
Odin: Microsoft’s Scalable Fault-Tolerant CDN Measurement System

Matt Calder,†? Manuel Schröder,† Ryan Gao,† Ryan Stewart,† Jitendra Padhye†

Ratul Mahajan,# Ganesh Ananthanarayanan,† Ethan Katz-Bassett§

Microsoft† USC? Intentionet# Columbia University§

Abstract

Content delivery networks (CDNs) are critical for deliv-
ering high performance Internet services. Using world-
wide deployments of front-ends, CDNs can direct users
to the front-end that provides them with the best latency
and availability. The key challenges arise from the het-
erogeneous connectivity of clients and the dynamic na-
ture of the Internet that influences latency and availabil-
ity. Without continuous insight on performance between
users, front-ends, and external networks, CDNs will not
be able to attain their full potential performance.

We describe Odin, Microsoft’s Internet measure-
ment platform for its first-party and third-party cus-
tomers. Odin is designed to handle Microsoft’s large user
base and need for large-scale measurements from users
around the world. Odin integrates with Microsoft’s var-
ied suite of web-client and thick-client applications, all
while being mindful of the regulatory and privacy con-
cerns of enterprise customers. Odin has been operational
for 2 years. We present the first detailed study of an Inter-
net measurement platform of this scale and complexity.

1 Introduction
Content delivery networks (CDNs) are a key part of the
Internet ecosystem. The primary function of a CDN is
to deliver highly-available content at high performance.
To accomplish this, CDNs deploy Points of Presence
(PoPs) around the world that interconnect with other Au-
tonomous Systems (ASes) to provide short, high quality
paths between content and end users.

While a CDN’s goal is to deliver the best performance
to all users in a cost-effective manner, the dynamic, het-
erogeneous, and distributed nature of the Internet makes
this difficult. CDNs serve content to users all over the
world, across tens of thousands of ASes, using various
forms of Internet access and connection quality. User
performance is impacted by Internet routing changes,
outages, and congestion, all of which can be outside the
control of the CDN. Without constant insight into user
performance, a CDN can suffer from low availability and
poor performance. To gain insight into user performance,
CDNs need large-scale measurements for critical CDN
operations such as traffic management [1,2,3,4,5], Inter-
net path performance debugging [6, 7], and deployment
modeling [8].

Microsoft operates a CDN with over 100 PoPs around
the world to host applications critical to Microsoft’s busi-
ness such as Office, Skype, Bing, Xbox, and Windows
Update. This work presents our experience designing a
system to meet the measurement needs of Microsoft’s
global CDN. We first describe the key requirements
needed to support Microsoft’s CDN operations. Existing
approaches to collecting measurements were unsuitable
for at least one of two reasons:

• Unrepresentative performance. Existing approaches
lack coverage of Microsoft users or use measurement
techniques that do not reflect user performance.

• Insensitive to Internet events. Existing approaches
fail to offer high measurement volume, explicit outage
notification, and comparative measurements to satisfy
key Microsoft CDN use cases.

Next we present the design of Odin, our scalable,
fault-tolerant CDN measurement system. Odin issues
active measurements from popular Microsoft applica-
tions to provide high coverage of Internet paths from
Microsoft users. It measures to configurable endpoints,
which are hostnames or IP addresses of remote target
destinations and can be in Microsoft or external net-
works. Measurement allocation is controlled by a dis-
tributed web service, enabling many network experi-
ments to run simultaneously, tailoring measurements on
a per-use-case basis as necessary. Odin is able to collect
measurements even in the presence of Microsoft network
failures, by exploiting the high availability and path di-
versity offered by third party CDNs. Last, we demon-
strate that Odin enables important Microsoft CDN use
cases, including improving performance.

There are two key insights that make our design dis-
tinct and effective. Firstly, first-party CDNs have an
enormous advantage over third-party CDNs in gathering
rich measurement data from their own clients. Secondly,
integration with external networks provides a valuable
opportunity for rich path coverage to assist with network
debugging and for enabling fault-tolerance.

2 Background

This section provides background about content delivery
networks and Microsoft’s deployment.

2.1 Content Delivery Networks

Architecture. A content delivery network (CDN)
has geographically distributed server clusters (known as
front-ends, edges, or proxies), each serving nearby users
to shorten paths and improve performance [3, 9, 10, 11]
(see Figure 1). Many front-ends are in CDN “points of
presence” (PoPs), physical interconnection points where
the CDN peers with other ISPs. CDNs typically de-
ploy PoPs at major metro areas. Some CDNs also de-
ploy front-ends in end-user networks or in datacenters. A
front-end serves cached content immediately and fetches
other content from a back-end. Back-ends can be com-
plex web applications. Some CDNs operate backbone
networks to interconnect PoPs and back-ends.

Figure 1: High-level architecture of many CDNs.

Microsoft’s CDN is a “hybrid cloud“ CDN, i.e., it is
used for both its own first-party content as well as for
other large third-party customers such as streaming ser-
vices and online newspapers.

CDN services. Two CDN services are relevant to
our paper. Front-ends cache static content such as im-
ages, JavaScript, CSS, and video. Front-ends also serve
as reverse proxies, terminating users’ TCP connections
and multiplexing the requests to the appropriate back-
ends via pre-established warm TCP connections [12,13].
The back-ends forward their responses back to the same
front-ends, which relay the responses to the users. Re-
verse proxies accelerate websites because shorter round-
trip times between clients and front-ends enable faster
congestion window growth and TCP loss recovery [9].

Client redirection. This work considers the two most
common redirection mechanisms CDNs use to direct a
client request to a front-end for latency sensitive traffic:
anycast and DNS. With both mechanisms, when a user
desires CDN-hosted content, it issues a request to its lo-
cal DNS resolver (LDNS) for the hostname of the con-
tent. The LDNS forwards the request to the CDN’s au-
thoritative DNS resolver, and the authoritative resolver
returns a record with an IP address of a front-end that
can serve the content. With anycast, this IP address
is announced by multiple PoPs, and BGP routes a re-
quest to a PoP based on BGP’s notion of best path. The

front-end collocated with that PoP then serves the re-
quest. With DNS-based redirection, the CDN’s author-
itative resolver returns an IP address for the particular
front-end the CDN wants to serve the user from. Be-
cause the request to the authoritative resolver generally
includes the LDNS (but not user’s) IP address, CDN per-
formance benefits from knowledge of which users the
LDNS serves (§8.1.1).

2.2 Microsoft’s network

Microsoft provides high performance and availability to
its customers using a global network with 100+ PoPs,
many datacenters, and a Microsoft-operated backbone
network interconnecting them. Microsoft operates two
types of datacenters. One set is Microsoft’s Azure pub-
lic cloud compute platform [14] which currently has 36
regions. The second consists of legacy datacenters, pre-
dating Azure. Third-party cloud tenants only run in the
Azure datacenters, whereas first-party services operated
by Microsoft run in both types. Figure 1 shows Azure
regions as “Cloud Back-ends” and private datacenters as
“Internal Back-ends”.

Redirection of first-party and third-party clients Mi-
crosoft currently runs two independent CDNs. A first-
party anycast CDN runs Microsoft services such as Bing,
Office, and XBox [15, 16]. It has more than 100 front-
end locations around the world, collocated with all PoPs
and several Microsoft public and private datacenters. The
second CDN is an Azure traffic management service of-
fered to Azure customers with applications deployed in
multiple regions. Whereas Microsoft’s first party CDN
uses anycast to steer clients, its Azure service uses DNS
to direct users to the lowest-latency region. After receiv-
ing the DNS response, users connect directly to an Azure
region.

2.3 Comparison to other CDNs

Microsoft’s architecture closely mirrors other CDNs, es-
pecially hybrid-cloud CDNs from Google and Amazon.
End-user applications. All three have web, mobile, and
desktop application deployments with large global user
bases. Google’s include the Chrome Browser, Android
OS, Search, YouTube, and Gmail. Amazon’s include the
Store, Audible, and Prime Video. Microsoft’s include
Office, Windows OS, Skype, and XBox.
CDN and cloud services. Like Microsoft, Amazon and
Google run multiple types of CDNs. Google runs a first-
party CDN [6, 7, 9], a third-party CDN [17], and appli-
cation load balancing across Google Cloud regions [18].
Amazon’s equivalent services are CloudFront [19] and
Route 53 [20]. Amazon Web Services [21] and Google
Cloud Platform [22] are similar to Microsoft Azure [14].
Amazon [10] and Google [23] also run backbone net-
works.

Because of these similarities, we believe our goals, re-
quirements, and design are applicable to networks be-
yond Microsoft.

3 Goals and Requirements
We need measurements to support Microsoft’s CDN op-
erations and experimentation, leading to the following
goals and resulting requirements.

Goal-1: Representative performance reflecting what
users could achieve on current and alternate routes.

Requirement: High coverage of paths between Mi-
crosoft’s users and Microsoft is critical for traffic engi-
neering, alerts on performance degradation, and “what-
if” experimentation on CDN configurations, to avoid
limited or biased insight into the performance of our
network. In particular, our measurements should cover
paths to /24 prefixes that combine to account for 90% of
the traffic from Microsoft. In addition, they should cover
paths to 99% of designated “high revenue” /24 prefixes,
which primarily are enterprise customers.

Requirement: Coverage of paths between Microsoft
users and external networks to help detect whether a
problem is localized to Microsoft and to assess the per-
formance impact of expanding Microsoft’s footprint to
new sites. External networks may be any CDN, cloud
provider, or virtual private server hosting service.

Requirement: Measurements reflect user-perceived
performance, correlating with application metrics and re-
flecting failure scenarios experienced by production traf-
fic, to enable decisions that improve user experience.

Goal-2: Sensitive and quick detection of Internet
events.

Requirement: High measurement volume in order to
quickly detect events across a large number of users and
cloud endpoints, even if the events impact only a small
number. Without high measurements counts, events can
be missed entirely, or data quality can be too poor to
confidently make measurement-driven traffic engineer-
ing choices. A reasonable level of sensitivity is the abil-
ity to detect an availability incident that doubles the base-
line failure rate, e.g., from 0.1% to 0.2%. Figure 12 in
Appendix A shows, if we assume measurements fail in-
dependently according to a base failure rate, detecting
this change would require at least 700 measurements,
and detecting a change from 0.01% to 0.02% would re-
quire at least 7000 measurements. For confidentiality
reasons, we cannot describe our baseline failure rates,
but we consider several thousand measurements within a
five minute window from clients served by an ISP within
one metropolitan region sufficient for our needs.

Requirement: Explicit outage signals, in order to de-
tect events that impact small groups of clients. Historical

trends are too noisy to detect the gray failures that make
up the majority of cloud provider incidents [24].

Requirement: Fault tolerance in data collection, to
collect operation-critical measurements in the presence
of network failures between the client and collector.

Requirement: Comparative measurements in same
user session for experimentation, providing accurate
“apples-to-apples” comparisons when performing an
A/B test and minimizing the chance of changing clients
or network conditions coloring the comparison between
test and control measurements.

Goal-3: Compatible with operational realities of ex-
isting systems and applications.

Requirement: Measurements of client-LDNS associ-
ations, which are needed to operate both anycast and
DNS-redirection CDNs effectively (§2.1,7.1.1,7.2.1).

Requirement: Minimal updates to user-facing produc-
tion systems, given that network configuration changes
are a common cause of online service outages [25].

Requirement: Application compliance across vary-
ing requirements. Each Microsoft application indepen-
dently determines the level of compliance certifications
(FISMA, SOC 1-3, ISO 27018, etc.), physical and log-
ical security, and user privacy protections. Application
requirements determine the endpoints that can be mea-
sured, set of front-ends that can process the measure-
ments, requirements for data scrubbing and aggregation
(e.g., IP blocks), and duration of data retention. These
strict security policies stem from Microsoft’s enterprise
customers. Any cloud provider or CDN that serves en-
terprises, such as Akamai [26], also need to meet these
compliance requirements.

4 Limitations of Existing Solutions
This section describes how existing approaches fail to
meet our requirements, summarized in Table 1.

1) Third-party measurements platforms provide in-
sufficient measurement coverage of Microsoft users.
Non-commercial measurement platforms such as Planet-
lab, MLab, Caida ARK, and RIPE Atlas have insufficient
coverage, with only a few hundred to few thousand van-
tage points. The largest, RIPE Atlas, has vantage points
in 3,589 IPv4 ASes [27], less than 10% of the number of
ASes seen by Microsoft’s CDN on a standard weekday.

Commercial measurement platforms also lack suffi-
cient coverage. Platforms including Dynatrace [28],
ThousandEyes [29], and Catchpoint [30] offer measure-
ments and alerting from cloud-based agents in tier 1 and
“middle-mile” (tier 2 and tier 3) ISPs. Cedexis uses
a different approach, providing customers with layer 7
measurements collected from users of Cedexis partner
websites [31]. However, none of the platforms provides
measurements from more than 45% of Microsoft client

http://planet-lab.org/
http://planet-lab.org/
http://www.measurementlab.net/
http://www.caida.org/projects/ark/locations/
https://atlas.ripe.net/results/maps/network-coverage/

Goals Requirements
Third-party

measurement
platforms

Layer 3 mea-
surements
from CDN

infrastructure

Layer 3,
DNS from

users

Server-side
measure-
ments of

client
connections

Odin

Representative
Performance

Coverage of paths between Microsoft
users and Microsoft D D

Coverage of paths between Microsoft
users and external networks D D

Measurements reflect user-perceived
performance D D D

Sensitive to
Internet Events High measurement volume D D D D

Explicit outage signal D D D D

Fault tolerance D D D D

Comparative measurements in same
user session for experimentation D D D D

Compatible
with

Measurements of client-LDNS
associations D D D D

Operational
Realities

Minimal updates to user-facing
production systems D D D D

Application compliance D D D D

Table 1: Goals of Odin and requirements to meet our operational CDN needs. No existing approach satisfies all the requirements.

/24 networks. On top of missing over half the networks,
the platform with the best coverage provides 10+ mea-
surements a day from less than 12% of the networks and
100+ measurements a day from only 0.5% of them, not
enough to meet Microsoft’s operational need for sensi-
tivity to Internet events.

2) Layer 3 measurements from CDN infrastructure
cannot provide representative coverage of the perfor-
mance of Microsoft users. A CDN can issue measure-
ments such as traceroutes and pings from its front-ends
or datacenters to hosts across the Internet. For example,
Entact measures the performance along different routes
by issuing pings from servers in datacenters to respon-
sive addresses in prefixes across the Internet [1]. One
measurement technique used by Akamai is to traceroute
from CDN servers to LDNSes to discover routers along
the path, then ping those routers as a proxy for CDN to
LDNS or end-user latency [32].

However, these measurements cannot provide a good
understanding of user performance. Many destinations
do not respond to these probes, so Entact was unable to
find enough responsive addresses in the networks respon-
sible for 74% of MSN traffic. Similarly, previous work
has shown that 45% of LDNS do not respond to ICMP
ping or to DNS queries from random hosts [33], and
40% of end users do not respond to ICMP probes [34].
Routers are more responsive than LDNS, with 85% re-
sponding to ping [35], but measurements to routers may
not reflect a client’s application performance because
ICMP packets may be deprioritized or rate-limited [36].
All of the above fail to exercise critical layer 7 behaviors
including SSL/TLS and HTTP redirection.

3) Layer 3 and DNS measurement from clients may
not reflect user-perceived performance and do not
provide sufficient coverage. Many systems perform
layer 3 measurements from end user devices [37, 38, 39,

40, 41].1 These measurements are generally dropped
by the strict network security policies of enterprise net-
works. Further, these measurements generally cannot be
generated from in-browser JavaScript and instead require
installing an application, keeping them from providing
measurements from Microsoft’s many web users.

4) Server-side measurements of client connections can
satisfy some but not all of our use cases. Google [2,
6,7,42], Facebook [3], Microsoft [43], and other content
providers and CDNs collect TCP- and application-layer
statistics on client connections made to their servers [44].
To measure between users and alternate PoPs or paths,
CDNs use DNS or routing to direct a small fraction of
traffic or client requests to alternate servers or paths.
These measurements are useful for performance com-
parisons, and DNS redirection could steer some of the
measurements to measurement servers hosted in external
cloud providers. However, if a user cannot reach a server,
the outage will not register in server-side measurements,
and so these measurements cannot be used to measure
fine-grained availability. There are also several practi-
cal challenges with only using server-side measurements.
While Table 1 shows that technically server-side mea-
surements can be collected on external networks, there
are a number of engineering and operational trade-offs
that make client-side measurements a better solution for
large content providers. The first is that measuring to ex-
ternal networks would mean hosting alternate front-ends
on an external provider which immediately raises serious
compliance and production concerns. The second issue
is that doing A/B network testing with production traffic
is considered too high risk with an enterprise customer
base.

1Ono [37] and Netalyzr [39] also measure throughput.

5 Design Decisions
To meet our goals (§3) and overcome the limitations of

other approaches (§4), Odin uses user-side, application-
layer measurements of client connections, combining the
explicit outage signaling and fault tolerance of user-side
measurements (as with layer 3 measurements from users
in §4) with the representative performance and cover-
age achieved by measuring client connections (as with
server-side measurements in §4).

Client-side active measurement from Microsoft users.
Odin embeds a measurement client into some Microsoft
thick clients and web applications. It directs measure-
ment clients to fetch web objects.

This approach helps achieve a number of our require-
ments. Odin issues measurements from Microsoft users,
achieving coverage important to Microsoft’s businesses
and (by issuing measurements at a rate similar to the use
of Microsoft’s applications) sensitivity to Internet events,
even events that impact only a small fraction of users or
connections. By embedding our measurement client into
thick clients, Odin can issue measurements even from
users unable to reach a Microsoft web server.

Application layer measurements. Odin clients per-
form DNS resolutions and fetch web objects, measuring
availability and timing of these application-layer actions
and reporting the results to Odin. The clients can use
http and https, allowing integration with Microsoft ap-
plications that require https. Unlike ping and tracer-
oute, the measurements are compatible with enterprise
networks that host many Microsoft services and users.

These measurements capture the application-layer
user performance that we care about, exercising mech-
anisms across the network stack that can impact per-
formance and availability, including TLS/SSL, web
caching, TCP settings, and browser choice. http and
https measurements also provide status code errors that
are useful for debugging. They also suffice to uncover
user-LDNS associations [45], a key need for both our
anycast and DNS redirection CDNs (§7).

External services and smarter clients. We design
the clients to conduct measurements and report results
even when they cannot reach Microsoft services, as out-
age reports are some of the most valuable measurements
and measurement-dependent operations must continue to
function. To build this fault tolerance, clients that can-
not fetch measurement configuration or report results fall
back to using third-party CDNs for these operations. We
use the third-party CDNs to proxy requests to Microsoft
and to host static measurement configuration.

Flexible measurement orchestration and aggregation.
We built a measurement orchestration system for Odin
that supports parallel experiments with different config-

urations, helping meet a variety of requirements. To ac-
commodate the unique business constraints and compli-
ance requirements of each application that Odin mea-
sures to or from, the system provides control over which
endpoints an application’s users may be given to mea-
sure and which servers they upload reports to. When ap-
propriate, experiments can measure to servers in external
(non-Microsoft) networks, and clients conduct multiple
measurements in a session to allow direct comparisons.
By having clients fetch instructions on which active mea-
surements to run, new experiments generally do not re-
quire changes to operational services or to clients, reduc-
ing operational risk. We also allow for flexibility in ag-
gregation of the measurements (e.g., in 5 minute buckets)
for faster upload to our real-time alerting system.

6 System Design

Figure 2: Odin Architecture Overview: CDN clients down-
load measurement config, perform measurements, and upload
results. If first-party network sites are unreachable, third-party
sites can cache config and relay upload requests.

Figure 2 outlines the Odin measurement process. A
number of Microsoft applications embed the Odin client
(§6.1). Odin clients in thick applications support a range
of measurements. This paper focuses on measuring la-
tency and availability, our highest priorities, supported
by thick and web applications.
Step 1: The client uses a background process to fetch a
measurement configuration from the Orchestration Ser-
vice (§6.2). The configuration defines the type of mea-
surements and the targets (measurement endpoints).
Step 2: The client issues the measurements. To mea-
sure latency and availability, endpoints host a small im-
age on a web server for clients to download. Many Mi-
crosoft applications require https requests, so measure-
ment endpoints have valid certificates. The endpoints
can be in Microsoft front-ends, Microsoft data centers,
or third-party cloud/collocation facilities.
Step 3: When the client completes its measurements,
it uploads the measurement results to a Report Upload
Endpoint (§6.3). The Report Upload Endpoint forwards
the measurements to Odin’s two analysis pipelines.
Step 4: The real-time pipeline performs alerting and net-
work diagnostics, and the offline pipeline enriches mea-
surements with metadata for big data analysis (§6.4).

Figure 3: Odin supports two measurement types for latency.
Measurement a measures the test domain directly. Measure-
ment b contacts an Odin authoritative DNS first, which re-
sponds with the endpoint to measure. This gives Odin client-
LDNS association for a measurement.

6.1 Client

Measurements can vary along 3 dimensions: http or
https, direct or DNS-based, and warm or cold. Fig-
ure 3 illustrates direct and DNS-based measurements.
The first type has the client performing DNS resolu-
tion of test.domain2.com in a1 and fetching the im-
age and recording the latency in a2. The measurement
to <randid>.contoso.com is an example of the sec-
ond type, which we refer to as a DNS-based measure-
ment and which we use to measure web fetch latency and
client-LDNS association. The domain (contoso.com)
is one that we control. We design the clients to
recognize the <randid> scheme and substitute in a
unique, transient, random identifier $(RandID).2 The
client then issues a DNS request via the user’s LDNS
for $(RandID).contoso.com (step b1). The DNS re-
quest goes to our authoritative DNS server, which re-
turns a record for the endpoint Odin wants to mea-
sure (test.domain1.com) and logs its response as-
sociated with the $(RandID). The client then fetches
http://test.domain1.com/tiny.gif. In step c, the
client reports its measurements, reporting the ID for the
second measurement as $(RandID). The measurement
back-end uses $(RandID) to join the client’s IP address
with the DNS log, learning the user-LDNS association.

The Orchestration Service can ask clients to perform
“cold” and/or “warm” measurements. A cold measure-
ment initiates a new TCP connection to fetch the im-
age. A warm measurement fetches the image twice and
reports the second result, which will benefit from DNS
caching and from a warm TCP connection.3

2Generating the $(RandID) at the client rather than at the Orches-
tration Service lets caches serve the measurement configuration.

3The client prevents browser caching by appending a random pa-
rameter to the image request (e.g. tiny.gif?abcde12345).

Web client vs. thick client measurements. Web clients
default to measuring latency using the request start and
end times in JavaScript, which is known to be impre-
cise [46]. If the browser supports the W3C resource-
timing API [46], then the client reports that more precise
measurement instead, along with a flag that signals that it
used the more precise option. If the image fetch fails, the
client reports the HTTP error code if one occurred, other-
wise it reports a general failure error code. A limitation
of in-browser measurements is that low-level network-
ing errors are not exposed to JavaScript. For example,
we cannot distinguish between a DNS resolution failure
and a TCP connection timeout. Thick clients issue mea-
surements through an Odin application SDK. Unlike web
clients, the SDK can report specific low-level networking
errors which are valuable in debugging.

6.2 Orchestration Service

The Orchestration Service coordinates and dispatches
measurements. It is a RESTful API service that Odin
clients invoke to learn which measurements to perform.
The service returns a small JSON object specifying the
measurements. In the rare case of major incidents with
Odin or target Microsoft services, the Orchestration Ser-
vice has the option to instruct the client to issue no mea-
surements to avoid aggravating the issues.

NumMeasurements: 3,

MeasurementEndpoints: [

{type:1, weight:10, endpoint:"m1.contoso.com"},

{type:1, weight:20, endpoint:"m2.microsoft.com"},

{type:2, weight:30, endpoint:"m3.azure.com"},

{type:3, weight:10, endpoint:"m4.azure.com"},

{type:2, weight:30, endpoint:"m5.azure.com"},

{type:1. weight:15, endpoint:"m6.microsoft.com"}],

ReportEndpoints: ["r1.azure.com","r2.othercdn.com"]

Listing 1: Example measurement configuration that is served
by the orchestration service to the client.

Listing 1 shows an example configuration that spec-
ifies three measurements to be run against three out of
six potential endpoints. The ability to specify more end-
points than measurements simplifies configurations that
need to “spray” measurements to destinations with dif-
ferent probabilities, as is common in CDN A/B test-
ing [16]. The client performs a weighted random selec-
tion of three endpoints.

The other component of orchestration is the
customized authoritative DNS server for DNS-
based measurements (§6.1). When a client re-
quests DNS resolution for a domain such as
12345abcdef.test.contoso.com, the DNS server
responds with a random record to a target endpoint,
with the random choice weighted to achieve a desired
measurement distribution.

Even a unique hostname used for client-LDNS map-
ping can generate multiple DNS queries. Our measure-
ments reveal that 75% of unique hostnames result in mul-
tiple LDNS requests, and 70% result in requests from
multiple LDNS IP addresses. If our authoritative DNS
returned different responses for a single hostname, we
would be unable to determine from logs which target
endpoint the client actually measured. To overcome this
issue, we use consistent hashing to always returns the
same response for the same DNS query.

The Orchestration Service allocates measurements to
clients based on experiments. An experiment has an Or-
chestration Service configuration that specifies the end-
points to be measured, which applications’ users will
participate, and which report endpoints to use based on
compliance requirements of the applications. Experi-
ment owners configure endpoint measurement allocation
percentages, and the Orchestration Service converts them
into weights in the configuration. The Orchestration Ser-
vice runs multiple experiments, and experiments may be
added or removed at any time.

The Orchestration Service allows Odin to tailor con-
figurations to meet different measurement needs and use
cases. For example, the service can generate specialized
configuration for clients depending on their geography,
connection type, AS, or IP prefix. When experimenting
with CDN settings, we tailor Odin configurations to exer-
cise the experimental settings from clients in a particular
metropolitan area and ASN. When debugging a perfor-
mance issue, we tailor configurations to target measure-
ments to an endpoint experiencing problems.

If the Orchestration Service is unavailable, proxies in
third-party networks may be used instead. The proxies
may act as reverse proxies for the first-party system. Al-
ternatively, if the first-party system is unavailable, a fall-
back to a cached default configuration can be returned to
clients.

6.3 Reporting

Listing 1 shows that the measurement configuration re-
turned by the Orchestration Service also specifies the
primary and backup ReportEndpoints for the client
to upload measurement results. ReportEndpoints are
hosted across the 100+ front-ends of Microsoft’s first-
party CDN. When a ReportEndpoint receives client mea-
surement results, it forwards them to two Microsoft data
pipelines, as shown in Figure 2. If for some reason the
Microsoft CDN is unavailable, the client will fall back to
using proxies hosted in third-party networks. The prox-
ies forward to a set of front-ends that are not part of the
primary set of front-ends.

Fault-tolerant measurement reporting is necessary to
support our requirement of an explicit outage signal,
since we cannot measure the true availability of Mi-

Figure 4: Three types of
Internet faults that may oc-
cur when fetching measure-
ment configuration or upload-
ing reports.

Figure 5: Topology of
backup paths when FE1 is un-
reachable. FE1 is a front-end
collocated with a PoP while
FEDC is a front-end in a dat-
acenter.

crosoft’s first-party CDN if we also report measurements
there. Odin’s fault-tolerant approach for fetching mea-
surement configuration and uploading results will suc-
ceed if the backup reporting channel(s) use a path that
avoids the failure and fail if both the primary and backup
paths encounter the failure. As long as the client can
reach a backup, and the backup can reach at least one
of the Odin servers at Microsoft, Odin receives the re-
sult, tolerating all but widespread failures that are de-
tectable with traditional approaches and are often out-
side of Microsoft’s control to fix. From operational ex-
perience, Odin’s handling of faults provides a high level
of resilience for our measurement data. We now discuss
Odin’s behavior in the face of three fault scenarios. We
do not consider this an exhaustive treatment of all possi-
ble fault scenarios.

Interconnection faults impact an individual link(s) be-
tween an end-user ISP and the CDN, caused by issues
such as peering misconfiguration or congestion. Connec-
tivity to other ISPs is not impacted. Figure 4(A) shows
an interconnection fault between PoPs A and B. Figure 5
shows that, when these faults occur, the client will send
a backup request using path 2,3 to Proxy 1. The proxy
then forwards the request back to the CDN by path 3,4,
through D, to a datacenter front-end FEDC instead of
FE1.

Front-end system faults are failures of a front-end
due to software or hardware problems, as shown in Fig-
ure 4(B). Because the backup proxies connect to a dis-
tinct set of front-ends (hosted in datacenters), we gain
resilience to front-end system faults, as seen in Figure 5.

PoP-Level faults impact multiple ISPs and a large vol-
ume of traffic exchanged at that facility. These faults may
be caused by a border router or middle-box misconfigu-
ration or a DDoS attack. In our experience, these faults
are rare and short-lived, and so we did not design Odin
to be resilient to them. Figure 5 shows that Proxy 1’s
path to FEDC goes through the same PoP as the client’s

path to FE1, whereas Proxy 2 avoids it. We present a
preliminary evaluation of this scenario in Section 8.2.

6.4 Analysis Pipeline

Measurement reports get sent to two analysis pipelines.

Offline Pipeline. The measurement reports include a
report ID, metadata about the client (version number of
client software, ID of Microsoft application it was em-
bedded in, whether it used the W3C Resource Timing
API), and the measurement results, each of which in-
cludes a measurement ID, the measurement latency (or
failure information), and whether it was a cold or warm
measurement. The offline pipeline enriches measure-
ments with metadata including the client’s LDNS and the
user’s location (metropolitan region), ASN, and network
connection type. This enriched data is the basis for most
operational applications (§7).

Real-time Alerting Pipeline. Many of the target
endpoints that Odin monitors are business-critical so
must react quickly to fix high latency or unavailabil-
ity. To ensure fast data transfer to the back-end real-
time data analytics cluster, each reporting endpoint re-
duces data volume by aggregating measurements within
short time windows. It annotates each measurement
with the client’s metropolitan region and ASN, using in-
memory lookup tables. Within each window, it groups all
measurements to a particular endpoint from clients in a
particular 〈metropolitan region, ASN〉, then reports fixed
percentiles of latency from that set of measurements, as
well as the total number of measurements and the frac-
tion of measurements that failed.

7 Supporting CDN Operations with Odin
We use Odin to support key operational concerns of
CDNs – performance and availability, plus CDN expan-
sion/evolution and how it impacts the other concerns.
The two CDNs we support have sizes of over a hundred
sites (which is more than most CDNs) and few dozen
sites (which is common for CDNs [47]).

7.1 Directing users to the CDN front-ends

Low latency web services correlate with higher user sat-
isfaction and service revenue. A central proposition of a
CDN is that distributed servers can serve users over short
distances, lowering latency, but deploying the servers
alone does not suffice to achieve that goal.

Odin continuously monitors client performance for
both of Microsoft’s CDNs. Previous work demonstrated
the value of comparing performance of our CDN to an-
other to guard against latency regressions [15]; of com-
paring performance from one client to multiple CDN
servers [16], and of comparing the performance from a
CDN to multiple clients in the same city [6]. Odin pro-
vides measurements for all these analyses, which can un-

cover performance problems stemming from circuitous
routing in either direction or from poor server selec-
tion. This section describes how we use Odin to cre-
ate high-performance redirection maps for DNS redirec-
tion (§7.1.1) and to identify cases in which Internet rout-
ing selects poor performing anycast routes (§7.1.2).

7.1.1 Generating low latency DNS redirection maps

Azure’s traffic manager service (§2.2) directs a user to a
particular Azure region [14] by returning a DNS record
for that region. When determining which DNS record
to return, the traffic manager knows which LDNS issued
the request but not which user.4 We refer to an instance
of the DNS redirection policy as a map (from LDNS to
IP addresses of Azure regions).

To achieve low latency for users, we need to under-
stand which use each LDNS and their performance to the
various regions. Microsoft constructs maps using Odin
data as the primary data source, as follows:

(1) Data Aggregation. The offline pipeline annotates
each DNS-based measurement with the LDNS the client
used (§6.4). We use this associate to group the measure-
ments directed by each LDNS to each Azure region and
calculate the median latency to each region from each
LDNS. (In practice, before finding the median latency,
we aggregate all LDNS within the same /26 IP prefix,
which we found balances precision because of IP local-
ization and statistical power from measurement aggrega-
tion.)

(2) Filtering. Next, we filter out LDNS-region pairs
which do not have enough measurements. Our minimum
threshold was chosen using statistical power analysis. If
we filter the region that was lowest latency for the LDNS
in the currently-deployed map, we do not update the map
for the LDNS, to prevent us from making the best deci-
sion from a set of bad choices.

(3) Ranking Results. For each LDNS, we rank the
regions by latency. At query resolution time, the traf-
fic management authoritative DNS responds to an LDNS
with the lowest latency region that is currently online.

(4) Applying the Overrides. The final step is to apply
the per-LDNS changes to the currently deployed map,
resulting in the new map. The map generation process
takes care of prefix slicing, merging, and aggregation to
produce a map with a small memory footprint.

7.1.2 Identifying and patching poor anycast routing

Microsoft’s first-party CDN uses anycast (§2.2). Any-
cast inherits from BGP an obliviousness to network per-
formance and so can direct user requests to suboptimal
front-ends. We identify incidents of poor anycast routing
in Microsoft’s anycast CDN by using Odin to measure

4Except for the few LDNS that are ECS-enabled [48, 49].

performance of anycast and unicast alternatives from the
same user. Our previous study used this methodology for
a one-off analysis using measurements from a small frac-
tion of Bing users [16]. Odin now continuously measures
at a large scale and automatically generates daily results.
As with our earlier work, we find that anycast works well
for most–but not all–requests. The traditional approach
to resolving poor anycast routing is to reconfigure route
announcements and/or work with ISPs to improve their
routing towards the anycast address.

While Microsoft pursues this traditional approach, an-
nouncements can be difficult to tune, and other ISPs may
not be responsive, and so we also patch instances of poor
anycast performance using a hybrid scheme that we pro-
posed (but did not implement) in our previous work [16].
The intuition is that both DNS redirection and anycast
work well most of the time, but each performs poorly for
a small fraction of users. DNS redirection cannot achieve
good performance if an LDNS serves widely distributed
clients [32], and anycast performs poorly in cases of in-
direct Internet routing [16]. Since the underlying causes
do not strongly correlate, most clients that have poor any-
cast performance can have good DNS redirection per-
formance. We use Odin measurements to identify these
clients, and a prominent Microsoft application now re-
turns unicast addresses to the small fraction of LDNS
that serve clients with poor anycast routing.

7.2 Monitoring and improving service availability

The first concern of most user-facing web services is to
maintain high availability for users, but it can be chal-
lenging to quickly detect outages, especially those that
impact only a small volume of requests.

Odin’s design allows it to monitor availability with
high coverage and fast detection. By issuing measure-
ments from the combined user base of a number of ser-
vices, it can detect issues sooner than any individual
service. By having a single client session issue mea-
surements to multiple endpoints, sometimes including an
endpoint outside of Microsoft’s network, it can under-
stand the scope of outages and differentiate client-side
problems from issues with a client contacting a particu-
lar service or server. By providing resilient data collec-
tion even in the face of disruptions, Odin gathers these
valuable measurements even from clients who cannot
reach Microsoft services. Anycast introduces challenges
to maintaining high availability. This section discusses
how Odin helps address them.

7.2.1 Preventing anycast overload

Monitoring a front-end’s ability to control its load.
Previous work from our collaborators demonstrated how
Microsoft’s anycast CDN prevents overload [50]. The
approach works by configuring multiple anycast IP ad-

dresses and organizing them into a series of “rings” of
front-ends. All front-ends are part of the largest ring,
and then each subsequent ring contains only a subset
of the front-ends in the previous one, generally those
with higher capacity. The innermost ring contains only
high capacity data centers. Each front-end also hosts an
authoritative nameserver. If a front-end becomes over-
loaded, its authoritative nameserver “sheds” load by di-
recting a fraction of DNS queries to a CNAME for the
next ring. These local shedding decisions work well if
anycast routes a client’s LDNS’s queries and the client’s
HTTP requests to the same front-end, in which case the
authoritative nameserver can shed the client’s requests.

The previous work used measurements from Odin to
evaluate how well HTTP and DNS queries correlate for
each front-end [50], a measure of how controllable its
traffic is. Odin now continuously measures the correla-
tions and controllability of each front-end, based on its
measurements of client-to-LDNS associations.

Designing rings with sufficient controllability. We
use Odin data on per front-end controllability to design
anycast rings that can properly deal with load. The data
feeds a traffic forecasting model that is part of our daily
operation. The model predicts per front-end peak load,
broken down by application, given a set of rings.

Two scenarios can compromise a front-end’s ability
to relieve its overload. First, the above approach sheds
load at DNS resolution time, so it does not move exist-
ing connections. This property is an advantage in that it
does not sever existing connections, but it means that it
cannot shed the load of applications with long-lived TCP
connections. Second, if a front-end receives many HTTP
queries from users whose DNS queries are not served
from the front-end, it can potentially be overwhelmed
by new connections that it does not control, even if it
is shedding all DNS requests to a different ring.

We use Odin measurements in a process we call ring
tuning to proactively guard against these two situations.
For the first, we use measurements to identify a high-
correlation set of front-ends to use as the outermost any-
cast ring for applications with long-lived connections.
The high-correlation allows a front-end that is approach-
ing overload to quickly shed any new connections, both
from the long-lived application and other applications it
hosts on other anycast addresses. To guard against the
second situation, we use measurements to design rings
that avoid instances of uncontrollable load, and we con-
figure nameservers at certain front-ends to shed all re-
quests from certain LDNS to inner rings, to protect an-
other front-end that does not control its own fate.

Figure 6: In a regional anycast scenario, if a user’s LDNS is
served by a front-end in the user’s region, the user’s perfor-
mance is unaffected. If the user’s LDNS is served by a front-
end in a different region, then the user will be served from the
distant region, likely degrading performance.

7.2.2 Monitoring the impact of anycast route
changes on availability

Long-lived TCP connections present another challenge
to anycast: an Internet route change can shift ongoing
TCP connections from one anycast front-end to another,
severing the connections [51, 52, 53, 54]. Odin measure-
ments address this concern in two ways. First, by hav-
ing clients fetch an object from both an anycast address
and a unicast address, we can monitor for problems with
anycast availability. Second, we use Odin to monitor the
availability of different candidate anycast rings in order
to identify subsets of front-ends with stable routing.

7.3 Using measurements to plan CDN evolution

7.3.1 Comparing global vs regional anycast

In a basic anycast design, all front-ends share the same
global IP address. However, this address presents a sin-
gle point of failure, and a routing configuration mistake
at Microsoft or one of our peers has the potential to
blackhole a large portion of our customer traffic. An al-
ternate approach is to use multiple regional anycast ad-
dresses, each announced by only a subset of front-ends.
Such an approach reduces the “blast radius” of a poten-
tial mistake, but it can also change the performance of
the CDN. A user’s request can only end up at one of the
front-ends that announces the anycast address given to its
LDNS, which might prevent the request from using the
best performing front-end . . . or prevent Internet routing
from delivering requests to distant front-ends.

Figure 6 shows the three scenarios that can occur
when partitioning a global anycast into regions. A user’s
LDNS may be served by the same front-end as the user
or by a different one. If different, the front-ends may be
assigned to the same or different regions. If they are as-
signed to different regions, then the user will be directed
away from its global front-end to a different one, likely
degrading performance.

In a use case similar to anycast ring tuning, we used
Odin to collect data, then used a graph partitioning algo-
rithm to construct regions that minimize the likelihood
that a user and their LDNS are served by front-ends
in different regions. We construct a graph where ver-

Country P75
Imp.

P95
Imp. Country P75

Imp.
P95
Imp.

Spain 30.68% 10.79% Switzerland 10.67% 22.18%
Italy 29.92% 17.95% Netherlands 7.22% 24.94%
Japan 28.14% 32.02% France 6.60% 18.14%
Australia 20.05% 16.82% Norway 5.61% 14.93%
Canada 19.17% 5.10% U.K. 4.44% 12.39%
Sweden 14.14% 24.02% Germany 2.82% 5.49%
U.S.A. 14.04% 8.81% Finland 1.56% 12.97%
South Africa 13.97% 6.33% Brazil 0.68% 6.18%
India 13.97% 6.08%

Table 2: The performance improvement in the 75th and 95th
percentile from a 2 month roll-out using the Odin-based map-
ping technique over May and June 2017.

tices represent front-ends and edges between vertices are
weighted proportional to the traffic volume where one
endpoint serves the DNS query and the other serves the
HTTP response. We use an off-the-shelf graph partition-
ing heuristic package to define 5 regions, each with ap-
proximately the same number of front-ends, that mini-
mizes the number of clients directed to distant regions.
We compare the performance of regional versus global
anycast in Section 8.3.

8 Evaluation and Production Results
Odin has been running as a production service for 2
years. It has been incorporated into a handful of Mi-
crosoft applications, measuring around 120 endpoints.

8.1 Odin improves service performance

8.1.1 Odin’s DNS redirection maps reduce latency

In May 2017, the Azure traffic manager began direct-
ing production traffic using maps generated as described
in Section 7.1.1, replacing a proprietary approach that
combined geolocation databases with pings from CDN
infrastructure. We evaluated the performance of the
two maps by running an Odin experiment that had each
client issue two measurements, one according to each
map. Table 2 shows the latency change at the 75th and
95th percentile for the countries with the most measure-
ments. Finland and Brazil saw negligible latency in-
creases (1.56%, 0.68%) at the 75th percentile, but all
other high traffic countries saw reductions at both per-
centiles, with a number improving by 20% or more.

0 50 100 150
Global Latency Difference (geomap - Odin) (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 1
0

m
in

ut
e

W
in

do
w

s

P50
P75
P90
P95
P99

Figure 7: Difference in global performance over one day be-
tween a Odin map and a map generated from LDNS locations
(geomap). Values less than 0 show the fraction of time that the
geomap performed better.

Comparison with alternative DNS mapping tech-
niques. A simple approach to generating a redirec-
tion map for a CDN is to use the locations of LDNSes.
To test the performance difference between this and the
Odin approach, we generated a map using a proprietary
Microsoft geolocation database that aggregates locations
from many sources. For every IPv4 address, we find
the geographically closest front-end and choose that for
the map entry. We aggregate neighboring IP addresses
with the same map entry and convert this into a set of
DNS records. We then configured Odin to measure both
this map and the current Odin-based map for 24 hours
on Sept. 21, 2017. We bucketed measurements into 10-
minute bins. For each bin, we calculated the latency dif-
ferences at different percentiles. Figure 7 depicts a CDF
over all 10 minute bins. Most of the time there is no real
difference at the median. The difference is also small at
the 75th percentile, although Odin is better around 65%
of the time. The real improvement of using Odin comes
at the 90th, 95th, and 99th percentile. At P95, Odin’s
map is better by 65ms half the time.

Dispelling mistaken conventional wisdom. Prior work
on CDN performance sometimes exhibited misconcep-
tions about DNS redirection, because operational prac-
tices were not transparent to the research community.
We distill some takeaways from our work that contradict
prior claims and elucidate realities of modern CDNs.

• For many CDNs, measurements of user connections
suffice as the key input to map generation, whereas
previous work often describes mapping as a com-
plex process requiring many different types of Inter-
net measurements [4], including measurements from
infrastructure to the Internet [6, 55]. This reality is
especially true for CDNs that host popular first-party
services, as the CDN has measurement flexibility and
control over first party services.

• The geographic or network location of an LDNS does
not impact the quality of redirection, even though redi-
rection occurs at the granularity of an LDNS. Previous
work claimed that redirection decisions were based on
the location of or measurements to the LDNS [55],
or that good decisions depending on users being near
their LDNS [45, 56, 57]. In reality, techniques for
measuring associations between users and LDNS have
been known for years [45], allowing decisions based
on the performance of the users of an LDNS to vari-
ous front-ends, which provides good performance as
long as the users of an LDNS experience good perfor-
mance from the same front-end as each other.

• Most redirection still must occur on a per LDNS ba-
sis, even though EDNS client-subnet (ECS) enables
user prefix-granularity decisions [32, 48, 55, 58]. Our

0 10 20 30 40 50 60 70
Hours

0.0

0.2

0.4

0.6

0.8

1.0

Av
ai

la
bi

lit
y

AS1759-DC
AS1759-Front-end
AS1759-External
AS719-DC
AS719-Front-end
AS719-External

Figure 8: Debugging 2017 availability drop between Helsinki
front-end and AS1759 users in Finland.

measurements reveal that, outside of large public re-
solvers, almost no LDNS operators have adopted ECS.

8.1.2 Odin patches anycast performance

Due to space constraints, we summarize the results from
our earlier work [16]. Anycast directed 60% of requests
to the optimal front-end, but it also directed 20% of re-
quests to front-ends that were more than 25ms worse
than the optimal one. Today we use Odin measurements
to derive unicast “patches” for many of those clients.

8.2 Using Odin to identify outages

An outage example. Figure 8 visualizes Odin mea-
surements showing an availability drop for Finnish users
in AS1759 during a 24 hour period in 2017. The avail-
ability issue was between users in that ISP and a Mi-
crosoft front-end in Helsinki. Because Odin measures
from many Microsoft users to many endpoints in Mi-
crosoft and external networks, it provides information
that assists with fault localization. First, we can exam-
ine measurements from multiple client ISPs in the same
region towards the same endpoint. For readability, we
limit the figure to one other ISP, AS719, which the fig-
ure shows did not experience an availability drop to the
front-end. So, the front-end is still able to serve some
user populations as expected. Second, the figure indi-
cates that AS1759 maintains high availability to a dif-
ferent endpoint in Microsoft’s network, a nearby data-
center. So, there is no global connectivity issue between
Microsoft and AS1759. Last, the figure indicates that
availability remains high between clients in AS1759 and
an external network. The rich data from Odin allows us
to localize the issue to being between clients in AS1759
and our Helsinki front-end.

Reporting in the presence of failures. Odin success-
fully reports measurements despite failures between end-
users and Microsoft. Figure 9 shows the fraction of re-
sults reported via backup paths for representative coun-
tries in different regions, normalized by the minimum
fraction across countries (for confidentiality). During
our evaluation period, there were no significant outages
so the figure captures transient failures that occur during
normal business operations. All countries show a strong

09:00
21:00

09:00
21:00

09:00
21:00

09:00
21:00

Local Time

1x

2x

3x

4x

5x

6x

7x

8x

9x

R
el

at
iv

e
D

iff
er

en
ce

 in
 p

er
ce

nt
 o

f
re

po
rts

 fr
om

 b
ac

ku
p

pa
th

United States
Germany

India
Brazil

Japan
Australia

Figure 9: Relative difference per hour in percentage of reports
received through the backup path across four weekdays.

diurnal pattern with peaks around midnight and valleys
around 8 a.m. local time. Interestingly, the peaks of high-
est failover reports occur well outside of working hours,
when Microsoft’s traffic volume is low. This is consistent
with previous work which found that search performance
degraded outside business hours, because of an increase
in traffic from lower quality home broadband networks
relative to traffic from well-provisioned businesses [43].

The percentage of reports uploaded through third-
parties varies significantly across countries. For exam-
ple, at peak, Brazil have 3x and 4x the percentage of
backup reports as compared to Germany and Japan. An-
other distinguishing characteristic across countries is the
large difference in range between peaks and valleys. In-
dia ranges from ≈ 3× to ≈ 8× the baseline, Australia
from ≈ 2× to ≈ 4×, and Japan from ≈ 1× to ≈ 2×
Backup path scenarios. Backup proxies forward report
uploads to datacenter front-ends instead of front-ends
collocated with PoPs (§6). To illustrate why this is neces-
sary, we allocated a small fraction of Odin measurements
to use an alternate configuration in which the third-party
proxies instead forward traffic to an anycast ring con-
sisting of front-ends at the same PoPs as the primary
ReportEndpoints. The third party CDN has roughly
the same number of front-end sites as Microsoft. Out
of 2.7 billion measurements collected globally over sev-
eral days in January 2018, around 50% were forwarded
to the same front-end by both the third-party proxies and
the primary reporting pathway, meaning that the reports
could be lost in cases of front-end faults.

Fault-tolerance for PoP-level failures. Figure 4(C)
shows an entire PoP failing. It is likely that the nearest
front-end and nearest backup proxy to the end-user are
also relatively close to each other. When the proxy for-
wards the request, it will likely ingress at the same failing
PoP, even though the destination is different.

To route around PoP-level faults, we want the end-
user to send the backup request to a topologically distant
proxy, such as Proxy 2 in Figure 5. The proxy will for-
ward the request through nearby CDN PoP F and avoid
the failure. To test this, we configured two proxy in-

Figure 10: Latency degradation of 5-region vs. global anycast.

stances in a popular cloud provider, on the East and West
Coasts of the United States. These proxies forward re-
quests to the set of front-ends collocated at Microsoft
PoPs. We configured a load balancing service to send all
requests to the East Coast instance by default, but with an
exception to direct all requests from East Coast clients to
the West Coast proxy. After collecting data globally for
several days, we observed that only 3% of backup re-
quests enter Microsoft’s network at the same PoP as the
primary, as opposed to the 50% above. This prototype
is not scalable with so few proxy instances, but demon-
strates an approach to mitigate PoP-level faults that we
will develop in a future release.

8.3 Using Odin to evaluate CDN configuration

This section uses Odin to evaluate the performance im-
pact of regional rings as compared to a global anycast
ring (§7.3.1). The cross-region issue illustrated in Fig-
ure 6 still has the potential to introduce poor anycast per-
formance, even though our graph partitioning attempts
to minimize it. To measure the impact to end users, we
configure an Odin experiment that compares the latency
of the regional anycast ring with our standard “all front-
ends” ring. Figure 10 shows that performance change
at the median is relatively small – just about 2%. The
75th percentile consistently shows the highest percentage
of degradation over time, fluctuating around 3%. While
the median and 75th percentiles are stable over the five
months, both 90th and 99th percentiles begin to trend
higher in the starting in May, suggesting that static region
performance may change over time at higher percentiles.

8.4 Evaluating Odin coverage

In this section we examine Odin’s coverage of Mi-
crosoft’s users as part of our requirement to cover paths
between Microsoft users, Microsoft, and external net-
works. We will examine four applications which we have
integrated with Odin. We have categorized them by their
user base: General, Consumer, and Enterprise.

We first look at how much of Microsoft’s user base is
covered by individual and combined applications. Fig-
ure 11 shows Consumer1, Consumer2, and Enterprise1
have similar percent coverage of Microsoft end users by

Figure 11: Percentages of ASes and /24s with measurements
based on 4 properties with different user populations.

AS. The benefit of multiple applications is more appar-
ent when looking at /24 coverage. We see that all four
applications combined cover 85% of /24s whereas indi-
vidually all except for General1 cover much less. We
also examined the overlap between application coverage
and found that the four properties only see around 42%
pairwise overlap in /24 coverage, meaning that individual
applications contribute a substantial amount of user di-
versity to Odin. General1 is the highest distinct contrib-
utor by providing about 18% of distinct /24s observed.

Breaking down the coverage by “high revenue” (e.g.
Reverse Proxy for Enterprise scenarios), “medium rev-
enue” (e.g. Consumer email, ad-supported content)
and “low revenue” (commodity caching workloads), we
observe a higher /24 prefix coverage with Odin for
“high revenue” (95%) compared to “medium” (91%) and
“low” (90%). This suggests that the missing coverage of
Odin is in the tail of relatively low-value traffic.

9 Related Work
There has been a considerable prior work on improving
and evaluating general CDN performance [4, 56, 59, 60,
61, 62, 63]. Prior work has also explored cooperation
between ISPs and CDNs. Specifically, the efficacy of
ISPs releasing distance maps to CDNs to enable more
accurate client to server mappings [59], or ISPs hosting
CDN servers on demand [60]. WISE [8] is a tool that
predicts the deployment implications of new infrastruc-
ture in CDNs by using machine learning. WhyHigh [6]
and LatLong [7] focus on automating troubleshooting for
large content providers like Google, using active mea-
surements and passive latency data, respectively.

Entact [1], EdgeFabric [3], Espresso [2] measure the
quality of egress paths from a CDN to the Internet. En-
tact describes a technique to measure alternative paths
to Internet prefixes by injecting specific routes (/32) at
border routers to force egress traffic through a particu-
lar location. These paths are utilized by a collection of
“pinger” machines deployed in DCs to target IPs likely to
be responsive within a prefix. EdgeFabric and Espresso
direct a small percent of user traffic through alternative
egress paths to measure alternate path performance.

Fathom [41], Netalyzr [39], Ono [37], Via [64],
Dasu [38] are thick client applications that run measure-
ments from end user machines; BISmark [40] measures
from the home routers. Akamai collects client-side mea-
surements using their Media Analytics Plugin [65] and
peer-assisted NetSession [32, 66] platform. From com-
mercial measurement platforms, Cedexis is the closest
in nature to Odin. Cedexis partners with popular web-
sites with large user bases such as LinkedIn and Tum-
blr that embed Cedexis’ measurement JavaScript beacon
into their page. Cedexis customers register their own
endpoints to be measured by a portion of end-users of
Cedexis’ partners. In this way, a customer collects mea-
surements to their endpoints from a relatively large user
base. Conviva is a commercial platform which uses ex-
tensive client-side measurements from video players to
optimize video delivery for content publishers [67, 68].

Akamai published a study on DNS-based redirec-
tion [32] showing that enabling ECS [48] greatly im-
proved the performance of user. Alzoubi et al. [51, 53]
have examined properties of anycast CDNs. Follow up
work focuses on handling anycast TCP session disrup-
tion due to BGP path changes [52]. Our work is com-
plementary and orthogonal to our colleagues’ work, Fas-
tRoute [50], that load balances within an anycast CDN.

Odin uses a user-to-LDNS association technique sim-
ilar to [34, 45] whereas Akamai uses their NetSession
download manager software to obtain client-to-LDNS
mappings [32]. Measuring latency using JavaScript bea-
cons is a well established technique [16, 69].

10 Conclusion
CDNs are critical to the performance of large-scale In-
ternet services. Microsoft operates two CDNs, one with
100+ endpoints that uses anycast and one for Azure-
based services that uses DNS-redirection. This paper
describes Odin, our measurement system that supports
Microsoft’s CDN operations. These operations span a
wide variety of use cases across first- and third-party
customers, with clients spread out worldwide. Odin has
helped improve the performance of major services like
Bing search and guided capacity planning of Microsoft’s
CDN. We believe that the key design choices we made
in building and operating Odin at scale address the defi-
ciencies of many prior Internet measurement platforms.

Acknowledgements
We thank the anonymous NSDI reviewers for a construc-
tive set of reviews. We thank our shepherd, Michael
Kaminsky, for providing insightful recommendations
and thorough comments on multiple drafts. The work
was partially supported by NSF awards CNS-1564242,
CNS-1413978, and CNS-1351100.

References
[1] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Ma-

hajan, and B. Christian, “Optimizing Cost and Perfor-
mance in Online Service Provider Networks,” in NSDI,
pp. 33–48, 2010.

[2] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holli-
man, G. Baldus, M. Hines, T. Kim, A. Narayanan, A. Jain,
et al., “Taking the Edge off with Espresso: Scale, Relia-
bility and Programmability for Global Internet Peering,”
in SIGCOMM, pp. 432–445, ACM, 2017.

[3] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Mad-
hyastha, I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and
H. Zeng, “Engineering Egress with Edge Fabric,” in SIG-
COMM, 2017.

[4] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren,
“Quantifying the benefits of joint content and network
routing,” in SIGMETRICS, pp. 243–254, ACM, 2013.

[5] H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Ma-
hajan, J. Padhye, and M. Zhang, “Efficiently Delivering
Online Services over Integrated Infrastructure,” in NSDI,
pp. 77–90, 2016.

[6] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain,
A. Krishnamurthy, T. Anderson, and J. Gao, “Moving
Beyond End-to-End Path Information to Optimize CDN
Performance,” in IMC, 2009.

[7] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and
S. Srinivasan, “LatLong: Diagnosing wide-area latency
changes for CDNs,” in Transactions on Network and Ser-
vice Management, 2012.

[8] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and
M. Ammar, “Answering What-If Deployment and Con-
figuration Questions with WISE,” in SIGCOMM, pp. 99–
110, ACM, 2008.

[9] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Card-
well, Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and
R. Govindan, “Reducing Web Latency: The Virtue of
Gentle Aggression,” SIGCOMM, vol. 43, no. 4, pp. 159–
170, 2013.

[10] J. Hamilton, “AWS re:Invent 2016: Amazon Global Net-
work Overview.” https://www.youtube.com/watch?

v=uj7Ting6Ckk.

[11] “Netflix Open Connect.” https://media.netflix.

com/en/company-blog/how-netflix-works-with-

isps-around-the-globe-to-deliver-a-great-

viewing-experience.

[12] Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang, “Char-
acterizing Roles of Front-end Servers in End-to-End Per-
formance of Dynamic Content Distribution,” in IMC,
pp. 559–568, ACM, 2011.

[13] A. Pathak, Y. A. Wang, C. Huang, A. Greenberg, Y. C.
Hu, R. Kern, J. Li, and K. W. Ross, “Measuring and Eval-
uating TCP Splitting for Cloud Services,” in PAM, pp. 41–
50, Springer, 2010.

[14] “Azure regions.” https://azure.microsoft.com/

en-us/regions/.

[15] A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen,
and O. Surmachev, “Fastroute: A Scalable Load-aware
Anycast Routing Architecture for Modern CDNs,” in
NSDI, vol. 27, p. 19, 2015.

[16] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and
J. Padhye, “Analyzing the Performance of an Anycast
CDN,” in IMC, pp. 531–537, ACM, 2015.

[17] “Google Cloud CDN.” https://cloud.google.com/

cdn/.

[18] “Google Cloud Load Balancer.” https://cloud.

google.com/load-balancing/.

[19] “Amazon CloudFront.” https://aws.amazon.com/

cloudfront/.

[20] “Amazon AWS Route53.” https://aws.amazon.com/
route53/.

[21] “Amazon Web Services.” https://aws.amazon.com/.

[22] “Google Cloud Platform.” https://cloud.google.

com/.

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.,
“B4: Experience with a Globally-deployed Software De-
fined WAN,” in SIGCOMM, pp. 3–14, ACM, 2013.

[24] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang,
M. Chintalapati, and R. Yao, “Gray Failure: The Achilles’
Heel of Cloud-Scale Systems,” in HotOS, 2017.

[25] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and
A. Vahdat, “Evolve or Die: High-Availability Design
Principles Drawn from Googles Network Infrastructure,”
in SIGCOMM, pp. 58–72, ACM, 2016.

[26] “Akamai Compliance Management.” https://www.

akamai.com/uk/en/multimedia/documents/

product-brief/akamai-for-compliance-

management-feature-sheet.pdf.

[27] “Ripe atlas network coverage.” https://atlas.ripe.

net/results/maps/network-coverage/.

[28] “Dynatrace.” https://www.dynatrace.com/

capabilities/synthetic-monitoring/.

[29] “Thousandeyes.” https://www.thousandeyes.com/.

[30] “Catchpoint.” https://www.catchpoint.com.

[31] “Cedexis.” https://www.cedexis.com/.

[32] F. Chen, R. K. Sitaraman, and M. Torres, “End-user Map-
ping: Next Generation Request Routing for Content De-
livery,” in SIGCOMM, vol. 45, pp. 167–181, ACM, 2015.

[33] C. Huang, N. Holt, A. Wang, A. G. Greenberg, J. Li, and
K. W. Ross, “A DNS Reflection Method for Global Traf-
fic Management.,” in USENIX ATC, 2010.

[34] C. Huang, D. A. Maltz, J. Li, and A. Greenberg, “Public
DNS System and Global Traffic Management,” in INFO-
COM, pp. 2615–2623, IEEE, 2011.

[35] M. H. Gunes and K. Sarac, “Analyzing Router Respon-
siveness to Active Measurement Probes,” in PAM, pp. 23–
32, Springer, 2009.

https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=uj7Ting6Ckk
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://azure.microsoft.com/en-us/regions/
https://azure.microsoft.com/en-us/regions/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/
https://www.dynatrace.com/capabilities/synthetic-monitoring/
https://www.dynatrace.com/capabilities/synthetic-monitoring/
https://www.thousandeyes.com/
https://www.catchpoint.com
https://www.cedexis.com/

[36] R. A. Steenbergen, “A Practical Guide to (correctly)
Troubleshooting with Traceroute,” NANOG 37, pp. 1–49,
2009.

[37] D. Choffnes and F. E. Bustamante, “Taming the Torrent:
A Practical Approach to Reducing Cross-ISP Traffic in
Peer-to-Peer Systems,” in SIGCOMM, 2008.

[38] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes,
F. E. Bustamante, B. Krishnamurthy, and W. Willinger,
“Dasu: Pushing Experiments to the Internet’s Edge,” in
NSDI, pp. 487–499, 2013.

[39] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Ne-
talyzr: Illuminating the Edge Network,” in IMC, pp. 246–
259, ACM, 2010.

[40] S. Sundaresan, S. Burnett, N. Feamster, and W. De Do-
nato, “BISmark: A Testbed for Deploying Measurements
and Applications in Broadband Access Networks.,” in
USENIX ATC, pp. 383–394, 2014.

[41] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. All-
man, N. Weaver, and V. Paxson, “Fathom: A Browser-
based Network Measurement Platform,” in IMC, pp. 73–
86, ACM, 2012.

[42] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng,
T. Karim, E. Katz-Bassett, and R. Govindan, “An
Internet-wide Analysis of Traffic Policing,” in SIG-
COMM, pp. 468–482, ACM, 2016.

[43] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A
Provider-side View of Web Search Response Time,” in
SIGCOMM, pp. 243–254, ACM, 2013.

[44] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and
F. Zane, “Clustering and Server Selection Using Passive
Monitoring,” in INFOCOM, vol. 3, pp. 1717–1725, IEEE,
2002.

[45] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J. Wang, “A Precise and Efficient
Evaluation of the Proximity Between Web Clients and
Their Local DNS Servers.,” in USENIX ATC, pp. 229–
242, 2002.

[46] A. Jain, J. Mann, Z. Wang, and A. Quach,
“W3C Resource Timing Working Draft.”
https://www.w3.org/TR/resource-timing-1/, July 2017.

[47] “USC CDN Coverage.” http://usc-nsl.github.io/
cdn-coverage.

[48] C. Contavalli, W. van der Gaast, S. Leach, and E. Lewis,
“RFC7871: Client Subnet in DNS Queries.” https://

tools.ietf.org/html/rfc7871.

[49] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heide-
mann, and R. Govindan, “Mapping the Expansion of
Google’s Serving Infrastructure,” in IMC, pp. 313–326,
ACM, 2013.

[50] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and
O. Surmachev, “FastRoute: A Scalable Load-Aware Any-
cast Routing Architecture for Modern CDNs,” in NSDI
’15, 2015.

[51] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck,
and J. Van der Merwe, “Anycast CDNs Revisited,” in
WWW, 2008.

[52] Z. Al-Qudah, S. Lee, M. Rabinovich, O. Spatscheck, and
J. Van der Merwe, “Anycast-aware Transport for Content
Delivery Networks,” in WWW, 2009.

[53] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck,
and J. Van Der Merwe, “A Practical Architecture for an
Anycast CDN,” ACM Transactions on the Web (TWEB),
2011.

[54] L. Wei and J. Heidemann, “Does Anycast Hang up on
You?,” in TMA, IEEE, 2017.

[55] G. Gürsun, “Routing-aware Partitioning of the Internet
Address Space for Server Ranking in CDNs,” Computer
Communications, vol. 106, pp. 86–99, 2017.

[56] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Busta-
mante, “Content Delivery and the Natural Evolution of
DNS,” in IMC, 2012.

[57] J. S. Otto, M. A. Sánchez, J. P. Rula, T. Stein, and
F. E. Bustamante, “namehelp: Intelligent Client-side
DNS Resolution,” in SIGCOMM, pp. 287–288, ACM,
2012.

[58] “A Faster Internet.” http://www.afasterinternet.

com/participants.htm.

[59] I. Poese, B. Frank, B. Ager, G. Smaragdakis, S. Uh-
lig, and A. Feldmann, “Improving Content Delivery with
PaDIS,” Internet Computing, vol. 16, no. 3, pp. 46–52,
2012.

[60] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feld-
mann, B. Maggs, J. Rake, S. Uhlig, and R. Weber, “Push-
ing CDN-ISP Collaboration to the Limit,” CCR, vol. 43,
no. 3, pp. 34–44, 2013.

[61] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig,
“Web Content Cartography,” in IMC, 2011.

[62] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai
Network: A Platform for High-performance Internet Ap-
plications,” in SIGOPS, pp. 2–19, ACM, 2010.

[63] M. J. Freedman, E. Freudenthal, and D. Mazieres, “De-
mocratizing Content Publication with Coral,” in NSDI,
vol. 4, pp. 18–18, 2004.

[64] J. Jiang, R. Das, G. Ananthanarayanan, P. Chou, V. Pad-
manabhan, V. Sekar, E. Dominique, M. Goliszewski,
D. Kukoleca, R. Vafin, and H. Zhang, “Via: Improving
internet telephony call quality using predictive relay se-
lection,” in SIGCOMM, 2016.

[65] S. S. Krishnan and R. K. Sitaraman, “Video Stream Qual-
ity Impacts Viewer Behavior: Inferring Causality using
Quasi-experimental Designs,” Transactions on Network-
ing, vol. 21, no. 6, pp. 2001–2014, 2013.

[66] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen,
P. Druschel, B. Maggs, B. Wishon, and M. Ponec, “Peer-
assisted Content Distribution in Akamai NetSession,” in
IMC, pp. 31–42, ACM, 2013.

http://usc-nsl.github.io/cdn-coverage
http://usc-nsl.github.io/cdn-coverage
https://tools.ietf.org/html/rfc7871
https://tools.ietf.org/html/rfc7871
http://www.afasterinternet.com/participants.htm
http://www.afasterinternet.com/participants.htm

[67] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang,
V. Sekar, and H. Zhang, “C3: Internet-Scale Control
Plane for Video Quality Optimization,” in NSDI, vol. 15,
pp. 131–144, 2015.

[68] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and
H. Zhang, “CFA: A Practical Prediction System for Video
QoE Optimization,” in NSDI, pp. 137–150, 2016.

[69] Adnan Ahmed, Zubair Shafiq, Harkeerat Bedi, Amir
Khakpour, “Peering vs. Transit: Performance Compari-
son of Peering and Transit Interconnections,” in ICNP,
2017.

Appendices
A Measurement Counts
Let the number of measurements be n and the true fail-
ure rate be p. Analytically, the observed failure rate p̂ is
distributed as Bin(n, p)/n, so the average error is

E [|p̂− p|] = E
[∣∣∣∣Bin(n, p)

n
− p

∣∣∣∣] .
Figure 12, however, is generated computationally via
Monte Carlo simulations. For example, to find the value
described in the caption, we simulated a large number
(107) of draws from the binomial distribution

p̂∼ Bin(n = 200, p = 0.01)/200,

then found the average value of |p̂− p| ≈ 54%.

30 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0

10
00

00

Measurement Counts

0

50

100

150

200

250

300

Av
er

ag
e

Er
ro

r (
%

)

0.001% Failure Rate
0.010% Failure Rate
0.100% Failure Rate
1.000% Failure Rate

Figure 12: The average error of observed failure rate, as a
function of number of measurements and true failure rate. For
example, if the true failure rate of a service is 1.0% (red dot-
ted line), then a sample of 200 measurements would yield an
average error of about 50%, i.e., 1.0±0.5%.

	Introduction
	Background
	Content Delivery Networks
	Microsoft's network
	Comparison to other CDNs

	Goals and Requirements
	Limitations of Existing Solutions
	Design Decisions
	System Design
	Client
	Orchestration Service
	Reporting
	Analysis Pipeline

	Supporting CDN Operations with Odin
	Directing users to the CDN front-ends
	Generating low latency DNS redirection maps
	Identifying and patching poor anycast routing

	Monitoring and improving service availability
	Preventing anycast overload
	Monitoring the impact of anycast route changes on availability

	Using measurements to plan CDN evolution
	Comparing global vs regional anycast

	Evaluation and Production Results
	Odin improves service performance
	Odin's DNS redirection maps reduce latency
	Odin patches anycast performance

	Using Odin to identify outages
	Using Odin to evaluate CDN configuration
	Evaluating Odin coverage

	Related Work
	Conclusion
	Measurement Counts

