
Computation

Visualization

Programming

Application Program Interface Guide
Version 5

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Application Program Interface Guide
 COPYRIGHT 1984 - 1998 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing
July 1997 Revised for 5.1 (online only)
January 1998 Second printing Revised for MATLAB 5.2
October 1998 Third printing Revised for MATLAB 5.3 (Release 11)

Contents
1
Introducing the MATLAB API

Introduction to MATLAB API .1-2
MEX-Files . 1-2
MAT-File Applications . 1-2
Engine Applications . 1-3

MATLAB Data .1-4
The MATLAB Array . 1-4
Data Storage . 1-4
Data Types in MATLAB . 1-5

Complex Double-Precision Matrices 1-5
Numeric Matrices . 1-5
MATLAB Strings . 1-5
Sparse Matrices . 1-5
Cell Arrays . 1-6
Structures . 1-6
Objects . 1-6
Multidimensional Arrays . 1-6
Logical Arrays . 1-6
Empty Arrays . 1-7

Using Data Types . 1-7
The explore Example . 1-7

API Documentation .1-8
The API Documentation Set . 1-8

API Tutorial Files . 1-8
How This Book Is Organized . 1-9
i

ii Contents
2
Getting Started

Introducing MEX-Files .2-2
Using MEX-Files . 2-2
The Distinction Between mx and mex Prefixes 2-3

mx Routines . 2-3
mex Routines . 2-3

Building MEX-Files .2-4
Testing Your Configuration . 2-4

On UNIX . 2-5
On Windows . 2-6

Using –f to Specify an Options File . 2-8
Preconfigured Options Files . 2-9

Troubleshooting Your Configuration .2-12
Search Path Problem on Windows . 2-12
MATLAB Pathnames Containing Spaces on Windows 2-12
DLLs Not on Path on Windows . 2-12
Non-ANSI Compiler on UNIX . 2-12
General Configuration Problem . 2-12

3
Creating C Language MEX-Files

C MEX-Files .3-2
Directory Organization . 3-2

The Parts of a MEX-File . 3-2
Required Arguments to a MEX-File . 3-5

Examples of C MEX-Files .3-7
A First Example . 3-7
Manipulating Strings . 3-11
Passing Two or More Inputs or Outputs 3-14
Manipulating Structures and Cell Arrays 3-16
Handling Complex Data . 3-20

Handling 8-,16-, and 32-Bit Data . 3-23
Manipulating Multidimensional Numerical Arrays 3-25
Handling Sparse Arrays . 3-29
Calling MATLAB Functions and Other User-Defined
Functions from Within a MEX-File . 3-33

Advanced Topics .3-37
Help Files . 3-37
Linking Multiple Files . 3-37
Variable Scope . 3-37
Memory Management . 3-38

Automatic Cleanup of Temporary Arrays 3-38
Persistent Arrays . 3-38
Hybrid Arrays . 3-40

How to Debug C Language MEX-Files .3-41
Debugging on UNIX . 3-41
Debugging on Windows . 3-42

4
Creating Fortran MEX-Files

Fortran MEX-Files .4-2
Directory Organization . 4-2

MEX-Files and Data Types . 4-2
The Components of a Fortran MEX-File 4-2

The Pointer Concept . 4-5
The Gateway Routine . 4-6
The %val Construct . 4-8

Examples of Fortran MEX-Files .4-9
A First Example — Passing a Scalar . 4-9
Passing Strings . 4-12
Passing Arrays of Strings . 4-14
Passing Matrices . 4-17
Passing Two or More Inputs or Outputs 4-19
Handling Complex Data . 4-22
iii

iv Contents
Dynamic Allocation of Memory . 4-26
Handling Sparse Matrices . 4-28
Calling MATLAB Functions from Fortran MEX-Files 4-32

Advanced Topics .4-36
Help Files . 4-36
Linking Multiple Files . 4-36
Variable Scope . 4-36
Memory Management . 4-37

How to Debug Fortran Language MEX-Files4-38
Debugging on UNIX . 4-38
Debugging on Windows . 4-39

5
Data Export and Import

Using MAT-Files .5-2
Importing Data to MATLAB . 5-2
Exporting Data from MATLAB . 5-3
Exchanging Data Files Between Platforms 5-4
Reading and Writing MAT-Files . 5-4

MAT-File Interface Library . 5-5
Directory Organization . 5-7

Windows . 5-8
UNIX . 5-8
Example Files . 5-9

Examples of MAT-Files .5-10
Creating a MAT-File . 5-10

C Example . 5-10
Fortran Example . 5-14

Reading a MAT-File . 5-19
C Example . 5-19
Fortran Example . 5-24

Compiling and Linking MAT-File Programs5-28
Special Considerations . 5-28

Floating-Point Exceptions . 5-28
UNIX . 5-29

Setting Runtime Library Path . 5-29
Compiling and Linking Commands 5-30
Special Consideration for Fortran (f77) on HP-UX 10.x . . . 5-31

Windows . 5-31

6
Using the MATLAB Engine

Interprocess Communication: The MATLAB Engine 6-2
The Engine Library . 6-3
Communicating with MATLAB . 6-4

Examples .6-5
Calling the MATLAB Engine . 6-5

C Example . 6-5
Fortran Example . 6-10

Compiling and Linking Engine Programs6-14
Special Considerations . 6-14

Floating-Point Exceptions . 6-14
UNIX . 6-16

Setting Runtime Library Path . 6-16
Compiling and Linking Commands 6-16
Special Consideration for Fortran (f77) on HP-UX 10.x . . . 6-17

Windows . 6-18
v

vi Contents
7
Client/Server Applications

MATLAB ActiveX Integration .7-2
What Is ActiveX? . 7-2

ActiveX Concepts and Terminology . 7-2
MATLAB ActiveX Support Overview 7-3

MATLAB ActiveX Client Support . 7-4
Using ActiveX Objects . 7-4
ActiveX Client Reference . 7-5
Writing Event Handlers . 7-21

Additional ActiveX Client Information 7-23
Releasing Interfaces . 7-23
Using ActiveX Collections . 7-23
Data Conversions . 7-24
Using MATLAB As a DCOM Server Client 7-25
MATLAB ActiveX Control Container Limitations 7-26
MATLAB Sample Control . 7-26

MATLAB ActiveX Automation Server Support 7-26
MATLAB ActiveX Automation Methods 7-27

Additional ActiveX Server Information 7-30
Launching the MATLAB ActiveX Server 7-30
Specifying a Shared or Dedicated Server 7-30
Using MATLAB As a DCOM Server 7-31

Dynamic Data Exchange (DDE) .7-32
DDE Concepts and Terminology . 7-32

The Service Name . 7-33
The Topic . 7-33
The Item . 7-33
Clipboard Formats . 7-33

Accessing MATLAB As a Server . 7-34
The DDE Name Hierarchy . 7-35
MATLAB DDE Topics . 7-35
Example: Using Visual Basic and
the MATLAB DDE Server . 7-38

Using MATLAB As a Client . 7-39
DDE Advisory Links . 7-41

8
System Setup

Custom Building MEX-Files .8-2
Locating the Default Options File . 8-4

UNIX . 8-5
Windows . 8-7

Linking DLLs to MEX-Files . 8-9
Versioning MEX-Files . 8-9
Compiling MEX-Files with
the Microsoft Visual C++ IDE . 8-9

Troubleshooting .8-11
MEX-File Creation . 8-11
Understanding MEX-File Problems . 8-12

MEX-Files Created in Watcom IDE 8-15
so_locations Error on SGI . 8-16

Memory Management Compatibility Issues 8-16
Improperly Destroying an mxArray 8-16
Incorrectly Constructing a Cell or Structure mxArray 8-17
Creating a Temporary mxArray with Improper Data 8-18
Potential Memory Leaks . 8-19
MEX-Files Should Destroy
Their Own Temporary Arrays . 8-20

A
API Functions

C MX-Functions . A-2
C MEX-Functions . A-4
C MAT-File Routines . A-5
C Engine Routines . A-6
Fortran MX-Functions . A-6
Fortran MEX-Functions . A-7
Fortran MAT-File Routines . A-8
Fortran Engine Routines . A-8
DDE Routines . A-9
vii

viii Contents
B
Directory Organization

Directory Organization on UNIX .B-3

Directory Organization on Windows .B-7

MEX-Files . 1-2
MAT-File Applications 1-2
Engine Applications 1-3

MATLAB Data 1-4
The MATLAB Array 1-4
Data Storage . 1-4
Data Types in MATLAB 1-5
Using Data Types 1-7

API Documentation 1-8
The API Documentation Set 1-8
How This Book Is Organized 1-9
1

Introducing the
MATLAB API

Introduction to MATLAB API 1-2

1 Introducing the MATLAB API

1-2
Introduction to MATLAB API
Although MATLAB® is a complete, self-contained environment for
programming and manipulating data, it is often useful to interact with data
and programs external to the MATLAB environment. MATLAB provides an
Application Program Interface (API) to support these external interfaces. The
functions supported by the API include:

• Calling C or Fortran programs from MATLAB.

• Importing and exporting data to and from the MATLAB environment.

• Establishing client/server relationships between MATLAB and other
software programs.

MEX-Files
You can call your own C or Fortran subroutines from MATLAB as if they were
built-in functions. MATLAB callable C and Fortran programs are referred to
as MEX-files. MEX-files are dynamically linked subroutines that the MATLAB
interpreter can automatically load and execute.

MEX-files have several applications:

• Large pre-existing C and Fortran programs can be called from MATLAB
without having to be rewritten as M-files.

• Bottleneck computations (usually for-loops) that do not run fast enough in
MATLAB can be recoded in C or Fortran for efficiency.

This book uses many examples to show how to write C and Fortran MEX-files.

MAT-File Applications
You can use MAT-files, the data file format MATLAB uses for saving data to
disk, to import data to and export data from the MATLAB environment.
MAT-files provide a convenient mechanism for moving your MATLAB data
between different platforms in a highly portable manner. In addition, they
provide a means to import and export your data to other stand-alone MATLAB
applications. To simplify your use of MAT-files in applications outside of
MATLAB, we provide a library of access routines that you can use in your own
C or Fortran programs to read and write MAT-files. Programs that access
MAT-files also use the mx API routines discussed in this book.

Introduction to MATLAB API
Engine Applications
MATLAB provides a set of routines that allows you to call MATLAB from your
own programs, thereby employing MATLAB as a computation engine.
MATLAB engine programs are C or Fortran programs that communicate with
a separate MATLAB process via pipes (in UNIX) and through ActiveX on
Windows. There is a library of functions provided with MATLAB that allows
you to start and end the MATLAB process, send data to and from MATLAB,
and send commands to be processed in MATLAB.

Some of the things you can do with the MATLAB engine are:

• Call a math routine to invert an array or to compute an FFT from your own
program. When employed in this manner, MATLAB is a powerful and
programmable mathematical subroutine library.

• Build an entire system for a specific task, for example, radar signature
analysis or gas chromatography, where the front end (GUI) is programmed
in C and the back end (analysis) is programmed in MATLAB, thereby
shortening development time.
1-3

1 Introducing the MATLAB API

1-4
MATLAB Data

The MATLAB Array
Before you can program MEX-files, you must understand how MATLAB
represents the many data types it supports. The MATLAB language works
with only a single object type: the MATLAB array. All MATLAB variables,
including scalars, vectors, matrices, strings, cell arrays, structures, and objects
are stored as MATLAB arrays. In C, the MATLAB array is declared to be of
type mxArray. The mxArray structure contains, among other things:

• Its type

• Its dimensions

• The data associated with this array

• If numeric, whether the variable is real or complex

• If sparse, its indices and nonzero maximum elements

• If a structure or object, the number of fields and field names

Data Storage
All MATLAB data is stored columnwise. This is how Fortran stores matrices;
MATLAB uses this convention because it was originally written in Fortran. For
example, given the matrix

a=['house'; 'floor'; 'porch']

a =
house
floor
porch

its dimensions are

size(a)

ans =
3 5

MATLAB Data
and its data is stored as

Data Types in MATLAB

Complex Double-Precision Matrices
The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The data
is stored as two vectors of double-precision numbers – one contains the real
data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A real-only, double-precision matrix is one whose pi is NULL.

Numeric Matrices
MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed and
unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

MATLAB Strings
MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Each character in
the string is stored as 16-bit ASCII Unicode. Unlike C, MATLAB strings are
not null terminated.

Sparse Matrices
Sparse matrices have a different storage convention in MATLAB. The
parameters pr and pi are still arrays of double-precision numbers, but there
are three additional parameters, nzmax, ir, and jc:

• nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pr and pi.

h f p o l o u o r s o c e r h
1-5

1 Introducing the MATLAB API

1-6
• jc points to an integer array of length N+1 that contains column index
information. For j, in the range 0 ≤ j ≤ N–1, jc[j] is the index in ir and pr
(and pi if it exists) of the first nonzero entry in the jth column and
jc[j+1] – 1 index of the last nonzero entry. As a result, jc[N] is also equal
to nnz, the number of nonzero entries in the matrix. If nnz is less than nzmax,
then more nonzero entries can be inserted in the array without allocating
additional storage.

Cell Arrays
Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to as a cell. This allows MATLAB arrays of different types to be stored together.
Cell arrays are stored in a similar manner to numeric matrices, except the data
portion contains a single vector of pointers to mxArrays. Members of this vector
are called cells. Each cell can be of any supported data type, even another cell
array.

Structures
A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Objects
Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object is a structure that contains storage for an additional classname that
identifies the name of the object.

Multidimensional Arrays
MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Logical Arrays
Any noncomplex numeric or sparse array can be flagged as logical. The storage
for a logical array is the same as the storage for a nonlogical array.

MATLAB Data
Empty Arrays
MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal 0 and pr is NULL, is an empty array.

Using Data Types
The six fundamental data types in MATLAB are double, char, sparse, uint8,
cell, and struct. You can write MEX-files, MAT-file applications, and engine
applications in C that accept any data type supported by MATLAB. In Fortran,
only the creation of double-precision n-by-m arrays and strings are supported.
You can treat C and Fortran MEX-files, once compiled, exactly like
M-functions.

The explore Example
There is an example MEX-file included with MATLAB, called explore, that
identifies the data type of an input variable. For example, typing

cd([matlabroot '/extern/examples/mex']);
x = 2;
explore(x);

produces this result

--
Name: x
Dimensions: 1x1
Class Name: double
--

(1,1) = 2

explore accepts any data type. Try using explore with these examples:

explore([1 2 3 4 5])
explore 1 2 3 4 5
explore({1 2 3 4 5})
explore(int8([1 2 3 4 5]))
explore {1 2 3 4 5}
explore(sparse(eye(5)))
explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(1, 2, 3, 4, 5)
1-7

1 Introducing the MATLAB API

1-8
API Documentation

The API Documentation Set
This book, the Application Program Interface Guide, contains configuration
information and tutorials for using the MATLAB API. The complete set of
reference documentation for all the API-related functions is provided online,
and can be accessed from the MATLAB Help Desk by typing helpdesk at the
MATLAB prompt. From the Help Desk, you can also access online (PDF)
versions of the Application Program Interface Guide and the Application
Program Interface Reference. The online version of the Application Program
Interface Reference is the complete set of API reference pages in a book format.
If you need a printed version of the API reference pages, you can easily print
the PDF version of the Application Program Interface Reference.

API Tutorial Files
In addition to the printed Application Program Interface Guide and the online
Application Program Interface Reference that is accessible via the Help Desk,
there are many sample files included with MATLAB that can help you learn
how to use the API. The mex and mx subdirectories in the extern/examples
directory contain examples that are referenced from the mex and mx functions
in the online Application Program Interface Reference.

The refbook subdirectory in the extern/examples directory contains the
MEX-file examples (C and Fortran) that are used in this book, the Application
Program Interface Guide. The eng_mat subdirectory in the extern/examples
directory contains examples that are referenced from the engine and MAT-file
routines in the online Application Program Interface Reference and the engine
(Chapter 6) and MAT-file (Chapter 5) chapters in this book.

API Documentation
Note: You can find the most recent versions of the example programs from
this book at the anonymous FTP server:

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/

refbook

You can find the most recent versions of the examples described in the online
Application Program Interface Reference at:

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/mex

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/mx

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/

eng_mat

How This Book Is Organized
Chapter 1 provides an overview of MEX-files, MAT-file applications, engine
applications, and the way MATLAB stores its data. This chapter also describes
the API documentation set.

Chapter 2 discusses MEX-files, which enable you to call your own C or Fortran
subroutines directly from MATLAB. It also provides basic information to get
you up and running so that you can configure your system to build
MEX-functions.

Chapters 3 and 4 contain C and Fortran examples, which explain how to create
MEX-files on different platforms.

Chapter 5 continues with a discussion of techniques for importing and
exporting data to and from the MATLAB environment. The most important
technique is MAT-files − the files MATLAB uses for saving data to a disk.
MAT-files offer a simple and convenient mechanism for transporting your data
between different platforms. They also enable you to import and export your
MATLAB data to and from other MATLAB stand-alone applications. To
simplify the use of MAT-files with other applications, a library of access
routines is provided, which makes it very easy to read and write MAT-files
using your own C or Fortran programs.
1-9

1 Introducing the MATLAB API

1-1
Chapter 6 discusses the MATLAB engine, which enables you to set up client/
server relationships between MATLAB and other software programs, such as
Excel.

Chapter 7 includes information on ActiveX, which is a component integration
technology for Microsoft Windows. This chapter also contains information on
dynamic data exchange (DDE) software that allows Microsoft Windows
applications to communicate with each other by exchanging data.

Chapter 8 focuses on platform-specific issues and provides detailed
information on the mex script. In addition, Chapter 8 contains information on
troubleshooting and memory management.

The Appendices contain supplemental information regarding the MATLAB
API. Appendix A lists the set of API functions including C and Fortran
MX-functions, C and Fortran MEX-functions, C and Fortran MAT-file
routines, C and Fortran engine routines, and DDE routines. Appendix B
describes the directory organization and purpose of the files associated with
the MATLAB API.
0

Using MEX-Files 2-2
The Distinction Between mx and mex Prefixes 2-3

Building MEX-Files 2-4
Testing Your Configuration 2-4
Using –f to Specify an Options File 2-8

Troubleshooting Your Configuration 2-12
2

Getting Started

Introducing MEX-Files 2-2

2 Getting Started

2-2
Introducing MEX-Files
MEX-files are dynamically linked subroutines that the MATLAB interpreter
can automatically load and execute. MEX-files are not appropriate for all
applications. MATLAB is a high-productivity system whose specialty is
eliminating time-consuming, low-level programming in compiled languages
like Fortran or C. In general, most programming should be done in MATLAB.
Don’t use the MEX facility unless your application requires it.

Using MEX-Files
MEX-files are subroutines produced from C or Fortran source code. They
behave just like M-files and built-in functions. While M-files have a
platform-independent extension, .m, MATLAB identifies MEX-files by
platform-specific extensions. Table 2-1 lists the platform-specific extensions for
MEX-files.

You can call MEX-files exactly as you would call any M-function. For example,
a MEX-file called conv2.mex on your disk in the MATLAB datafun toolbox
directory performs a 2-D convolution of matrices. conv2.m only contains the
help text documentation. If you invoke the function conv2 from inside

Table 2-1: MEX-File Extensions

Platform MEX-File Extension

Sun OS 4.x mex4

HP 9000/series 700 mexhp7

Alpha mexaxp

SGI mexsg

SGI 64 mexsg64

IBM RS/6000 mexrs6

Linux mexlx

Solaris mexsol

Windows dll

Introducing MEX-Files
MATLAB, the interpreter looks through the list of directories on MATLAB’s
search path. It scans each directory looking for the first occurrence of a file
named conv2 with the corresponding filename extension from the table or .m.
When it finds one, it loads the file and executes it. MEX-files take precedence
over M-files when like-named files exist in the same directory. However, help
text documentation is still read from the .m file.

The Distinction Between mx and mex Prefixes
Routines in the API that are prefixed with mx allow you to create, access,
manipulate, and destroy mxArrays. Routines prefixed with mex perform
operations back in the MATLAB environment.

mx Routines
The array access and creation library provides a set of array access and
creation routines for manipulating MATLAB arrays. These subroutines, which
are fully documented in the online API reference pages, always start with the
prefix mx. For example, mxGetPi retrieves the pointer to the imaginary data
inside the array.

Although most of the routines in the array access and creation library let you
manipulate the MATLAB array, there are two exceptions — the IEEE routines
and memory management routines. For example, mxGetNaN returns a double,
not an mxArray.

mex Routines
Routines that begin with the mex prefix perform operations back in the
MATLAB environment. For example, the mexEvalString routine evaluates a
string in the MATLAB workspace.

Note: mex routines are only available in MEX-functions.
2-3

2 Getting Started

2-4
Building MEX-Files
Your installed version of MATLAB contains all the tools you need to work with
the API, except a C or Fortran compiler. Depending on your requirements,
you’ll need either an ANSI C compiler or a Fortran compiler. Also, if you are
working on a Microsoft Windows platform, your compiler must be able to create
32-bit windows dynamically linked libraries (DLLs).

The API supports many compilers and provides options files designed
specifically for these compilers. Chapter 8, “System Setup,” provides detailed
information on the compilers, options files, and customization. There is also
additional information regarding options files later in this chapter in
“Using –f to Specify an Options File.”

Depending on your platform, you may have to do some preliminary work before
you can create MEX-files with the mex script. The next section, “Testing Your
Configuration,” takes you through the process of creating a MEX-file on each
platform.

Note: The MathWorks provides an option (setup) for the mex script that lets
you easily choose or switch your compiler on Windows systems.

More detailed information about the mex script is provided in “Custom Building
MEX-Files” in Chapter 8. In addition, Chapter 8 contains a “Troubleshooting”
section if you are having difficulties creating MEX-files.

Testing Your Configuration
The quickest way to check if your system is set up properly to create MEX-files
is by trying the actual process. There is C source code for an example,
yprime.c, and its Fortran counterpart, yprimef.f and yprimefg.f (Windows)
and yprimef.F and yprimefg.F (UNIX), included in the

Building MEX-Files
<matlab>/extern/examples/mex directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system.

Note: In platform independent discussions that refer to directory paths, this
book uses the UNIX convention. For example, a general reference to the mex
directory is <matlab>/extern/examples/mex.

The following sections contain configuration information for creating
MEX-files on UNIX and Windows systems. If, after following the instructions,
you have difficulty creating MEX-files, refer to Chapter 8 for additional
troubleshooting information.

On UNIX
To compile and link the example source files, yprime.c or yprimef.F and
yprimefg.F, on UNIX, you must first copy the file(s) to a local directory, and
then change directory (cd) to that local directory.

At the MATLAB prompt, type

mex yprime.c

This should create the MEX-file called yprime with the appropriate extension
for your system.

You can now call yprime as if it were an M-function.

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 –1.0947

To try the Fortran version of the sample program with your Fortran compiler,
at the MATLAB prompt, type

mex yprimef.F yprimefg.F

In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.
2-5

2 Getting Started

2-6
On Windows

Configuring an Options File. Before you can create MEX-files on the Windows
platform, you must configure the default options file, mexopts.bat, for your
compiler. The switch, setup, provides an easy way for you to configure the
default options file. You can run the setup option from either the MATLAB or
DOS command prompt, and it can be called anytime to configure or change the
options file.

Executing the setup option presents a list of compilers whose options files are
currently shipped in the bin subdirectory of MATLAB. This example shows
how to select the Microsoft Visual C++ compiler.

mex –setup

Welcome to the utility for setting up compilers
for building external interface files.

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0)
[2] Microsoft Visual C++ (version 4.2 or version 5.0)
[3] Watcom C/C++ (version 10.6 or version 11)

Fortran compilers
[4] DIGITAL Visual Fortran (version 5.0)

[0] None

compiler: 2

If the selected compiler has more than one options file (due to more than one
version of the compiler), you are asked for a specific version. For example,

Choose the version of your C/C++ compiler:
[1] Microsoft Visual C++ 4.2
[2] Microsoft Visual C++ 5.0

version: 1

Building MEX-Files
You are then asked to enter the root directory of your compiler installation.

Please enter the location of your C/C++ compiler: [c:\msdev]

Note: Some compilers create a directory tree under their root directory when
you install them. You must respond to this prompt with the root directory only.
For example, if the compiler creates directories bin, lib, and include under
c:\msdev, you should enter only the root directory, which is c:\msdev.

Finally, you are asked to verify your choices.

Please verify your choices:

Compiler: Microsoft Visual C++ 4.2
Location: c:\msdev
Are these correct?([y]/n): y

Default options file is being updated...

Building a MEX-File. To compile and link the example source file on Windows, at
the MATLAB prompt, type

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

This should create the MEX-file called yprime with the .DLL extension, which
corresponds to the Windows platform.

You can now call yprime as if it were an M-function.

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 –1.0947

To try the Fortran version of the sample program with your Fortran compiler
(mex –setup allows you to change compilers anytime), at the MATLAB prompt,
type

cd([matlabroot '\extern\examples\mex'])
mex yprimef.f yprimefg.f
2-7

2 Getting Started

2-8
In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.

Using –f to Specify an Options File
Windows users can use the –setup option to specify an options file. In addition,
all users (UNIX and Windows) can use the –f option to specify an options file.
To use the –f option, at the MATLAB prompt type

mex filename –f <optionsfile>

and specify the name of the options file. Table 2-2 contains a list of the options
files included with MATLAB.

There are several situations when it may be necessary to specify an options file
every time you use the mex script. These include:

• (Windows) You want to use a different compiler (and not use the –setup
option), or you want to compile MAT or engine stand-alone programs.

• (UNIX) You do not want to use the system C compiler.

Building MEX-Files
Preconfigured Options Files
MATLAB includes some preconfigured options files that you can use with
particular compilers. Table 2-2 lists the compilers whose options files are
included with this release of MATLAB.

Table 2-2: Options Files

Platform Compiler Options File

Windows Microsoft C/C++, Version 4.2
Microsoft C/C++, Version 5.0

msvcopts.bat
msvc50opts.bat

DIGITAL Visual Fortran,
Version 5.0

df50opts.bat

Watcom C/C++, Version 10.6
Watcom C/C++, Version 11

watcopts.bat
wat11copts.bat

Borland C++, Version 5.0 bccopts.bat

Watcom C for Engine and MAT
stand-alone programs,
Version 10.6
Watcom C for Engine and MAT
stand-alone programs,
Version 11

watengmatopts.bat

wat11engmatopts.bat

Microsoft Visual C for Engine and
MAT stand-alone programs,
Version 4.2
Microsoft Visual C for Engine and
MAT stand-alone programs,
Version 5.0

msvcengmatopts.bat

msvc50engmatopts.bat

Borland C for Engine and MAT
stand-alone programs,
Version 5.0

bccengmatopts.bat

DIGITAL Visual Fortran for
MAT stand-alone programs,
Version 5.0

df50engmatopts.bat
2-9

2 Getting Started

2-1
Note: An up-to-date list of options files is available from our FTP server:

ftp.mathworks.com/pub/tech-support/library/matlab5/bin

For a list of all the compilers supported by MATLAB, see the MathWorks
Technical Support Department’s Technical Notes at

http://www.mathworks.com/support/tech-notes/#mex

Table 2-3 shows where the default options files are located on each platform.

If you want to use one of these options files,

1 Copy the desired options file to the directory where you are creating your
MEX-files. Options files are not M-files, so they do not automatically appear
in the MATLAB path.

2 Specify the –f <optionsfile> switch in the mex command using the
filename of the desired options file.

UNIX System ANSI Compiler mexopts.sh

GCC gccopts.sh

System C++ Compiler cxxopts.sh

Table 2-3: Options Files Path

Platform Location

UNIX <matlab>/bin

Windows <matlab>\bin

Table 2-2: Options Files (Continued)

Platform Compiler Options File
0

Building MEX-Files
Alternatively, you do not have to copy the options file to the MEX-file creation
directory; you can specify the options filename, including the full path, in the
options filename.

Note: Chapter 8 contains specific information on how to modify options files
for particular systems.
2-11

2 Getting Started

2-1
Troubleshooting Your Configuration
This section focuses on some common problems that might occur when creating
MEX-files.

Search Path Problem on Windows
Under Windows, if you move the MATLAB executable without reinstalling
MATLAB, you may need to modify mex.bat to point to the new MATLAB
location.

MATLAB Pathnames Containing Spaces on Windows
If you have problems building MEX-files on Windows and there is a space in
any of the directory names within the MATLAB path, you need to either
reinstall MATLAB into a pathname that contains no spaces or rename the
directory that contains the space. For example, if you install MATLAB under
the Program Files directory, you may have difficulty building MEX-files. Also,
if you install MATLAB in a directory such as MATLAB V5.2, you may have
difficulty.

DLLs Not on Path on Windows
MATLAB will fail to load MEX-files if it cannot find all DLLs referenced by the
MEX-file; the DLLs must be on the DOS path or in the same directory as the
MEX-file. This is also true for third-party DLLs.

Non-ANSI Compiler on UNIX
On the Sun OS 4.1.* platform, the bundled compiler is not ANSI; you must
acquire a supported ANSI compiler. The same is true on the HP-700; you must
acquire a supported ANSI compiler.

General Configuration Problem
Make sure you followed the configuration steps for your platform described in
this chapter. Also, refer to Chapter 8, “System Setup,” for additional
information.
2

The Parts of a MEX-File 3-2

Examples of C MEX-Files 3-7
A First Example 3-7
Manipulating Strings 3-11
Passing Two or More Inputs or Outputs 3-14
Manipulating Structures and Cell Arrays 3-16
Handling Complex Data 3-20
Handling 8-,16-, and 32-Bit Data 3-23
Manipulating Multidimensional Numerical Arrays 3-25
Handling Sparse Arrays 3-29
Calling MATLAB Functions and Other

User-Defined Functions from Within a MEX-File . . . 3-33

Advanced Topics 3-37
Help Files . 3-37
Linking Multiple Files 3-37
Variable Scope . 3-37
Memory Management 3-38

How to Debug C Language MEX-Files 3-41
Debugging on UNIX 3-41
Debugging on Windows 3-42
3

Creating C Language
MEX-Files

C MEX-Files . 3-2

3 Creating C Language MEX-Files

3-2
C MEX-Files
C MEX-files are built by using the mex script to compile your C source code with
additional calls to API routines.

Directory Organization
A collection of files associated with the creation of C language MEX-files is
located on your disk. This table lists the location of these files.

Appendix B, “Directory Organization,” describes the contents of the
API-related directories and files.

The Parts of a MEX-File
The source code for a MEX-file consists of two distinct parts:

• A computational routine that contains the code for performing the
computations that you want implemented in the MEX-file. Computations
can be numerical computations as well as inputting and outputting data.

• A gateway routine that interfaces the computational routine with MATLAB
by the entry point mexFunction and its parameters prhs, nrhs, plhs, nlhs,
where prhs is an array of right-hand input arguments, nrhs is the number
of right-hand input arguments, plhs is an array of left-hand output
arguments, and nlhs is the number of left-hand output arguments. The
gateway calls the computational routine as a subroutine.

In the gateway routine, you can access the data in the mxArray structure and
then manipulate this data in your C computational subroutine. For example,
the expression mxGetPr(prhs[0]) returns a pointer of type double * to the real
data in the mxArray pointed to by prhs[0]. You can then use this pointer like
any other pointer of type double * in C. After calling your C computational

Platform Directory

Windows <matlab>\extern

UNIX <matlab>/extern

where:
<matlab> is the MATLAB root directory

C MEX-Files
routine from the gateway, you can set a pointer of type mxArray to the data it
returns. MATLAB is then able to recognize the output from your computational
routine as the output from the MEX-file.

Figure 3-1 shows how inputs enter a MEX-file, what functions the gateway
function performs, and how outputs return to MATLAB.
3-3

3 Creating C Language MEX-Files

3-4
Figure 3-1: C MEX Cycle

const mxArray *A
A = prhs[0]

MATLAB

A call to
MEX-file func:

[C,D]=func(A,B)

tells MATLAB to
pass variables A and
B to your MEX-file. C
and D are left
unassigned.

mxArray *C
C = plhs[0]

const mxArray *B
B = prhs[1]

mxArray *D
D = plhs[1]

INPUTS

OUTPUTS

func.c

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

In the gateway routine:

• Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs[0], [1], … to the
pointers to the newly created
MATLAB arrays.

• Use the mxGet functions to extract
your data from prhs[0], [1], …

• Call your C subroutine passing the
input and output data pointers as
function parameters.

MATLAB

On return from
MEX-file func:

[C,D]=func(A,B)

plhs[0] is assigned
to C andplhs[1] is
assigned to D.

C MEX-Files
Required Arguments to a MEX-File
The two components of the MEX-file may be separate or combined. In either
case, the files must contain the #include "mex.h" header so that the entry
point and interface routines are declared properly. The name of the gateway
routine must always be mexFunction and must contain these parameters:

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
/* more C code ... */

The parameters nlhs and nrhs contain the number of left- and right-hand
arguments with which the MEX-file is invoked. In the syntax of the MATLAB
language, functions have the general form

[a,b,c,…] = fun(d,e,f,…)

where the ellipsis (…) denotes additional terms of the same format. The a,b,c,…
are left-hand arguments and the d,e,f,… are right-hand arguments.

The parameters plhs and prhs are vectors that contain pointers to the left- and
right-hand arguments of the MEX-file. Note that both are declared as
containing type mxArray *, which means that the variables pointed at are
MATLAB arrays. prhs is a length nrhs array of pointers to the right-hand side
inputs to the MEX-file, and plhs is a length nlhs array that will contain
pointers to the left-hand side outputs that your function generates. For
example, if you invoke a MEX-file from the MATLAB workspace with the
command

x = fun(y,z);
3-5

3 Creating C Language MEX-Files

3-6
the MATLAB interpreter calls mexFunction with the arguments

plhs is a 1-element C array where the single element is a null pointer. prhs is
a 2-element C array where the first element is a pointer to an mxArray named
Y and the second element is a pointer to an mxArray named Z.

The parameter plhs points at nothing because the output x is not created until
the subroutine executes. It is the responsibility of the gateway routine to create
an output array and to set a pointer to that array in plhs[0]. If plhs[0] is left
unassigned, MATLAB prints a warning message stating that no output has
been assigned.

Note: It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

nlhs = 1

nrhs = 2

plhs

prhs

• Ø

• Y

• Z

Examples of C MEX-Files
Examples of C MEX-Files
The next sections of this chapter include examples of different MEX-files. The
MATLAB 5 API provides a full set of routines that handle the various data
types supported by MATLAB. For each data type there is a specific set of
functions that you can use for data manipulation. The first example discusses
the simple case of doubling a scalar. After that, the examples discuss how to
pass in, manipulate, and pass back various data types, and how to handle
multiple inputs and outputs. Finally, the sections discuss passing and
manipulating various MATLAB data types.

Note: You can find the most recent versions of the example programs from
this chapter at the anonymous FTP server:

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/refbook

A First Example
Let’s look at a simple example of C code and its MEX-file equivalent. Here is a
C computational function that takes a scalar and doubles it.

#include <math.h>
void timestwo(double y[], double x[])
{
 y[0] = 2.0*x[0];
 return;
}

3-7

3 Creating C Language MEX-Files

3-8
Below is the same function written in the MEX-file format.

#include "mex.h"

/*
 * timestwo.c - example found in API guide
 *
 * Computational function that takes a scalar and doubles it.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */

/* $Revision: 1.5 $ */

void timestwo(double y[], double x[])
{
 y[0] = 2.0*x[0];
}

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *x,*y;
 int mrows,ncols;

 /* Check for proper number of arguments. */
 if(nrhs!=1) {
 mexErrMsgTxt("One input required.");
 } else if(nlhs>1) {
 mexErrMsgTxt("Too many output arguments");
 }

 /* The input must be a noncomplex scalar double.*/
 mrows = mxGetM(prhs[0]);
 ncols = mxGetN(prhs[0]);
 if(!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||
 !(mrows==1 && ncols==1)) {
 mexErrMsgTxt("Input must be a noncomplex scalar double.");
 }

Examples of C MEX-Files
/* Create matrix for the return argument. */
 plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

 /* Assign pointers to each input and output. */
 x = mxGetPr(prhs[0]);
 y = mxGetPr(plhs[0]);

 /* Call the timestwo subroutine. */
 timestwo(y,x);
}

In C, function argument checking is done at compile time. In MATLAB, you can
pass any number or type of arguments to your M-function, which is responsible
for argument checking. This is also true for MEX-files. Your program must
safely handle any number of input or output arguments of any supported type.

To compile and link this example source file at the MATLAB prompt, type

mex timestwo.c

This carries out the necessary steps to create the MEX-file called timestwo
with an extension corresponding to the platform on which you’re running. You
can now call timestwo as if it were an M-function.

x = 2;
y = timestwo(x)
y =
 4

You can create and compile MEX-files in MATLAB or at your operating
system’s prompt. MATLAB uses mex.m, an M-file version of the mex script, and
your operating system uses mex.bat on Windows and mex.sh on UNIX. In
either case, typing

mex filename

at the prompt produces a compiled version of your MEX-file.

In the above example, scalars are viewed as 1-by-1 matrices. Alternatively, you
can use a special API function called mxGetScalar that returns the values of
3-9

3 Creating C Language MEX-Files

3-1
scalars instead of pointers to copies of scalar variables. This is the alternative
code (error checking has been omitted for brevity).

#include "mex.h"

/*
 * timestwoalt.c - example found in API guide
 *
 * Use mxGetScalar to return the values of scalars instead of
 * pointers to copies of scalar variables.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */

/* $Revision: 1.2 $ */
void timestwo_alt(double *y, double x)
{
 *y = 2.0*x;
}

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *y;
 double x;

 /* Create a 1-by-1 matrix for the return argument. */
 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);

 /* Get the scalar value of the input x. */
 /* Note: mxGetScalar returns a value, not a pointer. */
 x = mxGetScalar(prhs[0]);

 /* Assign a pointer to the output. */
 y = mxGetPr(plhs[0]);

 /* Call the timestwo_alt subroutine. */
 timestwo_alt(y,x);
}

0

Examples of C MEX-Files
This example passes the input scalar x by value into the timestwo_alt
subroutine, but passes the output scalar y by reference.

Manipulating Strings
Any MATLAB data type can be passed to and from MEX-files. For example,
this C code accepts a string and returns the characters in reverse order.

/* $Revision: 1.7 $ */
/*===
 * revord.c
 * Example for illustrating how to copy the string data from
 * MATLAB to a C-style string and back again.
 *
 * Takes a string and returns a string in reverse order.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 ==/
#include "mex.h"

void revord(char *input_buf, int buflen, char *output_buf)
{
 int i;

 /* Reverse the order of the input string. */
 for(i=0;i<buflen–1;i++)
 *(output_buf+i) = *(input_buf+buflen–i–2);
}

In this example, the API function mxCalloc replaces calloc, the standard C
function for dynamic memory allocation. mxCalloc allocates dynamic memory
using MATLAB’s memory manager and initializes it to zero. You must use
mxCalloc in any situation where C would require the use of calloc. The same
is true for mxMalloc and mxRealloc; use mxMalloc in any situation where C
3-11

3 Creating C Language MEX-Files

3-1
would require the use of malloc and use mxRealloc where C would require
realloc.

Note: MATLAB automatically frees up memory allocated with the mx
allocation routines (mxCalloc, mxMalloc, mxRealloc) upon exiting your
MEX-file. If you don’t want this to happen, use the API function
mexMakeMemoryPersistent.

Below is the gateway function that calls the C computational routine revord.

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 char *input_buf, *output_buf;
 int buflen,status;

 /* Check for proper number of arguments. */
 if(nrhs!=1)
 mexErrMsgTxt("One input required.");
 else if(nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");

 /* Input must be a string. */
 if (mxIsChar(prhs[0]) != 1)
 mexErrMsgTxt("Input must be a string.");

 /* Input must be a row vector. */
 if (mxGetM(prhs[0])!=1)
 mexErrMsgTxt("Input must be a row vector.");

 /* Get the length of the input string. */
 buflen = (mxGetM(prhs[0]) * mxGetN(prhs[0])) + 1;

 /* Allocate memory for input and output strings. */
 input_buf=mxCalloc(buflen, sizeof(char));
 output_buf=mxCalloc(buflen, sizeof(char));
2

Examples of C MEX-Files
 /* Copy the string data from prhs[0] into a C string
 * input_ buf.
 * If the string array contains several rows, they are copied,
 * one column at a time, into one long string array.
 */
 status = mxGetString(prhs[0], input_buf, buflen);
 if(status != 0)
 mexWarnMsgTxt("Not enough space. String is truncated.");

 /* Call the C subroutine. */
 revord(input_buf, buflen, output_buf);

 /* Set C-style string output_buf to MATLAB mexFunction
output*/

 plhs[0] = mxCreateString(output_buf);
 return;
}

The gateway function allocates memory for the input and output strings. Since
these are C strings, they need to be one greater than the number of elements
in the MATLAB string. Next the MATLAB string is copied to the input string.
Both the input and output strings are passed to the computational subroutine
(revord), which loads the output in reverse order. Note that the output buffer
is a valid null-terminated C string because mxCalloc initializes the memory to
0. The API function mxCreateString then creates a MATLAB string from the
C string, output_buf. Finally, plhs[0], the left-hand side return argument to
MATLAB, is set to the MATLAB array you just created.

By isolating variables of type mxArray from the computational subroutine, you
can avoid having to make significant changes to your original C code.

In this example, typing

x = 'hello world';
y = revord(x)

produces

The string to convert is 'hello world'.
y =
dlrow olleh
3-13

3 Creating C Language MEX-Files

3-1
Passing Two or More Inputs or Outputs
The plhs[] and prhs[] parameters are vectors that contain pointers to each
left-hand side (output) variable and each right-hand side (input) variable,
respectively. Accordingly, plhs[0] contains a pointer to the first left-hand side
argument, plhs[1] contains a pointer to the second left-hand side argument,
and so on. Likewise, prhs[0] contains a pointer to the first right-hand side
argument, prhs[1] points to the second, and so on.

This example, xtimesy, multiplies an input scalar by an input scalar or matrix
and outputs a matrix. For example, using xtimesy with two scalars gives

x = 7;
y = 7;
z = xtimesy(x,y)

z =
 49

Using xtimesy with a scalar and a matrix gives

x = 9;
y = ones(3);
z = xtimesy(x,y)

z =
 9 9 9
 9 9 9
 9 9 9

This is the corresponding MEX-file C code.

#include "mex.h"

/*
 * xtimesy.c - example found in API guide
 *
 * Multiplies an input scalar times an input matrix and outputs a
 * matrix
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */
4

Examples of C MEX-Files
/* $Revision: 1.5 $ */

void xtimesy(double x, double *y, double *z, int m, int n)
{
 int i,j,count=0;

 for (i=0; i<n; i++) {
 for (j=0; j<m; j++) {
 *(z+count) = x * *(y+count);
 count++;
 }
 }
}

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *y,*z;
 double x;
 int status,mrows,ncols;

 /* Check for proper number of arguments. */
 if(nrhs!=2)
 mexErrMsgTxt("Two inputs required.");
 if(nlhs!=1)
 mexErrMsgTxt("One output required.");

 /* Check to make sure the first input argument is a scalar. */
 if(!mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) ||
 mxIsEmpty(prhs[0]) || mxIsComplex(prhs[0]) ||
 mxGetN(prhs[0])*mxGetM(prhs[0])!=1) {
 mexErrMsgTxt("Input x must be a scalar.");
 }

 /* Get the scalar input x. */
 x = mxGetScalar(prhs[0]);

3-15

3 Creating C Language MEX-Files

3-1
 /* Create a pointer to the input matrix y. */
 y = mxGetPr(prhs[1]);

 /* Get the dimensions of the matrix input y. */
 mrows = mxGetM(prhs[1]);
 ncols = mxGetN(prhs[1]);

 /* Set the output pointer to the output matrix. */
 plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

 /* Create a C pointer to a copy of the output matrix. */
 z = mxGetPr(plhs[0]);

 /* Call the C subroutine. */
 xtimesy(x,y,z,mrows,ncols);

}

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of which
indices of the vectors prhs and plhs correspond to the input and output
arguments of your function. In the example above, the input variable x
corresponds to prhs[0] and the input variable y to prhs[1].

Note that mxGetScalar returns the value of x rather than a pointer to x. This
is just an alternative way of handling scalars. You could treat x as a 1-by-1
matrix and use mxGetPr to return a pointer to x.

Manipulating Structures and Cell Arrays
Structures and cell arrays are new data types in MATLAB 5; for a discussion
of the features of structures and cell arrays and the built-in functions MATLAB
provides for manipulating them, refer to Using MATLAB. Like all other data
types in MATLAB, structures and cell arrays can be passed into and out of C
MEX-files.

Passing structures and cell arrays into MEX-files is just like passing any other
data types, except the data itself is of type mxArray. In practice, this means that
mxGetField (for structures) and mxGetCell (for cell arrays) return pointers of
type mxArray. You can then treat the pointers like any other pointers of type
6

Examples of C MEX-Files
mxArray, but if you want to pass the data contained in the mxArray to a C
routine, you must use an API function such as mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new
1-by-1 structure that contains these fields:

• String input generates an m-by-n cell array

• Numeric input (noncomplex, scalar values) generates an m-by-n vector of
numbers with the same class ID as the input, for example int, double, and
so on.

/* $Revision: 1.1 $ */
/*
===
 * phonebook.c
 * Example for illustrating how to manipulate structure and cell
 * arrays
 * Takes an (MxN) structure matrix and returns a new structure
 * (1-by-1) containing corresponding fields: for string input, it
 * will be (MxN) cell array; and for numeric (noncomplex, scalar)
 * input, it will be (MxN) vector of numbers with the same classID
 * as input, such as int, double, etc..
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 ==/
#include "mex.h"
#include "string.h"
#define MAXCHARS 80 /* max length of string contained in each
 field */

/* The gateway routine */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{

3-17

3 Creating C Language MEX-Files

3-1
 const char **fnames; /* Pointers to field names */
 const int *dims;
 mxArray *tmp, *fout;
 char *pdata;
 int ifield, jstruct, *classIDflags;
 int NStructElems, nfields, ndim;

 /* Check proper input and output. */
 if(nrhs!=1)
 mexErrMsgTxt("One input required.");
 else if(nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");
 else if(!mxIsStruct(prhs[0]))
 mexErrMsgTxt("Input must be a structure.");
 /* Get input arguments. */
 nfields = mxGetNumberOfFields(prhs[0]);
 NStructElems = mxGetNumberOfElements(prhs[0]);
 /* Allocate memory for storing classIDflags. */
 classIDflags = mxCalloc(nfields, sizeof(int));

 /* Check empty field, proper data type, and data type
 consistency; and get classID for each field. */
 for(ifield=0; ifield<nfields; ifield++) {

for(jstruct = 0; jstruct < NStructElems; jstruct++) {
tmp = mxGetFieldByNumber(prhs[0], jstruct, ifield);
if(tmp == NULL) {
mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT
 INDEX :", jstruct+1);
mexErrMsgTxt("Above field is empty!");
}
if(jstruct==0) {
if(!mxIsChar(tmp) && !mxIsNumeric(tmp)) {
 mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT

 INDEX :", jstruct+1);
 mexErrMsgTxt("Above field must have either string or

 numeric data.");
}
classIDflags[ifield]=mxGetClassID(tmp);
} else {
8

Examples of C MEX-Files
if (mxGetClassID(tmp) != classIDflags[ifield]) {
 mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1,

 "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Inconsistent data type in above field!");
} else if(!mxIsChar(tmp) &&
 ((mxIsComplex(tmp) || mxGetNumberOfElements(tmp)!=1))){
 mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1,

 "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Numeric data in above field must be scalar

 and noncomplex!");
}
}

 }
 }

 /* Allocate memory for storing pointers. */
 fnames = mxCalloc(nfields, sizeof(*fnames));
 /* Get field name pointers. */
 for (ifield=0; ifield< nfields; ifield++){
 fnames[ifield] = mxGetFieldNameByNumber(prhs[0],ifield);
 }
 /* Create a 1x1 struct matrix for output. */
 plhs[0] = mxCreateStructMatrix(1, 1, nfields, fnames);
 mxFree(fnames);
 ndim = mxGetNumberOfDimensions(prhs[0]);
 dims = mxGetDimensions(prhs[0]);
 for(ifield=0; ifield<nfields; ifield++) {
 /* Create cell/numeric array. */
 if(classIDflags[ifield] == mxCHAR_CLASS) {
 fout = mxCreateCellArray(ndim, dims);
 }else {
 fout = mxCreateNumericArray(ndim, dims,
 classIDflags[ifield], mxREAL);
 pdata = mxGetData(fout);
 }
 /* Copy data from input structure array. */
 for (jstruct=0; jstruct<NStructElems; jstruct++) {
 tmp = mxGetFieldByNumber(prhs[0],jstruct,ifield);
 if(mxIsChar(tmp)) {
 mxSetCell(fout, jstruct, mxDuplicateArray(tmp));
3-19

3 Creating C Language MEX-Files

3-2
 }else {
 size_t sizebuf;
 sizebuf = mxGetElementSize(tmp);
 memcpy(pdata, mxGetData(tmp), sizebuf);
 pdata += sizebuf;
 }
 }
 /* Set each field in output structure. */
 mxSetFieldByNumber(plhs[0], 0, ifield, fout);
 }
 mxFree(classIDflags);
 return;

To see how this program works, enter this structure.

friends(1).name = 'Jordan Robert';
friends(1).phone = 3386;
friends(2).name = 'Mary Smith';
friends(2).phone = 3912;
friends(3).name = 'Stacy Flora';
friends(3).phone = 3238;
friends(4).name = 'Harry Alpert';
friends(4).phone = 3077;

The results of this input are

phonebook(friends)

ans =
name: {1x4 cell }

 phone: [3386 3912 3238 3077]

Handling Complex Data
Complex data from MATLAB is separated into real and imaginary parts.
MATLAB’s API provides two functions, mxGetPr and mxGetPi, that return
pointers (of type double *) to the real and imaginary parts of your data.
0

Examples of C MEX-Files
This example takes two complex row vectors and convolves them.

/* $Revision: 1.5 $ */
/*===
 * convec.c
 * Example for illustrating how to pass complex data
 * from MATLAB to C and back again
 *
 * Convolves two complex input vectors.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 ===/
#include "mex.h"

/* Computational subroutine */
void convec(double *xr, double *xi, int nx,
 double *yr, double *yi, int ny,
 double *zr, double *zi)
{
 int i,j;

 zr[0]=0.0;
 zi[0]=0.0;
 /* Perform the convolution of the complex vectors. */
 for(i=0; i<nx; i++) {

for(j=0; j<ny; j++) {
*(zr+i+j) = *(zr+i+j) + *(xr+i) * *(yr+j) – *(xi+i)
* *(yi+j);

 *(zi+i+j) = *(zi+i+j) + *(xr+i) * *(yi+j) + *(xi+i)
* *(yr+j);

}
 }
}

3-21

3 Creating C Language MEX-Files

3-2
Below is the gateway function that calls this complex convolution.

/* The gateway routine. */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *xr, *xi, *yr, *yi, *zr, *zi;
 int rows, cols, nx, ny;

 /* Check for the proper number of arguments. */
 if(nrhs != 2)
 mexErrMsgTxt("Two inputs required.");
 if(nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");
 /* Check that both inputs are row vectors. */
 if(mxGetM(prhs[0]) != 1 || mxGetM(prhs[1]) != 1)
 mexErrMsgTxt("Both inputs must be row vectors.");
 rows = 1;
 /* Check that both inputs are complex. */
 if(!mxIsComplex(prhs[0]) || !mxIsComplex(prhs[1]))
 mexErrMsgTxt("Inputs must be complex.\n");

 /* Get the length of each input vector. */
 nx = mxGetN(prhs[0]);
 ny = mxGetN(prhs[1]);

 /* Get pointers to real and imaginary parts of the inputs. */
 xr = mxGetPr(prhs[0]);
 xi = mxGetPi(prhs[0]);
 yr = mxGetPr(prhs[1]);
 yi = mxGetPi(prhs[1]);

 /* Create a new array and set the output pointer to it. */
 cols = nx + ny – 1;
 plhs[0] = mxCreateDoubleMatrix(rows, cols, mxCOMPLEX);
 zr = mxGetPr(plhs[0]);
 zi = mxGetPi(plhs[0]);
2

Examples of C MEX-Files
 /* Call the C subroutine. */
 convec(xr, xi, nx, yr, yi, ny, zr, zi);

 return;
}

Entering these numbers at the MATLAB prompt

x = [3.000 – 1.000i, 4.000 + 2.000i, 7.000 – 3.000i];
y = [8.000 – 6.000i, 12.000 + 16.000i, 40.000 – 42.000i];

and invoking the new MEX-file

z = convec(x,y)

results in

z =
 1.0e+02 *

Columns 1 through 4

0.1800 – 0.2600i 0.9600 + 0.2800i 1.3200 – 1.4400i 3.7600 – 0.1200i

Column 5

1.5400 – 4.1400i

which agrees with the results that the built-in MATLAB function conv.m
produces.

Handling 8-,16-, and 32-Bit Data
You can create and manipulate signed and unsigned 8-, 16-, and 32-bit data
from within your MEX-files. The MATLAB 5 API provides a set of functions
that support these data types. The API function mxCreateNumericArray
constructs an unpopulated N-dimensional numeric array with a specified data
size. Refer to the entry for mxClassID in the online reference pages for a
discussion of how the MATLAB 5 API represents these data types.

Once you have created an unpopulated MATLAB array of a specified data type,
you can access the data using mxGetData and mxGetImagData. These two
functions return pointers to the real and imaginary data. You can perform
3-23

3 Creating C Language MEX-Files

3-2
arithmetic on data of 8-, 16- or 32-bit precision in MEX-files and return the
result to MATLAB, which will recognize the correct data class. Although from
within MATLAB it is not currently possible to perform arithmetic or to call
MATLAB functions that perform data manipulation on data of 8-, 16-, or 32-bit
precision, you can display the data at the MATLAB prompt and save it in a
MAT-file.

This example constructs a 2-by-2 matrix with unsigned 16-bit integers, doubles
each element, and returns both matrices to MATLAB.

#include <string.h> /* Needed for memcpy() */
#include "mex.h"

/*
 * doubleelement.c - Example found in API Guide
 *
 * Constructs a 2-by-2 matrix with unsigned 16-bit integers,
 * doubles each element, and returns the matrix.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */

/* $Revision: 1.4 $ */

#define NDIMS 2
#define TOTAL_ELEMENTS 4

/* The computational subroutine */
void dbl_elem(unsigned short *x)
{
 unsigned short scalar=2;
 int i,j;

 for(i=0;i<2;i++) {
 for(j=0;j<2;j++) {
 *(x+i+j) = scalar * *(x+i+j);
 }
 }
}

4

Examples of C MEX-Files
/* The gataway function */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 const int dims[]={2,2};
 unsigned char *start_of_pr;
 unsigned short data[]={1,2,3,4};
 int bytes_to_copy;

 /* Call the computational subroutine. */
 dbl_elem(data);

 /* Create a 2-by-2 array of unsigned 16-bit integers. */
plhs[0] = mxCreateNumericArray(NDIMS,dims,

mxUINT16_CLASS,mxREAL);

 /* Populate the real part of the created array. */
 start_of_pr = (unsigned char *)mxGetPr(plhs[0]);
 bytes_to_copy = TOTAL_ELEMENTS * mxGetElementSize(plhs[0]);
 memcpy(start_of_pr,data,bytes_to_copy);
}

At the MATLAB prompt, entering

doubleelement

produces

ans =
 2 6
 8 4

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit
integers. You can view the contents of this matrix in MATLAB, but you cannot
manipulate the data in any fashion.

Manipulating Multidimensional Numerical Arrays
Multidimensional numerical arrays are a new data type in MATLAB 5. For a
discussion of the features of multidimensional numerical arrays and the
built-in functions MATLAB provides to manipulate them, refer to Using
MATLAB. Like all other data types in MATLAB, arrays can be passed into and
3-25

3 Creating C Language MEX-Files

3-2
out of MEX-files written in C. You can manipulate multidimensional numerical
arrays by using mxGetData and mxGetImagData to return pointers to the real
and imaginary parts of the data stored in the original multidimensional array.

This example takes an N-dimensional array of doubles and returns the indices
for the nonzero elements in the array.

/*===
 * findnz.c
 * Example for illustrating how to handle N-dimensional arrays in
 * a MEX-file. NOTE: MATLAB uses 1-based indexing, C uses 0-based
 * indexing.
 *
 * Takes an N-dimensional array of doubles and returns the indices
 * for the non-zero elements in the array. findnz works
 * differently than the FIND command in MATLAB in that it returns
 * all the indices in one output variable, where the column
 * element contains the index for that dimension.
 *
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-98 by The MathWorks, Inc.
 * All Rights Reserved.
 ==/

/* $Revision: 1.2 $ */
#include "mex.h"

/* If you are using a compiler that equates NaN to zero, you must
 * compile this example using the flag –DNAN_EQUALS_ZERO. For
 * example:
 *
 * mex –DNAN_EQUALS_ZERO findnz.c
 *
 * This will correctly define the IsNonZero macro for your
 compiler. */
6

Examples of C MEX-Files
#if NAN_EQUALS_ZERO
#define IsNonZero(d) ((d)!=0.0 || mxIsNaN(d))
#else
#define IsNonZero(d) ((d)!=0.0)
#endif

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 /* Declare variables. */
 int elements, j, number_of_dims, cmplx;
 int nnz=0, count=0;
 double *pr, *pi, *pind;
 const int *dim_array;

 /* Check for proper number of input and output arguments. */
 if (nrhs != 1) {
 mexErrMsgTxt("One input argument required.");
 }
 if (nlhs > 1){
 mexErrMsgTxt("Too many output arguments.");
 }

 /* Check data type of input argument. */
 if (!(mxIsDouble(prhs[0]))) {
 mexErrMsgTxt("Input array must be of type double.");
 }

 /* Get the number of elements in the input argument. */
 elements = mxGetNumberOfElements(prhs[0]);
 /* Get the data. */
 pr = (double *)mxGetPr(prhs[0]);
 pi = (double *)mxGetPi(prhs[0]);
 cmplx = ((pi==NULL) ? 0 : 1);
3-27

3 Creating C Language MEX-Files

3-2
 /* Count the number of non-zero elements to be able to allocate
 the correct size for output variable. */
 for(j=0;j<elements;j++){
 if(IsNonZero(pr[j]) || (cmplx && IsNonZero(pi[j]))) {

nnz++;
 }
 }
 /* Get the number of dimensions in the input argument.
 Allocate the space for the return argument */
number_of_dims = mxGetNumberOfDimensions(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(nnz, number_of_dims, mxREAL);
pind = mxGetPr(plhs[0]);

/* Get the number of dimensions in the input argument. */
dim_array = mxGetDimensions(prhs[0]);

/* Fill in the indices to return to MATLAB. This loops through the
* elements and checks for non-zero values. If it finds a non-zero
* value, it then calculates the corresponding MATLAB indices and
* assigns them into the output array. The 1 is added to the
* calculated index because MATLAB is 1-based and C is 0-based. */
for(j=0;j<elements;j++) {
if(IsNonZero(pr[j]) || (cmplx && IsNonZero(pi[j]))) {
 int temp=j;
 int k;
 for (k=0;k<number_of_dims;k++){
 pind[nnz*k+count]=((temp % (dim_array[k])) +1);
 temp/=dim_array[k];
 }
 count++;
 }
 }
}

8

Examples of C MEX-Files
Entering a sample matrix at the MATLAB prompt gives

matrix = [3 0 9 0; 0 8 2 4; 0 9 2 4; 3 0 9 3; 9 9 2 0]
matrix =
 3 0 9 0
 0 8 2 4
 0 9 2 4
 3 0 9 3
 9 9 2 0

This example determines the position of all nonzero elements in the matrix.
Running the MEX-file on this matrix produces

nz=findnz(matrix)
nz =
 1 1
 4 1
 5 1
 2 2
 3 2
 5 2
 1 3
 2 3
 3 3
 4 3
 5 3
 2 4
 3 4
 4 4

Handling Sparse Arrays
The MATLAB 5 API provides a set of functions that allow you to create and
manipulate sparse arrays from within your MEX-files. These API routines
access and manipulate ir and jc, two of the parameters associated with sparse
arrays. For more information on how MATLAB stores sparse arrays, refer to
“The MATLAB Array” section in Chapter 1 of this guide.
3-29

3 Creating C Language MEX-Files

3-3
This example illustrates how to populate a sparse matrix.

/*===
* fulltosparse.c
* This example demonstrates how to populate a sparse
* matrix. For the purpose of this example, you must pass in a
* nonsparse, 2-dimensional argument of type double.

* Comment: You might want to modify this MEX-file so that you can
* use it to read large sparse data sets into MATLAB.
*
* This is a MEX-file for MATLAB.
* Copyright (c) 1984-98 by The MathWorks, Inc.
* All rights reserved.
==/

/* $Revision: 1.2 $ */

#include <math.h> /* Needed for the ceil() prototype */
#include "mex.h"

/* If you are using a compiler that equates NaN to be zero, you
 * must compile this example using the flag –DNAN_EQUALS_ZERO.
* For example:
 *
 * mex –DNAN_EQUALS_ZERO fulltosparse.c
 *
 * This will correctly define the IsNonZero macro for your C
* compiler. */

#if NAN_EQUALS_ZERO
#define IsNonZero(d) ((d)!=0.0 || mxIsNaN(d))
#else
#define IsNonZero(d) ((d)!=0.0)
#endif

#define PERCENT_SPARSE .20

void mexFunction(
int nlhs, mxArray *plhs[],
0

Examples of C MEX-Files
int nrhs, const mxArray *prhs[]
)

{
 /* Declare variable. */
 int j, k, m, n, nzmax, *irs, *jcs, cmplx, isfull;
 double *pr, *pi, *si, *sr;

 /* Check for proper number of input and output arguments. */
 if (nrhs != 1) {
 mexErrMsgTxt("One input argument required.");
 }
 if(nlhs > 1){
 mexErrMsgTxt("Too many output arguments.");
 }

 /* Check data type of input argument. */
 if (!(mxIsDouble(prhs[0]))){
 mexErrMsgTxt("Input argument must be of type double.");
 }

 if (mxGetNumberOfDimensions(prhs[0]) != 2){
 mexErrMsgTxt("Input argument must be two dimensional\n");
 }

 /* Get the size and pointers to input data. */
 m = mxGetM(prhs[0]);
 n = mxGetN(prhs[0]);
 pr = mxGetPr(prhs[0]);
 pi = mxGetPi(prhs[0]);
 cmplx = (pi==NULL ? 0 : 1);

 /* Allocate space for sparse matrix. */
 /* NOTE: Assume at most 20% of the data is sparse. Use ceil
 * to cause it to round up. */
 nzmax = (int)ceil((double)m*(double)n*PERCENT_SPARSE);
 /* NOTE: The maximum number of non-zero elements cannot be less
 than the number of columns in the matrix. */
 if (n>nzmax){
 nzmax = n;
 }
3-31

3 Creating C Language MEX-Files

3-3
 plhs[0] = mxCreateSparse(m, n, nzmax, cmplx);
 sr = mxGetPr(plhs[0]);
 si = mxGetPi(plhs[0]);
 irs = mxGetIr(plhs[0]);
 jcs = mxGetJc(plhs[0]);

 /* Copy non-zeros. */
 k = 0;
 isfull = 0;
 for (j=0; (j<n); j++) {
 int i;
 jcs[j] = k;
 for (i=0; (i<m); i++) {
 if (IsNonZero(pr[i]) || (cmplx && IsNonZero(pi[i]))) {
 /* Check to see if non-zero element will fit in
 * allocated output array. If not, set flag and
 * print warning. */
 if (k>=nzmax){
 isfull=1;
 mexWarnMsgTxt("Truncating output, more than 20%% of

input is non-zero data.");
 break;
 }
 sr[k] = pr[i];
 if (cmplx){
 si[k] = pi[i];
 }
 irs[k] = i;
 k++;
 }
 }
 if (isfull)
 break;
 pr += m;
 pi += m;
 }
 jcs[n] = k;
}

2

Examples of C MEX-Files
At the MATLAB prompt, entering

full = eye(5)
full =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

spar = fulltosparse(full)
spar =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1

Calling MATLAB Functions and Other User-Defined
Functions from Within a MEX-File
It is possible to call MATLAB functions, operators, M-files, and other MEX-files
from within your C source code by using the API function mexCallMATLAB. This
example creates an mxArray, passes various pointers to a subfunction to
acquire data, and calls mexCallMATLAB to calculate the sine function and plot
the results.

/* $Revision: 1.1 $ */
/*===
 * sincall.c
 *
 * Example for illustrating how to use mexCallMATLAB
 *
 * Creates an mxArray and passes its associated pointers (in
 * this demo, only pointer to its real part, pointer to number of
 * rows, pointer to number of columns) to subfunction fill() to
 * get data filled up, then calls mexCallMATLAB to calculate sin
 * function and plot the result.
 *
3-33

3 Creating C Language MEX-Files

3-3
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 ==/
#include "mex.h"
#define MAX 1000

/* Subroutine for filling up data */
void fill(double *pr, int *pm, int *pn, int max)
{
 int i;
 /* You can fill up to max elements, so (*pr)<=max. */
 *pm = max/2;
 *pn = 1;
 for (i=0; i < (*pm); i++)
 pr[i]=i*(4*3.14159/max);
}

/* Gateway function */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 int m, n, max=MAX;
 mxArray *rhs[1], *lhs[1];

 rhs[0] = mxCreateDoubleMatrix(max, 1, mxREAL);

 /* Pass the pointers and let fill() fill up data. */
 fill(mxGetPr(rhs[0]), &m, &n, MAX);
 mxSetM(rhs[0], m);
 mxSetN(rhs[0], n);

 /* Get the sin wave and plot it. */
 mexCallMATLAB(1, lhs, 1, rhs, "sin");
 mexCallMATLAB(0, NULL, 1, lhs, "plot");
4

Examples of C MEX-Files
 /* Clean up allocated memory. */
 mxDestroyArray(rhs[0]);
 mxDestroyArray(lhs[0]);

 return;
}

Running this example

sincall

displays the results
3-35

3 Creating C Language MEX-Files

3-3
Note: It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two
variables but only assigns one of them a value,

function [a,b]=foo[c]
a=2*c;

you’ll get this warning message in MATLAB:

Warning: One or more output arguments not assigned during call
to 'foo'.

If you then call foo using mexCallMATLAB, the unassigned output variable will
now be of type mxUNKNOWN_CLASS.
6

Advanced Topics
Advanced Topics
These sections cover advanced features of MEX-files that you can use when
your applications require sophisticated MEX-files.

Help Files
Because the MATLAB interpreter chooses the MEX-file when both an M-file
and a MEX-file with the same name are encountered in the same directory, it
is possible to use M-files for documenting the behavior of your MEX-files. The
MATLAB help command will automatically find and display the appropriate
M-file when help is requested and the interpreter will find and execute the
corresponding MEX-file when the function is invoked.

Linking Multiple Files
It is possible to combine several object files and to use object file libraries when
building MEX-files. To do so, simply list the additional files with their full
extension, separated by spaces. For example, on the PC

mex circle.c square.obj rectangle.c shapes.lib

is a legal command that operates on the .c, .obj, and .lib files to create a
MEX-file called circle.dll, where dll is the extension corresponding to the
MEX-file type on the PC. The name of the resulting MEX-file is taken from the
first file in the list.

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Simply create a MAKEFILE
that contains a rule for producing object files from each of your source files and
then invoke mex to combine your object files into a MEX-file. This way you can
ensure that your source files are recompiled only when necessary.

Variable Scope
Unlike M-file functions, MEX-file functions do not have their own variable
workspace. MEX-file functions operate in the caller’s workspace.

mexEvalString evaluates the string in the caller’s workspace. In addition, you
can use the mexGetArray and mexPutArray routines to get and put variables
into the caller’s workspace.
3-37

3 Creating C Language MEX-Files

3-3
Memory Management
Memory management within MEX-files is not unlike memory management for
regular C or Fortran applications. However, there are special considerations
because the MEX-file must exist within the context of a larger application, i.e.,
MATLAB itself.

Automatic Cleanup of Temporary Arrays
When a MEX-file returns to MATLAB, it gives to MATLAB the results of its
computations in the form of the left-hand side arguments – the mxArrays
contained within the plhs[] list. Any mxArrays created by the MEX-file that
are not in this list are automatically destroyed. In addition, any memory
allocated with mxCalloc, mxMalloc, or mxRealloc during the MEX-file’s
execution is automatically freed.

In general, we recommend that MEX-files destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient for the
MEX-file to perform this cleanup than to rely on the automatic mechanism.
However, there are several circumstances in which the MEX-file will not reach
its normal return statement. The normal return will not be reached if:

• A call to mexErrMsgTxt occurs.

• A call to mexCallMATLAB occurs and the function being called creates an
error. (A MEX-file can trap such errors by using mexSetTrapFlag, but not all
MEX-files would necessarily need to trap errors.)

• The user interrupts the MEX-file’s execution using Ctrl-C.

• The MEX-file runs out of memory. When this happens, MATLAB’s
out-of-memory handler will immediately terminate the MEX-file.

A careful MEX-file programmer can ensure safe cleanup of all temporary
arrays and memory before returning in the first two cases, but not in the last
two cases. In the last two cases, the automatic cleanup mechanism is necessary
to prevent memory leaks.

Persistent Arrays
You can exempt an array, or a piece of memory, from MATLAB’s automatic
cleanup by calling mexMakeArrayPersistent or mexMakeMemoryPersistent.
However, if a MEX-file creates such persistent objects, there is a danger that a
memory leak could occur if the MEX-file is cleared before the persistent object
is properly destroyed. In order to prevent this from happening, a MEX-file that
8

Advanced Topics
creates persistent objects should register a function, using mexAtExit, which
will dispose of the objects. (You can use a mexAtExit function to dispose of other
resources as well; for example, you can use mexAtExit to close an open file.)

For example, here is a simple MEX-file that creates a persistent array and
properly disposes of it.

#include "mex.h"

static int initialized = 0;
static mxArray *persistent_array_ptr = NULL;

void cleanup(void) {
 mexPrintf("MEX-file is terminating, destroying array\n");
 mxDestroyArray(persistent_array_ptr);
}

void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
 if (!initialized) {
 mexPrintf("MEX-file initializing, creating array\n");

 /* Create persistent array and register its cleanup. */
 persistent_array_ptr = mxCreateDoubleMatrix(1, 1, mxREAL);
 mexMakeArrayPersistent(persistent_array_ptr);
 mexAtExit(cleanup);
 initialized = 1;

 /* Set the data of the array to some interesting value. */
 *mxGetPr(persistent_array_ptr) = 1.0;
 } else {
 mexPrintf("MEX-file executing; value of first array

element is %g\n",
*mxGetPr(persistent_array_ptr));

 }
}

3-39

3 Creating C Language MEX-Files

3-4
Hybrid Arrays
Functions such as mxSetPr, mxSetData, and mxSetCell allow the direct
placement of memory pieces into an mxArray. mxDestroyArray will destroy
these pieces along with the entire array. Because of this, it is possible to create
an array that cannot be destroyed, i.e., an array on which it is not safe to call
mxDestroyArray. Such an array is called a hybrid array, because it contains
both destroyable and nondestroyable components.

For example, it is not legal to call mxFree (or the ANSI free() function, for that
matter) on automatic variables. Therefore, in the following code fragment,
pArray is a hybrid array.

mxArray *pArray = mxCreateDoubleMatrix(0, 0, mxREAL);
double data[10];

mxSetPr(pArray, data);
mxSetM(pArray, 1);
mxSetN(pArray, 10);

Another example of a hybrid array is a cell array or structure, one of whose
children is a read-only array (an array with the const qualifier, such as one of
the inputs to the MEX-file). The array cannot be destroyed because the input
to the MEX-file would also be destroyed.

Because hybrid arrays cannot be destroyed, they cannot be cleaned up by the
automatic mechanism outlined in “Automatic Cleanup of Temporary Arrays.”
As described in that section, the automatic cleanup mechanism is the only way
to destroy temporary arrays in case of a user interrupt. Therefore, temporary
hybrid arrays are illegal and may cause your MEX-file to crash.

Although persistent hybrid arrays are viable, we recommend avoiding their
use wherever possible.
0

How to Debug C Language MEX-Files
How to Debug C Language MEX-Files
On most platforms, it is now possible to debug MEX-files while they are
running within MATLAB. Complete source code debugging, including setting
breakpoints, examining variables, and stepping through the source code
line-by-line, is now available.

Note: The section, “Troubleshooting,” in Chapter 8 provides additional
information on isolating problems with MEX-files.

To debug a MEX-file from within MATLAB, you must first compile the
MEX-file with the –g option to mex.

mex –g filename.c

Debugging on UNIX
You will need to start MATLAB from within a debugger. To do this, specify the
name of the debugger you want to use with the –D option when starting
MATLAB. For example, to use dbx, the UNIX debugger, type

matlab –Ddbx

Once the debugger loads MATLAB into memory, you can start it by issuing a
“run” command. Now, from within MATLAB, enable MEX-file debugging by
typing

dbmex on

at the MATLAB prompt. Then, run the MEX-file that you want to debug as you
would ordinarily do (either directly or by means of some other function or
script). Before executing the MEX-file, you will be returned to the debugger.

You may need to tell the debugger where the MEX-file was loaded or the name
of the MEX-file, in which case MATLAB will display the appropriate command
for you to use. At this point, you are ready to start debugging. You can list the
source code for your MEX-file and set breakpoints in it. It is often convenient
to set one at mexFunction so that you stop at the beginning of the gateway
function. To proceed from the breakpoint, issue a “continue” command to the
debugger.
3-41

3 Creating C Language MEX-Files

3-4
Once you hit one of your breakpoints, you can make full use of any facilities
that your debugger provides to examine variables, display memory, or inspect
registers. Refer to the documentation provided with your debugger for
information on its use.

If you are at the MATLAB prompt and want to return control to the debugger,
you can issue the command

dbmex stop

which allows you to gain access to the debugger so that you can set additional
breakpoints or examine source code. To resume execution, issue a “continue”
command to the debugger.

Debugging on Windows
The following sections provide instructions on how to debug on Microsoft
Windows systems using various compilers.

Microsoft Compiler. If you are using the Microsoft compiler:

1 Start the Microsoft Development Studio (Version 4.2) or the Microsoft
Visual Studio (Version 5) by typing at the DOS prompt

msdev filename.dll

2 In the Microsoft environment, from the Build menu (Version 4.2) or the
Project menu (Version 5.0), select Settings. In the window that opens,
select the Debug tab. This options window contains edit boxes. In the edit
box labeled Executable for debug session, enter the full path to where
MATLAB 5 resides. All other edit boxes should be empty.

3 Open the source files and set a break point on the desired line of code by
right-clicking with your mouse on the line of code.

4 From the Build menu, select Debug, and click Go.

5 You will now be able to run your MEX-file in MATLAB and use the Microsoft
debugging environment. For more information on how to debug in the
Microsoft environment, see the Microsoft Development Studio or Microsoft
Visual Studio documentation.
2

How to Debug C Language MEX-Files
Watcom Compiler. If you are using the Watcom compiler:

1 Start the debugger by typing on the DOS command line

WDW

2 The Watcom Debugger starts and a New Program window opens. In this
window type the full path to MATLAB. For example,

c:\matlab\bin\matlab.exe

Then click OK.

3 From the Break menu, select On Image Load and type the name of your
MEX-file DLL in capital letters. For example,

YPRIME

Then select ADD and click OK to close the window.

4 From the Run menu, select GO. This should start MATLAB.

5 When MATLAB starts, in the command window change directories to where
your MEX-file resides and run your MEX-file. If a message similar to the
following appears,

LDR: Automatic DLL Relocation in matlab.exe
LDR: DLL filename.dll base <number> relocated due to collision
with matlab.exe

ignore the message and click OK.

6 Open the file you want to debug and set breakpoints in the source code.
3-43

3 Creating C Language MEX-Files

3-4
4

MEX-Files and Data Types 4-2
The Components of a Fortran MEX-File 4-2

Examples of Fortran MEX-Files 4-9
A First Example — Passing a Scalar 4-9
Passing Strings 4-12
Passing Arrays of Strings 4-14
Passing Matrices 4-17
Passing Two or More Inputs or Outputs 4-19
Handling Complex Data 4-22
Dynamic Allocation of Memory 4-26
Handling Sparse Matrices 4-28
Calling MATLAB Functions from Fortran MEX-Files 4-32

Advanced Topics 4-36
Help Files . 4-36
Linking Multiple Files 4-36
Variable Scope . 4-36
Memory Management 4-37

How to Debug Fortran Language MEX-Files 4-38
Debugging on UNIX 4-38
Debugging on Windows 4-39
4

Creating Fortran
MEX-Files

Fortran MEX-Files 4-2

4 Creating Fortran MEX-Files

4-2
Fortran MEX-Files
Fortran MEX-files are built by using the mex script to compile your Fortran
source code with additional calls to API routines.

Directory Organization
This table lists the location of the files on your disk that are associated with the
creation of Fortran language MEX-files.

Appendix B, “Directory Organization,” describes the API-related directories
and files.

MEX-Files and Data Types
MEX-files in Fortran can only create double-precision data and strings (unlike
their C counterparts, which can create any data type supported by MATLAB).
You can treat Fortran MEX-files, once compiled, exactly like M-functions.

The Components of a Fortran MEX-File
This section discusses the specific elements needed in a Fortran MEX-file. The
source code for a Fortran MEX-file, like the C MEX-file, consists of two distinct
parts:

• A computational routine that contains the code for performing the
computations that you want implemented in the MEX-file. Computations
can be numerical computations as well as inputting and outputting data.

• A gateway routine that interfaces the computational routine with MATLAB
by the entry point mexFunction and its parameters prhs, nrhs, plhs, nlhs,
where prhs is an array of right-hand input arguments, nrhs is the number
of right-hand input arguments, plhs is an array of left-hand output

Platform Directory

Windows <matlab>\extern

UNIX <matlab>/extern

where:
<matlab> is the MATLAB root directory

Fortran MEX-Files
arguments, and nlhs is the number of left-hand output arguments. The
gateway calls the computational routine as a subroutine.

The computational and gateway routines may be separate or combined. Figure
4-1 shows how inputs enter an API function, what functions the gateway
function performs, and how output returns to MATLAB.
4-3

4 Creating Fortran MEX-Files

4-4
Figure 4-1: Fortran MEX Cycle

integer A
A = prhs(1)

MATLAB

A call to
MEX-file func:

[C,D]=func(A,B)

tells MATLAB to
pass variables A and B
to your MEX-file. C
and D are left
unassigned.

integer C
C = plhs(1)

integer B
B = prhs(2)

integer D
D = plhs(2)

INPUTS

OUTPUTS

func.f

subroutine mexFunction(
nlhs, plhs, nrhs, prhs)

integer plhs(*), prhs(*), nlhs, nrhs

In the gateway routine:

• Use the mxCreate functions to create the
MATLAB arrays for your output
arguments. Set plhs(1), (2), … to the
pointers to the newly created MATLAB
arrays.

• Use the mxGet functions to extract your
data from prhs(1), (2), …

• Call your Fortran subroutine passing
the input and output data pointers as
function parameters using %val.MATLAB

On return from
MEX-file func:

[C,D]=func(A,B)

plhs(1) is assigned to
C andplhs(2) is
assigned to D.

Fortran MEX-Files
The Pointer Concept
The MATLAB API works with a unique data type, the mxArray. Because there
is no way to create a new data type in Fortran, MATLAB passes a special
identifier, called a pointer, to a Fortran program. You can get information
about an mxArray by passing this pointer to various API functions called
“Access Routines”. These access routines allow you to get a native Fortran data
type containing exactly the information you want, i.e., the size of the mxArray,
whether or not it is a string, or its data contents.

There are several implications when using pointers in Fortran:

• The %val construct.

If your Fortran compiler supports the %val construct, then there is one type
of pointer you can use without requiring an access routine, namely a pointer
to data (i.e., the pointer returned by mxGetPr or mxGetPi). You can use %val
to pass this pointer’s contents to a subroutine, where it is declared as a
Fortran double-precision matrix.

If your Fortran compiler does not support the %val construct, you must use
the mxCopy__ routines (e.g., mxCopyPtrToReal8) to access the contents of the
pointer. For more information about the %val construct and an example, see
the section, “The %val Construct,” in this chapter.

• Variable declarations.

To use pointers properly, you must declare them to be the correct size. On
DEC Alpha and 64-bit SGI machines, all pointers should be declared as
integer*8. On all other platforms, pointers should be declared as integer*4.

If your Fortran compiler supports preprocessing with the C preprocessor, you
can use the preprocessing stage to map pointers to the appropriate
declaration. In UNIX, see the examples ending with .F in the examples
directory for a possible approach.

Caution: Declaring a pointer to be the incorrect size can cause your program
to crash.
4-5

4 Creating Fortran MEX-Files

4-6
The Gateway Routine
The entry point to the gateway subroutine must be named mexFunction and
must contain these parameters:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer plhs(*), prhs(*)
integer nlhs, nrhs

Note: Fortran is case insensitive. This document uses mixed case function
names for ease of reading.

In a Fortran MEX-file, the parameters nlhs and nrhs contain the number of
left- and right-hand arguments with which the MEX-file is invoked. prhs is a
length nrhs array that contains pointers to the right-hand side inputs to the
MEX-file, and plhs is a length nlhs array that contains pointers to the
left-hand side outputs that your Fortran function generates.

In the syntax of the MATLAB language, functions have the general form

[a,b,c,…] = fun(d,e,f,…)

where the ellipsis (…) denotes additional terms of the same format. The a,b,c,…
are left-hand arguments and the d,e,f,… are right-hand arguments.

As an example of the gateway routine, consider invoking a MEX-file from the
MATLAB workspace with the command

x = fun(y,z);

the MATLAB interpreter calls mexFunction with the arguments

nlhs = 1

nrhs = 2

plhs

prhs

• Ø

• Y

• Z

Fortran MEX-Files
plhs is a 1-element C array where the single element is a null pointer. prhs is
a 2-element C array where the first element is a pointer to an mxArray named
Y and the second element is a pointer to an mxArray named Z.

The parameter plhs points at nothing because the output x is not created until
the subroutine executes. It is the responsibility of the gateway routine to create
an output array and to set a pointer to that array in plhs(1). If plhs(1) is left
unassigned, MATLAB prints a warning message stating that no output has
been assigned.

Note: It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

The gateway routine should validate the input arguments and call
mexErrMsgTxt if anything is amiss. This step includes checking the number,
type, and size of the input arrays as well as examining the number of output
arrays. The examples included later in this section illustrate this technique.

The mx functions provide a set of access methods (subroutines) for
manipulating MATLAB arrays. These functions are fully documented in the
online API reference pages. The mx prefix is shorthand for mxArray and it
means that the function enables you to access and/or manipulate some of the
information in the MATLAB array. For example, mxGetPr gets the real data
from the MATLAB array. Additional routines are provided for transferring
data between MATLAB arrays and Fortran arrays.

The gateway routine must call mxCreateFull, mxCreateSparse, or
mxCreateString to create MATLAB arrays of the required sizes in which to
return the results. The return values from these calls should be assigned to the
appropriate elements of plhs.

The gateway routine may call mxCalloc to allocate temporary work arrays for
the computational routine if it needs them.

The gateway routine should call the computational routine to perform the
desired calculations or operations. There are a number of additional routines
that MEX-files can use. These routines are distinguished by the initial
characters mex, as in mexCallMATLAB and mexErrMsgTxt.
4-7

4 Creating Fortran MEX-Files

4-8
When a MEX-file completes its task, it returns control to MATLAB. Any
MATLAB arrays that are created by the MEX-file that are not returned to
MATLAB through the left-hand side arguments are automatically destroyed.

The %val Construct
The %val construct is supported by most, but not all, Fortran compilers.
DIGITAL Visual Fortran does support the construct. %val causes the value of
the variable, rather than the address of the variable, to be passed to the
subroutine. If you are using a Fortran compiler that does not support the %val
construct, you must copy the array values into a temporary true Fortran array
using special routines. For example, consider a gateway routine that calls its
computational routine, yprime, by

call yprime(%val(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would replace
the call to the computational subroutine with

C Copy array pointers to local arrays.
call mxCopyPtrToReal8(t, tr, 1)
call mxCopyPtrToReal8(y, yr, 4)

C
C Call the computational subroutine.

call yprime(ypr, tr, yr)
C
C Copy local array to output array pointer.

call mxCopyReal8ToPtr(ypr, yp, 4)

You must also add the following declaration line to the top of the gateway
routine.

real*8 ypr(4), tr, yr(4)

Note that if you use mxCopyPtrToReal8 or any of the other mxCopy__ routines,
the size of the arrays declared in the Fortran gateway routine must be greater
than or equal to the size of the inputs to the MEX-file coming in from MATLAB.
Otherwise mxCopyPtrToReal8 will not work correctly.

Examples of Fortran MEX-Files
Examples of Fortran MEX-Files
The next sections of this chapter include examples of different MEX-files. The
MATLAB 5 API provides a set of routines for Fortran that handle
double-precision data and strings in MATLAB. For each data type, there is a
specific set of functions that you can use for data manipulation.

Note to UNIX Users: The example Fortran files in the directory
<matlab>/extern/examples/refbook have extensions .F and .f. The
distinction between these extensions is that the .F files need to be
preprocessed.

Note: You can find the most recent versions of the example programs from
this chapter at the anonymous FTP server,

ftp.mathworks.com/pub/tech-support/library/matlab5/extern/examples/refbook

A First Example — Passing a Scalar
Let’s look at a simple example of Fortran code and its MEX-file equivalent.
Here is a Fortran computational routine that takes a scalar and doubles it.

 subroutine timestwo(y, x)
 real*8 x, y
C
 y = 2.0 * x
 return
 end

Below is the same function written in the MEX-file format.

C--
C timestwo.f
C
C Multiply the input argument by 2.

4-9

4 Creating Fortran MEX-Files

4-1
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C $Revision: 1.6 $

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer mxGetPr, mxCreateFull
 integer x_pr, y_pr
C--
C

 integer nlhs, nrhs
 integer mxGetM, mxGetN, mxIsNumeric
 integer m, n, size
 real*8 x, y

C Check for proper number of arguments.
 if(nrhs .ne. 1) then
 call mexErrMsgTxt('One input required.')
 elseif(nlhs .ne. 1) then
 call mexErrMsgTxt('One output required.')
 endif

C Get the size of the input array.
 m = mxGetM(prhs(1))
 n = mxGetN(prhs(1))
 size = m*n

C Check to ensure the input is a number.
 if(mxIsNumeric(prhs(1)) .eq. 0) then
 call mexErrMsgTxt('Input must be a number.')
 endif
0

Examples of Fortran MEX-Files
C Create matrix for the return argument.
 plhs(1) = mxCreateFull(m, n, 0)
 x_pr = mxGetPr(prhs(1))
 y_pr = mxGetPr(plhs(1))
 call mxCopyPtrToReal8(x_pr, x, size)

C Call the computational subroutine.
 call timestwo(y, x)

C Load the data into y_pr, which is the output to MATLAB.
 call mxCopyReal8ToPtr(y, y_pr, size)

 return
 end

 subroutine timestwo(y, x)
 real*8 x, y
C
 y = 2.0 * x
 return
 end

To compile and link this example source file, at the MATLAB prompt type

mex timestwo.f

This carries out the necessary steps to create the MEX-file called timestwo
with an extension corresponding to the machine type on which you’re running.
You can now call timestwo as if it were an M-function.

x = 2;
y = timestwo(x)
y =
 4
4-11

4 Creating Fortran MEX-Files

4-1
Passing Strings
Passing strings from MATLAB to a Fortran MEX-file is straightforward. This
program accepts a string and returns the characters in reverse order.

C $Revision: 1.9 $
C==
C
C revord.f
C Example for illustrating how to copy string data from
C MATLAB to a Fortran-style string and back again.
C
C Takes a string and returns a string in reverse order.
C
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C==

 subroutine revord(input_buf, strlen, output_buf)
 character input_buf(*), output_buf(*)
 integer i, strlen
 do 10 i=1,strlen
 output_buf(i) = input_buf(strlen–i+1)
 10 continue
 return
 end

Below is the gateway function that calls the computational routine.

C The gateway routine
 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
 integer nlhs, nrhs
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer mxCreateString, mxGetString
C--
C

2

Examples of Fortran MEX-Files
 integer mxGetM, mxGetN, mxIsString
 integer status, strlen
 character*100 input_buf, output_buf

C Check for proper number of arguments.
 if (nrhs .ne. 1) then
 call mexErrMsgTxt('One input required.')
 elseif (nlhs .gt. 1) then
 call mexErrMsgTxt('Too many output arguments.')
C The input must be a string.
 elseif(mxIsString(prhs(1)) .ne. 1) then
 call mexErrMsgTxt('Input must be a string.')
C The input must be a row vector.
 elseif (mxGetM(prhs(1)) .ne. 1) then
 call mexErrMsgTxt('Input must be a row vector.')
 endif

C Get the length of the input string.
 strlen = mxGetM(prhs(1))*mxGetN(prhs(1))

C Get the string contents (dereference the input integer).
 status = mxGetString(prhs(1), input_buf, 100)

C Check if mxGetString is successful.
 if (status .ne. 0) then
 call mexErrMsgTxt('String length must be less than 100.')
 endif

C Initialize outbuf_buf to blanks. This is necessary on some
C compilers.

 output_buf = ' '

C Call the computational subroutine.
 call revord(input_buf, strlen, output_buf)

4-13

4 Creating Fortran MEX-Files

4-1
C Set output_buf to MATLAB mexFunction output.
 plhs(1) = mxCreateString(output_buf)

 return
 end

After checking for the correct number of inputs, this MEX-file gateway function
verifies that the input was either a row or column vector string. It then finds
the size of the string and places the string into a Fortran character array. Note
that in the case of character strings, it is not necessary to copy the data into a
Fortran character array by using mxCopyPtrToCharacter. In fact,
mxCopyPtrToCharacter works only with MAT-files. (For more information
about MAT-files, see Chapter 5, “Data Export and Import.”)

For an input string

x = 'hello world';

typing

y = revord(x)

produces

y =
dlrow olleh

Passing Arrays of Strings
Passing arrays of strings involves a slight complication from the previous
example in the “Passing Strings” section of this chapter. Because MATLAB
stores elements of a matrix by column instead of by row, it is essential that the
size of the string array be correctly defined in the Fortran MEX-file. The key
point is that the row and column sizes as defined in MATLAB must be reversed
in the Fortran MEX-file; consequently, when returning to MATLAB, the
output matrix must be transposed.

This example places a string array/character matrix into MATLAB as output
arguments rather than placing it directly into the workspace. Inside MATLAB,
call this function by typing

passstr;
4

Examples of Fortran MEX-Files
You will get the matrix mystring of size 5-by-15. There are some manipulations
that need to be done here. The original string matrix is of the size 5-by-15.
Because of the way MATLAB reads and orients elements in matrices, the size
of the matrix must be defined as M=15 and N=5 from the MEX-file. After the
matrix is put into MATLAB, the matrix must be transposed.

C $Revision: 1.6 $
C==
C
C passstr.f
C Example for illustrating how to pass a character matrix
C from Fortran to MATLAB.
C
C Passes a string array/character matrix into MATLAB as
C output arguments rather than placing it directly into the
C workspace.
C
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.

C==
 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer p_str, mxCreateString
C--
C
 integer nlhs, nrhs
 integer i
 character*75 thestring
 character*15 string(5)
4-15

4 Creating Fortran MEX-Files

4-1
C Create the string to passed into MATLAB.
 string(1) = 'MATLAB '
 string(2) = 'The Scientific '
 string(3) = 'Computing '
 string(4) = 'Environment '
 string(5) = ' by TMW, Inc.'

C Concatenate the set of 5 strings into a long string.
 thestring = string(1)
 do 10 i = 2, 6
 thestring = thestring(:((i–1)*15)) // string(i)
 10 continue

C Create the string matrix to be passed into MATLAB.
C Set the matrix size to be M=15 and N=5.
 p_str = mxcreatestring(thestring)
 call mxSetM(p_str, 15)
 call mxSetN(p_str, 5)

C Transpose the resulting matrix in MATLAB.
 call mexCallMATLAB(1, plhs, 1, p_str, 'transpose')

 return
 end

Typing

passstr

at the MATLAB prompt produces this result

ans =

MATLAB
The Scientific
Computing
Environment
 by TMW, Inc.
6

Examples of Fortran MEX-Files
Passing Matrices
In MATLAB, you can pass matrices into and out of MEX-files written in
Fortran. You can manipulate the MATLAB arrays by using mxGetPr and
mxGetPi to assign pointers to the real and imaginary parts of the data stored
in the MATLAB arrays, and you can create new MATLAB arrays from within
your MEX-file by using mxCreateFull.

This example takes a real 2-by-3 matrix and squares each element.

C--
C
C matsq.f
C
C Squares the input matrix

C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C $Revision: 1.7 $
C--

 subroutine matsq(y, x, m, n)
 real*8 x(m,n), y(m,n)
 integer m, n
C
 do 20 i=1,m
 do 10 j=1,n
 y(i,j)= x(i,j)**2
 10 continue
 20 continue
 return
 end
4-17

4 Creating Fortran MEX-Files

4-1
This is the gateway routine that calls the computational subroutine.

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer mxCreateFull, mxGetPr
 integer x_pr, y_pr
C--
C
 integer nlhs, nrhs
 integer mxGetM, mxGetN, mxIsNumeric
 integer m, n, size
 real*8 x(1000), y(1000)

C Check for proper number of arguments.
 if(nrhs .ne. 1) then
 call mexErrMsgTxt('One input required.')
 elseif(nlhs .ne. 1) then
 call mexErrMsgTxt('One output required.')
 endif

C Get the size of the input array.
 m = mxGetM(prhs(1))
 n = mxGetN(prhs(1))
 size = m*n

C Column * row should be smaller than 1000.
 if(size.gt.1000) then
 call mexErrMsgTxt('Row * column must be <= 1000.')
 endif

C Check to ensure the array is numeric (not strings).
 if(mxIsNumeric(prhs(1)) .eq. 0) then
 call mexErrMsgTxt('Input must be a numeric array.')
 endif
8

Examples of Fortran MEX-Files
C Create matrix for the return argument.
 plhs(1) = mxCreateFull(m, n, 0)
 x_pr = mxGetPr(prhs(1))
 y_pr = mxGetPr(plhs(1))
 call mxCopyPtrToReal8(x_pr, x, size)

C Call the computational subroutine.
 call matsq(y, x, m, n)

C Load the data into y_pr, which is the output to MATLAB.
 call mxCopyReal8ToPtr(y, y_pr, size)

 return
 end

After performing error checking to ensure that the correct number of inputs
and outputs was assigned to the gateway subroutine and to verify the input
was in fact a numeric matrix, matsq.f creates a matrix for the argument
returned from the computational subroutine. The input matrix data is then
copied to a Fortran matrix by using mxCopyPtrToReal8. Now the computational
subroutine can be called, and the return argument can then be placed into
y_pr, the pointer to the output, using mxCopyReal8ToPtr.

For a 2-by-3 real matrix,

x = [1 2 3; 4 5 6];

typing

y = matsq(x)

produces this result

y =
1 4 9
16 25 36

Passing Two or More Inputs or Outputs
The plhs and prhs parameters are vectors that contain pointers to each
left-hand side (output) variable and right-hand side (input) variable.
Accordingly, plhs(1) contains a pointer to the first left-hand side argument,
plhs(2) contains a pointer to the second left-hand side argument, and so on.
4-19

4 Creating Fortran MEX-Files

4-2
Likewise, prhs(1) contains a pointer to the first right-hand side argument,
prhs(2) points to the second, and so on.

For example, here’s a routine that multiplies an input scalar times an input
scalar or matrix. This is the Fortran code for the computational subroutine.

 subroutine xtimesy(x, y, z, m, n)
 real*8 x, y(3,3), z(3,3)
 integer m, n
 do 20 i=1,m
 do 10 j=1,n
 z(i,j)=x*y(i,j)
 10 continue
 20 continue
 return
 end

Below is the gateway routine that calls xtimesy, the computation subroutine
that multiplies a scalar by a scalar or matrix.

C--
C
C xtimesy.f
C
C Multiply the first input by the second input.

C This is a MEX file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C $Revision: 1.6 $

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer mxCreateFull
 integer x_pr, y_pr, z_pr
C--
C

0

Examples of Fortran MEX-Files
 integer nlhs, nrhs
 integer m, n, size
 integer mxGetM, mxGetN, mxIsNumeric
 real*8 x, y(3,3), z(3,3)

C Check for proper number of arguments.
 if (nrhs .ne. 2) then
 call mexErrMsgTxt('Two inputs required.')
 elseif (nlhs .ne. 1) then
 call mexErrMsgTxt('One output required.')
 endif

C Check to see both inputs are numeric.
 if (mxIsNumeric(prhs(1)) .ne. 1) then
 call mexErrMsgTxt('Input # 1 is not a numeric.')
 elseif (mxIsNumeric(prhs(2)) .ne. 1) then
 call mexErrMsgTxt('Input #2 is not a numeric array.')
 endif

C Check that input #1 is a scalar.
 m = mxGetM(prhs(1))
 n = mxGetN(prhs(1))
 if(n .ne. 1 .or. m .ne. 1) then
 call mexErrMsgTxt('Input #1 is not a scalar.')
 endif

C Get the size of the input matrix.
 m = mxGetM(prhs(2))
 n = mxGetN(prhs(2))
 size = m*n

C Create matrix for the return argument.
 plhs(1) = mxCreateFull(m, n, 0)
 x_pr = mxGetPr(prhs(1))
 y_pr = mxGetPr(prhs(2))
 z_pr = mxGetPr(plhs(1))
4-21

4 Creating Fortran MEX-Files

4-2
C Load the data into Fortran arrays.
 call mxCopyPtrToReal8(x_pr, x, 1)
 call mxCopyPtrToReal8(y_pr, y, size)

C Call the computational subroutine.
 call xtimesy(x, y, z, m, n)

C Load the output into a MATLAB array.
 call mxCopyReal8ToPtr(z, z_pr, size)

 return
 end

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of which
indices of the vectors prhs and plhs correspond to which input and output
arguments of your function. In this example, the input variable x corresponds
to prhs(1) and the input variable y to prhs(2).

For an input scalar x and a real 3-by-3 matrix,

x = 3; y = ones(3);

typing

z = xtimesy(x, y)

yields this result

z =
 3 3 3
 3 3 3
 3 3 3

Handling Complex Data
MATLAB stores complex double-precision data as two vectors of numbers —
one contains the real data and one contains the imaginary data. The API
provides two functions, mxCopyPtrToComplex16 and mxCopyComplex16ToPtr,
which allow you to copy the MATLAB data to a native complex*16 Fortran
array.
2

Examples of Fortran MEX-Files
This example takes two complex vectors (of length 3) and convolves them.

C $Revision: 1.9 $
C==
C
C convec.f
C Example for illustrating how to pass complex data from
C MATLAB to FORTRAN (using COMPLEX data type) and back
C again.
C
C Convolves two complex input vectors.
C
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C==
C
C Computational subroutine
 subroutine convec(x, y, z, nx, ny)
 complex*16 x(*), y(*), z(*)
 integer nx, ny

C Initialize the output array.
 do 10 i=1,nx+ny–1
 z(i) = (0.0,0.0)
 10 continue

 do 30 i=1,nx
 do 20 j=1,ny
 z(i+j–1) = z(i+j–1) + x(i) * y(j)
 20 continue
 30 continue
 return
 end
4-23

4 Creating Fortran MEX-Files

4-2
C The gateway routine.
 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
 integer nlhs, nrhs
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms
C
 integer plhs(*), prhs(*)
 integer mxGetPr, mxGetPi, mxCreateFull
C--
C
 integer mx, nx, my, ny, nz
 integer mxGetM, mxGetN, mxIsComplex
 complex*16 x(100), y(100), z(199)

C Check for proper number of arguments.
 if (nrhs .ne. 2) then
 call mexErrMsgTxt('Two inputs required.')
 elseif (nlhs .gt. 1) then
 call mexErrMsgTxt('Too many output arguments.')
 endif

C Check that inputs are both row vectors.
 mx = mxGetM(prhs(1))
 nx = mxGetN(prhs(1))
 my = mxGetM(prhs(2))
 ny = mxGetN(prhs(2))
 nz = nx+ny–1

C Only handle row vector input.
 if(mx .ne. 1 .or. my .ne. 1) then
 call mexErrMsgTxt('Both inputs must be row vector.')
C Check sizes of the two input.
 elseif(nx .gt. 100 .or. ny .gt. 100) then
 call mexErrMsgTxt('Inputs must have less than 100
 elements.')
4

Examples of Fortran MEX-Files
C Check to see both inputs are complex.
 elseif ((mxIsComplex(prhs(1)) .ne. 1) .or. +
 (mxIsComplex(prhs(2)) .ne. 1)) then
 call mexErrMsgTxt('Inputs must be complex.')
 endif

C Create the output array.
 plhs(1) = mxCreateFull(1, nz, 1)

C Load the data into Fortran arrays(native COMPLEX data).
 call mxCopyPtrToComplex16(mxGetPr(prhs(1)),
 mxGetPi(prhs(1)), x, nx)
 call mxCopyPtrToComplex16(mxGetPr(prhs(2)),
 mxGetPi(prhs(2)), y, ny)

C Call the computational subroutine.
 call convec(x, y, z, nx, ny)

C Load the output into a MATLAB array.
 call mxCopyComplex16ToPtr(z,mxGetPr(plhs(1)),
 mxGetPi(plhs(1)), nz)

 return
 end

Entering these numbers at the MATLAB prompt

x = [3 – 1i, 4 + 2i, 7 – 3i]

x =

 3.0000 – 1.0000i 4.0000 + 2.0000i 7.0000 – 3.0000i

y = [8 – 6i, 12 + 16i, 40 – 42i]

y =

 8.0000 – 6.0000i 12.0000 +16.0000i 40.0000 –42.0000i

and invoking the new MEX-file

z = convec(x, y)
4-25

4 Creating Fortran MEX-Files

4-2
results in

z =

 1.0e+02 *

 Columns 1 through 4

 0.1800 – 0.2600i 0.9600 + 0.2800i 1.3200 – 1.4400i
 3.7600 – 0.1200i

 Column 5

 1.5400 – 4.1400i

which agrees with the results the built-in MATLAB function conv.m produces.

Dynamic Allocation of Memory
It is possible to allocate memory dynamically in a Fortran MEX-file, but you
must use %val to do it. This example takes an input matrix of real data and
doubles each of its elements.

C $Revision: 1.5 $
C==
C
C dblmat.f
C Example for illustrating how to use %val.
C Doubles the input matrix. The demo only handles real part C
of input.
C NOTE: If your Fortran compiler does not support %val,
C use mxCopy_routine.
C
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C==
C

6

Examples of Fortran MEX-Files
C Computational subroutine
 subroutine dbl_mat(out_mat, in_mat, size)
 integer size, i
 real*8 out_mat(*), in_mat(*)

 do 10 i=1,size
 out_mat(i) = 2*in_mat(i)
 10 continue

 return
 end

C Gateway subroutine

 subroutine mexfunction(nlhs, plhs, nrhs, prhs)
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer pr_in, pr_out
 integer mxGetPr, mxCreateFull
C--
C
 integer nlhs, nrhs, mxGetM, mxGetN
 integer m_in, n_in, size

 if(nrhs .ne. 1) then
 call mexErrMsgTxt('One input required.')
 endif
 if(nlhs .gt. 1) then
 call mexErrMsgTxt('Less than one output required.')
 endif

4-27

4 Creating Fortran MEX-Files

4-2
 m_in = mxGetM(prhs(1))
 n_in = mxGetN(prhs(1))
 size = m_in * n_in
 pr_in = mxGetPr(prhs(1))
 plhs(1) = mxCreateFull(m_in, n_in, 0)
 pr_out = mxGetPr(plhs(1))

C Call the computational routine.
 call dbl_mat(%val(pr_out), %val(pr_in), size)

 return
 end

For an input 2-by-3 matrix

x = [1 2 3; 4 5 6];

typing

y = dblmat(x)

yields

y =
 2 4 6
 8 10 12

Handling Sparse Matrices
The MATLAB 5 API provides a set of functions that allow you to create and
manipulate sparse matrices from within your MEX-files. There are special
parameters associated with sparse matrices, namely ir, jc, and nzmax. For
information on how to use these parameters and how MATLAB stores sparse
matrices in general, refer to “The MATLAB Array” section in Chapter 1 of this
book.

Note: Sparse array indexing is zero based, not one based.
8

Examples of Fortran MEX-Files
This example illustrates how to populate a sparse matrix.

C $Revision: 1.1 $
C==
C
C fulltosparse.f
C Example for illustrating how to populate a sparse matrix.
C For the purpose of this example, you must pass in a
C non-sparse 2-dimensional argument of type real double.
C
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-98 by The MathWorks, Inc.
C==
C Load sparse data subroutine.
 function loadsparse(a, b, ir, jc, m, n, nzmax)
 integer nzmax, m, n
 integer ir(*), jc(*)
 real*8 a(*), b(*)

 integer i, j, k

C Copy nonzeros.
 k = 1
 do 100 j=1,n
C NOTE: Sparse indexing is zero based.
 jc(j) = k–1
 do 200 i=1,m
 if (a((j–1)*m+i).ne. 0.0) then
 if (k .gt. nzmax) then
 jc(n+1) = nzmax
 loadsparse = 1
 goto 300
 endif
 b(k) = a((j–1)*m+i)
C NOTE: Sparse indexing is zero based.
 ir(k) = i–1
 k = k+1
 endif
 200 continue
 100 continue
4-29

4 Creating Fortran MEX-Files

4-3
C NOTE: Sparse indexing is zero based.
 jc(n+1) = k–1
 loadsparse = 0
 300 return
 end

C The gateway routine
 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
 integer nlhs, nrhs
C--
C (integer) Replace integer by integer*8 on the DEC Alpha and
C the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer mxGetPr, mxCreateSparse, mxGetIr, mxGetJc
 integer pr, sr, irs, jcs
C--
C
 integer m, n, nzmax
 integer mxGetM, mxGetN, mxIsComplex, mxIsDouble
 integer loadsparse

C Check for proper number of arguments.
 if (nrhs .ne. 1) then
 call mexErrMsgTxt('One input argument required.')
 endif
 if (nlhs .gt. 1) then
 call mexErrMsgTxt('Too many output arguments.')
 endif

C Check data type of input argument.
 if (mxIsDouble(prhs(1)) .eq. 0) then
 call mexErrMsgTxt('Input argument must be of type double.')
 endif
 if (mxIsComplex(prhs(1)) .eq. 1) then
 call mexErrMsgTxt('Input argument must be real only')
 endif

C Get the size and pointers to input data.
 m = mxGetM(prhs(1))
0

Examples of Fortran MEX-Files
 n = mxGetN(prhs(1))
 pr = mxGetPr(prhs(1))

C Allocate space.
C NOTE: Assume at most 20% of the data is sparse.
 nzmax = dble(m*n) *.20 + .5
C NOTE: The maximum number of non-zero elements cannot be less
C than the number of columns in the matrix.
 if (n .gt. nzmax) then
 nzmax = n
 endif
 plhs(1) = mxCreateSparse(m, n, nzmax, 0)
 sr = mxGetPr(plhs(1))
 irs = mxGetIr(plhs(1))
 jcs = mxGetJc(plhs(1))

C Load the sparse data.
 if

(loadsparse(%val(pr),%val(sr),%val(irs),%val(jcs),m,n,nzmax)
 + .eq. 1) then
 call mexPrintf('Truncating output, input is > 20%% sparse')
 endif
 return
 end

At the MATLAB prompt, entering

full = eye(5)
full =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1
4-31

4 Creating Fortran MEX-Files

4-3
creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

spar = fulltosparse(full)
spar =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1

Calling MATLAB Functions from Fortran MEX-Files
It’s possible to call MATLAB functions, operators, M-files, and even other
MEX-files from within your Fortran source code by using the API function
mexCallMATLAB. This example creates an mxArray, passes various pointers to a
subfunction to acquire data, and calls mexCallMATLAB to calculate the sine
function and plot the results.

C $Revision: 1.2 $
C
===
C
C sincall.f
C
C Example for illustrating how to use mexCallMATLAB
C
C Creates an mxArray and passes its associated pointers (in
C this demo, only pointer to its real part, pointer to
C number of rows, pointer to number of columns) to
C subfunction fill() to get data filled up, then calls
C mexCallMATLAB to calculate the sin function and plot the
C result.
C This is a MEX-file for MATLAB.
C Copyright (c) 1984-1998 The MathWorks, Inc.
C
===
2

Examples of Fortran MEX-Files
C Subroutine for filling up data

 subroutine fill(pr, m, n, max)

 real*8 pr(*)
 integer i, m, n, max

 m=max/2
 n=1
 do 10 i=1,m
 10 pr(i)=i*(4*3.1415926/max)

 return
 end

C Gateway subroutine

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)
 integer nlhs, nrhs
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64-bit platforms.
C
 integer plhs(*), prhs(*)
 integer rhs(1), lhs(1)
 integer mxGetPr, mxCreateFull
C--
C
 integer m, n, max

C Initializition
 m=1
 n=1
 max=1000

 rhs(1) = mxCreateFull(max, 1, 0)

4-33

4 Creating Fortran MEX-Files

4-3
C Pass the integer and variable and let fill() fill up data.
 call fill(%val(mxGetPr(rhs(1))), m, n, max)
 call mxSetM(rhs(1), m)
 call mxSetN(rhs(1), n)

 call mexCallMATLAB(1, lhs, 1, rhs, 'sin')
 call mexCallMATLAB(0, NULL, 1, lhs, 'plot')

C Cleanup the unfreed memory after calling mexCallMATLAB.
 call mxFreeMatrix(rhs(1))
 call mxFreeMatrix(lhs(1))

 return
 end

It is possible to use mexCallMATLAB (or any other API routine) from within your
computational Fortran subroutine. Note that you can only call most MATLAB
functions with double-precision data. M-functions that perform computations,
like eig, will not work correctly with data that is not double precision.

Running this example

sincall
4

Examples of Fortran MEX-Files
displays the results

Note: It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two
variables but only assigns one of them a value,

function [a,b]=foo[c]
a=2*c;

you’ll get this warning message in MATLAB:

Warning: One or more output arguments not assigned during call
to 'foo'.

If you then call foo using mexCallMATLAB, the unassigned output variable will
now be of type mxUNKNOWN_CLASS.
4-35

4 Creating Fortran MEX-Files

4-3
Advanced Topics
These sections cover advanced features of MEX-files that you can use when
your applications require sophisticated MEX-files.

Help Files
Because the MATLAB interpreter chooses the MEX-file when both an M-file
and a MEX-file with the same name are encountered in the same directory, it
is possible to use M-files for documenting the behavior of your MEX-files. The
MATLAB help command will automatically find and display the appropriate
M-file when help is requested and the interpreter will find and execute the
corresponding MEX-file when the function is actually invoked.

Linking Multiple Files
You can combine several source files when building MEX-files. For example,

mex circle.f square.o rectangle.f shapes.o

is a legal command that operates on the .f and .o files to create a MEX-file
called circle.ext, where ext is the extension corresponding to the MEX-file
type. The name of the resulting MEX-file is taken from the first file in the list.

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Simply create a MAKEFILE
that contains a rule for producing object files from each of your source files and
then invoke mex to combine your object files into a MEX-file. This way you can
ensure that your source files are recompiled only when necessary.

Note: On UNIX, you must use the –fortran switch to the mex script if you are
linking Fortran objects.

Variable Scope
Unlike M-file functions, MEX-file functions do not have their own variable
workspace. mexEvalString evaluates the string in the caller’s workspace. In
addition, you can use the mexGetMatrix and mexPutMatrix routines to get and
put variables into the caller’s workspace.
6

Advanced Topics
Memory Management
MATLAB Version 5.2 now implicitly destroys (by calling mxDestroyArray) any
arrays created by a MEX-file that are not returned in the left-hand side list
(plhs()). Consequently, any misconstructed arrays left over at the end of a
MEX-file’s execution have the potential to cause memory errors.

In general, we recommend that MEX-files destroy their own temporary arrays
and clean up their own temporary memory. For additional information on
memory management techniques, see the “Memory Management” section in
Chapter 3 and the “Memory Management Compatibility Issues” section in
Chapter 8.
4-37

4 Creating Fortran MEX-Files

4-3
How to Debug Fortran Language MEX-Files
On most platforms, it is now possible to debug MEX-files while they are
running within MATLAB. Complete source code debugging, including setting
breakpoints, examining variables, and stepping through the source code
line-by-line, is now available.

Note: The section, “Troubleshooting,” in Chapter 8 provides additional
information on isolating problems with MEX-files.

To debug a MEX-file from within MATLAB, you must first compile the
MEX-file with the –g option to mex.

mex –g filename.f

Debugging on UNIX
You must start MATLAB from within a debugger. To do this, specify the name
of the debugger you want to use with the –D option when starting MATLAB.
For example, to use dbx, the UNIX debugger, type

matlab –Ddbx

Once the debugger loads MATLAB into memory, you can start it by issuing a
“run” command. Now, from within MATLAB, enable MEX-file debugging by
typing

dbmex on

at the MATLAB prompt. Then run the MEX-file you want to debug as you
would ordinarily (either directly or by means of some other function or script).
Before executing the MEX-file, you will be returned to the debugger.

You may need to tell the debugger where the MEX-file was loaded or the name
of the MEX-file, in which case MATLAB will display the appropriate command
for you to use. At this point, you are ready to start debugging. You can list the
source code for your MEX-file and set break points in it. It is often convenient
8

How to Debug Fortran Language MEX-Files
to set one at mexFunction so that you stop at the beginning of the gateway
function.

Note: The name mexFunction may be slightly altered by the compiler (i.e., it
may have an underscore appended). To determine how this symbol appears in
a given MEX-file, use the UNIX command

nm <MEX-file> | grep –i mexfunction

To proceed from the breakpoint, issue a “continue” command to the debugger.

Once you hit one of your breakpoints, you can make full use of any facilities
your debugger provides to examine variables, display memory, or inspect
registers. Refer to the documentation provided with your debugger for
information on its use.

If you are at the MATLAB prompt and want to return control to the debugger,
you can issue the command

dbmex stop

which allows you to gain access to the debugger so you can set additional
breakpoints or examine source code. To resume execution, issue a “continue”
command to the debugger.

Debugging on Windows

DIGITAL Visual Fortran. If you are using the DIGITAL Visual Fortran compiler,
you use the Microsoft debugging environment to debug your program.

1 Start the Microsoft Visual Studio by typing at the DOS prompt

msdev filename.dll

2 In the Microsoft environment, from the Project menu, select Settings. In
the window that opens, select the Debug tab. This options window contains
4-39

4 Creating Fortran MEX-Files

4-4
edit boxes. In the edit box labeled Executable for debug session, enter the
full path where MATLAB 5 resides. All other edit boxes should be empty.

3 Open the source files and set a break point on the desired line of code by
right-clicking with your mouse on the line of code.

4 From the Build menu, select Debug, and click Go.

5 You will now be able to run your MEX-file in MATLAB and use the Microsoft
debugging environment. For more information on how to debug in the
Microsoft environment, see the Microsoft Development Studio
documentation.
0

Importing Data to MATLAB 5-2
Exporting Data from MATLAB 5-3
Exchanging Data Files Between Platforms 5-4
Reading and Writing MAT-Files 5-4
Directory Organization 5-7

Examples of MAT-Files 5-10
Creating a MAT-File 5-10
Reading a MAT-File 5-19

Compiling and Linking MAT-File Programs 5-28
Special Considerations 5-28
UNIX . 5-29
Windows . 5-31
5

Data Export and Import

Using MAT-Files 5-2

5 Data Export and Import

5-2
Using MAT-Files
This section describes the various techniques for importing data to and
exporting data from the MATLAB environment. The most important approach
involves the use of MAT-files – the data file format that MATLAB uses for
saving data to your disk. MAT-files provide a convenient mechanism for
moving your MATLAB data between different platforms and for importing and
exporting your data to other stand-alone MATLAB applications. To simplify
your use of MAT-files in applications outside of MATLAB, we have developed
a library of access routines with a mat prefix that you can use in your own C or
Fortran programs to read and write MAT-files. Programs that access MAT-files
also use the mx prefixed API routines discussed in the “Creating C Language
MEX-Files” and “Creating Fortran MEX-Files” chapters of this book.

This chapter includes these topics:

• Importing and exporting data to and from MATLAB

• Exchanging data files between platforms

• Reading from and writing to MAT-files

• Compiling and linking MAT-file programs

Importing Data to MATLAB
You can introduce data from other programs into MATLAB by several
methods. The best method for importing data depends on how much data there
is, whether the data is already in machine-readable form, and what format the
data is in. Here are some choices; select the one that best meets your needs.

• Enter the data as an explicit list of elements. If you have a small amount of
data, less than 10-15 elements, it is easy to type the data explicitly using
brackets []. This method is awkward for larger amounts of data because you
can’t edit your input if you make a mistake.

• Create data in an M-file. Use your text editor to create an M-file that enters
your data as an explicit list of elements. This method is useful when the data
isn’t already in computer-readable form and you have to type it in.
Essentially the same as the first method, this method has the advantage of

Using MAT-Files
allowing you to use your editor to change the data and correct mistakes. You
can then just rerun your M-file to re-enter the data.

• Load data from an ASCII flat file. A flat file stores the data in ASCII form,
with fixed-length rows terminated with new lines (carriage returns) and
with spaces separating the numbers. You can edit ASCII flat files using a
normal text editor. Flat files can be read directly into MATLAB using the
load command. The result is to create a variable with the same name as the
filename.

• Read data using fopen, fread, and MATLAB’s other low-level I/O functions.
This method is useful for loading data files from other applications that have
their own established file formats.

• Write a MEX-file to read the data. This is the method of choice if subroutines
are already available for reading data files from other applications. See the
section, “Introducing MEX-Files,” in Chapter 2 for more information.

• Write a program in C or Fortran to translate your data into MAT-file format
and then read the MAT-file into MATLAB with the load command. Refer to
the section, “Reading and Writing MAT-Files,” for more information.

Exporting Data from MATLAB
There are several methods for getting MATLAB data back to the outside world:

• For small matrices, use the diary command to create a diary file and display
the variables, echoing them into this file. You can use your text editor to
manipulate the diary file at a later time. The output of diary includes the
MATLAB commands used during the session, which is useful for inclusion
into documents and reports.

• Save the data in ASCII form using the save command with the –ascii
option. For example,
A = rand(4,3);

save temp.dat A –ascii

creates an ASCII file called temp.dat containing:
1.3889088e–001 2.7218792e–001 4.4509643e–001
2.0276522e–001 1.9881427e–001 9.3181458e–001
1.9872174e–001 1.5273927e–002 4.6599434e–001
6.0379248e–001 7.4678568e–001 4.1864947e–001
5-3

5 Data Export and Import

5-4
The –ascii option supports data in numerical matrix form only; numerical
arrays (more than 2-dimensions), cell arrays, and structures are not
supported.

• Write the data in a special format using fopen, fwrite, and the other
low-level I/O functions. This method is useful for writing data files in the file
formats required by other applications.

• Develop a MEX-file to write the data. This is the method of choice if
subroutines are already available for writing data files in the form needed by
other applications. See the section, “Introducing MEX-Files,” in Chapter 2
for more information.

• Write out the data as a MAT-file using the save command, and then write a
program in C or Fortran to translate the MAT-file into your own special
format. See the section, “Reading and Writing MAT-Files,” for more
information.

Exchanging Data Files Between Platforms
You may want to work with MATLAB implementations on several different
computer systems, or need to transmit MATLAB applications to users on other
systems. MATLAB applications consist of M-files containing functions and
scripts, and MAT-files containing binary data. Both types of files can be
transported directly between machines: M-files because they are platform
independent and MAT-files because they contain a machine signature in the
file header. MATLAB checks the signature when it loads a file and, if a
signature indicates that a file is foreign, performs the necessary conversion.

Using MATLAB across several different machine architectures requires a
facility for exchanging both binary and ASCII data between the various
machines. Examples of this type of facility include FTP, NFS, Kermit, and
other communication programs. When using these programs, be careful to
transmit binary MAT-files in binary file mode and ASCII M-files in ASCII file
mode. Failure to set these modes correctly corrupts the data.

Reading and Writing MAT-Files
The save command in MATLAB saves the MATLAB arrays currently in
memory to a binary disk file called a MAT-file. The term MAT-file is used
because these files have the extension .mat. The load command performs the

Using MAT-Files
reverse operation: it reads the MATLAB arrays from a MAT-file on disk back
into MATLAB’s workspace.

A MAT-file may contain one or more of any of the data types supported in
MATLAB 5, including strings, matrices, multidimensional arrays, structures,
and cell arrays. MATLAB writes the data sequentially onto disk as a
continuous byte stream.

MAT-File Interface Library
The MAT-file interface library contains a set of subroutines for reading and
writing MAT-files. You can call these routines from within your own C and
Fortran programs. We recommend that you use these routines, rather than
attempt to write your own code, to perform these operations. By using the
routines in this library, you will be insulated from future changes to the
MAT-file structure.

The MAT-file library contains routines for reading and writing MAT-files. They
all begin with the three-letter prefix mat. These tables list all the available
MAT-functions and their purposes.

Table 5-1: C MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file

matClose Close a MAT-file

matGetDir Get a list of MATLAB arrays from a
MAT-file

matGetFp Get an ANSI C file pointer to a MAT-file

matGetArray Read a MATLAB array from a MAT-file

matPutArray Write a MATLAB array to a MAT-file

matGetNextArray Read the next MATLAB array from a
MAT-file

matDeleteArray Remove a MATLAB array from a MAT-file
5-5

5 Data Export and Import

5-6
matPutArrayAsGlobal Put a MATLAB array into a MAT-file such
that the load command will place it into
the global workspace

matGetArrayHeader Load a MATLAB array header from a
MAT-file (no data)

matGetNextArrayHeader Load the next MATLAB array header
from a MAT-file (no data)

Table 5-2: Fortran MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file

matClose Close a MAT-file

matGetDir Get a list of MATLAB arrays from a
MAT-file

matGetMatrix Get a named MATLAB array from a
MAT-file

matPutMatrix Put a MATLAB array into a MAT-file

matGetNextMatrix Get the next sequential MATLAB array
from a MAT-file

matDeleteMatrix Remove a MATLAB array from a MAT-file

matGetString Read a MATLAB string from a MAT-file

matPutString Write a MATLAB string to a MAT-file

Table 5-1: C MAT-File Routines (Continued)

MAT-Function Purpose

Using MAT-Files
Directory Organization
A collection of files associated with reading and writing MAT-files is located on
your disk. Table 5-3 lists the path to the required subdirectories for importing
and exporting data using MAT-functions.

The include directory holds header files containing function declarations with
prototypes for the routines that you can access in the API Library. Included in
the subdirectory are:

• matrix.h, the header file that defines MATLAB array access and creation
methods

• mat.h, the header file that defines MAT-file access and creation methods

The subdirectory that contains shared (dynamically linkable) libraries for
linking your programs is platform dependent.

Table 5-3: MAT-Function Subdirectories

Platform Contents Directories

Windows Include Files <matlab>\extern\include

Libraries <matlab>\bin

Examples <matlab>\extern\examples/eng_mat

UNIX Include Files <matlab>/extern/include

Libraries <matlab>/extern/lib/$arch

Examples <matlab>/extern/examples/eng_mat
5-7

5 Data Export and Import

5-8
Windows
The bin subdirectory contains the shared libraries for linking your programs.

UNIX
The extern/lib/$arch subdirectory, where $arch is your machine’s
architecture, contains the shared libraries for linking your programs. For
example, on sol2, the subdirectory is extern/lib/sol2.

so refers to the shared library extension for your platform. For example, on
sol2, these files are libmat.so and libmx.so.

Table 5-4: Shared Libraries on Windows

Library Description

libmat.dll The library of MAT-file routines (C and
Fortran)

libmx.dll The library of array access and creation
routines

Table 5-5: Shared Libraries on UNIX

Library Description

libmat.so The library of MAT-file routines (C and
Fortran)

libmx.so The library of array access and creation
routines

Using MAT-Files
Example Files
The examples/eng_mat subdirectory contains C and Fortran source code for a
number of example files that demonstrate how to use the MAT-file routines.

For additional information about the MATLAB API directory organization, see
Appendix B, “Directory Organization.”

Table 5-6: C and Fortran Examples

Library Description

matcreat.c Example C program that demonstrates
how to use the library routines to create a
MAT-file that can be loaded into MATLAB

matdgns.c Example C program that demonstrates
how to use the library routines to read and
diagnose a MAT-file

matdemo1.f Example Fortran program that
demonstrates how to call the MATLAB
MAT-file functions from a Fortran
program

matdemo2.f Example Fortran program that
demonstrates how to use the library
routines to read in the MAT-file created by
matdemo1.f and describe its contents
5-9

5 Data Export and Import

5-1
Examples of MAT-Files
This section includes C and Fortran examples of writing, reading, and
diagnosing MAT-files.

Creating a MAT-File

C Example
This sample program illustrates how to use the library routines to create a
MAT-file that can be loaded into MATLAB.

/* $Revision: 1.2 $ */
/*
 * MAT-file creation program
 *
 * Calling syntax:
 *
 * matcreat
 *
 * Create a MAT-file that can be loaded into MATLAB.
 *
 * This program demonstrates the use of the following functions:
 *
 * matClose
 * matGetArray
 * matOpen
 * matPutArray
 * matPutArrayAsGlobal
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */

#include <stdio.h>
#include <stdlib.h>
#include "string.h"
#include "mat.h"
#define BUFSIZE 255
0

Examples of MAT-Files
int create(const char *file) {
 MATFile *pmat;
 mxArray *pa1, *pa2, *pa3;
 double data[9] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 };
 char str[BUFSIZE];

 printf("Creating file %s...\n\n", file);
 pmat = matOpen(file, "w");
 if (pmat == NULL) {
 printf("Error creating file %s\n", file);
 printf("(do you have write permission in this directory?)\n");
 return(1);
 }

 pa1 = mxCreateDoubleMatrix(3,3,mxREAL);
 mxSetName(pa1, "LocalDouble");

 pa2 = mxCreateDoubleMatrix(3,3,mxREAL);
 mxSetName(pa2, "GlobalDouble");
 memcpy((void *)(mxGetData(pa2)), (void *)data,
 3*3*sizeof(double));

 pa3 = mxCreateString("MATLAB: the language of technical
 computing");
 mxSetName(pa3, "LocalString");

 matPutArray(pmat, pa1);
 matPutArrayAsGlobal(pmat, pa2);
 matPutArray(pmat, pa3);

 /*
 * Ooops! We need to copy data before writing the array. (Well,
 * ok, this was really intentional.) This demonstrates that
 * matPutArray will overwrite an existing array in a MAT-file.
 */
 memcpy((char *)(mxGetPr(pa1)), (char *)data,
 3*3*sizeof(double));
 matPutArray(pmat, pa1);
5-11

5 Data Export and Import

5-1
 /* Clean up. */
 mxDestroyArray(pa1);
 mxDestroyArray(pa2);
 mxDestroyArray(pa3);

 if (matClose(pmat) != 0) {
 printf("Error closing file %s\n",file);
 return(1);
 }

 /*
 * Reopen file and verify its contents with matGetArray.
 */
 pmat = matOpen(file, "r");
 if (pmat == NULL) {
 printf("Error reopening file %s\n", file);
 return(1);
 }

 /*
 * Read in each array we just wrote.
 */
 pa1 = matGetArray(pmat, "LocalDouble");
 if (pa1 == NULL) {
 printf("Error reading existing matrix LocalDouble\n");
 return(1);
 }
 if (mxGetNumberOfDimensions(pa1) != 2) {
 printf("Error saving matrix: result does not have two
 dimensions\n");
 return(1);
 }

 pa2 = matGetArray(pmat, "GlobalDouble");
 if (pa2 == NULL) {
 printf("Error reading existing matrix LocalDouble\n");
 return(1);
 }
2

Examples of MAT-Files
 if (!(mxIsFromGlobalWS(pa2))) {
 printf("Error saving global matrix: result is not global\n");
 return(1);
 }

 pa3 = matGetArray(pmat, "LocalString");
 if (pa3 == NULL) {
 printf("Error reading existing matrix LocalDouble\n");
 return(1);
 }
 mxGetString(pa3, str, BUFSIZE);
 if (strcmp(str, "MATLAB: the language of technical computing"))
{
 printf("Error saving string: result has incorrect
 contents\n");
 return(1);
 }

 /* Clean up before exit. */
 mxDestroyArray(pa1);
 mxDestroyArray(pa2);
 mxDestroyArray(pa3);

 if (matClose(pmat) != 0) {
 printf("Error closing file %s\n",file);
 return(1);
 }
 printf("Done\n");
 return(0);
}

int main()
{
 int result;

 result = create("mattest.mat");
 return (result==0)?EXIT_SUCCESS:EXIT_FAILURE;
}

5-13

5 Data Export and Import

5-1
To produce an executable version of this example program, compile the file and
link it with the appropriate library. Details on how to compile and link
MAT-file programs on the various platforms are discussed in the “Compiling
and Linking MAT-File Programs” section.

Once you have compiled and linked your MAT-file program, you can run the
stand-alone application you have just produced. This program creates a
MAT-file, mattest.mat, that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click on its icon or enter
matcreat at the system prompt.

matcreat
Creating file mattest.mat...

To verify that the MAT-file has been created, at the MATLAB prompt enter

whos –file mattest.mat
 Name Size Bytes Class

 GlobalDouble 3x3 72 double array (global)
 LocalDouble 3x3 72 double array
 LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

Fortran Example
This example creates a MAT-file, matdemo.mat.

C $Revision: 1.1 $
C
C matdemo1.f
C
C This is a simple program that illustrates how to call the
C MATLAB MAT-file functions from a Fortran program. This
C demonstration focuses on writing MAT-files.
C
C Copyright (c) 1984-1998 The MathWorks, Inc.
C All rights reserved
C

4

Examples of MAT-Files
C
C matdemo1 - Create a new MAT-file from scratch.
C
 program matdemo1
C--
C (integer) Replace integer by integer*8 on the DEC alpha
C and the SGI64 platforms.
C
 integer matOpen, mxCreateFull, mxCreateString
 integer matGetMatrix, mxGetPr
 integer mp, pa1, pa2, pa3
C--
C
C Other variable declarations here
C
 integer status, matClose
 double precision dat(9)
 data dat / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 /
C
C Open MAT-file for writing.
C
 write(6,*) 'Creating MAT-file matdemo.mat ...'
 mp = matOpen('matdemo.mat', 'w')
 if (mp .eq. 0) then

 write(6,*) 'Can''t open ''matdemo.mat'' for writing.'
 write(6,*) '(Do you have write permission in this directory?)'

 stop
 end if
C
C Create variables.
C
 pa1 = mxCreateFull(3,3,0)
 call mxSetName(pa1, 'Numeric')
C
 pa2 = mxCreateString('MATLAB: The language of computing')
 call mxSetName(pa2, 'String')
C

5-15

5 Data Export and Import

5-1
 pa3 = mxCreateString('MATLAB: The language of computing')
 call mxSetName(pa3, 'String2')
C
 call matPutMatrix(mp, pa1)
 call matPutMatrix(mp, pa2)
 call matPutMatrix(mp, pa3)
C
C Whoops! Forgot to copy the data into the first matrix --
C it's now blank. (Well, ok, this was deliberate.) This
C demonstrates that matPutMatrix will overwrite existing
C matrices.
C
 call mxCopyReal8ToPtr(dat, mxGetPr(pa1), 9)
 call matPutMatrix(mp, pa1)
C
C Now, we'll delete String2 from the MAT-file.
C
 call matDeleteMatrix(mp, 'String2')
C
C Finally, read back in MAT-file to make sure we know what we
C put in it.
C
 status = matClose(mp)
 if (status .ne. 0) then
 write(6,*) 'Error closing MAT-file'
 stop
 end if
C
 mp = matOpen('matdemo.mat', 'r')
 if (status .ne. 0) then
 write(6,*) 'Can''t open ''matdemo.mat'' for reading.'
 stop
 end if
C
 pa1 = matGetMatrix(mp, 'Numeric')
 if (mxIsNumeric(pa1) .eq. 0) then
 write(6,*) 'Invalid non-numeric matrix written to MAT-file'
 stop
 end if
6

Examples of MAT-Files
C
 pa2 = matGetMatrix(mp, 'String')
 if (mxIsString(pa2) .eq. 0) then
 write(6,*) 'Invalid non-numeric matrix written to MAT-file'
 stop
 end if
C
 pa3 = matGetMatrix(mp, 'String2')
 if (pa3 .ne. 0) then
 write(6,*) 'String2 not deleted from MAT-file'
 stop
 end if
C
 status = matClose(mp)
 if (status .ne. 0) then
 write(6,*) 'Error closing MAT-file'
 stop
 end if
C
 write(6,*) 'Done creating MAT-file'
 stop
 end

Once you have compiled and linked your MAT-file program, you can run the
stand-alone application you have just produced. This program creates a
MAT-file, matdemo.mat, that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click on its icon or enter
matdemo1 at the system prompt.

matdemo1
Creating MAT-file matdemo.mat ...
Done creating MAT-file
5-17

5 Data Export and Import

5-1
To verify that the MAT-file has been created, at the MATLAB prompt enter

 whos –file matdemo.mat
 Name Size Bytes Class

 Numeric 3x3 72 double array
 String 1x33 66 char array

Grand total is 42 elements using 138 bytes

Note: For an example of a Windows stand-alone program (not MAT-file
specific), see engwindemo.c in the <matlab>\extern\examples\eng_mat
directory.
8

Examples of MAT-Files
Reading a MAT-File

C Example
This sample program illustrates how to use the library routines to read and
diagnose a MAT-file.

/* $Revision: 1.1 $ */
/*
 * MAT-file diagnose program
 *
 * Calling syntax:
 *
 * matdgns <matfile.mat>
 *
 * It diagnoses the MAT-file named <matfile.mat>.
 *
 * This program demonstrates the use of the following functions:
 *
 * matClose
 * matGetDir
 * matGetNextArray
 * matGetNextArrayHeader
 * matOpen
 *
 * Copyright (c) 1984-1998 The MathWorks, Inc.
 */

#include <stdio.h>
#include <stdlib.h>
#include "string.h"
#include "mat.h"

int diagnose(const char *file) {
 MATFile *pmat;
 char **dir;
 int ndir;
 int i;
 mxArray *pa;

5-19

5 Data Export and Import

5-2
 printf("Reading file %s...\n\n", file);

 /*
 * Open file to get directory.
 */
 pmat = matOpen(file, "r");
 if (pmat == NULL) {
 printf("Error opening file %s\n", file);
 return(1);
 }

 /*
 * Get directory of MAT-file.
 */
 dir = matGetDir(pmat, &ndir);
 if (dir == NULL) {
 printf("Error reading directory of file %s\n", file);
 return(1);
 } else {
 printf("Directory of %s:\n", file);
 for (i=0; i < ndir; i++)
 printf("%s\n",dir[i]);
 }
 mxFree(dir);

 /* In order to use matGetNextXXX correctly, reopen file to read
 in headers. */
 if (matClose(pmat) != 0) {
 printf("Error closing file %s\n",file);
 return(1);
 }
 pmat = matOpen(file, "r");
 if (pmat == NULL) {
 printf("Error reopening file %s\n", file);
 return(1);
 }
0

Examples of MAT-Files
 /* Get headers of all variables. */
 printf("\nExamining the header for each variable:\n");
 for (i=0; i < ndir; i++) {
 pa = matGetNextArrayHeader(pmat);
 if (pa == NULL) {

printf("Error reading in file %s\n", file);
return(1);

 }
 /* Diagnose header pa. */
 printf("According to its header, array %s has %d
 dimensions\n", mxGetName(pa),
 mxGetNumberOfDimensions(pa));
 if (mxIsFromGlobalWS(pa))
 printf(" and was a global variable when saved\n");
 else
 printf(" and was a local variable when saved\n");
 mxDestroyArray(pa);
 }

 /* Reopen file to read in actual arrays. */
 if (matClose(pmat) != 0) {
 printf("Error closing file %s\n",file);
 return(1);
 }
 pmat = matOpen(file, "r");
 if (pmat == NULL) {
 printf("Error reopening file %s\n", file);
 return(1);
 }

 /* Read in each array. */
 printf("\nReading in the actual array contents:\n");
 for (i=0; i<ndir; i++) {
 pa = matGetNextArray(pmat);
 if (pa == NULL) {

 printf("Error reading in file %s\n", file);
 return(1);

 }
5-21

5 Data Export and Import

5-2
 /*
 * Diagnose array pa.
 */
 printf("According to its contents, array %s has %d
 dimensions\n", mxGetName(pa),
 mxGetNumberOfDimensions(pa));
 if (mxIsFromGlobalWS(pa))

printf(" and was a global variable when saved\n");
 else

printf(" and was a local variable when saved\n");
 mxDestroyArray(pa);
 }

 if (matClose(pmat) != 0) {
 printf("Error closing file %s\n",file);
 return(1);
 }
 printf("Done\n");
 return(0);
}

int main(int argc, char **argv)
{

 int result;

 if (argc > 1)
 result = diagnose(argv[1]);
 else{
 result = 0;
 printf("Usage: matdgns <matfile>");
 printf("where <matfile> is the name of the MAT-file");
 printf("to be diagnosed");
 }

 return (result==0)?EXIT_SUCCESS:EXIT_FAILURE;

}

2

Examples of MAT-Files
After compiling and linking this program, you can view its results.

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble
LocalString
LocalDouble

Examining the header for each variable:
According to its header, array GlobalDouble has 2 dimensions
 and was a global variable when saved
According to its header, array LocalString has 2 dimensions
 and was a local variable when saved
According to its header, array LocalDouble has 2 dimensions
 and was a local variable when saved

Reading in the actual array contents:
According to its contents, array GlobalDouble has 2 dimensions
 and was a global variable when saved
According to its contents, array LocalString has 2 dimensions
 and was a local variable when saved
According to its contents, array LocalDouble has 2 dimensions
 and was a local variable when saved
Done
5-23

5 Data Export and Import

5-2
Fortran Example
This sample program illustrates how to use the library routines to read in the
MAT-file created by matdemo1.f and describe its contents.

C matdemo2.f
C
C This is a simple program that illustrates how to call the
C MATLAB MAT-file functions from a Fortran program. This
C demonstration focuses on reading MAT-files. It reads in
C the MAT-file created by matdemo1.f and describes its
C contents.
C
C Copyright (c) 1996-1998 The MathWorks, Inc.
C All rights reserved
C--
C $Revision: 1.4 $
C
 program matdemo2
C--
C (integer) Replace integer by integer*8 on the DEC alpha
C and the SGI64 platforms.
C
 integer matOpen, matGetDir, matGetNextMatrix
 integer mp, dir, adir(100), pa
C--
C
C Other variable declarations here
C
 integer mxGetM, mxGetN, matClose
 integer ndir, i, stat
 character*32 names(100), name, mxGetName
C
C---
C Open file and read directory.
C---
4

Examples of MAT-Files
C
 mp = matOpen('matdemo.mat', 'r')
 if (mp .eq. 0) then
 write(6,*) 'Can''t open ''matdemo.mat''.'
 stop
 end if
C
C Read directory.
C
 dir = matgetdir(mp, ndir)
 if (dir .eq. 0) then
 write(6,*) 'Can''t read directory.'
 stop
 endif
C
C Copy integer into an array of pointers.
C
 call mxCopyPtrToPtrArray(dir, adir, ndir)
C
C Copy integer to character string
C
 do 20 i=1,ndir
 call mxCopyPtrToCharacter(adir(i), names(i), 32)
 20 continue
C
 write(6,*) 'Directory of Mat-file:'
 do 30 i=1,ndir
 write(6,*) names(i)
 30 continue
C
 stat = matClose(mp)
 if (stat .ne. 0) then
 write(6,*) 'Error closing ''matdemo.mat''.'
 stop
 end if
5-25

5 Data Export and Import

5-2
C
C---
C Reopen file and read full arrays.
C---
C
 mp = matOpen('matdemo.mat', 'r')
 if (mp .eq. 0) then
 write(6,*) 'Can''t open ''matdemo.mat''.'
 stop
 end if
C
C Read directory.
C
 write(6,*) 'Getting full array contents:'
 pa = matGetNextMatrix(mp)
 do while (pa .ne. 0)
C
C Copy name to character string.
C
 name = mxGetName(pa)
 write(6,*) 'Retrieved ', name
 write(6,*) ' With size ', mxGetM(pa), '-by-', mxGetN(pa)
 pa = matGetNextMatrix(mp)
 end do
C
 stat = matClose(mp)
 if (stat .ne. 0) then
 write(6,*) 'Error closing ''matdemo.mat''.'
 stop
 end if
 stop
C
 end
6

Examples of MAT-Files
After compiling and linking this program, you can view its results.

 matdemo2
 Directory of Mat-file:
 String
 Numeric
 Getting full array contents:
 1
 Retrieved String
 With size 1–by– 33
 3
 Retrieved Numeric
 With size 3–by– 3
5-27

5 Data Export and Import

5-2
Compiling and Linking MAT-File Programs
This section describes the steps required to compile and link MAT-file
programs on UNIX and Windows systems. It begins by looking at a special
consideration for compilers that do not mask floating-point exceptions.

Special Considerations

Floating-Point Exceptions
Certain mathematical operations can result in nonfinite values. For example,
division by zero results in the nonfinite IEEE value, inf. A floating-point
exception occurs when such an operation is performed. Because MATLAB uses
an IEEE model that supports nonfinite values such as inf and NaN, MATLAB
disables, or masks, floating-point exceptions.

Some compilers do not mask floating-point exceptions by default. This causes
MAT-file applications built with such compilers to terminate when a
floating-point exception occurs. Consequently, you need to take special
precautions when using these compilers to mask floating-point exceptions so
that your MAT-file application will perform properly.

Note: MATLAB-based applications should never get floating-point
exceptions. If you do get a floating-point exception, verify that any third party
libraries that you link against do not enable floating-point exception handling.

This table shows the platforms and compilers on which you should mask
floating-point exceptions.

Platform Compiler

DEC Alpha DIGITAL Fortran 77

Linux Absoft Fortran

Windows Borland C++
8

Compiling and Linking MAT-File Programs
DEC Alpha. To mask floating-point exceptions on the DEC Alpha platform, use
the –fpe3 compile flag. For example,

f77 –fpe3

Absoft Fortran Compiler on Linux. To mask floating-point exceptions when using
the Absoft Fortran compiler on the Linux platform, you must add some code to
your program. Include the following at the beginning of your main() program,
before any calls to MATLAB API functions.

 integer cw, arm387
C
 cw = arm387(z'0000003F')
 cw = cw .or. z'0000003F'
 call arm387(cw)

Borland C++ Compiler on Windows. To mask floating-point exceptions when using
the Borland C++ compiler on the Windows platform, you must add some code
to your program. Include the following at the beginning of your main() or
WinMain() function, before any calls to MATLAB API functions.

#include <float.h>
.
.
.

_control87(MCW_EM,MCW_EM);
.
.
.

UNIX
Under UNIX at runtime, you must tell the system where the API shared
libraries reside. These sections provide the necessary UNIX commands
depending on your shell and system architecture.

Setting Runtime Library Path
In C shell, the command to set the library path is

setenv LD_LIBRARY_PATH <matlab>/extern/lib/$Arch:$LD_LIBRARY_PATH
5-29

5 Data Export and Import

5-3
In Bourne shell, the commands to set the library path are

LD_LIBRARY_PATH=<matlab>/extern/lib/$Arch:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

where:

<matlab> is the MATLAB root directory and $Arch is your system architecture
(alpha, lnx86, sgi, sol2, sun4, hp700, ibm_rs, or sgi64). Note that the
environment variable (LD_LIBRARY_PATH in this example) varies on several
platforms. Table 5-7 lists the different environment variable names you should
use on these systems.

It is convenient to place these commands in a startup script such as ~/.cshrc
for C shell or ~/.profile for Bourne shell.

Compiling and Linking Commands
Table 5-8 provides the commands required to compile and link MAT-file C and
Fortran programs on UNIX platforms.

Table 5-7: Environment Variables Name

Architecture Environment Variable

HP700 SHLIB_PATH

IBM RS/6000 LIBPATH

SGI 64 LD_LIBRARY64_PATH

Table 5-8: Compiling and Linking MAT-File Programs

UNIX – C Command

HP700 cc –Aa <include dir> –o <result> <source> <libdir> <libraries>

SGI 64 cc –64 –mips4 <include dir> –o <result> <source> <libdir> <libraries>

Linux gcc –ansi <include dir> –o <result> <source> <libdir> <libraries>

SunOS 4.x acc <include dir> –o <result> <source> <libdir> <libraries>

All others cc <include dir> –o <result> <source> <libdir> <libraries>
0

Compiling and Linking MAT-File Programs
Special Consideration for Fortran (f77) on HP-UX 10.x
In the version of the Fortran compiler (f77) that ships with HP-UX 10.x, the
meaning of the –L flag has changed. The –L flag now requests a listing. So, to
force the linker to see the libraries you want linked in with your code, use

f77 <include dir> –o <result> <source> –Wl,–L<matlab>/extern/lib/hp700 <libraries>

Windows
To compile and link Fortran or C MAT-file programs, use the mex script with a
MAT options file. The file, df50engmatopts.bat (DIGITAL Visual Fortran), is
for stand-alone Fortran MAT programs. The files, watengmatopts.bat,
wat11engmatopts.bat, bccengmatopts.bat, msvc50engmatopts.bat, and
msvcengmatopts.bat are for stand-alone C MAT programs. You can find all of
these files in <matlab>\bin. Refer to them for details on how to customize a
MAT options file for your particular compiler.

As an example, to compile and link a stand-alone MAT application on Windows
using MSVC (Version 5.0) use

mex –f <matlab>\bin\msvc50engmatopts.bat filename.c

where filename is the name of the source file.

UNIX – Fortran

SGI 64 f77 –64 –mips4 <include dir> –o <result> <source> <libdir> <libraries>

DEC Alpha f77 –fpe3 <include dir> –o <result> <source> <libdir> <libraries>

All others f77 <include dir> –o <result> <source> <libdir> <libraries>

where:
<include dir> is –I<matlab>/extern/include
<result> is the name of the resulting program
<source> is the list of source files
<libdir> is –L<matlab>/extern/lib/$ARCH
<libraries> is –lmat –lmx

Table 5-8: Compiling and Linking MAT-File Programs (Continued)
5-31

5 Data Export and Import

5-3
2

The Engine Library 6-3
Communicating with MATLAB 6-4

Examples . 6-5
Calling the MATLAB Engine 6-5

Compiling and Linking Engine Programs 6-14
Special Considerations 6-14
UNIX . 6-16
Windows . 6-18
6

Using the MATLAB
Engine

Interprocess Communication: The MATLAB Engine . . 6-2

6 Using the MATLAB Engine

6-2
Interprocess Communication: The MATLAB Engine
The MATLAB engine library is a set of routines that allows you to call
MATLAB from your own programs, thereby employing MATLAB as a
computation engine. Some of the things you can do with the MATLAB engine
are:

• Call a math routine, for example, to invert an array or to compute an FFT
from your own program. When employed in this manner, MATLAB is a
powerful and programmable mathematical subroutine library.

• Build an entire system for a specific task, for example, radar signature
analysis or gas chromatography, where the front end (GUI) is programmed
in C and the back end (analysis) is programmed in MATLAB, thereby
shortening development time.

The MATLAB engine operates by running in the background as a separate
process from your own program. This offers several advantages:

• On UNIX, the MATLAB engine can run on your machine, or on any other
UNIX machine on your network, including machines of a different
architecture. Thus you could implement a user interface on your workstation
and perform the computations on a faster machine located elsewhere on your
network. See the engOpen reference page, which is accessible from the
MATLAB Help Desk, for further information.

• Instead of requiring that all of MATLAB be linked to your program
(a substantial amount of code), only a small engine communication library is
needed.

Interprocess Communication: The MATLAB Engine
The Engine Library
The engine library contains the following routines for controlling the MATLAB
computation engine. Their names all begin with the three-letter prefix eng.
These tables list all the available engine functions and their purposes.

The MATLAB engine also uses the mx prefixed API routines discussed in the
“Creating C Language MEX-Files” and “Creating Fortran MEX-Files” chapters
of this book.

Table 6-1: C Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetArray Get a MATLAB array from the MATLAB engine

engPutArray Send a MATLAB array to the MATLAB engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

Table 6-2: Fortran Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetMatrix Get a MATLAB array from the MATLAB engine

engPutMatrix Send a MATLAB array to the MATLAB engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output
6-3

6 Using the MATLAB Engine

6-4
Communicating with MATLAB
On UNIX, the engine library communicates with the MATLAB engine using
pipes, and, if needed, rsh for remote execution. On Microsoft Windows, the
engine library communicates with MATLAB using ActiveX. The next chapter,
“Client/Server Applications,” contains a detailed description of ActiveX.

Note: On the PC, support for MATLAB 5 data types and sparse matrices is
not available in engine applications.

Examples
Examples

Calling the MATLAB Engine

C Example
This program, engdemo.c, illustrates how to call the engine functions from a
stand-alone C program. For the Windows version of this program, see
engwindemo.c in the <matlab>\extern\examples\eng_mat directory. Engine
examples, like the MAT-file examples, are located in the eng_mat directory.

/* $Revision: 1.3 $ */
/*
 * engdemo.c
 *
 * This is a simple program that illustrates how to call the
 * MATLAB engine functions from a C program.
 *
 * Copyright (c) 1996-1998 The MathWorks, Inc.
 * All rights reserved
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "engine.h"
#define BUFSIZE 256

int main()

{
Engine *ep;
mxArray *T = NULL, *result = NULL;
char buffer[BUFSIZE];
double time[10] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,

8.0, 9.0 };
6-5

6 Using the MATLAB Engine

6-6
/*
 * Start the MATLAB engine locally by executing the string
 * "matlab".
 *
 * To start the session on a remote host, use the name of
 * the host as the string rather than \0
 *
 * For more complicated cases, use any string with whitespace,
 * and that string will be executed literally to start MATLAB.
 */
if (!(ep = engOpen("\0"))) {

fprintf(stderr, "\nCan't start MATLAB engine\n");
return EXIT_FAILURE;

}

/*
 * PART I
 *
 * For the first half of this demonstration, we will send data
 * to MATLAB, analyze the data, and plot the result.
 */

/*
 * Create a variable for our data.
 */
T = mxCreateDoubleMatrix(1, 10, mxREAL);
mxSetName(T, "T");
memcpy((void *)mxGetPr(T), (void *)time, sizeof(time));
/*
 * Place the variable T into the MATLAB workspace.
 */
engPutArray(ep, T);

/*
 * Evaluate a function of time, distance = (1/2)g.*t.^2
 * (g is the acceleration due to gravity).
 */
engEvalString(ep, "D = .5.*(–9.8).*T.^2;");

Examples
/*
 * Plot the result.
 */
engEvalString(ep, "plot(T,D);");
engEvalString(ep, "title('Position vs. Time for a falling

object');");
engEvalString(ep, "xlabel('Time (seconds)');");
engEvalString(ep, "ylabel('Position (meters)');");

/*
 * Use fgetc() to make sure that we pause long enough to be
 * able to see the plot.
 */
printf("Hit return to continue\n\n");
fgetc(stdin);
/*
 * We're done for Part I! Free memory, close MATLAB engine.
 */
printf("Done for Part I.\n");
mxDestroyArray(T);
engEvalString(ep, "close;");
/*
 * PART II
 *
 * For the second half of this demonstration, we will request
 * a MATLAB string, which should define a variable X. MATLAB
 * will evaluate the string and create the variable. We
 * will then recover the variable, and determine its type.
 */

/*
 * Use engOutputBuffer to capture MATLAB output, so we can
 * echo it back.
 */

engOutputBuffer(ep, buffer, BUFSIZE);
while (result == NULL) {
 char str[BUFSIZE];
6-7

6 Using the MATLAB Engine

6-8
 /*
 * Get a string input from the user.
 */
 printf("Enter a MATLAB command to evaluate. This

command should\n");
 printf("create a variable X. This program will then

determine\n");
 printf("what kind of variable you created.\n");
 printf("For example: X = 1:5\n");
 printf(">> ");

 fgets(str, BUFSIZE–1, stdin);

 /*
 * Evaluate input with engEvalString.
 */
 engEvalString(ep, str);
 /*
 * Echo the output from the command. First two characters
 * are always the double prompt (>>).
 */
 printf("%s", buffer+2);

 /*
 * Get result of computation.
 */
 printf("\nRetrieving X...\n");
 if ((result = engGetArray(ep,"X")) == NULL)
 printf("Oops! You didn't create a variable X.\n\n");
 else {

printf("X is class %s\t\n", mxGetClassName(result));
 }
}

Examples
/*
 * We're done! Free memory, close MATLAB engine and exit.
 */
printf("Done!\n");
mxDestroyArray(result);
engClose(ep);

return EXIT_SUCCESS;
}

The first part of this program launches MATLAB and sends it data. MATLAB
then analyzes the data and plots the results.

The program then continues with

Hit return to continue

Pressing Return continues the program.

Done for Part I.
Enter a MATLAB command to evaluate. This command should
create a variable X. This program will then determine
what kind of variable you created.
For example: X = 1:5
6-9

6 Using the MATLAB Engine

6-1
Entering X = 17.5 continues the program execution.

X = 17.5

X =

 17.5000

Retrieving X...
X is class double
Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

Fortran Example
This program, fengdemo.f, illustrates how to call the engine functions from a
stand-alone Fortran program.

C
C fengdemo.f
C
C This program illustrates how to call the
C MATLAB Engine functions from a Fortran program.
C
C Copyright (c) 1997-1998 The MathWorks, Inc.
C All rights reserved
C==
C $Revision: 1.2 $

 program main
C--
C (integer) Replace integer by integer*8 on the DEC Alpha
C and the SGI 64 platforms.
C
 integer engOpen, engGetMatrix, mxCreateFull, mxGetPr

integer ep, T, D, result
C--
0

Examples
C
C Other variable declarations here
 double precision time(10), dist(10)
 integer stat, temp
 data time / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 /
C
 ep = engOpen('matlab ')
C
 if (ep .eq. 0) then
 write(6,*) 'Can''t start MATLAB engine'
 stop
 endif
C
 T = mxCreateFull(1, 10, 0)
 call mxSetName(T, 'T')
 call mxCopyReal8ToPtr(time, mxGetPr(T), 10)
C
C
C Place the variable T into the MATLAB workspace.
C
 call engPutMatrix(ep, T)
C
C
C Evaluate a function of time, distance = (1/2)g.*t.^2
C (g is the acceleration due to gravity).
C
 call engEvalString(ep, 'D = .5.*(–9.8).*T.^2;')
C
C
C Plot the result.
C
 call engEvalString(ep, 'plot(T,D);')
 call engEvalString(ep, 'title(''Position vs. Time'')')
 call engEvalString(ep, 'xlabel(''Time (seconds)'')')
 call engEvalString(ep, 'ylabel(''Position (meters)'')')
C
6-11

6 Using the MATLAB Engine

6-1
C
C Read from console to make sure that we pause long enough to be
C able to see the plot.
C
 print *, 'Type 0 <return> to Exit'
 print *, 'Type 1 <return> to continue'

 read(*,*) temp

 if (temp.eq.0) then
 print *, 'EXIT!'
 stop
 end if
C
 call engEvalString(ep, 'close;')
C
 D = engGetMatrix(ep, 'D')
 call mxCopyPtrToReal8(mxGetPr(D), dist, 10)
 print *, 'MATLAB computed the following distances:'
 print *, ' time(s) distance(m)'
 do 10 i=1,10
 print 20, time(i), dist(i)
 20 format(' ', G10.3, G10.3)
 10 continue
C
C
 call mxFreeMatrix(T)
 call mxFreeMatrix(result)
 stat = engClose(ep)
C
 stop
 end
2

Examples
Executing this program launches MATLAB, sends it data, and plots the
results.

The program continues with

Type 0 <return> to Exit
Type 1 <return> to continue

Entering 1 at the prompt continues the program execution.

1
 MATLAB computed the following distances:
 time(s) distance(m)
 1.00 –4.90
 2.00 –19.6
 3.00 –44.1
 4.00 –78.4
 5.00 –123.
 6.00 –176.
 7.00 –240.
 8.00 –314.
 9.00 –397.
 10.0 –490.

Finally, the program frees memory, closes the MATLAB engine, and exits.
6-13

6 Using the MATLAB Engine

6-1
Compiling and Linking Engine Programs
To produce an executable version of an engine program, you must compile it
and link it with the appropriate library. This section describes the steps
required to compile and link engine programs on UNIX and Windows systems.
It begins by looking at a special consideration for compilers that do not mask
floating-point exceptions.

Special Considerations

Floating-Point Exceptions
Certain mathematical operations can result in nonfinite values. For example,
division by zero results in the nonfinite IEEE value, inf. A floating-point
exception occurs when such an operation is performed. Because MATLAB uses
an IEEE model that supports nonfinite values such as inf and NaN, MATLAB
disables, or masks, floating-point exceptions.

Some compilers do not mask floating-point exceptions by default. This causes
engine programs built with such compilers to terminate when a floating-point
exception occurs. Consequently, you need to take special precautions when
using these compilers to mask floating-point exceptions so that your engine
application will perform properly.

Note: MATLAB-based applications should never get floating-point
exceptions. If you do get a floating-point exception, verify that any third party
libraries that you link against do not enable floating-point exception handling.

This table shows the platforms and compilers on which you should mask
floating-point exceptions.

Platform Compiler

DEC Alpha DIGITAL Fortran 77

Linux Absoft Fortran

Windows Borland C++
4

Compiling and Linking Engine Programs
DEC Alpha. To mask floating-point exceptions on the DEC Alpha platform, use
the –fpe3 compile flag. For example,

f77 –fpe3

Absoft Fortran Compiler on Linux. To mask floating-point exceptions when using
the Absoft Fortran compiler on the Linux platform, you must add some code to
your program. Include the following at the beginning of your main() program,
before any calls to MATLAB API functions.

 integer cw, arm387
C
 cw = arm387(z'0000003F')
 cw = cw .or. z'0000003F'
 call arm387(cw)

Borland C++ Compiler on Windows. To mask floating-point exceptions when using
the Borland C++ compiler on the Windows platform, you must add some code
to your program. Include the following at the beginning of your main() or
WinMain() function, before any calls to MATLAB API functions.

#include <float.h>
.
.
.

_control87(MCW_EM,MCW_EM);
.
.
.

6-15

6 Using the MATLAB Engine

6-1
UNIX
Under UNIX at runtime, you must tell the system where the API shared
libraries reside. These sections provide the necessary UNIX commands
depending on your shell and system architecture.

Setting Runtime Library Path
In C shell, the command to set the library path is

setenv LD_LIBRARY_PATH <matlab>/extern/lib/$Arch:$LD_LIBRARY_PATH

In Bourne shell, the commands to set the library path are

LD_LIBRARY_PATH=<matlab>/extern/lib/$Arch:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

where:

<matlab> is the MATLAB root directory and $Arch is your system architecture
(alpha, lnx86, sgi, sol2, sun4, hp700, ibm_rs, or sgi64). Note that the
environment variable (LD_LIBRARY_PATH in this example) varies on several
platforms. Table 6-3 lists the different environment variable names you should
use on these systems.

It is convenient to place these commands in a startup script such as ~/.cshrc
for C shell or ~/.profile for Bourne shell.

Compiling and Linking Commands
Table 6-4 provides the commands required to compile and link engine C and
Fortran programs on UNIX platforms.

Table 6-3: Environment Variables Name

Architecture Environment Variable

HP700 SHLIB_PATH

IBM RS/6000 LIBPATH

SGI 64 LD_LIBRARY64_PATH
6

Compiling and Linking Engine Programs
You can now run the executable you have just produced.

Special Consideration for Fortran (f77) on HP-UX 10.x
In the version of the Fortran compiler (f77) that ships with HP-UX 10.x, the
meaning of the –L flag has changed. The –L flag now requests a listing. So, to
force the linker to see the libraries you want linked in with your code, use

f77 <include dir> –o <result> <source> –Wl,–L<matlab>/extern/lib/hp700 <libraries>

Table 6-4: Compiling and Linking Engine Programs

UNIX – C Command

HP700 cc –Aa <include dir> –o <result> <source> <libdir> <libraries>

SGI 64 cc –64 –mips4 <include dir> –o <result> <source> <libdir> <libraries>

Linux gcc –ansi <include dir> –o <result> <source> <libdir> <libraries>

SunOS 4.x acc <include dir> –o <result> <source> <libdir> <libraries>

All others cc <include dir> –o <result> <source> <libdir> <libraries>

UNIX – Fortran

SGI 64 f77 –64 –mips4 <include dir> –o <result> <source> <libdir> <libraries>

DEC Alpha f77 –fpe3 <include dir> –o <result> <source> <libdir> <libraries>

All others f77 <include dir> –o <result> <source> <libdir> <libraries>

where:
<include dir> is –I<matlab>/extern/include
<result> is the name of the resulting program
<source> is the list of source files
<libdir> is –L<matlab>/extern/lib/$ARCH
<libraries> is –leng –lmx
6-17

6 Using the MATLAB Engine

6-1
Windows
To compile and link engine programs, use the mex script with an engine options
file. watengmatopts.bat, wat11engmatopts.bat, bccengmatopts.bat,
df50engmatopts.bat, msvc50engmatopts.bat, and msvcengmatopts.bat are
stand-alone engine and MAT options files (located in <matlab>\bin). For
example, to compile and link a stand-alone engine application on Windows
using MSVC (Version 5.0) use

mex –f <matlab>\bin\msvc50engmatopts.bat filename.c

where filename is the name of the source file.
8

What Is ActiveX? 7-2
MATLAB ActiveX Client Support 7-4
Additional ActiveX Client Information 7-23
MATLAB ActiveX Automation Server Support 7-26
Additional ActiveX Server Information 7-30

Dynamic Data Exchange (DDE) 7-32
DDE Concepts and Terminology 7-32
Accessing MATLAB As a Server 7-34
Using MATLAB As a Client 7-39
DDE Advisory Links 7-41
7

Client/Server Applications

MATLAB ActiveX Integration 7-2

7 Client/Server Applications

7-2
MATLAB ActiveX Integration

What Is ActiveX?
ActiveX is a Microsoft Windows protocol for component integration. Using
ActiveX, developers and end users can select application-specific, ActiveX
components produced by different vendors and seamlessly integrate them into
a complete application solution. For example, a single application may require
database access, mathematical analysis, and presentation quality business
graphs. Using ActiveX, a developer may choose a database access component
by one vendor, a business graph component by another, and integrate these
into a mathematical analysis package produced by yet a third.

ActiveX Concepts and Terminology

COM. ActiveX is a family of related object-oriented technologies that have a
common root, called the Component Object Model, or COM. Each
object-oriented language or environment has an object model that defines
certain characteristics of objects in that environment, such as how objects are
located, instantiated, or identified. COM defines the object model for all
ActiveX objects.

ActiveX Interfaces. Each ActiveX object supports one or more named interfaces.
An interface is a logically related collection of methods, properties, and events.
Methods are similar to function calls in that they are a request for the object to
perform some action. Properties are state variables maintained by the object,
such as the color of text, or the name of a file on which the control is acting.
Events are notifications that the control forwards back to its client (similar to
Handle Graphics® callbacks.) For example, the sample control shipped with
MATLAB has the following methods, properties, and events:

Methods

Redraw - causes the control to redraw
Beep - causes the control to beep
AboutBox - display the control’s “About” dialog

Properties

Radius (integer) - sets the radius of the circle drawn by the control
Label (string) - text to be drawn in the control

MATLAB ActiveX Integration
Events

Click - fired when the user clicks on the control

One important characteristic of COM is that it defines an object model in which
objects support multiple interfaces. Some interfaces are standard interfaces,
which are defined by Microsoft and are part of ActiveX, and some interfaces are
custom interfaces, which are defined by individual component vendors. In
order to use any ActiveX object, you must learn about which custom interfaces
it supports, and the interface’s methods, properties, and events. The ActiveX
object’s vendor provides this information.

MATLAB ActiveX Support Overview
MATLAB supports two ActiveX technologies: ActiveX control containment and
ActiveX Automation. ActiveX controls are application components that can be
both visually and programmatically integrated into an ActiveX control
container, such as MATLAB figure windows. Some examples of useful ActiveX
controls are the Microsoft Internet Explorer Web Browser control, the
Microsoft Windows Communications control for serial port access, and the
graphical user interface controls delivered with the Visual Basic development
environment.

ActiveX Automation allows MATLAB to both control and be controlled by other
ActiveX components. When MATLAB is controlled by another component, it is
acting as an automation server. When MATLAB controls another component,
MATLAB is the automation client, and the other component is the automation
server.

MATLAB automation server capabilities include the ability to execute
commands in the MATLAB workspace, and to get and put matrices directly
from and into the workspace. MATLAB automation client capabilities allow
MATLAB, through M-code, to programmatically instantiate and manipulate
automation servers. The MATLAB automation client capabilities are a subset
of the MATLAB control containment support, since you use the automation
client capabilities to manipulate controls as well as automation servers. In
other words, all ActiveX controls are ActiveX automation servers, but not all
automation servers are necessarily controls.

In general, servers that are not controls will not be physically or visually
embedded in the client application. (MATLAB is a good example — MATLAB
is not itself a control, but it is a server. So, MATLAB cannot be physically
7-3

7 Client/Server Applications

7-4
embedded within another client. However, since MATLAB is a control
container, other ActiveX controls can be embedded within MATLAB.)

In addition, MATLAB ships with a very simple sample ActiveX control that
draws a circle on the screen and displays some text. This allows MATLAB users
to try out MATLAB’s ActiveX control support with a known control. For more
information, see the section, “MATLAB Sample Control.”

MATLAB ActiveX Client Support
In order to use an ActiveX component with MATLAB or with any ActiveX
client, you first need to consult the documentation for that object and find out
the name of the object itself (known as the “ProgID”), as well as the names of
the interfaces, methods, properties, and events that the object uses. Once you
have this information, you can integrate that object with MATLAB by using
the ActiveX client support.

Using ActiveX Objects
You create an ActiveX control or server in MATLAB by creating an instance of
the MATLAB activex class. Each instance represents one interface to the
object.

Note: This book uses ActiveX to refer to the generic ActiveX control/server
and activex to refer to the MATLAB class/object.

Creating ActiveX Objects. There are two commands used to create activex objects
initially

Once you create an activex object that represents an interface, you can
manipulate it by invoking methods on the object to perform various actions.

actxcontrol Creates an ActiveX control.

actxserver Creates an ActiveX automation server.

MATLAB ActiveX Integration
Manipulating the Interface. These methods are implemented for the activex class.

The creation commands, actxcontrol and actxserver, both return a
MATLAB activex object, which represents the default interface for the object
that was created. However, these objects may have other interfaces. It is
possible (and common) for interfaces to also be obtained by invoking a method
on, or getting a property from, an existing interface. The ActiveX get and
invoke methods automatically create and return new activex objects to
represent these additional interfaces.

When each interface is no longer needed, use the releasemethod to release the
interface. When the entire control or server is no longer needed, use the delete
command to delete it. See the section, “Releasing Interfaces,” for more details.

ActiveX Client Reference
This section contains the reference pages for the commands that create ActiveX
objects and manipulate their interfaces.

Method Description

invoke Invokes a method on an interface or displays a list of
methods.

set Sets a property on an interface.

get Gets a property value from an interface or displays a
list of properties.

propedit Asks the control to display its built-in property page.

release Releases an activex object.

send Displays a list of events.

delete Deletes an activex object.
7-5

7 Client/Server Applications

7-6
actxcontrol

Purpose

Create an ActiveX control in a figure window.

Syntax

h = actxcontrol (progid [, position [, handle ...
[,callback |{ event1 eventhandler1; ...

event2 eventhandler2; …}]]])

Arguments

progid

String that is the name of the control to create. The control vendor
provides this string.

position

Position vector containing the x and y location and the xsize and
ysize of the control, expressed in pixel units as [x y xsize ysize].
Defaults to [20 20 60 60].

handle

Handle Graphics handle of the figure window in which the control is
to be created. If the control should be invisible, use the handle of an
invisible figure window. Defaults to gcf.

callback

Name of an M-function that accepts a variable number of arguments.
This function will be called whenever the control triggers an event.
Each argument is converted to a MATLAB string; the first argument
is always a string that represents the numerical value of the event
that was triggered. These numerical values are defined by the control.
(See the section, “Writing Event Handlers,” for more information on
handling control events.)

event

Triggered event specified by either number or name.

eventhandler

Name of an M-function that accepts a variable number of arguments.
This function will be called whenever the control triggers the event

MATLAB ActiveX Integration
associated with it. The first argument is the activex object, the second
number represents the numerical value of the event that was
triggered. Note that the second number is not converted to a string as
is the case in the “callback” M-file style. These values are defined by
the control. See the section, “Writing Event Handlers,” for more
information on handling control events.

Note: There are two ways to handle events. You can create a single
callback or you can specify a cell array that contains pairs of events
and event handlers. In the cell array format, specify events by either
number or name. Each control defines event numbers and names.
There is no limit to the number of pairs that can be specified in the cell
array. Although using the single callback method may be easier in
some cases, using the cell array technique creates more efficient code
that results in better performance.

Returns

A MATLAB activex object that represents the default interface for
this control or server. Use the get, set, invoke, propedit, release,
and delete methods on this object. A MATLAB error will be
generated if this call fails.

Description

Create an ActiveX control at a particular location within a figure
window. If the parent figure window is invisible, the control will be
invisible. The returned MATLAB activex object represents the default
interface for the control. This interface must be released through a
call to release when it is no longer needed to free the memory and
resources used by the interface. Note that releasing the interface does
not delete the control itself (use the delete command to delete the
control.)

For an example callback event handler, see the file sampev.m in the
toolbox\matlab\winfun directory.
7-7

7 Client/Server Applications

7-8
Examples

Callback style:

f = figure ('pos', [100 200 200 200]);
% create the control to fill the figure
h = actxcontrol ('MWSAMP.MwsampCtrl.1', [0 0 200 200], ...

gcf, ‘sampev’)

Cell array style:

h = actxcontrol ('SELECTOR.SelectorCtrl.l', ...
[0 0 200 200], f, {–600 'myclick'; –601 'my2click'; ...
–605 'mymoused'})

h = actxcontrol ('SELECTOR.SelectorCtrl.l', ...
[0 0 200 200], f, {'Click' 'myclick'; ...
'DblClick' 'my2click'; 'MouseDown' 'mymoused'})

where the event handlers, myclick.m, my2click.m, and mymoused.m
are

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
varargin(5)
disp('The Y position is: ')
varargin(6)

You can use the same event handler for all the events you want to
monitor using the cell array pairs. Response time will be better than
using the callback style.

For example

h = actxcontrol('SELECTOR.SelectorCtrl.1', ...
[0 0 200 200], f, {'Click' 'allevents'; ...
'DblClick' 'allevents'; 'MouseDown' 'allevents'})

MATLAB ActiveX Integration
and allevents.m is

function allevents(varargin)
if (varargin{2} = –600)

disp ('Single Click Event Fired')
elseif (varargin{2} = –601)

disp ('Double Click Event Fired')
elseif (varargin{2} = –605)

disp ('Mousedown Event Fired')
end
7-9

7 Client/Server Applications

7-1
actxserver

Purpose

Create an ActiveX automation server and return an activex object for
the server’s default interface.

Syntax

h = actxserver (progid [, MachineName])

Arguments

progid

This is a string that is the name of the control to instantiate. This
string is provided by the control or server vendor and should be
obtained from the vendor’s documentation. For example, the progid
for Microsoft Excel is Excel.Application.

MachineName

This is the name of a remote machine on which the server is to be run.
This argument is optional and is used only in environments that
support Distributed Component Object Model (DCOM) — see below.
This can be an IP address or a DNS name.

Returns

An activex object that represents the server’s default interface. Use
the get, set, invoke, release, and delete methods on this object. A
MATLAB error will be generated if this call fails.

Description

Create an ActiveX automation server and return a MATLAB activex
object that represents the server’s default interface. Local/Remote
servers differ from controls in that they are run in a separate address
space (and possibly on a separate machine) and are not part of the
MATLAB process. Additionally, any user interface that they display
will be in a separate window and will not be attached to the MATLAB
process. Examples of local servers are Microsoft Excel and Microsoft
Word. Note that automation servers do not use callbacks or event
handlers.
0

MATLAB ActiveX Integration
Example

% launches Microsoft Excel & makes main frame window visible
h = actxserver ('Excel.Application')
set (h, 'Visible', 1);
7-11

7 Client/Server Applications

7-1
invoke

Purpose

Invoke a method on an object’s interface and retrieve the return value
of the method, if any, or display a list of methods.

Syntax

v = invoke (a [, 'methodname' [, arg1, arg2, …]])

Arguments

a

An activex object previously returned from actxcontrol, actxserver,
get, or invoke.

methodname

A string that is the name of the method to be invoked.

arg1, …, argn

Arguments, if any, required by the method being invoked.

Returns

The value returned by the method or a list of methods (if you use the
form invoke(a).) The data type of the value is dependent upon the
specific method being invoked and is determined by the specific
control or server. If the method returns an interface (described in
ActiveX documentation as an interface, or an Idispatch *), this method
will return a new MATLAB activex object that represents the
interface returned. See the section, “Data Conversions,” for a
description of how MATLAB converts ActiveX data types.

Description

Invoke a method on an object’s interface and retrieve the return value
of the method, if any. (Some methods have no return value.)
2

MATLAB ActiveX Integration
Example

Invoke a method:

f = figure ('pos', [100 200 200 200]);
% create the control to fill the figure
h = actxcontrol ('MWSAMP.MwsampCtrl.1', [0 0 200 200], f)
set (h, 'Radius', 100);
v = invoke (h, 'Redraw')

Display a list of methods:

invoke(h)

AboutBox = Void AboutBox ()
ShowPropertyPage = Void ShowPropertyPage ()
7-13

7 Client/Server Applications

7-1
set

Purpose

Set an interface property to a specific value.

Syntax

set (a [, 'propertyname' [, value [, arg1, arg2, …]]])

Arguments

a

An activex object handle previously returned from actxcontrol,
actxserver, get, or invoke.

propertyname

A string that is the name of the property to be set.

value

The value to which the interface property is set.

arg1, …, argn

Arguments, if any, required by the property. Properties are similar to
methods in that it is possible for a property to have arguments.

Returns

There is no return value from set.

Description

Set an interface property to a specific value. See the section, “Data
Conversions,” for information on how MATLAB converts workspace
matrices to ActiveX data types.

Example

f = figure ('pos', [100 200 200 200]);
% create the control to fill the figure
a = actxcontrol ('MWSAMP.MwsampCtrl.1', [0 0 200 200], f)
set (a, 'Label', 'Click to fire event');
set (a, 'Radius', 40);
invoke (a, 'Redraw');
4

MATLAB ActiveX Integration
get

Purpose

Retrieve a property value from an interface or get a list of properties.

Syntax

v = get (a [, 'propertyname' [, arg1, arg2, …]])

Arguments

a

An activex object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname

A string that is the name of the property value to be retrieved.

arg1, …, argn

Arguments, if any, required by the property being retrieved.
Properties are similar to methods in that it is possible for a property
to have arguments.

Returns

The value of the property or a list of properties (if you use the form
get(a)). The meaning and type of this value is dependent upon the
specific property being retrieved. The object’s documentation should
describe the specific meaning of the return value. See the section,
“Data Conversions,” for a description of how MATLAB converts
ActiveX data types.

Description

Retrieve a property value from an interface.

Note: You can use the return value of actxcontrol as an argument
to the get function to get a list of properties of the control and methods
that can be invoked.
7-15

7 Client/Server Applications

7-1
Examples

Retrieve a single, property value:

% get the string value of the 'Label' property
s = get (a, 'Label');

Retrieve a list of properties:

get(a)

AutoAlign = [–1]
AutoAngle = [–1]
AutoAngleConfine = [0]
AutoOffset = [–1]
.
.
.
SelectionOffsetY = [0]
SelectionRadius = [0.8]
Selections = [4]
Value = [0]
6

MATLAB ActiveX Integration
propedit

Purpose

Request the control to display its built-in property page.

Syntax

propedit (a)

Arguments

a

An interface handle previously returned from actxcontrol, get, or
invoke.

Description

Request the control to display its built-in property page. Note that
some controls do not have a built-in property page. For those objects,
this command will fail.

Example

propedit (a)
7-17

7 Client/Server Applications

7-1
release

Purpose

Releases an interface.

Syntax

release (a)

Arguments

a

Activex object that represents the interface to be released.

Description

Release the interface and all resources used by the interface. Each
interface handle must be released when you are finished
manipulating its properties and invoking its methods. Once an
interface has been released, it is no longer valid and subsequent
ActiveX operations on the MATLAB object that represents that
interface will result in errors.

Note: Releasing the interface will not delete the control itself (see
delete), since other interfaces on that object may still be active. See
the section, “Releasing Interfaces,” for more information.

Example

release (a)
8

MATLAB ActiveX Integration
send

Purpose

Returns a list of events that the control can trigger.

Syntax

send (a)

Arguments

a

Activex object returned by actxcontrol.

Description

Displays a list of events that controls send.

Example

send (a)

Change = Void Change ()
Click = Void Click ()
DblClick = Void DblClick ()
KeyDown = Void KeyDown (Variant(Pointer), Short)
KeyPress = Void KeyPress (Variant(Pointer), Short)
KeyUp = Void KeyUp (Variant(Pointer), Short)
MouseDown = Void MouseDown (Short, Short, Vendor-Defined,

Vendor-Defined)
MouseMove = Void MouseMove (Short, Short, Vendor-Defined,

Vendor-Defined)
MouseUp = Void MouseUp (Short, Short, Vendor-Defined,

Vendor-Defined)
7-19

7 Client/Server Applications

7-2
delete

Purpose

Delete an ActiveX control or server.

Syntax

delete (a)

Arguments

a

An activex object previously returned from actxcontrol, actxserver,
get, or invoke.

Description

Delete an ActiveX control or server. This is different than releasing an
interface, which releases and invalidates only that interface. delete
releases all outstanding interfaces and deletes the activex server or
control itself.

Example

delete (a)
0

MATLAB ActiveX Integration
Writing Event Handlers
ActiveX events are invoked when a control wants to notify its container that
something of interest has occurred. For example, many controls trigger an
event when the user single-clicks on the control. In MATLAB, when a control
is created, you may optionally supply a callback (also known as an event
handler function) as the last argument to the actxcontrol command or a cell
array that contains the event handlers.

h = actxcontrol (progid [, position [, handle ...
[, callback | {event1 eventhandler1; event2 eventhandler2; …}]]])

The event handler function (callback) is called whenever the control triggers
any event. The event handler function must be an M-function that accepts a
variable number of arguments of the following form:

function event (varargin)
if (str2num(vararg{1}) == –600)
 disp ('Click Event Fired');
end

All arguments passed to this function are MATLAB strings. The first argument
to the event handler is a string that represents the number of the event that
caused the event handler to be called. The remaining arguments are the values
passed by the control with the event. These values will vary with the particular
event and control being used. The list of events that control invocations and
their corresponding event numbers and parameters must be obtained from the
control’s documentation. In order to use events with MATLAB, you will need to
find out the numerical values that the control uses for each event so that you
can use these in the event handler.

The event handlers that are used in the cell array style are slightly different
than those used in the callback style. The first argument in the cell array style
is a reference to the object itself. The second argument is the event number,
which, unlike the callback style, is not a string that represents the number.
(Subsequent arguments vary depending on the event.)
7-21

7 Client/Server Applications

7-2
These sample event handlers, myclick.m, my2click.m, and mymoused.m
correspond to the actxcontrol example.

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
varargin(5)
disp('The Y position is: ')
varargin(6)

You can use the same event handler for all the events you want to monitor
using the cell array pairs. Response time will be better than using the callback
style.

For instance

h = actxcontrol('SELECTOR.SelectorCtrl.1', [0 0 200 200], f, ...
{'Click' 'allevents'; 'DblClick' 'allevents'; ...
'MouseDown' 'allevents'})

and allevents.m is

function allevents(varargin)
if (varargin{2} = –600)

disp ('Single Click Event Fired')
elseif (varargin{2} = –601)

disp ('Double Click Event Fired')
elseif (varargin{2} = –605)

disp ('Mousedown Event Fired')
end

Note: MATLAB does not support event arguments passed by reference or
return values from events.
2

MATLAB ActiveX Integration
Additional ActiveX Client Information

Releasing Interfaces
Each ActiveX object can support one or more interfaces. In MATLAB, an
interface is represented by an instance of the activex class. There are three
ways to get a valid interface object into the MATLAB workspace:

• Return value from actxcontrol/actxserver

• Return value from a property via get

• Return value from a method invocation via invoke

In each case, once the interface is represented by an activex object in the
workspace, it must be released when you are finished using it. Failure to
release interface handles will result in memory and resources being consumed.
Alternatively, you can use the delete command on any valid interface object,
and all interfaces for that object will automatically be released (and thus
invalidated), and the ActiveX server or control itself will be deleted.

MATLAB will automatically release all interfaces for an ActiveX control when
the figure window that contains that control is deleted or closed. MATLAB will
also automatically release all handles for an ActiveX automation server when
MATLAB is shut down.

Using ActiveX Collections
ActiveX collections are a way to support groups of related ActiveX objects that
can be iterated over. A collection is itself a special interface with a Count
property (read only), which contains the number of items in the collection, and
an Item method, which allows you to retrieve a single item from the collection.

The Item method is indexed, which means that it requires an argument that
specifies which item in the collection is being requested. The data type of the
index can be any data type that is appropriate for the particular collection and
is specific to the control or server that supports the collection. Although integer
indices are common, the index could just as easily be a string value. Often, the
return value from the Item method is itself an interface. Like all interfaces,
this interface should be released when you are finished with it.

This example iterates through the members of a collection. Each member of the
collection is itself an interface (called Plot and represented by a MATLAB
activex object called hPlot.) In particular, this example iterates through a
7-23

7 Client/Server Applications

7-2
collection of Plot interfaces, invokes the Redraw method for each interface, and
then releases each interface.

hCollection = get (hControl, 'Plots');
for i=1:get (hCollection, 'Count')
hPlot = invoke (hCollection, 'Item', i);

invoke (hPlot, 'Redraw');
release (hPlot);

end;
release (hCollection);

Data Conversions
Since ActiveX defines a number of different data formats and types, you will
need to know how MATLAB converts data from activex objects into variables
in the MATLAB workspace. Data from activex objects must be converted:

• When a property value is retrieved

• When a value is returned from a method invocation

This chart shows how ActiveX data types are converted into variables in the
MATLAB workspace.

ActiveX Data Type MATLAB Variable

String
File Time
Error
Decimal Date

MATLAB String

Currency
Hresult
Int/Unsigned (2, 4, 8)
Bool

Scalar Double

Real (Single/Double

Null NaN

Precision)
4

MATLAB ActiveX Integration
Using MATLAB As a DCOM Server Client
Distributed Component Object Model (DCOM) is an object distribution
mechanism that allows ActiveX clients to use remote ActiveX objects over a
network. At the time of this writing, DCOM is shipped with NT 4.0, and can be
obtained from Microsoft for Windows 95.

ActiveX Data Type MATLAB Variable

Empty
Unknown
Void

Carray

Not Converted (error)
Userdefined
Blob
Stream
Storage
Streamed Object
Stored Object
Blob Object
CF

Variant
Cell ArrayArray of Variant

IDispatch * activex Object

Currency
Hresult
Int/Unsigned (2, 4, 8)
Bool

Matrix of Double

Real (Single/Double

Array of

Ptr

Precision)
7-25

7 Client/Server Applications

7-2
MATLAB has been tested as a DCOM server with Windows NT 4.0 only.
Additionally, MATLAB can be used as a DCOM client with remote automation
servers if the operating system on which MATLAB is running is DCOM
enabled.

Note: If you use MATLAB as a remote DCOM server, all MATLAB windows
will appear on the remote machine.

MATLAB ActiveX Control Container Limitations
The following is a list of limitations of MATLAB ActiveX support:

• MATLAB only supports indexed collections.

• ActiveX controls are not printed with figure windows.

• MATLAB does not support event arguments passed by reference.

• MATLAB does not support returning values from event handler functions.

• The position vector of a control cannot be changed or queried.

• MATLAB does not support method or event arguments passed by reference.

MATLAB Sample Control
MATLAB ships with a very simple example ActiveX control that draws a circle
on the screen, displays some text, and fires a “clicked” event when the user
clicks on the control. This control makes it easy to try out ActiveX control
support with a known control. The control can be created by running the
mwsamp file in the winfun directory.

The control is stored in the MATLAB bin (executable) directory along with the
control’s “type library” (a binary file used by ActiveX tools to decipher the
control’s capabilities).

MATLAB ActiveX Automation Server Support
MATLAB on Microsoft Windows supports ActiveX Automation server
capabilities. Automation is an ActiveX protocol that allows one application or
component (the “controller”) to control another application or component (the
“server”). Thus, MATLAB can be launched and controlled by any Windows
program that can be an Automation Controller. Some examples of applications
6

MATLAB ActiveX Integration
that can be Automation Controllers are Microsoft Excel, Microsoft Access,
Microsoft Project, and many Visual Basic and Visual C++ programs. Using
Automation, you can execute MATLAB commands, and get and put mxArrays
from and to the MATLAB workspace.

To use MATLAB as an automation server, follow steps 1 and 2.

1 Consult the documentation of your controller to find out how to invoke an
ActiveX Automation server. The name of the MATLAB ActiveX object that
is placed in the registry is Matlab.Application. Exactly how you invoke the
MATLAB server depends on which controller you choose, but all controllers
require this name to identify the server.

2 The ActiveX Automation interface to MATLAB supports several “methods,”
which are described below. Here is a Visual Basic code fragment that
invokes the MATLAB Automation Execute method, and that works in
Microsoft Excel or any other Visual Basic or Visual Basic for Applications
(VBA)-enabled application. The Execute method takes a command string as
an argument and returns the results as a string. The command string can
be any command that would normally be typed in the command window; the
result contains any output that would have been printed to the command
window as a result of executing the string, including errors.

Dim MatLab As Object
Dim Result As String

Set MatLab = CreateObject("Matlab.Application")
Result = MatLab.Execute("surf(peaks)")

MATLAB ActiveX Automation Methods
This section lists the methods that are supported by the MATLAB Automation
Server. The data types for the arguments and return values are expressed as
ActiveX Automation data types, which are language-independent types
defined by the ActiveX Automation protocol. For example, BSTR is a
wide-character string type defined as an Automation type, and is the same data
format used by Visual Basic to store strings. Any ActiveX-compliant controller
should support these data types, although the details of how you declare and
manipulate these are controller specific.
7-27

7 Client/Server Applications

7-2
BSTR Execute([in] BSTR Command);

This command accepts a single string (Command), which contains any command
that can be typed at the MATLAB command window prompt. MATLAB will
execute the command and return the results as a string. Any figure windows
generated by the command are displayed on the screen as if the command were
executed directly from the command window or an M-file. A Visual Basic
example is

Dim MatLab As Object
Dim Result As String

Set MatLab = CreateObject("Matlab.Application")
Result = MatLab.Execute("surf(peaks)")

void GetFullMatrix(
[in] BSTR Name,
[in] BSTR Workspace,
[in, out] SAFEARRAY(double)* pr,
[in, out] SAFEARRAY(double)* pi);

This method retrieves a full, one- or two-dimensional real or imaginary
mxArray from the named workspace. The real and (optional) imaginary parts
are retrieved into separate arrays of doubles.

Name. Identifies the name of the mxArray to be retrieved.

Workspace. Identifies the workspace that contains the mxArray. Use the
workspace name “base” to retrieve an mxArray from the default MATLAB
workspace. Use the workspace name “global” to put the mxArray into the global
MATLAB workspace. The “caller” workspace does not have any context in the
API when used outside of MEX-files.

pr. Array of reals that is dimensioned to be the same size as the mxArray being
retrieved. On return, this array will contain the real values of the mxArray.

pi. Array of reals that is dimensioned to be the same size as the mxArray being
retrieved. On return, this array will contain the imaginary values of the
mxArray. If the requested mxArray is not complex, an empty array must be
8

MATLAB ActiveX Integration
passed. In Visual Basic, an empty array is declared as
Dim Mempty() as Double. A Visual Basic example of this method is

Dim MatLab As Object
Dim Result As String
Dim MReal(1, 3) As Double
Dim MImag() As Double
Dim RealValue As Double
Dim i, j As Integer

rem We assume that the connection to MATLAB exists.
Result = MatLab.Execute("a = [1 2 3 4; 5 6 7 8;]")
Call MatLab.GetFullMatrix("a", "base", MReal, MImag)

For i = 0 To 1
For j = 0 To 3
RealValue = MReal(i, j)

Next j
Next i

void PutFullMatrix(
[in] BSTR Name,
[in] BSTR Workspace,
[in] SAFEARRAY(double) pr,
[in] SAFEARRAY(double) pi);

This method puts a full, one- or two-dimensional real or imaginary mxArray
into the named workspace. The real and (optional) imaginary parts are passed
in through separate arrays of doubles.

Name. Identifies the name of the mxArray to be placed.

Workspace. Identifies the workspace into which the mxArray should be placed.
Use the workspace name “base” to put the mxArray into the default MATLAB
workspace. Use the workspace name “global” to put the mxArray into the global
MATLAB workspace. The “caller” workspace does not have any context in the
API when used outside of MEX-files.

pr. Array of reals that contains the real values for the mxArray.

pi. Array of reals that contains the imaginary values for the mxArray. If the
mxArray that is being sent is not complex, an empty array must be passed for
7-29

7 Client/Server Applications

7-3
this parameter. In Visual Basic, an empty array is declared as Dim Mempty()
as Double. A Visual Basic example of this method is

Dim MatLab As Object
Dim MReal(1, 3) As Double
Dim MImag() As Double
Dim i, j As Integer
For i = 0 To 1

For j = 0 To 3
MReal(i, j) = I * j;

Next j
Next I
rem We assume that the connection to MATLAB exists.
Call MatLab.PutFullMatrix("a", "base", MReal, MImag)

Additional ActiveX Server Information

Launching the MATLAB ActiveX Server
For MATLAB to act as an automation server, it must be started with the
/Automation command line argument. Microsoft Windows does this
automatically when an ActiveX connection is established by a controller.
However, if MATLAB is already running and was launched without this
parameter, any request by an automation controller to connect to MATLAB as
a server will cause Windows to launch another instance of MATLAB with the
/Automation parameter. This protects controllers from interfering with any
interactive MATLAB sessions that may be running.

Specifying a Shared or Dedicated Server
You can launch the MATLAB Automation server in one of two modes — shared
or dedicated. A dedicated server is dedicated to a single client; a shared server
is shared by multiple clients.

The mode is determined by the Program ID (ProgID) used by the client to
launch MATLAB. The ProgID, Matlab.Application, (or the version-specific
ProgID, Matlab.Application.5) specifies the default mode, which is shared.
To specify a dedicated server, use the ProgID, Matlab.Application.Single,
(or the version-specific ProgID, Matlab.Application.Single.5). The term
Single refers to the number of clients that may connect to this server.
0

MATLAB ActiveX Integration
Once MATLAB is launched as a shared server, all clients that request a
connection to MATLAB by using the shared server ProgID will connect to the
already running instance of MATLAB. In other words, there is never more than
one instance of a shared server running, since it is shared by all clients that use
the ProgID that specifies a shared server.

Note: Clients will not connect to an interactive instance of MATLAB, that is,
an instance of MATLAB that was launched manually and without the
/Automation command line flag.

Each client that requests a connection to MATLAB using a dedicated ProgID
will cause a separate instance of MATLAB to be launched, and that server will
not be shared with any other client. Therefore, there can be several instances
of a dedicated server running simultaneously, since the dedicated server is not
shared by multiple clients.

Using MATLAB As a DCOM Server
DCOM is a protocol that allows ActiveX connections to be established over a
network. If you are using a version of Windows that supports DCOM (Windows
NT 4.0 at the time of this writing) and a controller that supports DCOM, you
can use the controller to launch MATLAB on a remote machine. To do this,
DCOM must be configured properly, and MATLAB must be installed on each
machine that is used as a client or server. (Even though the client machine will
not be running MATLAB in such a configuration, the client machine must have
a MATLAB installation because certain MATLAB components are required to
establish the remote connection.) Consult the DCOM documentation for how to
configure DCOM for your environment.
7-31

7 Client/Server Applications

7-3
Dynamic Data Exchange (DDE)
MATLAB provides functions that enable MATLAB to access other Windows
applications and for other Windows applications to access MATLAB in a wide
range of contexts. These functions use dynamic data exchange (DDE), software
that allows Microsoft Windows applications to communicate with each other by
exchanging data.

This section describes these new DDE functions in the following order:

• DDE Concepts and Terminology

• Accessing MATLAB As a Server

• Using MATLAB As a Client

• DDE Advisory Links

DDE Concepts and Terminology
Applications communicate with each other by establishing a DDE
conversation. The application that initiates the conversation is called the client.
The application that responds to the client application is called the server.

When a client application initiates a DDE conversation, it must identify two
DDE parameters that are defined by the server:

• The name of the application it intends to have the conversation with, called
the service name

• The subject of the conversation, called the topic

When a server application receives a request for a conversation involving a
supported topic, it acknowledges the request, establishing a DDE conversation.
The combination of a service and a topic identifies a conversation uniquely. The
service or topic cannot be changed for the duration of the conversation,
although the service can maintain more than one conversation.

During a DDE conversation, the client and server applications exchange data
concerning items. An item is a reference to data that is meaningful to both
applications in a conversation. Either application can change the item during
a conversation. These concepts are discussed in more detail below.
2

Dynamic Data Exchange (DDE)
The Service Name
Every application that can be a DDE server has a unique service name. The
service name is usually the application’s executable filename without any
extension. Service names are not case sensitive. Here are some commonly used
service names:

• The service name for MATLAB is Matlab.

• The service name for Microsoft Word for Windows is WinWord.

• The service name for Microsoft Excel is Excel.

For the service names of other Windows applications, refer to the application
documentation.

The Topic
The topic defines the subject of a DDE conversation and is usually meaningful
to both the client and server applications. Topic names are not case sensitive.
MATLAB topics are System and Engine and are discussed below in the section,
“Accessing MATLAB As a Server.” Most applications support the System topic
and at least one other topic. Consult your application documentation for
information about supported topics.

The Item
Each topic supports one or more items. An item identifies the data being passed
during the DDE conversation. Case sensitivity of items depends on the
application. MATLAB Engine items are case sensitive if they refer to matrices
because matrix names are case sensitive.

Clipboard Formats
DDE uses the Windows clipboard formats for formatting data sent between
applications. As a client, MATLAB supports only Text format. As a server,
MATLAB supports Text, Metafilepict, and XLTable formats, described below.

• Text – Data in Text format is a buffer of characters terminated by the null
character. Lines of text in the buffer are delimited by a carriage return
line-feed combination. If the buffer contains columns of data, those columns
are delimited by the tab character. MATLAB supports Text format for
7-33

7 Client/Server Applications

7-3
obtaining the results of a remote EvalString command and requests for
matrix data. Also, matrix data can be sent to MATLAB in Text format.

• Metafilepict – Metafilepict format is a description of graphical data
containing the drawing commands for graphics. As a result, data stored in
this format is scalable and device independent. MATLAB supports
Metafilepict format for obtaining the result of a remote command that causes
some graphic action to occur.

• XLTable – XLTable format is the clipboard format used by Microsoft Excel
and is supported for ease and efficiency in exchanging data with Excel.
XLTable format is a binary buffer with a header that describes the data held
in the buffer. For a full description of XLTable format, consult the Microsoft
Excel SDK documentation.

Accessing MATLAB As a Server
A client application can access MATLAB as a DDE server in the following
ways, depending on the client application:

• If you are using an application that provides functions or macros to conduct
DDE conversations, you can use these functions or macros. For example,
Microsoft Excel, Word for Windows, and Visual Basic provide DDE functions
or macros. For more information about using these functions or macros, see
the appropriate Microsoft documentation.

• If you are creating your own application, you can use the MATLAB Engine
Library or DDE directly. For more information about using the Engine
Library, see “Interprocess Communication: The MATLAB Engine,” in
Chapter 6. For more information about using DDE routines, see the
Microsoft Windows Programmer’s Guide.

The figure below illustrates how MATLAB communicates as a server. DDE
functions in the client application communicate with MATLAB’s DDE server
module. The client’s DDE functions can be provided by either the application
or the MATLAB Engine Library.

MATLAB

DDE Server
Module

Client Application

DDE Functions
Conversation
4

Dynamic Data Exchange (DDE)
The DDE Name Hierarchy
When you access MATLAB as a server, you must specify its service name, topic,
and item. The figure below illustrates the MATLAB DDE name hierarchy.
Topics and items are described in more detail below.

MATLAB DDE Topics
MATLAB topics are System and Engine:

• The System topic allows users to browse the list of topics provided by the
server, the list of System topic items provided by the server, and the formats
supported by the server. These items are described in more detail below.

• The Engine topic allows users to use MATLAB as a server by passing it a
command to execute, requesting data, or sending data. These items are also
described in more detail below.

MATLAB

System

Engine

SysItems

Format

Topics

EngEvalString

EngStringResult

EngFigureResult

<matrix name>

service

topics

items
7-35

7 Client/Server Applications

7-3
MATLAB System Topic Support. The MATLAB System topic supports these items:

• SysItems provides a tab-delimited list of items supported under the System
topic (this list).

• Format provides a tab-delimited list of string names of all the formats
supported by the server. MATLAB supports Text, Metafilepict, and XLTable.
These formats are described above in the “Clipboard Formats” section.

• Topics provides a tab-delimited list of the names of the topics supported by
MATLAB.

MATLAB Engine Topic Support. The MATLAB Engine topic supports three
operations that may be used by applications with a DDE client interface. These
operations include sending commands to MATLAB for evaluation, requesting
data from MATLAB, and sending data to MATLAB.

Sending Commands to MATLAB for Evaluation – Clients send commands to
MATLAB using the DDE execute operation. The Engine topic supports DDE
execute in two forms because some clients require that you specify the item
name and the command to execute, while others require only the command.
Where an item name is required, use EngEvalString. In both forms, the format
of the command must be Text. Most clients default to Text for DDE execute. If
the format cannot be specified, it is probably Text. The table shows a summary
of the DDE execute parameters.

Requesting Data from MATLAB – Clients request data from MATLAB using
the DDE request operation. The Engine topic supports DDE requests for three
functions: text that is the result of the previous DDE execute command,
graphical results of the previous DDE execute command, and the data for a
specified matrix.

You request the string result of a DDE execute command using the
EngStringResult item with Text format.

Item Format Command

EngEvalString Text String

null Text String
6

Dynamic Data Exchange (DDE)
You request the graphical result of a DDE execute command using the
EngFigureResult item. The EngFigureResult item can be used with Text or
Metafilepict formats.

• Specifying the Text format results in a string having a value of “yes” or “no.”
If the result is “yes,” the metafile for the current figure is placed on the
clipboard. This functionality is provided for DDE clients that can retrieve
only text from DDE requests, such as Word for Windows. If the result is “no,”
no metafile is placed on the clipboard.

• Specifying the Metafilepict format when there is a graphical result causes a
metafile to be returned directly from the DDE request.

You request the data for a matrix by specifying the name of the matrix as the
item. You can specify either the Text or XLTable format.

The table shows a summary of the DDE request parameters.

Sending Data to MATLAB – Clients send data to MATLAB using the DDE poke
operation. The Engine topic supports DDE poke for updating or creating new
matrices in the MATLAB workspace. The item specified is the name of the
matrix to be updated or created. If a matrix with the specified name already
exists in the workspace it will be updated; otherwise it will be created. The
matrix data can be in Text or XLTable format.

Item Format Result

EngStringResult Text String

EngFigureResult Text Yes/No

EngFigureResult Metafilepict Metafile of the current figure

<matrix name> Text Character buffer, tab-delimited
columns, CR/LF-delimited rows

<matrix name> XLTable Binary data in a format compatible
with Microsoft Excel
7-37

7 Client/Server Applications

7-3
The table shows a summary of the DDE poke parameters.

Example: Using Visual Basic and the MATLAB DDE Server
This example shows a Visual Basic form that contains two text edit controls,
TextInput and TextOutput. This code is the TextInput_KeyPress method.

Sub TextInput_KeyPress(KeyAscii As Integer)
rem If the user presses the return key
rem in the TextInput control.
If KeyAscii = vbKeyReturn then

rem Initiate the conversation between the TextInput
rem control and MATLAB under the Engine topic.
rem Set the item to EngEvalString.

TextInput.LinkMode = vbLinkNone
TextInput.LinkTopic = "MATLAB|Engine"
TextInput.LinkItem = "EngEvalString"
TextInput.LinkMode = vbLinkManual

rem Get the current string in the TextInput control.
rem This text is the command string to send to MATLAB.

szCommand = TextInput.Text

rem Perform DDE Execute with the command string.
TextInput.LinkExecute szCommand
TextInput.LinkMode = vbLinkNone

Item Format Poke Data

<matrix name> Text Character buffer, tab-delimited
columns, CR/LF-delimited rows

<matrix name> XLTable Binary data in a format compatible
with Microsoft Excel
8

Dynamic Data Exchange (DDE)
rem Initiate the conversation between the TextOutput
rem control and MATLAB under the Engine topic.
rem Set the item to EngStringResult.

TextOutput.LinkMode = vbLinkNone
TextOutput.LinkTopic = "MATLAB|Engine"
TextOutput.LinkItem = "EngStringResult"
TextOutput.LinkMode = vbLinkManual

rem Request the string result of the previous EngEvalString
rem command. The string ends up in the text field of the
rem control TextOutput.text.

TextOutput.LinkRequest
TextOutput.LinkMode = vbLinkNone

End If
End Sub

Using MATLAB As a Client
For MATLAB to act as a client application, you can use the MATLAB DDE
client functions to establish and maintain conversations.

This figure illustrates how MATLAB communicates as a client to a server
application.

MATLAB

DDE Client
Module

Server Application

Conversation DDE Server
Module
7-39

7 Client/Server Applications

7-4
MATLAB’s DDE client module includes a set of functions. This table describes
the functions that enable you to use MATLAB as a client.

If the server application is Microsoft Excel, you can specify the System topic or
a topic that is a filename. If you specify the latter, the filename ends in .XLS or
.XLC and includes the full path if necessary. A Microsoft Excel item is a cell
reference, which can be an individual cell or a range of cells.

Microsoft Word for Windows topics are System and document names that are
stored in files whose names end in .DOC or .DOT. A Word for Windows item is
any bookmark in the document specified by the topic.

Function Description

ddeadv Sets up advisory link between MATLAB and DDE server
application.

ddeexec Sends execution string to DDE server application.

ddeinit Initiates DDE conversation between MATLAB and another
application.

ddepoke Sends data from MATLAB to DDE server application.

ddereq Requests data from DDE server application.

ddeterm Terminates DDE conversation between MATLAB and server
application.

ddeunadv Releases advisory link between MATLAB and DDE server
application.
0

Dynamic Data Exchange (DDE)
The following example is an M-file that establishes a DDE conversation with
Microsoft Excel, and then passes a 20-by-20 matrix of data to Excel.

% Initialize conversation with Excel.
chan = ddeinit('excel', 'Sheet1');

% Create a surface of peaks plot.
h = surf(peaks(20));
% Get the z data of the surface
z = get(h, 'zdata');

% Set range of cells in Excel for poking.
range = 'r1c1:r20c20';

% Poke the z data to the Excel spread sheet.
rc = ddepoke(chan, range, z);

DDE Advisory Links
You can use DDE to notify a client application when data at a server has
changed. For example, if you use MATLAB to analyze data entered in an Excel
spreadsheet, you can establish a link that causes Excel to notify MATLAB
when this data changes. You can also establish a link that automatically
updates a matrix with the new or modified spreadsheet data.

MATLAB supports two kinds of advisory links, distinguished by the way in
which the server application advises MATLAB when the data that is the
subject of the item changes at the server.

• A hot link causes the server to supply the data to MATLAB when the data
defined by the item changes.

• A warm link causes the server to notify MATLAB when the data changes but
supplies the data only when MATLAB requests it.

You set up and release advisory links with the ddeadv and ddeunadv functions.
MATLAB only supports links when MATLAB is a client.

This example establishes a DDE conversation between MATLAB, acting as a
client, and Microsoft Excel. The example extends the example in the previous
section by creating a hot link with Excel. The link updates matrix z and
evaluates a callback when the range of cells changes. A push-button, user
interface control terminates the advisory link and the DDE conversation when
7-41

7 Client/Server Applications

7-4
pressed. (For more information about creating a graphical user interface, see
the MATLAB manual Building GUIs with MATLAB.)

% Initialize conversation with Excel.
chan = ddeinit('excel', 'Sheet1');

% Set range of cells in Excel for poking.
range = 'r1c1:r20c20';

% Create a surface of peaks plot.
h = surf(peaks(20));

% Get the z data of the surface.
z = get(h, 'zdata');

% Poke the z data to the Excel spread sheet.
rc = ddepoke(chan, range, z);

% Set up a hot link ADVISE loop with Excel
% and the MATLAB matrix 'z'.
% The callback sets the zdata and cdata for
% the surface h to be the new data sent from Excel.
rc = ddeadv(chan, range,...

'set(h,''zdata'',z);set(h,''cdata'',z);','z');

% Create a push button that will end the ADVISE link,
% terminate the DDE conversation,
% and close the figure window.
c = uicontrol('String','&Close','Position',[5 5 80 30],...

'Callback',...
'rc = ddeunadv(chan,range);ddeterm(chan);close;');
2

UNIX . 8-5
Windows . 8-7

Troubleshooting 8-11
MEX-File Creation 8-11
Understanding MEX-File Problems 8-12
Memory Management Compatibility Issues 8-16
8

System Setup

Custom Building MEX-Files 8-2

8 System Setup

8-2
Custom Building MEX-Files
This section discusses in detail the process that the MEX-file build script uses.
In general, the defaults that come with MATLAB should be sufficient for
building most MEX-files. There are reasons that you might need more detailed
information, such as:

• You want to use an Integrated Development Environment (IDE), rather than
the provided script, to build MEX-files.

• You want to create a new options file, for example, to use a compiler that is
not directly supported.

• You want to exercise more control over the build process than the script uses.

The script, in general, uses two stages (or three, for Microsoft Windows) to
build MEX-files. These are the compile stage and the link stage. In between
these two stages, Windows compilers must perform some additional steps to
prepare for linking (the prelink stage).

The mex script has a set of switches that you can use to modify the link and
compile stages. Table 8-1 lists the available switches and their uses.

Table 8-1: MEX Script Switches

Switch Function

–argcheck Perform argument checking on MATLAB API
functions (C functions only).

–c Compile only; do not link.

–D<name>[=<def>] (UNIX) Define C preprocessor macro <name> [as
having value <def>].

–D<name> (Windows) Define C preprocessor macro <name>.

–f <file> (UNIX and Windows) Use <file> as the options file;
<file> is a full pathname if it is not in current
directory. (On Windows, not necessary if you use the
–setup option.)

Custom Building MEX-Files
–F <file> (UNIX) Use <file> as the options file. <file> is
searched for in the following order:

The file that occurs first in this list is used:

• ./<filename>
• $HOME/matlab/<filename>
• $TMW_ROOT/bin/<filename>

–F <file> (Windows) Use <file> as the options file. (Not
necessary if you use the –setup option.) <file> is
searched for in the current directory first and then
in the same directory as mex.bat.

–g Build an executable with debugging symbols
included.

–h[elp] Help; lists the switches and their functions.

–I<pathname> Include <pathname> in the compiler include search
path.

–l<file> (UNIX) Link against library lib<file>.

–L<pathname> (UNIX) Include <pathname> in the list of directories
to search for libraries.

<name>=<def> (UNIX) Override options file setting for variable
<name>.

–n No execute flag. Using this option causes the
commands that would be used to compile and link
the target to be displayed without executing them.

–output <name> Create an executable named <name>. (An
appropriate executable extension is automatically
appended.)

–O Build an optimized executable.

Table 8-1: MEX Script Switches (Continued)

Switch Function
8-3

8 System Setup

8-4
For customizing the build process, you should modify the options file, which
contains the compiler-specific flags corresponding to the general compile,
prelink, and link steps required on your system. The options file consists of a
series of variable assignments; each variable represents a different logical
piece of the build process.

Locating the Default Options File
For UNIX, the default options file provided with MATLAB is located in
<matlab>/bin. For Windows, the default options file is in <matlab>\bin.

On UNIX, the mex script will look for an options file called mexopts.sh in the
current directory first. It searches next in your $HOME/matlab directory, and
finally in <matlab>/bin. On Windows, the mex script assumes that the options
file, mexopts.bat, is in the same directory as mex.bat, i.e., <matlab>\bin. On
both platforms, you can directly specify the name of the options file using the
–f switch.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file in <matlab>/bin/mexopts.sh
(<matlab>\bin\mexopts.bat in Windows), or you can invoke the mex script in
verbose mode.

The following section provides additional details regarding each of these
stages. However, there is a general way to obtain specifics on the build process,
which is the verbose option to the mex script (the –v flag). This will print the
exact compiler options, prelink commands (if appropriate), and linker options
used. The following section gives an overview of the high-level process; for

–setup (Windows) Set up default options file. This switch
should be the only argument passed.

–U<name> (UNIX and Windows) Undefine C preprocessor
macro <name>.

–V4 Compile MATLAB 4-compatible MEX-files.

–v Verbose; print all compiler and linker settings.

Table 8-1: MEX Script Switches (Continued)

Switch Function

Custom Building MEX-Files
exact flags provided for each compiler, invoke the mex script with the verbose
flag.

UNIX
On UNIX systems, there are two stages in MEX-file building: compiling and
linking. The compile stage must:

• Add <matlab>/extern/include to the list of directories in which to find
header files (–I<matlab>/extern/include)

• Define the preprocessor macro MATLAB_MEX_FILE (–DMATLAB_MEX_FILE)

• (C MEX-files only) Compile the source file, which contains version
information for the MEX-file, <matlab>/extern/src/mexversion.c

For all platforms except SunOS 4.x, the link stage must:

• Instruct the linker to build a shared library

• Link all objects from compiled source files (including mexversion.c)

• (Fortran MEX-files only) Link in the precompiled versioning source file,
<matlab>/extern/lib/$Arch/version4.o

• Export the symbols mexFunction and mexVersion (these symbols represent
functions called by MATLAB)

For Fortran MEX-files, the symbols are all lower case and may have appended
underscores. For specific information, invoke the mex script in verbose mode
and examine the output.

On the SunOS 4.x platform, the link stage is more complicated. The mex script
does a test run of the linker to see what libraries need to be linked in, and what
flags need to be used. The output of the test run, and the final flags and
libraries used, are different for each compiler and compiler version. However,
they are displayed in the verbose output.

For customizing the build process, you should modify the options file. The
options file contains the compiler-specific flags corresponding to the general
steps outlined above. The options file consists of a series of variable
assignments; each variable represents a different logical piece of the build
process. The options files provided with MATLAB are located in <matlab>/bin.
8-5

8 System Setup

8-6
The mex script looks for an options file called mexopts.sh first in the current
directory, then in your $HOME/matlab directory, and finally in <matlab>/bin.
You can also directly specify the name of the options file using the –f option.

To aid in providing flexibility, there are two sets of options in the options file
that can be turned on and off with switches to the mex script. These sets of
options correspond to building in “debug mode” and building in “optimization
mode.” They are represented by the variables DEBUGFLAGS and OPTIMFLAGS,
respectively, one pair for each “driver” that is invoked (CDEBUGFLAGS for the C
compiler, FDEBUGFLAGS for the Fortran compiler, and LDDEBUGFLAGS for the
linker; similarly for the OPTIMFLAGS).

• If you build in optimization mode (the default), the mex script will include the
OPTIMFLAGS options in the compile and link stages.

• If you build in debug mode, the mex script will include the DEBUGFLAGS
options in the compile and link stages, but will not include the OPTIMFLAGS
options.

• You can include both sets of options by specifying both the optimization and
debugging flags to the mex script (–O and –g, respectively).

Aside from these special variables, the mex options file defines the executable
invoked for each of the three modes (C compile, Fortran compile, link) and the
flags for each stage. You can also provide explicit lists of libraries that must be
linked in to all MEX-files containing source files of each language.

Custom Building MEX-Files
The variables can be summed up as follows:

For specifics on the default settings for these variables, you can

• Examine the options file in <matlab>/bin/mexopts.sh
(or the options file you are using), or

• Invoke the mex script in verbose mode

Windows
There are three stages to MEX-file building for both C and Fortran on Windows
– compiling, prelinking, and linking. The compile stage must:

• Set up paths to the compiler using the COMPILER (e.g., Watcom), PATH,
INCLUDE, and LIB environment variables. If your compiler always has the
environment variables set (e.g., in AUTOEXEC.BAT), you can remark them out
in the options file.

• Define the name of the compiler, using the COMPILER environment variable,
if needed.

• Define the compiler switches in the COMPLFLAGS environment variable.

a The switch to create a DLL is required for MEX-files.

b For stand-alone programs, the switch to create an exe is required.

c The –c switch (compile only; do not link) is recommended.

d The switch to specify 8-byte alignment.

e Any other switch specific to the environment can be used.

Variable C Compiler Fortran Compiler Linker

Executable CC FC LD

Flags CFLAGS FFLAGS LDFLAGS

Optimization COPTIMFLAGS FOPTIMFLAGS LDOPTIMFLAGS

Debugging CDEBUGFLAGS FDEBUGFLAGS LDDEBUGFLAGS

Additional libraries CLIBS FLIBS ----
8-7

8 System Setup

8-8
• Define preprocessor macro, with –D, MATLAB_MEX_FILE is required.

• Set up optimizer switches and/or debug switches using OPTIMFLAGS and
DEBUGFLAGS. These are mutually exclusive: the OPTIMFLAGS are the default,
and the DEBUGFLAGS are used if you set the –g switch on the mex command
line.

The prelink stage dynamically creates import libraries to import the required
function into the MEX, MAT, or engine file. All MEX-files link against
MATLAB only. MAT stand-alone programs link against libmx.dll (array
access library) and libmat.dll (MAT-functions). Engine stand-alone programs
link against libmx.dll (array access library) and libeng.dll for engine
functions. MATLAB and each DLL have corresponding .def files of the same
names located in the <matlab>\extern\include directory.

Finally, the link stage must:

• Define the name of the linker in the LINKER environment variable.

• Define the LINKFLAGS environment variable that must contain:

- The switch to create a DLL for MEX-files, or the switch to create an exe
for stand-alone programs.

- Export of the entry point to the MEX-file as mexFunction for C or
MEXFUNCTION@16 for Microsoft Fortran.

- The import library(s) created in the PRELINK_CMDS stage.

- Any other link switch specific to the compiler that can be used.

• Define the linking optimization switches and debugging switches in
LINKEROPTIMFLAGS and LINKDEBUGFLAGS. As in the compile stage, these two
are mutually exclusive: the default is optimization, and the –g switch
invokes the debug switches.

• Define the link-file identifier in the LINK_FILE environment variable, if
needed. For example, Watcom uses file to identify that the name following
is a file and not a command.

• Define the link-library identifier in the LINK_LIB environment variable, if
needed. For example, Watcom uses library to identify the name following is
a library and not a command.

• Optionally, set up an output identifier and name with the output switch in
the NAME_OUTPUT environment variable. The environment variable MEX_NAME
contains the name of the first program in the command line. This must be set

Custom Building MEX-Files
for –output to work. If this environment is not set, the compiler default is to
use the name of the first program in the command line. Even if this is set, it
can be overridden by specifying the mex –output switch.

Linking DLLs to MEX-Files
To link a DLL to a MEX-file, list the DLL on the command line and make sure
that the PRELINK_DLLS command is properly completed in the options file. The
PRELINK_DLLS command dynamically creates an import library from your DLL
so that the DLL can be linked with your MEX-file. PRELINK_DLLS contains the
import library creation command and options for your compiler and uses the
variable DLL_NAME, which is assigned to the DLL name(s) provided on the
command line.

Versioning MEX-Files
The mex script can build your MEX-file with a resource file that contains
versioning and other essential information. The resource file is called
mexversion.rc and resides in the extern\include directory. To support
versioning, there are two new commands in the options files, RC_COMPILER and
RC_LINKER, to provide the resource compiler and linker commands. It is
assumed that:

• If a compiler command is given, the compiled resource will be linked into the
MEX-file using the standard link command.

• If a linker command is given, the resource file will be linked to the MEX-file
after it is built using that command.

Compiling MEX-Files with the Microsoft Visual C++ IDE

Note: This section provides information on how to compile MEX-files in the
Microsoft Visual C++ (MSVC) IDE; it is not totally inclusive. This section
assumes that you know how to use the IDE. If you need more information on
using the MSVC IDE, refer to the corresponding Microsoft documentation.
8-9

8 System Setup

8-1
To build MEX-files with the Microsoft Visual C++ integrated development
environment:

1 Create a project and insert your MEX source and mexversion.rc into it.

2 Create a .DEF file to export the MEX entry point. For example

LIBRARY MYFILE.DLL
EXPORTS mexFunction <-- for a C MEX-file

or
EXPORTS MEXFUNCTION@16 <-- for a Fortran MEX-file

3 Add the .DEF file to the project.

4 Create an import library of MEX-functions from MATLAB.DEF using the LIB
command. For example

LIB /DEF:MATLAB\EXTERN\INCLUDE\MATLAB.DEF/OUT:mymeximports.lib

5 Add the import library to the library modules in the LINK settings option.

6 Add the MATLAB include directory, MATLAB\EXTERN\INCLUDE to the
include path in the Settings C/C++ Preprocessor option.

7 Add MATLAB_MEX_FILE to the C/C++ Preprocessor option by selecting
Settings from the Build menu, selecting C/C++, and then typing
,MATLAB_MEX_FILE after the last entry in the Preprocessor definitions
field.

8 To debug the MEX-file using the IDE, put MATLAB.EXE in the Settings
Debug option as the Executable for debug session.
0

Troubleshooting
Troubleshooting

MEX-File Creation
Use Figure 8-1 to help isolate difficulties in creating MEX-files. The following
section, “Understanding MEX-File Problems,” provides additional information
regarding common problems that occur when creating MEX-files. If the
suggestions in these sections do not help, access the Solutions Search Engine
at http://www.mathworks.com/solution.html.
8-11

8 System Setup

8-1
Figure 8-1: Troubleshooting MEX-File Creation Problems

Understanding MEX-File Problems
This section contains information regarding common problems that occur when
creating MEX-files. Problems 1 through 5 refer to specific sections of the

Start
Acquire a supported compiler.
See “System Setup” for

Can you compile
and run timestwo.c

or timestwo.f?

no Are you using a
supported compiler

?

no Stop

yes

Double check your

configuration;

see “System Setup.”
yes

Can you compile
your program

?

no
Check for:

ANSI C code

General C syntax errors

yes

Can MATLAB
load your MEX-file

?

no

Segmentation fault
or bus error

?

Use:
matlab –check_malloc1

Link against all libraries
you intend to use.

Do you get
the right answer

?

no
Use:

yes

yes

matlab –check_malloc1

Run in debugger.

Stop

Check:
Spelling of mexFunction

no

yes

1 UNIX only

mex –argcheck2

mexPrintf

1

2

3

4 5

2 MEX-files only

details.
2

Troubleshooting
previous flowchart, and the remaining sections refer to a particular platform
situations.

Problem 1
The most common configuration problem in creating C MEX-files on UNIX
involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is if
the header files supplied by The MathWorks generate a string of syntax errors
when you try to compile your code. See “Building MEX-Files” in Chapter 2 for
information on selecting the appropriate options file or, if necessary, obtain an
ANSI C compiler.

Problem 2
A second way of generating a string of syntax errors occurs when you attempt
to mix ANSI and non-ANSI C code. The MathWorks provides header and
source files that are ANSI C compliant. Therefore, your C code must also be
ANSI compliant.

Other common problems that can occur in any C program are neglecting to
include all necessary header files, or neglecting to link against all required
libraries.

Problem 3
If you receive an error of the form

Unable to load mex file:
??? Invalid MEX–file

MATLAB is unable to recognize your MEX-file as being valid.

MATLAB loads MEX-files by looking for the gateway routine, mexFunction. If
you misspell the function name, MATLAB is not able to load your MEX-file and
generates an error message. On Windows, check that you are exporting
mexFunction correctly.

On some platforms, if you fail to link against required libraries, you may get an
error when MATLAB loads your MEX-file rather than when you compile your
MEX-file. In such cases, you see a system error message referring to
8-13

8 System Setup

8-1
“unresolved symbols” or “unresolved references.” Be sure to link against the
library that defines the function in question.

On Windows, MATLAB will fail to load MEX-files if it cannot find all DLLs
referenced by the MEX-file; the DLLs must be on the path or in the same
directory as the MEX-file. This is also true for third party DLLs.

Problem 4
If your MEX-file causes a segmentation violation or bus error, it means that the
MEX-file has attempted to access protected, read-only, or unallocated memory.
Since this is such a general category of programming errors, such problems are
sometimes difficult to track down.

Segmentation violations do not always occur at the same point as the logical
errors that cause them. If a program writes data to an unintended section of
memory, an error may not occur until the program reads and interprets the
corrupted data. Consequently, a segmentation violation or bus error can occur
after the MEX-file finishes executing.

MATLAB provides three features to help you in troubleshooting problems of
this nature. Listed in order of simplicity, they are:

• Recompile your MEX-file with argument checking (C MEX-files only). You
can add a layer of error checking to your MEX-file by recompiling with the
mex script flag –argcheck. This warns you about invalid arguments to both
MATLAB MEX-file (mex) and matrix access (mx) API functions.

Although your MEX-file will not run as efficiently as it can, this switch
detects such errors as passing null pointers to API functions.

• Run MATLAB with the –check_malloc option (UNIX only). The MATLAB
startup flag, –check_malloc, indicates that MATLAB should maintain
additional memory checking information. When memory is freed, MATLAB
4

Troubleshooting
checks to make sure that memory just before and just after this memory
remains unwritten and that the memory has not been previously freed.

If an error occurs, MATLAB reports the size of the allocated memory block.
Using this information, you can track down where in your code this memory
was allocated, and proceed accordingly.

Although using this flag prevents MATLAB from running as efficiently as it
can, it detects such errors as writing past the end of a dimensioned array, or
freeing previously freed memory.

• Run MATLAB within a debugging environment. This process is already
described in the chapters on creating C and Fortran MEX-files, respectively.

Problem 5
If your program generates the wrong answer(s), there are several possible
causes. First, there could be an error in the computational logic. Second, the
program could be reading from an uninitialized section of memory. For
example, reading the 11th element of a 10-element vector yields unpredictable
results.

Another possibility for generating a wrong answer could be overwriting valid
data due to memory mishandling. For example, writing to the 15th element of
a 10-element vector might overwrite data in the adjacent variable in memory.
This case can be handled in a similar manner as segmentation violations as
described in Problem 4.

In all of these cases, you can use mexPrintf to examine data values at
intermediate stages, or run MATLAB within a debugger to exploit all the tools
the debugger provides.

MEX-Files Created in Watcom IDE
If you use the Watcom IDE to create MEX-files and get unresolved references
to API functions when linking against our libraries, check the argument
passing convention. The Watcom IDE uses a default switch that passes
parameters in registers. MATLAB requires that you pass parameters on the
stack.
8-15

8 System Setup

8-1
so_locations Error on SGI
When compiling a MEX-file under MATLAB 5 on SGI systems, you may get the
following errors:

ld error 48 cannot acces registry file so_locations no locks
available - ignored.
fatal 51 - can't assign virtual addresses for filename.mexsg
within specified range.

The linker creates a file called so_locations. This file is typically deleted,
however, in some cases it may not be deleted on your system. Deleting this file
should resolve the problem. However, if the workaround does not solve the
problem, try the following:

1 Move the file you are trying to compile to a /tmp directory.

2 Try compiling the file from this new location.

If the file compiles in the /tmp directory, there is a problem with your NFS
network configuration. The problem is that ld (system linker) cannot place
LOCKS files on NFS drives. If this is the case, see your system administrator and
make sure that LOCKD is running on your NFS server. For more information,
you may want to contact SGI directly.

Memory Management Compatibility Issues
To address performance issues, we have made some changes to the internal
MATLAB memory management model. These changes will allow us to provide
future enhancements to the MEX-file API.

As of MATLAB 5.2, MATLAB implicitly calls mxDestroyArray, the mxArray
destructor, at the end of a MEX-file’s execution on any mxArrays that are not
returned in the left-hand side list (plhs[]). You are now warned if MATLAB
detects any misconstructed or improperly destructed mxArrays.

We highly recommend that you fix code in your MEX-files that produces any of
the warnings discussed in the following sections. For additional information,
see the section, “Memory Management,” in Chapter 3.

Improperly Destroying an mxArray
You cannot use mxFree to destroy an mxArray.
6

Troubleshooting
Warning
Warning: You are attempting to call mxFree on a <class-id> array.
The destructor for mxArrays is mxDestroyArray; please call this
instead. MATLAB will attempt to fix the problem and continue, but
this will result in memory faults in future releases.

Note: Currently these warnings are enabled by default for backwards
compatibility reasons. In future releases of MATLAB, the warnings will be
disabled by default. The programmer will be responsible for enabling these
warnings during the MEX-file development cycle.

Example That Causes Warning

 mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
...

 mxFree(temp); /* INCORRECT */

mxFree does not destroy the array object. This operation frees the structure
header associated with the array, but MATLAB will still operate as if the array
object needs to be destroyed. Thus MATLAB will try to destroy the array object,
and in the process, attempt to free its structure header again.

Solution

Call mxDestroyArray instead.

 mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray
You cannot call mxSetCell or mxSetField variants with prhs[] as the member
array.

Warning

Warning: You are attempting to use an array from another scope
(most likely an input argument) as a member of a cell array or
structure. You need to make a copy of the array first. MATLAB will
attempt to fix the problem and continue, but this will result in
memory faults in future releases.
8-17

8 System Setup

8-1
Example That Causes Warning

myfunction('hello')
/* myfunction is the name of your MEX-file and your code */
/* contains the following: */

 mxArray *temp = mxCreateCellMatrix(1,1);
...

 mxSetCell(temp, 0, prhs[0]); /* INCORRECT */

When the MEX-file returns, MATLAB will destroy the entire cell array. Since
this includes the members of the cell, this will implicitly destroy the MEX-file’s
input arguments. This can cause several strange results, generally having to
do with the corruption of the caller’s workspace, if the right-hand side
argument used is a temporary array (i.e., a literal or the result of an
expression).

Solution

Make a copy of the right-hand side argument with mxDuplicateArray and use
that copy as the argument to mxSetCell (or mxSetField variants); for example

mxSetCell(temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data
You cannot call mxDestroyArray on an mxArray whose data was not allocated
by an API routine.

Warning

Warning: You have attempted to point the data of an array to a
block of memory not allocated through the MATLAB API. MATLAB will
attempt to fix the problem and continue, but this will result in
memory faults in future releases.

Example That Causes Warning

If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData with memory as the
intended data block (second argument) that was not allocated by mxCalloc,
mxMalloc, or mxRealloc:

 mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
8

Troubleshooting
 double data[5] = {1,2,3,4,5};
...

 mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
 /* INCORRECT */

then when the MEX-file returns, MATLAB will attempt to free the pointer to
real data and the pointer to imaginary data (if any). Thus MATLAB will
attempt to free memory, in this example, from the program stack. This will
cause the above warning when MATLAB attempts to reconcile its consistency
checking information.

Solution

Rather than use mxSetPr to set the data pointer, instead create the mxArray
with the right size and use memcpy to copy the stack data into the buffer
returned by mxGetPr.

 mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
 double data[5] = {1,2,3,4,5};

...
 memcpy(mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

Potential Memory Leaks
Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB would still free the original memory. This is no longer the case.

For example

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

will now leak 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
... <load data into pr>
8-19

8 System Setup

8-2
or alternatively

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr);

Note that the first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can address this issue as shown
above to avoid such memory leaks.

MEX-Files Should Destroy Their Own Temporary Arrays
In general, we recommend that MEX-files destroy their own temporary arrays
and clean up their own temporary memory. All mxArrays except those returned
in the left-hand side list and those returned by mexGetArrayPtr may be safely
destroyed. This approach is consistent with other MATLAB API applications
(i.e., MAT-file applications, engine applications, and MATLAB Compiler
generated applications, which do not have any automatic cleanup mechanism.)
0

C MEX-Functions A-4
C MAT-File Routines A-5
C Engine Routines A-6
Fortran MX-Functions A-6
Fortran MEX-Functions A-7
Fortran MAT-File Routines A-8
Fortran Engine Routines A-8
DDE Routines . A-9
A

API Functions

C MX-Functions A-2

A API Functions

A-2
C MX-Functions
char *mxArrayToString(const mxArray *array_ptr)
void mxAssert(int expr, char *error_message)
void mxAssertS(int expr, char *error_message)
int mxCalcSingleSubscript(const mxArray *array_ptr,

int nsubs, int *subs)
void *mxCalloc(size_t n, size_t size)
void mxClearLogical(mxArray *array_ptr)
typedef enum mxComplexity(mxREAL=0, mxCOMPLEX)
mxArray *mxCreateCellArray(int ndim, const int *dims)
mxArray *mxCreateCellMatrix(int m, int n)
mxArray *mxCreateCharArray(int ndim, const int *dims)
mxArray *mxCreateCharMatrixFromStrings(int m,

const char **str)
mxArray *mxCreateDoubleMatrix(int m, int n,

mxComplexity ComplexFlag)
mxCreateFull (Obsolete)
mxArray *mxCreateNumericArray(int ndim, const int *dims,

mxClassID class, mxComplexity ComplexFlag)
mxArray *mxCreateSparse(int m, int n, int nzmax,

mxComplexity ComplexFlag)
mxArray *mxCreateString(const char *str)
mxArray *mxCreateStructArray(int ndim, const int *dims,

int nfields,const char **field_names)
mxArray *mxCreateStructMatrix(int m, int n, int nfields,

const char **field_names)
void mxDestroyArray(mxArray *array_ptr)
mxArray *mxDuplicateArray(const mxArray *in)
mxArray *mxFree(void *ptr)
mxFreeMatrix (Obsolete)
mxArray *mxGetCell(const mxArray *array_ptr, int index)
mxClassID mxGetClassID(const mxArray *array_ptr)
const char *mxGetClassName(const mxArray *array_ptr)
void *mxGetData(const mxArray *array_ptr)
const int *mxGetDimensions(const mxArray *array_ptr)
int mxGetElementSize(const mxArray *array_ptr)
double mxGetEps(void)
mxArray *mxGetField(const mxArray *array_ptr, int index,

const char *field_name)

mxArray *mxGetFieldByNumber(const mxArray *array_ptr,
int index, int *field_number)

const char *mxGetFieldNameByNumber(const mxArray *array_ptr,
int field_number)

int mxGetFieldNumber(const mxArray *array_ptr,
const char *field_name)

void *mxGetImagData(const mxArray *array_ptr)
double mxGetInf(void)
int *mxGetIr(const mxArray *array_ptr)
int *mxGetJc(const mxArray *array_ptr)
int mxGetM(const mxArray *array_ptr)
int mxGetN(const mxArray *array_ptr)
const char *mxGetName(const mxArray *array_ptr)
double mxGetNaN(void)
int mxGetNumberOfDimensions(const mxArray *array_ptr)
int mxGetNumberOfElements(const mxArray *array_ptr)
int mxGetNumberOfFields(const mxArray *array_ptr)
int mxGetNzmax(const mxArray *array_ptr)
double *mxGetPi(const mxArray *array_ptr)
double *mxGetPr(const mxArray *array_ptr)
double mxGetScalar(const mxArray *array_ptr)
int mxGetString(const mxArray *array_ptr, char *buf,

int buflen)
bool mxIsCell(const mxArray *array_ptr)
bool mxIsChar(const mxArray *array_ptr)
bool mxIsClass(const mxArray *array_ptr, const char *name)
bool mxIsComplex(const mxArray *array_ptr)
bool mxIsDouble(const mxArray *array_ptr)
bool mxIsEmpty(const mxArray *array_ptr)
bool mxIsFinite(double value)
bool mxIsFromGlobalWS(const mxArray *array_ptr)
mxIsFull (Obsolete)
bool mxIsInf(double value)
bool mxIsInt8(const mxArray *array_ptr)
bool mxIsInt16(const mxArray *array_ptr)
bool mxIsInt32(const mxArray *array_ptr)
bool mxIsLogical(const mxArray *array_ptr)
bool mxIsNaN(double value)
bool mxIsNumeric(const mxArray *array_ptr)
bool mxIsSingle(const mxArray *array_ptr)
A-3

A API Functions

A-4
bool mxIsSparse(const mxArray *array_ptr)
mxIsString (Obsolete)
bool mxIsStruct(const mxArray *array_ptr)
bool mxIsUint8(const mxArray *array_ptr)
bool mxIsUint16(const mxArray *array_ptr)
bool mxIsUint32(const mxArray *array_ptr)
void *mxMalloc(size_t n)
void *mxRealloc(void *ptr, size_t size)
void mxSetAllocFcns(calloc_proc callocfcn, free_proc freefcn,

realloc_proc reallocfcn, malloc_proc mallocfcn)
void mxSetCell(mxArray *array_ptr, int index, mxArray *value)
int mxSetClassName(mxArray *array_ptr, const char *classname)
void mxSetData(mxArray *array_ptr, void *data_ptr)
int mxSetDimensions(mxArray *array_ptr, const int *dims,

int ndims)
void mxSetField(mxArray *array_ptr, int index,

const char *field_name, mxArray *value)
void mxSetFieldByNumber(mxArray *array_ptr, int index,

int field_number, mxArray *value)
void mxSetImagData(mxArray *array_ptr, void *pi)
void mxSetIr(mxArray *array_ptr, int *ir)
void mxSetJc(mxArray *array_ptr, int *jc)
void mxSetLogical(mxArray *array_ptr)
void mxSetM(mxArray *array_ptr, int m)
void mxSetN(mxArray *array_ptr, int n)
void mxSetName(mxArray *array_ptr, const char *name)
void mxSetNzmax(mxArray *array_ptr, int nzmax)
void mxSetPi(mxArray *array_ptr, double *pi)
void mxSetPr(mxArray *array_ptr, double *pr)

C MEX-Functions
void mexAddFlops(int count)
int mexAtExit(void (*ExitFcn)(void))
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

mxArray *prhs[], const char *command_name)
void mexErrMsgTxt(const char *error_msg)
int mexEvalString(const char *command)
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

const char *mexFunctionName(void)
const mxArray *mexGet(double handle, const char *property)
mxArray *mexGetArray(const char *name, const char *workspace)
const mxArray *mexGetArrayPtr(const char *name,

const char *workspace)
mexGetEps (Obsolete)
mexGetFull (Obsolete)
mexGetGlobal (Obsolete)
mexGetInf (Obsolete)
mexGetMatrix (Obsolete)
mexGetMatrixPtr (Obsolete)
mexGetNaN (Obsolete)
mexIsFinite (Obsolete)
bool mexIsGlobal(const mxArray *array_ptr)
mexIsInf (Obsolete)
bool mexIsLocked(void)
mexIsNaN (Obsolete)
void mexLock(void)
void mexMakeArrayPersistent(mxArray *array_ptr)
void mexMakeMemoryPersistent(void *ptr)
int mexPrintf(const char *format, ...)
int mexPutArray(mxArray *array_ptr, const char *workspace)
mexPutFull (Obsolete)
mexPutMatrix (Obsolete)
int mexSet(double handle, const char *property,

mxArray *value)
void mexSetTrapFlag(int trap_flag)
void mexUnlock(void)
void mexWarnMsgTxt(const char *warning_msg)

C MAT-File Routines
int matClose(MATFile *mfp)
int matDeleteArray(MATFile *mfp, const char *name)
matDeleteMatrix (obsolete)
mxArray *matGetArray(MATFile *mfp, const char *name)
mxArray *matGetArrayHeader(MATFile *mfp, const char *name)
char **matGetDir(MATFile *mfp, int *num)
FILE *matGetFp(MATFile *mfp)
matGetFull (obsolete)
A-5

A API Functions

A-6
matGetMatrix (obsolete)
mxArray *matGetNextArray(MATFile *mfp)
mxArray *matGetNextArrayHeader(MATFile *mfp)
matGetNextMatrix (Obsolete)
matGetString (Obsolete)
MATFile *matOpen(const char *filename, const char *mode)
int matPutArray(MATFile *mfp, const mxArray *mp)
int matPutArrayAsGlobal(MATFile *mfp, const mxArray *mp)
matPutFull (Obsolete)
matPutMatrix (Obsolete)
matPutString (Obsolete)

C Engine Routines
int engClose(Engine *ep)
int engEvalString(Engine *ep, const char *string)
mxArray *engGetArray(Engine *ep, const char *name)
engGetFull (obsolete)
engGetMatrix (obsolete)
Engine *engOpen(const char *startcmd)
int engOutputBuffer(Engine *ep, char *p, int n)
int engPutArray(Engine *ep, const mxArray *mp)
engPutFull (obsolete)
engPutMatrix (obsolete)
engSetEvalCallback (obsolete)
engSetEvalTimeout (obsolete)
engWinInit (obsolete)

Fortran MX-Functions
integer*4 function mxCalloc(n, size)
subroutine mxCopyCharacterToPtr(y, px, n)
subroutine mxCopyComplex16ToPtr(y, pr, pi, n)
subroutine mxCopyInteger4ToPtr(y, px, n)
subroutine mxCopyPtrToCharacter(px, y, n)
subroutine mxCopyPtrToComplex16(pr, pi, y, n)
subroutine mxCopyPtrToInteger4(px, y, n)
subroutine mxCopyPtrToPtrArray(px, y, n)
subroutine mxCopyPtrToReal8(px, y, n)
subroutine mxCopyReal8ToPtr(y, px, n)

integer*4 function mxCreateFull(m, n, ComplexFlag)
integer*4 function mxCreateSparse(m, n, nzmax, ComplexFlag)
integer*4 function mxCreateString(str)
subroutine mxFree(ptr)
subroutine mxFreeMatrix(pm)
integer*4 function mxGetIr(pm)
integer*4 function mxGetJc(pm)
integer*4 function mxGetM(pm)
integer*4 function mxGetN(pm)
character*32 function mxGetName(pm)
integer*4 function mxGetNzmax(pm)
integer*4 function mxGetPi(pm)
integer*4 function mxGetPr(pm)
real*8 function mxGetScalar(pm)
integer*4 function mxGetString(pm, str, strlen)
integer*4 function mxIsComplex(pm)
integer*4 function mxIsDouble(pm)
integer*4 function mxIsFull(pm)
integer*4 function mxIsNumeric(pm)
integer*4 function mxIsSparse(pm)
integer*4 function mxIsString(pm)
subroutine mxSetIr(pm, ir)
subroutine mxSetJc(pm, jc)
subroutine mxSetM(pm, m)
subroutine mxSetN(pm, n)
subroutine mxSetName(pm, name)
subroutine mxSetNzmax(pm, nzmax)
subroutine mxSetPi(pm, pi)
subroutine mxSetPr(pm, pr)

Fortran MEX-Functions
integer*4 function mexAtExit(ExitFcn)
integer*4 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
subroutine mexErrMsgTxt(error_msg)
integer*4 function mexEvalString(command)
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
real*8 function mexGetEps()
integer*4 function mexGetFull(name, m, n, pr, pi)
integer*4 function mexGetGlobal(name)
A-7

A API Functions

A-8
real*8 function mexGetInf()
integer*4 function mexGetMatrix(name)
integer*4 function mexGetMatrixPtr(name)
real*8 function mexGetNaN()
integer*4 function mexIsFinite(value)
integer*4 function mexIsInf(value)
integer*4 function mexIsNaN(value)
subroutine mexPrintf(message)
integer*4 function mexPutFull(name, m, n, pr, pi)
integer*4 function mexPutMatrix(mp)
subroutine mexSetTrapFlag(trap_flag)

Fortran MAT-File Routines
integer*4 function matClose(mfp)
subroutine matDeleteMatrix(mfp, name)
integer*4 function matGetDir(mfp, num)
integer*4 function matGetFull(mfp, name, m, n, pr, pi)
integer*4 function matGetMatrix(mfp, name)
integer*4 function matGetNextMatrix(mfp)
integer*4 function matGetString(mfp, name, str, strlen)
integer*4 function matOpen(filename, mode)
integer*4 function matPutFull(mfp, name, m, n, pr, pi)
integer*4 function matPutMatrix(mfp, mp)
integer*4 function matPutString(mfp, name, str)

Fortran Engine Routines
integer*4 function engClose(ep)
integer*4 function engEvalString(ep, command)
integer*4 function engGetFull(ep, name, m, n, pr, pi)
integer*4 function engGetMatrix(ep, name)
integer*4 function engOpen(startcmd)
integer*4 function engOutputBuffer(ep, p)
integer*4 function engPutFull(ep, name, m, n, pr, pi)
integer*4 function engPutMatrix(ep, mp)

DDE Routines
rc = ddeadv(channel, item, callback, upmtx, format, timeout)
rc = ddeexec(channel, command, item, timeout)
channel = ddeinit(service, topic)
rc = ddepoke(channel, item, data, format, timeout)
data = ddereq(channel, item, format, timeout)
rc = ddeterm(channel)
rc = ddeunadv(channel, item, format, timeout)
A-9

A API Functions

A-1
0

<matlab>/bin . B-4
<matlab>/extern B-4
<matlab>/help . B-6

Directory Organization on Windows B-7
<matlab>\bin . B-8
<matlab>\extern B-8
<matlab>\help B-9
B

Directory Organization

Directory Organization on UNIX B-3

B Directory Organization

B-2
This appendix describes the directory organization and purpose of the files
associated with the MATLAB API on UNIX and Microsoft Windows systems.

Directory Organization on UNIX
Directory Organization on UNIX
This figure illustrates the directories in which the MATLAB API files are
located.

In the illustration, <matlab> symbolizes the top-level directory where
MATLAB is installed on your system.

extern

lib

bin

<matlab>

$ARCH

include

src

help

pdf_doc

examples
mex

eng_mat

mx

refbook

support

tech_doc

toolbox

@uint16
B-3

B Directory Organization

B-4
<matlab>/bin
The <matlab>/bin directory contains two files that are relevant for the
MATLAB API:

mex UNIX shell script that creates MEX-files from C or
Fortran MEX-file source code. See the Application
Program Interface Guide for more details on mex.

matlab UNIX shell script that initializes your environment
and then invokes the MATLAB interpreter.

This directory also contains the preconfigured options files that the mex script
uses with particular compilers. Table B-1 lists the options files.

<matlab>/extern

<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains libraries, where $ARCH
specifies a particular UNIX platform. For example, on a Sun SPARCstation
running SunOs 4, the $ARCH directory is named sun4.

On some UNIX platforms, this directory contains two versions of this library.
Library filenames ending with .a are static libraries and filenames ending
with .so or .sl are shared libraries.

<matlab>/extern/include
The <matlab>/extern/include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API are:

engine.h Header file for MATLAB engine programs. Contains
function prototypes for engine routines.

Table B-1: Preconfigured Options Files

mexopts.sh System ANSI Compiler

gccopts.sh GCC (GNU C Compiler)

cxxopts.sh System C++ Compiler

Directory Organization on UNIX
mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines.

matrix.h Header file containing a definition of the mxArray
structure and function prototypes for matrix access
routines.

mex.h Header file for building MEX-files. Contains function
prototypes for mex routines.

<matlab>/extern/src
The <matlab>/extern/src directory contains those C source files that are
necessary to support certain MEX-file features such as argument checking and
versioning.

<matlab>/extern/examples/eng_mat
The <matlab>/extern/examples/eng_mat directory contains examples for
using the MATLAB engine facility, as well as examples for reading and writing
MATLAB data files (MAT-files). These examples are all stand-alone programs.

<matlab>/extern/examples/mex
The <matlab>/extern/examples/mex directory contains MEX-file examples. It
includes the examples described in the online API reference pages for MEX
interface functions (the functions beginning with the mex prefix).

<matlab>/extern/examples/mx
The <matlab>/extern/examples/mx directory contains examples for using the
array access functions. Although you can use these functions in stand-alone
programs, most of these are MEX-file examples. The exception is
mxSetAllocFcns.c, since this function is available only to stand-alone
programs.

<matlab>/extern/examples/refbook
The <matlab>/extern/examples/refbook directory contains the examples
that are discussed in the Application Program Interface Guide.
B-5

B Directory Organization

B-6
<matlab>/extern/examples/refbook/@uint16
The <matlab>/extern/examples/refbook/@uint16 directory contains the EQ
and NEQ overloaded functions.

<matlab>/help

<matlab>/help/pdf_doc
The <matlab>/help/pdf_doc directory contains online help files for MATLAB
and other toolboxes in PDF format.

<matlab>/help/support
The <matlab>/help/support directory contains a World Wide Web link to the
MathWorks Technical Support Department’s troubleshooting tools such as:

• Solution Search Engine

• FAQ (Frequently Asked Questions)

• Technical Notes

<matlab>/help/tech_doc
The <matlab>/help/techdoc directory contains additional technical
documentation for MATLAB in HTML format, viewable through the MATLAB
Help Desk.

<matlab>/help/toolbox
The <matlab>/help/toolbox directory contains online help documentation for
MATLAB and other toolboxes in HTML format, viewable through the
MATLAB Help Desk.

Table B-2: Overloaded Functions

EQ EQ overloaded function “equal” for uint16 type

NEQ NEQ overloaded function “not equal” for uint16 type

Directory Organization on Windows
Directory Organization on Windows
This figure illustrates the directories in which the MATLAB API files are
located.

In the illustration, <matlab> symbolizes the top-level directory where
MATLAB is installed on your system.

extern

bin

<matlab>

include

src

help

pdf_doc

support

examples

mex

eng_mat

mx

refbook

techdoc

toolbox
B-7

B Directory Organization

B-8
<matlab>\bin
The <matlab>\bin directory contains the mex.bat batch file that builds C and
Fortran files into MEX-files. This directory also contains the preconfigured
options files that the mex script uses with particular compilers. See Table 2-2
in Chapter 2 for a complete list of the options files.

<matlab>\extern

<matlab>\extern\include
The <matlab>\extern\include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API (MEX-files, engine, and
MAT-files) are:

engine.h Header file for MATLAB engine programs. Contains
function prototypes for engine routines.

mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines.

matrix.h Header file containing a definition of the mxArray
structure and function prototypes for matrix access
routines.

mex.h Header file for building MEX-files. Contains function
prototypes for mex routines.

_*.def Files used by Borland compiler.
*.def Files used by MSVC and Microsoft Fortran compilers.
mexversion.rc Resource file for inserting versioning information into

MEX-files.

<matlab>\extern\src
The <matlab>\extern\src directory contains files that are used for debugging
MEX-files.

<matlab>\extern\examples\eng_mat
The <matlab>\extern\examples\eng_mat directory contains examples for
using the MATLAB engine facility, as well as examples for reading and writing
MATLAB data files (MAT-files). These examples are all stand-alone programs.

Directory Organization on Windows
<matlab>\extern\examples\mex
The <matlab>\extern\examples\mex directory contains MEX-file examples. It
includes the examples described in the online API reference pages for MEX
interface functions (the functions beginning with the mex prefix).

<matlab>\extern\examples\mx
The <matlab>\extern\examples\mx directory contains examples for using the
array access functions. Although you can use these functions in stand-alone
programs, most of these are MEX-file examples. The exception is
mxSetAllocFcns.c, since this function is available only to stand-alone
programs.

<matlab>\extern\examples\refbook
The <matlab>\extern\examples\refbook directory contains the examples
that are discussed in the Application Program Interface Guide.

<matlab>\help

<matlab>\help\pdf_doc
The <matlab>\help\pdf_doc directory contains online help files for MATLAB
and other toolboxes in PDF format.

<matlab>\help\support
The <matlab>\help\support directory contains a World Wide Web link to the
MathWorks Technical Support Department’s troubleshooting tools such as:

• Solution Search Engine

• FAQ (Frequently Asked Questions)

• Technical Notes

<matlab>\help\techdoc
The <matlab>\help\techdoc directory contains additional technical
documentation for MATLAB in HTML format, viewable through the MATLAB
Help Desk.
B-9

B Directory Organization

B-1
<matlab>\help\toolbox
The <matlab>\help\toolbox directory contains online help documentation for
MATLAB and other toolboxes in HTML format, viewable through the
MATLAB Help Desk.
0

Index
Symbols
%val 4-5, 4-8

allocating memory 4-26
DIGITAL Visual Fortran 4-8

A
ActiveX 6-4, 7-2, 7-26

actxcontrol 7-6
actxserver 7-10
automation client 7-3
automation server 7-3
callback 7-21
collections 7-23
COM. See COM (Component Object Model).
concepts 7-2
control containment 7-3
controller 7-26
Count property 7-23
delete 7-20
event 7-2
event handler function 7-21
get 7-15
interface 7-2

custom 7-3
standard 7-3

invoke 7-12
invoking event 7-21
Item method 7-23
launching server 7-30
limitations of MATLAB support 7-26
method 7-2, 7-27
object 7-2, 7-23
ProgID 7-4
propedit 7-17
property 7-2
release 7-18
server 7-26
set 7-14

activex 7-4
actxcontrol 7-6
actxserver 7-10
API

access methods 2-3
documentation 1-8
examples 1-8
memory management 8-16
supported functionality 1-2

–argcheck option 8-2
argument checking 3-9
array

cell 1-6
empty 1-7
hybrid 3-40
logical 1-6
MATLAB 1-4
multidimensional 1-6
persistent 3-38
sparse 3-29
temporary 3-38, 4-37

array access methods 4-7
mat 5-2

ASCII file mode 5-4
ASCII flat file 5-3
automation

controller 7-26
server 7-27

B
bccengmatopts.bat 2-9
bccopts.bat 2-9
binary file mode 5-4
I-1

Index

I-2
BSTR 7-27

C
C example

convec.c 3-21
doubleelem.c 3-24
findnz.c 3-26
fulltosparse.c 3-30
phonebook.c 3-17
revord.c 3-11
sincall.c 3-33
timestwo.c 3-8
timestwoalt.c 3-10
xtimesy.c 3-14

C language
data types 1-7
debugging 3-41
MEX-files 3-2

C language example
basic 3-8
calling MATLAB functions 3-33
calling user-defined functions 3-33
handling 8-, 16-, 32-bit data 3-23
handling arrays 3-25
handling complex data 3-20
handling sparse arrays 3-29
passing multiple values 3-14
persistent array 3-39
strings 3-11

–c option 8-2
callback 7-21
caller workspace 3-37
cell 1-6
cell 1-7
cell array 1-6
cell arrays 3-16
char 1-7
client (DDE) 7-32
collections 7-23
COM (Component Object Model) 7-2

object model 7-3
commands. See individual commands.
compiler

debugging
DIGITAL Visual Fortran 4-39
Microsoft 3-42
Watcom 3-43

preconfigured options file 2-9-2-10
selecting on Windows 2-6

compiling
engine application

UNIX 6-16-6-17
Windows 6-18

MAT-file application
UNIX 5-29
Windows 5-31

complex data
in Fortran 4-22

computational routine 3-2, 4-2
configuration 2-5

problems 8-13
testing 2-4
troubleshooting 2-12
UNIX 2-5
Windows 2-6, 2-7

convec.c 3-21
convec.f 4-23
conversation (DDE) 7-32
Count property 7-23
cxxopts.sh 2-10

Index
D
–D option 8-2
data 1-4

MATLAB
exporting from 5-3-5-4
importing to 5-2-5-3

data storage 1-4
data type 3-7

C language 1-7
cell array 1-6
checking 3-9
complex double-precision nonsparse matrix

1-5
empty array 1-7
Fortran 4-2
Fortran language 1-7
logical array 1-6
MAT-file 5-5
MATLAB 1-7
MATLAB string 1-5
multidimensional array 1-6
numeric matrix 1-5
object 1-6
sparse matrix 1-5
structure 1-6

dblmat.f 4-26
dbmex 3-41, 4-38
DCOM (distributed component object model)

7-31
using MATLAB as a server 7-31

DDE 7-32
accessing MATLAB as server 7-34
advisory links 7-41
client 7-32
conversation 7-32
functions A-9
hot link 7-41

item 7-33
MATLAB

requesting data from 7-36
sending commands to 7-36
sending data to 7-37
using as client 7-39

name hierarchy 7-35
notifying when data changes 7-41
server 7-32
service name 7-33
topic 7-33, 7-35-7-39

engine 7-35
system 7-35

warm link 7-41
Windows clipboard formats 7-33-7-34

ddeadv 7-40
ddeexec 7-40
ddeinit 7-40
ddepoke 7-40
ddereq 7-40
ddeterm 7-40
ddeunadv 7-40
debugging C language MEX-files 3-41

UNIX 3-41
Windows 3-42

debugging Fortran language MEX-files
UNIX 4-38
Windows 4-39

DEC Alpha
declaring pointers 4-5

delete 7-20
df50engmatopts.bat 2-9
df50opts.bat 2-9
diary 5-3
diary file 5-3
DIGITAL Visual Fortran compiler

debugging 4-39
I-3

Index

I-4
directory
eng_mat 1-8
mex 1-8
mx 1-8
refbook 1-8

directory organization
C language MEX-file 3-2
Fortran language MEX-file 4-2
MAT-file application 5-7
Microsoft Windows B-7
options file 2-10, 8-4
UNIX B-3

directory path
convention 2-5

distributed component object model. See
DCOM.

dll extension 2-2
DLLs 2-4

locating 2-12
documentation 1-8

organization 1-9
PDF versions 1-8

documenting MEX-file 3-37, 4-36
double 1-7
doubleelem.c 3-24
dynamic data exchange. See DDE.
dynamic memory allocation

in Fortran 4-26
mxCalloc 3-11

dynamically linked subroutine 1-2, 2-2

E
empty array 1-7
eng_mat directory 1-8, 6-5
engClose 6-3
engdemo.c 6-5
engEvalString 6-3
engGetArray 6-3
engGetMatrix 6-3
engine

compiling 6-14
linking 6-14
overview 1-3
UNIX 6-16
Windows 6-18

engine example
calling MATLAB

from C program 6-5
from Fortran program 6-10

engine functions 6-3
C language A-6
Fortran language A-8

engine library 6-2
communicating with MATLAB

UNIX 6-4
Windows 6-4

engOpen 6-3
engOutputBuffer 6-3
engPutArray 6-3
engPutMatrix 6-3
engwindemo.c 5-18, 6-5
event handler

writing 7-21
event handler function 7-21
example files 1-8
examples directory 1-8
exception

floating-point 5-28, 6-14
Execute method 7-27
explore example 1-7
extension

MEX-file 2-2

Index
F
–F option 8-3
–f option 2-8, 8-2
fengdemo.f 6-10
file mode

ASCII 5-4
binary 5-4

files
flat 5-3
linking multiple 3-37, 4-36
sample 1-8

findnz.c 3-26
floating-point exceptions

Absoft Fortran Compiler on Linux 5-29, 6-15
Borland C++ Compiler on Windows 5-29, 6-15
DEC Alpha 5-29, 6-15
engine applications 6-14
masking 5-28, 6-14
MAT-file applications 5-28

fopen 5-3, 5-4
Fortran

case in 4-6
data types 1-7, 4-2
pointers

concept 4-5, 4-17
declaring 4-5

Fortran example
convec.f 4-23
dblmat.f 4-26
fulltosparse.f 4-29
matsq.f 4-17
passstr.f 4-15
revord.f 4-12
sincall.f 4-32
timestwo.f 4-9
xtimesy.f 4-20

Fortran language example
calling MATLAB functions 4-32
handling complex data 4-22
handling sparse matrices 4-28
passing arrays of strings 4-14
passing matrices 4-17
passing multiple values 4-19
passing scalar 4-9
passing strings 4-12

Fortran language MEX-files 4-2
components 4-2

–fortran option 4-36
fread 5-3
FTP server 1-9
fulltosparse.c 3-30
fulltosparse.f 4-29
fwrite 5-4

G
–g option 3-41, 8-3
gateway routine 3-2, 4-2, 4-6

accessing mxArray data 3-2
gccopts.sh 2-10
get 7-15
GetFullMatrix 7-28

H
–h option 8-3
help 3-37, 4-36
Help Desk 1-8
help files 3-37, 4-36
hybrid array 3-40

persistent 3-40
temporary 3-40
I-5

Index

I-6
I
–I option 8-3
IDE

building MEX-files 8-2
IEEE routines 2-3
include directory 5-7
invoke 7-12
ir 1-5, 3-29, 4-28
Item method 7-23

J
jc 1-5, 3-29, 4-28

L
–L option 8-3
library path

setting on UNIX 5-29, 6-16
linking DLLs to MEX-files 8-9
linking multiple files 3-37, 4-36
load 5-3, 5-4
locating DLLs 2-12
logical array 1-6

M
mat.h 5-7
matClose 5-5, 5-6
matcreat.c 5-10
matDeleteArray 5-5
matDeleteMatrix 5-6
matdemo1.f 5-14
matdemo2.f 5-24
MAT-file
C language
creating 5-10
reading 5-19

compiling 5-28
data types 5-5
examples 5-9
Fortran language

creating 5-14
reading 5-24

linking 5-28
overview 1-2
subroutines 5-5
UNIX libraries 5-8
using 5-2
Windows libraries 5-8

MAT-file application
UNIX 5-29
Windows 5-31

MAT-file example
creating

C language 5-10
Fortran language 5-14

reading
C language 5-19
Fortran language 5-24

MAT-file functions
C language A-5-A-6
Fortran language A-8

MAT-functions 5-5-5-6
matGetArray 5-5
matGetArrayHeader 5-6
matGetDir 5-5, 5-6
matGetFp 5-5
matGetMatrix 5-6
matGetNextArray 5-5
matGetNextArrayHeader 5-6
matGetNextMatrix 5-6

Index
matGetString 5-6
MATLAB

ActiveX interface 7-23
array 1-4
as DCOM server client 7-25
data 1-4
data file format 5-2
data storage 1-4
data type 1-7
engine 6-2
exporting data 5-2-5-4
Help Desk 1-8
importing data 5-2-5-3
MAT-file 5-4

reading arrays from 5-5
saving arrays to 5-4

moving data between platforms 5-4
stand-alone applications 1-2, 5-2
string 1-5
using as a computation engine 6-2
variables 1-4

MATLAB Automation Server
supported methods 7-27

matOpen 5-5, 5-6
matPutArray 5-5
matPutArrayAsGlobal 5-6
matPutMatrix 5-6
matPutString 5-6
matrix

complex double-precision nonsparse 1-5
numeric 1-5
sparse 1-5, 4-28

matrix.h 5-7
matsq.f 4-17
memory

allocation 3-11
leak 3-38, 8-19

temporary 4-37
memory management 3-38, 4-37, 8-16

API 8-16
compatibility 8-16
routines 2-3
special considerations 3-38

method
ActiveX 7-27
BSTR 7-28
Execute 7-27

mex
–argcheck 8-2
–c 8-2
–D 8-2
–F 8-3
–f 8-2
–fortran 4-36
–g 3-41, 4-38, 8-3
–h 8-3
–I 8-3
–L 8-3
–n 8-3
–O 8-3
–output 8-3
–setup 8-4
–U 8-4
–v 8-4
–V4 8-4

mex directory 1-8
mex options 8-2
mex script 3-9, 8-2

searching for options file 8-4
switches 8-2

mex –setup
Windows 2-6

mex.bat 3-9
mex.m 3-9
I-7

Index

I-8
mex.sh 3-9
mex4 extension 2-2
mexAtExit 3-39

register a function 3-39
mexaxp extension 2-2
mexCallMATLAB 3-33, 3-36, 3-38, 4-32, 4-34,

4-35
mexErrMsgTxt 3-38, 4-7
mexEvalString 3-37, 4-36
MEX-file 2-2

advanced topics 3-37
Fortran 4-36

arguments 3-5
C language 3-2
calling 2-2
compiling 3-9

Microsoft Visual C++ 8-9
UNIX 2-5, 8-5-8-7
Windows 2-7, 8-7-8-10

components 3-2
computation error 8-15
configuration problem 8-13
creating C language 3-2, 3-9
creating Fortran language 4-2
custom building 8-2
debugging C language 3-41
debugging Fortran language 4-38
DLL linking 8-9
documenting 3-37, 4-36
dynamically allocated memory 3-38
examples 3-7
extensions 2-2
load error 8-13
overview 1-2
passing cell arrays 3-16
passing structures 3-16
problem on SGI systems 8-16
problems 8-12-8-15
segmentation error 8-14
syntax errors 8-13
temporary array 3-38
use of 1-2
using 2-2
versioning 8-9

mexFunction 3-2, 4-2, 4-6
altered name 4-39
parameters 3-2, 4-2

MEX-functions
C language A-4-A-5
Fortran language A-7-A-8

mexGetArray 3-37
mexGetMatrix 4-36
mexhp7 extension 2-2
mexlx extension 2-2
mexMakeArrayPersistent 3-38
mexMakeMemoryPersistent 3-38
mexopts.sh 2-10
mexPutArray 3-37
mexPutMatrix 4-36
mexrs6 extension 2-2
mexSetTrapFlag 3-38
mexsg extension 2-2
mexsg64 extension 2-2
mexsol extension 2-2
mexversion.rc 8-9
M-file

creating data 5-2
Microsoft compiler

debugging 3-42
Microsoft Windows

directory organization B-7
msvc50engmatopts.bat 2-9
msvc50opts.bat 2-9
msvcengmatopts.bat 2-9

Index
msvcopts.bat 2-9
multidimensional array 1-6
mx directory 1-8
mxArray 1-4, 4-7

accessing data 3-2
contents 1-4
improperly destroying 8-16
ir 1-5
jc 1-5
nzmax 1-5
pi 1-5
pr 1-5
temporary with improper data 8-18
type 1-4

mxCalloc 3-11, 3-38, 4-7
mxCopyComplex16ToPtr 4-22
mxCopyPtrToComplex16 4-22
mxCopyPtrToReal8 4-8, 4-19
mxCreateFull 4-7, 4-17
mxCreateNumericArray 3-23
mxCreateSparse 4-7
mxCreateString 3-13, 4-7
mxDestroyArray 3-40, 4-37, 8-16
mxFree 8-16
MX-functions

C language A-2-A-4
Fortran language A-6-A-7

mxGetCell 3-16
mxGetData 3-17, 3-23, 3-26
mxGetField 3-16
mxGetImagData 3-23, 3-26
mxGetPi 3-20, 4-17
mxGetPr 3-16, 3-20, 4-17
mxGetScalar 3-9, 3-16
mxMalloc 3-11, 3-38
mxRealloc 3-11, 3-38
mxSetCell 3-40, 8-17

mxSetData 3-40, 8-18, 8-20
mxSetField 8-17
mxSetImagData 8-18, 8-20
mxSetIr 8-20
mxSetJc 8-20
mxSetPi 8-18, 8-20
mxSetPr 3-40, 8-18, 8-19
mxUNKNOWN_CLASS 3-36, 4-35

N
–n option 8-3
nlhs 3-2, 3-5, 4-3, 4-6
nrhs 3-2, 3-5, 4-2, 4-6
numeric matrix 1-5
nzmax 1-5, 4-28

O
–O option 8-3
object 1-6
options file 2-4

creating new 8-2
directory organization 2-10
modifying 8-4
preconfigured 2-9
specifying 2-8
using on UNIX 2-10
using on Windows 2-10
when to specify 2-8

–output option 8-3

P
passstr.f 4-15
persistent array

exempting form cleanup 3-38
I-9

Index

I-10
phonebook.c 3-17
pi 1-5
plhs 3-2, 3-5, 4-2, 4-6
pointer 4-5

Fortran language MEX-file 4-17
pr 1-5
prhs 3-2, 3-5, 4-2, 4-6
propedit 7-17
protocol

DCOM 7-31
PutFullMatrix 7-29

R
refbook directory 1-8
release 7-18
revord.c 3-11
revord.f 4-12
routine

computational 3-2
gateway 3-2, 4-2
mex 2-3
mx 2-3

S
save 5-3, 5-4
service name 7-32, 7-33
set 7-14
–setup option 2-6, 8-4
SGI

declaring pointers on 64-bit machines 4-5
shared libraries directory

UNIX 5-8
Windows 5-8

sincall.c 3-33
sincall.f 4-32
so_locations file on SGI 8-16
Solutions Search Engine 8-11
sparse 1-7
sparse array 3-29
sparse matrix 1-5
storing data 1-4
string 1-5
struct 1-7
structure 1-6, 3-16
subroutine

dynamically linked 1-2, 2-2
system configuration 2-5

T
temporary array 3-38

automatic cleanup 3-38
destroying 8-20

temporary memory
cleaning up 8-20

timestwo.c 3-8
timestwo.f 4-9
timestwoalt.c 3-10
troubleshooting

configuration 2-12
MEX-file creation 8-11

U
–U option 8-4
uint8 1-7
UNIX

directory organization B-3
using MEX-files 2-2

Index
V
–v option 8-4
–V4 option 8-4
variable scope 3-37
variables 1-4
versioning MEX-files 8-9
Visual Basic

MATLAB DDE server example 7-38

W
wat11copts.bat 2-9
wat11engmatopts.bat 2-9
Watcom compiler

debugging 3-43
watcopts.bat 2-9
watengmatopts.bat 2-9
Windows

ActiveX 7-26
automation 7-26
directory organization B-7
mex –setup 2-6
selecting compiler 2-6

Windows clipboard format
Metafilepict 7-34
text 7-33
XLTable 7-34

workspace
caller 3-37, 4-36
MEX-file function 3-37, 4-36

writing event handlers 7-21

X
xtimesy.c 3-14
xtimesy.f 4-20

Y
yprime.c 2-4
yprimef.F 2-4
yprimef.f 2-4
yprimefg.F 2-4
yprimefg.f 2-4
I-11

	Introducing the MATLAB API
	Introduction to MATLAB API
	MEX-Files
	MAT-File Applications
	Engine Applications

	MATLAB Data
	The MATLAB Array
	Data Storage
	Data Types in MATLAB
	Complex Double-Precision Matrices
	Numeric Matrices
	MATLAB Strings
	Sparse Matrices
	Cell Arrays
	Structures
	Objects
	Multidimensional Arrays
	Logical Arrays
	Empty Arrays

	Using Data Types
	The explore Example

	API Documentation
	The API Documentation Set
	API Tutorial Files

	How This Book Is Organized

	Getting Started
	Introducing MEX-Files
	Using MEX-Files
	The Distinction Between mx and mex Prefixes
	mx Routines
	mex Routines

	Building MEX-Files
	Testing Your Configuration
	On UNIX
	On Windows
	Configuring an Options File
	Building a MEX-File

	Using –f to Specify an Options File
	Preconfigured Options Files

	Troubleshooting Your Configuration
	Search Path Problem on Windows
	MATLAB Pathnames Containing Spaces on Windows
	DLLs Not on Path on Windows
	Non-ANSI Compiler on UNIX
	General Configuration Problem

	Creating C Language MEX-Files
	C MEX-Files
	Directory Organization
	The Parts of a MEX-File
	Required Arguments to a MEX-File

	Examples of C MEX-Files
	A First Example
	Manipulating Strings
	Passing Two or More Inputs or Outputs
	Manipulating Structures and Cell Arrays
	Handling Complex Data
	Handling 8-,16-, and 32-Bit Data
	Manipulating Multidimensional Numerical Arrays
	Handling Sparse Arrays
	Calling MATLAB Functions and Other User-Defined Fu...

	Advanced Topics
	Help Files
	Linking Multiple Files
	Variable Scope
	Memory Management
	Automatic Cleanup of Temporary Arrays
	Persistent Arrays
	Hybrid Arrays

	How to Debug C Language MEX-Files
	Debugging on UNIX
	Debugging on Windows
	Microsoft Compiler
	Watcom Compiler

	Creating Fortran MEX-Files
	Fortran MEX-Files
	Directory Organization
	MEX-Files and Data Types
	The Components of a Fortran MEX-File
	The Pointer Concept
	The Gateway Routine
	The %val Construct

	Examples of Fortran MEX-Files
	A First Example — Passing a Scalar
	Passing Strings
	Passing Arrays of Strings
	Passing Matrices
	Passing Two or More Inputs or Outputs
	Handling Complex Data
	Dynamic Allocation of Memory
	Handling Sparse Matrices
	Calling MATLAB Functions from Fortran MEX-Files

	Advanced Topics
	Help Files
	Linking Multiple Files
	Variable Scope
	Memory Management

	How to Debug Fortran Language MEX-Files
	Debugging on UNIX
	Debugging on Windows
	DIGITAL Visual Fortran

	Data Export and Import
	Using MAT-Files
	Importing Data to MATLAB
	Exporting Data from MATLAB
	Exchanging Data Files Between Platforms
	Reading and Writing MAT-Files
	MAT-File Interface Library

	Directory Organization
	Windows
	UNIX
	Example Files

	Examples of MAT-Files
	Creating a MAT-File
	C Example
	Fortran Example

	Reading a MAT-File
	C Example
	Fortran Example

	Compiling and Linking MAT-File Programs
	Special Considerations
	Floating-Point Exceptions
	DEC Alpha
	Absoft Fortran Compiler on Linux
	Borland C++ Compiler on Windows

	UNIX
	Setting Runtime Library Path
	Compiling and Linking Commands
	Special Consideration for Fortran (f77) on HP-UX 1...

	Windows

	Using the MATLAB Engine
	Interprocess Communication: The MATLAB Engine
	The Engine Library
	Communicating with MATLAB

	Examples
	Calling the MATLAB Engine
	C Example
	Fortran Example

	Compiling and Linking Engine Programs
	Special Considerations
	Floating-Point Exceptions
	DEC Alpha
	Absoft Fortran Compiler on Linux
	Borland C++ Compiler on Windows

	UNIX
	Setting Runtime Library Path
	Compiling and Linking Commands
	Special Consideration for Fortran (f77) on HP-UX 1...

	Windows

	Client/Server Applications
	MATLAB ActiveX Integration
	What Is ActiveX?
	ActiveX Concepts and Terminology
	COM
	ActiveX Interfaces
	Methods
	Properties
	Events

	MATLAB ActiveX Support Overview

	MATLAB ActiveX Client Support
	Using ActiveX Objects
	Creating ActiveX Objects
	Manipulating the Interface

	ActiveX Client Reference
	Purpose
	Syntax
	Arguments
	Returns
	Description
	Examples
	Purpose
	Syntax
	Arguments
	Returns
	Description
	Example
	Purpose
	Syntax
	Arguments
	Returns
	Description
	Example
	Purpose
	Syntax
	Arguments
	Returns
	Description
	Example
	Purpose
	Syntax
	Arguments
	Returns
	Description
	Examples
	Purpose
	Syntax
	Arguments
	Description
	Example
	Purpose
	Syntax
	Arguments
	Description
	Example
	Purpose
	Syntax
	Arguments
	Description
	Example
	Purpose
	Syntax
	Arguments
	Description
	Example

	Writing Event Handlers

	Additional ActiveX Client Information
	Releasing Interfaces
	Using ActiveX Collections
	Data Conversions
	Using MATLAB As a DCOM Server Client
	MATLAB ActiveX Control Container Limitations
	MATLAB Sample Control

	MATLAB ActiveX Automation Server Support
	MATLAB ActiveX Automation Methods
	Name.
	Workspace.
	pr.
	pi.
	Name.
	Workspace.
	pr.
	pi.

	Additional ActiveX Server Information
	Launching the MATLAB ActiveX Server
	Specifying a Shared or Dedicated Server
	Using MATLAB As a DCOM Server

	Dynamic Data Exchange (DDE)
	DDE Concepts and Terminology
	The Service Name
	The Topic
	The Item
	Clipboard Formats

	Accessing MATLAB As a Server
	The DDE Name Hierarchy
	MATLAB DDE Topics
	MATLAB System Topic Support
	MATLAB Engine Topic Support

	Example: Using Visual Basic and the MATLAB DDE Ser...

	Using MATLAB As a Client
	DDE Advisory Links

	System Setup
	Custom Building MEX-Files
	Locating the Default Options File
	UNIX
	Windows
	Linking DLLs to MEX-Files
	Versioning MEX-Files
	Compiling MEX-Files with the Microsoft Visual C++ ...

	Troubleshooting
	MEX-File Creation
	Understanding MEX-File Problems
	MEX-Files Created in Watcom IDE
	so_locations Error on SGI

	Memory Management Compatibility Issues
	Improperly Destroying an mxArray
	Warning
	Example That Causes Warning
	Solution

	Incorrectly Constructing a Cell or Structure mxArr...
	Warning
	Example That Causes Warning
	Solution

	Creating a Temporary mxArray with Improper Data
	Warning
	Example That Causes Warning
	Solution

	Potential Memory Leaks
	MEX-Files Should Destroy Their Own Temporary Array...

	API Functions
	C MX-Functions
	C MEX-Functions
	C MAT-File Routines
	C Engine Routines
	Fortran MX-Functions
	Fortran MEX-Functions
	Fortran MAT-File Routines
	Fortran Engine Routines
	DDE Routines

	Directory Organization
	Directory Organization on UNIX
	<matlab>/bin
	<matlab>/extern
	<matlab>/extern/lib/$ARCH
	<matlab>/extern/include
	<matlab>/extern/src
	<matlab>/extern/examples/eng_mat
	<matlab>/extern/examples/mex
	<matlab>/extern/examples/mx
	<matlab>/extern/examples/refbook
	<matlab>/extern/examples/refbook/@uint16

	<matlab>/help
	<matlab>/help/pdf_doc
	<matlab>/help/support
	<matlab>/help/tech_doc
	<matlab>/help/toolbox

	Directory Organization on Windows
	<matlab>\bin
	<matlab>\extern
	<matlab>\extern\include
	<matlab>\extern\src
	<matlab>\extern\examples\eng_mat
	<matlab>\extern\examples\mex
	<matlab>\extern\examples\mx
	<matlab>\extern\examples\refbook

	<matlab>\help
	<matlab>\help\pdf_doc
	<matlab>\help\support
	<matlab>\help\techdoc
	<matlab>\help\toolbox

	Index

