
Abstract 

Many sensors have been deployed in the physical 

world, generating massive geo-tagged time series 

data. In reality, readings of sensors are usually lost 

at various unexpected moments because of sensor or 

communication errors. Those missing readings do 

not only affect real-time monitoring but also com-

promise the performance of further data analysis. In 

this paper, we propose a spatio-temporal multi-

view-based learning (ST-MVL) method to collecti-

vely fill missing readings in a collection of geo-

sensory time series data, considering 1) the temporal 

correlation between readings at different timestamps 

in the same series and 2) the spatial correlation 

between different time series. Our method combines 

empirical statistic models, consisting of Inverse Dis-

tance Weighting and Simple Exponential Smooth-

ing, with data-driven algorithms, comprised of User-

based and Item-based Collaborative Filtering. The 

former models handle general missing cases based 

on empirical assumptions derived from history data 

over a long period, standing for two global views 

from spatial and temporal perspectives respectively. 

The latter algorithms deal with special cases where 

empirical assumptions may not hold, based on rec-

ent contexts of data, denoting two local views from 

spatial and temporal perspectives respectively. The 

predictions of the four views are aggregated to a 

final value in a multi-view learning algorithm. We 

evaluate our method based on Beijing air quality and 

meteorological data, finding advantages to our mo-

del compared with ten baseline approaches. 

1 Introduction 

Many sensors have been deployed in the physical world to 

continuously and cooperatively monitor the environment, 

such as for air quality and meteorology. These sensors gener-

ate massive geo-tagged time series data, helping humans to 

better understand surrounding conditions [Zheng et al., 2014]. 

However, we usually lose readings of a sensor (or a set of 

sensors) at unexpected moments, because of geo-sensor 

errors (e.g. power outages) or communication errors. Missing 

readings will not only affect real-time monitoring especially 

for emergency conditions, but also compromise the perform-

ance of further data analysis like prediction and inference.  

Filling missing readings in a collection of geo-sensory time 

series data, however, is challenging for two reasons:  

1) Readings can be absent at arbitrary sensors and timesta-

mps. In some extreme cases, we may lose readings from a 

sensor at consecutive timestamps, e.g. 𝑠2 shown in Figure 1 

A), or lose readings of all sensors in one (or more) 

timestamp(s) simultaneously, like 𝑡2 illustrates in Figure 1 A). 

We call these extreme cases block missing. It is very difficult 

for existing models to handle the block missing problem, as 

we may not be able to find stable inputs for a model. For 

instance, non-negative matrix factorization (NMF) cannot 

handle cases where the data of a column or a row are comple-

tely missing in a matrix. 

 
Figure 1: Illustration of sensor readings of air quality data 

2) Affected by multiple complex factors, sensor readings 

change over location and time significantly and non-linearly. 

First, the readings of sensors with a shorter distance may not 

always be more similar than those with a farther distance. As 

illustrated in Figure 1 B), 𝑠1 is closer to 𝑠2 than 𝑠3  in terms of 

geographical Euclidian Distance. As shown in Figure 1 C), 

however, the air quality readings of 𝑠2 are more similar to 𝑠3   
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than 𝑠1. The reason is that 𝑠2  and 𝑠3 are located in two regi-

ons with a similar geographical context, such as Point of 

Interests and traffic patterns, while 𝑠1 is deployed in a forest 

and with a lake between it and 𝑠2. These cases violate the 

First Law of Geography, devaluing some interpolation-based 

models, like Inverse Distance Weighting (IDW) [George and 

Wong, 2008]. Second, sensor readings fluctuate tremendous-

ly over time, sometimes coming with a sudden change. As 

illustrated in Figure 1 C), the reading of 𝑠2  at the 31st 

timestamp drops over 200 in two hours. Such sudden change 

is actually very important to real-time monitoring and further 

data analysis, but cannot be well handled by existing smoo-

thing or interpolation methods. 

To tackle these challenges, we propose a spatio-temporal 

multi-view-based learning (ST-MVL) method to collectively 

fill missing values in a set of geo-sensory readings from a 

spatio-temporal and global-local perspectives simultaneously. 

Our contributions are four-fold: 

 ST-MVL simultaneously considers 1) the spatial correla-

tion between different time series and 2) the temporal 

correlation between readings at different timestamps in 

the same series, to generate a more accurate estimate. 

 ST-MVL integrates the advantages of global views, i.e. 

empirical models derived from the data over a long 

period, and those of local views, i.e. data-driven algori-

thms that are concerned with recent readings, to achieve 

better accuracy. 

 ST-MVL can handle the block missing problem, combi-

ning the four views in a multi-view learning framework. 

 We evaluate our method using Beijing air quality and 

meteorological data. The results demonstrate the advan-

tages of our method compared with ten baselines. 

2 Overview 

Figure 2 presents 𝑚 sensors’ readings at 𝑛 consecutive time-

samps, which are stored in a form of matrix, where a row 

stands for a sensor and a column denotes a timestamp. An 

entry 𝑣𝑖𝑗  refers to the reading of 𝑖𝑡ℎ sensor at 𝑗𝑡ℎ timestamp. 

In this matrix, 𝑣2𝑗  and 𝑣1,𝑗+1 are missing. We can estimate 

the reading of 𝑣2𝑗 based on its spatial neighborhoods, such as 

𝑠1 and 𝑠3; we call it a spatial view. 𝑣2𝑗 can also be estimated 

based on readings of adjacent timestamps, like 𝑡𝑗−1 and 𝑡𝑗+1, 

etc.; we call it a temporal view. We can also use different time 

length of data for an estimation, enabling local and global 

views. For example, we consider adjacent readings of 𝑣2𝑗 

from 𝑡𝑗−2 to 𝑡𝑗+2 in a local data matrix, which is regarded as 

a local view. We define the number of columns in a local data 

matrix as a window size 𝜔. Alternatively, we can take into 

account readings over a very long time period, e.g. from 𝑡1 to 

𝑡𝑛, which is regarded as a global view. Local view captures 

instantaneous changes, whereas global view represents long-

term patterns. If the values of an entire row or a column in a 

local data matrix are missing, we call it a block missing 

problem. 

 

Figure 2: Data matrix of sensor readings 

  As shown in Figure 3, ST-MVL consists of four views: 

IDW, Simple Exponential Smoothing (SES), User-based 

Collaborative filtering (UCF) and Item-based Collaborative 

filtering (ICF). The four views are then aggregated to gene-

rate a final estimate for a missing reading. 

 

Figure 3: Framework of our method 

IDW computes an estimate for a missing reading of a 

sensor based on the readings of the sensor’s spatial neighbor-

hoods. SES estimates the missing reading of a sensor based 

on readings at other timestamps of the same sensor. As IDW 

and SES are actually empirical models derived from data over 

a long period of history, they denote a global spatial view and 

global temporal view on the missing reading respectively.  

On the contrary, UCF estimates a missing reading only 

based on the local similarity between a sensor’s recent 

readings and those of the sensor’s spatial neighbors, where a 

sensor is regarded as a user. Likewise, ICF estimates a miss-

ing reading based on the local similarity between recent read-

ings of different timestamps, where a timestamp denotes an 

item. As UCF and ICF only consider local similarity from a 

spatial and temporal perspective, they stand for local spatial 

and local temporal views respectively.  

To leverage advantages of different views, we propose a 

multi-veiw learning algorithm that finds a linear combination 

of different views’ predictions with minimal square errors. 

3 The ST-MLV Method 

In this section, we detail ST-MLV, using a running example 

to fill the reading of 𝑣2𝑗 shown in Figure 2. In the following, 

the term “missing value” equals “missing reading”. 

3.1 Global Spatial View - IDW 

To model the global spatial view, we employ a statistic model, 

IDW, to interpolate a missing value based on its spatial neigh-

borhoods. IDW assigns a weight to each available reading of 

geospatially adjacent sensors according to their distance to 

the target sensor, and aggregates these weights by Equation 

(1) to make prediction �̂�𝑔𝑠. 
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�̂�𝑔𝑠 =
∑ 𝑣𝑖∗𝑑𝑖

−𝛼𝑚
𝑖=1

∑ 𝑑𝑖
−𝛼𝑚

𝑖=1

                               (1), 

where 𝑑𝑖 is the spatial distance between a candidate sensor 𝑠𝑖 

and the target sensor, and α is a positive power parameter that 

controls the decay rate of a sensor’s weight by 𝑑𝑖
−𝛼

. 𝑑𝑖
−𝛼

 

assigns a bigger weight to closer sensors’ readings, for which 

a bigger 𝛼 denotes a faster decay of weight by distance. 

Figure 4 presents the statistics that motivate us to use IDW 

to model global spatial view, using two datasets: air quality 

data and meteorological data in Beijing from May 2014 to 

May 2015. Here, we calculate the ratio between arbitrary two 

sensors’ readings at the same timestamp. The ratio decreases 

as the distance between two sensors increases in both datasets. 

This actually follows the First Law of Geography [Tobler, 

1970], i.e. Everything is related to everything else, but near 

things are more related than distant things, which is an 

empirical spatial correlation in geo-sensory data. 

 

Figure 4: Empirical spatial correlation in different sensors’ data 

Here, we demonstrate IDW using the running example. 

Suppose two sensors 𝑠1  and 𝑠3  are near 𝑠2  with spatial 

distance 6.5km and 8.5km respectively. If setting 𝛼  = 1, 

weights to two sensors are 1/6.5 and 1/8.5. Then, we get the 

prediction �̂�𝑔𝑠=130 after weighting average. 

3.2 Global Temporal View - SES 

To incorporate the global temporal view, we utilize SES to 

estimate the missing value based on the readings of same 

sensor at other timestamps. SES is frequently used in the time 

series domain as an exponential moving average model, for-

mally defined as [Gardner, 2006]: 

�̂�𝑔𝑡 = 𝛽𝑣𝑗 + 𝛽(1 − 𝛽)𝑣𝑗−1 + ⋯ + 𝛽(1 − 𝛽)𝑡𝑗−1𝑣1     (2), 

where 𝑡𝑗 is a time interval between a candidate reading 𝑣𝑗 and 

a target reading; 𝛽 is a smoothing parameter with a range of 

(0, 1). In general, 𝛽 ∗ (1 − 𝛽)𝑡−1 gives a bigger weight to 

recent readings than distance ones, and a smaller 𝛽 denotes a 

slower decay of weight over the time interval. Traditional 

SES uses only predecessors of the target timestamp as input. 

Here, we extend it to use both predecessors and successors of 

a target timestamp. Given a target timestamp, our SES gives 

a weight 𝛽 ∗ (1 − 𝛽)𝑡−1 to each reading of the same sensor, 

calculating �̂�𝑔𝑡  by normalizing the weight according to 

Equation (3):  

�̂�𝑔𝑡 =
∑ 𝑣𝑗∗𝑛

𝑗=1 𝛽∗(1−𝛽)
𝑡𝑗−1

 

∑ 𝛽∗(1−𝛽)
𝑡𝑗−1

 𝑛
𝑗=1

                         (3) 

In implementation, we only select readings within a temporal 

threshold (12 hours), as distant reading is not very useful. 

    Our SES model is inspired by the observation from time 

series data. Figure 5 presents the ratio between arbitrary two 

readings at two different timestamps of the same sensor, 

using the same air quality data an meteorological data presen-

ted in Figure 4. Both curves in Figure 5 decrease as the time 

interval increases, showing an empirical temporal correlation 

in time series, i.e. readings of recent timestamps are more 

relevant than readings of distant timestamps.  

 

Figure 5: Empirical temporal correlation in a sensor’s data 

Following the running example, suppose we find four 

timestamps (𝑡𝑗−2, 𝑡𝑗−1, 𝑡𝑗+1, 𝑡𝑗+2) for 𝑡𝑗. If setting β = 0.5, the 

weights for the four timestamps are (0.25, 0.5, 0.5, 0.25) 

respectively. Thus, the final result �̂�𝑔𝑡 equals to 185. 

3.3 Local Spatial View - UCF 

UCF is a data-driven algorithm that has been wildly used in 

recommender systems. The general idea behind it is similar 

users make similar ratings for similar items [Su and Khoshgo-

ftaar, 2009]. Following the running example shown in Figure 

2, we regard a sensor as a user, constructing a local data 

matrix for 𝑣2𝑗 with adjacent readings [𝑣
∗(𝑗−

𝜔−1

2
)

… 𝑣
∗(𝑗+

𝜔−1

2
)
], 

where 𝜔 is the windows size. The similarity between two se-

nsors (𝑠𝑖 , 𝑠2) is measured based on readings in the local data 

matrix, according to Equation (4): 

𝑠𝑖𝑚(𝑠𝑖 , 𝑠2) = 1
√

∑ (𝑣𝑖𝑘−𝑣2𝑘)2
𝑗+

𝜔−1
2

𝑘=𝑗−
𝜔−1

2

𝑁𝑇
⁄                   (4), 

where 𝑁𝑇 is the number of timestamps that two sensors both 

have readings. We then calculate a weighted average �̂�𝑙𝑠 

using the similarity as a weight, according to Equation 5. 

�̂�𝑙𝑠 =
∑ 𝑣𝑖∗𝑠𝑖𝑚𝑖

𝑚
𝑖=1

∑ 𝑠𝑖𝑚𝑖
𝑚
𝑖=1

                                  (5) 

UCF deals with special cases where the empirical spatial 

correlation mentioned in Section 3.1 does not hold, e.g. the 

case shown in Figure 1 B), capturing the time-dependent (i.e. 

local) spatial correlation between sensors’ readings.   

3.4 Local Temporal View - ICF 

Regarding a timestamp as a item, ICF [Sarwar et al., 2001] 

calculates the similarity between two timestamps  (𝑡1, 𝑡2)  

based on recent readings in the local data matrix built in the 

UCF model, according to Equation (6): 
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𝑠𝑖𝑚(𝑡1, 𝑡2) = 1 √
∑ (𝑣𝑖1−𝑣𝑖2)2𝑚

𝑖=1

𝑁𝑆
⁄                     (6), 

where 𝑁𝑆 is the number of sensors that have readings in both 

𝑡1  and 𝑡2 . We use the similarity as a weight to calculate 

weighted average �̂�𝑙𝑡  with the readings [ 𝑣𝑗1
… 𝑣𝑗2

]  whose 

timestamp is within window size 𝜔 of the local data matrix, 

according to Equation (7).  

�̂�𝑙𝑡 =
∑ 𝑣𝑗∗𝑠𝑖𝑚𝑗

𝑗2
𝑗=𝑗1

∑ 𝑠𝑖𝑚𝑗
𝑗2
𝑗=𝑗1

                                 (7) 

ICF, as local temporal view, deals with special cases where 

the empirical temporal correlation mentioned in Section 3.2  

does not hold, using the time-dependent (i.e. local) temporal 

correlation learned from recent data. 

3.5 Multi-View Learning 

ST-MVL integrates the predictions of the aforementioned 

four views to generate a final result, through a multi-view 

learning algorithm, according to Equation (8): 

�̂�𝑚𝑣𝑙 = 𝑤1 ∗ �̂�𝑔𝑠 + 𝑤2 ∗ �̂�𝑔𝑡 + 𝑤3 ∗ �̂�𝑙𝑠 + 𝑤4 ∗ �̂�𝑙𝑡 + 𝑏  (8), 

where 𝑏  is a residual and 𝑤𝑖  ( 𝑖 = 1,2,3,4) is a weight 

assigned to each view. Algorithm 1 presents the procedure of 

ST-MVL. When a dataset encounters a block missing pro-

blem, in which ICF and UCF do not work very well, we 

leverage IDW and SES to generate an initial value for those 

missing entries (see Line 3). Then, we predict each missing 

entry using ICF, UCF, IDW and SES respectively (Line 4-9), 

combining the four predictions based on a linear-kernel-

based multi-view learning framework (see Line 10 and Equa-

tion 8). We train the model for each sensor respectively, by 

minimizing the linear least square error [Lawson and Hanson, 

1974] between predictions and ground truth.  

Algorithm 1 ST-MVL 

Input:  Original Data Matrix 𝑀, 𝜔, 𝛼, 𝛽; 
Output:  Final Data Matrix; 

1.  O ← Get_All_Missing_Values(𝑀); 
2.  If there are block missing problem 

3.       𝑀 ← Initialization(𝑀, 𝛼, 𝛽);       //using IDW or SES 
4.  Foreach target t in O 

5.      𝑣𝑙𝑠 ← UCF(𝑀, 𝑡, 𝜔); 

6.      𝑣𝑙𝑡 ← ICF(𝑀, 𝑡, 𝜔); 

7.      𝑣𝑔𝑠 ← IDW(𝑀, 𝑡, 𝛼); 

8.      𝑣𝑔𝑡 ← SES(𝑀, 𝑡, 𝛽); 

9.      𝑣𝑚𝑣𝑙 ← Muti-view_Learning(𝑣𝑙𝑠, 𝑣𝑙𝑡 , �̂�gs, 𝑣𝑔𝑡); 

10.    Add 𝑣𝑚𝑣𝑙 into 𝑀; 

11. Return 𝑀; 

4 Experiments 

4.1 Datasets and Ground Truth 

We evaluate our model based on two real datasets: air quality 

and meteorological data in Beijing from 2014/05/01 to 

2015/04/30 [Zheng et al., 2015], which has 8,759 timestamps 

respectively. The air quality data is collected at 36 air quality 

monitoring stations, each of which generates a reading every 

hour, as depicted in Figure 6 A). The meteorological data is 

collected by 16 sensors shown in Figure 6 B) every hour.  

 

Figure 6: Sources of air quality and meteorological data 

From the two datasets, we select 4 properties, consisting of 

PM2.5, NO2, Humidity and WindSpeed, to fill missing values 

whose statistics are shown in Table 1. There are two missing 

situations: block missing and general missing. The former is 

further comprised of spatial block missing and temporal 

block missing; the two may have some overlap. The spatial 

block missing is referred to as records with all sensors’ read-

ings simultaneously absent; the temporal block missing is 

records of the same sensor with data absent in a certain 

temporal window size (see Figure 2, e.g. there are 3.15% of 

missing values in PM2.5 property when ω = 11). General mi-

ssing is the missing values except for the block missing. For 

example, about 13.25% of sensor readings in the air quality 

dataset lose PM2.5 property, including 8.15% general 

missing and 2.15% spatial block missing. 

Table 1. Statistics on missing values in experimental datasets 

 PM2.5 NO2 Humid

ity 

Wind 

Speed 

Block  

missing  
Spatial 2.2% 3.9% 9.8% 11.8% 

Temporal (ω=11) 3.5%  6.5% 9.6% 19.5% 
General missing 8.2% 6.8% 4.6% 4.0% 

Overall 13.3% 16.0% 21.5% 30.3% 

We partition the 1-year data into two parts, using the 3rd, 

6th, 9th and 12th months as a test set and the rest for a training 

set. To train our model, we select entries (from the training 

set) whose local matrix is not totally absent of data at the row 

and column where the entry stays. As illustrated in Figure 7, 

for the test set, we accommodate each month’s data into a 

matrix respectively. We find all missing entries (denoted by 

red X) in each month’s data. Then, we drop out the values of 

entries (in the next month’s matrix e.g. 𝑣32 in March) that 

correspond to its predecessor’s (i.e. Feb.) missing entries. If 

those entries are not absent in the next month (e.g. 𝑣32=59 in 

March), their values are used as a ground truth to measure the 

accuracy of our predictions. Note that we cannot randomly 

drop out some non-missing entries in the test set to generate 

ground truth, as real-world missing patterns are not random.   

 
Figure 7: Test data and ground truth selection 
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4.2 Baselines & Metrics & Prameters 

We compare our method with 10 baselines shown in Table 2. 

ARMA& SARIMA: ARMA predicts a missing value based 

on the readings of a few timestamps ago. SARIMA genera-

lizes ARMA, considering the seasonal factor in time series. 

stKNN: This uses the average readings of its k nearest spatial 

and temporal neighbors as a prediction (𝑘=6). 

Kriging: Kriging interpolates a missing value with available 

readings of geospatially adjacent sensors.  

AKE (Applying k-nearest neighbor estimation) [Pan and Li, 

2010]: It uses a regression model to combine the readings of 

a missing entry’s neighbors.  

DESM: Combines previous readings of a missing sensor and 

its neighbors’ readings at current time linearly, using statistic 

based spatio-temporal correlations. [Gruenwald et al., 2010]. 

IDW+SES: Fill missing entries in a sensor’s local matrix by 

IDW and SES respectively; return the average of predictions. 

CF: Initialize a local matrix by IDW+SES; apply UCF and 

ICF to generate a prediction respectively; the return is the 

average of the two predictions. 

NMF: Initialize a local matrix by IDW+SES; fill the local 

matrix by a NMF. 

NMF-MVL: Similar to our method, but it replaces two local 

views with a NMF. 

Table 2. Category of different methods 

Method Spatial Temporal Spatial+Temporal 

Global IDW SES IDW+SES 

Lobal UCF ICF, ARMA CF, NMF, stKNN 

Global+Local Kriging SARIMA AKE, DESM, NMF-MVL 

Evaluation Metrics: We measure our mehtod by Mean Abs-

olute Error (MAE) and Mean Relative Error (MRE),  

    𝑀𝐴𝐸 =
∑ |𝑣𝑖−𝑣�̂�|𝑖

𝑛
,       𝑀𝑅𝐸 =

∑ |𝑣𝑖−𝑣�̂�|𝑖

∑ 𝑣𝑖𝑖
,               (8) 

where 𝑣�̂� is a prediction and 𝑣𝑖 is the ground truth; 𝑛 is the 

number of cases. 

Parameter Settings: We test different 𝛼  for IDW, 𝛽  for 

SES, and 𝜔 for UCF & ICF, finding a best setting for them, 

e.g. when 𝛼=4, 𝛽=0.85, and 𝜔=7 achieve the best performa-

nce in PM2.5 property. 

4.3 Results 
 

4.3.1 Results of Combination Methods 

Table 3 presents the results of different combination methods 

of four views, based on PM2.5 property. ST-MVL outperfor-

ms all kinds of combinations, bringing a significant improve-

ment beyond the best single view SES and the best combina-

tion of two views (IDW+SES). ST-MVL also achieves a 

slightly better performance in filling in block missing than 

others. In the meantime, the combination of two views, e.g. 

IDW+SES, is better than using a single view; same for 

UCF+ICF. The four views are complementary to each other, 

containing long-term patterns, knowledge derived from 

recent contexts, the spatial correlation between locations, and 

the temporal correlation between timestamps. Additionally, 

IDW and SES have better results than UCF and ICF respec-

tively, showing the ability of empirical models dealing with 

general cases. 

Table 3. Results of different combination methods (PM2.5) 

Method 

General 

Missing 

Spatial Block 

Missing 

Temporal 

Block Missing 

MAE MRE MAE MRE MAE MRE 

G
lo

b
a

l IDW 15.20 0.222 \ \ 11.95 0.213 

SES 13.39 0.196 18.25 0.215 \ \ 

IDW+SES 11.64 0.171 18.25 0.215 11.95 0.213 
L

o
b

a
l UCF 13.49 0.206 \ \ \ \ 

ICF 15.37 0.234 \ \ \ \ 

UCF+ICF 11.73 0.178 \ \ \ \ 

Spa:IDW+UCF 16.14 0.235 \ \ 11.95 0.213 

Tem:SES+ICF 13.57 0.199 18.25 0.215 \ \ 

ST-MVL 10.81 0.158 17.85 0.217 11.71 0.208 

Note: Spa means Spatial; tem means Temporal. 

4.3.2 Overall Results 

Table 4 presents the comparison between our method and ten 

baselines, where ST-MVL outperforms all baselines under all 

circumstances. Sudden changes denote the readings changing 

over the last timestamp by a threshold (e.g. 50 in our settings). 

We use IDW+SES to initialize the missing values for data-

driven algorithms, such as CF and NMF, when the latter faces 

block missing. Individually, NMF outperforms CF, as it con-

siders user and item similarities simultaneously. However, 

when combined with other views in the multiview learning 

framework, CF brings a bigger improvement over NMF, i.e. 

ST-MVL outperforms NMF-MVL.  

Table 4. Comparison among different methods (based on PM2.5) 

Method 
General Missing Spatial Block Missing Temporal Block Missing Sudden Change Overall 

MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE 

ARMA 22.61 0.331 29.26 0.369 \ \ 51.11 0.567 27.47 0.394 

Kriging 15.53 0.221 \ \ 15.62 0.222 42.32 0.407 16.59 0.234 

SARIMA 14.69 0.220 23.92 0.319 31.20 0.561 52.80 0.586 18.76 0.278 

stKNN 12.84 0.188 19.91 0.235 12.72 0.226 35.13 0.390 14.00 0.201 
DESM 13.65 0.191 19.24 0.233 12.66 0.224 42.87 0.425 15.59 0.228 

AKE 13.34 0.195 19.08 0.229 12.14 0.22 41.54 0.403 14.27 0.211 

IDW+SES 11.64 0.171 18.25 0.215 11.95 0.213 34.33 0.381 12.70 0.183 

CF 12.20 0.178 19.27 0.234 12.25 0.218 34.91 0.388 13.40 0.193 

NMF 11.21 0.163 18.98 0.239 12.73 0.217 34.37 0.381 13.08 0.188 

NMF-MVL 11.16 0.162 18.97 0.238 12.66 0.217 34.33 0.380 13.06 0.187 

ST-MVL 10.81 0.158 17.85 0.217 11.71 0.208 33.15 0.368 12.12 0.174 



4.3.3 Impact of Parameters for IDW & SES 

Figure 8 A) plots the performance of IDW changing over 𝛼 

in PM2.5 and WindSpeed datasets. PM2.5 has a minimum 

MRE when 𝛼=4, and WindSpeed has a minimum MRE when 

𝛼=1. Figure 8 B) shows the performance of SES changing 

over 𝛽. When 𝛽=0.85 and 0.55, PM2.5 and WindSpeed have 

a minimum MRE respectively. As PM2.5 fluctuates more 

strongly than wind speed in both spatial and temporal spaces, 

the latter should be given a smaller 𝛼 and 𝛽.  
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Figure 8: Impact of parameters for IDW & SES 

4.3.4 Impact of Window Size for CF 

Figure 9 shows the impact of window size on CF. A large 

window size may lose time-dependency, but a very small 

window size may not capture the similarity between locations 

or time stamps. That is why MAE decreases first and then 

increases after 𝜔=7.  

 
Figure 9: Impact of window size (based on PM2.5) 

4.3.5 Results in Other Datasets 

Table 5 presents the results of all properties of the two data-

sets. ST-MVL outperforms IDW+SES in all properties, achi-

eving an improvement of 0.009 in MRE with the multi-view 

learning. It verifies the advantages of our method integrating 

empirical models and data-driven algorithms.  

Table 5. Results in other datasets 

Dataset 
IDW+SES ST-MVL 

MAE MRE MAE MRE 

PM2.5 12.70 0.183 12.12 0.174 

NO2 8.93 0.176 8.45 0.171 

WindSpeed 2.91 0.427 2.74 0.411 

Humidity 4.14 0.085 3.82 0.079 

5 Related Work 

5.1 Methods Considering a Single View 

Spatial models: Inverse distance weighting, linear regression 

and Kriging are three wildly used methods. [Chen and Liu, 

2012] estimates the rainfall distribution using inverse dis-

tance weighting, and [Wu and Li, 2013] fills the missing 

temperature using ordinary Kriging. These methods leverage 

the spatial correlation derived from the spatial coordinates 

data or learnt from data.  

Temporal models: Methods in this category can be classified 

into non-feature-based and feature-based. The former, such 

as SES, ARMA and SARIMA, solely considers a sensor’s 

readings [Ceylan et al., 2013]. The latter, such as Graph 

model and regression model [Lee et al., 2008; Fung, 2006], 

exploits a function of features, considering the temporal cor-

relation of readings over time.  

    Beyond the aforementioned two categories of methods 

solely considering spatial information or temporal informa-

tion, our method simultaneously utilizes spatial and temporal 

correlations, and therefore is more capable of filling in miss-

ing values. 

5.2 Methods Considering Spatio-Temporal Views 

Many statistic-based methods, such as mean imputation and 

last seen [Little and Rubin, 2014], can be used to impute the 

missing data. In addition, there are many data-driven methods 

for filling missing values. [Gruenwald et al., 2010] proposes 

a DEMS method to handle the missing data by time-depen-

dent spatial and temporal relationships. [Pan and Li, 2010] 

proposes a nearest neighbors imputation method entitled 

AKE to describe the spatial correlation and incorporate the 

temporal information when meeting no enough spatial infor-

mation. [Wang et at., 2006; Ma et al., 2007] unify user-based 

and item-based collaborative filtering to fill missing values in 

the recommendation system. [Johan at el., 2014] takes adv-

antage of matrix factorization and a salient version called 

empirical orthogonal functions model is proposed by [Antti 

et al., 2010]. In general, statistic-based methods are derived 

from history data, characterizing the global information; 

Data-driven methods focus on the recent contexts, character-

izing the local information. Our method combines the statistic 

models and data-driven models in a multi-view learning 

framework to generate a more accurate estimate.  

6 Conclusion 

In this paper, we propose a multi-view learning-based method 

to fill missing values for geo-sensory time series data, simu-

ltanesouly considering spatial, temporal, global and local 

views. We evaluate our method ST-MVL based on Beijing’s 

air quality and meteorological data. ST-MVL has a mean 

relative error around 17% for PM2.5 and NO2, and about 8% 

for humidity, outperforming baseline methods that solely 

consider a single view by 26% on average. ST-MVL also 

surpasses those that only combine two out of the four views 

by 10% in MRE on average. The code and datasets have been 

released at: http://research.microsoft.com/apps/pubs/?id=264768.  
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