch to find the values (x, y) that minimize J(x, y):
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>> [Xf,FVAL] = fminsearch('mycostfun2d', [5,5])

Xf =

-0.6690 -0.0000

FVAL =

-0.4052

Let’s plot our solution to verify it looks reasonable—this is shown in Figure 12.6:

hold on
z0 = get(gca,'zlim');
z0 = z0(1);
plot3([Xf(1),Xf(1)],[get(gca,'ylim')],[z0 z0],'color','r','linewidth',2);
plot3([get(gca,'xlim')],[Xf(2),Xf(2)],[z0 z0],'color','r','linewidth',2);

Figure 12.6: Cost function landscape for a 2D problem.
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12.3.2 Curve Fitting

We can do nonlinear least squares curve fitting in MATLAB using lsqcurvefit.
There is also a GUI tool for curve fitting in MATLAB called cftool.
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Exercises

E 12.1 Curve Fitting

Here are 10 pairs of (x,y) data:

x = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
y = [18, 5, 17, 38, 40, 106, 188, 234, 344, 484];

Your task is to fit a function to the data. The function has the form:

ŷi = β0 + β1xi + β2x2i + β3x3i (12.15)

and the cost function J is:

J =
10∑
i=1

(ŷi − yi)2 (12.16)

Use whatever optimizer you wish. Plot the data as a scatter plot of x vs
y, and plot the function that corresponds to the parameter values β that
minimize J.

E 12.2 Local Minima

Generate some noisy (x,y) data using the following MATLAB code:

x = 0:0.01:3;
y = sin(2*pi*x) + randn(size(x))*0.5;

Generate a scatterplot of the data, plotting x on the abscissa and y on the
ordinate.

Your task is to fit a function of the following form to the data:

ŷ = sin(βx) (12.17)

The (single) parameter to be optimized is β. Your cost function J is:
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J =
n∑
i=1

(ŷi − yi)2 (12.18)

where n is the number of (x,y) pairs in the data.

• Compute the cost function J for values of β ranging from -10.0 to
+10.0, and plot the cost landscape (plot J as a function of β)

• Use an optimization method of your choosing to find the value of β
that minimizes the cost function J. Plot the data and the overlay the
best fitting function. Justify that you have found a global minimum
and not a local minimum.

E 12.3 Egg Carton

Assume your cost function J is the following function of two parameters
(x,y):

J(x, y) = −20eA − eB + 20+ e (12.19)

where

A = −0.2
√
0.5(x2 + y2) (12.20)

and

B = 0.5 [cos(2πx) + cos(2πy)] (12.21)

• Compute the cost function J for values of (x, y) ranging from -10.0 to
10.0, and plot the cost landscape (plot J as a function of (x, y)). hint:
Hint: it should look something like [this178

• Use whatever optimization method you wish, to find the values of
(x, y) that minimize the cost function J. Justify that you have found
the global minimum and not a local minimum

http://wolfr.am/85VNivEU
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13 Integrating ODEs & simulating

dynamical systems

13.1 What is a dynamical system?

Systems can be characterized by the specific relation between their input(s) and
output(s). A static system has an output that only depends on its input. A me-
chanical example of such a system is an idealized, massless spring. The length
of the spring depends only on the force (the input) that acts upon it. Change
the input force, and the length of the spring will change, and this will happen
instantaneously (obviously a massless spring is a theoretical construct). A sys-
tembecomes dynamical (it is said to have dynamics)when amass is attached to
the spring (Figure 13.1 below). Now the position of the mass (and equivalently,
the length of the spring) is no longer directly dependent on the input force, but
is also tied to the acceleration of the mass, which in turn depends on the sum
of all forces acting upon it (the sum of the input force and the force due to the
spring). The net force depends on the position of the mass, which depends on
the length of the spring, which depends on the spring force. The property that
acceleration of the mass depends on its position makes this a dynamical system.

Dynamical systems canbe characterizedbydifferential equations that relate the
state derivatives (e.g. velocity or acceleration) to the state variables (e.g. posi-
tion). The differential equation for the spring-mass system depicted above is:

mẍ = −kx+mg (13.1)

229
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Figure 13.1: A simple mass-spring system

Where x is the position of the mass m (the length of the spring), ẍ is the second
derivative of position (i.e. acceleration), k is a constant (related to the stiffness
of the spring), and g is the graviational constant (9.81 m/s/s).

The system is said to be a second order system, as the highest derivative that
appears in the differential equation describing the system, is two. The position
x and its time derivative ẋ are called states of the system, and ẋ and ẍ are called
state derivatives.

Most systems out there in nature are dynamical systems. For example most
chemical reactions under natural circumstances are dynamical: the rate of
change of a chemical reaction depends on the amount of chemical present, in
other words the state derivative is proportional to the state. Dynamical systems
exist in biology as well. For example the rate of change of the population size of
a certain species likely depends on its population size.

Dynamical equations are often described by a set of coupled differential equa-
tions. For example, the reproduction rate of rabbits (state derivative 1) depends
on the population of rabbits (state 1) and on the population size of foxes (state
2). The reproduction rate of foxes (state derivative 2) depends on the popula-
tion of foxes (state 2) and also on the population of rabbits (state 1). In this case
wehave two coupledfirst-order differential equations, andhence a systemof or-
der two. The so-called predator-prey model is also known as the Lotka-Volterra
equations179:

http://en.wikipedia.org/wiki/Lotka_Volterra_equation
http://en.wikipedia.org/wiki/Lotka_Volterra_equation
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ẋ = x(α− βy) (13.2)

ẏ = −y(γ− δx) (13.3)

13.2 Why make models?

There are two main reasons why we would want to model a physical system
using mathematical equations, one being practical and one mostly theoretical.
The practical use is prediction. A typical example of a dynamical system that is
modelled for prediction is the weather. The weather is a very complex, (high-
order, nonlinear, coupled and chaotic) system. More theoretically, one reason
to make models is to test the validity of a functional hypothesis of an observed
phenomenon. A beautiful example is the model made by Hodgkin and Hux-
ley180 to understand how action potentials arise and propagate in neurons (see
Figures 13.2 and 13.3 below). They modelled the different (voltage-gated) ion
channels in an axon membrane and showed using mathematical models that in-
deed the changes in ion concentrations were responsible for the electical spikes
observed experimentally 7 years earlier.

A second theoretical reason tomakemodels is that it is sometimes very difficult,
if not impossible, to answer a certain question empirically. As an example we
take the following biomechanical question: Would you be able to jump higher if
your biceps femoris (part of your hamstrings) were two separate muscles each
crossing only one joint rather than being one muscle crossing both the hip and
knee joint? Not a strange question as one could then independently control the
torques around each joint.

In order to answer this question empirically, one would like to do the following
experiment:

• measure the maximal jump height of a subject
• change only the musculoskeletal properties in question
• measure the jump height again

http://en.wikipedia.org/wiki/Hodgkin-Huxley_model
http://en.wikipedia.org/wiki/Hodgkin-Huxley_model
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Figure 13.2: Hodgkin-Huxley model of voltage-gated ion channels

Of course, such an experiment would yield several major ethical, practical and
theoretical drawbacks. It is unlikely that an ethics committee would approve
the transplantation of the origin and insertion of the hamstrings in order to ex-
amine its effect on jump height. And even so, one would have some difficulties
finding subjects. Even with a volunteer for such a surgery it would not bring
us any closer to an answer. After such a surgery, the subject would not be able
to jump right away, but would have to undergo significant rehabilitation, and
surely during such a period many factors will undesirably change like maximal
contractile forces. And even if the subject would fully recover (apart from the
hamstrings transplantation), his or her nervous system would have to find the
new optimal muscle stimulation pattern.

If one person jumps lower than another person, is that because she cannot jump
as high with her particular muscles, or was it just that her CNS was not able
to find the optimal muscle activation pattern? Ultimately, one wants to know
through what mechanism the subject’s jump performance changes. To inves-
tigate this, one would need to know, for example, the forces produced by the
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Figure 13.3: Action potentials across the membrane

hamstrings as a function of time, something that is impossible to obtain exper-
imentally. Of course, this example is somewhat ridiculous, but its message is
hopefully clear that for several questions a strict empirical approach is not suit-
able. An alternative is provided by mathematical modelling.

Herewewill be examining three systems—amass-spring system, a two-linkdou-
ble pendulumsystem, and a system representingweather patterns. In each case
wewill see how to go fromdifferential equations characterizing the dynamics of
the system, toMATLABcode, and run that code to simulate the behaviour of the
system over time. We will see the great power of simulation, namely the ability
to change aspects of the system at will, and simulate to explore the resulting
change in system behaviour.

13.3 Modelling Dynamical Systems

13.3.1 Characterizing a System Using Differential Equations

A dynamical system such as the mass-spring system we saw before, can be char-
acterized by the relationship between state variables s and their (time) deriva-
tives ṡ. How do we arrive at the correct characterization of this relationship?
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The short answer is, we figure it out using our knowledge of physics, or we are
simply given the equations by someone else. Let’s look at a simple mass-spring
system again, shown in Figure 13.4.

Figure 13.4: A spring with a mass attached

We know a couple of things about this system. We know from Hooke’s law181 of
elasticity that the extension of a spring is directly and linearly proportional to
the load applied to it. More precisely, the force that a spring applies in response
to a perturbation from it’s resting length (the length at which it doesn’t gener-
ate any force), is linearly proportional, through a constant k, to the difference in
length between its current length and its resting length (let’s call this distance x).
For convention let’s assume positive values of x correspond to lengthening the
spring beyond its resting length, and negative values of x correspond to short-
ening the spring from its resting length.

F = −kx (13.4)

Let’s decide that the state variable that we are interested in for our system is x.
We will refer to x instead of s from now on to denote our state variable.

We also know from Newton’s laws of motion182 (specifically Newton’s second
law183) that the net force on an object is equal to its mass m multiplied by its
acceleration a (the second derivative of position).

http://en.wikipedia.org/wiki/Hooke's_law
http://en.wikipedia.org/wiki/Newton's_laws_of_motion
http://en.wikipedia.org/wiki/Newton's_laws_of_motion#Newton.27s_second_law
http://en.wikipedia.org/wiki/Newton's_laws_of_motion#Newton.27s_second_law
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F = ma (13.5)

Instead of using a to denote acceleration let’s use a different notation, in terms
of the spring’s perturbed length x. The rate of change (velocity) is denoted ẋ and
the rate of change of the velocity (i.e. the acceleration) is denoted ẍ.

F = mẍ (13.6)

We also know that the mass is affected by two forces: the force due to the spring
(−kx) and also the gravitational force g. So the equation characterizing the net
forces on the mass is

∑
F = mẍ = −kx+mg (13.7)

or just

mẍ = −kx+mg (13.8)

This equation is a second-order differential equation, because the highest state
derivative is a second derivative (i.e. ẍ, the second derivative, i.e. the accelera-
tion, of x). The equation specifies the relationship between the state variables
(in this case a single state variable x) and its derivatives (in this case a single
derivative, ẍ).

The reason we want an equation like this, from a practical point of view, is that
we will be using numerical solvers in MATLAB to integrate this differential equa-
tion over time, so that we can simulate the behaviour of the system. What these
solvers need is a MATLAB function that returns state derivatives, given current
states. We can re-arrange the equation above so that it specifies how to compute
the state derivative ẍ given the current state ẍ.
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ẍ =
−kx
m + g (13.9)

Now we have what we need in order to simulate this system in MATLAB. At any
time point, we can compute the acceleration of the mass by the formula above.

13.4 Integrating Differential Equations in MATLAB

Here is a MATLAB function that we will be using to simulate the mass-spring
system. All it does, really, is compute the equation above: what is the value of
ẍ, given x? The one addition we have is that we are going to keep track not just
of one state variable x but also its first derivative ẋ (the rate of change of x, i.e.
velocity).

function stated = MassSpring(t, state)

% unpack the state vector
x = state(1);
xd = state(2);

% these are our constants
k = 2.5; % Newtons per metre
m = 1.5; % Kilograms
g = 9.8; % metres per second

% compute acceleration xdd
xdd = ((-k*x)/m) + g;

stated = [xd, xdd];

end

Note that the function we wrote takes two arguments as inputs: state and t,
which corresponds to time. This is necessary for the numerical solver that we
will use in MATLAB. The state variable is actually an array of two values corre-
sponding to x and ẋ.
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How does numerical integration (simulation) work? Here is a summary of the
steps that a numerical solver takes. First, you have to provide the system with
two things:

1. initial conditions (what are the initial states of the system?)
2. a time vector over which to simulate

Given this, the numerical solver will go through the following steps to simulate
the system:

• calculate state derivatives ẍ at the initial time (t = 0) given the initial states
(x, ẋ)

• estimate x(t+ Δt) using x(t = 0), ẋ(t = 0) and ẍ(t = 0)
• calculate ẍ(t = t+ Δt) from x(t = t+ Δt) and ẋ(t = t+ Δt)
• estimate x(t + 2Δt) and ẋ(t + 2Δt) using x(t = t + Δt), ẋ(t = t + Δt) and
ẍ(t = t+ Δt)

• calculate ẍ(t = t+ 2Δt) from x(t = t+ 2Δt) and ẋ(t = t+ 2Δt)
• … etc

In this way the numerical solver can esimate how the system states (x, ẋ) un-
fold over time, given the initial conditions, and the known relationship between
state derivatives and system states. The details of the “estimate” steps above
are not something we are going to dive into now. Suffice it to say that current
estimation algorithms are based on the work of two German mathematicians
named Runge and Kutta184 in the beginning of the 20th century. These numeri-
cal recipies are readily available inMATLAB and are known asODE solvers (ODE
stands for ordinary differential equation).

Here’s how we would simulate the mass-spring system above. Assume that we
have the function MassSpring.m defined as above:

state0 = [0.0, 0.0];
t = 0:.1:10;

[t,state] = ode45('MassSpring', t, state0);

http://en.wikipedia.org/wiki/Runge–Kutta_methods
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plot(t, state)
xlabel('TIME (sec)')
ylabel('STATES')
title('Mass-Spring System')
legend({'$x$ (m)', '$\dot{x}$ (m/sec)'},'interpreter','latex')

A couple of notes about the code. I have simply chosen, out of the blue, values
for the constants k and m. The gravitational constant185 g is of course known.
I have also chosen to simulate the system for 10 seconds, and I have chosen a
time resolution of 100 milliseconds (0.1 seconds). We will talk later about the
issue of what is an appropriate time resolution for simulation.

You should see a plot like the one shown in Figure 13.5 below.

Figure 13.5: Mass-spring simulation

The blue line shows the position x of the mass (the length of the spring) over
time, and the orange line shows the rate of change of x, in other words the ve-
locity ẋ, over time. These are the two states of the system, simulated over time.

The way to interpret this simulation is, if we start the system at x = 0 and ẋ = 0,

http://en.wikipedia.org/wiki/Gravitational_constant
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and simulate for 10 seconds, this is how the system would behave.

13.5 The power of modelling and simulation

Now you can appreciate the power of mathematical models and simulation:
given a model that characterizes (to some degree of accuracy) the behaviour
of a system we are interested in, we can use simulation to perform experiments
in simulation instead of in reality. This can be very powerful. We can ask ques-
tions of themodel, in simulation, thatmay be too difficult, or expensive, or time
consuming, or just plain impossible, to do in real-life empirical studies. The de-
gree to which we regard the results of simulations as interpretable, is a direct
reflection of the degree to which we believe that our mathematical model is a
reasonable characterization of the behaviour of the real system.

13.6 Simulating Motion of a Two-Joint Arm

Here is a MATLAB function called double_pendulum.m that implements the for-
ward dynamics of a double pendulum186. You can look up the equations of mo-
tionon theWikipediapage. Thecodebelowsimply implements theseequations.
It’s not important right now to understand where the equations came from, but
know that they canbederived froma relatively basic knowledgeof physics. One
property of a double pendulum is that themotion about one joint affects themo-
tion of the adjacent joint, and vice-versa. These interaction forces can result in
complex behaviour. Indeed, experimental work has demonstrated that the ner-
vous system is capable of predicting these interaction forces and compensating
for them (or in some cases exploiting them) during voluntarymovements of the
upper limb.

The four state variables are the angle of joint 1, the angle of joint 2, the velocity
of joint 1 and the velocity of joint 2.

function stated = double_pendulum(t, state)

a1 = state(1);

https://en.wikipedia.org/wiki/Double_pendulum
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a2 = state(2);
a1d = state(3);
a2d = state(4);

damping = 0.0;
g = 9.8;

% inertia matrix
M = [3 + 2*cos(a2), 1+cos(a2); ...

1+cos(a2), 1];

% coriolis, centripetal and gravitational forces
c1 = a2d*((2*a1d) + a2d)*sin(a2) + ...

2*g*sin(a1) + g*sin(a1+a2);
c2 = -(a1d^2)*sin(a2) + g*sin(a1+a2);

% passive dynamics
cc = [c1-damping*a1d; ...

c2-damping*a2d];

% compute accelerations
acc = M\cc;

stated = [a1d a2d acc(1) acc(2)]';

end

Now that we have a function that implements the equations of motion, now we
can run a simulation, by starting the arm out at some initial condition (initial
joint angles and initial joint velocities) and integrating thedifferential equations
over time (using MATLAB’s ode45 function). Here is some MATLAB code for run-
ning a simulation from a given set of initial state conditions, and animating the
result in a figure window. You’ll need this helper function called a2h.m as well:

function [h0,h1,h2] = a2h(a1,a2)

h0 = [0,0];
h1 = [sin(a1), cos(a1)];
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h2 = [sin(a1) + sin(a1+a2), ...
cos(a1) + cos(a1+a2)];

end

Here is the script for running the simulation and generating the animation:

%% run a simulation of a double pendulum

t = 0:.01:10;
x0 = [pi, pi/2, 0, 0];
[t,x] = ode45('double_pendulum', t, x0);

%% plot states over time

figure
plot(t,x)

%% run an animation

figure('position',[62 855 965 333]);
subplot(1,2,1)
plot(t,x(:,1:2))
legend({'a1','a2'})
hold on
s1ylim = get(gca,'ylim');
tline = plot([0 0],s1ylim,'r-','linewidth',1);
subplot(1,2,2)
[h0,h1,h2] = a2h(x(1,1),x(1,2));
l1 = plot([h0(1) h1(1)],[h0(2) h1(2)],'b-');
hold on
l2 = plot([h1(1) h2(1)],[h1(2) h2(2)],'b-');
axis([-2.2 2.2 -2.2 2.2]); axis equal
p0 = plot(h0(1),h0(2),'k.','markersize',15);
p1 = plot(h1(1),h1(2),'b.','markersize',15);
p2 = plot(h2(1),h2(2),'r.','markersize',15);
tp = title(sprintf('%5.1f',t(1)));
skip = 3;
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for i=1:skip:length(t)
subplot(1,2,1)
set(tline, 'Xdata', [t(i) t(i)]);
set(tline, 'Ydata', s1ylim);
subplot(1,2,2)
[h0,h1,h2] = a2h(x(i,1), x(i,2));
set(l1, 'XData', [h0(1) h1(1)]);
set(l1, 'YData', [h0(2) h1(2)]);
set(l2, 'XData', [h1(1) h2(1)]);
set(l2, 'YData', [h1(2) h2(2)]);
set(p1, 'XData', h1(1));
set(p1, 'YData', h1(2));
set(p2, 'XData', h2(1));
set(p2, 'YData', h2(2));
set(tp, 'String', sprintf('%5.1f', t(i)));
axis([-2.2 2.2 -2.2 2.2]);
drawnow;

end

What you see is a window with the time-varying angles on the left panel and an
animation of the double pendulum on the right panel, as in Figure 13.6.

Play with the simulation code and see what happens when you start the simula-
tion from different initial conditions, for example different initial joint angles.

The simple model described here has only passive motion, there are no active
forces (for example generated by muscles). One can relatively easily addmathe-
matical models of muscle force generation, and other neurophysiologically rel-
evant properties such as muscle mechanics, spinal reflex circuitry, reflex time
delays, and so on. One can then use such a model to test hypotheses about how
the brain controls voluntary arm movement.

13.7 Lorenz Attractor

The Lorenz system187 is a dynamical system that we will look at briefly, as it
will allow us to discuss several interesting issues around dynamical systems. It

http://en.wikipedia.org/wiki/Lorenz_system
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Figure 13.6: Double pendulum

is a system often used to illustrate non-linear systems188 theory and chaos the-
ory189. It’s sometimes used as a simple demonstration of the butterfly effect190

(sensitivity to initial conditions). See here191 for a YouTube video that explains
the meaning of the x, y and z coordinates.

The Lorenz system is a simplified mathematical model for atmospheric convec-
tion. Let’s not worry about the details of what it represents, for now the impor-
tant things tonote are that it is a systemof three /coupled/differential equations,
and characterizes a system with three state variables (x, y, z).

ẋ = σ(y− x) (13.10)

ẏ = (ρ− z)x− y (13.11)

ż = xy− βz (13.12)

If you set the three constants (σ, ρ, β) to specific values, the system exhibits
chaotic behaviour.

http://en.wikipedia.org/wiki/Nonlinear_system
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Butterfly_effect
https://www.youtube.com/watch?v=YS_xtBMUrJg
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σ = 10 (13.13)

ρ = 28 (13.14)

β =
8
3 (13.15)

Let’s implement this system in MATLAB. We have been given above the three
equations that characterize how the state derivatives (ẋ, ẏ, ż) depend on (x, y, z)
and the constants (σ, ρ, β). All we have to do is write a function that implements
this, set some initial conditions, decide on a time array to simulate over, and
run the simulation using ode45(). First the function myLorenz.m that defines the
differential equations:

function stated = myLorenz(t, state)
x = state(1);
y = state(2);
z = state(3);

% these are our constants
sigma = 10.0;
rho = 28.0;
beta = 8/3;

% compute the state derivatives
xd = sigma * (y-x);
yd = (rho-z)*x - y;
zd = x*y - beta*z;

% return the state derivatives
stated = [xd, yd, zd]';

end

Now the code to run the simulation:

state0 = [2.0, 3.0, 4.0];
t = 0:.01:30;
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[t,state] = ode45('myLorenz', t, state0);

% plot the resuling state-space trajectory in 3D
plot(state(:,1), state(:,2), state(:,3))
xlabel('X'); ylabel('Y'); zlabel('Z');
grid on

You should see something like the plot shown in Figure 13.7 below.

Figure 13.7: Lorenz attractor

The three axes on the plot represent the three states (x, y, z) plotted over the 30
seconds of simulated time. We started the system with three particular values
of (x, y, z) (I chose them arbitrarily), and we set the simulation in motion. This
is the trajectory, in state-space, of the Lorenz system.

You can see an interesting thing … the system seems to have two stable equi-
librium states, or attractors: those circular paths. The system circles around in
one “neighborhood” in state-space, and then flips over and circles around the
second neighborhood. The number of times it circles in a given neighborhood,
and the time at which it switches, displays chaotic behaviour, in the sense that
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they are exquisitly sensitive to initial conditions.

For example let’s re-run the simulation but change the initial conditions. Let’s
change them by a very small amount, say 0.0001 … and let’s only change the x
initial state by that very small amount. We will simulate again for 30 seconds.

state0 = [2.0, 3.0, 4.0];
t = 0:.01:30;

[t,state] = ode45('myLorenz', t, state0);

% plot the resuling state-space trajectory in 3D
plot3(state(:,1), state(:,2), state(:,3), 'b-', 'linewidth', 2)
xlabel('X'); ylabel('Y'); zlabel('Z');
grid on

% re-run with very small change in initial conditions
delta = 0.0001;

state0 = [2.0+delta, 3.0, 4.0];
t = 0:.01:30;

[t2,state2] = ode45('myLorenz', t, state0);

hold on
plot3(state2(:,1), state2(:,2), state2(:,3), 'r-', 'linewidth', 2)

You should see something like what is shown in Figure 13.8 below.

You can sort of see that at some point the two state-space trajectories diverge.
You can better visualize this by plotting each state against time as shown in Fig-
ure 13.9.

But let’s go one step further, let’s plot the distance between each point in state-
space as a function of time:

dist = sqrt(sum((state2-state).^2,2));
figure
plot(t,dist,'b-','linewidth',2)
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Figure 13.8: Lorenz attractor changing initial conditions

xlabel('TIME (sec)')
ylabel('DISTANCE')
grid on

You’ll see something like what’s shown in Figure 13.10.

If you look at the peaks, we see that up until the 15 second mark or so, the two
trajectories are basically aligned, and then afterwards, they suddenly diverge,
and quite significantly. We have distances in the range of 30, 40 or even 50
units—and remember, this is generated with a difference in initial conditions of
only 0.0001. That’s a 500,000x change.

Here’s some MATLAB code to generate an animation:

figure
plot3(state(:,1),state(:,2),state(:,3),'b-');
hold on
plot3(state2(:,1),state2(:,2),state2(:,3),'r-');
p1 = plot3(state(1,1),state(1,2),state(1,3),'b.','markersize',30);
p2 = plot3(state2(1,1),state2(1,2),state2(1,3),'r.','markersize',30);
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Figure 13.9: Lorenz attractor changing initial conditions

tt = title('0.0');
step = 3;
view([32 22])
grid on
xlabel('X'); ylabel('Y'); zlabel('Z');
drawnow
for i=1:step:length(t)

set(p1,'XData',state(i,1));
set(p1,'YData',state(i,2));
set(p1,'ZData',state(i,3));
set(p2,'XData',state2(i,1));
set(p2,'YData',state2(i,2));
set(p2,'ZData',state2(i,3));
set(tt,'String',sprintf('%6.2f',t(i)));
drawnow

end

You should see an animation of the two state-space trajectories.

The original simulation is shown in blue. The simulation with the altered initial
condition is in red. Then an animated filled circle shows the state space over
time for the original (blue) and new (red, in which the initial condition of xwas
increased by 0.0001). The two follow each other quite closely for a long time,
and then begin to diverge at about the 16 second mark. At the 20.76 second
mark they look like what’s shown in Figure 13.11.
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Figure 13.10: Distance between two state space trajectories

Note how the two systems are in different neighborhoods entirely!

This has illustrated how systems with relatively simple differential equations
characterizing their behaviour, can turn out to be exquisitely sensitive to initial
conditions. Just imagine if the initial conditions of your simulation were gath-
ered from empirical observations (like the weather, for example). Now imag-
ine you use a model simulation to predict whether it will be sunny (left-hand
neighborhood of the plot above) or thunderstorms (right-hand neighborhood),
30 days from now. If the answer can flip between one prediction and the other,
based on a 1/10,000 different in measurement, you had better be sure of your
empirical measurement instruments, when you make a prediction 30 days out!
Actually this won’t even solve the problem, no matter how precise your mea-
surements. The point is that the system as a whole is very sensitive to even tiny
changes in initial conditions. This is one reason why short-term weather fore-
casts are relatively accurate, but forecasts past a couple of days can turn out to
be dead wrong.
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Figure 13.11: Animation of two Lorenz attractors

Exercises

E 13.1 Mass-Spring simulation

What is the influence of the sign and magnitude of the stiffness parameter
k?

E 13.2 Mass-Spring simulation

Inphysics, damping192 canbeused to reduce themagnitudeofoscillations.
Damping generates a force that is directly proportional to velocity (F =

−bẋ). Add damping to the mass-spring system and re-run the simulation.
Specify the value of the damping constant b = −2.0. What happens?

E 13.3 Mass-Spring simulation

What is the influence of the sign andmagnitude of the damping coefficient
b?

http://en.wikipedia.org/wiki/Damping
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E 13.4 Mass-Spring simulation

Double the mass, and re-run the simulaton. What happens?

E 13.5 Lotka-Volterra Predator-Prey Model

Above, in Equations 13.3 and 13.3 the lotka-volterra equations are given,
whichdescribe a classic predator-preymodel. The variable x is the numebr
ofprey (for example, rabbits), y is thenumberofpredators (e.g. foxes), and
ẋ and ẏ are the growth rates (rate of change over time) of the two popula-
tions. Assumptions of the model are:

• prey find ample food at all times
• food supply of predators depends entirely on prey population
• rate of change of population is proportional to its size
• the environment does not change

The values α, β, γ and σ are parameters (constants) that characterize dif-
ferent aspects of the two populations. The parameters can be interpreted
as:

• α is the natural growth rate of prey in the absence of predation
• β is the death rate per encounter of prey due to predation
• σ is related to the growth rate of predators
• γ is the natural death rate of predators in the absence of food (prey)

Your task is to simulate this system. Here are some hints about the steps
you will have to implement in MATLAB:

• write a MATLAB function that characterizes how the system’s state
derivatives are related to the system’s states (this is given by the equa-
tions above)

• decide on values of the system parameters
• decide on values of the initial conditions of the system (the initial val-

ues of the states)
• decide on a time span and time resolution for simulating the system
• simulate! (i.e. use ode45() to integrate the differential equations over

time)
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• examine the states, typically by plotting them

Here is some code to help you get started:

function stated = lotkaVolterra(t, state)

x = state(1);
y = state(2);
alpha = 0.1;
beta = 0.1;
sigma = 0.1;
gamma = 0.1;
xd = x*(alpha - beta*y);
yd = -y*(gamma - sigma*x);
stated = [xd; yd];

end

t = 0:1:500;
state0 = [0.5, 0.5];
[t,state] = ode45('lotkaVolterra', t, state0);

figure
plot(t,state(:,1:2))
xlabel('TIME')
ylabel('POPULATION SIZE')
legend({'x (prey)','y (predator)'})

Here are some other things to do:

• Plot the trajectory of the system in state-space (like we did for the
Lorenz attractor). In other words, plot prey population against preda-
tor population size. What do these look like?

• increase the α parameter and re-run the simulation. What happens
and why?

• set all parameters to 0.2—what happens and why?
• try the following: (α, β, γ, σ) = (0.20, 0.20, 0.02, 0.0). What happens and
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why?
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14 Modelling Action Potentials

In this chapter we will use a model of voltage-gated ion channels in a single neu-
ron to simulate action potentials. The model is based on the work by Hodgkin
& Huxley in the 1940s and 1950s. A good reference to refresh your memory
about how ion channels in a neuron work is the Kandel, Schwartz & Jessel book
“Principles of Neural Science”.

• A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Phys-
iol. (Lond.), 117(4):500-544, Aug 1952

• A. L. Hodgkin, A. F. Huxley, A. L. Hodgkin, and A. F. Huxley. A quanti-
tative description of membrane current and its application to conduction
and excitation in nerve. 1952. Bull. Math. Biol., 52(1-2):25-71, 1990

• O. Ekeberg, P. Wallen, A. Lansner, H. Traven, L. Brodin, and S. Grillner. A
computer based model for realistic simulations of neural networks. I. The
single neuron and synaptic interaction. Biol Cybern, 65(2):81-90, 1991

• E.R. Kandel, J.H. Schwartz, T.M. Jessell, et al. Principles of neural science,
volume 4. McGraw-Hill New York, 2000

To model the action potential we will use an article by Ekeberg et al. (1991)
published in Biological Cybernetics (see citation above). When reading the ar-
ticle you can focus on the first three pages (up to paragraph 2.3) and try to find
answers to the following questions:

• How many differential equations are there?
• What is the order of the system described in equations 1-9?

255
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• What are the states and state derivatives of the system?

Before we begin coding up the model, it may be useful to remind you of a fun-
damental law of electricity, one that relates electrical potentialV to electric cur-
rent I and resistance R (or conductance G, the reciprocal of resistance). This of
course is known as Ohm’s law193:

V = IR (14.1)

or

V =
I
G (14.2)

Our goal here is to code up a dynamical model of the membrane’s electric cir-
cuit including two types of ion channels: sodium and potassium channels. We
will use this model to better understand the process underlying the origin of an
action potential.

14.1 The Neuron Model

Figure 14.1 below, adapted from Ekeberg et al., 1991, schematically illustrates
the model of a neuron. In panel A we see a soma, and multiple dendrites. Each
of these can be modelled by an electrical “compartment” (Panel B) and the pas-
sive interactions between them can be modelled as a pretty standard electrical
circuit (see Biological Neuron Model194 for more details about compartmental
models of neurons). In panel C, we see an expanded model of the Soma from
panel A. Here, a number of active ion channels are included in the model of the
soma.

For our purposes here, we will focus on the soma, and we will not include any
additional dendrites in our implementation of the model. Thus essentially we
will be modelling what appears in panel C, and at that, only a subset.

In panel C we see that the soma can be modelled as an electrical circuit with a

http://en.wikipedia.org/wiki/Ohm's_law
http://en.wikipedia.org/wiki/Biological_neuron_model
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Figure 14.1: Schematic of Ekeberg et al. 1991 neuron model

sodium ion channel (Na), a potassium ion channel (K), a calcium ion channel
(Ca), and a calcium-dependent potassium channel (K(Ca)). What we will be
concerned with simulating, ultimately, is the intracellular potential E.

14.2 Passive Properties

Equation (1) of Ekeberg is a differential equation describing the relation be-
tween the time derivative of the membrane potential E as a function of the pas-
sive leak current through the membrane, and the current through the ion chan-
nels. Note that Ekeberg uses E instead of the typicalV symbol to represent elec-
trical potential.
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dE
dt =

(Eleak − E)Gm +
∑(Ecomp − E)Gcore + Ichannels

Cm
(14.3)

Don’t panic, it’s not actually that complicated. What this equation is saying is
that the rate of change of electrical potential across the current (the left hand
side of the equation, dE

dt ) is equal to the sum of a bunch of other terms, divided
by membrane capacitance Cm (the right hand side of the equation). Recall from
basicphysics that capacitance195 is ameasureof the ability of something to store
an electrical charge.

The “bunchof other things” is a sumof three things, actually, (from left to right):
a passive leakage current, plus a term characterizing the electrical coupling of
different compartments, plus the currents of the various ion channels. Sincewe
are not going to be modelling dendrites here, we can ignore the middle term on
the right hand side of the equation

∑(Ecomp − E)Gcore which represents the sum
of currents from adjacent compartments (we have none).

We are also going to include in our model an external current Iext. This can es-
sentially represent the sum of currents coming in from the dendrites (which we
are not explicitly modelling). It can also represent external current injected in a
patch-clamp196 experiment. This is what we as experimenters can manipulate,
for example, to see how neuron spiking behaviour changes. So what we will
actually be working with is this:

dE
dt =

(Eleak − E)Gm + Ichannels + Iext
Cm

(14.4)

What we need to do now is unpack the Ichannels term representing the currents
from all of the ion channels in the model. Initially we will only be including
two, the potassium channel (K) and the sodium channel (Na).

14.3 Sodium Channels (Na)

The current through sodium channels that enter the soma are represented by
equation (2) in Ekeberg et al. (1991):

http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Patch_clamp
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INa = (ENa − Esoma)GNam3h (14.5)

where m is the activation of the sodium channel and h is the inactivation of the
sodium channel, and the other terms are constant parameters: ENa is the rever-
sal potential,GNa is themaximumsodiumconductance throught themembrane,
and Esoma is the membrane potential of the soma.

Theactivationmof the sodiumchannels isdescribedby thedifferential equation
(3) in Ekeberg et al. (1991):

dm
dt = αm(1−m)− βmm (14.6)

where αm represents the rate at which the channel switches from a closed to an
open state, and βm is rate for the reverse. These two parameters α and β depend
on the membrane potential in the soma. In other words the sodium channel is
voltage-gated. Equation (4) in Ekeberg et al. (1991) gives these relationships:

αm =
A(Esoma − B)
1− e(B−Esoma)/C (14.7)

βm =
A(B− Esoma)
1− e(Esoma−B)/C (14.8)

A tricky bit in the Ekeberg et al. (1991) paper is that the A, B and C parameters
above are different for α and β even though there is no difference in the symbols
used in the equations.

The inactivation of the sodium channels is described by a similar set of equa-
tions: a differential equation giving the rate of change of the sodium channel
deactivation, from Ekeberg et al. (1991) equation (5):

dh
dt = αh(1− h)− βhh (14.9)

andequations specifyinghowαh and βh arevoltage-dependent, given inEkeberg
et al. (1991) equation (6):
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αh =
A(B− Esoma)
1− e(Esoma−B)/C (14.10)

βh =
A

1− e(B−Esoma)/C (14.11)

Note again that although the terms A, B and C are different for αh and βh even
though they are represented by the same symbols in the equations.

So in summary, for the sodium channels, we have two state variables: (m, h) rep-
resenting the activation (m) and deactivation (h) of the sodium channels. We
have a differential equation for each, describing how the rate of change (the
first derivative) of these states can be calculated: Ekeberg equations (3) and (5).
Those differential equations involve parameters (α, β), one set for m and a sec-
ond set for h. Those (α, β) parameters are computed from Ekeberg equations (4)
(for m) and (6) (for h). Those equations involve parameters (A,B,C) that have
parameter values specific to α and β and m and h (see Table 1 of Ekeberg et al.,
1991).

14.4 Potassium Channels (K)

The potassium channels are represented in a similar way, although in this case
there is only channel activation, and no inactivation. In Ekeberg et al. (1991)
the three equations (7), (8) and (9) represent the potassium channels:

Ik = (Ek − Esoma)Gkn4 (14.12)

dn
dt = αn(1− n)− βnn (14.13)

where n is the state variable representing the activation of potassium channels.
As before we have expressions for (α, β) which represent the fact that the potas-
sium channel is also voltage-gated:
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αn =
A(Esoma − B)
1− e(B−Esoma)/C (14.14)

βn =
A(B− Esoma)
1− e(Esoma−B)/C (14.15)

Again, the parameter values for (A,B,C) can be found in Ekeberg et al., (1991)
Table 1.

To summarize, the potassium channel has a single state variable n representing
the activation of the potassium channel.

14.5 Summary

We have a model now that includes four state variables:

1. E representing the potential in the soma, given by differential equation (1)
in Ekeberg et al., (1991)

2. m representing the activation of sodium channels, Ekeberg equation (3)
3. h representing the inactivation of sodium channels, Ekeberg equation (5)
4. n representing the activation of potassium channels, Ekeberg equation (8)

Each of the differential equations that define how to compute state derivatives,
involve (α, β) terms that are given by Ekeberg equations (4) (for m), (6) (for h)
and (9) (for n).

Sowhatwehave todo inorder to simulate thedynamicbehaviour of this neuron
over time, is simply to implement these equations in MATLAB code, give the
system some reasonable initial conditions, and simulate it over time using the
ode45() function.

14.6 MATLAB code

Here is a MATLAB function called ekeberg.m that implements the equations. It
looks intimidating but really it’s just an implementation of the equations above.



CHAPTER 14. MODELLING ACTION POTENTIALS 262

function stated = ekeberg(t,state,params)

% Purpose: simulate Hodgkin and Huxley model for the action potential using
% the equations from Ekeberg et al, Biol Cyb, 1991
% Input: state ([E m h n] (ie [membrane potential; activation of
% Na++ channel; inactivation of Na++ channel; activation of K+
% channel]),
% t (time),
% and the params (parameters of neuron; see Ekeberg et al)
% Output: statep (state derivatives)

E = state(1);
m = state(2);
h = state(3);
n = state(4);

Epar = params.E;
Na = params.Na;
K = params.K;

% external current (from "voltage clamp", other compartments, other
% neurons, etc)
I_ext = Epar.I_ext;

% calculate Na rate functions and I_Na
alpha_act = Na.A_alpha_m_act * (E-Na.B_alpha_m_act) / ...

(1.0 - exp((Na.B_alpha_m_act-E) / Na.C_alpha_m_act));
beta_act = Na.A_beta_m_act * (Na.B_beta_m_act-E) / ...

(1.0 - exp((E-Na.B_beta_m_act) / Na.C_beta_m_act) );
dmdt = ( alpha_act * (1.0 - m) ) - ( beta_act * m );

alpha_inact = Na.A_alpha_m_inact * (Na.B_alpha_m_inact-E) / ...
(1.0 - exp((E-Na.B_alpha_m_inact) / Na.C_alpha_m_inact));

beta_inact = Na.A_beta_m_inact / (1.0 + (exp((Na.B_beta_m_inact-E) / ...
Na.C_beta_m_inact)));

dhdt = ( alpha_inact*(1.0 - h) ) - ( beta_inact*h );

% Na-current:
I_Na =(Na.Na_E-E) * Na.Na_G * (m^Na.k_Na_act) * h;
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% calculate K rate functions and I_K
alpha_kal = K.A_alpha_m_act * (E-K.B_alpha_m_act) / ...

(1.0 - exp((K.B_alpha_m_act-E) / K.C_alpha_m_act));
beta_kal = K.A_beta_m_act * (K.B_beta_m_act-E) / ...

(1.0 - exp((E-K.B_beta_m_act) / K.C_beta_m_act));
dndt = ( alpha_kal*(1.0 - n) ) - ( beta_kal*n );
I_K = (K.k_E-E) * K.k_G * n^K.k_K;

% leak current
I_leak = (Epar.E_leak-E) * Epar.G_leak;

% calculate derivative of E
dEdt = (I_leak + I_K + I_Na + I_ext) / Epar.C_m;
stated = [dEdt; dmdt; dhdt; dndt];

end

Here is a MATLAB script called go_ekeberg.m that sets up the parameters of the
model, and runs a simulation:

%% setup parameters

E.E_leak = -7.0e-2;
E.G_leak = 3.0e-09;
E.C_m = 3.0e-11;
E.I_ext = 0*1.0e-10;

Na.Na_E = 5.0e-2;
Na.Na_G = 1.0e-6;
Na.k_Na_act = 3.0e+0;
Na.A_alpha_m_act = 2.0e+5;
Na.B_alpha_m_act = -4.0e-2;
Na.C_alpha_m_act = 1.0e-3;
Na.A_beta_m_act = 6.0e+4;
Na.B_beta_m_act = -4.9e-2;
Na.C_beta_m_act = 2.0e-2;
Na.l_Na_inact = 1.0e+0;
Na.A_alpha_m_inact = 8.0e+4;
Na.B_alpha_m_inact = -4.0e-2;
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Na.C_alpha_m_inact = 1.0e-3;
Na.A_beta_m_inact = 4.0e+2;
Na.B_beta_m_inact = -3.6e-2;
Na.C_beta_m_inact = 2.0e-3;

K.k_E = -9.0e-2;
K.k_G = 2.0e-7;
K.k_K = 4.0e+0;
K.A_alpha_m_act = 2.0e+4;
K.B_alpha_m_act = -3.1e-2;
K.C_alpha_m_act = 8.0e-4;
K.A_beta_m_act = 5.0e+3;
K.B_beta_m_act = -2.8e-2;
K.C_beta_m_act = 4.0e-4;

params.E = E;
params.Na = Na;
params.K = K;

%% simulate

% set initial states and time vector
state0 = [-70e-03, 0, 1, 0];
t = 0:0.001:0.2;

% let's inject some external current
params.E.I_ext = 1.0e-10;

% run simulation
ekeberg_f = @(t,state) ekeberg(t,state,params);
[t,state] = ode45(ekeberg_f, t, state0);

%% plot the results

figure('position',[39 268 560 925],'paperposition',[2.4 2.5 3.6 6.0])
subplot(4,1,1)
plot(t, state(:,1))
title('membrane potential')
subplot(4,1,2)
plot(t, state(:,2))
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title('Na2+ channel activation')
subplot(4,1,3)
plot(t, state(:,3))
title('Na2+ channel inactivation')
subplot(4,1,4)
plot(t, state(:,4))
title('K+ channel activation')
xlabel('TIME (sec)')

What you will see is a figure as shown in Figure 14.2 below.
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Exercises

E 14.1 Alter the code so that the modelled neuron only has the leakage current
and external current. In other words, comment out the terms related to
sodium and potassium channels. Run a simulation with an initial mem-
brane potential of -70mv and an external current of 0.0mv. What happens
and why?

E 14.2 Change the external current to 1.0e-10 and re-run the simulation. What
happens and why?

E 14.3 Add in the terms related to the sodium channel (activation and deactiva-
tion). Run a simulation with external current of 1.0e-10 and initial states
[-70e-03, 0, 1]. What happens and why?

E 14.4 Add in the terms related to the potassium channel. Run a simulation with
external current of 1.0e-10 and initial states [-70e-03, 0, 1, 0]. What hap-
pens and why?

E 14.5 Playwith the external current level (increase it slightly, decrease it slightly,
etc). What is the effect on the behaviour of the neuron?

E 14.6 What is theminimumamount of external current necessary to generate an
action potential? Why?
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Figure 14.2: Simulation of a neuron using equations from Ekeberg et al., Biol. Cybern.
(1991)



15 Basic statistical tests

MATLAB has a toolbox called the Statistics and Machine Learning Toolbox that
contains many, many useful functions for statistical analyses.

Statistics and Machine Learning Toolbox197 documentation.

We will review only a small subset of its functionality here, so you can get a feel
for how you might analyse data in MATLAB.

15.1 Probability Distributions

MATLAB has support for a number of common probability distributions includ-
ing discrete and continuous distributions, including (but not limited to) the fol-
lowing:

• Uniform
• Normal (Gaussian)
• Binomial
• Poisson
• Beta
• Chi-Square
• Exponential
• Gamma
• Lognormal
• Student’s t
• Weibull

269

http://www.mathworks.com/help/stats/
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• F distribution

Each distribution will have functions in MATLAB for the following:

• cumulative distribution function
• probability density function
• inverse cumulative distribution function
• generating random values

So for example for a Normal distribution with mean 100 and standard deviation
15, you could find the area under the curve to the left of the value x=130 using:

y = cdf('Normal',130,100,15)

y =

0.9772

This tells you that 130 is the 97.72 percentile.

To generate random values using a Normal distribution you could use either the
random function or themore direct randn function. To generate 10 randomvalues
from a Normal distribution with mean 100 and standard deviation 15:

y = randn(1,10)*15 + 100

y =

108.0650 127.5083 66.1173 112.9326 104.7815 80.3847 93.4961 105.
1394 153.6760 141.5416

or:

>> y = random('Normal', 100, 15, [1,10])
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y =

79.7517 145.5239 110.8811 99.0542 110.7211 96.9255 98.1378 122.
3455 121.1355 121.2579

15.1.1 Random Seed

An important note about random numbers and computers: The values that are
generated are never truly random but only pseudorandom. Remember, com-
puters are deterministic. They can only simulate random numbers. Random
number generating algorithms are based on a seed value that all subsequent val-
ues are based on. This is both good and bad. It’s good, because it means if you
use the same seed value at the beginning of your program, then each time your
program runs, you will get the same set of pseudo-random numbers. This is
handy for testing and validation purposes. On the other hand if you want differ-
ent randomvalues each time your program runs, you can still do that, by setting
a different seed each time—for example a seed based on the date and/or clock
time.

You can test this by closing MATLAB, launching it, and typing:

rand(1,5)

ans =

0.8147 0.9058 0.1270 0.9134 0.6324

Now close MATLAB again and re-open it again, and re-type:

rand(1,5)

and you ought to get the same random values:
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ans =

0.8147 0.9058 0.1270 0.9134 0.6324

To set the random seed in MATLAB to a different value, put this line of code at
the beginning of your program:

rng('shuffle')

rand(1,5)

ans =

0.3672 0.7020 0.8560 0.0797 0.5879

15.1.2 Fitting

MATLAB has a function called fitdist that will fit a given probability distribu-
tion to some data. Here is how to use it. First let’s generate 100 data points
from a Normal distribution with mean 0 and standard deviation 1:

fitdist

x = randn(100,1);

Now let’s use fitdist to fit the (2) parameters of a Normal distribution (mean
mu, and standard deviation sigma) to the data:

d = fitdist(x, 'normal');

produces:
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d =

NormalDistribution

Normal distribution
mu = -0.0726815 [-0.272105, 0.126743]

sigma = 1.00505 [0.882442, 1.16754]

You can use fitdist with other distributions besides Normal, just see the docu-
mentation in MATLAB.

15.2 Hypothesis Tests

MATLAB has functionality for various kinds of statistical hypothesis tests. Here
we outline just a few. See the full documentation for all the details.

15.2.1 t-test

The function ttest performs a one-sample or a paired-sample t-test. The func-
tion ttest2 performs an independent samples t-test.

Imagine we have a dependent variable measured from 5 subjects in two condi-
tions:

c1 = [1,3,2,3,3];
c2 = [2,5,4,3,5];

We can perform a paired-samples t-test:

[H,P,CI,STATS] = ttest(c1,c2)

H =

1
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P =

0.0249

CI =

-2.5106 -0.2894

STATS =

tstat: -3.5000
df: 4
sd: 0.8944

The first parameter is whether we reject (1=TRUE) or not (0=FALSE) the null
hypothesis that the two groups were sampled from the same population. The
second parameter gives the probability of obtaining a value of t as large as the
one we did, under the null hypothesis. In this case, p=0.0249. The third pa-
rameter is an array containing the 95% confidence interval on the difference be-
tween means. The fourth parameter is a struct with the t-statistic, the degrees
of freedomof the t-test, and the estimate of the standard error of the differences
between means. You might report the result of this t-test in a paper like this:
t(4)=-3.5, p=0.0249.

There are optional parameters to pass to the ttest function for things like one-
tailed vs two-tailed tests, and alpha level for rejecting the null hypothesis.

Also have a look at ttest2 for independent-samples t-tests. Here you also have
as an optional parameter whether to assume equal or unequal variances.
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15.2.2 Analysis of Variance

MATLAB has a number of functions for performing different kinds of analyses
of variance:

• anova1: One-way analysis of variance
• anova2: Two-way analysis of variance
• anovan: N-way analysis of variance
• aoctool: Analysis of Covariance
• ANOVA with Random Effects198

• ranova: Repeated-Measures ANOVA
• manova: Multivariate analysis of variance

We are not going to go through all the different kinds of ANOVA here. For now
let’s just see a simple example of a two-factor, between-subjects ANOVA.

MATLAB includes sample data from a study of popcorn brands and popper
types. The columns are brands: (Gourmet, National, Generic) and the rows
are popper types (Oil vs Air). The dependent variable is the yield of popped
popocorn, measured in cups. The first 3 rows are the oil popper and the last 3
rows are the air popper. Researchers popped a batch of each brand three times
with each popper, i.e. the number of replications in each cell of the design is 3.

load popcorn
popcorn

popcorn =

5.5000 4.5000 3.5000
5.5000 4.5000 4.0000
6.0000 4.0000 3.0000
6.5000 5.0000 4.0000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000

http://www.mathworks.com/examples/statistics/2176-anova-with-random-effects
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To perform a two-way ANOVA and save the output into a cell array called tbl:

[p,tbl] = anova2(popcorn, 3);

Source SS df MS F Prob>F
----------------------------------------------------
Columns 15.75 2 7.875 56.7 0
Rows 4.5 1 4.5 32.4 0.0001
Interaction 0.0833 2 0.04167 0.3 0.7462
Error 1.6667 12 0.13889
Total 22 17

We get a standard ANOVA table output in a Figure window. We also have these
values in our tbl variable:

>> tbl

tbl =

'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Columns' [15.7500] [ 2] [7.8750] [56.7000] [7.6790e
-07]
'Rows' [ 4.5000] [ 1] [4.5000] [32.4000] [1.0037e
-04]
'Interaction' [ 0.0833] [ 2] [0.0417] [ 0.3000] [ 0.
7462]
'Error' [ 1.6667] [12] [0.1389] []
[]
'Total' [ 22] [17] [] []
[]

So we see there is a significant main effect of Columns (popper Brand,
F(2,12)=56.7, p<.0000001), a significant main effect of Rows (popper type,
F(1,12)=32.4, p<.0001) and no significant interaction effect (F(2,12)=0.3,
p>.7462).



277 15.2. HYPOTHESIS TESTS

See the documentation for multcompare to see how to run post-hocmultiple com-
parisons on the data, to see which groups are reliably different.

15.2.3 Multiple Regression

MATLAB comes with a sample dataset called carsmall, which contains all sorts
of measures of 100 automobiles including:

• acceleration
• number of engine cylinders
• engine displacement
• engine horsepower
• manufacturer
• model
• model year
• miles per gallon
• origin
• weight

Let’s say we want to produce a multiple regression model that uses Weight and
Acceleration to predict Miles Per Gallon. First store our data in a table:

tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration
','MPG'});

We can then use fitlm to fit a linear regression model to the data:

lm = fitlm(tbl, 'MPG ~ Weight + Acceleration')

This says, make a linear model where the MPG variable depends on ( ) Weight
and Acceleration.

The regression equation looks like this:
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MPG = β0 + β1Weight+ β2Acceleration (15.1)

lm =

Linear regression model:
MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
Estimate SE tStat pValue

__________ __________ _______ __________

(Intercept) 45.155 3.4659 13.028 1.6266e-22
Weight -0.0082475 0.00059836 -13.783 5.3165e-24
Acceleration 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743, Adjusted R-Squared 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The output tells that β0 = 45.155, β1 = −0.0082475 and β2 = 0.19694. The R-
squared on the model as a whole is 0.743.

The tStat and pValue columns in the output tell you the t-statistic and corre-
sponding p-value on a hypothesis test where the null hypothesis is that the
value of the corresponding β parameter is zero. This tells us that the Acceler-
ation β value is not reliably different than zero—in other words, perhaps Accel-
eration doesn’t have an impact in the model that includes Weight.

There are also functions for doing Stepwise Regression, which is a procedure
where you give MATLAB a list of variables to consider, and it produces a min-
imal model that includes only the variables that account for a significant (and
unique) portion of variance in the dependent variable.
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MATLAB can also do generalized regression, for example Logistic Regression.
Check the documentation.

15.3 Resampling techniques

Many of the so-called parametric tests that we know and love, like the t-test,
and ANOVA, and so on, depend on various assumptions, for example that the
data come from a Normal distribution, that different groups have the same vari-
ance, etc. Sometimes we don’t want to have to adhere to these assumptions
(and sometimes they are downright false).

Computers are fast, and high-level programming languages like MATLAB have
become easier and more convenient to use, and so many people find numerical
techniques like resampling (sometimes called bootstrapping) to be a better way
to go.

Let’s proceed using an example in which we have two groups: a control group
and a drug group. Each group has 10 (different) subjects. Each subject con-
tributes one score. Here are the data:

g1 = [3,2,2,4,2,1,2,3,3,2]';
g2 = [4,3,3,2,3,5,4,3,6,4]';

We could do an independent-samples t-test on the data like this:

[h,p,ci,stats] = ttest2(g1,g2)

h =

1

p =

0.0102
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ci =

-2.2525 -0.3475

stats =

tstat: -2.8673
df: 18
sd: 1.0138

And we see we get a p-value of 0.0102. But let’s say we don’t want to have to
make the assumptions that the population data are Normal and the variances
are equal. Let’s instead do a bootstrap/resampling test.

The idea here is to simulate the null hypothesis, namely that both groups are
sampled from the same population. Now we don’t have access to the stimu-
lated population, all we have are these two samples. What we will do then, is
throw both samples into a bucket, and pretend that is our stipulated single pop-
ulation. We will then simulate sampling from that bucket, with replacement, to
reconstitute two groups. We will then compute a statistic of interest on those
two groups (for example, the difference between means). We will then repeat
this a large number of time (e.g. 5000) and count how many times we obtained
a difference between means as large as the one in the real data. If that turns out
to be sufficiently rare, we can reject the null hypothesis.

We can use the datasample function inMATLAB to accomplish this. The function
will re-sample a list of numbers, with replacement. We simply imbed this in a
loop and afterwards, compute our statistic of interest—in this case, the differ-
ence between means (but it could be anything you want).

% shuffle the random number generator seed
%
rng('shuffle')
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N = 5000;
g_all = [g1;g2]; % throw both groups into a bucket

% pre-allocate an array to store our statistic of interest
% and loop N times, each time simulating the null hypothesis
% namely, sampling with replacement from the bucket to
% reconstitute the two groups, then re-computing the
% statistic of interest (the difference between means)
%
boot = ones(N,1);
for i=1:N

g_resamp = datasample(g_all, 20);
boot(i) = mean(g_resamp(1:10)) - mean(g_resamp(11:20));

end

We get an array boot which contains our statistic of interest for each of the 5000
boostrap runs. We can use the boot array to ask the question, how many times
out of the 5000 bootstrap runs did we obtain a difference between means as
large as the one for our actual observed data?

% compute actual observed difference between means
%
dm_observed = mean(g1) - mean(g2);
disp(sprintf('actual dm = %.3f', dm_observed))

% how many times in the bootstrap did we get a
% difference between means as large (far from zero)?
%
n_big = length( find( boot <= dm_observed ) );
disp(sprintf('%d times out of %d was dm as extreme as %.3f', ...

n_big, N, dm_observed))

actual dm = -1.300
33 times out of 5000 was dm as extreme as -1.300
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When I ran this I got 33 times out of 5000 was the boostrapped value as extreme
as the empirically observed one. You might get something slightly different if
your random number generator was seeded using a different value.

Wecandrawahistogramof theboostrappeddistributionof differences between
means, andoverlayusing a vertical red line, our empirically observeddifference
between means:

hist(boot)
hold on
plot([dm_observed dm_observed], get(gca,'ylim'), 'r-', 'linewidth',2)

You will see something like what is shown in Figure 15.1 below.
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Figure 15.1: Boostrapped distribution of difference between means.

Of the 5000 simulations of the null hypothesis, it’s relatively rare that we get
a difference between means as extreme as the empirically observed value (the
redvertical line). Most of the time,weget a difference betweenmeansnear zero.
This makes sense under the null hypothesis.

Specifically then, 33 times out of 5000we obtained a difference betweenmeans
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as extreme as our empirically observed value. This corresponds to p=33/5000
which is 0.0066 (or 0.01 roundedup), about the sameas the t-test p-value above.
Here though we didn’t have to make any assumptions about the underlying dis-
tribution, or variances, or anything like that.

If we adopt an alpha level of p=0.05, then our observed p=0.01 might cause us
to reject the null hypothesis that the two groups were sampled from the same
population.

This approach can be used for just about any statistical test. Some people say
that since computers are fast, wemight aswell do statistical tests thisway, since
we don’t have to make assumptions.
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Exercises

E 15.1 Correlation

Below you see an array of 10 values in a variable called x and another 10
values in y:

x = [ 1 2 3 4 5 6 7 8 9 10];
y = [12 5 8 12 5 30 27 25 38 26]

1. What is the value of the correlation coefficient relating x and y? Hint:
use the MATLAB function corrcoef.

2. What is the probability of obtaining such a correlation under the null
hypothesis that the data in x and y were sampled from two popula-
tions for which the correlation is in fact zero? Hint: the corrcoef func-
tion returns a p-value if you ask for one.

E 15.2 Linear Regression

Fit an equation of the following form to the x and y data given above:

yi = β0 + β1xi (15.2)

Hints: you can use the fitlm function. You could also do it by hand us-
ing the “slash” operator. You could also do it using polyfit. Use whatever
method you wish.

1. What are the estimates of β0 and β1 that correspond to the best fitting
model?

2. Generate a scatterplot with x on the ordinate and y on the abscissa.
Use blue squares. Overlay the linear model prediction. Use a red line.

E 15.3 Here are two data samples a and b:

a = [2 6 6 1 1 4 9 3 5 2];
b = [6 8 9 5 9 12 4 5 4 7];
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Using resampling, test the hypothesis that the two samples were drawn
from populations with the same mean. Use n=10,000 iterations.

• Howmany times out of 10,000doyouget a differencebetweenmeans
as extreme as the one observed between a and b?

• What is the corresponding p-value?
• What would be the difference between means that corresponds to a
p = 0.05 level of significance?
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Links

197http://www.mathworks.com/help/stats/

198http://www.mathworks.com/examples/statistics/2176-anova-with-random-effects

http://www.mathworks.com/help/stats/
http://www.mathworks.com/examples/statistics/2176-anova-with-random-effects
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