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Abstract

Bayesian treatments of learning in neural networks are typically based either on a lo-
cal Gaussian approximation to a mode of the posterior weight distribution, or on Markov
chain Monte Carlo simulations. A third approach, called ensemble learning, was introduced
by Hinton and van Camp (1993). It aims to approximate the posterior distribution by
minimizing the Kullback-Leibler divergence between the true posterior and a parametric
approximating distribution. The original derivation of a deterministic algorithm relied on
the use of a Gaussian approximating distribution with a diagonal covariance matrix and
hence was unable to capture the posterior correlations between parameters. In this chapter
we show how the ensemble learning approach can be extended to full-covariance Gaussian
distributions while remaining computationally tractable. We also extend the framework to
deal with hyperparameters, leading to a simple re-estimation procedure. One of the benefits
of our approach is that it yields a strict lower bound on the marginal likelihood, in contrast
to other approximate procedures.

1 Introduction

Bayesian techniques have been successfully applied to neural networks in the context of both
regression and classification problems (MacKay 1992; Neal 1996). In contrast to the maximum
likelihood approach, which finds a single estimate for the regression parameters, the Bayesian
approach yields a posterior distribution of network parameters, P (w|D), conditional on the
training data D, and predictions are expressed in terms of expectations with respect to this
posterior distribution (Bishop 1995). However, the corresponding integrals over weight space
are analytically intractable.

One well-established procedure for approximating these integrals, known as Laplace’s method,
is to model the posterior distribution by a Gaussian, centred at a mode of p(w|D), in which
the covariance of the Gaussian is determined by the local curvature of the posterior distribution
(MacKay 1992). With the further assumption that the variance of the distribution is small,
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and hence that the network function can be linearized in the neighbourhood of the mode, the
required integrations can be performed analytically.

More recent approaches have used Markov chain Monte Carlo simulations to generate samples
from the posterior (Neal 1996). However, such techniques can be computationally expensive,
and they also suffer from the difficulty of assessing convergence.

A third approach, called ensemble learning, was introduced by Hinton and van Camp (1993)
and again involves finding a simple, analytically tractable, approximation to the true posterior
distribution. Unlike Laplace’s method, however, the approximating distribution is fitted globally,
rather than locally, by minimizing a Kullback-Leibler divergence. Hinton and van Camp (1993)
showed that, in the case of a Gaussian approximating distribution with a diagonal covariance,
a deterministic learning algorithm could be derived. This approach removes the constraint that
the mode of the approximating Gaussian must coincide with a mode of the posterior. However,
the restriction to a diagonal covariance prevents the model from capturing the (often very strong)
posterior correlations between the parameters. MacKay (1995) suggested a modification to the
algorithm by including a linear preprocessing of the inputs to achieve a somewhat richer class of
approximating distributions, although this was not implemented. In this chapter we show that
the ensemble learning approach can be extended to allow a Gaussian approximating distribution
with a general covariance matrix, while still leading to a tractable algorithm (Barber and Bishop
1998). Our focus is on the essential principles of the approach, with the mathematical details
relegated to the Appendix.

1.1 Bayesian Neural Networks

Consider a two-layer feed-forward network having H hidden units and a single output whose
value is given by

f(x,w) =
H∑

i=1

viσ(uT
i x) (1)

where w ≡ {ui, vi} is a k-dimensional vector representing all of the adaptive parameters in the
model, x is the input vector, {ui} , i = 1, . . . , H are the input-to-hidden weights, and {vi} , i =
1, . . . , H are the hidden-to-output weights. The extension to multiple outputs is straightforward.
For reasons of analytical tractability, we choose the sigmoidal hidden-unit activation function
σ(a) to be the ‘erf’ (cumulative Gaussian) function

σ(a) =

√
2

π

∫ a

0
exp

(
−s2/2

)
ds (2)

which (with an appropriate linear re-scaling) is quantitatively very similar to the standard
logistic sigmoid. Hidden unit biases are accounted for by appending the input vector with an
additional input whose value is always unity.

The data set itself consists of N pairs of input vectors and corresponding target output
values D = {xµ, tµ} , µ = 1, . . . , N . We make the standard assumption of Gaussian noise on the
target values, with variance β−1. The likelihood function for w and β is then

P (D|w, β) =
exp(−βED)

ZD
(3)
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where ZD = (2π/β)N/2 is a normalizing factor, and ED is the ‘training error’ defined to be

ED(w) =
1

2

∑

µ

(f(xµ,w) − tµ)2 . (4)

The prior distribution over weights is chosen to be a Gaussian of the form

P (w|A) =
exp (−EW (w))

ZP
(5)

where EW (w) = 1
2w

TAw, A is a matrix of hyperparameters, and ZP = (2π)k/2 |A|−1/2 is the
normalizing factor. From Bayes’ theorem, the posterior distribution over weights can then be
written

P (w|D, β,A) =
1

ZF
exp (−βED(w) − EW (w)) (6)

where ZF is a normalizing constant defined by

ZF =

∫
exp (−βED(w) − EW (w)) dw. (7)

Note that this integration is analytically intractable, and so ZF cannot be evaluated explicitly.
Predictions for a new input (for given β and A) are given by integration over the posterior

distribution of weights. For instance the predictive mean is given by

〈f(x)〉 =

∫
f(x,w)P (w|D, β,A) dw. (8)

This represents an integration over a high-dimensional space, weighted by a posterior distribu-
tion P (w|D, β,A). Since the posterior is exponentially small except in narrow regions whose
locations are unknown a-priori, the accurate evaluation of such integrals is very difficult.

So far we have treated the hyperparameters β and A as if they are constants. A Bayesian
treatment of β and A is given in Section 2.2.

1.2 Laplace’s Method

As the number N of data points is increased, the posterior distribution approaches a Gaussian
(Walker 1969) whose variance goes to zero in the limit N → ∞. This motivates Laplace’s
method which seeks to approximate the posterior distribution with a Gaussian. In order to
calculate this Gaussian approximation, we write the posterior distribution in the form

P (w|D, β,A) = exp (−φ (w)) (9)

and expand φ around a mode of the distribution, w∗ = arg min φ (w), so that

φ (w) ≈ φ (w∗) +
1

2
(w − w∗)

T
H (w − w∗) . (10)

Here we have defined
H = ∇∇φ (w)|

w∗

(11)
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which is the local Hessian matrix. This local expansion defines a Gaussian approximation to the
distribution P (w|D, β,A) of the form

P (w|D, β,A) ' |H|1/2

(2π)k/2
exp

{
−1

2
(w − w∗)

T
H (w − w∗)

}
. (12)

The expected value of f(x,w), as required in (8), can be evaluated by making a further local
linearization of the function f(·,w) around the point w∗. In a practical implementation, a
standard non-linear optimization algorithm such as conjugate gradients is used to find a mode
w∗ of the log posterior distribution. The local Hessian H can then be evaluated efficiently using
an extension of the back-propagation procedure (Bishop 1992; Pearlmutter 1994) or by using
one of several approximation schemes (Bishop 1995).

So far in this discussion of Laplace’s method we have assumed that the hyper-parameters β
and A are fixed. In a fully Bayesian treatment we would define prior distributions of the hyper-
parameters and then integrate them out. Since exact integration is analytically intractable,
MacKay (1992) uses an approximation called type-II maximum likelihood (Berger 1985) which
involves estimating specific values for the hyper-parameters by maximizing the marginal likeli-
hood P (D|β,A) with respect to β and A. The marginal likelihood is given by

P (D|β,A) =

∫
P (D|w, β)P (w|A) dw. (13)

Again, this integration is analytically intractable. However, using the local Laplace approxi-
mation the marginal likelihood in (13) can be approximated analytically. The conditions for
stationarity with respect to A and β then lead to simple re-estimation formulae for the hyper-
parameters expressed in terms of the eigenvalue/eigenvector decomposition of the Hessian ma-
trix. This treatment of hyper-parameters is called the evidence framework by MacKay (1992)
and involves alternating the optimization of w for fixed hyper-parameters with re-estimation of
the hyper-parameters by re-evaluating the Hessian matrix for the new value of w.

The various approximations involved in this approach all improve as the number of data
points N → ∞. However, for a finite data set it can be difficult to asses the accuracy of the
method. One obvious limitation is that it only takes account of the behaviour of the posterior
distribution at the mode. A review of this framework is given by MacKay (1995).

1.3 Markov Chain Monte Carlo Methods

In recent years, Monte Carlo methods have been applied extensively in Bayesian statistics. The
central idea is to replace integrals weighted by the posterior distribution, such as that in (8), by
finite sums, so that ∫

P (w|D, β,A)g(w) dw ≈ 1

m

m∑

i=1

g(wi) (14)

where the vectors wi are samples from the posterior distribution P (w|D, β,A), and g(w) is some
function. In principle, this procedure is exact in the limit m → ∞. The great difficulty, however,
is in finding a representative set of samples {wi}. One of the most successful approaches in the
context of neural networks is that of hybrid Monte Carlo (Duane, Kennedy, Pendleton, and
Roweth 1987; Neal 1996).
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2 Ensemble Learning

We now introduce the technique of ensemble learning for Bayesian neural networks. This is
a special case of the general framework of variational methods for approximate inference and
learning in probabilistic models, which are reviewed by Jordan, Gharamani, Jaakkola, and Saul
(1998) and Bishop (1998b).

Consider the logarithm of the marginal likelihood, given by (13). We introduce a distribution
Q(w) which is intended to provide an approximation to the true posterior distribution. Then it
is easily verified that

ln P (D|β,A) = ln

∫
P (D|w, β)P (w|A) dw

= ln

∫
P (D|w, β)P (w|A)

Q(w)
Q(w) dw

≥
∫

ln

{
P (D|w, β)P (w|A)

Q(w)

}
Q(w) dw

= F [Q] . (15)

where we have made use of Jensen’s inequality together with the convexity of the function ln(·).
We have therefore obtained a rigorous lower bound F [Q] on the logarithm of the marginal
likelihood. The difference between ln P (D|β,A) and F [Q] is easily seen to be the Kullback-
Leibler divergence between the distribution Q(w) and the true posterior

KL(Q‖P ) =

∫
Q(w) ln

{
Q(w)

P (w|D, β,A)

}
dw. (16)

It is a well known result that KL(Q‖P ) ≥ 0, with equality if and only if P (w|D, β,A) =
Q(w) ∀w. The relationship between the various quantities is illustrated in Figure 1.

Figure 1: The quantity F [Q] provides a rigorous lower bound on the log marginal likelihood
ln P (D|β,A), with the difference being given by the Kullback-Leibler divergence KL(Q‖P ) be-
tween the approximating distribution Q(w) and the true posterior P (w|D, β,A).

We have already noted that the marginal likelihood P (D|β,A) involves an intractable inte-
gration over w. Our goal in the ensemble learning approach is to choose a form for the Q(w)
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distribution such that the lower bound F [Q] can be evaluated efficiently. In particular, if we
can find a parametric family of distributions, then we can adapt the parameters to find the
tightest lower bound within this family. Maximizing the lower bound F [Q] with respect to the
parameters of Q is equivalent to minimizing the Kullback-Leibler divergence (16). The richer
the family of Q distributions considered, the better the resulting bound will be. In the extreme
case of a completely general class of distributions we obtain the tightest possible bound in which
Q is given by the true posterior distribution, the Kullback-Leibler divergence vanishes, and the
lower bound equals the true log marginal likelihood. Of course in this case there is no benefit
to the variational approach since the lower bound will necessarily be intractable.

The key to a successful application of variational methods therefore lies in the choice of the Q
distribution, which should be as close to the true posterior distribution as possible while leading
to an analytically tractable integration. Note that we are at liberty to use as rich a family of
approximating distributions as we please (there is no ‘over-fitting’) and we are limited only by
computational resources and the requirement of analytical tractability in the evaluation of the
lower bound F [Q].

There is an interesting relation between the variational framework and the EM (expectation-
maximization) algorithm, as pointed out by Neal and Hinton (1998). If we use the type II maxi-
mum likelihood procedure to set the values of the hyper-parameters, as discussed in Section 1.2,
then we can regard the weight vector w to be a missing (hidden) variable. The standard EM
algorithm for solving the maximum likelihood problem (Dempster, Laird, and Rubin 1977) al-
ternates between an E-step in which the posterior distribution of the hidden variables is used
to evaluate the expectation of the complete-data log likelihood, and an M-step in which the
expected complete-data log likelihood is maximized with respect to the model parameters. This
corresponds to alternate maximization of F with respect to a free-form Q distribution (E-step)
for fixed hyper-parameters, and with respect to the hyper-parameters (M-step) for fixed Q. It
is well known that the EM algorithm can be generalized by increasing rather than maximizing
the expected complete-data log likelihood in the M-step to give the generalized EM (GEM)
algorithm (Dempster, Laird, and Rubin 1977) while still retaining a guarantee that the true
log likelihood will be increased at each step (unless already at a maximum). Neal and Hinton
(1998) pointed out that the EM algorithm can also be generalized to allow for partial E-steps
by maximizing F with respect to a constrained family of distributions Q. Although this does
not guarantee to increase the true log likelihood, it is guaranteed to increase a lower bound on
the true log likelihood, and the existence of the function F ensures that the overall algorithm
will be stable.

2.1 Gaussian Variational Distributions

We turn now to the problem of making a suitable choice for the family of Q distributions in
the context of variational learning for neural networks. Hinton and van Camp (1993) were the
first to consider this problem. By restricting attention to a Gaussian Q distribution having a
diagonal covariance matrix they were able to obtain a tractable algorithm which involved the
use of pre-computed two-dimensional look-up tables.

MacKay (1995) further noted that a somewhat more general class of Gaussian approximating
distributions can be considered by allowing for linear transformations of the input variables.
However, even with this generalization, this approach is incapable of capturing the typically
strong correlations amongst arbitrary subsets of the network parameters.
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In this chapter we show that such restrictions are unnecessary, and that by careful analytical
treatment it is possible to use an arbitrary Gaussian distribution for Q while still obtaining
a tractable algorithm. Here we give an overview of the key ideas, and defer a more detailed
discussion of the analysis to the Appendix.

We consider a Q distribution given by a Gaussian with mean w and covariance C. From the
definition of F in (15), and making use of (3) and (5), we obtain

F [Q] = −
∫

Q(w) ln Q(w) dw −
∫

Q(w) {EW + ED} dw − ln ZP − ln ZD. (17)

The first term in (17) is the entropy of a Gaussian distribution, and is easily evaluated to give

−
∫

Q(w) ln Q(w) dw =
1

2
ln |C| + k

2
(1 + ln 2π) . (18)

The prior term EW (w) is quadratic in w, and integrates to give
∫

Q(w)EW (w) dw = Tr (CA) +
1

2
wTAw. (19)

This leaves the data dependent term in (17) which we write as

∫
Q(w)ED(w) dw =

1

2

N∑

µ=1

l(xµ, tµ) (20)

where

l(x, t) =

∫
Q(w)f(x,w)2 dw − 2t

∫
Q(w)f(x,w) dw + t2. (21)

For clarity, we concentrate only on the first term in (21), as the calculation of the term linear
in f(x,w) is similar, though simpler. Writing the Gaussian integral over Q as an average, 〈 〉,
the first term of (21) becomes

〈
f(x,w)2

〉
=

H∑

i,j=1

〈
vivjσ(ui

Tx)σ(uj
Tx)

〉
. (22)

To simplify the notation, we denote the set of input-to-hidden weights {ui}H
i=1 by u and the set

of hidden-to-output weights, {vi}H
i=1 by v. Similarly, we partition the covariance matrix C into

blocks, Cuu, Cuv, Cvv, and Cvu = CT
uv. For convenience, we denote the scalar product xTui

by uTxi where we define xi to be a vector of the same dimensions as the concatenated vector
u with zero components everywhere except for those that correspond to hidden unit i, which
contain the vector x.

As the components of v do not enter the non-linear sigmoid functions, we can directly
integrate over v, so that each term in the summation (22) gives

〈(
θij + (u − u)T Ψij (u − u) + ΩT

ij (u − u)
)

σ
(
uTxi

)
σ
(
uTxj

)〉
(23)

where

θij =
(
Cvv − CvuCuu

−1Cuv

)
ij

+ vivj

Ψij = Cuu
−1Cu,v=iCv=j,uCuu

−1

Ωij = Cuu
−1Cu,v=jvi + Cuu

−1Cu,v=ivj
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and the expectation in (23) is over a Gaussian distribution in u with mean u and covariance
Cuu. Although the remaining integrations in (23) over u are not analytically tractable, we can
make use of techniques discussed in the Appendix to reduce them to one-dimensional integrals.
For example

〈
σ
(
zTa + a0

)
σ
(
zTb + b0

)〉
z

=
〈

σ (z‖a‖ + a0) σ


 zaTb + b0‖a‖√

‖a‖2 (1 + ‖b‖2) − (aTb)2



〉

z

(24)

where a, b are vectors and a0, b0 are scalar offsets. The average on the left of (24) is over an
isotropic multi-dimensional Gaussian, P (z) ∝ exp(−zTz/2), while the average on the right is
over the one-dimensional Gaussian P (z) ∝ exp(−z2/2). The resulting integrals can then be
evaluated using standard numerical techniques.

Similar analytical techniques can be used to evaluate the derivatives of the KL divergence
with respect to both the mean and covariance matrix (Appendix A.3). Together with the KL
divergence, these derivatives are then used in a scaled conjugate gradient optimizer to find the
parameters w and C that represent the best Gaussian fit. It is worthwhile to note that fixed
point equations are also derivable for this method. Consider for example optimizing (17) with
respect to the parameters w. These parameters appear only in the average of the terms EW and
ED. Using (19) and differentiating with respect to w, we then obtain the following condition
for an extremum,

Aw = −∇w

∫
Q(w)EDdw (25)

This suggests the iterative solution wnew = −A−1∇
w

old

∫
Q(w)EDdw. Similar procedures

can be constructed for other variables and can be expected to improve convergence in the KL
optimization.

The number of parameters in the covariance matrix scales quadratically with the number of
weight parameters. We therefore have also implemented a version with a constrained covariance
matrix

C = diag(d2
1, . . . , d

2
n) +

s∑

i=1

sis
T
i (26)

which is the form of covariance used in factor analysis (Bishop 1998a). This reduces the number
of independent parameters in the covariance matrix from k(k + 1)/2 to k(s + 1) − s(s + 1)/2,
which is now linear in k. Thus, the number of parameters can be controlled by changing s and,
unlike a diagonal covariance matrix, this model can still capture the strongest of the posterior
correlations. For s = k − 1 we obtain a completely general positive-definite covariance matrix.
The value of s should be as large as possible, subject only to computational cost limitations.
There is no ‘over-fitting’ as s is increased since more flexible distributions Q(w) simply give
better approximations to the true posterior. The diagonal Gaussian model of Hinton and van
Camp (1993) is recovered when s = 0.

We illustrate the optimization of the KL divergence in Figure 2 using a synthetic example
involving two parameters, thereby allowing the posterior distribution, and various approxima-
tions to the posterior, to be plotted directly. The training data set, consisting of 6 points, was
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Posterior Laplace fit Minimum KL fitMinimum KLD fit

(a) (b) (c) (d)

Figure 2: Comparison of various approximations to the posterior distribution for a synthetic
regression problem involving two adaptive parameters (details given in the text). (a) The true
posterior distribution. (b) The local Gaussian approximation obtained by Laplace’s method,
giving a Kullback-Leibler (KL) divergence value of 41. (c) The minimum KL fit obtained with
a diagonal covariance Gaussian (KLD), giving a residual KL value of 4.6. (d) The minimum KL
fit obtained using a full covariance Gaussian distribution, giving a residual KL value of 3.9.

generated by sampling the single input variable x in the range (−2, 2), computing the corre-
sponding values of the function y = −2.5σ(−0.13x), and adding Gaussian noise with standard
deviation 0.1.

2.2 Hyperparameter Adaptation

So far, we have treated the hyperparameters β and A as fixed. We now extend the ensemble
learning formalism to include hyperparameters within the Bayesian framework. For simplicity,
we consider a standard isotropic prior covariance matrix of the form A = αI, and introduce
hyperpriors given by Gamma distributions

ln p (α) = ln
{

αa−1 exp
(
−α

b

)}
+ const. (27)

ln p (β) = ln

{
βc−1 exp

(
−β

d

)}
+ const. (28)

where a, b, c, d are constants. The joint posterior distribution of the weights and hyperparameters
is given by

p (w, α, β|D) ∝ p (D|w, β) p (w|α) p (α) p (β) (29)

in which

ln p (D|w, β) = −βED +
N

2
ln β + const. (30)

ln p (w|α) = −α‖w‖2 +
k

2
ln α + const. (31)

We follow MacKay (1995,1996) by modelling the joint posterior p (w, α, β|D) by a factorized
approximating distribution of the form

Q(w)R(α)S(β) (32)
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where Q(w) is a Gaussian distribution as before, and the functional forms of R and S are left
unspecified. We then maximize the lower bound

F [Q, R, S] = −
∫∫∫

Q(w)R(α)S(β) ln

{
P (D,w, α, β)

Q(w)R(α)S(β)

}
dw dα dβ. (33)

Consider first the dependence of (33) on Q(w)

F [Q] = −
∫∫∫

QRS
{

βED(w) +
α

2
‖w‖2 + ln Q(w)

}
dw dα dβ + const.

= −
∫

Q(w)

{
βED(w) +

α

2
‖w‖2 + ln Q(w)

}
dw + const. (34)

where α =
∫

R(α)α dα and β =
∫

S(β)β dβ. We see that (34) takes the same form as (17),
except that the fixed hyperparameters are now replaced with their average values. Thus the
optimization of Q(w) will proceed as discussed previously. To calculate the average values of
the hyperparameters, we next consider the dependence of the functional F on R(α)

F [R] =

∫∫∫
QRS

{
−α

2
‖w‖2 +

k

2
ln α + (a − 1) ln α

−α

b
− ln R

}
dw dα dβ + const.

=

∫
R(α)

{α

s
+ (r − 1) ln α − ln R(α)

}
dα + const. (35)

where r = k/2 + a and 2/s = ‖w‖2 + Tr (C) + 2/b. We recognize (35) as the negative Kullback-
Leibler divergence between R(α) and a Gamma distribution. Thus the optimum R(α) is also
Gamma distributed, with

R(α) ∝ αr−1 exp
(
−α

s

)
. (36)

We therefore obtain
α = rs. (37)

A similar procedure for S(β) gives
β = uv (38)

where u = N/2 + c and 1/v = 〈ED〉 + 1/d, in which 〈ED〉 has already been calculated during
the optimization of Q(w).

This defines an iterative procedure in which we start by initializing the hyperparameters
(using the mean of the hyperprior distributions) and then alternately optimize the KL divergence
over Q(w) using the techniques discussed in Section 2.1 and re-estimate α and β using (37) and
(38).

2.3 Illustrative Application

As a demonstration of our method on a standard benchmark problem, we applied the ensemble
learning procedure to the Boston Housing data set. This is a problem with 13 inputs and one
output, for which the data can be obtained from the DELVE archive1(we took 128 training

1
See http://www.cs.utoronto.ca/∼delve/
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Method Test Error

Ensemble (s = 1) 0.22

Ensemble (diagonal) 0.28

Laplace 0.33

Table 1: Comparison of ensemble learning using the covariance matrix (26) with s = 1, ensemble
learning using a diagonal covariance, and Laplace’s method. The test error is defined to be the
mean squared error over the test set.

points and 250 test points). We trained a network of four hidden units, with covariance matrix
given by (26) with s = 1, and choose broad hyperpriors on α and β by setting a = 0.25 and
b = 400 in (27), and c = 0.05 and d = 2000 in (28). Predictions were made by evaluating the
integral in (8) with P (w|D, β,A) replaced by Q(w), and the hyperparameters fixed at their
average values. The required integration over w can be done analytically (see the Appendix) as
a consequence of the form of the sigmoid function given in (2).

We compared the performance of the KL method against the Laplace framework of MacKay
(1992) which also treats hyperparameters through a re-estimation procedure. In addition we
also evaluated the performance of the ensemble learning method using a diagonal covariance
matrix. Results are summarized in Table 1.

3 Discussion

In this chapter we have reviewed the framework of ensemble learning and discussed its appli-
cation to feed-forward neural networks. We have shown that earlier approaches based on con-
strained Gaussian variational distributions can be extended to general Gaussian distributions
while remaining computationally tractable.

The ensemble learning approach has the virtue of maintaining a rigorous lower bound on
the marginal likelihood, and in this sense can be regarded as a more controlled approximation
than that provided by the Laplace expansion. One drawback, however, is that it is generally
computationally more costly than the Laplace method.

An additional limitation of the ensemble approach (in common with the Laplace method)
is that, with a Gaussian approximating distribution, it cannot effectively model a multi-modal
posterior distribution. This problem can be tackled by considering a Q distribution which is a
probabilistic mixture of Gaussian distributions of the form

Q(w) =
L∑

i=1

πiQi(w) (39)

where each component Qi(w) is a Gaussian with its own mean wi and covariance Ci, and the
mixing coefficients πi are also adaptive parameters. If we consider using the mixture distribution
(39) to evaluate the lower bound (17) we see that the data and prior terms can be obtained
trivially by forming linear combinations of the earlier results. The entropy term, however,
cannot be evaluated analytically. To tackle this we can follow the approach of Jaakkola and
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Jordan (1998) and make further use of variational methods to obtain a lower bound on F [Q],
which will therefore also be a lower bound on the log marginal likelihood. This approach has
already been applied successfully to the use of mixture distributions in variational treatments
of sigmoidal belief networks (Bishop, Lawrence, Jaakkola, and Jordan 1998) and Boltzmann
machines (Lawrence, Bishop, and Jordan 1998). The extension to ensemble learning for neural
networks using mixtures of Gaussians is straightforward in principle, although it will increase
the complexity and computational cost of the algorithm compared to the use of a single Gaussian
Q distribution. Other advances are also possible using tractable approximating distributions of
a similar analytic form to the posterior, but with limited interactions between some variables.
See Barber and Wiegerinck (1998) for an example of such an approach.

In this chapter we have focussed on the application of ensemble learning methods to feed-
forward neural networks. It should be clear, however, that the general approach has much wider
applicability. A central issue in any new application is the choice of a suitable form for the
variational Q distribution, which should sufficiently flexible to give good performance and yet
lead to an analytically tractable lower bound.

An interesting example, discussed by Barber and Schottky (1998), uses a particular form of
radial basis function (RBF) network. They consider a model in which the network output is
given by

f(x,w) =

H∑

i=1

ui exp
{
−λi (x − ci)

T (x − ci)
}

(40)

where ci are the centres of the H basis functions, and ui the weights. Both ci and ui are treated
as adaptive parameters, while the scale parameters λi are taken to be fixed. The machinery
presented previously for two-layer feed-forward neural networks can then be used in exactly
the same manner on this model, including the framework for hyperparameter adaptation. How-
ever, the integrals required to compute the Kullback-Leibler divergence are significantly simpler,
requiring only Gaussian integration, and so can be performed analytically.
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A Evaluation of the Lower Bound

In this Appendix we give a more detailed overview of the calculations needed to evaluate the
lower bound on the log marginal likelihood as well as the derivatives of the bound with respect
to the model parameters. We do not spell out every step explicitly, rather our aim is to provide
enough detail to allow the results to be reconstructed without difficulty.

A.1 Reduction of Dimensionality

Although the evaluation of F [Q] involves integration over the multi-dimensional parameter
space, the integrals can be straightforwardly reduced to one dimension. Here we consider a
simple example, although the argument is quite general.

The integrals we need to evaluate involve the Gaussian expectation of some (in general)
non-linear function of w of the form

〈
g
(
aTw

)〉
N (m,C)

=

1

(2π)k/2|C|1/2

∫
exp

{
−1

2
(w − m)TC−1 (w − m)

}
g
(
aTw

)
dw (41)

for some vector a. The key observation is that the argument of the expectation depends on w

only through its projection onto a particular direction defined by a. By making a linear change of
variables we can transform the Gaussian to have zero mean and an isotropic covariance, which
allows us to integrate trivially over all k − 1 dimensions orthogonal to a. Thus, if we define
s = C− 1

2 (w − m), we obtain

〈
g
(
aTw

)〉
N (m,C)

=

1

(2π)k/2

∫
exp

{
−1

2
sTs

}
g
(
aTm + aTC1/2s

)
ds. (42)

The central idea is now to rotate the coordinate system so that s can be decomposed into
s = s‖e + s⊥ where e is a unit vector parallel to C1/2a, and s⊥ is orthogonal to e. Then

〈
g
(
aTw

)〉
N (m,C)

=
1

(2π)k/2

∫∫
exp

{
−1

2
s⊥

Ts⊥ − 1

2
s2
‖

}

g
(
s‖
√

aTCa + aTm
)

ds⊥ ds‖. (43)

Since the components of s⊥ integrate to unity we obtain

〈
g
(
aTw

)〉
N (m,C)

=
〈
g
(
w
√

aTCa + aTm
)〉

N (0,1)
(44)

where we have used the notation 〈. . .〉N (m,C) to represent the expectation with respect to a
Gaussian distribution with mean m and covariance C. Thus the integration over the multi-
dimensional vector w on the left hand side of (44) has been reduced to a one-dimensional
integral over the scalar w on the right hand side.
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A.2 Specific Integrals

The most complex integral required for computing the KL value is given by the Gaussian average
of the product of a quadratic form and two sigmoidal functions, as in (23), of the form

〈(
c + wTAw + dTw

)
σ
(
wTa + a0

)
σ
(
wTb + b0

)〉
N (0,I)

(45)

where w is a k-dimensional Gaussian random variable. Without loss of generality, we have
considered an expectation with respect to a zero-mean unit-covariance Gaussian, since the ex-
pectation with respect to a more general Gaussian distribution can always be reduced to the
form (45) by a linear coordinate transformation of w. We defer the derivation for this inte-
gral until later, and initially concentrate on a slightly simpler integral, from which we can later
generate the result for (45).

Thus we first consider the following

I =
〈
σ
(
wTa + a0

)
σ
(
wTb + b0

)〉
N (0,I)

. (46)

Following our general discussion of dimensionality reduction in such integrals, we rotate the
co-ordinate system so that w = w1â + w2ĉ + w⊥ ,where â = a/‖a‖ and c = c/‖c‖ with

c = b − bTa

aTa
a (47)

so that c is orthogonal to a and in the plane spanned by a and b. Similarly, w⊥ is orthogonal
to a and c. With this choice of coordinate system, the arguments of the activation functions
in (46) are independent of the components of w⊥, and the average over the Gaussian for these
directions is unity. This leaves

I =
1

2π

∫∫
exp

{
−1

2
w2

1 −
1

2
w2

2

}
σ (w1‖a‖ + a0)

σ
(
w1â

Tb + w2ĉ
Tb + b0

)
dw1 dw2. (48)

We then make use of the relation

1√
2π

∫ ∞

−∞
e−

1

2
x2

σ (cx + d) dx = σ

(
d√

1 + c2

)
(49)

which is easily verified by differentiating the left hand side of (49) with respect to d. This enables
us to integrate over w2 and reduce the integral (48) to one dimension, so that

I =
1√
2π

∫ ∞

−∞
e−

1

2
w2

σ (‖a‖w + a0) σ


 aTbw + ‖a‖b0√

‖a‖2 (1 + ‖b‖2) − (aTb)2


 dw. (50)

Note that we can also re-express (50) as an integral involving only one ‘erf’ function by using
the identity

〈σ (wa + a0) σ (wb + b0)〉N (0,1) =

σ

(
b0√

1 + b2

)
−
√

2

π

∫ ∞

α
e−

1

2
w2

σ (β − γw) dw (51)
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where we have defined

α = a0(1 + a2)−1/2 (52)

β = b0

(
1 + a2

1 + a2 + b2

)1/2

(53)

γ = ab(1 + a2 + b2)−1/2. (54)

One potential benefit of such a representation is that the integral (46) can then be computed
using a three dimensional lookup table. In our implementation, however, we have numerical
integration to evaluate the required one-dimensional integrals.

Next we consider the evaluation of averages of the form
〈(

c + wTAw + dTw
)
σ
(
wTa + a0

)
σ
(
wTb + b0

)〉
N (0,I)

. (55)

A useful trick in deriving this and similar relations comes from writing the quantity we desire
as the derivative of a calculable integral. Consider

− ∂

∂λ

∫ ∞

−∞
exp

(
−1

2
‖w‖2 − λ

(
wTAw + dTw

))
f(w)dw

∣∣∣∣
λ=0

=

∫ ∞

−∞

(
wTAw + dTw

)
exp

(
−1

2
‖w‖2

)
f(w) dw. (56)

This can be used to evaluate (45) by setting

f(w) = σ
(
wTa + a0

)
σ
(
wTb + b0

)
. (57)

We then have to calculate the derivative (with respect to λ) of the (non-zero mean, non-unit
covariance) Gaussian integral over the product of two sigmoid functions. We can write this as
an integral over a zero mean, unit covariance Gaussian by applying the linear transformation
w′ = B

1

2

(
w + λB−1d

)
, where B = I + 2λA (terms of order λ2 can be ignored since their

derivatives vanish at λ = 0). We then use (50) to compute this Gaussian integral. Finally, we
take the derivative with respect to λ and set this to zero to arrive at

〈(
c0 + wTAw + dTw

)
σ
(
wTa + a0

)
σ
(
wTb + b0

)〉
N (0,I)

= (c0 + Tr (A))
〈
σ
(
wTa + a0

)
σ
(
wTb + b0

)〉
N (0,I)

+ D (a0, b0,a,b,A,d) + D (b0, a0,b,a,A,d) (58)

where the auxiliary function D (a0, b0,a,b,A,d) is given by

D =

(
2

π(1 + ‖b‖2)

)1/2

exp

{
− b2

0

2(1 + ‖b‖2)

}

〈(
dTb + wTAb

)
σ
(
wTa + a0

)〉
N(b0(I+bbT)−1b,(I+bbT)−1) . (59)

To evaluate (59), we use the identity

〈(
c + dTw

)
σ
(
wTa

)〉
N (m,C)

=

√
2

π

dTCa√
1 + aTCa

exp

{
−

(
aTm

)2

2(1 + aTCa)

}
+
(
dTm + c

)
σ

(
aTm√

1 + aTCa

)
(60)
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which can be verified using the coordinate transformation and rotation method discussed earlier.

A.3 Derivatives

Evaluation of the derivatives of the KL divergence is straightforward. However, the resulting
expressions tend to be rather lengthy and so, instead of writing out the results in full, we give
an outline derivation of the more complex contributions.

In a numerical implementation, a powerful check on both the analysis and the software can be
obtained by comparing the derivatives of the KL divergence found by evaluation of the analytic
expressions with the same quantities calculated using central differences applied to the expression
for the KL divergence itself (Bishop 1995). Note, however, that numerical differentiation is not
appropriate for a run-time implementation due to its computational inefficiency.

As before, we concatenate all the parameters into a single vector w = ({vk}, {uk}). We can
then write, for example, xTui = wTxi where we have defined xi to be a vector with the same
number of components as w and with zeros everywhere except in the components identified with
ui, which contain x. Similarly, we write vi = wTδ

i where we have defined δ
i to be a zero vector

with a single 1 in the component corresponding to vi. δ
ij will denote the vector δ

i if i = j and
the zero vector otherwise.

We illustrate the general approach by evaluating the derivatives of (21), which we can rewrite
in the form

l (x, t) =
|C|1/2

(2π)k/2

∫
e−

1

2
(w−m)TC−1(w−m)

(
H∑

i=1

wT
δ

iσ
(
wTxi

)
− t

)2

dw (61)

As we saw in section (A.2), the integral over a Gaussian of two sigmoid functions is the only
integral that cannot be computed analytically and we therefore wish to avoid expressions con-
taining such integrals. Our goal is to differentiate (61) with respect to the parameters m and C

of the variational Gaussian Q distribution. If we simply differentiate (61) directly we will obtain
several integrals involving the average of the product of two sigmoid functions. We therefore
adopt an alternative approach and first make a linear transformation of the w variable so that
the parameters m and C are transferred to the arguments of the sigmoid functions. Since the
derivatives of the sigmoids are Gaussian, we obtain simpler expressions. We therefore consider
a linear transformation w′ = C−1 (w − m) which gives

l (x, t) =
1

(2π)k/2

∫
e−

1

2
w′Tw′

[
H∑

i=1

(
m + Cw′

)T
δ

iσ
(
m + Cw′

)T
xi − t

]2

dw′. (62)

If we now differentiate l with respect to some (as yet unspecified) parameter and then transform
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back to the original coordinate system, we find

∂l(x, t) =

√
2

π

H∑

ij=1

〈
wT

δ
i
δ

jT
wσ

(
wTxi

)
e−

1

2
(wTxj)

2 [
Ωx + wT

θx

]〉
N (m,C)

−t

√
2

π

H∑

j=1

〈
wT

δ
je−

1

2
(wTxj)

2 [
Ωx + wT

θx

]〉
N (m,C)

+
H∑

ij=1

〈
wT

δ
iσ
(
wTxi

)
σ
(
wTxj

) [
Ωδ + wT

θδ

]〉
N (m,C)

−t
H∑

j

〈
σ
(
wTxj

) [
Ωδ + wT

θδ

]〉
N (m,C)

. (63)

where we have defined

Ωx = xjT
∂m − C∂CC−1m θx = C−1∂Cxi (64)

Ωδ = δ
jT

∂m − C∂CC−1m θδ = C−1∂Cδ
i. (65)

We now evaluate these expressions explicitly for specific parameters of the Q distribution.
First we consider the components of the mean m corresponding to the hidden-to-output weights
in the network. If we differentiate with respect to vk we obtain

Ωδ = δ
jk, Ωx = θx = θδ = 0 (66)

where δ
jk is as defined above. Substituting this into the expression for the general derivative,

we find

1

2

∂l

∂vk
=

H∑

i=1

〈
wT

δ
iσ
(
wTxi

)
σ
(
wTxk

)〉
N (m,C)

− t
〈
σ
(
wTxk

)〉
N (m,C)

. (67)

The first term is evaluated using (58), and the second follows straightforwardly by using (44)
and then (49) after a linear transformation.

Next we consider the components of the mean m corresponding to the input-to-hidden
weights in the network. If we differentiate with respect to the k-th component of the h-th input
to hidden vector which we denote ukh we obtain

Ωx = xjδjk, Ωδ = θx = θδ = 0. (68)

This leads to the following formula for the derivative

√
π

2

∂l

∂ukh
= xk

[
H∑

i=1

〈
wT

δ
i
δ

hT
wσ

(
wTxi

)
e−

1

2
(wTxh)2

〉
N (m,C)

−t
〈
wT

δ
he−

1

2
(wTxh)

2
〉
N (m,C)

]
. (69)
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The final term is calculated using the identity
〈
wTd exp

{
−1

2

(
wTx

)2
}〉

N (m,C)

=
1√

1 + xTCx
exp

{
−

(
mTx

)2

2(1 + xTCx)

}(
dTm − (dTCx)(xTm)

1 + xTCx

)
. (70)

Rearranging the exponent of the first term in brackets of (69), we get

〈
wT

δ
i
δ

hT
wσ

(
wTxi

)
e−

1

2
(wTxh)2

〉
N (m,C)

=
1√

1 + xhT
Cxh

exp



−1

2

(
mTxh

)2
(
1 + xhT

Cxh
)




〈
wT

δ
iwT

δ
hσ
(
wTxi

)〉
N (b,D)

(71)

where

D = C − CxhxhT
C

1 + xhT
Cxh

, b = m − xhT
mCxh

1 + xhT
Cxh

. (72)

This average can then be computed using the results to be presented in (79).
Finally we consider the derivatives with respect to the elements of the covariance matrix

C. The form of these derivatives depends on how we represent the covariance matrix. Here we
write the covariance matrix in Cholesky factorized form

C = C̃TC̃ (73)

where C̃ is an upper triangular matrix. If we consider the derivative with respect to the α, β
element of C̃ we have

Ωδ + wT
θδ = (w − m)Tcα

δ
jβ (74)

Ωx + wT
θx = (w − m)Tcαxjβ (75)

where xjβ is the β component of xj . Since xj is zero except for the components corresponding
to hidden unit j, xjβ is zero unless β also refers to the same hidden unit. In (74) and (75) we

have used the notation, [cα]i =
[
C̃−1

]
i,j=α

, that is cα is the α-th column of the inverse of the

Cholesky factor.
The first term on the right hand side of (63) is the only one that we have not described how

to evaluate and for this reason, we shall present here only the results needed for this term. This
involves the Gaussian integral of a cubic weight term with a sigmoid of the form

√
2

π

H∑

i,j=1

〈
wT

δ
i
δ

jT
wσ

(
wTxi

)
e−

1

2
(wTxj)

2

(w − m)Tcαxjβ
〉
N (m,C)

. (76)

Note that the sum over j only extends over those values which correspond to the same hidden unit
as β (as a result of the factor xjβ). Completing the square in the exponential and rearranging,
we are required to compute, for various settings of i, j, k, terms of the form h = ĥ − h̃ where

ĥ =
1√

1 + xiTCxi
exp

{
−1

2

(
mTxi

)2

1 + xiTCxi

}
〈
wiwjwkσ

(
wTxi

)〉
N(− 1

2
D−1d,D−1) (77)
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and

h̃ =
1√

1 + xiTCxi
exp

{
−1

2

(
mTxi

)2

1 + xiTCxi

}
w̄k

〈
wiwjσ

(
wTxi

)〉
N(− 1

2
D−1d,D−1) (78)

in which d = 2C−1m and D = C−1 + xixiT.
The integrals ĥ and h̃ can be computed using the results:

〈
wawbσ

(
wTa

)〉
N (m,C)

= −4

√
2

π
e−

1

2
φ2

[
cacbφ +

1

2
(camb + cbma)

]
+ σ (φ) (Cab + mamb) (79)

where

c = −1

2

Ca√
1 + aTCa

, φ =
mTa√

1 + aTCa
. (80)

With these same definitions we finally have

〈
wawbwcσ

(
wTa

)〉
N (m,C)

= σ (φ) (maCbc + mbCac + mcCab + mambmc)

− 8

√
2

π
e−

1

2
φ2

{
cacbcc

[
φ2 − 1

]
+

1

4
(ccmamb + cbmamc + camcmb)

+
1

2
φ (cacbmc + caccmb + cccbma) +

1

4
(caCbc + cbCac + ccCab)

}
. (81)
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