
An Introduction

to Matlab

Phil Spector

Statistical Computing Facility
Department of Statistics

University of California, Berkeley

1

History of Matlab

• Developed by Cleve Moler in the late 1970s

• Designed to give easy access to EISPACK and LINPACK

• Rewritten in C in 1983; The Mathworks formed in 1984

• Always recognized as one of the leading programs for linear

algebra

• Very popular among engineers and image analysts, among

others

• Version 5, released in the late 1990s, added many new features

2

Accessing Matlab

By default, matlab will open a console with a file browser and

command history window along with a window to input commands.

To start matlab without the console, use the -nojvm flag.

3

Accessing Matlab (cont’d)

For long running jobs, matlab can be run in the background,

allowing you to start a job and log out with the job still running.

Under csh, the format is

matlab < matlab.in >& matlab.out &

Under bash, the format is

matlab < matlab.in > matlab.out 2>&1 &

Redirecting the error messages is critical, since they can’t be

retreived otherwise.

4

Some Basics

• The percent sign (%) is the comment character.

• Names in matlab can be as long as 63 characters.

• Use single quotes, not double quotes.

• Use three periods (...) at the end of lines to allow

continuation.

• Emacs-style editing is always available at the command line

• Output is displayed unless the input line is terminated by a

semi-colon (;)

• If you forget to store an object in a variable, it is available as

the variable ans until the next statement is executed.

• Help is available through the help (text), helpwin (separate

window), doc (browser) or lookfor (apropos) commands.

5

Function vs. Command format

Matlab commands can be called as functions (with parentheses and

comma-separated argument lists) or commands (separate tokens

separated by spaces). The primary difference is that the function

form uses the values of its arguments, while the command form

treats its arguments as literal strings. Additionally, only the

function form allows objects to be returned.

For example, to use the load command to load a saved matlab

data file called data.mat, you could use command syntax:

load data.mat

or function syntax:

load(’data.mat’)

6

Basic Information Functions

• disp - displays the value of a variable

• who - displays currently active variables

• whos - displays types and sizes

• size - displays the size of a variable

• class - displays storage class of a variable

• type - displays contents of files or commands

• clear - removes variables from the workspace (Edit→Clear

Workspace)

• diary - saves a transcript of your session

7

Data Entry: Overview

1. Entering a small data set – Values can be entered, separated by

spaces, and surrounded by square brackets ([]). To separate

rows, use a semi-colon (;), or enter each row on a separate line.

2. The import wizard (File→Import Data in the console) guides

you through the data entry process.

3. The load command can be used to read saved matlab files, as

well as numeric data stored in ASCII files.

4. The dlmread and csvread commands can read data delimited

by a character other than a space.

5. The fopen function, in conjunction with the textscan

function, can flexibly read character and/or numeric data.

8

Reading Numeric Matrices

The load command, in conjunction with the -ascii flag can be

used to read files containing entirely numeric data. Suppose the file

num.txt contains 20 lines, each with 10 space-delimited values.

Then the command

load -ascii num.txt

will create a 20× 10 matrix called num.

The function form allows to name the result:

mymatrix = load(’num.txt’,’-ascii’)

9

Saving Objects

The save command allows you to store some or all of your

variables in a MAT-file. With no arguments, save stores all current

variables in a file called matlab.mat in the current directory.

An alternative filename can be used as a single argument.

To save only certain variables, list them after the rest of the save

command.

The -ascii flag can be used to save data in ASCII format.

The load command can be used to restore a MAT-file.

The whos -file command can be used to see the contents of a

MAT-file.

>> save x.mat f mat vec

>> save(’x.mat’,’f’,’mat’,’vec’)

10

Some Basic Matrix Functions

• zeros - create a matrix of all zeroes

• ones - create a matrix of all ones

• diag - create diagonal matrix or extract diagonal elements

• reshape - change dimensions of matrix or vector

• rand - create matrix of uniform random numbers

• cat - concatenate matrices

• vertcat - concatenate matrices by rows

• blkdiag - construct block diagonal matrix

• eye - create identity matrix

11

Matrix and Vector Indexing

• Parentheses are used for subscripts

• Indexes can be scalars, vectors, or matrices.

• To refer to an entire row or column of a matrix, replace the

other index with a colon (:).

• Indexing a matrix with a single value indexes its columnwise

representation – using : as a subscript converts it to a vector.

• The reserved keyword end can be used to refer to the last

element in an object

>> vec = [1 3 5 7];

>> vec(end + 1) = 4

vec =

1 3 5 7 4

>> mat = [7 2 3; 4 5 9; 8 12 1];

>> disp(mat(2,:))

4 5 9

12

Matrix and Vector Indexing (cont’d)
Single rows and columns can be assigned without loops.

>> mat(2,:) = [10 11 12];

>> mat(:,2) = [10 11 12];

>> disp(mat)

7 10 3

10 11 12

8 12 1

To replace more than one row or column, the replacement must
conform to the target:

>> mat(1:2,:) = [100 101 102; 200 201 202];

>> mat(:,1:2) = [100 101 102; 200 201 202];

??? Subscripted assignment dimension mismatch.

>> mat(:,1:2) = [100 101 102; 200 201 202]’;

>> disp(mat)

mat =

100 200 102

101 201 202

102 202 1

13

Matrix and Vector Indexing (cont’d)

To specify contiguous indices, the colon operator (:) can be used.

The two forms of the operator are start:finish and

start:increment:finish.

>> mat = [1 7;2 3;4 5;9 12];

>> mat(2:3,:)

ans =

2 3

4 5

The colon operator can also be used to create vectors containing

sequences – the linspace function provides more control.

For non-contiguous indices, ordinary vectors can be used:

>> mat([1 3 4],:)

ans =

1 7

4 5

9 12

14

Matrix and Vector Indexing (cont’d)

Using a vector as an index extracts multiple elements:

>> x = [1 2 3 ;10 20 30;100 200 300];

>> x([1 3],[3 2])

ans =

3 2

300 200

Using a matrix as an index creates a similarly-dimensioned matrix

with the corresponding elements of the indexed object:

>> x([1 3;3 2])

ans =

1 100

100 10

Note that indexing is performed as if the matrix was a vector.

15

Matrix and Vector Indexing (cont’d)

The sub2ind function can convert multiple indexes to single

indexes, and is useful to extract scattered elements from a matrix.

The first argument to sub2ind is a vector containing the size of the

matrix – the remaining arguments are interpreted as indices:

>> x = [1 2 3 ;10 20 30;100 200 300];

>> indices = sub2ind(size(x),[2 3 1],[1 3 2])

ans =

2 9 4

>> x(indices)

ans =

10 300 2

The ind2sub function reverses the process:

>> [i,j] = ind2sub(size(x),[2 9 4])

i =

2 3 1

j =

1 3 2

16

Removing Elements of Matrices and Vectors

To remove a row or column of a matrix, set its value to an empty

vector:

>> x = [7 2 4;9 8 12;4 7 8;12 1 4];

>> x(:,2) = []

x =

7 4

9 12

4 8

12 4

The same technique can be used to remove single vector elements:

>> y = [13 7 12 9 15 8];

>> y(3) = []

y =

13 7 9 15 8

17

Logical Subscripts

Logical expressions on vectors or matrices result in logical variables

of the same size and shape. These expressions can be used to

extract elements which meet a particular condition.

>> x = rand(10,1) * 10;

>> x(x>5)’

ans =

7.0605 8.2346 6.9483 9.5022

>> length(x(x>5))

ans =

4

Logical subscripts can be used for assignment:

>> x = 1:10;

>> x(mod(x,2) == 1) = 0;

>> x

x =

0 2 0 4 0 6 0 8 0 10

18

Working with Logical Variables

Logical variables can be used for counting:

>> x = [7 12 9 14 8 3 2];

>> sum(x > 10)

ans =

2

The find command returns indices matching a logical expression:

>> find(x > 10)

ans =

2 4

To retrieve row and column indices, use

[i,j] = find(mymat > 10);

The values of the found elements can be retrieved using the form:

[i,j,v] = find(mymat > 10);

Note that with logical expressions, v will simply be a vector of 1s.

19

Missing Values

In matlab, missing values are represented as NaN (not a number).

You can assign the value directly, but you must use the isnan

function to test for their presence. (The isfinite and isinf

functions may also be useful.)

Missing values will be propagated through computations.

Logical subscripts can be used to remove missing values:

>> vals = [7 12 NaN 19 42 3];

>> vals(~isnan(vals))

ans =

7 12 19 42 3

There are also specialized functions which ignore missing values:

nanmax, nanmin, nansum, nanmean, etc.

20

Cell Arrays

Since matrices can only hold one type of data (numeric or

character), cell arrays were introduced in Matlab 5 to allow a single

object to contain different modes of data.

Cell arrays are indexed like matrices, but their elements can be

scalars, matrices or other cell arrays.

Cell arrays are created by surrounding the input elements with

curly braces ({}) – curly braces are also used for indexing.

>> xc = {[7 5 2] [’one’ ’two’] [8 5 7;3 2 5]};

>> xc{3}

ans =

8 5 7

3 2 5

The cell function can be used to create an empty cell array.

21

Cell Arrays (cont’d)

Use curly braces for extracting single elements, and parentheses for

extracting multiple elements:

>> mycell = {[7 9 12;3 7 2;4 9 8] [’one’,’two’,’three’] 14};

>> mycell{2}

ans =

onetwothree

>> mycell([1 3])

ans =

[3x3 double] [14]

If the elements of a cell array are conformable, you can create a

matrix using cell2mat

>> cx = {[7 9 12]; {’one’ ’two’ ’three’}; [8 14 21] ;[9 17 8]};

>> cell2mat(cx([1 3 4]))

ans =

7 9 12

8 14 21

9 17 8

22

Strings

In ordinary matrices, matlab stores strings as an array of numeric

codes. If all strings are the same length, this may be obscured:

>> strs = [’one’;’two’]

strs =

one

two

What if we look at the transpose?

>> strs’

ans =

ot

nw

eo

Strings are generally best stored in cell arrays:

>> strs = {’one’ ’two’}

strs =

’one’ ’two’

23

Some String Functions

• strcmp, strcmpi, strncmp - compares two strings

• strcat - concatenate strings by row

• strvcat - concatenate strings by column

• sprintf - write formatted text to string

• blanks - create string of blanks

• upper, lower - convert case of strings

• deblank, strtrim - remove blanks from strings

• regexp, regexpi, regexprep - regular expression processing

24

Reading mixed data

The textscan function allows mixed data to be read from a file,

returning the results in a cell array. First, the fopen function is

used to open the file; the returned file handle is then passed to

textscan along with a format.

mixed.dat:

3 7 John 15

9 12 Harry 6

5 9 Willie 12

>> f = fopen(’mixed.dat’,’r’);

>> x = textscan(f,’%n %n %s %n’);

>> disp(x)

[3x1 double] [3x1 double]

{3x1 cell} [3x1 double]

The columns of the result are stored in x{1}, x{2}, x{3}, and
x{4}. The numeric columns could be combined into a matrix using

>> xmat = [x{1} x{2} x{4}]

25

More about textscan

By specifying a numeric argument to textscan, you can control

the number of elements read with a particular format, then

continue using textscan with a different format. For example, to

read a data with variable names stored as headers:

head.dat:
one,two,three

12,18,24

7,19.3,22.1

34,22.,19.4

12,81.2,15.9

>> f = fopen(’head.dat’,’r’);

>> hdrs = textscan(f,’%s’,3,’delimiter’,’,’);

>> names = hdrs{1}’

ans =

’one’ ’two’ ’three’

>> x = cell2mat(...

textscan(f,’%n %n %n’,’delimiter’,’,’))

x =

12.0000 18.0000 24.0000

7.0000 19.3000 22.1000

34.0000 22.0000 19.4000

12.0000 81.2000 15.9000

26

User Input

The input function will display a prompt for the user, and then

return the result of evaluating their input as a matlab expression:

>> x = input(’Give a vector of numbers> ’);

Give a vector of numbers> [7 12 19]

>> x

x =

7 12 19

To retrieve the user’s input as an ordinary character string, pass an

extra argument of ’s’ to input:

>> fname = input(’Name of file? ’,’s’);

Name of file? myfile.out

>> f = fopen(fname,’r’);

27

Operators

Op Function Op Function

+ Addition < Less than

- Subtraction > Greater than

* Multiplication <= Less than or equal

.* Element-wise multiplication >= Greater than or equal

/ Division == Equality

./ Element-wise division ~= Inequality

\ Left division & Element-wise and

.\ Element-wise left division | Element-wise or

^ Matrix power ~ Element-wise not

.^ Element-wise power && Scalar and

’ Matrix transpose || Scalar or

The any and all functions are also useful for logical tests.

28

A Note about Multiplication and Division

The usual multiplication and division operators in matlab

implement matrix operations: * is used for matrix (or scalar)

multiplication and / is used for matrix “division”. (Essentially, the

matlab expression A / B is roughly equivalent to BA−1, while A \

B is roughly equivalent to A−1B):

>> a = [1 3 2;7 -5 1;-9 3 2];

>> b = [5 -17 3];

>> a \ b’

ans =

0.2000

3.2000

-2.4000

which is equivalent to a−1b′.

29

Element-by-element operations

To do element-by-element operations, the operators must be

preceded by a period.

>> x = [1 2 3 4 5];

>> y = [5 8 12 40 10];

>> x / y

ans =

0.1381

>> x ./ y

ans =

0.2000 0.2500 0.2500 0.1000 0.5000

The same is true for other operators such as exponentiation:

>> y ^ -1

??? Error using ==> mpower

Matrix must be square.

>> y .^ -1

ans =

0.2000 0.1250 0.0833 0.0250 0.1000

30

Using Functions

Functions can return multiple values. For example, the eig

function returns the eigenvectors and eigenvalues of a matrix. To

retrieve both, use

[val, vec] = eig(mat);

If only a single variable is used as a target, consult the

documentation.

Since function arguments don’t have keywords, many functions

accept either a series of values or key value pairs as arguments. For

example, to use the dlmread function to read a tab-delimited file,

use:

x = dlmread(’myfile’,’delimiter’,’\t’);

Again, consult the documentation for available choices.

31

M-files

Once you have a created a script of matlab commands, one way to

access them is by storing a file, with suffix .m, in either the current

directory, or a directory called matlab in your home directory. You

can then access the script by typing its name (minus the .m) in

your matlab session. For example, if the file doplot.m in the

current directory contains

x = [1 2 3 4 5];

y = [12 19 17 21 22];

plot(x,y,’*’)

then you can execute those commands by typing doplot in the

matlab console.

The which command will tell what script matlab is using for a

particular command.

32

Writing Functions

A function is simply an m-file that begins with the word function.

For example, suppose the file ~/matlab/scale.m contains

function [new,themax] = scale(x)

% SCALE scale a vector by dividing by the maximum value

% new = scale(x) returns a vector new, like x, with each

% element divided by the maximum value of

% the original vector

% [new,themax] = scale(x) also returns the maximum value

% of the original vector in themax

themax = max(x);

new = x / themax;

then you can use the scale function as you would any other

matlab function. The comments after the function line will be

displayed by the help command.

You can use the edit command to edit M-files; alternatively, use

any editor of your choice, or File→New or Open in the console.

33

Vectorization

Most functions can operate on vectors or matrices returning an

object of the same size by applying the function to each element.

For example, suppose you have a vector of values and you want

their square roots:

>> x = [9 17 24 15 12 82];

>> sx = sqrt(x)

sx =

3.0000 4.1231 4.8990 3.8730 3.4641 9.0554

When some functions (mean, max, sum, median, prod, sort,

std, etc.) are used with matrices, they automatically operate on

each column:

>> xmat = [1 7 9 ; 2 4 3 ; 8 7 12 ; 4 9 9];

>> mean(xmat)

ans =

3.7500 6.7500 8.2500

34

Vectorization (cont’d)

Most functions that operate on matrices in this way accept an

optional argument (called dim) that allow you to choose on which

dimension the operation is performed:

>> x = [3 7 4;2 1 8;5 10 12;7 9 14];

>> mean(x)

ans =

4.2500 6.7500 9.5000

>> mean(x,2)’

ans =

4.6667 3.6667 9.0000 10.0000

Alternatively, you can operate on transposes.

To force matlab to treat a matrix as a vector use a colon as the

single subscript:

>> mean(x(:))

ans =

6.8333

35

Vectorization (cont’d)

The functions arrayfun and cellfun can be used to apply a

function to each element of an array or cell array.

Suppose you wish to find the length of each element of a cell array:

>> cx = {[1 2 3 4] {’dog’ ’cat’} [7 12 19]};

>> length(cx)

ans =

3

>> cellfun(@length,cx)

ans =

4 2 3

The leading “at”-sign (@) creates a function handle.

If the results need to put into a cell array, the UniformOutput

parameter needs to be set to 0:

>> classes = cellfun(@class,cx,’UniformOutput’,0)

classes =

’double’ ’cell’ ’double’

36

Anonymous Functions

If an existing function or m-file is not available for use with

cellfun or arrayfun, you can create an anonymous function using

the @-operator. Suppose you want to find those elements of the cell

array that have a class of “double”:

myfunc = @(x)strcmp(x,’double’);

>> cellfun(myfunc,classes)

ans =

1 0 1

or more succintly:

>> cellfun(@(x)strcmp(x,’double’),classes)

ans =

1 0 1

37

Non-conformable operands

Note that when performing matrix operations, the dimensions of

the operands must conform (unless one is a scalar). Sometimes it

makes sense to repeat the values in the smaller operand. While

matlab will not do this automatically, the bsxfun function can be

used. Suppose we wish to subtract the mean from each column of a

matrix:

>> mat = [7 9 2;3 5 1];

>> mx = mean(mat);

>> mat - mx

??? Error using ==> minus

Matrix dimensions must agree.

>> bsxfun(@minus,mat,mx)

ans =

2.0000 2.0000 0.5000

-2.0000 -2.0000 -0.5000

38

Creating Matrices

One way to create a matrix in matlab is to simply refer to an

element of that matrix:

>> clear mymat

>> mymat(5,3) = 7;

This creates a 5×3 matrix with zeroes in the unassigned positions.

More commonly the zeros or ones function is used. To create a

matrix with some other value, multiply the call to ones by a

constant:

>> 3 * ones(4,2)

ans =

3 3

3 3

3 3

3 3

39

Creating Matrices (cont’d)

To create a matrix from repeated rows, either use multiplication or

use ones for indexing, and include a second subscript.
>> x = [7 9 5];

>> ones(4,1) * x

ans =

7 9 5

7 9 5

7 9 5

7 9 5

>> x = [7 9 5];

>> x(ones(4,1),:)

ans =

7 9 5

7 9 5

7 9 5

7 9 5

Operations like this can also be done with the repmat function:

>> repmat(x,4,1)

ans =

7 9 5

7 9 5

7 9 5

7 9 5

40

Catenation

In matlab, there’s no need for a special function for catenation,

since square brackets ([]) will do this automatically.

>> x = [5 9 3 7 2];

>> y = [2 3 1 8];

>> [x y]

ans =

5 9 3 7 2 2 3 1 8

Rows or columns can be added to matrices in the same way:
>> mat = [7 9;8 12;13 19];

>> [mat ; 15 18]

ans =

7 9

8 12

13 19

15 18

>> mat = [7 9;8 12;13 19];

>> [mat’;5 8 14]’

ans =

7 9 5

8 12 8

13 19 14

41

Catenation (cont’d)

The same method can be used to combine conformable matrices:

>> x1 = [3 2;4 7];

>> x2 = [7 12 15;8 4 19];

>> x3 = [9 18 24 15 12;6 19 8 14 20];

>> [x1 x2; x3]

ans =

3 2 7 12 15

4 7 8 4 19

9 18 24 15 12

6 19 8 14 20

Some other functions that are useful for similar tasks include kron,

toeplitz, blkdiag, reshape, flipud, fliplr, cat, vertcat, and

horzcat.

42

Structures

Matlab structures allow mixed data to be stored in a single object,

but also allows refering to elements by name instead of number.

Suppose you wish to work with the name and annual profits of

some companies:

You can simply refer to elements directly:

>> firms(1).name = ’Acme Rockets’;

>> firms(1).profits = [7500 10000 12000];

>> firms(2).name = ’Ajax Widgets’;

>> firms(2).profits = [9000 8000 10000];

You can use the struct function to add a new entry:

>> firms(end + 1) = struct(’name’,’Precision Drills’,’profits’,...

[9000 9500 9750]);

43

Structures (cont’d)

To extract an element of a structure into an array or cell array, use

square brackets ([]) or curly brackets ({}).

>> thenames = {firms.name};

>> theprofits = [firms.profits];

>> size(theprofits)

ans =

1 9

Notice that creating an ordinary array lost the structure. Cell

arrays will preserve this structure:

>> cellfun(@mean,{firms.profits})

ans =

1.0e+03 *

9.8333 9.0000 9.4167

44

Structures (cont’d)

To access fields using variables, surround the variable with

parentheses:

>> fld = ’profits’

>> firms(2).(fld)

ans =

9000 8000 10000

The fieldnames function will return the names of the fields in the

structure.

>> fnames = fieldnames(firms);

>> for f=fnames’

firms.(f{:})

end

ans =

Acme Rockets

. . .

ans =

9000 8000 10000

45

Sorting

In its simplest form the sort command sorts a vector:

>> x = [9 7 14 12 15 8];

>> sort(x)

ans =

7 8 9 12 14 15

Note that the sort is not done in place.

An optional character variable can be used for a descending sort:

>> sort(x,’descend’)

ans =

15 14 12 9 8 7

When applied to matrices, each row or column (depending on an

optional numeric argument) of the matrix is sorted.

46

Sorting (cont’d)

To sort each row of a matrix by the values of a vector, first use

sort to return a permutation vector; then use that to index the

desired dimension.

>> x = [12 19 15;7 8 12;14 5 9;10 16 2];

>> [xx,perm] = sort(x(:,1));

>> x(perm,:)

ans =

7 8 12

10 16 2

12 19 15

14 5 9

47

Tabulation

The tabulate function takes a vector as input, and returns a

3-column matrix with the unique values from the vector, their

frequencies, and their percentages.
>> values = [1,2,5,2,2,5,2,1];

>> tabulate(values)

Value Count Percent

1 2 25.00%

2 4 50.00%

3 0 0.00%

4 0 0.00%

5 2 25.00%

Notice that some values have counts of zero; they could be

eliminated using indexing:
>> res = tabulate(values);

>> res(res(:,2) > 0,:)

ans =

1 2 25

2 4 50

5 2 25

For just the unique values, the unique function can also identify

unique rows and columns of matrices.

48

Random Numbers

The random function from the Statistics Toolbox allows generation

of random numbers. The first argument to random is a string

identifying the distribution. This is followed by the appropriate

number of parameters (1, 2, or 3) for the distribution. Finally, an

optional vector with the desired output dimensions can be specified.

Some of the available distributions include beta, bino, chi2,

exp, f, gam, geo, nbin, norm, poiss, t, unif, and wbl.

>> random(’normal’,[0 0 0 5 5 5],1,[1 6])

ans =

0.7079 1.9574 0.5045 6.8645 4.6602 3.8602

The functions cdf and pdf provide cumulative and probability

distributions for the same distributions as random supports.

(Base matlab provides rand (uniform) and randn (normal)

generators.)

49

Programming

• if expression1

... statements ...

elseif expression2 % elseif and else are optional
... statements ... % multiple elseifs are allowed

else

... statements ...

end

• for var = start :end % or start :inc :end
... statements ...

end

• for var = x % elements of vectors or columns of matrices
... statements ...

end

• while expression

... statements ...

end

50

Example
function seq = rep(x,n)

% REP - create vector with repeated values

% seq = rep(x,n) returns a vector with the values

% in x repeated n times

% if x and n are vectors of the same length,

% each element of x is repeated by the corresponding

% element in n

if nargin ~= 2

error(’requires 2 arguments’);

end

if length(n) ~= 1 && length(x) ~= length(n)

error(’x and n must be same length’);

end

if length(n) == 1

if length(x) == 1

seq = x * ones(1,n);

return

else

seq = reshape((x(ones(n,1),:))’,1,n * length(x));

return

end

else

seq = [];

for i=1:length(x)

seq = [seq x(i) * ones(1,n(i))];

end

seq = reshape(seq’,1,sum(n));

return

end

51

Another Example

function [vals,lens] = rle(x)

%RLE - run length encoding

% [vals,lens] = rle(x)

% vals consists of the values of runs

% found in x; corresponding elements of

% lens contain the length of the runs

% are adjacent elements equal?

y = x(2:end) ~= x(1:end-1);

% find where adjacent elements change

i = [find(y | isnan(y)) length(x)];

vals = x(i);

lens = diff([0 i]);

return

52

Sparse Matrices

A sparse matrix is one where only a small fraction of the values are

non-zero. The sparse command can create a sparse matrix, either

from an ordinary (full) matrix, or from a set of indices and values.

Once a sparse matrix is created, all operations on it will be carried

out using special routines.

To convert a sparse matrix to a full matrix, use the full function.

Remember that some operations (like adding a constant to each

element of a matrix) will force matlab to use full storage.

The issparse function tests if a matrix is being stored as a sparse

matrix.

53

Output Format

The format command allows easy control over the way output is

displayed. (Alternatively, the File→Preferences dialog can be

used with the console.)

The short format displays 4 digits after the decimal, while the

long format displays 14 or 15. The e modifier specifies exponential,

the g modifier uses the “best” format, and the eng modifier uses

engineering notation.

Alternatively, the hex and bank formats can be used.

To suppress blank lines in the output, use compact; to display the

blank lines, use loose

>> format bank

>> format long g

>> format compact

>> format(’long’,’eng’)

54

Graphics

Some of the more useful graphics functions include:

• plot, plot3 - plots 2-d and 3-d curves from data

• fplot - plot 2-d curve from function definitions

• loglog, semilogx, semilogy - plot 2-d curve with

logarithmic axes

• hist, bar, barh, rose - plot 2-d histograms/bar charts

• mesh, meshz, meshc, waterfall - plot 3-d mesh surface

from regular data

• surf, surfc, surfl - plot shaded surface from regular data

• griddata - prepare data for use with mesh, etc.

Plots created by matlab can be modified when created, or

interactively.

55

Simple Graphics

The basic use of the plotting commands is very straight forward.

For example, to create a plot of two vectors, the input on the left

produces a window with the output on the right.

>> x = [17 19 24 29 32 38];

>> y = [25 29 32 38 40 44];

>> plot(x,y)

56

Colors, Markers and Linestyles

Graphics properties can be modified by combining symbols from

the following columns into a third argument to plot:

Symbol Color Symbol Marker Symbol Linestyle

b blue . point - solid line

g green o circle : dotted line

r red x cross -. dash-dot line

c cyan + plus sign -- dashed line

m magenta * asterisk

y yellow s square

k black v triangle (down)

w white ^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

adapted from “Mastering Matlab 5,” by Hanselman & Littlefield

57

Colors, Markers and Linestyles (cont’d)

To replot the previous example, using a red dashed line with circles

for the data points:

>> x = [17 19 24 29 32 38];

>> y = [25 29 32 38 40 44];

>> plot(x,y,’ro--’)

58

Multiple Lines on a Plot

By providing additional vectors to the plot command, it’s easy to

put multiple plots in a single figure.

>> x = [17 19 24 29 32 38];

>> y = [25 29 32 38 40 44];

>> a = [7 14 19 21 25 29 34];

>> b = [12 19 25 29 32 35 40];

>> plot(x,y,’ro--’,a,b,’b^-’)

59

Adding Information to Plots

The following functions and commands are available:

• xlabel, ylabel - add x- or y- axis labels

• axis - control axes properties

• grid - use grid on or grid off

• box - use box on or box off

• title - add a title above the plot

• text - add text to a plot

• gtext - add text to a plot using pointing device

• texlabel - create a label using LATEX

• annotation - annotate a plot

• legend - add a legend to a plot

Note: The plotedit on command allows interactive editing.

60

Annotated Plot

>> x = [17 19 24 29 32 38];

>> y = [25 29 32 38 40 44];

>> a = [7 14 19 21 25 29 34];

>> b = [12 19 25 29 32 35 40];

>> plot(x,y,’ro--’,a,b,’b^-’)

>> title(’Plot of 2 lines’)

>> xlabel(’X variable’)

>> ylabel(’Y variable’)

>> legend(’Location’,...

’NorthWest’,...

{’line 1’ ’line 2’})

61

Multiple Figures on a Page

The subplot function allows you to divide the plotting figure into

subplots, and to select an active subplot for graphics commands.

The basic form of the command is

subplot(nrows,ncols,nwhich)

This sets the current plotting region to the nwhich-th plot within

an nrows by ncols grid, counting by rows. After calling subplot,

plotting commands will be executed in the specified subplot. The

optional argument ’replace’ will replace an existing subplot.

Finally, the command

subplot(’Position’,[left bottom width height])

creates a width×height subplot at the specified position.

62

Multiple Figures on a Page (cont’d)

To create a 3× 2 grid of trigonometric functions on a single figure:

>> xvals = linspace(-pi,pi,100);

>> subplot(3,2,1)

>> plot(xvals,sin(xvals))

>> subplot(3,2,2)

>> plot(xvals,cos(xvals))

>> subplot(3,2,3)

>> plot(xvals,tan(xvals))

>> subplot(3,2,4)

>> plot(xvals,sinh(xvals))

>> subplot(3,2,5)

>> plot(xvals,cosh(xvals))

>> subplot(3,2,6)

>> plot(xvals,tanh(xvals))

63

Printing / Saving Plots

The print command is used both to print plots, and to save them

to files in a variety of formats. The default printing behaviour is

defined in the system printopt.m file, and can be overridden with

a local copy.

Examples:

print % sends current figure to default printer

print -dpng plot.png % stores a png file in plot.png

print -dpng plot % same as previous example

print(’-dpng’,’plot’) % alternative to last 2 examples

Some other format options include -dps, -dtiff, -dpsc (color

PostScript), and -depsc (encapsulated PostScript).

64

Modifying Plots

While plots can be customized through a GUI (via plotedit on,

or Tools→Edit Plot in the Figure window), it is sometimes useful

to make modifications in scripts. To facilitate this, matlab uses a

system known as handle graphics. If the return value from a

plotting function is stored, it can be passed to the get or set

routine to examine or modify its properties.

Many times the desired property is in the handle of the parent of

the plot; the parent’s handle can be retrieved as follows:

>> hand = plot(x,y)

>> phand = get(hand,’Parent’)

Passing this handle to the get function with no arguments will

display all the available parameters and their current values, which

can be modified using the set function.

65

Modifying Plots (cont’d)

Suppose we wish to change the location of the tick marks on the

x-axis of a plot. First, create the plot, saving the handle in a

variable, and use it to access the parent handle:

>> x = [9 12 14 17 22 28];

>> y = [10 19 18 23 25 31];

>> h = plot(x,y);

>> ph = get(h,’Parent’);

The output of the command get(ph) includes the following line:

. . .

XTick = [(1 by 8) double array]

. . .

To use 3 ticks at 8, 16, 24 we could use

>> set(ph,’XTick’,[8 16 24])

66

mlint M-file checker
Matlab provides a program checker that goes beyond simple syntax
checking, and can sometimes point out ways of improving your
program. It’s accessed by the mlint command, followed by the
name of the M-file to be checked.

function val = findlarge(vec,lim)

val = [];

for v = vec

if v > 0 & v > lim

val = [val v];

end

end

>> mlint findlarge

L 3 (C 5-7): FOR may not be aligned with its matching END (line 7).

L 4 (C 9-10): IF may not be aligned with its matching END (line 6).

L 4 (C 18): Use && instead of & as the AND operator in

(scalar) conditional statements.

L 5 (C 6-8): ’val’ might be growing inside a loop.

Consider preallocating for speed.

67

Timing

The tic and toc functions can be used to measure the elapsed

time of code execution. Call tic before the statements to be called,

and toc after they are done:

>> tic;x1 = 3 * ones(10000,100);t1=toc;

>> tic;xx=3;x2 = xx(ones(10000,100));t2=toc;

>> tic;x3=repmat(3,[10000 100]);t3=toc;

>> [t1 t2 t3]

ans =

0.0182 0.0588 0.0193

The cputime function can also be used, but its resolution may be

much lower than tic/toc:

>> t0=cputime();x1 = 3 * ones(10000,100);t1=cputime() - t0;

>> t0=cputime();xx=3;x2 = xx(ones(10000,100));t2=cputime() - t0;

>> t0=cputime();x3=repmat(3,[10000 100]);t3=cputime() - t0;

>> [t1 t2 t3]

ans =

0.0100 0.0700 0.0300

68

Profiling

Profiling a program means determining which parts of the program

are using the most CPU time. This helps to pinpoint bottlenecks,

and suggests what parts of a program need to be improved in order

to speed it up. To start profiling a program, type

profile on

in the matlab console. Once your program is done, type

profile off

to stop profiling, and

profile viewer

to see the results. To store the results for further analysis, use

stats = profile(’info’)

69

Debugging M-Files

To start debugging an M-File, type

debug

in the matlab console.

To see where to set appropriate breakpoints, either examine the

M-file, or use

dbtype filename

where filename is the name of the M-file you’re debugging. When

you identify a breakpoint, type

dbstop filename num

where num is the line number at which you want to stop. Now, run

the command in the normal way.

70

Debugging M-Files (cont’d)

When the editor opens on your code it will show the currently

executing line, and the console prompt will change from

>>

to

K>>

At this point, you can examine and change the values of variables,

as well as use the following commands:

Command Function

dbstep Advance one line in the program

dbcont Continue executing

dbstop Add breakpoint

dbclear Remove breakpoint(s)

dbquit Exit the debugger

71

Optimization Toolbox

The Optimization Toolbox offers a wide variety of techniques, each

with a common interface. The main functions are described in the

table below:

Function Purpose

fminunc Unconstrained Minimzation

fmincon Constrained Minimization

fminbns Bounded Minimization

linprog Linear Programming

quadprog Quadratic Programming

lsqnonneg Least Squares

lsqlin Constained Linear Least Squares

The two required arguments are the function to be optimized, and

the starting values. Additional arguments are used to specify

constraints, which can be both linear and non-linear, and can be

equalities or inequalites.

72

Linear Constraints

The optimization routines allow up to six arguments to specify

linear constraints:

• Linear inequality (provide A matrix and b vector)

A · x ≤ b

• Linear equality (provide Aeq matrix and beq vector)

Aeq · x = beq

• Lower and upper bounds (provide lb and ub vectors)

lb ≤ x ≤ ub

Use -Inf and Inf for unbounded variables.

If you don’t need all six arguments, pass an empty vector ([]) as a

placeholder.

73

Linear constraints (cont’d)

Consider the following problem

Minimize : 2x2

1 + x1x2 + 2x2

2 − 6x1 − 6x2 + 15

Subject to : x1 + 2x2 ≤ 5

4x1 ≤ 7

x2 ≤ 2

−2x1 + 2x2 = −1

The following arguments can be used:

A = [1 2;4 0;0 1];

b = [5 7 2];

Aeq = [-2 2];

beq = -1;

[x,fval] = fmincon(@(x)2 * x(1)^2 + x(1) * x(2) + 2 * x(2)^2 ...

- 6 * x(1) - 6 * x(2) + 15,[1 1],A,b,Aeq,beq);

74

Non-linear constraints

Non-linear constraints are implemented by providing a function

which returns two values – the result of evaluating any inequality

constraints, and the result of evaluating any equality constraints, in

both cases evaluated with respect to 0.

For example, suppose we have the following problem:

Maximize : y = 2x1 + x2

Subject to : x2

1 + x2

2 ≤ 25

x2

1 − x2

2 ≤ 7

We could create a suitable M-file function (say, mycon.m) as follows:

function [c,ceq] = mycon(par)

c = [par(1)^2 + par(2)^2 - 25 par(1)^2 - par(2)^2 - 7];

ceq = [];

return

75

Non-linear constraints (cont’d)

To avoid using global variables to evaluate the constraint function,

an anonymous function can be used:

[x,fval] = fmincon(@(par)-2*par(1)-par(2),...

[1 1],[],[],[],[],[],[],@(par)mycon(par));

Note that the the function evaluates the negative of the stated

problem, since we wish to maximize the function.

Alternatively, an anonymous function could be used directly. The

deal function allows the return of multiple arguments:

[x,fval] = fmincon(@(par)-2*par(1)-par(2),...

[1 1],[],[],[],[],[],[],...

@(par)deal([par(1)^2 + par(2)^2 - 25 par(1)^2 - par(2)^2 - 7],[]));

76

Options for Optimization Routines

Options for the routines are controlled by an argument created by

the optimset function. Typing optimset with the name of a

function displays the default options:
>> optimset fminunc

ans =

Display: ’final’

MaxFunEvals: ’100*numberofvariables’

MaxIter: 400

TolFun: 1.0000e-06

TolX: 1.0000e-06

FunValCheck: ’off’

OutputFcn: []

PlotFcns: []

ActiveConstrTol: []

BranchStrategy: []

DerivativeCheck: ’off’

. . .

For example to change the maximum number of function

evaluations from its default, the following call to optimset could

be passed to fminunc

optimset(’MaxFunEvals’,500)

77

Optimization with Data: Background

In a small village, inhabitants suffer from an eye disease. Fifty

subjects at each of several ages were examined, with the following

number of blind found:

Age (x) 20 35 45 55 70

Number blind (out of 50) 6 17 26 37 44

We wish to maximize a logistic likelihood for this data, using the

following likelihood function:

L = k −

5∑

i=1

yi log p(α, β, xi)−
5∑

i=1

(50− yi) log(1− p(α, β, xi))

where yi represents the number blind out of 50, and xi represents

the age.

78

Evaluating the Likelihood

The following lines, placed in the file likli.m, define a function to

evaluate the likelihood:

function x = likli(par,blind,age)

pp = @(par,x)1 ./ (1 + exp(-(par(1) + par(2) * x)));

x = -sum(blind .* log(pp(par,age))...

+ (50 - blind) .* log(1. - pp(par,age)));

Notice that the function accepts three arguments, but the

optimization routines expect just one, the vector of parameters. We

can solve the problem with an anonymous function:

>> age = [20 35 45 55 70];

>> blind = [6 17 26 37 44];

>> mylikli = @(par)likli(par,blind,age)

>> [x,fval] = fminunc(mylikli,[-3.5,.1])

79

Other features

• Demos (Demos tab in the Help window)

• Animated Plots (getframe and movies)

• Graphical User Interfaces (guide)

• Other Toolboxes (Statistics, Image, Wavelet, Simulink)

• Mathwork’s File exchange at

http://www.mathworks.com/matlabcentral/fileexchange

• Loren Shure’s Mathworks Blog on the Art of Matlab at

http://blogs.mathworks.com/loren/

80

