

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search

Advertising in Microsoft’s Bing Search Engine

Thore Graepel THOREG@MICROSOFT.COM
Joaquin Quiñonero Candela JOAQUINC@MICROSOFT.COM
Thomas Borchert TBORCHER@MICROSOFT.COM
Ralf Herbrich RHERB@MICROSOFT.COM
Microsoft Research Ltd., 7 J J Thomson Avenue, Cambridge CB3 0FB, UK

Abstract

We describe a new Bayesian click-through rate
(CTR) prediction algorithm used for Sponsored
Search in Microsoft’s Bing search engine. The
algorithm is based on a probit regression model
that maps discrete or real-valued input features to
probabilities. It maintains Gaussian beliefs over
weights of the model and performs Gaussian
online updates derived from approximate
message passing. Scalability of the algorithm is
ensured through a principled weight pruning
procedure and an approximate parallel
implementation. We discuss the challenges
arising from evaluating and tuning the predictor
as part of the complex system of sponsored
search where the predictions made by the
algorithm decide about future training sample
composition. Finally, we show experimental
results from the production system and compare
to a calibrated Naïve Bayes algorithm.

1. Introduction

Sponsored search remains one of the most profitable
business models on the web today. It accounts for the
overwhelming majority of income for the three major
search engines Google, Yahoo and Bing, and generates
revenue of at least 25 billion dollars

1
 per year and rising.

All three major players use keyword auctions to allocate
display space alongside the algorithmic search results
based on a pay-per-click model in which advertisers are
charged only if their advertisements are clicked by a user.
In this mechanism it is necessary for the search engine to
estimate the click-through rate (CTR) of available ads for
a given search query to determine the best allocation of
display space and appropriate payments (Edelman,
Ostrovsky, & Schwarz, 2007). As a consequence, the task

 Appearing in Proceedings of the 27th International Conference

on Machine Learning, Haifa, Israel, 2010. Copyright 2010 by T.

Graepel, J. Quiñonero Candela, T. Borchert and R. Herbrich.
1 Source: eMarketer, April 2009

of CTR prediction is absolutely crucial to Sponsored
Search advertising because it impacts user experience,
profitability of advertising and search engine revenue.

Recognising the importance of CTR estimation for online
advertising, management at Bing/adCenter decided to run
a competition to entice people across the company to
develop the most accurate and scalable CTR predictor.
The algorithm described in this publication tied for first
place in the first competition and won the subsequent
competition based on prediction accuracy. As a
consequence, it was chosen to replace Bing’s previous
CTR prediction algorithm, a transition that was completed
in the summer of 2009.

The paper makes three major contributions. First, it
describes the Sponsored Search application scenario, the
key role of CTR prediction in general, and the particular
constraints derived from the task, including accuracy,
calibration, scalability, dynamics, and exploration.
Second, it describes a new Bayesian online learning
algorithm for binary prediction, subsequently referred to
as adPredictor. The algorithm is based on a generalised
linear model with a probit (cumulative Gaussian) link
function, a factorising Gaussian belief distribution on the
feature weights, and calculates the approximate posterior
using message passing, providing simple, closed-form
update equations with automatic feature-wise learning
rate adaptation. Third, we discuss the techniques we
employed to make adPredictor work in Bing’s production
environment, now driving 100% Sponsored Search traffic
with ad impressions per year.

The paper is structured as follows. In Section 2 we
describe in detail how the task of CTR prediction fits into
the framework of keyword auctions and which constraints
and challenges arise from the application domain of
Sponsored Search. In Section 3 we describe the online
Bayesian Probit Regression algorithm (adPredictor) in
detail and provide a derivation of the update equations
based on approximate message passing in a factor graph.
In Section 4 we discuss how the algorithm operates at
web scale, using accuracy controlled pruning and an
implementation of parallel training. In Section 5 we
discuss how predictions affect the composition of future

training data, and the problem of trading off exploration
and exploitation. Before we conclude in Section 7 we
provide experimental results from the live system
comparing adPredictor’s prediction accuracy with that of
a calibrated Naïve Bayes classifier.

2. Sponsored Search and CTR Prediction

The Sponsored Search advertising model exploits two key
aspects of web search. First, the query users enter into a
search engine partly reveals their intent and can help
identify appropriate ads to be displayed to the users.
Second, by clicking on ads users can proceed directly to
the advertisers’ web pages and the business value thus
generated can easily be attributed to the web search
engine. The lecture notes for the Introduction to
Computational Advertising at Stanford (Broder &
Josifovski, 2009) provide an excellent introduction.

2.1. Keyword Auction

In practice, the keyword auctions work as follows
(Edelman, Ostrovsky, & Schwarz, 2007). For a given
product or service advertisers identify suitable keywords
likely to be typed by users interested in their offering. For
each of those keywords the advertisers provide a bid
indicating the amount of money they would be willing to
pay for a click. When a user types a query, the search
engine matches the keywords of all the advertisers against
the query and decides which advertisers are eligible to
participate in an auction for having their ad displayed.
The search engine needs to allocate the available ad
positions to the ads in the auction and needs to determine
appropriate payments. This is achieved by a mechanism
referred to as a Generalized Second Price (GSP) Auction.

Let us refer to the bid of advertiser as and the
probability of click (CTR) of advertiser at the top
display position as . The allocation of ads to display
positions is determined by their so-called rank score ,
which can be interpreted as expected revenue for ad if
displayed in the top position

2
. The indices are chosen

according to that ranking, such that for all ads we have:
 . The payments in a GSP auction are
designed to avoid dynamic bidding behaviour because the
charge per impression for ad depends on the value per
impression of ad such that .

It can be seen that the estimated click-through rate
plays a crucial role in determining both allocation and
payments, and that it will have a crucial effect on the user
experience, the advertiser value and the general health
and income of the ad marketplace.

2 The calculation of the rank score may also involve other

criteria such as relevance of the ad landing page etc.

2.2. Input Features

We refer to an ad shown to a particular user in a particular
page view as an ad impression. One of the key questions
is the availability of suitable input features or predictor
variables that allow accurate CTR prediction for a given
impression (Richardson, Dominowska, & Ragno, 2007).
These can generally be grouped into three categories: Ad
features include bid phrases, ad title, ad text, landing page
URL, landing page itself

3
, and a hierarchy of advertiser,

account, campaign, ad group and ad. Query features
include the search keywords, possible algorithmic query
expansion, cleaning and stemming. Context features
include display location, geographic location, time, user
data and search history.

Of course, these are only the base features which serve as
the building blocks for more complex features modelling
the interaction between ad, query and context. These more
complex features can, e.g., be constructed by taking the
Cartesian product of base features. As in most machine
learning problems, constructing and selecting good
features is one of the core challenges. For the learning
algorithm one of the resulting challenges is the
requirement to be able to handle discrete features of very
different cardinalities, e.g., a two-valued feature such as
gender and a billion-valued feature such as user ID.

2.3. Domain-Specific Challenges

2.3.1. EVALUATION

An important question is how to evaluate a predictor
within the context of a given application domain. Broadly
speaking, the performance of a predictor can be evaluated
in isolation or as part of the larger system.

To evaluate a predictor in isolation, the machine learning
community has developed a number of reasonable
measures such as the log-likelihood of test data under the
model or the area under the receiver-operator (RO) curve
(AUC). In the experimental section we will use these
measures to evaluate adPredictor in comparison to
calibrated Naïve Bayes. However, it is clear that these
measures can only act as a proxy for the performance of
the predictor in the larger system.

Ultimately, the predictor is part of a larger system that
serves a purpose different from predicting user behaviour,
namely the selection of ads. The ad selection system must
be designed to balance the utilities of different players
participating in the transaction: advertisers, users, and the
search engine. These three types of players have different,
even contradictory objectives. Advertisers are interested
in maximising their return on investment at high volume.
Users would like to see maximally relevant ads that help

3 The user only gets to see the landing page once the click has

been made. Over time, however, its quality can impact the

perception of the advertiser and hence CTR.

them pursue their intent. The search engine would like to
maximise revenue and growth.

Internally, these conflicting goals are mapped to different
key performance indicators (KPIs) that are used to tune
the ad selection system. However, these KPIs are
influenced by a large number of other subsystems such as
fraud detection, query expansion, keyword-query
matching, etc. Furthermore, there are a large number of
parameters influencing the KPIs including reserve prices
and rank-score parameters. So, while the ultimate test of a
CTR predictor lies in its performance as part of the ad
selection system, in a modular architecture it is often best
to identify isolated performance measures as proxies for
in-system performance.

2.3.2. DYNAMICS AND EXPLORATION

The Web itself and the behaviour of people on the web is
by no means static and it is therefore necessary to devise a
dynamic CTR predictor which is able to track changes in
CTR over time. Such changes can be the result of
seasonal variation, gradual changes in taste or interest,
changes in web content, economic conditions etc. Online
algorithms are particularly suited to the task because they
can adapt to the dynamics of the impression-click
sequence. Batch learning algorithms can be trained on
windows shifted over the time series.

While the prediction of CTR is essentially an inference
problem, the performance of the ad selection system will
be measured in terms of the decisions made. Moreover,
since the CTR estimates of the CTR predictor are used to
select ads for display through the keyword auction, the
output of the CTR predictor effectively determines the ads
present in its future training sample. Hence, the ad
selection mechanism must somehow address the
exploration/exploitation trade-off (Sutton & Barto, 1998):
Greedy ad selection according to CTR will result in a
locally optimal selection policy that ignores the long-term
benefits of exploring the full ad inventory.

2.3.3. COMPUTATIONAL COST AND SCALE

The global business of Sponsored Search has vast
proportions (Broder & Josifovski, 2009). There are
millions of different ads that need to be stored, curated,
updated, and indexed. There are billions of users whose
behaviour needs to be tracked in accordance with their
privacy preferences. Many 10s of millions of ad
impressions per hour need to be served with acceptable
response times below 100ms per request, and many more
are evaluated. In addition, with each request requiring
considerable CPU time and data residing in RAM, there is
a significant cost associated with running the business.

For the task of CTR prediction this means that we require
a fast, parallelisable learning algorithm that yields a
predictor with low computational costs. The training
algorithm needs to be able to handle features that can take

potentially billions of different values, and it must be able
to handle highly correlated input features as might be
present in the nodes of the ad hierarchy (advertiser,
account, campaign, etc.) Furthermore, the prediction
algorithm itself needs to have a bounded memory
footprint in RAM to be able to run continuously in the
production system.

3. Online Bayesian Probit Regression

The new algorithm presented here is a general Bayesian
online learning algorithm for the prediction of binary
outcomes. However, in the context of this paper, we will
use terminology related to the task of CTR prediction.

3.1. Task and Notation

We aim to learn a mapping where denotes
the set of ad impressions as represented by their feature
descriptions, and the interval represents the set of
possible CTRs (probabilities of click). In this application,
we consider the case of impressions that are described by
 discrete multi-valued features, with feature
{ } taking different values. To simplify notation
we represent that collection of features for a given
impression in terms of a sparse binary feature vector

 where each vector represents a binary

 -in- encoding of the corresponding discrete feature
value such that each vector has exactly one element
with value and the remaining values , i.e. for all
 { } we have { } and

 (

) ∑

 (1)

For notational convenience, we will denote the outcome
or label click/non-click by { } where
represents a non-click, and represents a click.

3.2. Probability Model and Factor Graph

Our starting point is a generalised linear model with a
probit link function. The sampling distribution of this
model is given by.

 (

) (2)

Here ∫

 is the standardized

cumulative Gaussian density (probit function) which
serves as the inverse link function mapping the output of
the linear model in to . The parameter
scales the steepness of the inverse link function.

In order to arrive at a Bayesian online learning algorithm
we postulate a factorising Gaussian prior distribution over
the weights of the model:

 ∏ ∏ (
)

 (3)

Given the sampling distribution and the prior
 it remains to calculate the posterior.

 (4)

The exact posterior over weights can neither be
represented compactly nor calculated in closed form. We
therefore resort to approximate message passing. In order
to bring out the full factorial structure of the likelihood,
we introduce two latent variables , and consider the
equivalent joint density function which
factorises as

 (5)

This distribution can be understood in terms of the
following generative process, which is also reflected in
the factor graph in Figure 1.

 Factors : Sample weights from the Gaussian

prior .

 Factor : Calculate the score for x as the inner

product , such that .

 Factor : Add zero-mean Gaussian noise to obtain

from , such that .

 Factor : Determine by a threshold on the noisy

score at zero, such that .

3.3. Inference

The factor graph in Figure 1 allows us to break down the
computation of the posterior over weights into local

computations referred to as messages (Kschischang, Frey,
& Loeliger, 2001). In fact, since the exact posterior
calculation is intractable, we maintain an approximation
of the posterior in the same family of distributions as the
prior (3). The approximate message passing algorithm
used is expectation propagation (Minka, 2001) in the
mode of assumed Gaussian density filtering.

There are two inference tasks corresponding to two types
of marginal distributions to be computed on the factor
graph in Figure 1.

 Given training example and prior , infer

the new posterior (upward messages).

 Given posterior and feature vector infer

predictive distribution (downward messages).

We represent the Gaussian beliefs over weights by
sparse vectors only storing values different from the prior.

 A vector of means (
)

 A vector of variances (

)

.

We will not provide a detailed derivation of the inference
equations because adPredictor can be seen as a special
case of the TrueSkill™ rating algorithm for games
(Herbrich, Minka, & Graepel, 2007). The input feature
vector in adPredictor corresponds to a team of players,
with each active weight in adPredictor corresponding to
the skill of a player in the team. Inference on the weights
in adPredictor is equivalent to inference on the player
skills in TrueSkill after a hypothetical match against a
team with known skill of zero. Given the factor graph in
Figure 1 together with Table 1 in the above paper the
update equations can be derived.

3.3.1. UPDATE EQUATIONS FOR ONLINE LEARNING

The update equations represent a mapping from prior to
posterior parameter values based on input-output
pairs ̃ ̃ . In terms of Figure 1, the
calculation can viewed as following the message passing
schedule towards the weights . We define the total
variance for a given input as

 (6)

The update for the posterior parameters is given by:

 ̃

 (

)

(7)

 ̃

 *

 (

)+ (8)

The functions and (see also Figure 2) are given by

Figure 1: Factor graph model of Bayesian probit regression

with message flow. Only active weights are shown.

𝑠

𝑔

𝑤𝑁 𝑤 ⋯

𝑓 𝑓𝑁

𝑡

𝑞

 (9)

About these update equations. i) The amount of change
depends on how ―surprising‖ the observation is. For
example, in the regime the function
grows almost linearly. ii) The amount of change is
proportional to the variance ̃

 relative to all other active
weight beliefs. Hence

 is a weight-specific learning
rate and weights with low variance act as an ―anchor‖. iii)
Every observation leads to a reduction in variance, and
positive examples increase the means of active weights
whereas negative examples decreases them.

These update equations lead to a natural online learning
algorithm in which the parameters of the prior weight
distribution are initialised to reflect any prior
information (such as historical average CTR). For the first
training example , the posterior parameters ̃ ̃
are calculated. After that, the previously obtained
posterior is used as the prior for the next update, i.e.,
 ̃ and ̃ .

3.3.2. PREDICTIVE DISTRIBUTION

The prediction equation represents a mapping from a set
of posterior parameters and an input to a predictive
distribution over , . In terms of Figure
1, the calculation can viewed as following the message
passing schedule towards the factor which encompasses
the label . Alternatively, given equations (2) and (3) the
predictive distribution can be derived as the integral:

 ∫ ⋯ ∫

 (10)

This can be solved exactly and in closed form to give:

 (

) (11)

Comparing this expression to the sampling distribution
(2) shows that the additional variance from the posterior
over the active weights has the effect of pushing the
predictive probability towards , and hence to increase
its binary entropy. In the limiting case of zero variance on
the weights, the sampling distribution (2) is recovered.

3.3.3. DYNAMICS

So far the model assumes a stationary data
distribution) and hence in the limit of infinitely
many observations the variances would converge
towards zero and learning would come to a halt. We have
investigated models of dynamics that can account for
changes in the environment.

The simplest approach uses the idea of a Kalman filter
with covariance per unit time on the weight vectors

leading to an effective dynamics correction at each time
step according to

 ̃

 (12)

The dynamics model above is unsatisfactory in that the
variance of the posterior of a weight that is rarely active
can grow larger than the prior variance. As a consequence
the corresponding feature can become a ―dark horse‖ and
can receive very large updates if it becomes active for a
surprising training example.

We devised an alternative model of dynamics which
converges back to the prior rather than to the uniform
distribution in the limit of zero data and infinite time. It is
based on the idea of gradually forgetting the influence for
past data . In the IID case, the
posterior distribution is the product of the prior
 and the product of likelihood
terms ∏

 Suppose now that per unit time
the likelihood of the data seen so far is subjected to a
noise process with parameter decreasing its
influence on the posterior:

 [∏

]

 (13)

In the case of Gaussian message passing it is possible to
store the prior in terms of its parameters

 and
recover the approximate likelihood from the approximate
posterior using Bayes’ rule, yielding the following
dynamics corrections:

 ̃

 (14)

 ̃ ̃

 *

 + (15)

In the limit of zero data and infinite time, this dynamics
converges back towards the prior.

Figure 2: Plot of learning step size functions 𝑣 (for the mean

update) and 𝑤 (for the variance update). The function 𝑤 is the

negative first derivative of 𝑣.

Computationally, the dynamics updates for both cases can
be delayed and applied cumulatively at the next data-
driven update of the respective weight component.

4. Web Scale Implementation

4.1. Model Size and Pruning

In order for a large scale predictive model to be deployed
in practice it is necessary to limit its memory footprint.
Due to the sparse encoding of features, adPredictor’s
complexity (and hence memory footprint) very much
depends on the support of the input distribution. For
example a user ID feature might allow for, say, six billion
different values, but the number of weights that differ
from the prior would only correspond to those user IDs
that have actually been observed in the training sample,
and it is only those weights that require explicit memory.

Due to the heavy-tailed nature of the distribution of items
observed on the web such as users, queries, ads etc., the
model’s complexity grows with the number of training
examples used. On the one hand it is necessary to track
each newly discovered feature value in case it will
reappear frequently. On the other hand, many of those
values will only re-occur very rarely and the model
should thus not waste memory on them. We have
therefore devised a pruning criterion that allows model
compression without losing much prediction accuracy.

The criterion for pruning a particular weight (i.e.,
resetting its parameters to the prior) is based on the
influence that weight has on the prediction of a
completely unknown input with that feature value on.
We assume that the prior parameters are constant within
feature bags but may differ across,

 . Then the pruning criterion is given by the
Kullback-Leibler divergence between two Bernoulli
variables with success probabilities corresponding to the

predictions using the prior and posterior weight
distributions, respectively. For weight we have:

 ((
∑

 ∑

) | (
∑

 ∑

))

In other words, if changing the weight parameters from
posterior to prior does not make a noticeable difference,
the weight can be pruned.

4.2. Parallel Training

The process of prediction is inherently parallelisable: load
the model parameters on the set of machines and predict
in parallel. Training is more problematic because the
adPredictor algorithm is inherently an online learning
algorithm where learning from the next example builds on
what has been learnt from the previous examples.

Nonetheless, an elegant parallel version of the learning
algorithm can be devised based on the message passing
formulation from the previous section. We consider the
case of data-parallelism (Chu, et al., 2007) where training
examples can be distributed across compute nodes.
Clearly, off-the-shelf parallelisation using locks on shared
memory will be inefficient for low-cardinality features
that will be active in many training examples.

The idea is to construct a new distributed factor graph that
is formally equivalent to the full factor graph that includes
all the training examples as factors connected to the
weights, i.e., replicating the structure below the weights in
Figure 1 for each training example. The online learning
algorithm from Section 3 can be viewed as a particular
message passing schedule in this graph where each
training example is taken in turn, receiving one message
from the prior and sending one message back towards the
weights. The new distributed factor graph has replicated
weight variables on each compute node, which are
connected to a master instance of the weight variables.

The parallel version of the algorithm can now be viewed
as a message passing schedule on this new, distributed

Figure 3: Scatter plot of the means and variances of the display

position feature bag. ML refers to mainline, SB to sidebar (also

known as right rail).

Figure 4: Scatter plot of means and variances of weights for user

ID feature bag. The peak of the triangle represents the prior.

factor graph. The simplest instance sends down the prior
message from the head node to the compute nodes, each
of which runs the online learning algorithm from Section
3, then sends messages back from its weight variables to
the master weight variables, which accumulate the results
from all the compute nodes.

5. Closing the Loop

One of the most intriguing aspects of integrating a CTR
prediction algorithm into a complex ad delivery system is
the dynamic feedback loop thus created: The algorithm’s
predictions influence the selection of ads to be shown and
hence determine the future composition of the training
sample for the algorithm. This appears to be a rather
general phenomenon, and a similar phenomenon has been
described in (Herbrich, Minka, & Graepel, 2007) for the
TrueSkill rating system.

One problem caused by this feedback loop is that
prediction becomes harder if the algorithm predicts
successfully and leads to the selection of ads with higher
CTR: Typical CTRs are below 50% and hence increasing
CTR leads to higher source entropy (17), an effect which
could lead to the misconception that the performance of
the algorithm is degrading over time.

The second problem is the trade-off between exploration
and exploitation. In order to be able to estimate the CTR
of a new ad, it is necessary to present the ad to users and
observe their click/non-click response. At the same time it
is in the interest of everyone involved to show high-CTR
ads to the user based on what is already known. The
exploration problem can be addressed by exploiting the
fact that adPredictor maintains uncertainty about the
weights , and hence about the CTR of any particular ad
impression . Instead of always feeding the expected
CTR to the ad auction, the system can sample from the
posterior weight distribution when evaluating the
prediction using (2), an idea that goes back to Thompson
(Thompson, 1933). This has the effect of bubbling up ads
about whose CTR the system has a high degree of
uncertainty left.

6. Numerical Results

6.1. Posterior Weight Parameters

In order to illustrate the kind of results obtained from
training on the production system, consider scatter plots
of posterior weight parameters.

Figure 3 shows a scatter plot for the display position
feature which takes nine different values. Each dot
represents the posterior mean and variance of one of the
feature weights. The mainline (ML) weights have higher
means than the right-rail or sidebar (SB) weights as would
be expected from the page layout. Also, the variances for

the positions that are more frequently observed and have
higher CTR on average are lower.

Figure 4 shows a scatter plot for a feature representing
user ID. This is an extremely high cardinality feature and
as a consequence, the residual variance is much higher.
Note that the top of the triangle laid out by the dots
corresponds to the weight prior. Dots further down and
out correspond to feature values that have been frequently
observed and have therefore moved away from the prior.
Extreme outliers to the right can be considered bots.

6.2. Comparison with Naïve Bayes

We now present an evaluation of the predictive
performance of adPredictor. We focus on a natural
alternative for web-scale classification: the Naïve Bayes
(NB) classifier (Hand & Yu, 2001). The training for NB is
extremely light-weight and only requires counting feature
values conditional on the label, a process that can easily
be parallelised. However, NB makes the strong
assumption that the feature values are independent of each
other given the label and hence tends to be non-calibrated.
We therefore used isotonic regression (Zadrozny & Elkan,
2001) to calibrate NB. We evaluate the algorithms along
three dimensions: prediction accuracy, calibration, and
ranking. The training sample consists of a stream of ad
impressions together with a click/non-click label extracted
from 14 days of production data. The subsequent day is
split into two subsamples, one of which is used for the
calibration using isotonic regression, the other half is used
for testing. We cannot disclose the exact feature set used
to represent the impressions, but refer the reader to the
general discussion of features in Subsection 2.2.

The empirical cross entropy or log-score is given by

∑ ̂ ̂

 (16)

We measure the prediction accuracy in terms of relative
information gain (RIG) on a test set. Given the empirical
CTR of the data, ̅ ∑

 we define the

information gain as ̅ where is the
entropy defined by

 ̅ ̅ ̅ ̅ ̅ (17)

Figure 5: Calibration plot of Naïve Bayes (NB) and adPredictor

before calibration. NB is ill-calibrated by orders of magnitude

for small CTR.

We define the relative information gain as the
ratio ̅ . Since ̅ is the maximally
attainable value of it quantifies the information gain
relative to the source entropy.

To quantify the quality of the ranking that results from
ordering the test examples according to the predicted
probability, we also compare the algorithms’ areas under
the RO curve (AUC).

Algorithm RIG AUC

adPredictor 61.24% 95.6%

adPredictor (calibrated) 61.35% 95.6%

Naïve Bayes -41.54% 89.4%

Naïve Bayes (calibrated) 33.86% 89.3%

It can be seen that in terms of RIG, adPredictor has a clear
edge on NB, which performs worse than the grand
average CTR predictor, but can gain if calibrated. In
terms of AUC, adPredictor is clearly superior to NB, and
calibration does not make a difference.

Results for the calibration of adPredictor and Naïve Bayes
can be seen in Figure 5 and Figure 6. Impressions have
been grouped according to predicted CTR and the vertical
axis shows the ratio of empirical versus predicted CTR on
a log scale with bubble size indicating number of
impressions. Figure 5 shows how un-calibrated NB is in
comparison to adPredictor. After calibration by isotonic
regression, it can be seen in the histogram of Figure 6
that adPredictor–with its prediction spread out further—
makes much more informative predictions than NB.

7. Conclusions and Future Work

We presented adPredictor, a simple, powerful Bayesian
online learning algorithm used for CTR prediction in
Bing’s Sponsored Search advertising. We are currently
exploring its use for related tasks within Bing including
organic search, display and contextual advertising, based
on other target signals such as conversion. We are also
investigating the use of alternative models, such as the
feature-based collaborative filtering method Matchbox
(Stern, Herbrich, & Graepel, 2009) for personalisation.

Acknowledgements

We would like to thank Guy Dassa, Ewa Dominowska,
Oleg Isakov, Deepak Pawar, Siddhartha Sinha, Jill
Goldschneider, Patrice Simard, and many others in
adCenter without whom this work would not have been
possible. We would also like to thank Onno Zoeter, Tom
Minka, Anton Schwaighofer and David Stern.

References

Agarwal, D., & Chen, B.-C. (2009). Regression based
Latent Factor Models. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

Broder, A., & Josifovski, V. (2009). Lecture Introduction
to Computational Advertising. Stanford University,
Computer Science. Online Lecture Notes.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G.,
Ng, A. Y., et al. (2007). Map-Reduce for Machine
Learning on Multicore. Neural Information
Processing Systems (NIPS) 19 .

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007).
Internet Advertising and the Generalized Second Price
Auction: Selling Billions of Dollars Worth of
Keywords. American Econ. Rev., 97(1), 242-259.

Hand, D. J., & Yu, K. (2001). Idiot's Bayes - Not so
stupid after all? International Statistical Review,
69(3), 385-398.

Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkill:
A Bayesian Skill Rating System. Advances in Neural
Information Processing Systems 20 (pp. 569-576). The
MIT Press.

Kschischang, F., Frey, B. J., & Loeliger, H.-A. (2001).
Factor Graphs and the Sum-Product Algorithm. IEEE
Transactions on Information Theory, 47, 498--519.

Minka, T. (2001). A family of algorithms for approximate
Bayesian inference. PhD thesis, MIT, CSAIL.

Richardson, M., Dominowska, E., & Ragno, R. (2007).
Predicting Clicks: Estimating the Click-Through Rate
for New Ads. World Wide Web (WWW) conference,
(pp. 521-529).

Stern, D., Herbrich, R., & Graepel, T. (2009). Matchbox:
Large Scale Bayesian Online Recommendations.
World Wide Web (WWW) conference.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
Learning - An Introduction. MIT Press.

Thompson, W. R. (1933). On the likelihood that one
unknown exceeds another in view of the evidence of
two samples. Biometrika, 25, 285-294.

Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated
probability estimates from decision trees and naive
Bayes classifiers. International Conference on
Machine Learning (ICML), (pp. 609-616).

Figure 6: Histogram over impressions of predicted probabilities

for calibrated Naive Bayes and adPredictor. Clearly adPredictor

makes more spread-out and hence more informative predictions.

