How to Use MATLAB

A Brief Introduction

MATLAB Working Environments

Some Useful Commands

- help
- clear
- ; (semicolon)
- \% (percent sign)
- clc
\% list all the topics
\% remove all the data in current session
\% prevent commands from outputing results
\% comments line
\% clears the screen

Vectors

- A row vector in MATLAB can be created by an explicit list, starting with a left bracket, entering the values separated by spaces (or commas) and closing the vector with a right bracket.
- A column vector can be created the same way, and the rows are separated by semicolons.
- Example:

```
>>x =[[llllll}00.25*pi 0.5*pi 0.75*pi pi ] [
x =
    0
>> y = [ 0; 0.25*pi; 0.5*pi; 0.75*pi; pi ]
y =
0
    0.7854
    1.5708
    2.3562
    3.1416
```

x is a row vector.
y is a column vector.

Vectors (con't...)

- Wector Addressing - A vector element is addressed in MATLAB with an integer index enclosed in parentheses.
- Example:
>> $\times(3)$
ans $=$
$1.5708 \leftarrow 3^{\text {rd }}$ element of vector x
- The colon notation may be used to address a block of elements.
(start : increment : end)
start is the starting index, increment is the amount to add to each successive index, and end is the ending index. A shortened format (start : end) may be used if increment is 1.
- Example:

```
\(\gg x(1: 3)\)
ans =
\(0 \quad 0.78541 .5708 \leftarrow 1^{\text {st }}\) to \(3^{\text {rd }}\) elements of vector \(x\)

\section*{Vectors (con’t...)}

\section*{Some useful commands:}
\begin{tabular}{|l|l|}
\hline \(\mathrm{x}=\) start:end & \begin{tabular}{l} 
create row vector x starting with start, counting by \\
one, ending at end
\end{tabular} \\
\hline \(\mathrm{x}=\) start:increment:end & \begin{tabular}{l} 
create row vector x starting with start, counting by \\
increment, ending at or before end
\end{tabular} \\
\hline linspace(start,end,number) & \begin{tabular}{l} 
create row vector x starting with start, ending at \\
end, having number elements
\end{tabular} \\
\hline length \((\mathrm{x})\) & returns the length of vector x \\
\hline \(\mathrm{y}=\mathrm{x}^{\prime}\) & transpose of vector x \\
\hline \(\operatorname{dot}(\mathrm{x}, \mathrm{y})\) & returns the scalar dot product of the vector x and y. \\
\hline
\end{tabular}

\section*{Array Operations}
- Scalar-Array Mathematics

For addition, subtraction, multiplication, and division of an array by a scalar simply apply the operations to all elements of the array.
- Example:
\[
\begin{aligned}
& \text { >> f = [ } 1 \text { 2; 34] } \\
& \mathrm{f}= \\
& 12 \\
& 34 \\
& \gg g=2^{*} f-1 \\
& \mathrm{~g}= \\
& 13 \\
& 57
\end{aligned}
\]

\section*{Array Operations (con't...)}
- Element-by-Element Array-Array Mathematics.
\begin{tabular}{|l|c|c|}
\hline Operation & Algebraic Form & MATLAB \\
\hline Addition & \(\mathrm{a}+\mathrm{b}\) & \(\mathrm{a}+\mathrm{b}\) \\
\hline Subtraction & \(\mathrm{a}-\mathrm{b}\) & \(\mathrm{a}-\mathrm{b}\) \\
\hline Multiplication & \(\mathrm{a} \times \mathrm{b}\) & \(\mathrm{a} .^{*} \mathrm{~b}\) \\
\hline Division & \(\mathrm{a} \div \mathrm{b}\) & \(\mathrm{a} . / \mathrm{b}\) \\
\hline Exponentiation & ab & \(\mathrm{a} .^{\wedge} \mathrm{b}\) \\
\hline
\end{tabular}
- Example:
\[
\begin{aligned}
& \gg x=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \\
& \gg y=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right] ; \\
& \gg z=x \cdot \\
& z= \\
& 4 \quad 10 \quad 18
\end{aligned}
\]

Each element in x is multiplied by the corresponding element in y .

\section*{Matrices}
- A Matrix array is two-dimensional, having both multiple rows and multiple columns, similar to vector arrays:
- it begins with [, and end with ]
- spaces or commas are used to separate elements in a row
- semicolon or enter is used to separate rows.
-Example: \(\left.\begin{array}{rl}\gg f=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array} 56\right.\end{array}\right]\)
\(A\) is an \(m \times n\) matrix.

>> f = [ 12 3; 4 56]
\(\mathrm{f}=\)
123
>> h = [ 246
13 5]
h =
246
135

\section*{Matrices (con't...)}
- Matrix Addressing:
-- matrixname(row, column)
-- colon may be used in place of a row or column reference to select the entire row or column.
- Example:


\section*{Matrices (con't...)}

\section*{Some useful commands:}

\author{
zeros(n) \\ zeros(m,n) \\ ones(n) \\ ones(m,n) \\ size (A) \\ length(A)
}
returns a \(n \times n\) matrix of zeros returns a \(m \times n\) matrix of zeros
returns a \(\mathrm{n} \times \mathrm{n}\) matrix of ones returns a \(m \times n\) matrix of ones
for a \(m \times n\) matrix \(A\), returns the row vector \([m, n\) ] containing the number of rows and columns in matrix.
returns the larger of the number of rows or columns in A.

\section*{Matrices (con't...)}

\section*{more commands}
\begin{tabular}{|c|c|}
\hline Transpose & \(B=A^{\prime}\) \\
\hline Identity Matrix & \begin{tabular}{l}
eye( n ) \(\rightarrow\) returns an \(\mathrm{n} \times \mathrm{n}\) identity matrix \\
eye \((m, n) \rightarrow\) returns an \(m \times n\) matrix with ones on the main diagonal and zeros elsewhere.
\end{tabular} \\
\hline Addition and subtraction & \[
\begin{aligned}
& C=A+B \\
& C=A-B
\end{aligned}
\] \\
\hline Scalar Multiplication & \(B=\alpha A\), where \(\alpha\) is a scalar. \\
\hline Matrix Multiplication & \(C=A * B\) \\
\hline Matrix Inverse & \(B=\operatorname{inv}(A)\), \(A\) must be a square matrix in this case. rank \((A) \rightarrow\) returns the rank of the matrix \(A\). \\
\hline Matrix Powers & \(B=A . \wedge 2 \rightarrow\) squares each element in the matrix \(C=A * A \rightarrow\) computes \(A * A\), and \(A\) must be a square matrix. \\
\hline Determinant & det ( \(A\) ), and \(A\) must be a square matrix. \\
\hline
\end{tabular}
\(A, B, C\) are matrices, and \(m, n, \alpha\) are scalars.

\section*{Plotting}
- For more information on 2-D plotting, type help graph2d
- Plotting a point:
>> plot ( variablename, 'symbol')
- Example : Complex number
\(\gg \mathrm{z}=1+0.5 \mathrm{j}\);
>> plot ( \(\mathrm{z}, \mathrm{I} .{ }^{\prime}\) )


\section*{Plotting (con't...)}
- Plotting Curves:
- plot ( \(\mathbf{x}, \mathbf{y}\) ) - generates a linear plot of the values of \(x\) (horizontal axis) and y (vertical axis).
- semilogx \((\mathbf{x}, \mathbf{y})\) - generate a plot of the values of \(x\) and \(y\) using a logarithmic scale for \(x\) and a
linear scale for \(y\)
- semilogy ( \(\mathbf{x}, \mathbf{y}\) ) - generate a plot of the values of \(x\) and \(y\) using a linear scale for \(x\) and a logarithmic scale for \(y\).
- \(\log \log (x, y)\) - generate a plot of the values of \(x\) and \(y\) using logarithmic scales for both \(x\) and \(y\)
- Subplots:
- subplot ( \(\mathbf{m}, \mathbf{n}, \mathbf{p}\) ) - \(m\) by \(n\) grid of windows, with \(p\) specifying the current plot as the \(p^{\text {th }}\) window

\section*{Plotting (con't...)}
- Example: (polynomial function)
plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, \& log/log scale:
```

%Generate the polynomial: }\mathbf{y}=\mathbf{2x}\mp@subsup{\mathbf{x}}{}{\mathbf{+}}\mathbf{7x}+\mathbf{9
x = linspace (0, 10, 100);
y = 2*x.^2 + 7*x + 9;
% plotting the polynomial:
figure (1);
subplot (2,2,1), plot (x,y);
title ('Polynomial, linear/linear scale');
ylabel ('y'), grid;
subplot (2,2,2), semilogx (x,y);
title ('Polynomial, log/linear scale');
ylabel ('y'), grid;
subplot (2,2,3), semilogy (x,y);
title ('Polynomial, linear/log scale');
xlabel('x'), ylabel ('y'), grid;
subplot (2,2,4), loglog (x,y);
title ('Polynomial, log/log scale');
xlabel('x'), ylabel ('y'), grid;

```

\section*{Plotting (con't...)}


\section*{Plotting (con't...)}
- Adding new curves to the existing graph:
- Use the hold command to add lines/points to an existing plot.
- hold on - retain existing axes, add new curves to current axes. Axes are rescaled when necessary.
- hold off - release the current figure window for new plots
- Grids and Labels:
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline grid on & Adds dashed grids lines at the tick marks \\
\hline grid off & removes grid lines (default) \\
\hline grid & toggles grid status (off to on, or on to off) \\
\hline title ('text') & labels top of plot with text in quotes \\
\hline xlabel ('text') & labels horizontal ( \(x\) ) axis with text is quotes \\
\hline ylabel ('text') & labels vertical ( \(y\) ) axis with text is quotes \\
\hline text ( \(x, y,{ }^{\prime}\) text') & \begin{tabular}{l} 
Adds text in quotes to location \((x, y)\) on the current axes, where \((x, y)\) is in \\
units from the current plot.
\end{tabular} \\
\hline
\end{tabular}

\section*{Plot3}
\(\mathrm{t}=0: \mathrm{pi} / 50: 10 * \mathrm{pi} ;\)
plot3(sin \((\mathrm{t}), \cos (\mathrm{t}), \mathrm{t}) ;\) grid on axis square


\section*{Flow Control}
- Simple if statement:
if logical expression
end
- Example: (Nested)
if \(d<50\)
count \(=\) count +1 ;
disp(d);
if \(b>d\)
\(b=0 ;\)
end
end
- Example: (else and elseif clauses)
if temperature > 100
disp ('Too hot - equipment malfunctioning.')
elseif temperature > 90
disp ('Normal operating range.');
elseif ('Below desired operating range.')
else
disp ('Too cold - turn off equipment.')
end

\section*{Flow Control (con't...)}
- The switch statement:
switch expression
case test expression 1
commands
case test expression 2
commands
otherwise
commands
end
- Example:
```

switch interval < 1
case 1
xinc = interval /10;
case 0
xinc = 0.1;
end

```

\section*{Loops}
- for loop
for variable = expression commands
end
- while loop
while expression
commands
end
- Example (for loop): for \(t=1: 5000\)
\(\mathrm{y}(\mathrm{t})=\sin \left(2^{*} \mathrm{pi}{ }^{*} \mathrm{t} / 10\right) ;\)
end
-Example (while loop):
EPS = 1;
while ( \(1+\) EPS ) \(>1\)
EPS = EPS/2;
end
\(E P S=2 * E P S\)
- the break statement
break - is used to terminate the execution of the loop.

\section*{M-Files}
- The M-file is a text file that consists a group of MATLAB commands. All MATLAB commands are M-files.

\section*{User-Defined Function}
- Add the following command in the beginning of your m-file:
function [output variables] = function_name (input variables);
NOTE: the function_name should be the same as your file name to avoid confusion.
- calling your function:
-- a user-defined function is called by the name of the m-file
-- type in the m-file name like other pre-defined commands.
- Comments:
-- The first few lines should be comments, as they will be displayed if help is requested for the function name. the first comment line is reference by the lookfor command.

\section*{Random Variable}
- randn
- randi
- rand

\section*{Random Variable}
v=25; \(\quad\) \%variance
\(\mathrm{m}=10 ; \quad\) \%mean
x=sqrt(v)*randn(1, 1000) + m*ones(1, 1000);
figure;
plot (x);
grid;
xlabel ('Sample Index');
ylabel ('Amplitude');
title ('One thousands samples of a Gaussian random variable(mean=10, standard deviation=5)');

\section*{Exp2-Random Variable}
```

