

MATLAB

Guidelines 2.0

Richard Johnson

MATLAB Style Guidelines

2

Version 2, March 2014

Copyright © 2002 - 2014 Datatool

All rights reserved.

ISBN

Library of Congress Control Number

3

Contents
Introduction 5

Naming Conventions 7
Variables 7
Constants 13
Structures 14
Functions 15
General 19

Statements 21
Variables and constants 21
Globals 21
Loops 22
Conditionals 23
General 24

Layout, Comments and Documentation 29
Layout 29
White Space 30
Comments 32

Files and Organization 37
M Files 37
Input and Output 39
Toolboxes 40

Style quotes 41

References 43

MATLAB Style Guidelines

4

5

Introduction

Advice on writing MATLAB code usually addresses efficiency

concerns, with recommendations such as “Don’t use loops.” This

document is different. Its concerns are correctness, clarity and

generality. The goal of these guidelines is to help produce code

that is more likely to be correct, understandable, sharable and

maintainable.

Some ways of coding are better than others. It’s as simple as that.

Coding conventions add value by helping to make mistakes

obvious. As Brian Kernighan writes, “Well-written programs are

better than badly-written ones -- they have fewer errors and are

easier to debug and to modify -- so it is important to think about

style from the beginning.”

When people look at your code, will they see what you are

doing? The spirit of this book can be pithily expressed as “Avoid

write-only code.”

This document lists MATLAB coding recommendations

consistent with best practices in the software development

community. These guidelines are generally the same as those for

C, C++ and Java, with modifications for MATLAB features and

history. The recommendations are based on guidelines for other

languages collected from a number of sources and on personal

experience. These guidelines are written with MATLAB in mind,

and they should also be useful for related languages such as

Octave, Scilab and O-Matrix.

Issues of style are becoming increasingly important as the

MATLAB language changes and its use becomes more

widespread. In the early versions, all variables were double

precision matrices; now many data types are available. Usage

has grown from small scale prototype code to large and complex

MATLAB Style Guidelines

6

production code developed by groups. Integration with Java is

standard and Java classes can appear in MATLAB code. All of

these changes have made clear code writing more important and

more challenging.

Guidelines are not commandments. Their goal is simply to help

programmers write well. Many organizations will have reasons

to deviate from some of these guidelines, but most organizations

will benefit from adopting some style guidelines.

For broader and deeper coverage of MATLAB style and best

development practices, check out the book:

The Elements of MATLAB Style

available at

http://datatool.com/resources.html

or Amazon.

MATLAB is a registered trademark of The MathWorks, Inc. In

this document, MathWorks refers to The MathWorks, Inc.

If you have corrections or comments, please contact

richj@datatool.com

http://datatool.com/resources.html
mailto:richj@datatool.com

Naming Conventions

The purpose of a software naming convention is to help the

reader and the programmer. Establishing a naming convention

for a group of developers is very important, but the process can

become ridiculously contentious. There is no naming convention

that will please everyone.

Following a convention is more important than what the details

of the convention are. This section describes a commonly used

convention that will be familiar to many programmers of

MATLAB and other languages.

Variables
The names of variables should document their meaning or use.

MATLAB can cope with

z = x * y

but the reader will do better with

wage = hourlyRate * nHours

Write variable names in mixed case starting with
lower case.

This is common practice in other languages. Names that start

with upper case are commonly reserved for types or structures

in other languages.

linearity, credibleThreat, qualityOfLife

Very short variable names can be in upper case if they are

upper case in conventional usage and unlikely to become parts

of compound variable names. Examples are typically domain

MATLAB Style Guidelines

8

specific, such as E for Young’s modulus, which would be

misleading as e.

Some programmers prefer to use underscore to separate parts

of a compound variable name. This technique, although

readable, is not commonly used for variable names in other

languages. Another consideration for using underscore in

variable names in graph titles, labels and legends is that the Tex

interpreter in MATLAB will read underscore as a switch to

subscript, so you will need to apply the parameter/value pair

‘interpreter’, ‘none’ for each text string.

Variables with a large scope should have

meaningful names. Variables with a small scope
can have short names.

In practice most variables should have meaningful names. The

use of short names should be reserved for conditions where they

clarify the structure of the statements or are consistent with

intended generality. For example in a general purpose function it

may be appropriate to use variable names such as x, y, z, t.

Scratch variables used for temporary storage or indices can be

kept short. A programmer reading such variables should be able

to assume that its value is not used outside a few lines of code.

Common names for scratch variables used as integers are k,m,n

and for doubles s, t, x,y, and z.

Programmers who work with complex numbers may choose to

reserve i or j or both for the square root of minus one.

However, The MathWorks recommends using 1i or 1j for the

imaginary number. These execute more quickly and cannot be

overwritten.

Use the prefix n for variables representing the
number of objects.

Naming Conventions

9

This notation is taken from mathematics where it is an

established convention for indicating the number of objects.

nFiles, nSegments

A MATLAB-specific option is the use of m for number of rows

(based on matrix notation), as in

mRows

Follow a consistent convention on pluralization.

Having two variables with names differing only by a final

letter s should be avoided. Some programmers make all variable

names either singular or plural, but others find this can be

awkward.

An acceptable usage for the plural is to use a suffix like Array.

point, pointArray, PointList

An acceptable usage for the singular is to use a prefix like this.

thisPoint

Most programmers do not use the as a prefix for a single

example or element.

Use the suffix No or Num or the prefix i in a

variable name representing a single entity
number.

The No notation is taken from mathematics where it is an

established convention for indicating an entity number.

MATLAB Style Guidelines

10

tableNo, employeeNo

The i prefix effectively makes the variable a named iterator.

iTable, iEmployee

Prefix iterator variable names with i, j, k etc.

The notation is taken from mathematics where it is an

established convention for indicating iterators.

for iFile = 1:nFiles

 :

end

Some programmers use the single letter variable names i, j or both

for convenient loop iterators. Programmers who use explicit complex

numbers tend to hate this practice.

For nested loops the iterator variables should usually be in

alphabetical order. Some mathematically oriented programmers

use a variable name starting with i for rows and j for columns.

Especially for nested loops, using iterator variable names is be

helpful.

for iFile = 1:nFiles

 for jPosition = 1:nPositions

 :

 end

 :

end

Avoid negated Boolean variable names.

Naming Conventions

11

A problem arises when such a name is used in conjunction

with the logical negation operator as this results in a double

negative. It is not immediately apparent what is meant by names

like

~isNotFound

Use

isFound and ~isFound

Avoid
isNotFound

Acronyms, even if normally uppercase, should be

written in mixed or lower case.

Using all uppercase would be inconsistent with the standard

naming conventions. A variable of this type would have to be

named dVD, hTML etc. which obviously is not very readable.

When the name is connected to another, the readability is

seriously reduced. The word following the abbreviation does not

stand out as it should.

Use
html, isUsaSpecific, checkTiffFormat()

Avoid
hTML, isUSASpecific, checkTIFFFormat()

Avoid using a keyword or special value name for
a variable name.

MATLAB can produce cryptic error messages or strange results

if any of its reserved words or builtin special values is redefined.

Reserved words are listed by the command iskeyword. Special

values are listed in the documentation.

MATLAB Style Guidelines

12

Use common domain-specific names.

If the software is targeted for a knowledge domain or a user

group, use names consistent with standard practice.

Use

roi, or regionOfInterest

Avoid
imageRegionForAnalysis

Avoid Variable Names That Shadow Functions.
There are several names of functions in the MATLAB product

that seem to be tempting to use as variable names. Such usage in

scripts will shadow the functions and can lead to errors. Using a

variable and a function with the same name inside a function

will probably cause an error.

Some standard function names that have appeared in code

examples as variables are

alpha, angle, axes, axis, balance, beta, contrast,

gamma, image, info, input, length, line, mode,

power, rank, run, start, text, type

Using a well-known function name as a variable name also

reduces readability. If you want to use a standard function name

such as length in a variable name, then you can add a qualifier,

such as a unit suffix, or a noun or adjective prefix:

lengthCm, armLength, thisLength

Avoid Hungarian notation.

There are at least two versions of Hungarian notation that have

been used by some software developers. A Hungarian variable

name typically involves 1 or 2 prefixes, a name root, and a

qualifier suffix. These names can be pretty ugly, particularly

Naming Conventions

13

when they are strings of contractions. A bigger problem occurs if

a prefix, as is often suggested, encodes data type. Then if the

type needs to be changed, all incidences of the variable name

need to be changed.

Use
thetaDegrees

Avoid
uint8thetaDegrees

Constants
The MATLAB language does not have true constants (except as

constant properties in objects). Use standard practices to name

and define constants so that they can be recognized and not

unintentionally redefined.

Constant names with local scope (within an m-

file) should be all uppercase using underscore to
separate words.

This is common practice in other languages.

MAX_ITERATIONS, COLOR_RED

Use meaningful names for constants.

 Use
MAX_ITERATIONS

Avoid
TEN, MAXIT

Constants that are output by a function with the
same name should have names that are all

lowercase or mixed case.

MATLAB Style Guidelines

14

This practice is used by The MathWorks. For example the

constant pi is actually a function.

offset, standardValue

Constants can be prefixed by a common type
name.

This gives additional information on which constants belong

together and what concept the constants represent.

COLOR_RED, COLOR_GREEN, COLOR_BLUE

Structures

Structure names should begin with a capital
letter.

This usage is consistent with other languages, and it helps to

distinguish between structures and ordinary variables.

The name of the structure is implicit, and need
not be included in a fieldname.

Repetition is superfluous in use.

Use
Segment.length

Avoid
Segment.segmentLength

Be Careful with Fieldnames.

When you set the value of a structure field, MATLAB replaces

the existing value if the field already exists or creates a new field

if it does not. This can lead to unexpected results if the

Naming Conventions

15

fieldnames are not consistent, for example, when a structure has

field

Acme.source = ‘CNN’;

that you intend to update, but you type

Acme.sourceName = ‘Bloomberg’;

The structure will now have two fields.

Functions
The names of functions should document their use.

Write names of functions in lower or mixed case.

Initially all MATLAB function names were in lower case.

linspace, meshgrid

Almost all functions supplied by The MathWorks still follow

this convention. This practice can be awkward with longer

compound names as in the short-lived

isequalwithequalnans

 In other languages, it is common to use mixed case, starting

with lower case, for function names. Many MATLAB

programmers follow this convention.

predictSeaLevel, publishHelpPages

MATLAB Style Guidelines

16

Some programmers prefer to use underscores in function

names, but this practice is not common.

Use meaningful function names.

There is an unfortunate MATLAB tradition of using short and

often somewhat cryptic function names—probably due to the

old DOS 8 character limit. This concern is no longer relevant and

the tradition should usually be avoided to improve readability.

Use
computeTotalWidth

Avoid
compwid

An exception is the use of abbreviations or acronyms widely

used in mathematics.

max, gcd

Functions with such short names should have a clear

description in the header comment lines.

Name functions that have a single output based

on the output.

This is common practice in MathWorks code.

mean, standardError

Functions with no output argument or which only

return a handle should be named after what they
do.

Naming Conventions

17

This practice increases readability, making it clear what the

function should (and possibly should not) do. This makes it

easier to keep the code clean of unintended side effects.

plot

Reserve the prefixes get/set for functions that

access an object or property.

This is the general practice of The MathWorks and common

practice in other languages. A plausible exception is the use of

set for logical set operations.

getobj, setAppData

Reserve the prefix compute for functions where
something is computed.

Consistent use of the term enhances readability. Give the

reader an immediate clue what the function is doing.

computeWeightedAverage, computeSpread

Avoid possibly confusing alternatives such as find or make.

Consider reserving the prefix find for functions
where something is looked up.

Give the reader the immediate clue that this is a simple look up

method with a minimum of computations involved. Consistent

use of the term enhances readability and it is a good substitute

for the overused prefix get.

findOldestRecord, findTallestMan

MATLAB Style Guidelines

18

Consider using the prefix initialize where an
object or a variable is established.

The American initialize should be preferred over the British

initialise. Avoid the abbreviation init.

initializeProblemState

Use the prefix is for Boolean functions.

This is common practice in MathWorks code as well as other

languages.

isOverpriced, iscomplete

There are a few alternatives to the is prefix that fit better in

some situations. These include the has, can and should

prefixes:

hasLicense, canEvaluate, shouldSort

Use complement names for complement

operations.

Reduce complexity by symmetry.

get/set, add/remove, create/destroy,

start/stop, insert/delete,

increment/decrement, old/new, begin/end,

first/last, up/down, min/max, next/previous,

open/close, show/hide, suspend/resume, etc.

Avoid unintentional shadowing.

In general function names should be unique. Shadowing

(having two or more functions with the same name) increases

Naming Conventions

19

the possibility of unexpected behavior or error. Names can be

checked for shadowing using which -all or exist.

Overload functions will of course have the same name. Do not

create an overload situation when a polymorphic function

would be adequate.

General

Consider a unit suffix for dimensioned variables
and constants.

Using a single set of units for a project is an attractive idea that

is only rarely implemented completely. Adding unit suffixes

helps to avoid the almost inevitable unintended mixed unit

expressions.

incidentAngleRadians

Minimize abbreviations in names.

Using whole words reduces ambiguity and helps to make the

code self-documenting.

Use

computeArrivalTime

Avoid

comparr

Domain specific phrases that are more naturally known

through their abbreviations or acronyms should be kept

abbreviated. Even these cases might benefit from a defining

comment near their first appearance.

html, cpu, cm

MATLAB Style Guidelines

20

Consider making names pronounceable.

Names that are at least somewhat pronounceable are easier to

read and remember.

Write names in English.

The MATLAB distribution is written in English, and English is

the preferred language for international development.

Statements

Variables and constants

Variables should not be reused unless required by
memory limitation.

Enhance readability by ensuring all concepts are represented

uniquely. Reduce chance of error from misunderstood definition.

Consider documenting important variables in
comments near the start of the file.

It is standard practice in other languages to document variables

where they are declared. Since MATLAB does not use variable

declarations, this information can be provided in comments.

% pointArray Points are in rows.

THRESHOLD = 10; % Maximum noise level found.

Globals

Minimize use of global constants.

Use an m-file or mat file to define global constants. This practice

makes it clear where the constants are defined and discourages

unintentional redefinition. If the m-file access overhead produces

an execution speed problem, consider using a function handle.

Minimize use of global variables.

Clarity and maintainability of functions benefit from explicit

argument passing rather than use of global variables. Some use of

global variables can be replaced with the cleaner persistent or

with getappdata. An alternative strategy is to replace the global

variable with a function.

MATLAB Style Guidelines

22

Loops

Initialize loop result variables immediately before
the loop.

Initializing these variables improves loop speed and helps

prevent bogus values if the loop does not execute for all possible

indices. This initialization is sometimes called pre-allocation.

Placing the initialization just before the loop makes it easier to see

that the variables are initialized. This practice also makes it easier

to copy all the relevant code for use elsewhere.

result = nan(nEntries,1);

for index = 1:nEntries

 result(index) = foo(index);

end

Use a named variable for the argument in both the initialization

statement and the for line.

Minimize the use of break in loops.

This keyword is often unnecessary and should only be used if it

proves to have higher readability than a structured alternative.

Minimize use of continue in loops.

This keyword is often unnecessary and should only be used if it

proves to have higher readability than a structured alternative.

The end lines in nested loops can have identifying
comments

Adding comments at the end lines of long nested loops can help

clarify which statements are in which loops and what tasks have

been performed at these points.

Statements

23

Conditionals

Avoid complex conditional expressions. Introduce
temporary logical variables instead.

By assigning logical variables to expressions, the program gets

automatic documentation. The construction will be easier to read

and to debug.

if (value>=lowerLimit)&(value<=upperLimit)&~…

 ismember(value,… valueArray)
 :
end

should be replaced by:

isValid = (value >= lowerLimit) &…

 (value <= upperLimit);

isNew = ~ismember(value, valueArray);

if (isValid & isNew)

 :

end

Put the usual case in the if-part and the unusual in

the else-part of an if else statement.

This practice improves readability by preventing special cases

from obscuring the normal path of execution.

fid = fopen(fileName);
if (fid~=-1)
 :
else
 :
end

MATLAB Style Guidelines

24

Avoid the conditional expression if 0.

Make sure that this usage does not obscure the normal path of

execution. To temporarily bypass code execution, use the block

comment feature of the editor instead of this expression.

A switch statement should include the otherwise

condition.

Leaving the otherwise out is a common error, which can lead

to unexpected results.

switch (condition)
case ABC
 statements;
case DEF
 statements;
otherwise
 statements;
end

Use if when the condition is most clearly written
as an expression. Use switch when the condition is

most clearly written as a variable.

There is possible overlap in the usages of if and switch.

Following this guideline helps provide consistency.

The switch variable should usually be a string. Character strings

work well in this context and they are usually more meaningful

than enumerated cases.

General

Avoid cryptic code.

There is a tendency among some programmers, perhaps inspired

by Shakespeare’s line: “Brevity is the soul of wit”, to write

MATLAB code that is terse and even obscure. Writing concise

Statements

25

code can be a way to explore the features of the language.

However, in almost every circumstance, clarity should be the goal.

As Steve Lord of MathWorks has written, “A month from now, if I

look at this code, will I understand what it’s doing?”

Use parentheses.

MATLAB has documented rules for operator precedence, but

who wants to remember the details? If there might be any doubt,

use parentheses to clarify expressions. They are particularly

helpful for extended logical expressions.

Minimize the use of numbers in expressions.

 Numbers that are subject to possible change usually should be

named constants instead. If a number does not have an obvious

meaning by itself, readability is enhanced by introducing a named

constant instead.

It can be much easier to change the definition of a constant than

to find and change all of the relevant occurrences of a literal

number in a file.

Write fractional values with a digit before the
decimal point.

This adheres to mathematical conventions for syntax. Also, 0.5 is

more readable than .5; it is not likely to be read as the integer 5.

Use
THRESHOLD = 0.5;

Avoid
THRESHOLD = .5;

Use caution with floating point comparisons.

Binary representation can cause trouble, as seen in this example.

MATLAB Style Guidelines

26

shortSide = 3;

longSide = 5;

otherSide = 4;

longSide^2 == (shortSide^2 + otherSide^2)

ans =

 1

But

scaleFactor = 0.01;

(scaleFactor*longSide)^2 ==

((scaleFactor*shortSide)^2 + …

(scaleFactor*otherSide)^2)

ans =

 0

A better method is to test that the difference between the values

is small enough.

Use the natural, straightforward form for logical
expressions.

Logical expressions including negations can be difficult to

understand. Strive to use positive expressions.

Use
iSample>=maxSamples;

Avoid
~(iSample<maxSamples);

Prepare for errors.

In general errors should be caught in low level routines and

fixed or passed on the higher level routines for resolution. A

Statements

27

useful tool for protection against error conditions is the try

catch construction with MException.

Another line of defense is to use properly ordered expressions in

if statements so that evaluation short circuiting can avoid

evaluation of expressions that will trigger an error.

Include validity checking in functions used to

acquire input.

Invalid input usually leads to an error stopping execution.

Validity checking allows more graceful error handling. Useful

tools include validateattributes and inputParser.

Avoid use of eval when possible.

Statements that involve eval tend to be harder to write

correctly, more difficult to read, and slower to execute than

alternatives. Use of eval does not support thorough checking by

M-Lint. Statements that use eval can usually be improved by

changing from commands to functions, or by using dynamic field

references for structures with setfield and getfield.

Write code as functions when possible

Functions modularize computation by using internal variables

that are not part of the base workspace. They make input and

output variables more obvious and tend to be cleaner, more

flexible, and better designed than scripts. The main role of scripts

is in development because they provide direct visibility of

variable dimensions, types, and values.

Write code for automation

Minimize use of keyboard and input to support automated

execution and test.

MATLAB Style Guidelines

28

Layout, Comments and
Documentation

Layout
The purpose of layout is to help the reader understand the code.

Indentation is particularly helpful for revealing structure.

Keep content within the first 80 columns.

80 columns is a common dimension for editors, terminal

emulators, printers and debuggers. Files that are shared between

several people should keep within these constraints. Readability

improves if unintentional line breaks are avoided when passing a

file between programmers.

Split long lines at graceful places.

Split lines occur when a statement exceeds the suggested 80

column limit.

In general:

Break after a comma or space.

Break after an operator.

The Editor provides indentation after the continuation operator

(…). Optionally include additional spacing to align the new line

with the beginning of the expression on the previous line.

totalSum = a + b + c + …
 d + e;
function (param1, param2,…
 param3)
setText ([‘Long line split’ …
 ‘into two parts.’]);

Indent 3 or 4 spaces.

Good indentation is probably the single best way to reveal

program structure.

MATLAB Style Guidelines

30

Indentation of 1 space is too small to emphasize the logical

layout of the code. Indentation of 2 spaces is sometimes suggested

to reduce the number of line breaks required to stay within 80

columns for nested statements, but MATLAB is usually not

deeply nested. Indentation larger than 4 can make nested code

difficult to read since it increases the chance that the lines must be

split. Indentation of 4 is the current default in the MATLAB editor.

Indent consistently with the MATLAB Editor.

The MATLAB editor provides indentation that clarifies code

structure and is consistent with recommended practices for C++

and Java. If you use a different editor, try to be consistent.

Write one executable statement per line of code.

This practice improves readability and can speed execution.

Short single statement if, for or while statements

can be written on one line.

This practice is more compact, but it has the disadvantage that

there is no indentation format cue.

if(condition), statement; end

while(condition), statement; end

for iTest = 1:nTest, statement; end

White Space
White space enhances readability by making the individual

components of statements stand out.

Surround =, &&, and || by spaces.

31

Using space around the assignment character provides a strong

visual cue separating the left and right hand sides of a statement.

Using space around the binary logical operators can clarify

complicated expressions.

simpleSum = firstTerm+secondTerm;

Conventional operators can be surrounded by
spaces.

This practice is controversial. Some believe that it enhances

readability. Others find that it makes expressions unnecessarily

long.

simpleAverage = (firstTerm + secondTerm) / two;

for index = 1 : nIterations

Commas can be followed by a space.

These spaces can enhance readability. Some programmers leave

them out to avoid split lines.

foo(alpha, beta, gamma)

foo(alpha,beta,gamma)

Follow semicolons or commas for multiple
commands in one line by a space character.

Spacing enhances readability.

if (pi>1), disp(‘Yes’), end

Follow keywords by a space.

MATLAB Style Guidelines

32

This practice helps to distinguish keywords from function

names.

Separate logical groups of statements within a
block by one blank line.

Enhance readability by introducing white space between logical

units of a block.

Separate blocks by more than one blank line.

One approach is to use three blank lines. By making the space

larger than space within a block, the blocks will stand out within

the file. A better approach is to use editor sections defined by %%.

Use alignment wherever it enhances readability.

Code alignment can make split expressions easier to read and

understand. This layout can also help to reveal errors.

value = (10 * nDimes) + …
 (5 * nNickels) + …
 (1 * nPennies);

Comments
The purpose of comments is to add information to the code.

Typical uses for comments are to explain usage, to express the

purpose of the code, to provide reference information, to justify

decisions, to describe limitations, to mention needed

improvements. Experience indicates that it is better to write

comments at the same time as the code rather than to intend to

add comments later.

Make the comments easy to read.

33

There should be a space between the % and the comment text.

Comments should usually start with an upper case letter and end

with a period.

Write comments in English.

In an international environment, English is preferred.

Header comments

The header comments are the first contiguous block of

comments in an m-file. Write them to provide the user with the

necessary information to use the file.

There are two styles of header comments for functions in

common use. The traditional style has the comments below the

function line and uses only single % signs. It was originally

designed for use in the Command Window.

A more modern style has the comments above the function line.

It often uses MATLAB markup and is designed to produce an

HTML file for the Help and Function Browsers.

Present the function syntax in header comments.

The user will need to know the input and output arguments,

their sequences and variations.

Discuss the input and output arguments in the
header comments.

The user will need to know if the input needs to be expressed in

particular units or is a particular type of array.

% completion must be between 0 and 1.

% elapsedTime must be one dimensional.

Describe any side effects in the header comments.

MATLAB Style Guidelines

34

Side effects are actions of a function other than assignment of the

output variables. A common example is plot generation.

Descriptions of these side effects should be included in the header

comments so that they appear in the help printout.

Write the function name in comments using its

actual case.

Old code files often used all uppercase for function names in

header comments despite the actual function names being all

lower case. This practice was probably intended to make the

function name prominent when displayed in the colorless

command window.

Most programmers now view help information in the editor

window or Help or the Function Browser. The all uppercase style

does not aid the reader in these contexts. Also mixed case function

names are becoming more common and the use of all uppercase

in comments can be confusing.

Avoid clutter in display of the function header.

It is common to include copyright lines and change history in

comments near the beginning of a function file. There should be a

blank line between the header comments and these comments so

that they are not displayed in the help documentation.

Inline comments

Comments in the code as opposed to the header are intended for

a programmer, not a user.

Comments cannot justify poorly written code.

Comments cannot make up for code lacking appropriate name

choices and an explicit logical structure. Such code should be

rewritten. Steve McConnell: “Improve the code and then

document it to make it even clearer.”

35

Make the comments agree with the code, but do
more than just restate the code.

A bad or useless comment just gets in the way of the reader. N.

Schryer: “If the code and the comments disagree, then both are

probably wrong.” It is usually more important for the comment to

address why or how rather than what the code does.

Indent code comments the same as the

statements referred to.

The code is easier to read when comments do not break the

layout of the program.

Minimize use of end of line comments.

The descriptiveness of end of line comments is constrained by

the typical 80 column line length. In general they should only be

used as an adjunct to variable declaration.

Commenting for documentation.

Documentation is aimed at two groups: users who want to run

the code and programmers who read the code. In general the

header comments are intended for users, and the inline comments

are intended for programmers.

Comments for publishing

MATLAB supports special commenting for publishing to HTML,

XML, latex, doc, ppt, and pdf formats. Publishing to HTML can be

very useful for function documentation. Publishing scripts to doc

or pdf can produce basic reports.

MATLAB can display HTML reference pages for user written

functions in the Help Browser. The publish feature with simple

MATLAB markup can produce these pages from the function m-

files.

MATLAB Style Guidelines

36

Files and Organization

Structuring code, both among and within files is essential to

making it understandable. Thoughtful partitioning and ordering

increase the value of the code.

M Files

Modularize.

The best way to write a big program is to assemble it from well-

designed small pieces (usually functions). This approach enhances

readability, understanding and testing by reducing the amount of

text which must be read to see what the code is doing.

Code longer than two editor screens is a candidate for

partitioning. Keeping related information together on the same

editor screen lets you see certain types of problems and fix them

right away. Small well designed functions are more likely to be

usable in other applications.

Make interaction clear.

 A function interacts with other code through input and output

arguments and global variables. The use of arguments is almost

always clearer than the use of global variables. Structures can be

used to avoid long lists of input or output arguments.

 Interface standards bring a more familiar and consistent

experience to using the function. This makes correct use more

likely.

Partitioning

All subfunctions and many functions should do one thing very

well. Every function should hide something.

Use existing functions.

Developing a function that is correct, readable and reasonably

flexible can be a significant task. It may be quicker or surer to find

MATLAB Style Guidelines

38

an existing function that provides some or all of the required

functionality.

Any block of code appearing in more than one m-
file should be considered for writing as a function.

It is much easier to manage changes if code appears in only one

file. Try to use cut and paste rather than copy and paste.

Use structures for function arguments.

Usability of a function decreases as the number of arguments

grows, especially when some arguments are optional. Consider

using structures whenever arguments lists exceed three.

 Structures can allow a change to the number of values passed to

or from the function that is compatible with existing external code.

Structures can remove the need for arguments to be in fixed

order. Structures can be more graceful for optional values than

having a long and ordered list of variables.

Provide some generality in functions

Functions should usually be flexible enough to accept input

scalars, vectors, and arrays of at least 2 dimensions. Functions

with input arguments that commonly have more than one

representation should work with all of them. For example image

processing functions should at least work with uint8 and double

variables.

Subfunctions

A function used by only one other function should be packaged

as its subfunction in the same file. This makes the code easier to

understand and maintain.

MATLAB allows accessing a subfunction from outside its m-file.

This is generally a bad idea.

Files and Organization

39

Test scripts

Write a test script for every function. This practice will improve

the quality of the initial version of the function and the reliability

of changed versions. Consider that any function too difficult to

test is probably too difficult to write. Boris Beizer: “More than the

act of testing, the act of designing tests is one of the best bug

preventers known.”

Input and Output

Make input and output modules.

Output requirements are subject to change without notice. Input

format and content are also subject to change and often messy.

Localizing the code that deals with them improves

maintainability.

Avoid mixing input or output code with computation, except for

preprocessing, in a single function. Mixed purpose functions are

unlikely to be reusable.

Format output for easy use.

If the output will most likely be read by a human, make it self-

descriptive and easy to read.

If the output is more likely to be read by software than a person,

make it easy to parse.

If both are important, make the output easy to parse and write a

formatter function to produce a human readable version.

Use feof for reading files.

Depending on line or data counting can easily lead to end of file

errors or incomplete input.

MATLAB Style Guidelines

40

Toolboxes
Organize m-files that have some generality in toolboxes. Check

the function names for shadowing. Add the toolbox locations to

the MATLAB path.

Typically it is useful to have both project and general purpose

toolboxes.

Style quotes

Martin Fowler: “Any fool can write code that a computer can

understand. Good programmers write code that humans can

understand.”

“In matters of style, swim with the current; in matters of

principle, stand like a rock.” Thomas Jefferson

“You got to know the rules before you can break ‘em. Otherwise

it’s no fun.” Sonny Crockett in Miami Vice

Patrick Raume, “A rose by any other name confuses the issue.”

Plato, “Nothing has its name by nature, but only by usage and

custom.”

Unknown, “All general statements are false.”

Try to avoid the situation described by the Captain in Cool Hand

Luke, “What we’ve got here is failure to communicate.”

Kreitzberg and Shneiderman: “Programming can be fun, so can

cryptography; however they should not be combined.”

Jay Rodenberry, “Space…the final frontier.”

Napoleon Hill, “First comes thought; then organization of that

thought into ideas and plans; then transformation of those plans

into reality.”

“Change is inevitable…except from vending machines.”

42

Files and Organization

43

References

The Elements of MATLAB Style, Richard Johnson

Clean Code, Robert Martin

Code Complete, Steve McConnell - Microsoft Press

The Elements of Java Style, Allan Vermeulen et al.

MATLAB: A Practical Introduction, Stormy Attaway

The Practice of Programming, Brian Kernighan and Rob Pike

The Pragmatic Programmer, Andrew Hunt, David Thomas and
Ward Cunningham

Programming Style, Wikipedia

