
A Quick Tutorial on MATLAB

Gowtham Bellala

MATLAB

 MATLAB is a software package for doing numerical
computation. It was originally designed for solving linear
algebra type problems using matrices. It’s name is derived
from MATrix LABoratory.

 MATLAB has since been expanded and now has built-in
functions for solving problems requiring data analysis, signal
processing, optimization, and several other types of scientific
computations. It also contains functions for 2-D and 3-D
graphics and animation.

MATLAB Variable names

 Variable names are case sensitive.

 Variable names can contain up to 63 characters (as of
MATLAB 6.5 and newer).

 Variable names must start with a letter and can be followed by
letters, digits and underscores.

Examples :
>> x = 2;
>> abc_123 = 0.005;

>> 1ab = 2;

Error: Unexpected MATLAB expression

MATLAB Special Variables

 pi Value of π

 eps Smallest incremental number

 inf Infinity

 NaN Not a number e.g. 0/0

 i and j i = j = square root of -1

 realmin The smallest usable positive real number

 realmax The largest usable positive real number

MATLAB Relational operators

 MATLAB supports six relational operators.

Less Than <

Less Than or Equal <=

Greater Than >

Greater Than or Equal >=

Equal To ==

Not Equal To ~= (NOT != like in C)

MATLAB Logical Operators

MATLAB supports three logical operators.

not ~ % highest precedence

and & % equal precedence with or

or | % equal precedence with and

Matrices and MATLAB

MATLAB Matrices

 MATLAB treats all variables as matrices. For our purposes a
matrix can be thought of as an array, in fact, that is how it is
stored.

 Vectors are special forms of matrices and contain only one
row OR one column.

 Scalars are matrices with only one row AND one column

Generating Matrices

 A scalar can be created in MATLAB as follows:
>> x = 23;

 A matrix with only one row is called a row vector. A row vector
can be created in MATLAB as follows (note the commas):
>> y = [12,10,-3]
y =

12 10 -3
 A matrix with only one column is called a column vector. A

column vector can be created in MATLAB as follows:
>> z = [12;10;-3]
z =

12
10
-3

Generating Matrices

 MATLAB treats row vector and column vector very differently

 A matrix can be created in MATLAB as follows (note the
commas and semicolons)
>> X = [1,2,3;4,5,6;7,8,9]

X =

1 2 3

4 5 6

7 8 9

Matrices must be rectangular!

The Matrix in MATLAB

A(2,4)

A(17)

Note: Unlike C, MATLAB’s indices start from 1

Extracting a Sub-matrix

 A portion of a matrix can be extracted and stored in a smaller
matrix by specifying the names of both matrices and the rows
and columns to extract. The syntax is:

sub_matrix = matrix (r1 : r2 , c1 : c2) ;

where r1 and r2 specify the beginning and ending rows and c1
and c2 specify the beginning and ending columns to be
extracted to make the new matrix.

Extracting a Sub-matrix

 Example :
>> X = [1,2,3;4,5,6;7,8,9]
X =

1 2 3
4 5 6
7 8 9

>> X22 = X(1:2 , 2:3)
X22 =

2 3
5 6

>> X13 = X(3,1:3)
X13 =

7 8 9

>> X21 = X(1:2,1)
X21 =

1
4

Matrix Extension

 >> a = [1,2i,0.56]
a =

1 0+2i 0.56
>> a(2,4) = 0.1
a =

1 0+2i 0.56 0
0 0 0 0.1

 repmat – replicates and tiles a
matrix
>> b = [1,2;3,4]
b =

1 2
3 4

>> b_rep = repmat(b,1,2)
b_rep =

1 2 1 2
3 4 3 4

 Concatenation
>> a = [1,2;3,4]
a =

1 2
3 4

>> a_cat =[a,2*a;3*a,2*a]
a_cat =

1 2 2 4
3 4 6 8
3 6 2 4
9 12 6 8

NOTE: The resulting matrix must
be rectangular

Matrix Addition

 Increment all the elements of
a matrix by a single value
>> x = [1,2;3,4]
x =

1 2
3 4

>> y = x + 5
y =

6 7
8 9

 Adding two matrices
>> xsy = x + y
xsy =

7 9
11 13

>> z = [1,0.3]
z =

1 0.3
>> xsz = x + z
??? Error using => plus
Matrix dimensions must
agree

Matrix Multiplication

 Matrix multiplication
>> a = [1,2;3,4]; (2x2)

>> b = [1,1]; (1x2)

>> c = b*a

c =

4 6

>> c = a*b

??? Error using ==> mtimes

Inner matrix dimensions
must agree.

 Element wise multiplication
>> a = [1,2;3,4];

>> b = [1,½;1/3,¼];

>> c = a.*b

c =

1 1

1 1

Matrix Element wise operations

 >> a = [1,2;1,3];

>> b = [2,2;2,1];

 Element wise division
>> c = a./b

c =

0.5 1

0.5 3

 Element wise multiplication
>> c = a.*b

c =

2 4

2 3

 Element wise power operation
>> c = a.^2

c =

1 4

1 9

>> c = a.^b

c =

1 4

1 3

Matrix Manipulation functions

 zeros : creates an array of all zeros, Ex: x = zeros(3,2)
 ones : creates an array of all ones, Ex: x = ones(2)
 eye : creates an identity matrix, Ex: x = eye(3)
 rand : generates uniformly distributed random numbers in [0,1]
 diag : Diagonal matrices and diagonal of a matrix
 size : returns array dimensions
 length : returns length of a vector (row or column)
 det : Matrix determinant
 inv : matrix inverse
 eig : evaluates eigenvalues and eigenvectors
 rank : rank of a matrix
 find : searches for the given values in an array/matrix.

MATLAB inbuilt math functions

Elementary Math functions

 abs - finds absolute value of all elements in the matrix

 sign - signum function

 sin,cos,… - Trignometric functions

 asin,acos… - Inverse trignometric functions

 exp - Exponential

 log,log10 - natural logarithm, logarithm (base 10)

 ceil,floor - round towards +infinity, -infinity respectively

 round - round towards nearest integer

 real,imag - real and imaginary part of a complex matrix

 sort - sort elements in ascending order

Elementary Math functions

 sum,prod - summation and product of elements

 max,min - maximum and minimum of arrays

 mean,median – average and median of arrays

 std,var - Standard deviation and variance

and many more…

Graphics Fundamentals

2D Plotting

 Example 1: Plot sin(x) and cos(x) over [0,2π], on the same plot with
different colours

Method 1:
>> x = linspace(0,2*pi,1000);
>> y = sin(x);
>> z = cos(x);
>> hold on;
>> plot(x,y,‘b’);
>> plot(x,z,‘g’);
>> xlabel ‘X values’;
>> ylabel ‘Y values’;
>> title ‘Sample Plot’;
>> legend (‘Y data’,‘Z data’);
>> hold off;

2D Plotting

Method 2:
>> x = 0:0.01:2*pi;

>> y = sin(x);

>> z = cos(x);

>> figure

>> plot (x,y,x,z);

>> xlabel ‘X values’;

>> ylabel ‘Y values’;

>> title ‘Sample Plot’;

>> legend (‘Y data’,‘Z data’);

>> grid on;

2D Plotting

 Example 2: Plot the following function

Method 1:
>> t1 = linspace(0,1,1000);

>> t2 = linspace(1,6,1000);

>> y1 = t1;

>> y2 = 1./ t2;

>> t = [t1,t2];

>> y = [y1,y2];

>> figure

>> plot(t,y);

>> xlabel ‘t values’, ylabel ‘y values’;

61 /1

10

tt

tt
y

2D Plotting

Method 2:

>> t = linspace(0,6,1000);

>> y = zeros(1,1000);

>> y(t()<=1) = t(t()<=1);

>> y(t()>1) = 1./ t(t()>1);

>> figure

>> plot(t,y);

>> xlabel‘t values’;

>> ylabel‘y values’;

Subplots

 Syntax: subplot (rows, columns, index)

>> subplot(4,1,1)

>> …

>> subplot(4,1,2)

>> …

>> subplot(4,1,3)

>> …

>> subplot(4,1,4)

>> …

Importing/Exporting Data

Load and Save

 Using load and save

load filename - loads all variables from the file “filename”

load filename x - loads only the variable x from the file

load filename a* - loads all variables starting with ‘a’

for more information, type help load at command prompt

save filename - saves all workspace variables to a binary
.mat file named filename.mat

save filename x,y - saves variables x and y in filename.mat

for more information, type help save at command prompt

Import/Export from Excel sheet

 Copy data from an excel sheet
>> x = xlsread(filename);
% if the file contains numeric values, text and raw data values, then
>> [numeric,txt,raw] = xlsread(filename);

 Copy data to an excel sheet
>>x = xlswrite('c:\matlab\work\data.xls',A,'A2:C4')
% will write A to the workbook file, data.xls, and attempt to fit the
elements of A into the rectangular worksheet region, A2:C4. On
success, ‘x’ will contain ‘1’, while on failure, ‘x’ will contain ‘0’.
for more information, type help xlswrite at command prompt

Read/write from a text file

 Writing onto a text file
>> fid = fopen(‘filename.txt’,‘w’);
>> count = fwrite(fid,x);
>> fclose(fid);
% creates a file named ‘filename.txt’ in your workspace and stores
the values of variable ‘x’ in the file. ‘count’ returns the number of
values successfully stored. Do not forget to close the file at the end.

 Read from a text file
>> fid = fopen(‘filename.txt’,‘r’);
>> X = fscanf(fid,‘%5d’);
>> fclose(fid);
% opens the file ‘filename.txt’ which is in your workspace and loads
the values in the format ‘%5d’ into the variable x.

Other useful commands: fread, fprintf

Flow Control in MATLAB

Flow control

 MATLAB has five flow control statements

- if statements

- switch statements

- for loops

- while loops

- break statements

‘if’ statement

 The general form of the ‘if’
statement is
>> if expression

>> …

>> elseif expression

>> …

>> else

>> …

>> end

 Example 1:
>> if i == j

>> a(i,j) = 2;

>> elseif i >= j

>> a(i,j) = 1;

>> else

>> a(i,j) = 0;

>> end

 Example 2:
>> if (attn>0.9)&(grade>60)

>> pass = 1;

>> end

‘switch’ statement

 switch Switch among several
cases based on expression

 The general form of the switch
statement is:
>> switch switch_expr
>> case case_expr1
>> …
>> case case_expr2
>> …
>> otherwise
>> …
>> end

 Example :
>> x = 2, y = 3;
>> switch x
>> case x==y
>> disp('x and y are equal');
>> case x>y
>> disp('x is greater than y');
>> otherwise
>> disp('x is less than y');
>> end
x is less than y

Note: Unlike C, MATLAB doesn’t need
BREAKs in each case

‘for’ loop

 for Repeat statements a
specific number of times

 The general form of a for
statement is
>> for variable=expression
>> …
>> …
>> end

 Example 1:
>> for x = 0:0.05:1
>> printf(‘%d\n’,x);
>> end

 Example 2:
>> a = zeros(n,m);

>> for i = 1:n
>> for j = 1:m
>> a(i,j) = 1/(i+j);
>> end
>> end

‘while’ loop

 while Repeat statements an
indefinite number of times

 The general form of a while
statement is

>> while expression
>> …
>> …
>> end

 Example 1:
>> n = 1;
>> y = zeros(1,10);
>> while n <= 10
>> y(n) = 2*n/(n+1);
>> n = n+1;
>> end

 Example 2:
>> x = 1;
>> while x
>> %execute statements
>> end

Note: In MATLAB ‘1’ is
synonymous to TRUE and ‘0’ is
synonymous to ‘FALSE’

‘break’ statement

 break terminates the execution of for and while loops

 In nested loops, break terminates from the innermost loop only

 Example:
>> y = 3;

>> for x = 1:10

>> printf(‘%5d’,x);

>> if (x>y)

>> break;

>> end

>> end

1 2 3 4

Efficient Programming

Efficient Programming in MATLAB

 Avoid using nested loops as far as possible

 In most cases, one can replace nested loops with efficient matrix
manipulation.

 Preallocate your arrays when possible

 MATLAB comes with a huge library of in-built functions, use them
when necessary

 Avoid using your own functions, MATLAB’s functions are more likely
to be efficient than yours.

Example 1

 Let x[n] be the input to a non causal FIR filter, with filter
coefficients h[n]. Assume both the input values and the filter
coefficients are stored in column vectors x,h and are given to
you. Compute the output values y[n] for n = 1,2,3 where

19

0
][][][

k
knxkhny

Solution

 Method 1:
>> y = zeros(1,3);

>> for n = 1:3

>> for k = 0:19

>> y(n)= y(n)+h(k)*x(n+k);

>> end

>> end

 Method 2 (avoids inner loop):
>> y = zeros(1,3);

>> for n = 1:3

>> y(n) = h’*x(n:(n+19));

>> end

 Method 3 (avoids both the loops):
>> X= [x(1:20),x(2:21),x(3:22)];

>> y = h’*X;

Example 2

 Compute the value of the following function

y(n) = 13*(13+23)*(13+23+33)*…*(13+23+ …+n3)

for n = 1 to 20

Solution

 Method 1:
>> y = zeros(20,1);
>> y(1) = 1;
>> for n = 2:20
>> for m = 1:n
>> temp = temp + m^3;
>> end
>> y(n) = y(n-1)*temp;
>> temp = 0
>> end

 Method 2 (avoids inner loop):
>> y = zeros(20,1);
>> y(1) = 1;
>> for n = 2:20
>> temp = 1:n;
>> y(n) = y(n-1)*sum(temp.^3);
>> end

 Method 3 (avoids both the loops):
>> X = tril(ones(20)*diag(1:20));
>> x = sum(X.^3,2);
>> Y = tril(ones(20)*diag(x))+ …

triu(ones(20)) – eye(20);
>> y = prod(Y,2);

Getting more help

Where to get help?

 In MATLAB’s prompt type :
help, lookfor, helpwin, helpdesk, demos

 On the Web :
http://www.mathworks.com/support
http://www.mathworks.com/products/demos/#
http://www.math.siu.edu/MATLAB/tutorials.html
http://math.ucsd.edu/~driver/21d -s99/MATLAB-primer.html
http://www.mit.edu/~pwb/cssm/
http://www.eecs.umich.edu/~aey/eecs216/.html

