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Abstract 

We describe a new Bayesian click-through rate 
(CTR) prediction algorithm used for Sponsored 
Search in Microsoft’s Bing search engine. The 
algorithm is based on a probit regression model 
that maps discrete or real-valued input features to 
probabilities. It maintains Gaussian beliefs over 
weights of the model and performs Gaussian 
online updates derived from approximate 
message passing. Scalability of the algorithm is 
ensured through a principled weight pruning 
procedure and an approximate parallel 
implementation. We discuss the challenges 
arising from evaluating and tuning the predictor 
as part of the complex system of sponsored 
search where the predictions made by the 
algorithm decide about future training sample 
composition. Finally, we show experimental 
results from the production system and compare 
to a calibrated Naïve Bayes algorithm. 

1. Introduction

 

Sponsored search remains one of the most profitable 
business models on the web today. It accounts for the 
overwhelming majority of income for the three major 
search engines Google, Yahoo and Bing, and generates 
revenue of at least 25 billion dollars

1
 per year and rising. 

All three major players use keyword auctions to allocate 
display space alongside the algorithmic search results 
based on a pay-per-click model in which advertisers are 
charged only if their advertisements are clicked by a user. 
In this mechanism it is necessary for the search engine to 
estimate the click-through rate (CTR) of available ads for 
a given search query to determine the best allocation of 
display space and appropriate payments (Edelman, 
Ostrovsky, & Schwarz, 2007). As a consequence, the task 
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of CTR prediction is absolutely crucial to Sponsored 
Search advertising because it impacts user experience, 
profitability of advertising and search engine revenue. 

Recognising the importance of CTR estimation for online 
advertising, management at Bing/adCenter decided to run 
a competition to entice people across the company to 
develop the most accurate and scalable CTR predictor. 
The algorithm described in this publication tied for first 
place in the first competition and won the subsequent 
competition based on prediction accuracy. As a 
consequence, it was chosen to replace Bing’s previous 
CTR prediction algorithm, a transition that was completed 
in the summer of 2009. 

The paper makes three major contributions. First, it 
describes the Sponsored Search application scenario, the 
key role of CTR prediction in general, and the particular 
constraints derived from the task, including accuracy, 
calibration, scalability, dynamics, and exploration. 
Second, it describes a new Bayesian online learning 
algorithm for binary prediction, subsequently referred to 
as adPredictor. The algorithm is based on a generalised 
linear model with a probit (cumulative Gaussian) link 
function, a factorising Gaussian belief distribution on the 
feature weights, and calculates the approximate posterior 
using message passing, providing simple, closed-form 
update equations with automatic feature-wise learning 
rate adaptation. Third, we discuss the techniques we 
employed to make adPredictor work in Bing’s production 
environment, now driving 100% Sponsored Search traffic 
with              ad impressions per year.  

The paper is structured as follows. In Section 2 we 
describe in detail how the task of CTR prediction fits into 
the framework of keyword auctions and which constraints 
and challenges arise from the application domain of 
Sponsored Search. In Section 3 we describe the online 
Bayesian Probit Regression algorithm (adPredictor) in 
detail and provide a derivation of the update equations 
based on approximate message passing in a factor graph. 
In Section 4 we discuss how the algorithm operates at 
web scale, using accuracy controlled pruning and an 
implementation of parallel training. In Section 5 we 
discuss how predictions affect the composition of future 



training data, and the problem of trading off exploration 
and exploitation. Before we conclude in Section 7 we 
provide experimental results from the live system 
comparing adPredictor’s prediction accuracy with that of 
a calibrated Naïve Bayes classifier. 

2. Sponsored Search and CTR Prediction 

The Sponsored Search advertising model exploits two key 
aspects of web search. First, the query users enter into a 
search engine partly reveals their intent and can help 
identify appropriate ads to be displayed to the users. 
Second, by clicking on ads users can proceed directly to 
the advertisers’ web pages and the business value thus 
generated can easily be attributed to the web search 
engine. The lecture notes for the Introduction to 
Computational Advertising at Stanford (Broder & 
Josifovski, 2009) provide an excellent introduction. 

2.1. Keyword Auction 

In practice, the keyword auctions work as follows 
(Edelman, Ostrovsky, & Schwarz, 2007). For a given 
product or service advertisers identify suitable keywords 
likely to be typed by users interested in their offering. For 
each of those keywords the advertisers provide a bid 
indicating the amount of money they would be willing to 
pay for a click. When a user types a query, the search 
engine matches the keywords of all the advertisers against 
the query and decides which advertisers are eligible to 
participate in an auction for having their ad displayed. 
The search engine needs to allocate the available ad 
positions to the ads in the auction and needs to determine 
appropriate payments. This is achieved by a mechanism 
referred to as a Generalized Second Price (GSP) Auction.  

Let us refer to the bid of advertiser   as    and the 
probability of click (CTR) of advertiser   at the top 
display position as    . The allocation of ads to display 
positions is determined by their so-called rank score     , 
which can be interpreted as expected revenue for ad   if 
displayed in the top position

2
. The indices   are chosen 

according to that ranking, such that for all ads   we have: 
             . The payments    in a GSP auction are 
designed to avoid dynamic bidding behaviour because the 
charge per impression for ad   depends on the value per 
impression of ad     such that               .  

It can be seen that the estimated click-through rate    
plays a crucial role in determining both allocation and 
payments, and that it will have a crucial effect on the user 
experience, the advertiser value and the general health 
and income of the ad marketplace. 
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2.2. Input Features 

We refer to an ad shown to a particular user in a particular 
page view as an ad impression. One of the key questions 
is the availability of suitable input features or predictor 
variables that allow accurate CTR prediction for a given 
impression (Richardson, Dominowska, & Ragno, 2007). 
These can generally be grouped into three categories: Ad 
features include bid phrases, ad title, ad text, landing page 
URL, landing page itself

3
, and a hierarchy of advertiser, 

account, campaign, ad group and ad. Query features 
include the search keywords, possible algorithmic query 
expansion, cleaning and stemming. Context features 
include display location, geographic location, time, user 
data and search history.  

Of course, these are only the base features which serve as 
the building blocks for more complex features modelling 
the interaction between ad, query and context. These more 
complex features can, e.g., be constructed by taking the 
Cartesian product of base features. As in most machine 
learning problems, constructing and selecting good 
features is one of the core challenges. For the learning 
algorithm one of the resulting challenges is the 
requirement to be able to handle discrete features of very 
different cardinalities, e.g., a two-valued feature such as 
gender and a billion-valued feature such as user ID. 

2.3. Domain-Specific Challenges 

2.3.1. EVALUATION 

An important question is how to evaluate a predictor 
within the context of a given application domain. Broadly 
speaking, the performance of a predictor can be evaluated 
in isolation or as part of the larger system.  

To evaluate a predictor in isolation, the machine learning 
community has developed a number of reasonable 
measures such as the log-likelihood of test data under the 
model or the area under the receiver-operator (RO) curve 
(AUC). In the experimental section we will use these 
measures to evaluate adPredictor in comparison to 
calibrated Naïve Bayes. However, it is clear that these 
measures can only act as a proxy for the performance of 
the predictor in the larger system. 

Ultimately, the predictor is part of a larger system that 
serves a purpose different from predicting user behaviour, 
namely the selection of ads. The ad selection system must 
be designed to balance the utilities of different players 
participating in the transaction: advertisers, users, and the 
search engine. These three types of players have different, 
even contradictory objectives. Advertisers are interested 
in maximising their return on investment at high volume. 
Users would like to see maximally relevant ads that help 
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them pursue their intent. The search engine would like to 
maximise revenue and growth. 

Internally, these conflicting goals are mapped to different 
key performance indicators (KPIs) that are used to tune 
the ad selection system. However, these KPIs are 
influenced by a large number of other subsystems such as 
fraud detection, query expansion, keyword-query 
matching, etc. Furthermore, there are a large number of 
parameters influencing the KPIs including reserve prices 
and rank-score parameters. So, while the ultimate test of a 
CTR predictor lies in its performance as part of the ad 
selection system, in a modular architecture it is often best 
to identify isolated performance measures as proxies for 
in-system performance.  

2.3.2. DYNAMICS AND EXPLORATION 

The Web itself and the behaviour of people on the web is 
by no means static and it is therefore necessary to devise a 
dynamic CTR predictor which is able to track changes in 
CTR over time. Such changes can be the result of 
seasonal variation, gradual changes in taste or interest, 
changes in web content, economic conditions etc. Online 
algorithms are particularly suited to the task because they 
can adapt to the dynamics of the impression-click 
sequence. Batch learning algorithms can be trained on 
windows shifted over the time series. 

While the prediction of CTR is essentially an inference 
problem, the performance of the ad selection system will 
be measured in terms of the decisions made. Moreover, 
since the CTR estimates of the CTR predictor are used to 
select ads for display through the keyword auction, the 
output of the CTR predictor effectively determines the ads 
present in its future training sample. Hence, the ad 
selection mechanism must somehow address the 
exploration/exploitation trade-off (Sutton & Barto, 1998): 
Greedy ad selection according to CTR will result in a 
locally optimal selection policy that ignores the long-term 
benefits of exploring the full ad inventory. 

2.3.3. COMPUTATIONAL COST AND SCALE 

The global business of Sponsored Search has vast 
proportions (Broder & Josifovski, 2009). There are 
millions of different ads that need to be stored, curated, 
updated, and indexed. There are billions of users whose 
behaviour needs to be tracked in accordance with their 
privacy preferences. Many 10s of millions of ad 
impressions per hour need to be served with acceptable 
response times below 100ms per request, and many more 
are evaluated. In addition, with each request requiring 
considerable CPU time and data residing in RAM, there is 
a significant cost associated with running the business. 

For the task of CTR prediction this means that we require 
a fast, parallelisable learning algorithm that yields a 
predictor with low computational costs. The training 
algorithm needs to be able to handle features that can take 

potentially billions of different values, and it must be able 
to handle highly correlated input features as might be 
present in the nodes of the ad hierarchy (advertiser, 
account, campaign, etc.) Furthermore, the prediction 
algorithm itself needs to have a bounded memory 
footprint in RAM to be able to run continuously in the 
production system. 

3. Online Bayesian Probit Regression 

The new algorithm presented here is a general Bayesian 
online learning algorithm for the prediction of binary 
outcomes. However, in the context of this paper, we will 
use terminology related to the task of CTR prediction. 

3.1. Task and Notation 

We aim to learn a mapping         where   denotes 
the set of ad impressions as represented by their feature 
descriptions, and the interval       represents the set of 
possible CTRs (probabilities of click). In this application, 
we consider the case of impressions that are described by 
 discrete multi-valued features, with feature   
{     } taking    different values. To simplify notation 
we represent that collection of features for a given 
impression in terms of a sparse binary feature vector 
      

     
    where each vector    represents a binary 

 -in-  encoding of the corresponding discrete feature 
value such that each vector    has exactly one element 
with value   and the remaining values  , i.e. for all 
  {     } we have      {   } and 
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For notational convenience, we will denote the outcome 
or label click/non-click by   {     }  where    
represents a non-click, and    represents a click. 

3.2. Probability Model and Factor Graph 

Our starting point is a generalised linear model with a 
probit link function. The sampling distribution of this 
model is given by.  
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Here      ∫         
 

  
   is the standardized 

cumulative Gaussian density (probit function) which 
serves as the inverse link function mapping the output of 
the linear model in        to       . The parameter   
scales the steepness of the inverse link function. 

In order to arrive at a Bayesian online learning algorithm 
we postulate a factorising Gaussian prior distribution over 
the weights of the model: 
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Given the sampling distribution          and the prior 
     it remains to calculate the posterior. 

                        (4)  

The exact posterior over weights   can neither be 
represented compactly nor calculated in closed form. We 
therefore resort to approximate message passing. In order 
to bring out the full factorial structure of the likelihood, 
we introduce two latent variables    , and consider the 
equivalent joint density function              which 
factorises as 

                                  (5)  

This distribution can be understood in terms of the 
following generative process, which is also reflected in 
the factor graph in Figure 1.  

 Factors   : Sample weights   from the Gaussian 

prior     .  

 Factor  : Calculate the score   for x as the inner 

product    , such that                   .  

 Factor  : Add zero-mean Gaussian noise to obtain   

from  , such that                  .  

 Factor  : Determine   by a threshold on the noisy 

score   at zero, such that                     .  

3.3. Inference 

The factor graph in Figure 1 allows us to break down the 
computation of the posterior over weights   into local 

computations referred to as messages (Kschischang, Frey, 
& Loeliger, 2001). In fact, since the exact posterior 
calculation is intractable, we maintain an approximation 
of the posterior in the same family of distributions as the 
prior (3). The approximate message passing algorithm 
used is expectation propagation (Minka, 2001) in the 
mode of assumed Gaussian density filtering. 

There are two inference tasks corresponding to two types 
of marginal distributions to be computed on the factor 
graph in Figure 1.  

 Given training example       and prior     , infer 

the new posterior          (upward messages).  

 Given posterior          and feature vector   infer 

predictive distribution        (downward messages). 

We represent the Gaussian beliefs over weights   by 
sparse vectors only storing values different from the prior. 

 A vector of means   (            
)
 

  

 A vector of variances    (    
         

 )
 

. 

We will not provide a detailed derivation of the inference 
equations because adPredictor can be seen as a special 
case of the TrueSkill™ rating algorithm for games 
(Herbrich, Minka, & Graepel, 2007). The input feature 
vector in adPredictor corresponds to a team of players, 
with each active weight in adPredictor corresponding to 
the skill of a player in the team. Inference on the weights 
in adPredictor is equivalent to inference on the player 
skills in TrueSkill after a hypothetical match against a 
team with known skill of zero. Given the factor graph in 
Figure 1 together with Table 1 in the above paper the 
update equations can be derived.   

3.3.1. UPDATE EQUATIONS FOR ONLINE LEARNING 

The update equations represent a mapping from prior to 
posterior parameter values based on input-output 
pairs               ̃  ̃  . In terms of Figure 1, the 
calculation can viewed as following the message passing 
schedule towards the weights   . We define the total 
variance for a given input   as 

            (6)  

The update for the posterior parameters is given by: 
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The functions   and   (see also Figure 2) are given by 

Figure 1: Factor graph model of Bayesian probit regression 

with message flow. Only active weights are shown. 
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About these update equations. i) The amount of change 
depends on how ―surprising‖ the observation is. For 
example, in the regime          the function      
grows almost linearly. ii) The amount of change is 
proportional to the variance   ̃   

  relative to all other active 
weight beliefs. Hence     

    is a weight-specific learning 
rate and weights with low variance act as an ―anchor‖. iii) 
Every observation leads to a reduction in variance, and 
positive examples increase the means of active weights 
whereas negative examples decreases them. 

These update equations lead to a natural online learning 
algorithm in which the parameters of the prior weight 
distribution        are initialised to reflect any prior 
information (such as historical average CTR). For the first 
training example      , the posterior parameters   ̃  ̃   
are calculated. After that, the previously obtained 
posterior is used as the prior for the next update, i.e., 
   ̃ and     ̃ .  

3.3.2. PREDICTIVE DISTRIBUTION 

The prediction equation represents a mapping from a set 
of posterior parameters and an input   to a predictive 
distribution over  ,              . In terms of Figure 
1, the calculation can viewed as following the message 
passing schedule towards the factor   which encompasses 
the label  . Alternatively, given equations (2) and (3) the 
predictive distribution can be derived as the integral: 
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This can be solved exactly and in closed form to give: 
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) (11)  

Comparing this expression to the sampling distribution 
(2) shows that the additional variance from the posterior 
over the active weights has the effect of pushing the 
predictive probability towards    , and hence to increase 
its binary entropy. In the limiting case of zero variance on 
the weights, the sampling distribution (2) is recovered.  

3.3.3. DYNAMICS 

So far the model assumes a stationary data 
distribution       ) and hence in the limit of infinitely 
many observations the variances    would converge 
towards zero and learning would come to a halt. We have 
investigated models of dynamics that can account for 
changes in the environment. 

The simplest approach uses the idea of a Kalman filter 
with covariance     per unit time on the weight vectors 

leading to an effective dynamics correction at each time 
step according to 

  ̃   
      

      (12)  

The dynamics model above is unsatisfactory in that the 
variance of the posterior of a weight that is rarely active 
can grow larger than the prior variance. As a consequence 
the corresponding feature can become a ―dark horse‖ and 
can receive very large updates if it becomes active for a 
surprising training example.  

We devised an alternative model of dynamics which 
converges back to the prior rather than to the uniform 
distribution in the limit of zero data and infinite time. It is 
based on the idea of gradually forgetting the influence for 
past data                    . In the IID case, the 
posterior distribution        is the product of the prior 
     and the product of likelihood 
terms ∏             

     Suppose now that per unit time 
the likelihood of the data seen so far is subjected to a 
noise process with parameter     decreasing its 
influence on the posterior: 
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In the case of Gaussian message passing it is possible to 
store the prior      in terms of its parameters      

  and 
recover the approximate likelihood from the approximate 
posterior using Bayes’ rule, yielding the following 
dynamics corrections: 
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In the limit of zero data and infinite time, this dynamics 
converges back towards the prior.  

Figure 2: Plot of learning step size functions 𝑣    (for the mean 

update) and 𝑤    (for the variance update). The function 𝑤 is the 

negative first derivative of 𝑣.  



Computationally, the dynamics updates for both cases can 
be delayed and applied cumulatively at the next data-
driven update of the respective weight component. 

4. Web Scale Implementation 

4.1. Model Size and Pruning 

In order for a large scale predictive model to be deployed 
in practice it is necessary to limit its memory footprint. 
Due to the sparse encoding of features, adPredictor’s 
complexity (and hence memory footprint) very much 
depends on the support of the input distribution. For 
example a user ID feature might allow for, say, six billion 
different values, but the number of weights that differ 
from the prior would only correspond to those user IDs 
that have actually been observed in the training sample, 
and it is only those weights that require explicit memory. 

Due to the heavy-tailed nature of the distribution of items 
observed on the web such as users, queries, ads etc., the 
model’s complexity grows with the number of training 
examples used. On the one hand it is necessary to track 
each newly discovered feature value in case it will 
reappear frequently. On the other hand, many of those 
values will only re-occur very rarely and the model 
should thus not waste memory on them. We have 
therefore devised a pruning criterion that allows model 
compression without losing much prediction accuracy. 

The criterion for pruning a particular weight (i.e., 
resetting its parameters to the prior) is based on the 
influence that weight has on the prediction of a 
completely unknown input    with that feature value on. 
We assume that the prior parameters are constant within 
feature bags but may differ across,                   

   
          

  . Then the pruning criterion is given by the 
Kullback-Leibler divergence between two Bernoulli 
variables with success probabilities corresponding to the 

predictions using the prior and posterior weight 
distributions, respectively. For weight      we have:   
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In other words, if changing the weight parameters from 
posterior to prior does not make a noticeable difference, 
the weight can be pruned. 

4.2. Parallel Training 

The process of prediction is inherently parallelisable: load 
the model parameters on the set of machines and predict 
in parallel. Training is more problematic because the 
adPredictor algorithm is inherently an online learning 
algorithm where learning from the next example builds on 
what has been learnt from the previous examples. 

Nonetheless, an elegant parallel version of the learning 
algorithm can be devised based on the message passing 
formulation from the previous section. We consider the 
case of data-parallelism (Chu, et al., 2007) where training 
examples can be distributed across compute nodes. 
Clearly, off-the-shelf parallelisation using locks on shared 
memory will be inefficient for low-cardinality features 
that will be active in many training examples. 

The idea is to construct a new distributed factor graph that 
is formally equivalent to the full factor graph that includes 
all the training examples as factors connected to the 
weights, i.e., replicating the structure below the weights in 
Figure 1 for each training example. The online learning 
algorithm from Section 3 can be viewed as a particular 
message passing schedule in this graph where each 
training example is taken in turn, receiving one message 
from the prior and sending one message back towards the 
weights. The new distributed factor graph has replicated 
weight variables on each compute node, which are 
connected to a master instance of the weight variables.  

The parallel version of the algorithm can now be viewed 
as a message passing schedule on this new, distributed 

Figure 3: Scatter plot of the means and variances of the display 

position feature bag. ML refers to mainline, SB to sidebar (also 

known as right rail). 

Figure 4: Scatter plot of means and variances of weights for user 

ID feature bag. The peak of the triangle represents the prior. 



factor graph. The simplest instance sends down the prior 
message from the head node to the compute nodes, each 
of which runs the online learning algorithm from Section 
3, then sends messages back from its weight variables to 
the master weight variables, which accumulate the results 
from all the compute nodes.   

5. Closing the Loop 

One of the most intriguing aspects of integrating a CTR 
prediction algorithm into a complex ad delivery system is 
the dynamic feedback loop thus created: The algorithm’s 
predictions influence the selection of ads to be shown and 
hence determine the future composition of the training 
sample for the algorithm. This appears to be a rather 
general phenomenon, and a similar phenomenon has been 
described in (Herbrich, Minka, & Graepel, 2007) for the 
TrueSkill rating system.  

One problem caused by this feedback loop is that 
prediction becomes harder if the algorithm predicts 
successfully and leads to the selection of ads with higher 
CTR: Typical CTRs are below 50% and hence increasing 
CTR leads to higher source entropy (17), an effect which 
could lead to the misconception that the performance of 
the algorithm is degrading over time. 

The second problem is the trade-off between exploration 
and exploitation. In order to be able to estimate the CTR 
of a new ad, it is necessary to present the ad to users and 
observe their click/non-click response. At the same time it 
is in the interest of everyone involved to show high-CTR 
ads to the user based on what is already known. The 
exploration problem can be addressed by exploiting the 
fact that adPredictor maintains uncertainty about the 
weights  , and hence about the CTR of any particular ad 
impression   . Instead of always feeding the expected 
CTR to the ad auction, the system can sample from the 
posterior weight distribution        when evaluating the 
prediction using (2), an idea that goes back to Thompson 
(Thompson, 1933). This has the effect of bubbling up ads 
about whose CTR the system has a high degree of 
uncertainty left.  

6. Numerical Results 

6.1. Posterior Weight Parameters 

In order to illustrate the kind of results obtained from 
training on the production system, consider scatter plots 
of posterior weight parameters. 

Figure 3 shows a scatter plot for the display position 
feature which takes nine different values. Each dot 
represents the posterior mean and variance of one of the 
feature weights. The mainline (ML) weights have higher 
means than the right-rail or sidebar (SB) weights as would 
be expected from the page layout. Also, the variances for 

the positions that are more frequently observed and have 
higher CTR on average are lower. 

Figure 4 shows a scatter plot for a feature representing 
user ID. This is an extremely high cardinality feature and 
as a consequence, the residual variance is much higher. 
Note that the top of the triangle laid out by the dots 
corresponds to the weight prior. Dots further down and 
out correspond to feature values that have been frequently 
observed and have therefore moved away from the prior. 
Extreme outliers to the right can be considered bots.  

6.2. Comparison with Naïve Bayes 

We now present an evaluation of the predictive 
performance of adPredictor. We focus on a natural 
alternative for web-scale classification: the Naïve Bayes 
(NB) classifier (Hand & Yu, 2001). The training for NB is 
extremely light-weight and only requires counting feature 
values conditional on the label, a process that can easily 
be parallelised. However, NB makes the strong 
assumption that the feature values are independent of each 
other given the label and hence tends to be non-calibrated. 
We therefore used isotonic regression (Zadrozny & Elkan, 
2001) to calibrate NB. We evaluate the algorithms along 
three dimensions: prediction accuracy, calibration, and 
ranking. The training sample consists of a stream of ad 
impressions together with a click/non-click label extracted 
from 14 days of production data. The subsequent day is 
split into two subsamples, one of which is used for the 
calibration using isotonic regression, the other half is used 
for testing. We cannot disclose the exact feature set used 
to represent the impressions, but refer the reader to the 
general discussion of features in Subsection 2.2. 

The empirical cross entropy or log-score is given by 

 

   
 

 
∑      ̂               ̂   

 

   

 (16)  

We measure the prediction accuracy in terms of relative 
information gain (RIG) on a test set. Given the empirical 
CTR of the data,  ̅  ∑   

 
      we define the 

information gain as          ̅  where   is the 
entropy defined by 

    ̅     ̅     ̅      ̅        ̅    (17)  

Figure 5: Calibration plot of Naïve Bayes (NB) and adPredictor 

before calibration. NB is ill-calibrated by orders of magnitude 

for small CTR. 



We define the relative information gain as the 
ratio            ̅ . Since    ̅  is the maximally 
attainable value of    it quantifies the information gain 
relative to the source entropy. 

To quantify the quality of the ranking that results from 
ordering the test examples according to the predicted 
probability, we also compare the algorithms’ areas under 
the RO curve (AUC).  

Algorithm RIG AUC 

adPredictor 61.24% 95.6% 

adPredictor (calibrated) 61.35% 95.6% 

Naïve Bayes -41.54% 89.4% 

Naïve Bayes (calibrated) 33.86% 89.3% 

 

It can be seen that in terms of RIG, adPredictor has a clear 
edge on NB, which performs worse than the grand 
average CTR predictor, but can gain if calibrated. In 
terms of AUC, adPredictor is clearly superior to NB, and 
calibration does not make a difference. 

Results for the calibration of adPredictor and Naïve Bayes 
can be seen in Figure 5 and Figure 6. Impressions have 
been grouped according to predicted CTR and the vertical 
axis shows the ratio of empirical versus predicted CTR on 
a log scale with bubble size indicating number of 
impressions. Figure 5 shows how un-calibrated NB is in 
comparison to adPredictor. After calibration by isotonic 
regression, it can be seen in the histogram of  Figure 6 
that adPredictor–with its prediction spread out further—
makes much more informative predictions than NB.  

7. Conclusions and Future Work 

We presented adPredictor, a simple, powerful Bayesian 
online learning algorithm used for CTR prediction in 
Bing’s Sponsored Search advertising. We are currently 
exploring its use for related tasks within Bing including 
organic search, display and contextual advertising, based 
on other target signals such as conversion. We are also 
investigating the use of alternative models, such as the 
feature-based collaborative filtering method Matchbox 
(Stern, Herbrich, & Graepel, 2009) for personalisation. 
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Figure 6: Histogram over impressions of predicted probabilities 

for calibrated Naive Bayes and adPredictor. Clearly adPredictor 

makes more spread-out and hence more informative predictions. 


