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Many service applications use actors as a programming model for the middle tier, to simplify synchronization,
fault-tolerance, and scalability. However, efficient operation of such actors in multiple, geographically distant
datacenters is challenging, due to the very high communication latency. Caching and replication are essential
to hide latency and exploit locality; but it is not a priori clear how to combine these techniques with the actor
programming model.

We present Geo, an open-source geo-distributed actor system that improves performance by caching
actor states in one or more datacenters, yet guarantees the existence of a single latest version by virtue of
a distributed cache coherence protocol. Geo’s programming model supports both volatile and persistent
actors, and supports updates with a choice of linearizable and eventual consistency. Our evaluation on several
workloads shows substantial performance benefits, and confirms the advantage of supporting both replicated
and single-instance coherence protocols as configuration choices. For example, replication can provide fast,
always-available reads and updates globally, while batching of linearizable storage accesses at a single location
can boost the throughput of an order processing workload by 7x.
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1 INTRODUCTION

Actors have emerged as a useful abstraction for the middle tier of scalable service applications that
run on virtualized cloud infrastructure in a datacenter [Akka 2016; Orbit 2016; Orleans 2016; SF
Reliable Actors 2016]. In such systems, each actor is a single-threaded object with a user-defined
meaning, identity, state, and operations. For example, actors can represent user profiles, articles,
game sessions, devices, bank accounts, or chat rooms. Actors resemble miniature servers: they
do not share memory, but communicate asynchronously, and can fail and recover independently.
Actor systems scale horizontally by distributing the actor instances across a cluster of servers.

In a traditional bare-bones actor system, the developer remains responsible for the creation,
placement, discovery, recovery, and load-balancing of actors. A newer line of actor frameworks
[Orbit 2016; Orleans 2016; SF Reliable Actors 2016] have adopted the virtual actor model [Bernstein
et al. 2014; Bykov et al. 2011] which automates all of these aspects.
For each class of actors, the developer specifies only (1) a unique key for identifying instances,

(2) the actor state, and (3) the supported operations. An operation can read and update the actor’s
state, and can call other actors’ operations (see Fig. 1 for an example). Actors cannot share state:
operation arguments and return values are deeply copied. Note that actor operations are not just
one-way messages as in the pure actor model, but can return a value or throw an exception.

The class and key are sufficient to identify a virtual actor instance and call its operations. Actor
instances are automatically activated when first used (i.e., when an operation is invoked), and
deactivated when unused for some period of time. This is a significant difference to the standard
actor model, where actors are created explicitly by the application, and are garbage-collected once
unreachable.

For virtual actors, programmers can specify how to save and load the actor state to/from external
storage, if persistence is desired. Thus, the runtime can distribute, activate and deactivate actors
based on use, effectively resembling a distributed cache [Memcached 2016; Power and Li 2010;
Redis 2016; Windows Azure Cache 2016].
Geo-Distribution Challenge. Today’s cloud platformsmake it easy to operate a service inmultiple
datacenters, which can improve latency and availability for clients around the world. The virtual
actor model is a promising candidate for architecting such services. It is not clear, however, how to
make it perform acceptably across continents. Although round-trip latency between servers is under
2ms within a datacenter, it can be two orders of magnitude higher between distant datacenters,
e.g., about 150ms between California and the Netherlands. Thus, a naive reuse of single-datacenter
application architectures, programming models, and communication protocols has a poor chance
of success.
Our experience suggests that to perform within a range that is appealing in practice, a geo-

distributed virtual actor system must exploit locality, if present. For example, if an actor is accessed
mostly from a single datacenter, those accesses should not incur any geo-remote calls. Moreover, a
solution should support replication where appropriate. For example, if an actor is frequently accessed
by multiple datacenters, accesses should utilize locally cached copies. Our system, called Geo, solves
these requirements using new mechanisms and a new variation of the virtual actor programming
model.
Geo’s implementation is structured hierarchically: a set of clusters is federated into a loosely

connected multi-cluster. Each cluster maintains a local elastic actor directory that maps actors to
servers, using existing mechanisms in virtual actor systems. To provide a simple, global view of the
system and stay true to the virtual actor model, Geo automatically coordinates actor directories
and actor states across all the clusters via several distributed coherence protocols. These protocols
are non-trivial, as they must scale out, and gracefully handle node failures, network partitions, and
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actor ChatRoom[guid: string]
{
state messages: List⟨string⟩ ;
op Read(): List⟨string⟩ { return messages ; }
op Post(userid: string, msg: string): boolean
{
if (!await User[userid].MayPost()) { // calls User actor
return false ;

} else {
messages.Add(msg) ;
return true ;

}
}

}

actor User[userid: string]
{
state banned ;

// called by Post operation
op MayPost(): boolean {
return !banned ;

}

op Ban()
{
banned = true ;

}
}

Fig. 1. Basic pseudo-code illustration of the virtual actor programming model, on a chat service example. The
actor classes on the left and right represent chat rooms and users, respectively. Each actor class defines a key
(first line), state (third line), and operations. The Post operation on the ChatRoom actor first calls the User
actor for the user identified by userid (wherever it may be located) to check if this user may post a message.

live configuration changes at the cluster and the multi-cluster level. They do not exhibit a single
point of failure or contention.

Geo introduces a novel versioned actor-state API that gives the runtime more room for optimiza-
tions (such as replication and batching) when reading or updating actor state. Yet the application
logic remains simple. The API offers fast local reads of approximate state based on local cache
and fast local updates via a background queue. Importantly, the use of these locally consistent
operations is optional: all actors support globally consistent, linearizable reads and writes, which
are guaranteed to read or write the latest version.

1.1 Actor Configuration in Geo

Clusters and Multi-Clusters. We define a cluster to be a set of servers, called nodes, connected
by a high-speed network. Clusters are elastic and robust: while the service is operating, nodes
can be added or removed, and node failures are automatically detected and tolerated. Similarly,
several clusters can be joined into a multi-cluster; and clusters can be added or removed from the
multi-cluster. A single datacenter may contain multiple clusters, e.g., to group nodes into distinct
failure zones that operate and fail independently.
Configuration Options. To perform better across a wide range of requirements, Geo supports
several configuration options for actors in a multi-cluster as shown in Fig. 2. Each actor can be
declared as either volatile (latest version resides in memory and may be lost when servers fail) or
persistent (latest version resides in the storage layer). Furthermore, the caching policy for each
actor can be declared as single-instance (state is cached in one node of one cluster) or multi-instance
(state is cached in one node of every cluster). These choices can greatly affect performance. For
example, caching multiple instances can reduce the access latency for actors without locality; but
using a single instance can improve throughput for actors with locality, and for actors with a high
update rate. We discuss these observations in the evaluation section.
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Fig. 2. The four actor configuration options in a multi-cluster. Squares are clusters, Cylinders are the storage
layer, circles are copies of the actor state, and the star marks the latest version (primary copy).

Activation on First Access. In Geo, single-instance actors are activated only in the cluster where
they are first accessed, while multi-instance actors are activated in all clusters when first accessed.
The single-instance policy can exploit locality if all accesses are in the same datacenter, or if

accesses by different datacenters are separated in time. For example, suppose a user Bob connects
to a datacenter c , which causes Bob’s profile p to be loaded from storage and cached in memory.
Now Bob logs off and flies to another continent. Since he is off-line for a while, the cached instance
of p in c is evicted. When Bob logs in to a local datacenter d at his destination, p is loaded into
memory at d .

1.2 Novelty and Relevance

Prior work on geo-distributed services has heavily focused on the challenge of providing geo-
replicated storage [Cassandra 2016; Corbett et al. 2013; Li et al. 2012; Lloyd et al. 2011; Rothnie
and Goodman 1977; Sovran et al. 2011], usually using quorum-based algorithms. A distinguishing
feature of our actor-based approach is that it separates geo-distribution from durability, which
is highly relevant for actor-based services:
(1) Providing durability for volatile actors is meaningless and wasteful. Volatile actors are

pervasive in interactive or reactive applications, because the actor state is often a view of
other state (e.g. other actors, or external state), and can thus be reconstructed or recomputed
when lost. For example, if an object tracks current participants of a game and the current list
of players is lost in a failure, it can quickly be reestablished, because each participant sends
periodic heartbeats. Also, actors may be used for synchronization purposes, rather than to
reliably store data.

(2) Developers want full control over where and how to store data. Often, there are important
non-technical reasons for requiring that data be durably stored in a specific geographic
location and/or a specific storage system and/or a specific format, such as: cost, legacy
support, tax laws, data sovereignty, or security.

(3) An un-bundling of functionality into independent components accelerates innovation, be-
cause it fosters independent competition for each aspect. This is clearly reflected in how cloud
services are built these days, using a plethora of components, many of which are open-source.

Internally, the storage system typically uses quorum-based replication, possibly within a single
datacenter, or possibly geo-distributed. Geo is agnostic to such details. The only requirement at
this time is that the storage supports strongly consistent reads and conditional updates; future
implementations may relax this further.
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1.3 Contributions

Our main contributions are the programming model, the system implementation, and the perfor-
mance evaluation.

• Geo’s programming model provides an effective separation of concerns between develop-
ing geo-distributed applications and the challenge of designing and implementing robust,
distributed protocols for managing actor state. It is suitably abstract to allow plugging in
and combining various such protocols. Developing such protocols is a subtle and complex
task: hiding it beneath a simple API puts geo-distributed applications within the reach of
mainstream developers.

• Geo’s implementation is open-source. It is part of the Orleans distribution [Orleans 2016],
and is used in a commercial setting by an early adopter. It includes a new optimistic protocol
for distributed datacenters to ensure that the cache contains at most one instance of an
object worldwide. It also includes a new consistency protocol for synchronizing the state
of persistent cache instances with each other and with storage, using batching to improve
throughput.

• Our evaluation of Geo compares the performance of various consistency protocols and
configuration options, showing their latency and throughput benefits.

The paper is organized as follows.We describe the programmingmodel in §2, protocols to implement
the model in §3, experimental results in §4, related work in §5, and the conclusion in §6.

2 PROGRAMMING MODEL

Geo extends the C# Orleans virtual actor framework [Bernstein et al. 2014; Bykov et al. 2011;
Orleans 2016] by extending its APIs to support the multi-cluster configuration options in Fig. 2.
These options are offered under two APIs:

The basic state API (§2.1) is simply the already-existing Orleans actor API. It supports the
single-instance configuration for volatile and persistent actors (left half of Fig. 2). It is simple to
use and efficient for volatile grains, since synchronous reads and writes on main memory run fast.
However, it does not support multi-instance configurations, and it can suffer from performance
problems on write-hot persistent grains.
The versioned state API (§2.2) is a bit more involved, but supports all four configurations

in Fig. 2 under a single API and consistency model, and can batch updates on write-hot grains.
For each read or update operation, the developer can prioritize consistency (which guarantees
linearizability) or speed (which guarantees an immediate response), as proposed and formalized
by the GSP (global sequence protocol) consistency model [Burckhardt et al. 2015; Gotsman and
Burckhardt 2017].

2.1 Basic State API in Orleans

Fig. 3 shows an example of how to define Orleans actors for the example from Fig.1.
Grain interfaces are defined as C# interfaces (Fig. 3a). These define the publicly visible op-

erations of a grain, and select the key type by deriving from a corresponding framework
interface. Here, IGrainWithStringKey and IGrainWithGuidKey select string and Guid as the key
type for the user and chat-room grains, respectively.

Volatile grains are defined by C# objects that derive from the framework class Grain and the
grain interface (Fig. 3b). Grain state and grain operations simply map to object state and object
methods. Note that the result of the Post method, which is of type Task⟨bool⟩, is effectively a
promise, automatically constructed by the C# compiler as a continuation following the await
keyword. It returns true or false depending on the outcome of the conditional.
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1 public interface IUser : IGrainWithStringKey
2 {
3 Task⟨bool⟩ MayPost() ;
4 }
5 public interface IChatRoom : IGrainWithGuidKey
6 {
7 Task⟨bool⟩ Post(string user, string msg) ;
8 Task⟨List⟨string⟩⟩ Read() ;
9 }

1 public class ChatRoom : Orleans.Grain, IChatRoom
2 {
3 private List⟨string⟩ Messages ;
4 public async Task⟨List⟨string⟩⟩ Read() { return Messages ; }
5 public async Task⟨bool⟩ Post(string user, string msg) {
6 if (await GrainFactory.GetGrain⟨IUser⟩(user).MayPost()) // call grain and await result
7 {
8 Messages.Add(msg) ;
9 return true ;
10 } else {
11 return false ;
12 }
13 }
14 }

1 [Serializable]
2 public class ChatState // defines the chatroom state
3 {
4 public List<string> Messages = new List<string>() ;
5 }
6
7 [StorageProvider(ProviderName = "whatStorageToUse")]
8 public class ChatRoom : Orleans.Grain⟨ChatState⟩, IChatRoom
9 {
10 public async Task⟨List⟨string⟩⟩ Read() { return State.Messages ; }
11 public async Task⟨bool⟩ Post(string user, string msg)
12 {
13 if (await GrainFactory.GetGrain⟨IUser⟩(user).MayPost()) // call grain and await result
14 {
15 State.Messages.Add(msg) ;
16 await WriteStateAsync() ; // persist state, await I/O completion (storage ack)
17 return true ;
18 } else {
19 return false ;
20 }
21 }
22 }

Fig. 3. Example that illustrates the existing Orleans C# API for defining volatile and persistent actors, called
grains. (a) top: common interface definitions. (b) middle: a volatile chat-room grain implementation. (c)
bottom: a persistent chat-room grain implementation.
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class CounterState {
int count = 0 ;
apply(Add x) { count += x.amount ; }
apply(Reset x) { count = 0 ; }

}
class Add { int amount ; }
class Reset { }

v0
count=0

v7
count=5

Add 5

Latest Version

California Netherlands

v7
count=5 Reset

Add 1

Fig. 4. (a) left: example definition of state and update objects. (b) right: sample snapshot of the internal
state of an actor that uses the versioned state API and has two instances in different datacenters.

Persistent grains are defined as shown in Fig. 3c. The state is separated out into a serializable
class ChatState. The ChatRoom grain then derives from the framework class Grain⟨ChatState⟩
passing ChatState as a type parameter. The grain state is accessible to grain operations via
the State property (implemented by the base class); when modifying the state, operations
call WriteStateAsync (implemented by the base class) to write the changes to storage. How
to persist the state can be configured by selecting a storage provider via a class attribute,
a general C# mechanism for annotating meta data that uses a bracket syntax. Here, the
attribute [StorageProvider(ProviderName = "whatStorageToUse")] that immediately precedes the
ChatRoom class definition means that a storage provider with name "whatStorageToUse" should
be used to persist the ChatRoom grains. A storage provider with the specified name must be
configured on startup. Application developers can write their own storage providers or use
already-existing providers for common cloud storage systems.

2.2 Versioned State API

The Versioned State API manages actor state indirectly, using state objects and update objects. For
a state object s and update object u, the programmer must implement a deterministic method
s.apply(u) that defines the effect of the update. For example, for an actor representing a counter that
supports add and reset operations, we may define state and update objects as shown in Fig. 4a.

read/write operations

read_tentative () → State
read_confirmed () → (State, int)
enqueue Update → ()

synchronization primitives

confirm_updates () → task
refresh_now () → task

Fig. 5. Signature of the Versioned State API.

Conceptually, the consistency protocol applies updates
one at a time to the latest version, thereby creating a
sequence of numbered global versions. The initial state v0
is defined by the default constructor of the state object.
Every time an update is applied, the version number is
increased by one. We visualize how the protocol manages
states and updates in a local and global context as shown
in Fig. 4b using state objects (black boxes) and update
objects (white boxes) of the same types as in the counter
example. There are two instances of the same actor, one
in California and one in the Netherlands. Each stores (1)
a local copy of the last known version, and (2) a queue of
unconfirmed updates (updates enter at the top and drain
at the bottom). The bottom rectangle shows the latest
version of the state.
Background Propagation. At all times, the consistency protocol runs in the background on each
instance of an actor to propagate updates. It applies each queue’s updates to the latest version in
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order, interleaving them with updates from other queues, and it propagates the latest version to all
instances. These tasks require communication. Thus, they may be slow or stall temporarily (for
example, if intercontinental communication or storage are down). However, by design, such stalls
do not impact the availability of an actor: it can always continue to be read and updated locally.
Where is the Latest Version? The location of the latest version depends on the configuration and
protocol. For our current system, it is always located either in external storage (for persistent actors)
or in memory (for volatile actors), as shown by the stars in Fig. 2. Importantly, regardless of the
configuration, the programmer can always rely on the existence of a latest version, and can directly
read and update it. This provides unified semantics for many consistency protocols without exposing
configuration details such as the number of replicas and the nature of quorum configurations.
Local Operations. It is often acceptable to work with a somewhat stale actor state and to delay the
confirmation of updates [Cassandra 2016; Kraska et al. 2009; Terry 2013]. For example, a website
may display a leaderboard, chat room discussion, or item inventory using a stale state, or an
unconfirmed tentative state, instead of the latest version.

The Versioned API supports this in the form of queued updates and cached reads. They are local
operations that complete quickly in memory, i.e., without waiting for any I/O. For updates, the
programmer calls the function

void enqueue(Update u)

It appends the update to the local queue and then returns. To read the current state, the programmer
can call

pair<State,int> read_confirmed()

It returns the locally cached version of the state, which is consistent but possibly stale, and its
version number. For example, in the configuration in Fig. 4b, in California it returns version v0 with
count=0, which is stale. In the Netherlands it returns version v7 with count=5, which is up-to-date.
We offer a second local read variant:

State read_tentative()

It takes the cached version and superimposes the unconfirmed updates in the queue. For example,
in Fig. 4b, in California it returns a state with count=5 (add 5 to 0) and in the Netherlands, it returns
a state with count=1 (reset 5 to 0, then add 1). A state returned by read_tentative does not have a
version number because it is not part of the global sequence. There is no guarantee that it matches
any past or future version.
Linearizable Operations. In some situations, we are willing to trade off latency for stronger
consistency guarantees. For example, in the TPC-W [2005] benchmark, we guarantee to never
oversell inventory, which requires coordination. To this end, Geo supports two synchronization
primitives, confirm_updates and refresh_now.
The synchronization primitive confirm_updates waits for the queue to drain. It can be used to

provide linearizable updates as follows, where await waits for the asynchronous operation that
follows it to return:

linearizable_update(Update u) {
enqueue(u) ;
await confirm_updates() ;

}

The synchronization primitive refresh_now drains the queue like confirm_updates, but additionally,
it also always fetches the latest version. It can be used to provide linearizable reads as follows:
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linearizable_read() {
await refresh_now() ;
return read_confirmed() ;

}

Note that the synchronization placement is asymmetric: refresh_now precedes the read, while the
call to confirm_updates follows the update. This ensures linearizability [Herlihy and Wing 1990]:
the operation appears to commit at a point of time after the function is called and before it returns.
Consistency Discussion. The Versioned API presented here (Fig. 5) is a variation of the global
sequence protocol (GSP) operational consistency model [Burckhardt et al. 2015; Gotsman and
Burckhardt 2017; Melgratti and Roldán 2016], applied on a per-actor basis. GSP uses an equivalent
formulation based on totally-ordered broadcast, but assumes a single database rather than a set of
independent actors, which limits scalability. GSP is itself a variation of the total-store order (TSO)
consistency model for shared-memory multiprocessors. TSO has a different data abstraction level
(read/write memory vs. read/update application data) and all participants always read the latest
version.

Our model preserves the local order of updates, and updates do not become visible to other
instances until they are part of the latest version. Therefore, in the terminology of [Terry 2008, 2013]
as formalized by [Burckhardt 2014], the model supports causality, read-your-writes, monotonic
reads, and consistent prefix of operations on the same object.

There are no ordering or atomicity guarantees about accesses to different actors, as each actor runs
its protocol independently. This is important for horizontal scalability, the principal advantage of
actor systems. Though it may complicate life for developers, they have not raised it as a major issue.
For one, ordering can be enforced by using linearizable operations (linearizability is compositional).
Also, actors can often be made coarse-grained enough to cover desired invariants. For example,
representing chat rooms rather than chat messages as actors ensures causality of the chat content.
Also, in cases where an application has to coordinate updates to multiple actors, such as in the
order-processing mini-benchmark in §4.4.1, it can implement a “workflow actor” to track which
updates have been applied.
Linearizability vs. Sequential Consistency. If the user asks for linearizability, we guarantee
true linearizability (including the real-time aspect — updates are applied to the persistent storage
in real time in between call and return). It is not cheap, but sometimes it is the right thing (our
experiments in §4 show exactly how expensive it is). Offering true linearizability as an option,
where needed, is convenient and practical. We do not think that Sequential Consistency (SC) is a
desirable consistency choice to offer, as it is neither strong enough to be undisputable and easy to
explain (clients can easily communicate out of band and thus observe real time), nor weak enough
to provide any significant performance benefits (unlike causally consistent GSP).

2.3 Versioned State API in Orleans

Fig. 6 shows a brief example of how to use the Versioned State API in Orleans to express the
pseudo-code example from Fig. 1, at the time of writing. For the latest API syntax, a more thorough
discussion of features, and additional examples, see the online documentation [Orleans 2016].
The classes that define state and update objects are the class ChatState (line 2) and the class

MessagePostedEvent (line 9), respectively. The state class defines an Apply method (line 5) to specify
the effect of the update on the state. Both classes are marked with the Serializable attribute (lines
1, 8) since the runtime needs to serialize/deserialize these objects to send them in messages and
persist them in storage.
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1 [Serializable]
2 public class ChatState
3 {
4 public List⟨string⟩ Messages = new List⟨string⟩() ;
5 public void Apply(MessagePostedEvent e) { Messages.Add(e.Content) ; }
6 }
7
8 [Serializable]
9 public class MessagePostedEvent()
10 {
11 public string Content ;
12 }
13
14 [GlobalSingleInstance] // or [OneInstancePerCluster] for multi−instance
15 [LogConsistencyProvider(ProviderName = "whatProtocolToUse")]
16 [StorageProvider(ProviderName = "whatStorageToUse")]
17 public class ChatGrain : JournaledGrain⟨VersionedChatState⟩, IChatRoom
18 {
19 public async Task⟨List⟨string⟩⟩ Read()
20 {
21 return TentativeState.Messages ;
22 }
23 public async Task⟨bool⟩ Post(string user, string msg)
24 {
25 var usergrain = GrainFactory.GetGrain⟨IUser⟩(user) ;
26 var allowed = await usergrain.MayPost() ;
27 if (allowed) {
28 EnqueueEvent(new MessagePostedEvent() { Content = msg }) ;
29 return true ;
30 } else {
31 return false ;
32 }
33 }
34 }

Fig. 6. Example that illustrates how to use the versioned-state API from within the C# Orleans framework.
Both the actor state and the actor updates are defined as classes (top). The grain implementation class
(bottom) inherits from JournaledGrain which provides the versioned state API as described in §2.2.

The grain implementation is defined by the classChatGrain (line 17). It derives from the framework
class JournaledGrain, which implements the versioned API (Fig. 5) with some minor differences:

• the function read_tentative is exposed as a property TentativeState (used on line 21).
• the function enqueue is named EnqueueEvent (used on line 28).

When the grain operation Post (line 23) is called on a ChatGrain instance, the code first constructs
a reference to the user grain for the user who is posting (line 25). It then calls theMayPostmethod on
that grain and waits for the result (line 26). If the user is allowed to post, a new MessagePostedEvent
object is constructed and enqueued (line 28). As written, the Post operation always returns immedi-
ately, without waiting for any I/O operations to complete. For stronger consistency guarantees,
one could use linearizable operations as described in §2.2.
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Table 1. Protocol selection for a given API and configuration.

API Configuration Protocols Used

Basic (Fig. 3b) volatile single-instance GSI
Basic (Fig. 3c) persistent single-instance GSI (sync.)
Versioned (Fig. 6) volatile single-instance n/a
Versioned (Fig. 6) persistent single-instance GSI + BCAS
Versioned (Fig. 6) volatile multi-instance VLB
Versioned (Fig. 6) persistent multi-instance BCAS

Configuration. All configuration options (single-instance vs. multi-instance, volatile vs. persistent,
choice of storage provider) are specified by class attributes (lines 14–16). It is possible to tweak
them without altering the application semantics or changing the application code, which simplifies
performance tuning.

3 IMPLEMENTATION

Geo is implemented in C# as extensions to Orleans, an open-source distributed actor framework
available on GitHub [Orleans 2016]. Geo connects several elastic Orleans clusters over a wide-area
network. The Orleans runtime uses consistent hashing to maintain a distributed, fault-tolerant
directory that maps actor keys to instances [Bernstein et al. 2014]. It already handles configuration
changes and node failures within a cluster, fixing the directory and re-activating failed instances
where necessary. However, prior to Geo, Orleans did not provide mechanisms for coordinating
actor directories and actor state between clusters. To this end, we designed several distributed
protocols.

• Global Single Instance (GSI) protocol for the single-instance caching policy. It coordinates
actor directories between clusters to enforce mutual exclusion, either strictly (in pessimistic
mode) or eventually (in optimistic mode).

• Batching Compare-and-Swap (BCAS) protocol for persistent actors. It implements the
Versioned API on persistent storage that supports conditional updates.

• Volatile Leader-Based (VLB) protocol for volatile multi-instance actors. It implements the
versioned API, storing the latest version in memory, at a fixed leader.

These protocols reside at different system layers: the GSI protocol coordinates actor directories
(it is an extension of Orleans’ directory protocol), while the BCAS and VLB protocols coordinate
actor state (communicating among actor instances and with external storage).
Optimistic GSI and BCAS are robust: some actor instance is always available even if a remote

cluster or storage is unreachable. This is important; datacenter failures are sufficiently common
that large-scale web-sites routinely engineer for them [Corbett et al. 2013; Netflix 2011; Outages
2013; Ponemon 2013].
Live Multi-Cluster Configuration Changes are supported by all protocols, with some limiting

assumptions: a configuration change must be processed by all nodes in all clusters before the next
configuration change is injected. Also, the change may add or remove clusters, but not both at the
same time.
Geo is open for experimentation, and allows plugging in different consistency protocols and

variations beneath the same API. This can be helpful to devise custom protocols for specific settings
(e.g. alternative forms of persistent storage, such as persistent streams). Also, it facilitates research
on consistency protocols.
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The protocol implementations match up with the chosen API and configuration as shown in
Table 1. The n/a indicates a currently unsupported combination. It is not difficult to implement, but
has no performance benefits.

3.1 GSI Protocol Description

At its heart, the global single-instance protocol is simple. When a cluster c receives an operation
destined for some actor (identified by a key k), it checks its directory entry for k to see if an instance
exists in c . If so, it forwards the operation to that instance. If not, it sends a request message to all
other clusters to check whether they have an active instance. If it receives an affirmative response
from a remote cluster c ′, it then forwards the request to c ′. Else, it creates a new instance, registers
it in its local directory, and processes the operation. But there are several problems with this sketch:
(1) Contacting all clusters for every access to a remote actor instance is slow and wasteful.
(2) When two clusters try to activate an instance at about the same time, their communication

may interleave such that neither is aware of the other, and both end up activating a new
instance.

(3) If any of the remote clusters are slow to respond, or do not respond at all, the protocol is
stuck and the actor is unavailable.

We solve these three problems as follows.
Cached Lookups. After determining that an instance exists in a remote cluster, we cache this
information in the local directory. If the actor is accessed a second time, we forward the operation
directly to the destination.
Race arbitration. A cluster in a requesting phase sets its directory state to Requested. Suppose
clusters c and c ′ concurrently try to instantiate the same actor. When c responds to a request from
c ′, if c detects that its directory state is Requested, then c knows it has an active request. It uses a
global precedence order on clusters to determine which request should win. A more sophisticated
solution like [Chandy and Misra 1984] is not necessary because races are rare and fairness is not an
issue. If c < c ′, then the remote request has precedence, so c changes its local protocol state from
Requested to Loser. This effectively cancels the request originating from c . If c > c ′ then the local
request has precedence, so c replies Fail, which cancels the request originating from c ′. A canceled
request must start over.
Optimistic activation. If responses do not arrive timely, we allow a cluster to create an instance
optimistically. We use a special directory state Doubtful to indicate that exclusive ownership has
not been established. For all Doubtful directory entries, the runtime periodically retries the GSI
request sequence. Thus, it can detect duplicate activations eventually, and deactivate one. Optimistic
activation means that duplicate instances can exist temporarily, which may be observable by the
application. It is an optional feature (programmers can choose pessimistic mode instead), but we
found that it usually offers the right compromise between availability and consistency: for volatile
actors, the actor state need not be durable, and eventual-single-instance is usually sufficient. For
persistent actors, the latest version resides in storage anyway, not in memory, so having duplicate
instances in memory temporarily is fine as well.

3.2 GSI Protocol Definition

Each cluster c maintains a distributed directory that maps actor keys to directory states. For each
actor k , the directory assumes one of the following states:

• [Invalid] there is no entry for actor k in the directory.
• [Owned,n] c has exclusive ownership of actor k , and a local instance on node n.
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• [Doubtful,n] c has a local instance of k on node n but has not obtained exclusive ownership.
• [Requested] c does not yet have a local instance of k but is currently running the protocol to
obtain ownership.

• [Loser] c does not have a local instance of k , and its current attempt to establish ownership is
being canceled.

• [Cached, c ′ : n] c does not have a local instance of k , but believes there is one in a remote
cluster c ′, on node n.

Request Sending. A node starts a GSI round
by setting the local directory state to Re-
quested and sending requests to all clusters.

Request Processing. A cluster c receiving a
request from cluster c ′ replies based on its
directory state:

• [Invalid] reply (Pass).
• [Owned,n] reply (Fail, c : n).
• [Doubtful,n] reply (Pass).
• [Requested] if c < c ′, set directory state
to Loser and reply (Pass), else reply
(Fail).

• [Cached,n] reply (Pass).
• [Loser] reply (Pass).

Reply Processing. A cluster c processes re-
sponses as follows (first applicable rule):

• If directory state is [Loser], cancel and
start over.

• If one of the responses is (Fail, c ′ : n),
transition to [Cached, c ′ : n].

• If there is a (Fail) response, cancel and
start over.

• If all responses are (Pass), create in-
stance on local node n and transition to
[Owned,n].

• If some responses are missing (even after
waiting a bit, and resending the request),
create an instance on local node n and
transition to [Doubtful,n].

There can be races on directory state transitions: for example, the request processing may try to
transition from Requested to Loser at the same time as the reply processing wants to transition
from Requested to Owned. In our implementation, we ensure the atomicity of transitions by using
a compare-and-swap operation when changing the directory state. In addition to the transitions
defined above, (1) we periodically scan the directory for Doubtful entries and re-run the request
round for each of them, and (2) if we detect that a [Cached,n] entry is stale (there is no instance at
node n), we start a new request round.

3.3 GSI Protocol Correctness

The goal of the GSI protocol is to disallow two instantiations of the same actor. We prove this in
two failure models. In the first model, we assume that messages can be lost. Thus, if a cluster c does
not receive a message that it expects from a sender d within a timeout period, then c must account
for the possibility that d is simply slow or unable to communicate with c , but may yet be able to
communicate with other clusters. In the second model, there are no communication failures.

Proposition 3.1. The protocol ensures that for a given actor k at most one cluster can have a
directory entry for k in the Owned state, even if messages are lost.

Proof. Suppose two clusters, c and d , have such a directory entry. To arrive in that state, each
of them must have executed the GSI request sequence at some point and moved to the Owned state
in the final step, when processing the responses. We want to show that this is impossible, which
proves the proposition.

We do not know exactly how the steps of the two competing requests interleaved; however, we
can reason our way through several distinct cases and eventually derive a contradiction, which
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proves the proposition. First, consider the following table which labels the steps of the protocol in
each cluster:

Cluster c Cluster d

c1. Send Request d1. Send Request
c2. Wait for Replies d2. Wait for Replies
c3. Process all replies and d3. Process all replies and

update state to Owned update state to Owned

We will now show that this table is not consistent with any ordering of the events, via a case
analysis. The four cases are based on when and whether d received the request sent by step c1.

(1) Suppose d received the request from c1 before d1. There are three sub-cases, depending on
when and whether c received d’s request from d1.
• Suppose c received d’s request from d1 after c3. Then c replied (Fail, c) to d , and d does not
move to state Owned in step d3 (because it either saw this response, or no response at all),
which contradicts our assumption.

• Suppose c received d’s request from d1 before c3. This must have happened after c1 (because
we assumed that c1 happened before d1). Therefore, c was in state [Requested]. If c < d ,
then c updated its state to [Loser]. Therefore, when c processed replies to its request in c3,
it would not set its state to Owned, contradicting our assumption. If c > d , then it replied
(Fail) to d , in which case d in step d3 would not set its state to Owned (because it would
either see that response or no response at all), contradicting our assumption.

• Suppose c did not receive d’s request from d1 at all. Then it would not move to state Owned
in c3, contradicting our assumption.

(2) Suppose d received the request from c1 after d1 but before d3. Thus, d was in state [Requested]
when it received that request. There are two sub-cases:
• If c < d , then d replied to c with (Fail), in which case c does not move to state Owned in c3
(because it either saw this response, or no response at all), contradicting our assumption.

• If c > d , then d replied (Pass) and set its state to [Loser]. Therefore, d does not move to
state Owned in step d3, contradicting our assumption.

(3) Suppose d received the request from c1 after d3. Since d was in the Owned state at that point
it must have replied (Fail) to c’s request. Therefore, c does not move to state Owned in step
c3 (because it either saw this response, or no response at all), contradicting our assumption.

(4) Finally, suppose d did not receive the request from c1. Then it cannot have replied, and c does
not move to state Owned in step c3, contradicting our assumption.

This concludes the proof of Proposition 3.1. �

If communication failures do not occur, the protocol makes the stronger guarantee that at most
one cluster is in Owned or Doubtful state, which means at most one cluster has an instance active.

Proposition 3.2. If no messages are lost, the protocol ensures that for a given actor k at most one
cluster can have a directory entry for k in either the Owned or Doubtful state.

Proof. with no lost messages, the reply processing never moves a directory entry to theDoubtful
state. Thus, the claim follows directly from Proposition 3.1. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 107. Publication date: October 2017.



Geo-Distribution of Actor-Based Services 107:15

3.3.1 Configuration Changes. In our framework, each node n locally stores the multi-cluster
configuration Cn , which is a list of clusters specified by the administrator. During configuration
changes, the administrator changes the Cn non-atomically. We handle this by adding the rule:

A node n must reply (Fail) to a request it receives from a cluster that is not in Cn .
This is sufficient to maintain the guarantees stated in Propositions 3.2 and 3.1, provided that for any
two different configurations associated with active requests in the system, one of them is always a
superset of the other. This follows from the guarantees and restrictions on configuration changes
in §2.

3.4 BCAS Protocol

The batching compare-and-swap protocol implements the versioned state API for persistent actors
that are kept in storage that supports some form of conditional update, such as compare-and-swap
(CAS). For our current implementation, we use ETags [E-Tags 2016].

Local read and write operations (§2.2) can be serviced directly from the cached copy and the
queue of unconfirmed updates. Those operations interleave with background tasks that write
pending updates to storage, read the latest version from storage, notify other instances, and
process notifications from other instances. All of these background tasks are performed by a single
asynchronous worker loop that starts when there is work and keeps running in the background
until there is none. Such a loop ensures there is at most one access to the primary storage pending
at any time. This is important to ensure correct semantics and enables batching: while one storage
access is underway, all other requests are queued. Since a single storage access can service all
queued requests at once, we can mask storage throughput limitations.

When an instance successfully updates storage, it sends a notification to all other instances. This
helps to reduce the staleness of caches.

3.4.1 Protocol Description. Each instance stores three variables:
• confirmed is a tuple [version, state] representing the last known version, initially [0, new State()].
• pending is a queue of unconfirmed updates, initially empty.
• inbox is a set of notification messages containing [version, state] tuples, initially empty.

In storage, we store a tuple [version, state] that represents the latest version.
Worker Loop. The worker repeats the following steps:
(1) If some tuple in inbox has higher version than confirmed, then replace the latter with the

former.
(2) If we have not read from storage yet, or if there are synchronize_now requests and pending is

empty, read the latest version from storage now and update confirmed.
(3) If pending is not empty, then make a deep copy of confirmed, apply all the updates in pending,

and then try to write the result back to storage conditionally.
(a) On success (version matches): update confirmed. Remove written updates from pending.

Broadcast confirmed as a notification message.
(b) On failure (due to a version mismatch or any other reason): re-read the current version

from storage, update confirmed, and restart step 3.

Idempotence. The above algorithm is incorrect if a storage update request fails after updating
storage, because a retry will apply the update a second time. Our solution is to add a bit-vector to
the data stored in storage, with one bit per cluster that flips each time that cluster writes. When
rereading after a failed write, the state of this bit tells whether the previous write failed before or
after updating storage.
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3.5 VLB Protocol

The volatile leader-based protocol implements the versioned state API for volatile actors. It runs
a loop similar to the BCAS protocol, except that (1) the primary state is stored at one of the
instances, the designated leader, and not in storage, and (2) instead of updating the state using CAS,
participants send a list of updates to the leader.

Currently, we use a simple statically-determined leader, either by a consistent hash or an explicit
programmer specification. In the future, we may allow leader changes as in viewstamped replication
[Oki and Liskov 1988] or the Raft protocol [Ongaro and Ousterhout 2014; Raft 2016].

Orleans provides fault-tolerance of instances within a cluster. If the node containing the leader
or the leader directory entry fails, a new leader instance is created. In that case, the latest version is
lost, which is acceptable since durability is not required for volatile actors. Still, we have a good
chance of recovering the latest version: on startup, the leader can contact all instances and use the
latest version found.

4 EVALUATION

We now describe our experimental results. The goal is to reveal how configuration choices and API
choices influence latency and throughput for varying workloads. In particular, we are interested in
the relevance of the effects provided by the three protocols (single-instancing, batching, replication).

4.1 Experimental Setup

California Netherlands

Storage

Conductor

1ms

10ms

1ms

145ms

145ms Geo
System

FEFEFE FEFEFE

BEBEBE BEBEBE

Fig. 7. Setup and approximate round-trip times.

The experiments were run on Microsoft Azure
in two datacenters, located in California and the
Netherlands (Fig. 7). In each datacenter, 30 front-
end (FE) servers generate workload which is pro-
cessed by 5 back-end (BE) servers that form an
Orleans cluster. We vary the workload by varying
the number of robots (simulated clients) that are
evenly distributed over the FE from 400 to 60,000.
For the network, we use VNETs in Microsoft

Azure connected by gateways. The inter-cluster
round-trip (IRT) time is about 145ms. For storage,
we use an Azure table storage account located in
California. An access averages about 10ms from
California, and about 145ms from the Netherlands.

FE’s are 4-core 1.6 GHz processors with 7 GB of RAM. BE’s and the conductor are 8-core 1.6 GHz
processors with 14 GB of RAM. The number of front-ends is overprovisioned to ensure it is not the
bottleneck.

4.1.1 Workloads. The Byte-Array micro-benchmark models a very simple workload where
clients read and write passive actors. The actor state is a byte-array of 512B. There are two types of
robots: reader/writer robots that read/update a byte sequence of 32B at a random offset. TPC-W-
mini is a non-transactional variation of the TPC-W [2005] benchmark explained in §4.4.1.

4.2 Latency

Our first series of experiments validates that our geo-distributed actor system can reduce access
latencies by exploiting locality, for the byte-array workload.
We organize the results as shown in Fig. 8. The left and right half are separate sections that

contain latency numbers for volatile and persistent actors, respectively. The two columns at the
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inst.

at read upd. read upd. read upd. read upd. read upd. read upd. read upd. read upd.

Calif. 152.6 152.6 2.2 2.1 298.1 297.9 146.7 146.6 163.7 173.2 2.1 13.3 297.6 308.6 146.6 156.2

Neth. 297.5 297.7 146.5 146.4 152.5 152.5 2.2 2.2 298.1 450.3 146.5 298.8 307.5 467.1 2.2 154.1

Calif. 165.2 171.7 9.4 12.1 305.4 309.9 154.0 156.1

Versioned Neth. 447.0 450.6 295.5 312.1 302.4 457.0 150.9 154.4

l in. ops multi both 6.4 6.3 2.2 2.4 157.4 306.6 150.9 151.0 15.2 25.7 9.6 14.1 156.2 312.2 151.1 155.0

Calif. 152.9 152.9 2.2 2.7 298.2 298.5 146.6 147.1

Versioned Neth. 298.2 298.2 146.5 147.0 152.9 153.2 2.2 2.6

local ops multi both 6.2 6.0 2.1 2.3 6.3 6.1 2.2 2.4 6.3 6.4 2.2 2.6 6.1 6.1 2.2 2.6

Basic single

single

single

policy repeat

access from California access from Netherlands

first first repeat

persistent actors   (storage in California)volatile actors

access from California access from Netherlands

first repeat first repeatAPI

Fig. 8. Median Access Latency in milliseconds. Cell color indicates the number of inter-cluster roundtrips
(IRTs). Bold indicates the expected common case for the chosen policy (e.g. local hit for global single instance
protocol).

far left select the API and policy, which together determine the protocol (see Table1). The third
column tells where the instance is cached, which matters for the single-instance policy.

4.2.1 Discussion of Volatile Section. The first row represents the single-instance protocol for
a volatile actor cached in California. [Columns 1-2] the first access from California creates the
single instance, which requires creating an Orleans actor after not finding it in the local directory
(about 6ms) and running a round of the single-instance protocol (about 147ms). [Columns 2-3]
repeated accesses from California hit the existing instance, and have standard Orleans actor access
latency (2-3ms). [Columns 3-4] The first access from the Netherlands requires one round of the GSI
protocol to detect the already existing instance in California, then another IRT to route the request
to it. Ideally, this case should occur rarely. [Columns 5-6] Repeated accesses are routed directly to
the instance in California, since its location has been cached, and thus require only a single IRT.
The second row is symmetric to the first, with California and the Netherlands interchanged.

The third, fourth, sixth, and seventh rows are blank because we do not currently support this
combination of API and policy (easy to implement but has no benefits). The fifth row shows
latency for linearizable operations with the VLB protocol, with the leader in California. As required
by semantics, each operation incurs a round-trip to the leader (trivial from California, IRT from
Netherlands). If the first access is a write; it requires two leader round-trips since our current
implementation cannot submit updates until after the first read. The eighth row shows latency
for local operations (cached reads and queued writes) with the VLB protocol. These can complete
without waiting for communication with a remote dataÂňcenter. Thus, latencies are roughly the
same as Orleans actor creation (for the first access) and actor access latency (for repeated accesses).

4.2.2 Discussion of Persistent Section. The first row is largely the same as for the volatile
case, except that all update operations require a storage update (+10ms to every second column).
Additionally, the access that first creates the instance requires a storage read (+10ms to first two
columns). The second row obeys the same logic as the first except that a storage roundtrip is
145ms, not 10ms (compared to volatile, +145ms to every second column, and +145ms to columns 5
and 6). The third and fourth rows represent the combination of GSI with linearizable operations.
They are thus similar to the first and second row, but because they use linearizable, all reads go to
storage, which can add up to another IRT. The sixth and seventh rows represent the combination
of GSI with local operations. Thus they are very similar to the first two rows of the volatile section:
latency is dominated by finding the instance, while the access itself is local to the instance. The
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fifth row represents the BCAS protocol using linearizable operations. It is similar to the volatile
case, except that storage takes the role of the leader, at about the same latency in the Netherlands,
but an extra 10-20ms in California. The eighth row again represents all-local operations, with
latencies almost identical to the volatile case. Note that even if the very first access that creates
an instance is a read, it does not have to wait for the first storage roundtrip because it can return
version 0 (given by the default constructor).

4.2.3 Conclusions. Our results show that as expected, the caching layer can reduce latencies in
many cases, when compared to accessing storage directly. By howmuch, and under what conditions,
depends on the API as follows.
Single-Instance, Basic API. Both read and update latency (for volatile actors) and at least read
latency (for persistent actors) are reduced to below 3ms if an actor is accessed repeatedly and at
one datacenter only.
Versioned API, Linearizable Operations. Similar to the basic API in the volatile case. For the
persistent case, there are no latency benefits since all operations have to access storage no matter
what (by definition).
Versioned API, Local Operations. All repeated accesses at all datacenters for both volatile and
persistent actors are reduced to below 3ms. All first accesses are reduced to less than 7ms. The cost
of durability and synchronization are effectively hidden.

4.2.4 Additional Discussion. Each reported number is the median, estimated using a sample
of 2000-4000 requests. We do not report the mean, because we found it an unsuitable statistic for
this distribution (the long tail makes it difficult to estimate the mean with reasonable precision).
In most cases, the 3rd quartile is only slightly higher than the median: less than an extra 10% for
medians over 15ms, and less than an extra .3ms for medians below 3ms. But for medians between
6ms and 15ms, the 3rd quartile was significantly (20-60%) higher than the median.
Load. All latencies are for very low load (400 requests per second) over a period of 20s, including
5s-10s of warmup that is excluded. As the load increases, latencies increase steadily due to queueing
delays. At that point, throughput is of more interest than latency, and we examine it in the next
section.

4.3 Single-Actor Throughput

Our second series of experiments measures the throughput of a single actor under heavy load using
the byte-array micro-benchmark. Since a well-tuned system avoids hot-spots, it is not a typical
workload. Still, it offers useful insights into the behavior of our system.

4.3.1 Setup. To measure the peak throughput, our experiments run a series of increasing loads
(by increasing the number of robots) for 20 seconds each. As the load increases, throughput increases
steadily at first, then plateaus (as latency exceeds 1s, robots issue fewer requests per second). To
keep the numbers meaningful and to obtain a measurable maximal throughput, we count a request
towards throughput only if it returns within 1.5s. We observed a fair amount of fluctuation in
peak throughput, some of which may be attributable to running on virtualized cloud infrastructure.
Empirically, we can usually reproduce peak throughput within about 10%. We report all throughput
numbers rounded to two significant digits.

4.3.2 Volatile Single-Actor Throughput. For the volatile case, we distinguish three configurations
(Fig. 9a). The baseline configuration places all the load on a single cluster containing the instance,
while the single and multi configurations spread the load evenly over the two clusters. The single
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California N.lands California N.lands

single multi

load load
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Fig. 9. Volatile single-actor throughput experiments. (a) left: configurations. (b) right: peak throughput
measured.

California N.landsCalifornia N.lands California N.lands

close far multi
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Fig. 10. Persistent single-actor throughput experiments. (a) top: configurations. (b) bottom left: basic API
peak throughput. (c) bottom right: versioned API peak throughput.

configuration caches a single actor instance (using the GSI protocol), while the multi configuration
caches an instance in each cluster (using the VLB protocol). Peak throughputs for each configuration
and protocol are shown in Fig. 9b. We make the following observations.
For the single configuration, we achieve a peak throughput within 15% of the single-datacenter

baseline. The throughput is lower because the higher latency of requests from the Netherlands
means more of them exceed the 1.5s cutoff. Using the multi configuration consistently improves
throughput compared to single:

• Even linearizable operations perform about 50% better (despite the strong consistency guaran-
tee and the global serialization) because of the batching in VLB.

• Local operations have the best throughput, because reads can be served from the local cache,
reducing latency and communication. We get about double the throughput of the single-
datacenter baseline, which is as good as we can expect, considering that multi has exactly
twice the servers of baseline.

4.3.3 Persistent Single-Actor Throughput. For the persistent case, we distinguish configurations
{close, far, multi} which keep the latest version in external cloud storage (Fig. 10a). All place load
evenly on both clusters. close and far use a single cached instance, which is close or far from the
storage, respectively. multi uses one cached instance per cluster.
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First, we examined throughput for the single-instance Basic API, shown in Fig. 10b. We see that
throughput heavily depends on the percentage of update operations. For a workload of 100% update
operations (top bar in both series), the throughput is very low, about the reciprocal of the storage
latency. This is because with the Basic API, the actor instance cannot process any operations while
an update to storage is in progress. If the workload contains only reads and no updates, throughput
is good because reads can be served quickly from the cache (bottom white bar in both series).
The Versioned API achieves much better throughput in the presence of updates because the

BCAS protocol can overlap and batch read and update operations. Its peak throughput numbers for
a 10% update rate are shown in Fig. 10c.

Batching can improve peak throughput by two orders of magnitude even for linearizable operations:
consider the single-instance in the far configuration. For the same configuration, the versioned API
achieves 11k, compared to 110 for the Basic API, because a single storage access can serve many
linearizable operations.
As expected, using local operations further improves the throughput (bottom series), because

reads can be served at lower latency and with less communication. For single-instance, the im-
provement is roughly 15%-75% (far does better than close because the longer storage latency causes
larger batch sizes, which saves work). For multi-instance, the performance is even better (32k).
However, it does not quite reach the performance of the volatile series (39k).

4.4 Order Processing Throughput

We now study a slightly more realistic workload, which distributes over many small actors. Our
results demonstrate that the versioned API is very beneficial for the persistent case, because
batching canmask storage performance limitations, and because it supports fine-grained consistency
selection. Moreover, we discover that in a load-balanced system, single-instancing sometimes
achieves better throughput than replication.

4.4.1 TPC-W-mini Benchmark. This benchmark models online order processing using workflows.
It is inspired by the TPC-W benchmark, but makes simplifications to work around the lack of
transactions and models only a subset of the transactions. We use two classes of actors: (1) an Item
actor represents a single item of inventory. It has a stock-quantity, a price, and a list of reservations
(each consisting of a cart id and a multiplicity). (2) a Cart actor tracks the ordering progress of a
customer. It contains workflow status and a list of items in the cart. There is one cart per robot.
Each robot goes through four workflow steps:

(1) create — create a new workflow, starting with an empty user cart
(2) add items — add a number of items to the cart, and validate their existence by calling exists

on the item actors
(3) buy — for each item in the cart, reserve the requested quantity by calling reserve(cart-id,

quantity) on each item, and add up the returned price for all items
(4) buy-confirm — finalize the purchase by calling confirm(cart-id) on each item.

Robots pause for a configurable thinking time between steps. They issue at most one new
workflow every 4 seconds, which limits the request rate to an average of 1 request per second per
robot.

The reservations in step buy are allowed to be optimistic (an item can be reserved without fully
guaranteeing that the stock-quantity is sufficient); but in step buy-confirm, the reservation must be
checked against the actual quantity available. If either of these steps fails, the workflow is aborted,
and its reservations are undone.
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Fig. 11. Order processing throughput results.

Configuration Variations. Cart actors are always single-instance and volatile. For the item actors,
we implemented two options (basic/versioned), using the basic and versioned API respectively,
and we tried both options persistent/volatile for each. For the versioned case, we have an extra
option (lin/mixed) where lin uses linearizable operations to read and update items (thus always
working with the very latest inventory), while mixed uses local operations whenever possible
without risking to oversell items, i.e. everywhere except in confirm(cart-id).
Setup. The load and servers are evenly distributed over the two datacenters as in Fig. 7. We use
the TPC-W scale setting of 1000 items, with one item per order and a thinking time of 100ms.
Throughput is the number of workflow steps that complete in less than 1.5s, divided by the test
duration (28s), rounded to two significant digits.

4.4.2 Results. We show peak throughput results in Fig. 11, and make the following observations:
Single-instance Batching. For the persistent case, the basic API again performs poorly (4.1k)
because it can process only one operation at a time. In comparison, with the Versioned API,
batching all reads and updates at a single instance improves throughput by a factor 7x, to 29k. This is
remarkable, especially considering that all operations remain linearizable with respect to external
storage.
Mixed Consistency. Using strong consistency only where actually needed (i.e. during the confirm
phase) provides an appreciable additional throughput improvement (about 24-30%). This confirms
the benefit of an API that allows to adjust the consistency level not only per actor, but per individual
operation.
To replicate or not to replicate. An interesting (and somewhat unexpected) result is that multi-
instance exhibits lower throughput than single-instance. The reason is that coordinating the in-
stances requires more overall work (notification messages, retries on conflicts) which reduces peak
system throughput. This is in stark contrast to the results for single-actor throughput (Figs. 9b, 10c),
because for the latter, the extra work is performed by otherwise idle nodes. However, in a load bal-
anced situation where all servers are highly utilized, extra work directly reduces global throughput.

5 RELATEDWORK

We do not know of prior work on geo-distributed actor systems, and more generally, of work that
strongly separates the geo-distribution from durability. However, Geo’s mechanisms touch on
many aspects of distributed computing, which we summarize here: distributed objects, caching,
geo-distributed transactions, multi-master replication, replicated data types, and consensus.
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Distributed Objects and Middleware. Distributed object systems from the 1980’s and 90’s are
very similar to virtual actor systems, and share their ability to scale-out [Bal et al. 1992; Chase
et al. 1989; Fekete et al. 1996]. However, hardly any focused on stateful applications, on geo-
distribution, or consider situations where the object state is persisted externally. One exception
is Thor [Liskov et al. 1999], but it used a highly-customized object-server with server-attached
storage and thus lacked the flexibility of Geo. Of course, at the time the now common and cheaply
available separation of compute and storage in the cloud did not exist.

Group communication (e.g., Isis [Birman and Renesse 1993] and Horus [van Renesse et al. 1996])
and distributed shared memory systems (e.g., Interweave [Tang et al. 2003]) offer protocols for
coherent replication. However, they do not offer the abstraction level of our virtual actor API, with
its choice of volatile, externally persisted, single-instance, and multi-instance configurations, and
with optimized coherence protocols for each case; nor do they provide a state API that offers an
easy choice between eventual consistency and linearizability, and permits reasoning in terms of
latest, confirmed, and tentative versions.
Actors that are persisted can be thought of as an object-oriented cache. Two popular cache

managers for datacenters are Redis and memcached. In Redis, writes are processed by a primary
cache server and can be replicated asynchronously to read-only replicas [Redis 2016]. In memcached,
cache entries are key-value pairs, which are spread over multiple servers using a distributed hash
table [Memcached 2016]. Neither system is object-oriented and neither offers built-in support for
geo-distribution.
Geo-Distributed Transactions. There has been a steady stream of papers in recent years on
systems to support transactions over geo-distributed storage, using classical ACID semantics [Baker
et al. 2011; Corbett et al. 2013], weaker isolation for better performance [Li et al. 2012; Lloyd et al.
2013; Sovran et al. 2011], and optimized geo-distributed commit protocols [Kraska et al. 2013; Nawab
et al. 2013, 2015]. Unlike Geo, they do not provide an actor model with user-defined operations,
nor do they separate geo-distribution from durability.

The same distinctions apply to multi-master replication, which has a rich literature of algorithms
and programming models [Kemme et al. 2010; Saito and Shapiro 2005; Terry 2008, 2013]. Most of
them focus on conflict detection, typically using vector clocks. Vector clocks are not needed by the
BCAS and VLB protocols since they serialize updates at a primary copy.
Weak and Strong Consistency. There are many approaches that, like Geo, distinguish between
fast, possibly-inconsistent operations vs. slow consistent operations [Cooper et al. 2008; Fekete et al.
1996; Kraska et al. 2009; Li et al. 2012; Serafini et al. 2010]. Bayou [Terry et al. 1995] was among the
first and is especially similar to Geo. In Bayou, updates are procedures, though they are in a stylized
format having a conflict check and merge function. In both systems, an object/actor state is its
sequence of committed updates, followed by the tentative ones. Unlike Geo, Bayou makes tentative
updates visible before they commit, and their ordering may change until they commit. Like Geo,
Bayou’s implementation uses a primary copy to determine which updates have committed.
Some geo-replication mechanisms avoid agreement on a global update sequence to improve

performance and availability [Burckhardt et al. 2014; Li et al. 2012; Shapiro et al. 2011a,b]. However,
these systems can be difficult to use for developers, because they do not guarantee the existence of
a latest version, and do not support arbitrary user-defined operations on objects or actors. Rather,
each abstract data type requires a custom distributed algorithm as in CRDTs [Burckhardt et al. 2014;
Shapiro et al. 2011a,b], or commutativity annotations on operations as in RedBlue consistency [Li
et al. 2012]. Also, linearizable operations are usually not supported [Li et al. 2012].
Geo-Replicated Storage. Some key-value stores offer some of Geo’s functionality, but only for
their custom storage and not for objects. Bigtable [Chang et al. 2008] and HBase [HBase 2016]
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offer read and write access to a single copy, which is replicated for fault tolerance but not directly
accessible to applications. Users can control data placement, whose location is controlled via a
master directory. By contrast, Geo uses the GSI protocol to ensure all replicas agree on an object’s
location.
Dynamo [Decandia et al. 2007], and its derivatives Cassandra [Cassandra 2016] and Riak [Riak

2016], offer eventually consistent, highly-scalable geo-distributed storage using quorum consensus
for both reads and writes. In Cassandra, updates replace the current state unconditionally. Thus,
clients cannot atomically read-modify-write object state as in Geo or Bayou. Riak offers last-
writer-wins too. It also enables linearizability via an atomic compare-and-swap operation using
Multi-Paxos, but only within one datacenter. Alternatively, it can store all concurrent updates
and leave conflict resolution to the user, e.g., using CRDTs. PNUTS [Cooper et al. 2008], another
key-value store, supports linearizable operations on a primary copy of each record, which can
migrate between datacenters. Its operations offer consistency-speed tradeoffs.
Cassandra programmers can configure how many replicas to maintain where, and how many

replicas to read or update on any given operation, which lets them control tradeoffs similar to our
configuration choices. However, it is difficult to extract high-level semantic consistency guarantees
(as in our versioned state API) from these low-level numeric parameters; there is no concept of a
primary copy or global version numbers, or support for linearizable operations. As a workaround,
recent versions of Cassandra offer “lightweight transactions” which run a multi-phase Paxos
protocol [Lamport 1998]. By contrast, consensus in Geo is either fast or delegated: For volatile
objects, Geo runs a simple single-phase leader-based consensus. The leader is determined by a
mutual exclusion protocol (GSI) for the single-instance case, or statically for the multi-instance case
(VLB). For persistent objects, the BCAS protocol sequences and batches updates at one or more
instances, and when committing the batches, delegates the final consensus to the storage layer.
A significant conceptual distinction is that in Geo, durability is provided by external storage -

not by Geo itself. Geo is just a layer between the application program and the storage. This has
some specific benefits when running a geo-distributed application, such as (1) for volatile actors,
programmers do not have to pay the hefty price of geo-replication (waiting for a global quorum
response), and (2) programmers can use Geo in conjunction with standard off-the-shelf cloud
storage services, and within any pre-existing policies for data location and replication.

6 CONCLUSION

This paper introduced Geo, an actor system for implementing geo-distributed services in the cloud.
Its virtual actor model separates geo-distribution from durability, and supports both volatile and
externally persisted actors. It can exploit locality where present (single-instance configuration), and
supports replication where necessary (multi-instance configuration). The complexity of protocols
to support these options is hidden underneath Geo’s simple linearizable API, which puts geo-
distributed applications within the reach of mainstream developers. Geo’s implementation includes
three such protocols for distributed coherence that tolerate failures and configuration changes. Our
evaluation of latency and throughput demonstrates that the model permits some very effective
optimizations at the protocol layer, such as replication (for reducing global latency) and batching
(for hiding performance limitations of the storage layer).
Availability. The Geo project is open-source and has been integrated into the Orleans project
on GitHub [Orleans 2016]. It is already being used in a commercial setting by an early adopter, a
company operating a service with clusters in several continents.
Future Work. We would like to investigate more protocols and protocol variations, for example
to support storage systems with different synchronization primitives. This may require factoring
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out duplicate functionality in each layer. A design framework could be developed to help choose
among such storage systems for a given workload. Another interesting challenge is the design
and implementation of a mechanism for geo-distributed transactions on actors. Finally, one could
develop adaptive protocols that switch between configurations automatically.
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